WorldWideScience

Sample records for surface vater groundwater

  1. Effect of cholecystectomy for gallstones on the surface of the papilla of Vater and the diameter of the common bile duct.

    Science.gov (United States)

    Skalicky, Marjan; Dajcman, Davorin; Hojs, Radovan

    2002-04-01

    To date, little is known about changes in the size of the papilla of Vater in patients with gallstones. Most of the research concerning these patients has investigated changes in the diameter of the common bile duct and pressure in the sphincter of Oddi region. The latest research has not confirmed the prevalent opinion that the common bile duct dilates after cholecystectomy; moreover, knowledge about changes in the form and size of the papilla of Vater remains poor. The aim of our research was to measure the surface of the papilla of Vater and the diameter of the periampullary pancreatic part of the common bile duct before surgery, then 3 months and 6 months after surgery, using endoscopic ultrasound. In patients with symptomatic gallstones but with no evidence of cholestasis or stones in the common bile duct, the surface of the papilla of Vater and the diameter of the periampullary pancreatic part of the common bile duct were measured before surgery by endoscopic ultrasound. In the postoperative period, measurements were repeated in patients with an early occurrence of nausea, distension, bloating and pain in the upper abdomen and in patients without any symptoms in the same time period. The surface of the normal papilla of Vater and the diameter of the periampullary pancreatic part of the common bile duct were determined in healthy subjects. In all the patients included in our study, the surface of the papilla of Vater was enlarged before surgery and, after 3 months, was even larger. However, after 6 months, it was practically the same as before surgery. The diameter of the periampullary pancreatic part of the common bile duct before surgery and 6 months after surgery was within normal limits. However, a statistically significant and transient increase in the diameter was noticed in the third month after cholecystectomy. The results were almost the same for symptomatic and asymptomatic patients. In patients with symptomatic gallstones, the surface of the papilla

  2. MelanomaintheampullaofVater

    Institute of Scientific and Technical Information of China (English)

    Antonia Bendic; Merica Glavina Durdov; Radoslav Stipic; Ivana Karaman

    2013-01-01

    BACKGROUND: The most common tumors in the ampulla of Vater are adenocarcinomas. Although malignant melanoma usually occurs on the skin, it can also arise in the gastrointestinal and biliary tract. METHOD: We present a case of a 52-year-old, previously healthy man who presented with painless jaundice. RESULTS: Clinical examination revealed dilated intrahepatic and extrahepatic bile ducts and pancreatic duct due to the obstructive mass in the ampulla of Vater. The patient underwent pancreaticoduodenectomy and histopathological diagnosis of the resected tumor mass was malignant melanoma. Thorough clinical examination was preformed, but no other primary or metastatic site of melanoma could be found. In the next few months, the patient developed multiple liver metastases and died. CONCLUSION: An isolated amelanotic lesion in the ampulla of Vater can be a potential diagnostic pitfall, especially in patients who have had melanoma.

  3. Benign anatomical mistakes: "ampulla of Vater" and "papilla of Vater".

    Science.gov (United States)

    Mirilas, Petros; Colborn, Gene L; Skandalakis, Lee J; Skandalakis, Panajiotis N; Zoras, Odysseas; Skandalakis, John E

    2005-03-01

    The anatomy of the ampullary termination of the bile and pancreatic ducts is complex; appropriate terminology for this area is confusing and inaccurate. We examine the terms "ampulla of Vater" and "papilla of Vater" for anatomical and historical correctness. The term "ampulla" refers to a dilated part of a duct or other channel. Thus, this word is topographically correct to describe the dilatation at the confluence of the bile and main pancreatic ducts; historically, however, there is considerable reason to believe that its first description was by Santorini rather than Vater. The eponymous term "papilla of Vater" is also incorrect historically. The use of eponyms is firmly entrenched in the medical literature, but some are so problematic that they should be discarded. The eponymous terms for both the ampulla and the papilla should be replaced with the terms "hepatopancreatic ampulla" (or "biliaropancreatic ampulla") and "major [or "greater"] duodenal papilla," respectively.

  4. VACTERL/VATER Association

    Directory of Open Access Journals (Sweden)

    Solomon Benjamin D

    2011-08-01

    Full Text Available Abstract VACTERL/VATER association is typically defined by the presence of at least three of the following congenital malformations: vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, renal anomalies, and limb abnormalities. In addition to these core component features, patients may also have other congenital anomalies. Although diagnostic criteria vary, the incidence is estimated at approximately 1 in 10,000 to 1 in 40,000 live-born infants. The condition is ascertained clinically by the presence of the above-mentioned malformations; importantly, there should be no clinical or laboratory-based evidence for the presence of one of the many similar conditions, as the differential diagnosis is relatively large. This differential diagnosis includes (but is not limited to Baller-Gerold syndrome, CHARGE syndrome, Currarino syndrome, deletion 22q11.2 syndrome, Fanconi anemia, Feingold syndrome, Fryns syndrome, MURCS association, oculo-auriculo-vertebral syndrome, Opitz G/BBB syndrome, Pallister-Hall syndrome, Townes-Brocks syndrome, and VACTERL with hydrocephalus. Though there are hints regarding causation, the aetiology has been identified only in a small fraction of patients to date, likely due to factors such as a high degree of clinical and causal heterogeneity, the largely sporadic nature of the disorder, and the presence of many similar conditions. New genetic research methods offer promise that the causes of VACTERL association will be better defined in the relatively near future. Antenatal diagnosis can be challenging, as certain component features can be difficult to ascertain prior to birth. The management of patients with VACTERL/VATER association typically centers around surgical correction of the specific congenital anomalies (typically anal atresia, certain types of cardiac malformations, and/or tracheo-esophageal fistula in the immediate postnatal period, followed by long-term medical management of sequelae of

  5. Large cell neuroendocrine carcinoma of the ampulla of Vater.

    LENUS (Irish Health Repository)

    Beggs, Rachel E

    2012-09-01

    Large cell neuroendocrine carcinomas of the ampulla of Vater are rare and confer a very poor prognosis despite aggressive therapy. There are few case reports of large cell neuroendocrine carcinomas of the ampulla of Vater in the literature and to date no studies have been done to establish optimal management. We describe a pooled case series from published reports of neuroendocrine carcinomas of the ampulla of Vater including a case which presented to our institution.

  6. Der Vater in der Eltern-Kleinkind-Psychotherapie

    OpenAIRE

    Barrows, Paul

    2000-01-01

    In dieser Arbeit wird diskutiert, daß und warum die Rolle des Vaters sowohl von Forschern als auch von Eltern-Kleinkind-Therapeuten bisher nur wenig beachtet wird und warum der Vater für die Entwicklung des Kindes bedeutsam ist. Anhand von Fallbeispielen wird gezeigt, daß der Vater häufig in die therapeutische Arbeit eingebunden werden muß, damit die Therapie erfolgreich sein kann. Zwei besondere Aspekte der Funktion des Vaters werden dargestellt: der direkte Einfluß seiner "Gespenster" auf d...

  7. Radionuclides in surface and groundwater

    Science.gov (United States)

    Campbell, Kate M.

    2009-01-01

    Unique among all the contaminants that adversely affect surface and water quality, radioactive compounds pose a double threat from both toxicity and damaging radiation. The extreme energy potential of many of these materials makes them both useful and toxic. The unique properties of radioactive materials make them invaluable for medical, weapons, and energy applications. However, mining, production, use, and disposal of these compounds provide potential pathways for their release into the environment, posing a risk to both humans and wildlife. This chapter discusses the sources, uses, and regulation of radioactive compounds in the United States, biogeochemical processes that control mobility in the environment, examples of radionuclide contamination, and current work related to contaminated site remediation.

  8. Vestibular Derangement and Motion Intolerance in VATER Association

    Directory of Open Access Journals (Sweden)

    Orit Samuel

    2017-01-01

    Full Text Available VATER association is a nonrandom occurrence of congenital malformations: vertebral defects, anal atresia, tracheoesophageal fistula, renal defects, and radial bone anomalies. We report the case of a 19-year-old man with a childhood diagnosis of VATER association, who presented to the motion sickness clinic with severe seasickness. We discuss the clinical and laboratory diagnosis of vestibular pathophysiology, which was confirmed by MRI of lateral semicircular canal and vestibule dysplasia. We suggest the possibility of vestibular involvement as part of the developmental field defect associated with VATER syndrome, which hitherto has rarely been reported.

  9. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    Science.gov (United States)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  10. Conjunctive Surface Water and Groundwater Management under Climate Change

    Directory of Open Access Journals (Sweden)

    Xiaodong eZhang

    2015-09-01

    Full Text Available Climate change can result in significant impacts on regional and global surface water and groundwater resources. Using groundwater as a complimentary source of water has provided an effective means to satisfy the ever-increasing water demands and deal with surface water shortages problems due to robust capability of groundwater in responding to climate change. Conjunctive use of surface water and groundwater is crucial for integrated water resources management. It is helpful to reduce vulnerabilities of water supply systems and mitigate the water supply stress in responding to climate change. Some critical challenges and perspectives are discussed to help decision/policy makers develop more effective management and adaptation strategies for conjunctive water resources use in facing climate change under complex uncertainties.

  11. Groundwater Recharge, Evapotranspiration and Surface Runoff ...

    African Journals Online (AJOL)

    Bheema

    Department of Earth Science, CNCS, P.O. Box 231, Mekelle University, ... The mean annual groundwater recharge, evapotranspiration and runoff were ... Accordingly, recharge accounts for 12% of the precipitation .... So, to apply the WetSpass for Illala catchment, input of the meteorological grid map ..... Review of Australian.

  12. Composite neuroendocrine and adenomatous carcinoma of the papilla of Vater

    Institute of Scientific and Technical Information of China (English)

    Joanna A Musialik; Maciej J Kohut; Tomasz Marek; Anatol Wodo(I)a(z)ski; Marek Hartleb

    2009-01-01

    Malignant tumors of papilla are usually adenocarcinomas.We present a 67-year-old female who became icteric as result of a malignant tumor infiltrating the papilla of Vater. Histopathological assessment of surgically excised tumor showed both neuroendocrine and adenocarcinomatous features. To our knowledge, this is the seventh report of this rare neoplastic association in the duodenal periampullary region.

  13. Groundwater surface water interaction study using natural isotopes tracer

    Science.gov (United States)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  14. Surface water and groundwater interaction on a hill island

    DEFF Research Database (Denmark)

    Frederiksen, Rasmus Rumph; Rasmussen, Keld Rømer; Christensen, Steen

    – the hill islands – is relatively unknown. This study aims at providing new information about the rainfall-runoff processes in hill island landscapes where surface water and groundwater interaction is expected to have a dominant role and hill-slope processes not. Through stream flow measurements, field...

  15. Modelling the effects of surface water flood pulses on groundwater

    NARCIS (Netherlands)

    Schot, P.P.; Wassen, M.J.

    2010-01-01

    Flood pulses in wetlands steer ecosystem development directly through surface water processes and indirectly through the effects of the flood pulse on groundwater. Direct effects on ecosystems are exerted by e.g. inundation and deposition of sediments containing nutrients. Indirect effects include t

  16. Carcinoma of ampulla of vater : emphasis on the CT technique

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Seouk; Byun, Jae Young; Jung, So Lyung; Kim, Euy Neyng; Lee, Jae Moon; Shinn, Kyung Sub [Catholic Univ. Medical College, Seoul (Korea, Republic of)

    1997-06-01

    To demonstrate a CT technique by which carcinoma of the ampulla of Vater can be more accurately diagnosed, and to describe the radiologic findings of this carcinoma. We retrospectively reviewed CT findings in 26 patients with pathologically proven carcinoma of the ampulla of Vater. One additional cup of diluted oral contrast medium was ingested immediately before the scan. We analysed the difference in detection rate of the mass in the duodenal lumen with and without duodenal luminal opacification of gastrografin. We also evaluated the size and shape of the mass, dilatation of CBD and the pancreatic duct, and 1ymph node metastasis. In addition, we analyzed multimodality imaging findings(ultrasonogram(US):13;hypotonic duodenogram(HTDG):7;ERCP:17) of carcinoma of the ampulla of Vater. Nodular soft tissue masses protruding into the duodenal lumen were identified in 21 of 26 cases. In 95% of cases (21/22) with favorable opacification and distension of the duodenum, masses were clearly identified on CT imaging. However, in four cases with poor opacification and distension of the duodenum, masses could not be observed(P=0.000). The mass on CT scan showed a well-defined margin, round or lobulated contour, and contrast enhancement simiar to that of the pancreas. CBD dilatation was identified in 20 cases and pancreatic duct dilatation in 12. On US, protruding masses in the distal CBD were observed in nine of 13 cases(60%) and on HTDG, in six of seven cases(86%) as well-defined filling defects. Since the accuracy of CT diagnosis of intestinal lesions is directly proportional to the degree of intestinal distension and opacification with oral contrast, we believe that adequate CT technique for distending and opacitying the duodenal lumen are necessary for early diagnosis of carcinoma of the ampulla of Vater.

  17. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

  18. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  19. Recharging California's Groundwater: Crop Suitability and Surface Water Availability for Agricultural Groundwater Banking

    Science.gov (United States)

    Dahlke, H. E.; Kocis, T. N.; Brown, A.

    2016-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California (CA). A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands (alfalfa/pasture) for recharging groundwater. Understanding soil suitability for ag-GB, crop health and flooding tolerance, leaching of soil nitrate and salts, the availability of surface water for recharge, and the economic costs and benefits of ag-GB is fundamental to assessing the feasibility of local-scale implementation of ag-GB. The study presented here considers both the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flow) for ag-GB and the risks and benefits associated with using alfalfa fields as spreading grounds for ag-GB. The availability of surface water for winter (Nov to Apr) ag-GB were estimated based on daily streamflow records for 93 stream gauges within the Central Valley, CA. Analysis focused on high-magnitude (>90thpercentile) flows because most lower flows are likely legally allocated in CA. Results based >50 years of data indicate that an average winter/spring (Nov. - Apr.) in the Sacramento River Basin could provide 7 million acre-feet (AF) (8.6 km3) of water for ag-GB from flows above the 90th percentile. These flows originate from few storm events (5-7 events) and occur on average for 25-30 days between November and April. Wintertime on-farm recharge experiments were conducted on a 9-yr old, 15-acre alfalfa field in the Scott Valley, CA, where 135 AF and 107 AF of water were recharged during the winters of 2015 and 2016, respectively. Biomass data collected indicates that pulsed application of 6-10 ft of water on dormant alfalfa results in minimal yield loss (0.5 ton/acre reduction), short-duration saturated conditions in the root-zone, and high recharge

  20. Bimetallic nickel-iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation.

    Science.gov (United States)

    Han, Yanlai; Yan, Weile

    2014-12-01

    The incorporation of catalytic metals on iron nanoparticles to form bimetallic nanoparticles (BNPs) generates a class of highly reactive materials for degrading chlorinated hydrocarbons (e.g., trichloroethylene, TCE) in groundwater. Successful implementation of BNPs to groundwater decontamination relies critically on the stability of surface reactive sites of BNPs in groundwater matrices. This study investigated the effect of common groundwater solutes on TCE reduction with Ni-Fe (with Ni at 2 wt.%) bimetallic nanoparticles (herein denoted as Ni-Fe BNPs). Batch experiments involving pre-exposing the nanoparticles to various groundwater solutions for 24 h followed by reactions with TCE solutions were conducted. The results suggest that the deactivation behavior of Ni-Fe BNPs differs significantly from that of the well-studied Pd-Fe BNPs. Specifically, Ni-Fe BNPs were chemically stable in pure water. Mild reduction in TCE reaction rates were observed for Ni-Fe BNPs pre-exposed to chloride (Cl(-)), bicarbonate (HCO3(-)), sulfite (SO3(2-)) and humic acid solutions. Nitrate (NO3(-)), sulfate (SO4(2-)) and phosphate (HPO4(2-)) may cause moderate to severe deactivation at elevated concentrations (>1 mM). Product analysis and surface chemistry investigations using high-resolution X-ray photoelectron spectroscopy (HR-XPS) reveal that NO3(-) decreased particle reactivity mainly due to progressive formation of passivating oxides, whereas SO4(2-) and phosphate elicited rapid deactivation as a result of specific poisoning of the surface nickel sites. At similar levels, phosphate is the most potent deactivation agent among the solutes examined in this study. While our findings point out the desirable quality of Ni-Fe nanoparticles, particularly their greater electrochemical stability compared to Pd-Fe BNPs, its susceptibility to chemical poisoning at high levels of complexing ligands is also noted. Groundwater chemistry is therefore an important factor to consider when

  1. Description and application of the combined surface and groundwater flow model MOGROW

    NARCIS (Netherlands)

    Querner, E.P.

    1997-01-01

    In the Netherlands shallow groundwater tables prevail in many parts, such that groundwater and surface water are closely interlinked. Thus the use of a combined groundwater and surface water model is necessary to predict the effect of certain measures on a regional scale. Therefore the model MOGROW

  2. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2016-12-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  3. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  4. Groundwater surface mapping informs sources of catchment baseflow

    OpenAIRE

    J. F. Costelloe; T. J. Peterson; K. Halbert; A. W. Western; J. J. McDonnell

    2014-01-01

    Groundwater discharge is a major contributor to stream baseflow. Quantifying this flux is difficult, despite its considerable importance to water resource management and evaluation of the effects of groundwater extraction on streamflow. It is important to be able to differentiate between contributions to streamflow from regional groundwater discharge (more susceptible to groundwater extraction) compared to interflow processes (arguably less susceptible to groundwater ...

  5. Surface water - groundwater interactions at different spatial and temporal scales

    DEFF Research Database (Denmark)

    Sebök, Éva

    in lowland catchments, mainly exploring and assessing Distributed Temperature Sensing (DTS) which by detecting variability in temperatures at the Sediment-Water Interface (SWI) can indirectly map variability in groundwater discharge at several spatial and temporal scales. On the small-scale (...As there is a growing demand for the protection and optimal management of both the surface water and groundwater resources, the understanding of their exchange processes is of great importance. This PhD study aimed at describing the natural spatial and temporal variability of these interactions...... detected large spatial variability in SWI temperatures with scattered high-discharge sites in a stream and also in a lake where discharge fluxes were estimated by vertical temperature profiles and seepage meter measurements. On the kilometre scale DTS indicated less spatial variability in streambed...

  6. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  7. The interplay of snow, surface water, and groundwater reservoirs for integrated water resources management

    Science.gov (United States)

    Rajagopal, S.; Huntington, J.

    2015-12-01

    Changes in climate, growth in population and economy have increased the reliance on groundwater to augment supplies of surface water across the world, and especially the Western United States. Martis Valley, a high altitude, snow dominated watershed in the Sierra Nevada, California has both surface (river/reservoir) and groundwater resources that are utilized to meet demands within the valley. The recent drought and changing precipitation type (less snow, more rain) has stressed the regional surface water supply and has increased the reliance on groundwater pumping. The objective of this paper is to quantify how changes in climate and depletion of snow storage result in decreased groundwater recharge and increased groundwater use, and to assess if increased surface water storage can mitigate impacts to groundwater under historic and future climate conditions. These objectives require knowledge on the spatiotemporal distribution of groundwater recharge, discharge, and surface and groundwater interactions. We use a high resolution, physically-based integrated surface and groundwater model, GSFLOW, to identify key mechanisms that explain recent hydrologic changes in the region. The model was calibrated using a multi-criteria approach to various historical observed hydrologic fluxes (streamflow and groundwater pumping) and states (lake stage, groundwater head, snow cover area). Observations show that while groundwater use in the basin has increased significantly since the 1980's, it still remains a relatively minor component of annual consumptive water use. Model simulations suggest that changes from snow to rain will lead to increases in Hortonian and Dunnian runoff, and decreases in groundwater recharge and discharge to streams, which could have a greater impact on groundwater resources than increased pumping. These findings highlight the necessity of an integrated approach for evaluating natural and anthropogenic impacts on surface and groundwater resources.

  8. Prognostic Factors of Ampulla of Vater Carcinoma after Radical Surgery

    Institute of Scientific and Technical Information of China (English)

    Dongbing Zhao; Yongkai Wu; Yi Shan; Chengfeng Wang; Ping Zhao

    2009-01-01

    OBJECTIVE Ampullary carcinoma is a rare disease with better prognosis than other periampullary neoplasms.This study investigated the association between clinicopathologiC factors and prognosis after radical resection of ampulla of Vater carcinoma.METHODS Clinical data from 105 patients who underwent radical pancreaticoduodenectomy from January 1990 to December 2005 were retrospectively analyzed by the Kaplan-Meier method,log-rank test,and the Cox proportional hazard model.RESULTS The in-hospital mortalitv rate was 8.6%,the lymph node metastasis rate was 37.1%,and the five-year survival rate was 42.8%.Pancreatic involvement(P=0.027),tumor diameter(P =0.008),T stage(P=0.003),TNM stage(P<0.001),and number of metastatic lymph nodes(P<0.001)were associated with prognosis when the univariate analysis was used.Multivariate analysis showed that the number of lymph node metastases (P<0.001;OR:1.923;CI:1.367-2.705)and tumot diameter(P=0.03;OR:1.432;CI:1.035-1.981) were the independent prognostic factors.CONCLUSION The number of metastatic lymph nodes and tumor diameter are important pathologic factors predicting prognosis of ampulla of Vater carcinoma after radical resection,and lymph node dissection during the radical surgery effectively improves the survival rate.

  9. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  10. Indicators for assessing anthropogenic impact on urban surface and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, G.; Glaeser, H.R.; Schladitz, T.; Mueller, C.; Reinstorf, F.; Schirmer, M. [UFZ Helmholtz Centre for Environmental Research, Dept. of Hydrogeology, Halle (Germany); Moeder, M.; Wennrich, R. [UFZ Helmholtz Centre for Environmental Research, Dept. of Analytical Chemistry, Halle (Germany); Osenbrueck, K. [UFZ Helmholtz Centre for Environmental Research, Dept. of Isotope Hydrology, Halle (Germany); Schirmer, K. [UFZ Helmholtz Centre for Environmental Research, Dept. of Cell Toxicology, Leipzig (Germany)

    2008-02-15

    Background, aim and scope. Our study focuses on the indication of anthropogenic impacts on the urban surface and groundwater in large cities, demonstrated for the cities of Halle/Saale and Leipzig (Germany). For the study we selected indicator substances such as xenobiotics, trace elements, and stable isotopes which are connected to human activities in urban areas. The xenobiotics reported here are the pharmaceutical carbamacepine, the polycylic musk compounds galaxolide and tonalide, the life style product caffeine, and industrial chemicals such as bisphenol A and t-nonylphenol. The investigated xenobiotics pose largely unknown risks to human health and the aquatic ecosystem. Trace elements are represented by the rare earth element gadolinium (Gd), used as magnetic resonance imaging contrast substance. Nitrogen isotopes in dissolved nitrate characterize the origin of nitrogen compounds, mixing and reaction processes. Methodology. River water was sampled along the flow path of the rivers Saale and Weisse Elster through the city of Halle/Saale, the rivers Luppe and Weisse Elster through the city of Leipzig. Separate samples were collected from the effluent of the local waste water treatment plants. Groundwater from Quaternary plain aquifers along the rivers and from different urban locations was collected at the same time. The indicators were analysed and assessed according to their sources, concentration and distribution patterns. Results and discussion. Based on the nitrogen isotopic signature, dissolved nitrate in river water of the Saale was referred mainly to two sources: the effluent of the water treatment plant and a mixture of diffusive inputs from rain water channels, sewage leakages and agriculture activities along the rivers. The Gd anomaly was recognized in surface water of both cities, particularly in the effluent of the water treatment plants, but clearly attenuated in groundwater. We measured concentrations of xenobiotics in river and sewer water

  11. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  12. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2017-08-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  13. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  14. Neuroendocrine carcinoma of the ampulla of Vater causing ectopic adrenocorticotropic hormone-dependent Cushing's syndrome

    Science.gov (United States)

    KATO, AKIHISA; HAYASHI, KAZUKI; NAITOH, ITARU; SENO, KYOJI; OKADA, YUKIKO; BAN, TESSHIN; KONDO, HIROMU; NISHI, YUJI; UMEMURA, SHUICHIRO; HORI, YASUKI; NATSUME, MAKOTO; JOH, TAKASHI

    2016-01-01

    Ectopic adrenocorticotropic hormone (ACTH) is rarely secreted by neuroendocrine tumors. Although neuroendocrine tumors may occur at any site in the gastrointestinal system, they very rarely occur in the ampulla of Vater and have a poor prognosis. The present study described the first Cushing's syndrome as a result of ectopic ACTH arising from the ampulla of Vater neuroendocrine carcinoma. A 69-year-old female was admitted with clinical features of Cushing's syndrome, confirmed biochemically by hypokalemia, and elevated levels of ACTH and cortisol. In further investigations, a tumor of the ampulla of Vater and liver metastases were detected. Pathological analysis of the biopsy confirmed a neuroendocrine carcinoma, which was immunohistochemically positive for chromogranin A, synaptophysin, cluster of differentiation 56 and ACTH. Therefore, the present study diagnosed a functional and metastatic neuroendocrine carcinoma of the ampulla of Vater with ectopic ACTH production causing Cushing's syndrome. The patient succumbed to mortality 4 months later, despite administration of combined chemotherapy with irinotecan and cisplatin. PMID:27330779

  15. A rare case of ectopic pancreas in the ampulla of Vater presented with obstructive jaundice.

    Science.gov (United States)

    Filippou, Dimitrios K; Vezakis, Antonios; Filippou, Georgios; Condilis, Nicolas; Rizos, Spiros; Skandalakis, Panagiotis

    2006-01-01

    A rare case of ectopic pancreas in the ampulla of Vater presented with obstructive jaundice. Ectopic pancreas is a common congenital disorder which is referred to as pancreatic rest. The incidence in autopsy series varies from 1 to 2% (range 0.55 to 13%). Most common site of ectopic pancreatic tissue is the stomach, although it can be found anywhere in the foregut and the proximal midgut. Ectopic pancreatic tissue in the ampulla of Vater is a very rare condition. Searching in the literature, using the terms "ectopic pancreas" and "Ampulla of Vater", we found only 10 records. The authors report on a rare case of a 69 years old female with ectopic pancreas in the ampulla of Vater, presented with painless obstructive jaundice, and the diagnostic and therapeutic strategy that followed.

  16. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2008-12-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  17. Management of Egypt's Surface and Groundwater Resources: Present and Future

    Science.gov (United States)

    Sultan, M.; Ahmed, M.; Yan, E.; Milewski, A.; Mohamed, L.; Farag, A. Z. A.

    2014-12-01

    The River Nile is the main source of fresh water in Egypt. Most of Egypt's River Nile water (>85%) originates as precipitation over the Ethiopian highlands and is channeled by the Blue Nile. The construction (years: 2011 to 2017) of the Renaissance Dam (reservoir capacity: 70 x 109m3) on the Blue Nile poses an extreme threat to Egypt's population. If the reservoir was to be filled in 7 years, Egypt will lose (during each of 7 years following dam completion) a minimum of 15 x 109m3 of its annual allocation (55 x 109m3) to reservoir filling (10 x 109m3), evaporation (3.5 x 109m3), and infiltration (1.5 x 109m3). Three solutions are proposed: Solution I takes advantage of the cyclicity of Nile floods and is based on findings from a calibrated (against temporal head data) unconfined 2-dimensional transient groundwater flow model for Lake Nasser and surroundings and a calibrated (against lake levels) surface water model. Models show with time: (1) losses to infiltration will decrease (1975-193: 58.4 109m3; 1993-2001: 43.6 x 109m3) due to silting of Lake bottom and encroachment of excess Lake Nasser water will increase (e.g., 1975-1993: none; 1993-2001: 17 x 109m3). We propose to develop sustainable agricultural in the Western Desert: (1) In high flood years, excess Lake Nasser water (e.g., 1993-2001: 17 x 109m3) is channeled across the plateau bounding (from west) the River Nile valley to artificially recharge the Nubian Sandstone Aquifer System (NSAS) that crops out west of the plateau and, (2) in low flood years, we extract the recharged groundwater. Solution II calls on mining the NSAS at reasonable rates. Using temporal (January 2003 - September 2012) Gravity Recovery and Climate Experiment (GRACE) data we estimate the annual depletion rates at 2 x 109m3 due to artificial extraction (1.5 x 109m3) and natural discharge (0.5 x 109m3). Assuming current GRACE depletion rates, the recoverable groundwater (5,180 x 109m3) will last for 2500 years; if we were to quadruple

  18. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  19. Depleting groundwater resources mitigating surface freshwater scarcity - a trend in the recent past

    Science.gov (United States)

    Wada, Y.; Van Beek, L. P.; Bierkens, M. F.

    2011-12-01

    During the past decades, human water use more than doubled, yet available surface freshwater resources are finite. As a result, water scarcity has become prevalent in many (semi-)arid regions of the world (e.g., India, Pakistan, North East China, the MENA region). In such regions, the demand often exceeds the available surface freshwater resources primarily due to heavy irrigation which requires large volumes of water in a certain time of the year, when groundwater is additionally used to supplement the deficiency. Excessive groundwater pumping, however, often leads to overexploitation, i.e. groundwater abstraction exceeding groundwater recharge. Here, we quantified globally the impact of depleting groundwater resources on mitigating surface freshwater scarcity and the trend between 1960 and 2000 at a spatial resolution of 0.5 degree. We downscaled available country statistics of groundwater abstraction to 0.5 degree, while we simulated groundwater recharge with the global hydrological model PCR-GLOBWB at the same spatial resolution considering not only natural groundwater recharge but also artificial recharge, i.e. return flow from irrigation. Water scarcity was estimated by confronting computed water demand for livestock, irrigation, industry and households with simulated surface freshwater availability (PCR-GLOBWB) at 0.5 degree. We thus performed a simulation run with/without groundwater pumping to assess the impact on alleviating surface freshwater scarcity. The results indicated that in many of (semi-)arid regions (e.g., North Wet India, North East Pakistan, North East China, West and Central USA, Central Mexico, North Iran, Central Saudi Arabia) large amounts of groundwater abstraction significantly mitigates the intensity of surface freshwater scarcity, while depleting the resources. Our estimate of global groundwater depletion reached close to 280 km3/yr. In most of the MENA region, the intensity of surface freshwater scarcity was eased by 30% up to 50% as

  20. The influence of surface water - groundwater interactions on the shallow groundwater in agricultural areas near Fu River, China

    Science.gov (United States)

    Brauns, Bentje; Løgstrup Bjerg, Poul; Jakobsen, Rasmus; Song, Xianfang

    2014-05-01

    The Northern China Plain (NPC) is known as a very productive area in China for the production of maize and winter wheat, which is grown by local farmers rotationally without lag phases throughout the year. The needed application of fertilizers and pesticides can hereby have strong impacts on the quality shallow groundwaters. Because 70-80% percent of the annual rainfall in the NCP is limited to the summer months, irrigation in the spring season is a necessity. As high quality groundwater resources from deeper aquifers are a valuable and rare asset in Northern China, it should preferentially be used as drinking water, and farmers therefore often shift to flood irrigation with surface water from streams. It is due to this reason, that large agricultural areas are located very close alongside these waterways; often without buffer zones. Fu River is one of the major feeding streams for the Baiyangdian Lake region in the north of Hebei Province. It springs in the west of the lake area and - after passing the populated city of Baoding (with a population of about 600 000 in the metropolitan area) - continues on its course through agricultural area before it feeds into the lake system. Industrial and domestic wastewater as well as surface runoff from urban and agricultural areas substantiates for a significant amount of the river's recharge and often causes poor water quality. As the water from the river may infiltrate into the shallow groundwater, this could cause further deterioration of the groundwater quality, additionally to the effects of the agricultural activities. However, fluctuations may be high because of the strong seasonal differences in precipitation and depending on the connectivity and dynamics of the system . In order to assess the water quality situation and the potential link between surface water and shallow groundwater in the region, a small-scale investigation site was set up on a typical wheat-maize field that reaches almost up to the river bank in

  1. Y-12 Groundwater Protection Program Groundwater and Surface water Sampling and Analysis Plan for Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2006-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of

  2. Medical predictors of psychological anxieties in VATER patients.

    Science.gov (United States)

    Noeker, Meinolf; Schmitz, Muriel; Schmiedeke, Eberhard; Zwink, Nadine; Reutter, Heiko; Schmidt, Dominik; Jenetzky, Ekkehart

    2011-10-01

    Following a recent classification of the VATER Association provided by the CURE-Net consortium (submitted), we investigate medical predictors of psychological stress and anxieties in this particular condition. We developed a new set of questionnaires measuring psychological adjustment and quality of life outcome in conditions associated with anorectal and/or urogenital malformation (one self- report form to be completed by patients 7-17 years of age, two parent report forms with one relating to patients with an age range of 0-6 years, resp. 7-17 years of age). The questionnaire "Malformation-related Stress and Anxieties" comprises 26 items belonging to five subscales (I. Functional and cosmetic impairment, II. Intimacy and relationship, III. Social inclusion, IV. Psychological functioning, V. Family functioning). Every item can be responded to with respect to both actual, present problems already experienced as well as to future anxieties anticipating future development and adjustment (a perspective which especially applies in younger patients). Internal consistencies of the scales are good, resp. very good (Cronbach's α = .85 concerning present sources of anxiety scale, resp., .94 concerning future anxieties scale). The items are supplied with a Likert-type 5-point scale. We administered the questionnaire in N = 17 children and adolescents suffering from VATER via parental (proxy) report. As most medical risk factors affected nearly the entire sample, statistical analysis excluded investigation of differential impact on psychological stress experience and anxieties in subjects exposed versus not exposed. Special attention, therefore, was paid to those medical parameters with the best statistical power to differentiate between individuals of high versus low psychological outcome. Medical predictors differentiating between individuals with high versus low adjustment comprise post-operative infections of the urinary tract (t[15] = -3.78, p = .09), wound

  3. Ground Surface Deformations Near a Fault-Bounded Groundwater Aquifer

    Science.gov (United States)

    Lipovsky, B.; Funning, G. J.; Ferretti, A.

    2011-12-01

    Geodetic data often reveal the presence of groundwater aquifers that are bounded by faults (Schmidt and Bürgmann, 2003; Galloway and Hoffmann, 2007; Bell et al., 2008). Whereas unrestricted groundwater aquifers exhibit a radially symmetric pattern of uplift with diffuse boundaries, aquifers that are bounded by faults have one or more sharp, linear boundaries. Interferometric synthetic aperture (InSAR) data, due to their high spatial density, are particularly well suited to observe fault bounded aquifers, and the Santa Clara Aquifer in the San Francisco Bay Area, California, constitutes an excellent example. The largest ground surface displacements in the Bay Area are due to the inflation of the Santa Clara aquifer, and InSAR data plainly show that the Santa Clara aquifer is partitioned by the Silver Creek fault. This study first develops a general model of the displacements at the surface of the Earth due to fluid diffusion through a buried permeable boundary such as a fault zone. This model is compared to InSAR data from the Silver Creek fault and we find that we are able to infer fault zone poromechanical properties from InSAR data that are comparable to in situ measurements. Our theoretical model is constrained by several geological and hydrological observations concerning the structure of fault zones. Analytical solutions are presented for the ground surface displacements due to a perfectly impermeable fault zone. This end-member family of models, however, does not fit the available data. We therefore make allowance for an arbitrarily layered, variably permeable, one-dimensional fault zone. Time-dependent ground surface deformations are calculated in the Laplace domain using an efficient semi-analytic method. This general model is applicable to other poroelastic regimes including geothermal and hydrocarbon systems. We are able to estimate fault zone hydraulic conductivity by comparing theoretical ground surface displacements in a permeable fault zone to

  4. Limitations of fibre optic distributed temperature sensing for quantifying surface water groundwater interactions

    Directory of Open Access Journals (Sweden)

    H. Roshan

    2014-07-01

    Full Text Available Studies of surface water–groundwater interactions using fiber optic distributed temperature sensing (FO-DTS has increased in recent years. However, only a few studies to date have explored the limitations of FO-DTS in detecting groundwater discharge to streams. A FO_DTS system was therefore tested in a flume under controlled laboratory conditions for its ability to accurately measure the discharge of hot or cold groundwater into a simulated surface water flow. In the experiment the surface water (SW and groundwater (GW velocities, expressed as ratios (vgw/vsw, were varied from 0.21% to 61.7%; temperature difference between SW-GW were varied from 2 to 10 °C; the direction of temperature gradient were varied with both cold and-hot water injection; and two different bed materials were used to investigate their effects on FO_DTS's detection limit of groundwater discharge. The ability of the FO_DTS system to detect the discharge of groundwater of a different temperature in the laboratory environment was found to be mainly dependent upon the surface and groundwater flow velocities and their temperature difference. A correlation was proposed to estimate the groundwater discharge from temperature. The correlation is valid when the ratio of the apparent temperature response to the source temperature difference is above 0.02.

  5. Approaches to characterizing biogeochemistry effects of groundwater and surface water interaction at the riparian interface

    Science.gov (United States)

    Groundwater-surface water interaction (GSI) in riparian ecosystems strongly influences biological activity that controls nutrient flux and processes. Shallow groundwater in riparian zones is a hot spot for nitrogen removal processes, a storage zone for solutes, and a target for ...

  6. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2009-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  7. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2007-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2008 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2008 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2008 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and

  8. AWRA-G: A continental scale groundwater component linked to a land surface water balance model

    Science.gov (United States)

    Joehnk, Klaus; Crosbie, Russell; Peeters, Luk; Doble, Rebecca

    2013-04-01

    The Australian Water Resources Assessment (AWRA) system is a combination of models, data sources and analysis techniques that together will describe the water balance of Australia's landscapes, rivers and groundwater systems. It is a grid based water balance model that has lumped representation of the water balance of the soil, groundwater and surface water stores for each cell. The purpose of AWRA is to operationally provide up to date, credible, comprehensive, and accurate information about the history, present state and future trajectory of the water balance across Australia with sufficient spatial and temporal detail and enable water resources management for undertaking annual water resource assessments and national water accounts. AWRA is developed to link three major components: a landscape water balance model (AWRA-L), a river routing model (AWRA-R), and a groundwater component model (AWRA-G). These three component models combined are expected to be able to model the fluxes and stores of water throughout the landscape. The groundwater component (AWRA-G) addresses an improved representation of groundwater in the AWRA system to describe basic aquifer dynamics and groundwater-surface water processes. While most continental scale land surface models do not have the capacity to allow water to flow between cells and thus ignore this element of the water balance, AWRA-G does account for lateral flows. In general, AWRA-G provides estimates of groundwater fluxes that are not incorporated into either AWRA-L and its modifications to in-cell soil and groundwater processes, or AWRA-R. The processes integrated into AWRA-G thus are lateral groundwater flow between cells in regional and intermediate groundwater flow systems, groundwater discharge to the ocean, groundwater extraction and infiltration, river losses to groundwater, recharge from overbank flooding, and interactions between deep confined systems and surficial groundwater systems. Basis of AWRA-G is a good

  9. Groundwater-surface water interactions: the behavior of a small lake connected to groundwater

    Science.gov (United States)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth

    2016-04-01

    Interactions between lakes and groundwater have been under concern in recent years and are still not well understood. Exchange rates are both spatially and temporally highly variable and are generally underestimated. However these interactions are of utmost importance for water resource management and need to be better understood since (i) the hydrogeological and geochemical equilibria within the lake drive the evolution of lakes' ecology and quality, and (ii) groundwater inflow, even in low rate, can be a key element in both the lake nutrient balance (and therefore in lake's eutrophication) and vulnerability to pollution. In many studies two main geochemical tracers, i.e. water stable isotopes and radon-222, are used to determine these interactions. However there are still many uncertainties on their time and space variations and their reliability to determine the lake budget. Therefore, a lake connected to groundwater on a small catchment was chosen to quantify groundwater fluxes change over time and the related influences on the lake's water geochemistry. Through analyse in time and space of both tracers and a precise instrumentation of the lake, their variations linked to groundwater inflows are determined. The results show that each tracer provides additional information for the lake budget with the interest to well determine the information given by each measurement: the radon-222 gives information on the groundwater inflows at a point in space and time while water stable isotopes highlight the dominant parameters of the yearly lake budget. The variation in groundwater inflows allow us to discuss lake's evolution regarding climate and environmental changes.

  10. Crab burrows as conduits for groundwater-surface water exchange in Bangladesh

    Science.gov (United States)

    Stahl, Mason O.; Tarek, M. H.; Yeo, Darren C. J.; Badruzzaman, A. B. M.; Harvey, Charles F.

    2014-12-01

    Groundwater recharge affects water budgets and groundwater quality on the deltas and floodplains of South and Southeast Asia. Rain and flooding rivers recharge groundwater during the monsoon; irrigated rice fields and surface water bodies recharge aquifers during the dry season. Groundwater throughout the region is severely contaminated by arsenic, and recent research suggests that quantifying and characterizing recharge is important to understand whether recharge flushes or mobilizes arsenic from aquifers. At a field site in Bangladesh, we found that burrows of terrestrial crabs short-circuit low-permeability surface sediments, providing the primary conduit for recharge. We combine field observations along with a model that couples isotope and water balances to quantify the effect of crab burrows on aquifer recharge. Given the wide distribution of burrowing crabs and the surficial geology, we suggest that crab burrows provide widespread conduits for groundwater recharge.

  11. [Transduodenal ampullectomy: an useful alternative for the treatment of Vater's ampulla lesions. Case reports of an unfrecuent surgical technique].

    Science.gov (United States)

    Targarona Modena, Javier; Rosamedina, Jose Luis; Garatea, Rafael; Romero, Cesar; Lora, Alfonso; Contardo, Carlos; Mantila, Lidia; Yabar, Alejandro; Montoya, Eduardo

    2005-01-01

    The Vater's ampulla neoplasias are not very frequent lesions. The ampullectomy consists on the total resection of the Vater's ampulla and part of the duodenal wall with the later reconstruction and anastomosis of the common bile duct and the Wirsung's duct to the duodenum. The local resection of the ampulla is an alternative to the duodenopancreatectomy that has to be taken into account, especially in benign lesions as in the case of adenomas of the Vater's ampulla. Here we describe two cases one with adenoma of the Vater's ampulla, with a high degree dysplasia, who first underwent an ampullectomy and finally ended up in a duodenopancreatectomy due to the infiltration of the adenoma into the edge of section and other case of Lymphangioma of Vater's ampulla with no infiltration in the edge of section.

  12. Groundwater Storage vs. Surface Water Storage - Why Sustainability Requires a Different Management Framework

    Science.gov (United States)

    Mehl, S.; Davids, J. C.

    2015-12-01

    Storing water in times of excess for use in times of shortage is an essential water-management tool, especially in climates typified by precipitation in one season and demand in another. The three primary water storage mechanisms in the Western US, and much of the world in fact, are: seasonal snow pack, surface water reservoirs, and groundwater aquifers. In California, nearly every major river has one or more large dam and reservoir and current focus has shifted toward off-stream storage. In addition to California's surface reservoirs, groundwater aquifers provide huge volumes of water storage that are heavily utilized during times of drought. With California's new Sustainable Groundwater Management Act (SGMA) substantial attention is presently focused on developing strategies for using groundwater storage more effectively in conjunction with surface-storage reservoirs. However, compared to surface water storage, we need to think differently and develop new frameworks if we want to manage groundwater storage sustainably. Despite its immense capacity, groundwater storage is harder to manage because there are physical constraints to how fast water can be put into and withdrawn from aquifers, its boundaries are not as well defined as those of a surface reservoir, and it is part of a dynamic, porous media flow system where the Theis concepts of capture govern. Therefore, groundwater does not behave as a level pool like surface water reservoirs, which has several implications for effective management: 1) extraction/injection locations can have substantial impacts on the system, 2) interactions with the surface water systems can be nonlinear and complex and 3) hydraulic effects can continue long after pumping/injection has stopped. These nonlinear spatial and temporal responses, coupled with long time scales, makes management of groundwater storage much different than surface water storage. Furthermore, failure to fully understand these issues can lead to mismanagement

  13. GEOPHYSICAL CHARACTERIZATION, REDOX ZONATION, AND CONTAMINANT DISTRIBUTION AT A GROUNDWATER/SURFACE WATER INTERFACE

    Science.gov (United States)

    Three transects along a groundwater/surface water interface were characterized for spatial distributions of chlorinated aliphatic hydrocarbons and geochemical conditions to evaluate the natural bioremediation potential of this environmental system. Partly on the basis of ground p...

  14. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  15. A Carcinoid Tumor of the Ampulla of Vater Treated by Endoscopic Snare Papillectomy

    OpenAIRE

    Pyun, Dae-Keun; Moon, Gyoo; Han, Jimin; Kim, Myung-Hwan; Lee, Sang Soo; Seo, Dong-Wan; Lee, Sung-Koo

    2004-01-01

    Here, a case of a patient with incidental finding of a carcinoid tumor of the ampulla of Vater, who was treated with endoscopic snare papillectomy, is reported. A 62-year-old male was admitted to our hospital due to a carcinoid tumor of the ampulla of Vater, which was found during follow-up endoscopy after an endoscopic mucosal resection of early gastric cancer. No lymphadenopathy or visceral metastasis was found on an abdominal CT scan, In-111 octerotide scan and EUS. The ampulla was then en...

  16. Coexistence of small cell neuroendocrine carcinoma and villous adenoma in the ampulla of Vater

    Institute of Scientific and Technical Information of China (English)

    Ji-Hong Sun; Ming Chao; Shi-Zheng Zhang; Guang-Qiang Zhang; Bin Li; Jian-Jun Wu

    2008-01-01

    Small cell neuroendocrine carcinoma of the ampulla of Vater is extremely rare and different from the common ampullary adenocarcinoma. The ampullary adenoma is also a rare neoplasm and has the potential to develop an adenocarcinoma. Their coexistence has been rarely reported in the literature. We herein describe an unusual case of a small cell neuroendocrine carcinoma associated with a villous adenoma in the ampulla of Vater with emphasis on computed tomography (CT)and histopathological findings. We also discuss their clinical, histopathological and radiological features as well as possible histogenesis.

  17. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2016-12-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  18. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  19. Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones

    Directory of Open Access Journals (Sweden)

    T. S. Ahring

    2012-11-01

    Full Text Available Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with pre-development and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50% in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photography is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  20. Groundwater surface water interactions through streambeds and the role of phreatophytes in identifying important recharge zones

    Directory of Open Access Journals (Sweden)

    T. S. Ahring

    2012-06-01

    Full Text Available Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with predevelopment and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50% in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photophaphy is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  1. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    Water pollution in the form of nitrate nitrogen (NO{sub 3}{sup −}–N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO{sub 3}{sup −}–N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO{sub 3}{sup −}–N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO{sub 3}{sup −}–N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious

  2. Assessing Potential Land Suitability for Surface Irrigation using Groundwater in Ethiopia

    Science.gov (United States)

    Worqlul, A. W.; Jeong, J.; Osorio, J.; Gerik, T.; Yihun, D.; Srinivan, R.; Clark, N.

    2016-12-01

    Although Ethiopia has large land areas that can potentially be developed for surface irrigation, only a fraction of the potential available land has been utilized. This paper presents evaluation of the potential lands in Ethiopia that are suitable for irrigation using groundwater. The suitable land was identified using GIS-based Multi-Criteria Evaluation (MCE) techniques applying a GIS model. The factors used were identified from literature and from experts in the region. Factors considered includes physical land features (land use, soil and slope), climate characteristics (rainfall and evapotranspiration), and market access (proximity to roads and access to market). Factors were weighted using a pair-wise comparison matrix, reclassified, and overlaid to identify the suitable areas for groundwater irrigation at 1 km grid. Groundwater data from the British Geological Survey were used to estimate potential groundwater availability and analyze the irrigation potential for dominant crops. Simulated output from SWAT could be used in areas where data is not available. Result indicates that approximately 6.0 million ha of land in Ethiopia is suitable for surface irrigation. A large portion of this suitable land is located in the Abbay, Rift Valley, Omo Ghibe, and Awash River basins, which all also have shallow groundwater access (< 20 m from the surface). The comparison between available groundwater and total crop water requirements indicated that current groundwater resources in the basins are not capable of irrigating all suitable land independently, but groundwater resources are a good option for supplementing current surface water resources in many regions. The study indicated that only 8 % of the suitable land could be irrigated with the groundwater within the grid.

  3. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in s

  4. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  5. Adenoma viloso com transformação carcinomatosa da ampola de Vater Villous adenoma with carcinomatous degeneration of the ampulla of Vater

    Directory of Open Access Journals (Sweden)

    Guilherme Pinto Bravo Neto

    2001-02-01

    Full Text Available Villous adenomas of the duodenum and ampulla of Vater are uncommon, but they have been diagnosed more frequently with the increasing use of upper gastrointestinal endoscopy. Differential diagnosis with villous adenocarcinoma may be difficult. The authors present a case of a 47-year-old man with a giant villous adenoma of the duodenum, with intermittent jaundice, that was treated by pancreatoduodenectomy.

  6. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  7. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy.

  8. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  9. Background phosphorus concentrations in Danish groundwater and surface water bodies

    Science.gov (United States)

    Kronvang, Brian; Bøgestrand, Jens; Windolf, Jørgen; Ovesen, Niels; Troldborg, Lars

    2013-04-01

    Quantitative information on the background concentration and loading of phosphorus is important when establishing the pressure-impact pathway for Danish streams, lakes and estuaries The background phosphorus loading thus determines present day lowest phosphorus loadings without influence from point sources and agriculture. We have mapped the background concentration of phosphorus in Danish groundwater and streams based on monitoring in 3000 groundwater wells, 7 small streams draining undisturbed catchments (1990-2010) and 19 streams draining small undisturbed catchments being monitored during 2004-2005. The concentration particulate P (PP) was found to be nearly constant within eight major georegions of Denmark (0.018 mg ± 0.010 mg P L-1. On contrary, the concentration of total dissolved P (TDP) was found to vary between 0.011-0.071 mg P L-1 within the eight georegions. We have also time series of background total P concentrations from 7 small undisturbed catchments covering the period 1990-2010. No significant trends have been observed in total P concentrations from these streams during the period 1990-2010. The average annual background loss of total phosphorus amounts to 730 tonnes P or 29% of the total loading of phosphorus from the Danish land to sea during the period 2007-2011. The measured TDP concentration in groundwater was much higher under reduced conditions (median: 0.10-0.15 mg P L-1) than in oxidized groundwater (Journal of Hydrology (280) 52-71.

  10. Decreasing groundwater quality at Cisadane riverbanks: groundwater-surface water approach

    CERN Document Server

    Irawan, Dasapta Erwin; Yeni, Defitri; Kuntoro, Arno Adi; Julian, Miga Magenika

    2016-01-01

    The decreasing of groundwater quality has been the major issue in Tangerang area. One of the key process is the interaction between groundwater and Cisadane river water, which flows over volcanic deposits of Bojongmanik Fm, Genteng Fm, Tuf Banten, and Alluvial Fan. The objective of this study is to unravel such interactions based on the potentiometric mapping in the riverbank. We had 60 stop sites along the riverbank for groundwater and river water level observations, and chemical measurements (TDS, EC, temp, and pH). Three river water gauge were also analyzed to see the fluctuations. We identified three types of hydrodynamic relationships with fairly low flow gradients: effluent flow at Segmen I (Kranggan - Batuceper) with 0.2-0.25 gradient, perched flow at Segmen II (Batuceper-Kalibaru) with gradient 0.2-0.25, and influent flow at Segmen III (Kalibaru-Tanjungburung) with gradient 0.15-0.20. Such low flow gradient is controlled by the moderate to low morphological slope in the area. The gaining and losing st...

  11. The spatial geochemical characteristics of groundwater and surface in the Tuul River basin, Ulaanbatar, Mongolia

    Science.gov (United States)

    Batdelger, Odsuren; Tsujimura, Maki; Zorigt, Byambasuren; Togtokh, Enkhjargal

    2017-04-01

    The capital city, Ulaanbaatar, is located along the Tuul River and its water supply totally dependent on the groundwater, which comes from the aquifer of the Tuul River. Due to the rapid growth of the population and the increasing human pressures in this basin, water quality has been deteriorating and has become a crucial issue for sustainable environmental and socio-economic development. Hydro-chemical and stable isotope tracing approaches were applied into the groundwater and surface water in order to study geochemical characteristics and groundwater and surface water interaction. The Tuul River water was mostly characterized by the Ca-HCO3 type, spatially variable and it changed into Ca-Na-HCO3 type in the downstream of the city after wastewater (WW) meets the river. Also, electrical conductivity (EC) values of Tuul River are increasing gradually with distance and it increased more than 2 times after WW meets the stream, therefore anthropogenic activities influence to the downstream of the river. The dominant hydro-chemical facies of groundwater were the Ca-HCO3 type, which represents 83% of the total analyzed samples, while Ca- HCO3-Cl-NO3, Na-HCO3, Ca-HCO3-SO4 each represent 4%, and Ca-mixed and Ca-Mg-HCO3 each represent 2% of the total samples. This suggests that groundwater chemistry is controlled by rock-water interaction and anthropogenic pollution. The floodplain groundwater chemical characteristics were similar to Tuul River water and showing lowest EC values. Groundwater far from floodplain showed higher EC (mean value of 498 μs/cm) values than river waters and floodplain groundwater. Also, different kinds of hydro-chemical facies were observed. The stable isotopic compositions revealed less evaporation effect on the groundwater and surface water, as well as an altitude effect in the river water. The similarity of stable isotopes and chemical characteristics of floodplain groundwater and river water suggests that alluvial groundwater is recharged by

  12. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available Understanding when and how groundwater affects surface temperature and energy fluxes is significant for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To investigate the shallow groundwater effect under bare soil conditions, we numerically exposed two soil profiles to identical metrological forcing. One of the profiles had shallow groundwater. The different responses that the two profiles manifested were inspected regarding soil moisture, temperature and energy balance at the land surface. The findings showed that the two profiles differed in three aspects: the absorbed and emitted amounts of energy, the portioning out of the available energy and the heat fluency in the soil. We concluded that due to their lower albedo, shallow groundwater areas reflect less shortwave radiation and consequently get a higher magnitude of net radiation. When potential evaporation demand is sufficiently high, a large portion of the energy received by these areas is consumed for evaporation. This increases the latent heat flux and reduces the energy that could have heated the soil. Consequently, lower magnitudes of both sensible and ground heat fluxes are caused to occur. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. For the reliability of remote sensors in detecting shallow groundwater effect, it was concluded that this effect can be sufficiently clear to be detected if at least one of the following conditions occurs: high potential evaporation and high contrast between day and night temperatures. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  13. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2011-09-01

    Full Text Available Appreciating when and how groundwater affects surface temperature and energy fluxes is important for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To explore the shallow groundwater effect, we numerically exposed two soil profiles – one having shallow groundwater – to the same meteorological forcing, and inspected their different responses regarding surface soil moisture, temperature and energy balance. We found that the two profiles differed in the absorbed and emitted amounts of energy, in portioning out the available energy and in heat fluency within the soil. We conclude that shallow groundwater areas reflect less shortwave radiation due to their lower albedo and therefore they get higher magnitude of net radiation. When potential evaporation demand is high enough, a large portion of the energy received by these areas is spent on evaporation. This makes the latent heat flux predominant, and leaves less energy to heat the soil. Consequently, this induces lower magnitudes of both sensible and ground heat fluxes. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. In view of remote sensors' capability of detecting shallow groundwater effect, we conclude that this effect can be sufficiently clear to be sensed if at least one of two conditions is met: high potential evaporation and big contrast in air temperature between day and night. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  14. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  15. A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin

    Institute of Scientific and Technical Information of China (English)

    SONG Xianfang; LIU Xiangchao; XIA Jun; YU Jingjie; TANG Changyuan

    2006-01-01

    The surface water and groundwater are important components of water cycle,and the interaction between surface water and groundwater is the important part in water cycle research.As the effective tracers in water cycle research,environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively.The study area is the Huaisha River basin,which is located in Huairou district,Beijing.The field surveying and sampling for spring,river and well water were finished in 2002 and 2003.The hydrogen and oxygen isotopes and water quality were measured at the laboratory.The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed.The altitude effect of oxygen isotope in springs was revealed,and then using this equation,theory foundation for deducing recharge source of spring was estimated.By applying the mass balance method,the annual mean groundwater recharge rate at the catchment was estimated.Based on the groundwater recharge analysis,combining the hydrogeological condition analysis,and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin,part of the runoff in the Huaisha River basin is recharged outside of this basin,in other words,this basin is an un-enclosed basin.On the basis of synthetically analyses,combining the compositions of hydrogen and oxygen isotopes and hydrochemistry,geomorphology,geology,and watershed systems characteristics,the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated,and the interaction between surface water and groundwater was revealed lastly.

  16. Understanding Groundwater-Surface Water Interactions Using a Paired Tracer Approach in Alberta's Rocky Mountains

    Science.gov (United States)

    Spencer, S. A.; Silins, U.; Anderson, A.; Collins, A.; Williams, C.

    2015-12-01

    The eastern slopes of the Rocky Mountains produce the majority of Alberta's surface water supply. While land disturbance affects hydrologic processes governing runoff and water quality, groundwater-surface water interactions may be an important component of catchment resistance to hydrological change. The objectives of this study were to describe reach and sub-catchment coupling of groundwater and surface water processes and to characterize the role of groundwater contribution to surface discharge across spatial and temporal scales. This research is part of Phase II of the Southern Rockies Watershed Project investigating the hydrological effects of three forest harvest treatments (clear-cutting with retention, strip cutting, and partial-cutting) in the front-range Rocky Mountains in the Crowsnest Pass, Alberta. Six nested hydrometric stations in Star Creek (10.4 km2) were used to collect pre-disturbance stream discharge and water quality data (2009-2014). Instantaneous differential streamflow gauging was conducted on reaches ~700 m in length to define stream reaches that were gaining or losing water. Constant rate tracer injection was conducted on gaining reaches to further refine regions of groundwater inputs during high flows, the recession limb of the annual hydrograph, and summer baseflows. Despite being a snow-dominated catchment, groundwater is a major contributor to annual streamflow (60 - 70 %). In general, locations of gaining and losing reaches were consistent across spatial and temporal scales of investigation. A strong losing reach in one sub-basin was observed where underflow may be responsible for the loss of streamflow along this section of the stream. However, strong groundwater upwelling was also observed in a reach lower in the catchment likely due to a "pinch-point" in topographic relief. Spatial and temporal variations in groundwater-surface water interactions are likely important factors in hydrologic resistance to land disturbance.

  17. A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin

    Institute of Scientific and Technical Information of China (English)

    SONG; Xianfang; LIU; Xiangchao; XIA; Jun; YU; Jingjie; TANG; Changyuan

    2006-01-01

    The surface water and groundwater are important components of water cycle,and the interaction between surface water and groundwater is the important part in water cycle research.As the effective tracers in water cycle research,environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively.The study area is the Huaisha River basin,which is located in Huairou district,Beijing.The field surveying and sampling for spring,river and well water were finished in 2002 and 2003.The hydrogen and oxygen isotopes and water quality were measured at the laboratory.The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed.The altitude effect of oxygen isotope in springs was revealed,and then using this equation,theory foundation for deducing recharge source of spring was estimated.By applying the mass balance method,the annual mean groundwater recharge rate at the catchment was estimated.Based on the groundwater recharge analysis,combining the hydrogeological condition analysis,and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin,part of the runoff in the Huaisha River basin is recharged outside of this basin,in other words,this basin is an un-enclosed basin.On the basis of synthetically analyses,combining the compositions of hydrogen and oxygen isotopes and hydrochemistry,geomorphology,geology,and watershed systems characteristics,the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated,and the interaction between surface water and groundwater was revealed lastly.

  18. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    Science.gov (United States)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  19. A new method to dynamically simulate groundwater table in land surface model VIC

    Institute of Scientific and Technical Information of China (English)

    YANG Hongwei; XIE Zhenghui

    2003-01-01

    Soil moisture plays an important role in water and energy balance in land-atmospheric interaction, but is impacted directly by the groundwater table. Dynamic variation of the groundwater table can be described mathematically by a moving boundary problem. In this paper, the moving boundary problem is reduced to a fixed boundary problem through a coordinate transformation. A new model of groundwater table simulation is developed using the mass-lumped finite element method and is coupled with the land surface model of Variable Infiltration Capacity (VIC). The simulation results show that the new model not only can simulate the groundwater table dynamically, but also can evade the choice of water table depth scale in computation with a low computation cost.

  20. Groundwater-surface water interactions in montane meadows of the Sierra Nevada, California

    Science.gov (United States)

    Lucas, R. G.; Conklin, M. H.

    2012-12-01

    Meadows often lie in low gradient, groundwater fed terrain of the Sierra Nevada. These settings result in near saturated conditions for much of the year, shallow groundwater tables, and groundwater discharge to surface flow. Our hypothesis is that groundwater fluctuations integrate watershed processes rather than meadow specific processes. Meadow characteristics are in contrast to the adjacent forested landscapes, where soils go dry in the summer, groundwater tables are much deeper, and some fraction of soil water is lost to deeper percolation. We utilize a series water column data from monitoring wells and piezometers in two meadows, soil moisture and snow depth data from nodes in the associated catchment, located within the Southern Sierra Critical Zone Observatory, from water years 2008-2012. Water samples from wells and associated streams were analyzed for major ions and stable water isotopes. Results from the monitoring wells and piezometers show groundwater tables and pressure heads that are highest during snowmelt and decrease over the summer growing season; inter-annual variation is correlated to total accumulated precipitation for the given water year. Groundwater elevations exhibit diurnal fluctuations influenced by snowmelt and evapotranspiration (ET) processes in the spring, transitioning to an ET dominated signal during the summer growing season. These fluctuations are of greatest magnitude near the meadow-forest boundary and least near the center of the meadow. ET signals continue after the meadow vegetation senesces, suggesting influences from the adjacent forested landscape. Deep piezometers (>2.5 m depth) do not exhibit fluctuation at the daily time scale while shallower piezometers (edge and meadow center, groundwater discharge is strongest during snow melt with a decrease as the summer growing season progresses. The near edge pressure head data show that the direction of groundwater flux changes to indicate groundwater recharge by fall. The near

  1. Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia

    Science.gov (United States)

    Shamsuddin, Mohd Khairul Nizar; Sulaiman, Wan Nor Azmin; Suratman, Saim; Zakaria, Mohamad Pauzi; Samuding, Kamarudin

    2014-05-01

    Bank infiltration (BI) is one of the solutions to providing raw water for public supply in tropical countries. This study in Malaysia explores the use of BI to supplement a polluted surface-water resource with groundwater. Three major factors were investigated: (1) contribution of surface water through BI to the resulting abstraction, (2) input of local groundwater, and (3) water-quality characteristics of the resulting water supply. A geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and the interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface-water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5-98 % decrease in turbidity, as well as reductions in HCO3 -, Cl-, SO4 2-, NO3 -, Ca2+, Al3+ and As concentrations compared with those of Langat River water. In addition, amounts of E. coli, total coliform and Giardia were significantly reduced (99.9 %). However, water samples from test wells during pumping showed high concentrations of Fe2+ and Mn2+. Pumping test results indicate that the two wells used in the study were able to sustain yields.

  2. A fully coupled depth-integrated model for surface water and groundwater flows

    Science.gov (United States)

    Li, Yuanyi; Yuan, Dekui; Lin, Binliang; Teo, Fang-Yenn

    2016-11-01

    This paper presents the development of a fully coupled surface water and groundwater flow model. The governing equations of the model are derived based on a control volume approach, with the velocity profiles of the two types of flows being both taken into consideration. The surface water and groundwater flows are both modelled based on the unified equations and the water exchange and interaction between the two types of flows can be taken into account. The model can be used to simulate the surface water and groundwater flows simultaneously with the same numerical scheme without other effort being needed to link them. The model is not only suitable for the porous medium consisting of fine sediments, but also for coarse sediments and crushed rocks by adding a quadratic friction term. Benchmark tests are conducted to validate the model. The model predictions agree well with the data.

  3. Integrated modelling for assessing the risk of TCE groundwater contamination to human and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Funder, Simon Goltermann; Finkel, Michael;

    2009-01-01

    management tools designed to work with sparse data sets from preliminary site assessments are needed which can explicitly link contaminant point sources with groundwater, surface water and ecological impacts. Here, a novel integrated modelling approach was employed for evaluating the impact of a TCE...... groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamics-based decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical volatilisation model for the stream...... of “effective” parameters in groundwater transport modelling. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk to either human or ecological receptors. The current work will be extended to additional...

  4. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    . In the second, we examine ecological impacts related to the flows and temperatures in the Silver Creek ecosystem that are important for the fish habitat. The Silver Creek ecosystem is controlled by large-scale interactions of surface water and groundwater systems in the Lower Wood River Valley, USA......Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  5. Groundwater-Surface Water Mixing Shifts Ecological Assembly Processes and Stimulates Organic Carbon Turnover

    Science.gov (United States)

    Stegen, J.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Danczak, B.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.

    2015-12-01

    Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hot spots and moments. Riverine systems where groundwater mixes with surface water (the hyporheic zone) are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. To investigate the coupling among groundwater-surface water mixing, microbial communities, and biogeochemistry we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone simultaneously (i) stimulated heterotrophic respiration, (ii) altered organic carbon composition, (iii) caused ecological processes to shift from stochastic to deterministic, and (iv) selected for microbial taxa capable of degrading a broad suite of organic compounds.

  6. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical......The practical implementation of the European Water Framework Directive has resulted in an increased focus on the groundwater-surface water interaction zone. A gap exists with respect to preliminary assessment methodologies that are capable of evaluating and prioritising point sources...... volatilisation model for the stream. The model is tested on a Danish case study involving a 750 m long TCE groundwater plume discharging into a stream. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk...

  7. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained

  8. Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt

    Indian Academy of Sciences (India)

    Fathy A Abdalla; Traugott Scheytt

    2012-02-01

    Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.

  9. Groundwater-Surface Water Interactions in the Poldered Landscape of Southwest Bangladesh

    Science.gov (United States)

    Peters, C.; Hornberger, G. M.; Wilson, C.; Goodbred, S. L., Jr.

    2014-12-01

    Bangladesh is shaped by the largest and most active delta system in the world. The Ganges, Brahmaputra, and Meghna river networks carve the low lying deltaic plains of the southern part of the country. Much of the tidal mangrove forest ecosystem of the lower delta was converted to poldered islands that sustain a Bangladesh population of 150 million though shrimp farming and rice production. These polder inhabitants lack potable water resources due to pathogen laden surface water and saline groundwater. This study examines polder groundwater-surface water interactions of fresh and saline water sources. Preliminary sampling of the polder groundwater suggests unpredictable apportioning of freshwater in the brackish aquifer. Using a broadband electromagnetic induction technique, we examine the conductivity profile of the shallow subsurface stratigraphy to identify potential rainwater recharge sites. Transects of nested piezometers, equipped with conductivity, temperature, and depth sensors, help determine the extent of tidal channel-aquifer interactions. Lithology from cores indicates that a highly variable clay cap likely regulates recharge. A better understanding of groundwater-surface water interactions will aid in the search for potable groundwater.

  10. Groundwater/Surface-Water Interaction in the Context of South African Water Policy

    Science.gov (United States)

    Levy, J.; Xu, Y.

    2010-12-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. South Africa’s 1998 National Water Act (NWA) recognized water as a basic human right and its importance for ecological sustainability. Ecological integrity of water resources was considered an important component in redressing past social inequities, eliminating poverty, and encouraging economic development. Under the NWA, groundwater-use licenses are granted only after setting aside the groundwater Reserve, the amount of water needed to supply basic human needs and preserve a minimum degree of ecological integrity. One challenge to successful implementation of the NWA, therefore, is the accurate quantification of groundwater contributions to aquatic ecosystems. This is especially true considering that so many of South Africa’s aquifers are in highly heterogeneous and anisotropic fractured-rock settings. The most common approach taken in South Africa is estimation of average annual flux rates at the regional scale of quaternary catchments with baseflow separation techniques and then applying a water-budget approach, subtracting the groundwater discharge rate from the recharge rate. The water-balance approach might be a good first step, but it ignores spatial and temporal variability, potentially missing the local impacts associated with placement of production boreholes. Identification of discrete areas of groundwater discharge could be achieved with stable-isotopic and geochemical analyses and vegetative mapping. Groundwater-flow modeling should be used where possible as it holistically incorporates available data and can predict impacts of groundwater extraction and development based on the relative positions of boreholes and surface-water bodies. Sustainable development entails recognition of the trade-offs between preservation and development. There will always be scientific uncertainty associated with estimation and

  11. Impacts of Future Climate Change and Baltic Sea Level Rise on Groundwater Recharge, Groundwater Levels, and Surface Leakage in the Hanko Aquifer in Southern Finland

    Directory of Open Access Journals (Sweden)

    Samrit Luoma

    2014-11-01

    Full Text Available The impact of climate change and Baltic Sea level rise on groundwater resources in a shallow, unconfined, low-lying coastal aquifer in Hanko, southern Finland, was assessed using the UZF1 model package coupled with the three-dimensional groundwater flow model MODFLOW to simulate flow from the unsaturated zone through the aquifer. The snow and PET models were used to calculate the surface water availability for infiltration from the precipitation data used in UZF1. Infiltration rate, flow in the unsaturated zone and groundwater recharge were then simulated using UZF1. The simulation data from climate and sea level rise scenarios were compared with present data. The results indicated changes in recharge pattern during 2071–2100, with recharge occurring earlier in winter and early spring. The seasonal impacts of climate change on groundwater recharge were more significant, with surface overflow resulting in flooding during winter and early spring and drought during summer. Rising sea level would cause some parts of the aquifer to be under sea level, compromising groundwater quality due to intrusion of sea water. This, together with increased groundwater recharge, would raise groundwater levels and consequently contribute more surface leakage and potential flooding in the low-lying aquifer.

  12. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  13. Integrating Multiple Geophysical Methods to Quantify Alpine Groundwater- Surface Water Interactions: Cordillera Blanca, Peru

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Baker, E. A.; Somers, L. D.; Aubry-Wake, C.; Wigmore, O.; Mark, B. G.; Moucha, R.

    2016-12-01

    Groundwater- surface water interactions in alpine catchments are often poorly understood as groundwater and hydrologic data are difficult to acquire in these remote areas. The Cordillera Blanca of Peru is a region where dry-season water supply is increasingly stressed due to the accelerated melting of glaciers throughout the range, affecting millions of people country-wide. The alpine valleys of the Cordillera Blanca have shown potential for significant groundwater storage and discharge to valley streams, which could buffer the dry-season variability of streamflow throughout the watershed as glaciers continue to recede. Known as pampas, the clay-rich, low-relief valley bottoms are interfingered with talus deposits, providing a likely pathway for groundwater recharged at the valley edges to be stored and slowly released to the stream throughout the year by springs. Multiple geophysical methods were used to determine areas of groundwater recharge and discharge as well as aquifer geometry of the pampa system. Seismic refraction tomography, vertical electrical sounding (VES), electrical resistivity tomography (ERT), and horizontal-to-vertical spectral ratio (HVSR) seismic methods were used to determine the physical properties of the unconsolidated valley sediments, the depth to saturation, and the depth to bedrock for a representative section of the Quilcayhuanca Valley in the Cordillera Blanca. Depth to saturation and lithological boundaries were constrained by comparing geophysical results to continuous records of water levels and sediment core logs from a network of seven piezometers installed to depths of up to 6 m. Preliminary results show an average depth to bedrock for the study area of 25 m, which varies spatially along with water table depths across the valley. The conceptual model of groundwater flow and storage derived from these geophysical data will be used to inform future groundwater flow models of the area, allowing for the prediction of groundwater

  14. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    Science.gov (United States)

    Paulson, A.J.; Balistrieri, L.

    1999-01-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal

  15. Modelling free surface aquifers to analyze the interaction between groundwater and sinuous streams

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, W. M.; Bjerg, Poul Løgstrup;

    Several mathematical methods for modelling free surface aquifers are available. Aquifer-stream interaction is an important application of these models, and are challenging to simulate because stream interaction is described by a highly variable head boundary, which can cause numerical instabilities...... and errors. In addition, when streams are sinuous, groundwater flow is truly 3-dimensional, with strong vertical flows and sharp changes in horizontal direction. Here 3 different approaches to simulating free surface aquifers are compared for simulating groundwater-stream interaction. The aim of the models...... was to investigate the effect of meander bends on the spatial and temporal variability of aquifer-stream interaction, and to develop a new 3D conceptual model of groundwater-stream interaction. Three mathematical methods were tested, representing the three main methods available for modeling 3D unconfined aquifers...

  16. Characterizing the Interaction between Groundwater and Surface Water in the Boise River for Water Sustainability

    Science.gov (United States)

    Hernandez, J.; Tan, K.; Portugais, B.

    2014-12-01

    Management of water resources has increasingly become aware of the importance of considering groundwater and surface water as an interconnected, single resource. Surface water is commonly hydraulically connected to groundwater, but the interactions are difficult to observe and measure. Such a conjunctive approach has often been left out of water-management considerations because of a lack of understanding of the processes occurring. The goal of this research is to increase the better understanding of the interaction between the surface water and groundwater using the study case of the Treasure Valley Aquifer and the Boise River in Idaho, framed on water sustainability. Water-budgets for the Treasure Valley for the calendar years 1996 and 2000 suggest that the Boise River lost to the shallow aquifer almost 20 Hm3 and 95 Hm3, respectively, along the Lucky Peak to Capitol Bridge reach. Groundwater discharge occurred into the Boise River, along the Capitol Bridge to Parma reach, at about 645 Hm3 and 653 Hm3for the calendar years 1996 and 2000, respectively (USBR). These figures highlight the importance of better understanding of the water flow because of disparity, which would impact groundwater management practices. There is a need of better understanding of the groundwater-surface water interface for predicting responses to natural and human-induced stresses. A groundwater flow model was developed to compute the rates and directions of groundwater movement through aquifer and confining units in the subsurface. The model also provides a representation of the interaction that occurs between the Boise River and the shallow aquifer in the Treasure Valley. Work in progress on the general flow pattern allows assessing of the connectivity between shallow aquifer and river for helping understanding the impacts of groundwater extraction. Quantifying the interaction between the two freshwater sources would be beneficial in proper water management decisions in order to optimize

  17. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Hu, Jiangyong; Li, Jinhua; Ong, Say Leong

    2014-01-01

    There is no quantitative data on the occurrence of artificial sweeteners in the aquatic environment in Southeast Asian countries, particularly no information on their suitability as indicators of raw wastewater contamination on surface water and groundwater. This study provided the first quantitative information on the occurrence of artificial sweeteners in raw wastewater, surface water and groundwater in the urban catchment area in Singapore. Acesulfame, cyclamate, saccharin, and sucralose were ubiquitous in raw wastewater samples at concentrations in the range of ng/L-μg/L, while other sweeteners were not found or found only in a few of the raw wastewater samples. Residential and commercial effluents were demonstrated to be the two main sources of artificial sweeteners entering the municipal sewer systems. Relatively higher concentrations of the detected sweeteners were frequently found in surface waters at the sampling sites located in the residential/commercial areas. No significant difference in the concentrations of the detected sweeteners in surface water or groundwater was noted between wet and dry weather conditions (unpaired T-test, p> 0.05). Relatively higher concentrations and detection frequencies of acesulfame, cyclamate and saccharin in surface water samples were observed at the potentially impacted sampling sites, while these sweeteners were absent in most of the background surface water samples. Similarly, acesulfame, cyclamate, and saccharin were found in most groundwater samples at the monitoring well (GW6), which is located close to known leaking sewer segment; whereas these were absent in the background monitoring well, which is located in the catchment with no known wastewater sources. Taken together, the results suggest that acesulfame, cyclamate, and saccharin can be used as potential indicators of raw wastewater contamination in surface water and groundwater.

  18. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed

    Science.gov (United States)

    Essaid, Hedeff I.; Caldwell, Rodney R.

    2017-01-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  19. Nutrient sampling slam: high resolution surface-water sampling in streams reveals patterns in groundwater chemistry and flow paths

    Science.gov (United States)

    The groundwater–surface water interface (GSWI), consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water intera...

  20. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions : An integrated modeling approach

    Science.gov (United States)

    Huntington, Justin L.; Niswonger, Richard G.

    2012-01-01

    Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic

  1. Modeling the time-varying interaction between surface water and groundwater bodies

    Science.gov (United States)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  2. Daytime and nighttime groundwater contributions to soils with different surface conditions

    Science.gov (United States)

    Xing, Xuguang; Ma, Xiaoyi; Shi, Wenjuan

    2015-12-01

    Contributions of groundwater to the soil-water balance play an important role in areas with shallow water tables. The characteristics of daytime and nighttime water flux using non-weighing lysimeters were studied from June to September 2012 and 2013 in the extremely arid Xinjiang Uyghur Autonomous Region in northwestern China. The study consisted of nine treatments: three surface conditions, bare soil and cotton plants, each with water tables at depths of 1.0, 1.5, and 2.0 m; and plastic mulch with a water table at 1.5 m but with three percentages of open areas (POAs) in the plastic. The groundwater supply coefficient (SC) and the groundwater contribution (GC) generally varied with surface conditions. Both SC and GC decreased in the bare-soil and cotton treatments with increasing depth of the groundwater. Both SC and GC increased in the plastic-mulch treatment with increasing POA. Average nighttime GCs in the bare-soil treatments in July and August (the midsummer months) were 50.8-60.8 and 53.2-65.3 %, respectively, of the total daily contributions. Average nighttime GCs in the cotton treatments in July and August were 51.4-60.2 and 51.5-58.1 %, respectively, of the total daily contributions. The average GCs in June and September, however, were lower at night than during the daytime. Soil temperature may thus play a more important role than air temperature in the upflow of groundwater.

  3. Adenocarcinoma of the ampulla of Vater metastasising into the right ventricle.

    Science.gov (United States)

    Moser, Magdalena; Wiedemann, Dominik; Kitzwögerer, Melitta; Frank, Herbert

    2016-04-08

    A 43-year-old woman, after resected adenocarcinoma of the ampulla of Vater, presented dyspnoea and beginning signs of right heart failure. Echocardiography revealed a mass within the right ventricle (RV) suspicious for a metastasis of the known adenocarcinoma. The decision for surgical resection was made by cardiovascular MR, which was able to delineate the infiltrative growth of a metastasis. An extensive resection had to be performed. Parts of the intraventricular septum as well as the tricuspid valve had to be resected. After six cycles of adjuvant systemic chemotherapy with gemcitabine and nab-paclitaxel, the patient had no macroscopic tumour recurrence. To our knowledge, this is the first report of a pancreatobiliary tumour metastasising exclusively to the RV of the heart. We conclude that in this special case aggressive surgical management following chemotherapy was very effective in controlling the disseminated adenocarcinoma of the ampulla of Vater.

  4. A carcinoid tumor of the ampulla of Vater treated by endoscopic snare papillectomy.

    Science.gov (United States)

    Pyun, Dae-Keun; Moon, Gyoo; Han, Jimin; Kim, Myung-Hwan; Lee, Sang Soo; Seo, Dong-Wan; Lee, Sung-Koo

    2004-12-01

    Here, a case of a patient with incidental finding of a carcinoid tumor of the ampulla of Vater, who was treated with endoscopic snare papillectomy, is reported. A 62-year-old male was admitted to our hospital due to a carcinoid tumor of the ampulla of Vater, which was found during follow-up endoscopy after an endoscopic mucosal resection of early gastric cancer. No lymphadenopathy or visceral metastasis was found on an abdominal CT scan, In-111 octerotide scan and EUS. The ampulla was then en bloc removed by endoscopic snare papillectomy. The resected specimen revealed a 0.7 x 0.5 x 0.1 cm sized carcinoid tumor. All margins of resection were negative for tumor. After six months of follow-up, there was no evidence of recurrence and metastasis, either endoscopically or radiologically. To our knowledge, this case is the first report of an ampullary carcinoid tumor treated by endoscopic snare papillectomy in Korea.

  5. Double papilla of Vater: a rare anatomic anomaly observed in endoscopic retrograde cholangiopancreatography.

    Science.gov (United States)

    Rajnakova, A; Tan, W T; Goh, P M

    1998-10-01

    A double papilla of Vater, with separate openings for the bile duct and the pancreatic duct, is a rare anatomic anomaly observed in endoscopic retrograde cholangiopancreatography (ERCP). We report the case of a 45-year-old Chinese man with obstructive jaundice due to common bile duct stones and gallbladder stones. During ERCP, a double papilla of Vater with separate drainage for the bile duct and the pancreatic duct was observed. As the anatomy was unusual, no sphincterotomy was performed, but a biliary stent was inserted. Subsequently, the patient underwent cholecystectomy and exploration of the common bile duct. On the 15th postoperative day, he was asymptomatic and was discharged. Common bile duct-Pancreatic duct.

  6. Malignant gastrointestinal stromal tumor of the ampulla of Vater presenting with obstructive jaundice

    Directory of Open Access Journals (Sweden)

    Filippou Dimitrios

    2006-01-01

    Full Text Available Malignant gastrointestinal stromal tumor (GIST consists a rare neoplasm, developing in small intestine and stomach. The presenting manifastations include weakness, weight loss, nausea, melena and anaemia. The present case refers to a 65 years old female patient with a GIST of the ampulla of Vater presenting with obstructive jaundice. Diagnosis was achieved pre-operatively by biopsies collected through diagnostic ERCP. The tumour was locally excised, with preservation of the ampulla. The histological analysis suggested low grade GIST positive for both CD 117 (c-kit and CD34. Two years after the surgery the patient remains free of disease. Malignant GIST of the ampulla of the Vater is extremely rare as only few similar cases have been described in the literature. This is the first time a GIST being presented as obstructive jaundice ever reported. Despite the unavailability of EUS-FNA, the diagnosis was set preoperatively and the tumor was resected.

  7. Carcinoid of the ampulla of Vater: Morphologic features and clinical implications

    Institute of Scientific and Technical Information of China (English)

    George A Poultsides; Wayne AI Frederick

    2006-01-01

    Carcinoids involving the ampulla of Vater are rare lesions that may produce painless jaundice. The published data indicate that these tumors, in contrast to their midgut counterparts, metastasize in approximately half of cases irrespective of primary tumor size. Therefore,radical excision in the form of pancreaticoduodenectomy is recommended regardless of tumor size. As with other gastrointestinal carcinoid tumors, biological treatment with octreotide analogues can be applied to symptomatic patients. Tumor-targeted radioactive therapy is a newly emerging treatment option. We here report case of a carcinoid tumor of the ampulla of Vater presenting as painless jaundice in a 65-year old man and review the relevant literature, giving special attention to the morphologic features, clinical characteristics, and treatment modalities associated with this disease process.

  8. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-02-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  9. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  10. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    Directory of Open Access Journals (Sweden)

    Y. Wada

    2013-02-01

    Full Text Available To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979–2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  11. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  12. Evaluation of the relation between groundwater pollution and the pollutant load on surface waters

    NARCIS (Netherlands)

    Groenendijk, P.; Roest, C.W.J.

    1996-01-01

    The importance of the relation between groundwater and surface water is demonstrated by the impact of water quality standards on permissible nitrogen losses at farm level. The effects of the intended fertilization reduction measures on agricultural production justify a thorough examination of the

  13. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  14. Pharmaceutical occurrence in groundwater and surface waters in forests land-applied with municipal wastewater.

    Science.gov (United States)

    McEachran, Andrew D; Shea, Damian; Bodnar, Wanda; Nichols, Elizabeth Guthrie

    2016-04-01

    The occurrence and fate of pharmaceutical and personal care products in the environment are of increasing public importance because of their ubiquitous nature and documented effects on wildlife, ecosystems, and potentially humans. One potential, yet undefined, source of entry of pharmaceuticals into the environment is via the land application of municipal wastewater onto permitted lands. The objective of the present study is to determine the extent to which pharmaceuticals are mitigated by or exported from managed tree plantations irrigated with municipal wastewater. A specific focus of the present study is the presence of pharmaceutical compounds in groundwater and surface water discharge. The study site is a municipality that land-applies secondary treated wastewater onto 930 hectares of a 2000-hectare managed hardwood and pine plantation. A suite of 33 pharmaceuticals and steroid hormones was targeted in the analysis, which consisted of monthly grab sampling of groundwater, surface water, and wastewater, followed by concentration and cleanup via solid phase extraction and separation, detection, and quantification via liquid chromatography coupled with tandem mass spectrometry. More than one-half of all compounds detected in irrigated wastewater were not present in groundwater and subsequent surface water. However, antibiotics, nonsteroidal anti-inflammatory drugs, caffeine, and other prescription and over-the-counter drugs remained in groundwater and were transported into surface water at concentrations up to 10 ng/L. These results provide important documentation for pharmaceutical fate and transport in forest systems irrigated with municipal wastewater, a previously undocumented source of environmental entry.

  15. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path fro

  16. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  17. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.;

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical...

  18. GSFLOW model simulations used to evaluate the impact of irrigated agriculture on surface water - groundwater interaction

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Watershed-scale coupled surface water (SW) – groundwater (GW) flow modeling was used to examine changes in streamflow and SW – GW interaction resulting from...

  19. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  20. Adenoma viloso com transformação carcinomatosa da ampola de Vater

    Directory of Open Access Journals (Sweden)

    Guilherme Pinto Bravo Neto

    Full Text Available Villous adenomas of the duodenum and ampulla of Vater are uncommon, but they have been diagnosed more frequently with the increasing use of upper gastrointestinal endoscopy. Differential diagnosis with villous adenocarcinoma may be difficult. The authors present a case of a 47-year-old man with a giant villous adenoma of the duodenum, with intermittent jaundice, that was treated by pancreatoduodenectomy.

  1. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, A.J.; Balistrieri, L.

    1999-11-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.

  2. Groundwater Surface Trends at Van Norden Meadow, California, from Ground Penetrating Radar Profiles

    Science.gov (United States)

    Tadrick, N. I.; Blacic, T. M.; Yarnell, S. M.

    2014-12-01

    Van Norden meadow in the Donner Summit area west of Lake Tahoe is one of the largest sub-alpine meadows in the Sierra Nevada mountain range. As natural water retention basins, meadows attenuate floods, improve water quality and support vegetation that stabilizes stream banks and promotes high biodiversity. Like most meadows in the Sierras however, over-grazing, road-building, and development has resulted in localized stream incision, degradation, and partial conversion from wet to dry conditions in Van Norden. Additionally, a small dam at the base of the meadow has partially flooded the lower meadow creating reservoir conditions. Privately owned since the late 1800s, Van Norden was recently purchased by a local land trust to prevent further development and return the area to public ownership. Restoration of the natural meadow conditions will involve notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre- and post-restoration is required. We surveyed the meadow in summer 2014 with ground penetrating radar (GPR) to map the groundwater surface prior to restoration activities using a 270MHz antenna to obtain a suite of longitudinal and transverse transects. Groundwater level within the meadow was assessed using both piezometer readings and sweeps of the GPR antenna. Seventeen piezometers were added this year to the 13 already in place to monitor temporal changes in the groundwater surface, while the GPR profiles provided information about lateral variations. Our results provide an estimate of the groundwater depth variations across the upper portion of the meadow before notching. We plan to return in 2015 to collect GPR profiles during wetter conditions, which will provide a more complete assessment of the pre-notching groundwater hydrology.

  3. Die Entdeckung der Differenz: Zur Besonderheit des Vaters für das Kind

    Directory of Open Access Journals (Sweden)

    Beate Kortendiek

    2003-07-01

    Full Text Available In dem Sammelband wird in zehn Beiträgen aus psychoanalytischer und -therapeutischer sowie bindungs- und systemtheoretischer Perspektive nach der Bedeutung des Vaters für Säugling und Kleinkind gefragt. Hierbei geht es u.a. um die Analyse von Vaterlosigkeit, Bindungsentwicklungen, Spielsituationen und Schlafstörungen unter besonderer Berücksichtung der Entwicklung dyadischer und triadischer Beziehungen zwischen Vater, Mutter und Kind. Die Berichte sind von Wissenschaftler/-innen und Therapeut/-innen aus Österreich, Deutschland und der Schweiz verfasst und gehen zurück auf die Jahrestagung (2001 der „Deutschen Gesellschaft für die seelische Gesundheit in der frühen Kindheit“ (Germanspeeking Association für Infant Mental Health/GAIMH. Die Veröffentlichung ermöglicht einen Überblick über die aktuelle psychologisch orientierte Forschung und Debatte der frühen Beziehung zwischen Vater und Kind.

  4. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    Science.gov (United States)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  5. Groundwater interaction with surface drains in the Ord River Irrigation Area, northern Australia: investigation by multiple methods

    Science.gov (United States)

    Smith, Anthony J.; Pollock, Daniel W.; Palmer, Duncan

    2010-08-01

    Following 35 years of persistent groundwater rise beneath northern Ivanhoe Plain in the Ord River Irrigation Area, northern Australia, the water table appears to have stabilized near the base of the irrigation surface-drain network. Hydrometric evidence indicates that intersection of the deepest surface drains by the rising water table simultaneously reduced aquifer recharge from surface-water infiltration and increased aquifer discharge by groundwater exfiltration. Water-table analysis supports the working hypothesis that the largest irrigation drain D4 on north Ivanhoe Plain has been receiving a significant amount of groundwater discharge since the mid-1990s. The rate of groundwater discharge to surface drains on north Ivanhoe Plain was estimated to be around 15-20 million (M)L/day based on groundwater-flow modelling. Groundwater tracing using radon and electrical conductivity indicated that groundwater discharge to drain D4 was ˜6-12 ML/day in August 2007. The rate of groundwater discharge was significantly larger where the drain traverses a very-permeable sand and gravel palaeochannel. Relatively modest exfiltration rates of order of magnitude tens to hundreds of mm/day into the drain were estimated to mitigate 0.5 m/year groundwater accretion for a land area of order of magnitude hundreds to thousands of ha.

  6. Groundwater Impacts on Urban Surface Water Quality in the Lowland Polder Catchments of the Amsterdam City Area

    Science.gov (United States)

    Rozemeijer, J.; Yu, L.; Van Breukelen, B. M.; Broers, H. P.

    2015-12-01

    Surface water quality in the Amsterdam area is suffering from high nutrient levels. The sources and transport mechanisms of these nutrients are unclear due to the complex hydrology of the highly manipulated urban and sub-urban polder catchments. This study aimed at identifying the impact of groundwater on surface water quality in the polder catchments of the greater Amsterdam city area. Therefore, we exploited the dense groundwater and surface water monitoring networks to explain spatial patterns in surface water chemistry and their relations with landscape characteristics and groundwater impact. We selected and statistically analyzed 23 variables for 144 polders, covering a total area of 700 km2. Our dataset includes concentrations of total-N, total-P, ammonium, nitrate, bicarbonate, sulfate, calcium, and chloride in surface water and groundwater, seepage rate, elevation, paved area percentage, surface water area percentage, and soil type (calcite, humus and clay percentages). Our results show that nutrient levels in groundwater were generally much higher than in surface water and often exceeded the surface water Environmental Quality Standards (EQSs). This indicates that groundwater is a large potential source of nutrients in surface water. High correlations (R2 up to 0.88) between solutes in both water compartments and close similarities in their spatial patterns confirmed the large impact of groundwater on surface water quality. Groundwater appeared to be a major source of chloride, bicarbonate and calcium in surface water and for N and P, leading to exceeding of EQSs in surface waters. In dry periods, the artificial redistribution of excess seepage water from deep polders to supply water to infiltrating polders further distributes the N and P loads delivered by groundwater over the area.

  7. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  8. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models

    Science.gov (United States)

    Ajami, Hoori; Meixner, Thomas; Maddock, Thomas; Hogan, James F.; Guertin, D. Phillip

    2011-09-01

    Riparian groundwater evapotranspiration (ETg) constitutes a major component of the water balance especially in many arid and semi-arid environments. Although spatial and temporal variability of riparian ETg are controlled by climate, vegetation and subsurface characteristics, depth to water table (DTWT) is often considered the major controlling factor. Relationships between ETg rates and DTWT, referred to as ETg curves, are implemented in MODFLOW ETg packages (EVT, ETS1 and RIP-ET) with different functional forms. Here, the sensitivity of the groundwater budget in MODFLOW groundwater models to ETg parameters (including ETg curves, land-surface elevation and ETg seasonality) are investigated. A MODFLOW model of the hypothetical Dry Alkaline Valley in the Southwestern USA is used to show how spatial representation of riparian vegetation and digital elevation model (DEM) processing methods impact the water budget when RIPGIS-NET (a GIS-based ETg program) is used with MODFLOW's RIP-ET package, and results are compared with the EVT and ETS1 packages. Results show considerable impact on ETg and other groundwater budget components caused by spatial representation of riparian vegetation, vegetation type, fractional coverage areas and land-surface elevation. RIPGIS-NET enhances ETg estimation in MODFLOW by incorporating vegetation and land-surface parameters, providing a tool for ecohydrology studies, riparian ecosystem management and stream restoration.

  9. Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    Science.gov (United States)

    Leaf, Andrew T.; Fienen, Michael N.; Hunt, Randall J.; Buchwald, Cheryl A.

    2015-11-23

    A groundwater-flow model was developed for the Bad River Watershed and surrounding area by using the U.S. Geological Survey (USGS) finite-difference code MODFLOW-NWT. The model simulates steady-state groundwater-flow and base flow in streams by using the streamflow routing (SFR) package. The objectives of this study were to: (1) develop an improved understanding of the groundwater-flow system in the Bad River Watershed at the regional scale, including the sources of water to the Bad River Band of Lake Superior Chippewa Reservation (Reservation) and groundwater/surface-water interactions; (2) provide a quantitative platform for evaluating future impacts to the watershed, which can be used as a starting point for more detailed investigations at the local scale; and (3) identify areas where more data are needed. This report describes the construction and calibration of the groundwater-flow model that was subsequently used for analyzing potential locations for the collection of additional field data, including new observations of water-table elevation for refining the conceptualization and corresponding numerical model of the hydrogeologic system.

  10. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  11. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Directory of Open Access Journals (Sweden)

    B. van der Grift

    2014-06-01

    Full Text Available The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II oxidation and P immobilization along the flow-path from groundwater to surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we investigated Fe(II oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II by O2. Seasonal changes in climatic conditions affected the Fe(II oxidation process. Lower pH and lower temperatures in winter (compared to summer resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than one week before complete oxidation of Fe(II is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilisation of dissolved P during the initial stage of the Fe(II oxidation proces which results in P-depleted water before Fe(II is competly depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III-phosphate precipitates. The formation of Fe(III-phosphates at redox gradients

  12. Statistical robustness of machine-learning estimates for characterizing a groundwater-surface water system, Southland, New Zealand

    Science.gov (United States)

    Friedel, M. J.; Daughney, C.

    2016-12-01

    The development of a successful surface-groundwater management strategy depends on the quality of data provided for analysis. This study evaluates the statistical robustness when using a modified self-organizing map (MSOM) technique to estimate missing values for three hypersurface models: synoptic groundwater-surface water hydrochemistry, time-series of groundwater-surface water hydrochemistry, and mixed-survey (combination of groundwater-surface water hydrochemistry and lithologies) hydrostratigraphic unit data. These models of increasing complexity are developed and validated based on observations from the Southland region of New Zealand. In each case, the estimation method is sufficiently robust to cope with groundwater-surface water hydrochemistry vagaries due to sample size and extreme data insufficiency, even when >80% of the data are missing. The estimation of surface water hydrochemistry time series values enabled the evaluation of seasonal variation, and the imputation of lithologies facilitated the evaluation of hydrostratigraphic controls on groundwater-surface water interaction. The robust statistical results for groundwater-surface water models of increasing data complexity provide justification to apply the MSOM technique in other regions of New Zealand and abroad.

  13. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errormodelling. The RS irrigated areas and actual evapotranspiration can be used to: (i) understand irrigation dynamics, (ii) constrain irrigation models in data scarce regions, as well as (iii) pinpointing areas that require better ground

  14. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  15. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    Science.gov (United States)

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  16. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  17. Interactions between groundwater and surface water: The state of the science

    Science.gov (United States)

    Sophocleous, M.

    2002-01-01

    The interactions between groundwater and surface water are complex. To understand these interactions in relation to climate, landform, geology, and biotic factors, a sound hydrogeoecological framework is needed. All these aspects are synthesized and exemplified in this overview. In addition, the mechanisms of interactions between groundwater and surface water (GW-SW) as they affect recharge-discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. This overview concludes with a discussion of research needs and challenges facting this evolving field. The biogeochemical processes within the upper few centimeters of sediments beneath nearly all surface-water bodies (hyporheic zone) have a profound effect on the chemistry of the water interchange, and here is where most of the recent research has been focusing. However, to advance conceptual and other modeling of GW-SW systems, a broader perspective of such interactions across and between surface-water bodies is needed, including multidimensional analyses, interface hydraulic characterization and spatial variability, site-to-region regionalization approaches, as well as cross-disciplinary collaborations.

  18. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data

    Science.gov (United States)

    Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

    2014-02-01

    Seepage flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

  19. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and

  20. Surface Water-Groundwater Interactions as a Critical Component of Uranium Plume Persistence

    Science.gov (United States)

    Williams, K. H.; Christensen, J. N.; Hobson, C.

    2015-12-01

    Residual contamination of soils, sediments and groundwater by uranium milling operations presents a lingering problem at former mill sites throughout the upper Colorado River Basin in the western USA. Remedial strategies predicated upon natural flushing by low uranium recharge waters have frequently failed to achieve target concentrations set by national and state regulators. Flushing times of tens of years have often yielded negligible decreases in groundwater uranium concentrations, with extrapolated trends suggesting multiple decades or longer may be required to achieve regulatory goals. The U.S. Department of Energy's Rifle, Colorado field site serves as a natural laboratory for investigating the underlying causes for uranium plume persistence, with recent studies there highlighting the important role that surface water-groundwater interactions play in sustaining uranium delivery to the aquifer. Annual snowmelt-driven increases in Colorado River discharge induce 1-2 m excursions in groundwater elevation at the Rifle site, which enables residual tailings-contaminated materials (so-called Supplemental Standards) to become hydrologically connected to the aquifer for short periods of time during peak discharge. The episodic contact between shallow groundwater and residual contamination leads to abrupt 20-fold increases in groundwater uranium concentration, which serve to seasonally replenish the plume given the location of the Supplemental Standards along the upgradient edge of the aquifer. Uranium isotope composition changes abruptly as uranium concentrations increase reflecting the contribution of a temporally distinct contaminant reservoir. The release of uranium serves to potentially replenish organic matter rich sediments located within the alluvial aquifer at downstream locations, which have been postulated to serve as a parallel contributor to plume persistence following the uptake, immobilization, and slow re-oxidation of uranium.

  1. Spatially telescoping measurements for improved characterization of groundwater-surface water interactions

    Science.gov (United States)

    Kikuchi, Colin; Ferre, Ty P.A.; Welker, Jeffery M.

    2012-01-01

    The suite of measurement methods available to characterize fluxes between groundwater and surface water is rapidly growing. However, there are few studies that examine approaches to design of field investigations that include multiple methods. We propose that performing field measurements in a spatially telescoping sequence improves measurement flexibility and accounts for nested heterogeneities while still allowing for parsimonious experimental design. We applied this spatially telescoping approach in a study of ground water-surface water (GW-SW) interaction during baseflow conditions along Lucile Creek, located near Wasilla, Alaska. Catchment-scale data, including channel geomorphic indices and hydrogeologic transects, were used to screen areas of potentially significant GW-SW exchange. Specifically, these data indicated increasing groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during baseflow conditions, including differential discharge measurements and the use of chemical tracers analyzed in a three-component mixing model. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Finally, point measurements of vertical water fluxes -- obtained using seepage meters as well as temperature-based methods -- were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatial variability of upward fluxes, estimated using streambed temperature mapping at the sub-reach scale, was observed to vary in relation to both streambed composition and the magnitude of groundwater contribution from differential discharge measurements. The spatially telescoping approach improved the efficiency of this field investigation. Beginning our assessment

  2. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    Science.gov (United States)

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  3. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  4. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry.

    Science.gov (United States)

    Li, Jing; Li, Fadong; Liu, Qiang

    2017-07-01

    Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ(18)O and δ(2)H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ(18)O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater

  6. 1DTempPro V2: new features for inferring groundwater/surface-water exchange

    Science.gov (United States)

    Koch, Franklin W.; Voytek, Emily B.; Day-Lewis, Frederick D.; Healy, Richard W.; Briggs, Martin; Lane, Jr., John W.; Werkema, Dale

    2016-01-01

    A new version of the computer program 1DTempPro extends the original code to include new capabilities for (1) automated parameter estimation, (2) layer heterogeneity, and (3) time-varying specific discharge. The code serves as an interface to the U.S. Geological Survey model VS2DH and supports analysis of vertical one-dimensional temperature profiles under saturated flow conditions to assess groundwater/surface-water exchange and estimate hydraulic conductivity for cases where hydraulic head is known.

  7. On Limiting Behavior of Contaminant Transport Models in Coupled Surface and Groundwater Flows

    Directory of Open Access Journals (Sweden)

    Vincent J. Ervin

    2015-11-01

    Full Text Available There has been a surge of work on models for coupling surface-water with groundwater flows which is at its core the Stokes-Darcy problem. The resulting (Stokes-Darcy fluid velocity is important because the flow transports contaminants. The analysis of models including the transport of contaminants has, however, focused on a quasi-static Stokes-Darcy model. Herein we consider the fully evolutionary system including contaminant transport and analyze its quasi-static limits.

  8. Xenobiotics in groundwater and surface water of the city of Leipzig

    Science.gov (United States)

    Musolff, A.; Leschik, S.; Reinstorf, F.; Strauch, G.; Schirmer, M.; Möder, M.

    2007-09-01

    Xenobiotics are increasingly being considered as ecotoxicologically relevant for the aquatic environment and human health. Their behaviour and the effects on the environment have not yet been comprehensively investigated and, therefore, are currently the subject of the project WASSER Leipzig initiated by the UFZ. The results of this article are based on groundwater and surface water analyses of a watershed within the town of Leipzig. Here the industrial chemicals bisphenol-A and t-nonylphenol, the polycyclic fragrances galaxolide and tonalide, the antiepileptic drug carbamacepine and caffeine where investigated. Xenobiotics showed ubiquitous occurrence in the rivers, which were contaminated from treated and untreated sewage, as well as in groundwater, contaminated by leaky sewers. Mean concentrations up to several hundred ng/l were found in the rivers, while groundwater concentrations, except for bisphenol-A, tended to be lower. Applying the statistical factor analysis on the hydrochemical measurements, a differentiation of the xenobiotics with regard to their hydrochemical behaviour in groundwater was performed.

  9. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    Science.gov (United States)

    Mani, Amir; Tsai, Frank T.-C.; Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha

    2016-09-01

    This study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraints.

  10. Management of surface water and groundwater withdrawals to maintain environmental stream flows in Michigan

    Science.gov (United States)

    Reeves, Howard W.; Seelbach, Paul W.; Nicholas, James R.; Hamilton, David A.; Potter, Kenneth W.; Frevert, Donald K.

    2010-01-01

    In 2008, the State of Michigan enacted legislation requiring that new or increased high-capacity withdrawals (greater than 100,000 gallons per day) from either surface water or groundwater be reviewed to prevent Adverse Resource Impacts (ARI). Science- based guidance was sought in defining how groundwater or surface-water withdrawals affect streamflow and in quantifying the relation between reduced streamflow and changes in stream ecology. The implementation of the legislation led to a risk-based system based on a gradient of risk, ecological response curves, and estimation of groundwater-surface water interaction. All Michigan streams are included in the legislation, and, accordingly, all Michigan streams were classified into management types defined by size of watershed, stream-water temperature, and predicted fish assemblages. Different streamflow removal percentages define risk-based thresholds allowed for each type. These removal percentages were informed by ecological response curves of characteristic fish populations and finalized through a legislative workgroup process. The assessment process includes an on-line screening tool that may be used to evaluate new or increased withdrawals against the risk-based zones and allows withdrawals that are not likely to cause an ARI to proceed to water-use registration. The system is designed to consider cumulative impacts of high-capacity withdrawals and to promote user involvement in water resource management by the establishment of water-user committees as cumulative withdrawals indicate greater potential for ARI in the watershed.

  11. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters

    Science.gov (United States)

    Kunkel, R.; Kreins, P.; Tetzlaff, B.; Wendland, F.

    2009-04-01

    The fundamental objectives of the European Union-Water Framework Directive and the EU Groundwater Directive are to attain a good status of water and groundwater resources in the member states of the EU by 2015. Following the implementation time table, the EU member States carried out a review about the qualitative and quantitative status for all river basins in the EU. For river basins, whose good status cannot be guaranteed by 2015, catchment wide operational plans and measurement programs are to be drafted and implemented until 2009. In the river basin district Weser, Germany, which comprises a catchment area of ca. 49.000 km2, the achievement of the good status is unclear, or rather unlikely for 63% of the groundwater bodies. Inputs from diffuse sources and most of all nitrogen losses from agriculturally used land have been identified as the main reasons for exceeding the groundwater threshold value for nitrate (50 mg/l) and for failing the „good qualitative status" of groundwater in 2015. For this reason the drafting and implementation of measurement programs in the Weser basin are primarily focused on nitrate. The achievement of good qualitative status of groundwater bodies entails a particular challenge especially for large river basins as the complex ecological, hydrological, hydrogeological and agro-economic relationships have to be considered simultaneously. Integrated large scale agroeconomic- hydrologic models are powerful tools to analyze the actual pollution loads and "hot spot" areas and to predict the temporal and spatial effects of reduction measures. We used the interdisciplinary model network REGFLUD to predict the nitrogen intakes into groundwater and the nitrogen losses to surface waters by different pathways at the regional scale using an area differentiated approach. The model system combines the agro-economic model RAUMIS for estimating nitrogen surpluses from agriculture and the hydrological models GROWA/DENUZ/WEKU for describing the

  12. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  13. Endoscopic snare excision of adenoma of the papilla of Vater without prophylactic pancreatic-duct stent.

    Science.gov (United States)

    Attaallah, Wafi; Gunal, Omer; Mokhtare, Sina; Ozmen, Tolga; Cingi, Asim

    2014-11-28

    The endoscopic excision of adenomas of the papilla of Vater has gained increased popularity in the recent years. Temporary pancreatic drainage has been advised to accompany snare papillectomy in order to prevent ductal obstruction and serious pancreatitis. We evaluated treatment outcome of patients who had undergone endoscopic papillectomy without pancreatic drainage. Three consecutive adult patients with adenomas of the papilla of Vater presented with jaundice and pain were treated by endoscopic snare excision between October 2013 and February 2014 in a single center. ERCP procedures revealed papillary tumors and endoscopic biopsy specimens revealed tubular adenoma the papilla of Vater. Adenomas were treated by snare papillectomy method and a biliary stent was inserted as a prophylactic procedure immediately after excision of the adenoma in each case. In addition to physical examination, laboratory tests were repeated in the follow-up period after papillectomy in order to document if there is any complication particularly pancreatitis. None of the patients experienced an immediate complication, including pancreatitis after papillectomy. Also neither patient experienced abnormal fluctuations of laboratory tests during the follow-up. Histopathologic evaluation of the resection specimens revealed a tubular adenoma with low grade dysplasia in the first two patients and a tubular adenoma with high-grade dysplasia in the third one. Endoscopy and pathologic evaluation revealed no recurrent/residual disease during the follow-up period of these patients. Endoscopic snare resection of adenoma of the major papilla of the duodenum is a safe and minimal invasive alternative to surgical therapy. Biliary stent is sufficient to prevent biliary ductal patency and pancreatic stenting might not be necessary to prevent pancreatitis.

  14. Non-familial double malignancy of the colon and ampulla of vater: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Rajesh Rajalingam

    2012-01-01

    Full Text Available Apart from their association in familial and hereditary cancer syndromes, sporadic double malignancies of the gastrointestinal tract involving the ampulla of Vater and colon are extremely rare. Although synchronous resection of the two by adding a colectomy to a pancreaticoduodenctomy can be accomplished with minimal increase in the surgical morbidity, a few patients, however, are best managed by a staged resection. We report a case of sporadic double malignancy of the ampulla of Vater and right colon who despite the best attempts continued to bleed and remained malnourished and was successfully managed by staged right hemicolectomy followed by a pancreaticoduodenectomy.

  15. Impacts of model initialization on an integrated surface water - groundwater model

    KAUST Repository

    Ajami, Hoori

    2015-04-01

    Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin-up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin-up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin-up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics.

  16. Application of a fully-integrated groundwater-surface water flow model in municipal asset management

    Science.gov (United States)

    Bowman, L. K.; Unger, A.; Jones, J. P.

    2014-12-01

    Access to affordable potable water is critical in the development and maintenance of urban centres. Given that water is a public good in Canada, all funds related to operation and maintenance of the drinking water and wastewater networks must come from consumers. An asset management system can be put in place by municipalities to more efficiently manage their water and wastewater distribution system to ensure proper use of these funds. The system works at the operational, tactical, and strategic levels, thus ensuring optimal scheduling of operation and maintenance activities, as well as prediction of future water demand scenarios. At the operational level, a fully integrated model is used to simulate the groundwater-surface water interaction of the Laurel Creek Watershed, of which 80% is urbanized by the City of Waterloo. Canadian municipalities typically lose 13% of their potable water through leaks in watermains and sanitary sewers, and sanitary sewers often generate substantial inflows from fractures in pipe walls. The City of Waterloo sanitary sewers carry an additional 10,000 cubic meters of water to wastewater treatment plants. Therefore, watermain and sanitary sewers present a significant impact on the groundwater-surface water interaction, as well as the affordability of the drinking water and wastewater networks as a whole. To determine areas of concern within the network, the integrated groundwater-surface water model also simulates flow through the City of Waterloo's watermain and sanitary sewer networks. The final model will be used to assess the interaction between measured losses of water from the City of Waterloo's watermain system, infiltration into the sanitary sewer system adjacent to the watermains, and the response of the groundwater system to deteriorated sanitary sewers or to pipes that have been recently renovated. This will ultimately contribute to the City of Waterloo's municipal asset management plan.

  17. Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States); Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Tanana, Heather [Univ. of Utah, Salt Lake City, UT (United States); Holt, Rebecca [Univ. of Utah, Salt Lake City, UT (United States)

    2011-12-01

    Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream

  18. Analyses of surface and groundwater flow characteristics of the Ljubljana moor and water resources vulnerability to climate and land use change and groundwater overdraft

    Science.gov (United States)

    Globevnik, Lidija; Bracic Zeleznik, Branka

    2016-04-01

    One of the biggest water resource of Slovenian capital is groundwater of Ljubljana moor (Ljubljansko barje) aquifer. Quantity and quality of groundwater in Ljubljana moor aquifer directly depend on precipitation, surface water and riparian ecosystems of the Moor and indirectly by groundwater recharge from higher-lying mountainous karstic areas of forests and grasslands. Maintaining high groundwater level of the Ljubljana moor not only sustain stable water balance of aquifer, but also its riparian and wetland character. It also inhibit larger subsidence of the terrain. The paper addresses the vulnerability of the Ljubljana moor water resources to climate and land use change and due to groundwater overdraft. The results should help in selecting suitable mitigation measures and management of the Ljubljana moor area. We analyze surface and groundwater flow characteristics of water recharge area of one water work on the Ljubljana moor (Brest) from the point of view of climate change, changes in land use and water pumping practices. The I\\vska River, a tributary to the Ljubljanica River, recharges the area in the gravel bar, which lies just below the hills. We use existing data of meteorological, hydrological and hydrogeological monitoring and simulate rainfall-runoff processes. We use a conceptual semi-distributed rainfall-runoff model HBV-Light and simulate hydrological characteristics of the Ljubljana Moor (groundwater level fluctuations and recharge, surface - groundwater interchange) with two hydrodynamic models, DHI MIKE FLOOD (surface flow, 2D simulation) and DHI MIKE SHE (groundwater flow). For a calibration of runoff model HBV Light and MIKE SHE we use measured daily discharge data of the river I\\vska (1970-2010) and groundwater level data along the river (2010-2013) respectively. In groundwater modelling, we include the data of water pumping. Daily precipitation and temperature for period 2020 - 2050 are from ESAMBLE project for two GCM climate scenarios. We

  19. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption

    Energy Technology Data Exchange (ETDEWEB)

    Vulliet, Emmanuelle, E-mail: e.vulliet@sca.cnrs.fr [Institut des Sciences Analytiques - UMR5280, Departement Service Central d' Analyse, Echangeur de Solaize, Chemin du Canal, F-69360 Solaize (France); Cren-Olive, Cecile [Institut des Sciences Analytiques - UMR5280, Departement Service Central d' Analyse, Echangeur de Solaize, Chemin du Canal, F-69360 Solaize (France)

    2011-10-15

    As part of a regional screening to evaluate the risk, for the health of populations, to certain classes of emerging substances, several families of pharmaceuticals and hormones were looked for in waters intended to drinking. Thus, 52 substances were investigated in 71 surface waters and 70 groundwaters. Results indicate that no water was free of pollutants, regardless of its origin (surface or groundwater) and the season of collect. The pharmaceuticals most frequently detected and with the highest concentration levels were salicylic acid, carbamazepine and acetaminophen. Among hormones, testosterone, androstenedione and progesterone were detected in almost all the samples. Globally the groundwaters were less contaminated than surface waters in regards pharmaceuticals frequencies and levels. On the other side, androgens and progestagens were present with comparable frequencies and levels in both compartments. The risk linked to the presence of these substances on human health is discussed. - Highlights: > Traces of 52 substances investigated in 71 surface waters and 70 groundwaters. > No water was free of pollutants, whatever its origin and the season of collect. > Globally groundwaters were less contaminated than surface waters in regards pharmaceuticals. > Hormones were present with comparable frequencies and levels in two compartments. - 52 pharmaceuticals and hormones investigated in 71 surface waters and 70 groundwaters intended to human consumption.

  20. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin

    2016-01-01

    experiments include five simulations. First MIKE SHE is forced by observed climate data in two versions i) with groundwater at a fixed uniform depth, and ii) with a dynamical groundwater component simulating shallow groundwater conditions in river valleys. iii) In a third simulation MIKE SHE is forced......The land surface-atmosphere interaction is described differently in large scale surface schemes of regional climate models and small scale spatially distributed hydrological models. In particular, the hydrological models include the influence of shallow groundwater on evapotranspiration during dry...... periods where soils are depleted and groundwater is the only water supply. These mechanisms are analysed by combining a distributed hydrological model (MIKE SHE) and a regional climate model (HIRHAM) and comparing simulation results to the FIFE area observation data in Kansas, USA. The numerical...

  1. Modeling Potential Surface and Shallow Groundwater Storage Provided by Beaver Ponds Across Watersheds

    Science.gov (United States)

    Hafen, K.; Wheaton, J. M.; Macfarlane, W.

    2016-12-01

    Damming of streams by North American Beaver (Castor canadensis) has been shown to provide a host of potentially desirable hydraulic and hydrologic impacts. Notably, increases in surface water storage and groundwater storage may alter the timing and delivery of water around individual dams and dam complexes. Anecdotal evidence suggests these changes may be important for increasing and maintaining baseflow and even helping some intermittent streams flow perennially. In the arid west, these impacts could be particularly salient in the face of climate change. However, few studies have examined the hydrologic impacts of beaver dams at scales large enough to provide insight for water management, in part because understanding or modeling these impacts at large spatial scales has been precluded by uncertainty concerning the number of beaver dams a drainage network can support. Using the recently developed Beaver Restoration Assessment Tool (BRAT) to identify possible densities and spatial configurations of beaver dams, we developed a model that predicts the area and volume of surface water storage associated with dams of various sizes, and applied this model at different dam densities across multiple watersheds (HUC12) in northern Utah. We then used model results as inputs to the MODFLOW groundwater model to identify the subsequent changes to shallow groundwater storage. The spatially explicit water storage estimates produced by our approach will be useful in evaluating potential beaver restoration and conservation, and will also provide necessary information for developing hydrologic models to specifically identify the effects beaver dams may have on water delivery and timing.

  2. Quantifying the regional groundwater/surface water interaction based on 18O and Deuterium

    Science.gov (United States)

    Merz, Christoph; Lischeid, Gunnar; Nitzsche, Kai; Kayler, Zachary Eric

    2017-04-01

    Small, non-permanent ponds of glaciofluvial origin, called cattle holes, are widely spread in the younger Pleistocene landscapes of the northern hemisphere. New investigations show that much more of the kettle holes in NE Germany are more closely connected to the groundwater than expected. Thus kettle holes reflect a free groundwater surface at the interface between the aquifer and the topography. They are not isolated hydrological depressions and can be viewed as linked components of a hydrologic continuum. Therefore, these kettle holes have a high informative value regarding changing behavior of the regional groundwater system functioning as a suitable indicator for changes of a regionally connected hydrological system. The unsolved challenge of this approach is the complexity and high abundance of kettle holes which requires an elaborate hydrological monitoring of a large number of small lakes. Therefore, an alternative approach was used to record the dynamic behavior of the hydrological system. Measurements of the stable isotopes 18O and Deuterium enables the quantitative estimation of the individual water flux and evapotranspiration rates. An isotope-mass-balance model was used to quantify lake water balances during a one year sampling period. The approach after Skrzypek et al. 2015 based on the global relationship between the d18O and dD values of the precipitation - described by the Global Meteoric Water Line (GMWL) and the kinetic isotopic fractionation during evaporation which leads to a deviation from the GMWL indicated by a decrease of the slope of this relationship. Assuming that the lake is hydrostatically connected to the groundwater the applied isotope mass-balance model accounts for the quantification of the evapotranspiration rate considering the groundwater inflow compensating the evaporation loss. Due to the low effort of isotopic sampling, the isotopic monitoring of a large number of kettle holes is possible, even regarding a longer period of

  3. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  4. Contaminated site risk and uncertainty assessment for impacts on surface and groundwater

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak

    in clay till geology and the impact on streams; 3) the characterization of the dominating anthropogenic stressors in headwater streams at catchment scale and 4) the development of a method for assessing the uncertainty in conceptual site models. Advances in risk assessment methods for contaminated sites...... carbon and ammonium) in the groundwater and the stream. Based on the results of the mass balance method, significant spatial heterogeneity was expected in the contaminant mass discharge pattern to Risby Stream. To obtain a better understanding of this impact, a detailed investigation was conducted....... The investigation involved an array of methods including studies of the site hydrogeology, groundwater and surface water discharge and landfill leachate composition and distribution. The methods included driven wells, seepage meters, grab samples, measurement of the temperature gradient in the stream bed...

  5. Groundwater flow evaluation through backfilling materials of a surface coal mining site of Northeast Mexico

    Science.gov (United States)

    Gutierrez-Ojeda, C.; Martínez-Morales, M.; Ortíz-Flores, G.

    2013-05-01

    Surface coal mining at the Allende-Piedras Negras aquifer system requires the complete dewatering and removal of the aquifer. The aquifer contains several geologic layers of variable hydraulic conductivity. Backfilling material is composed of a mixture of permeable and impermeable layers and it was initially considered as impermeable. Exploratory drillings, pumping tests and a geophysical survey were performed in the backfilling materials and the surrounding unaltered materials in order to evaluate the natural groundwater flow modification due to the mining activities. Results of geophysical survey evidenced a saturated water table within the back filling material which was verified by exploratory drilling. Pumping tests showed that unaltered materials have a mean hydraulic conductivity of 34.5 m/day while the backfilling of 5.3 m/day. Although the mining activities reduce the hydraulic conductivity by almost an order of magnitude, it was corroborated the existence of a groundwater flow through the backfilling materials.

  6. An Active-Distributed Temperature Sensing method to quantify groundwater - surface water exchanges

    Science.gov (United States)

    Simon, Nataline; Bour, Olivier; Lavenant, Nicolas; Faucheux, Mickaël; Fovet, Ophélie; Longuevergne, Laurent

    2017-04-01

    Understanding and quantifying groundwater and surface water interactions are key elements for the management of water quality and quantity, but also for the preservation of groundwater dependent ecosystems and riparian habitat. We developed a methodology to quantify groundwater and surface water interactions, by setting up an active heat tracer experiment using fiber-optic distributed temperature sensing (FO-DTS). The experimental setup consists in heating an armoured fiber-optic cable that has been previously deployed along the streambed within the sediments. Then, the increase in temperature along the heated cable is a function of the thermal properties of the sediments and of the fluid flow velocity within the sediments. The cable is heated electrically through the steel armouring of the cable while the elevations in temperature are continuously monitored. We tested this methodology on the Kerbernez catchment, located in south-western Brittany (France) and which is part of the AgrHys hydrological observatory. We deploy the cable in a first-order stream within this small agricultural catchment (0.12 km2). Temperature was monitored along 60 meters of stream with a spatial and temporal resolution respectively equal to 29 cm and 30 s. To interpret the data, we used an analytical solution developed for geothermal energy that considers advection and conduction of temperature in porous media. To validate the use of the analytical solution and to define the limits of the method, a 2D numerical model has been developed. This model simulates heat transport and conduction with steady state fluid flow using the Conjugate Heat Transfer module of COMSOL Multiphysics ®. During heating and cooling, the measured temperature was particularly variable along the section with temperature increases that range between 16 to 36°C. This variability can directly be associated with local variations of water fluxes by applying the appropriate analytical solution. Henceforth, it is

  7. Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation

    Science.gov (United States)

    Anderson, Ray G.; Lo, Min-Hui; Famiglietti, James S.

    2012-08-01

    Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.0 ± 32.4 mm/year while measured surface water consumption was 308.1 ± 6.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales.

  8. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-05-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated for the major contaminant sources, such as a number of untreated or lightly treated sewage wastes in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but instead connected with the surface water. This study aims to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. The concentration of Cl in North Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. The regional well had water with a constant stable isotopic signature, which illustrates that the groundwater never or rarely receive recharge from surface water. However, the groundwater of transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings would be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  9. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    Science.gov (United States)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-06-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  10. A direct immunoassay for detecting diatoms in groundwater as an indicator of the direct influence of surface water

    Science.gov (United States)

    Walker, C.E.; Schrock, R.M.; Reilly, T.J.; Baehr, A.L.

    2005-01-01

    Groundwater under the direct influence of surface water (GWUDISW) is of concern in communities where growing public demand on groundwater resources has resulted in increased withdrawals and hydraulic stress near surface water bodies. Under these conditions, contaminants such as methyl-tert butyl ether (MTBE) and biological materials have been detected in domestic wells. Other contaminants and pathogens associated with surface water are not routinely tested for in groundwater-supplied systems. To address the need for methods to easily identify potentially vulnerable supplies, a direct immunoassay for the quantitative detection of diatoms in raw water samples was developed as a measure of surface water influence on groundwater. Cell wall preparations from Nitzschia palea Ku??tzing, a freshwater diatom found throughout North America, were used to produce a polyclonal antibody that was applied in a direct enzyme-linked immunosorbent assay (ELISA) developed to detect the presence of N. palea cell wall components. The direct immunoassay allows detection at 500 cells L-1, a level similar to diatom concentrations observed in samples of groundwater collected near the test site. This investigation was the first attempt to utilize an ELISA as an indicator of surface water influence on groundwater. Further research is needed to develop more specific diatom-based monoclonal antibodies, determine cross-reactivity, and optimize sample processing and ELISA procedures for development of a standardized method. ?? Springer 2005.

  11. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    Directory of Open Access Journals (Sweden)

    Roger Neto Schneider

    2009-09-01

    Full Text Available The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of resistance to cefaclor was observed, both in surface water (51.9% and groundwater (62.9%, while all samples were sensitive to amikacin. The percentages of multi-resistant samples were 25.96% and 26.73% in surface water and groundwater, respectively, while 19.23% and 13.86% were sensitive to all antibiotics tested. It was determined that the rate of multiple antibiotic resistance (MAR was 0.164 for surface water and 0.184 for groundwater. No significant differences were found in the profile of the antimicrobial resistance in strains of E. coli isolated in surface water and groundwater, but the index MAR calculated in certain points of groundwater may offer a potential risk of transmission of resistant genes.

  12. Abdominal angina due to recurrence of cancer of the papilla of Vater: a case report

    Directory of Open Access Journals (Sweden)

    Rapaccini Gian

    2009-12-01

    Full Text Available Abstract Introduction Abdominal angina is usually caused by atherosclerotic disease, and other causes are considered uncommon. This is the first report of a case of abdominal angina secondary to neoplastic vascular stenosis caused by local recurrence of an adenocarcinoma of the papilla of Vater. Case presentation An 80-year-old woman of Caucasian origin presented with abdominal pain and diarrhea. She had undergone a pancreaticoduodenectomy for adenocarcinoma of the papilla of Vater four years earlier. Computed tomography revealed a mass surrounding her celiac trunk and superior mesenteric artery. Her abdominal pain responded poorly to analgesic drugs, but disappeared when oral feedings were withheld. A duplex ultrasonography of the patient's splanchnic vessels was consistent with vascular stenosis. Parenteral nutrition was started and the patient remained pain free until her death. Conclusion Pain relief is an important therapeutic target in patients with cancer. In this case, abdominal pain was successfully managed only after the ischemic cause had been identified. The conventional analgesic therapy algorithm based on nonsteroidal anti-inflammatory drugs and opioids had been costly and pointless, whereas the simple withdrawal of oral feeding spared the patient of the discomfort of additional invasive procedures and allowed her to spend her remaining days in a completely pain-free state.

  13. KL-6 mucin expression in carcinoma of the ampulla of Vater: Association with cancer progression

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Masatoshi Makuuchi; Yoshinori Inagaki; Norihiro Kokudo; Qian Guo; Yasuji Seyama; Munehiro Nakata; Hiroshi Imamura; Keiji Sano; Yasuhiko Sugawara

    2005-01-01

    AIM: To assess histochemical expression of KL-6 and its clinicopathological significance in carcinoma of the ampulla of Vater.METHODS: Ampullary carcinoma tissues were collected from 38 patients who underwent pancreatoduodenectomy or local resection. Tissues were subjected to immunohistochemical analysis using KL-6 antibody.RESULTS: Positive staining of ampullary carcinoma cells was observed in 26 (68.4%) cases. Staining was not found in the surrounding non-cancer regions of the ampullary tissues. Remarkable KL-6 expression was observed in invasive carcinoma cells in pancreatic and duodenal tissues and in metastatic carcinoma cells in lymph nodes. Positive KL-6 expression was related to lymph node metastasis (P = 0.020), pancreatic invasion (P = 0.016), duodenal invasion (P = 0.034), and advanced stage of TNM clinical classification (P = 0.010). Survival analysis showed that positive expression of KL-6 was related to a poorer prognosis (P = 0.029).CONCLUSION: The aberrant expression of KL-6 mucin is significantly related to unfavorable behaviors of carcinoma of the ampulla of Vater.

  14. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-arid Environments

    Science.gov (United States)

    Owuor, Steven; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana; Pelster, David; Díaz-Pinés, Eugenio; Breuer, Lutz; Merbold, Lutz

    2017-04-01

    Conclusive evidence and understanding of the effects of land use and land cover (LULC) on both groundwater recharge and surface runoff is critical for effective management of water resources in semi-arid region as those heavily depend on groundwater resources. However, there is limited quantitative evidence on how changes to LULC in semi-arid tropical and subtropical regions affect the subsurface components of the hydrologic cycle, particularly groundwater recharge. In this study, we reviewed a total of 27 studies (2 modelling and 25 experimental), which reported on pre- and post-land use change groundwater recharge or surface runoff magnitude, and thus allowed to quantify the response of groundwater recharge rates and runoff to LULC. Restoration of bare land induces a decrease in groundwater recharge from 42 % of precipitation to between 6 and 12 % depending on the final LULC. If forests are cleared for rangelands, groundwater recharge increases by 7.8 ± 12.6 %, while conversion to cropland or grassland results in increases of 3.4 ± 2.5 and 4.4 ± 3.3 %, respectively. Rehabilitation of bare land to cropland results in surface runoff reductions of between 5.2 and 7.3 %. The conversion of forest vegetation to managed LULC shows an increase in surface runoff from 1 to 14.1 % depending on the final LULC. Surface runoff is reduced from 2.5 to 1.1 % when grassland is converted to forest vegetation. While there is general consistency in the results from the selected case studies, we conclude that there are few experimental studies that have been conducted in tropical and subtropical semi-arid regions, despite that many people rely heavily on groundwater for their livelihoods. Therefore, there is an urgent need to increase the body of quantitative evidence given the pressure of growing human population and climate change on water resources in the region.

  15. Variation in glyphosate and AMPA concentrations of surface water and groundwater

    Science.gov (United States)

    Caprile, Ana Clara; Aparicio, Virginia; Sasal, Carolina; Andriulo, Enrique

    2017-04-01

    The presence of pesticides in various environmental matrices indicate that the soil's ability to function as a bio-physical-chemical reactor is declining. As it operates as an interface between air and water, it causes a negative impact on these two vital resources. Currently, the pampa agriculture is simplified with a marked tendency towards spring-summer crops, where the main crops are RR soybean and corn. Herbicides are neither retained nor degraded in the soil, which results in polluted groundwater and surface waters. The objectives of this study were: a) to verify the presence of glyphosate and aminomethylphosphonic acid (AMPA) in Pergamino stream (a typical representative of the most productive agricultural region of Argentina) under different land use and to detect if in the detections there was a space-time pattern, and b) to verify the detection of these molecules in groundwater of the upper same basin under exclusively rural land use. Surface stream was sampling in six sites (five under rural land use and one under urban-industrial land use) at a rate of one sample by spring, summer and winter seasons (2010-2013, 54 total samples). Groundwater glyphosate and AMPA concentrations were determined in 24 piezometers constructed at two positions of the landscape, across the groundwater flow direction, sampled at two sampling dates (2010 and 2012, 45 total samples). In surface water, glyphosate and AMPA were detected in 54 and 69% of the samples analyzed, respectively. The median concentrations were 0.9 and 0.8 µg L-1 for glyphosate and AMPA and maximal concentrations 258 and 5865 µg L-1, respectively. The sampling site under urban-industrial land use had abnormally high concentrations of glyphosate in the spring (attributed to point pollution), a fact that not allowed to see differences in the remaining sampling times under different land uses. AMPA concentrations under urban-industrial land use were high and higher than rural land use in 3 studied seasons

  16. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  17. How important are biogeochemical hotspots at aquifer-river interfaces for surface water and groundwater quality?

    Science.gov (United States)

    Krause, S.; Blume, T.; Weatherill, J.; Munz, M.; Tecklenburg, C.; Angermann, L.; Cassidy, N. J.

    2012-04-01

    The mixing of groundwater (GW) and surface water (SW) can have substantial impact on the transformation of solutes transported between aquifer and river. The assessment of biogeochemical cycling at reactivity hotspots as the aquifer-river interface and its implications for GW and SW quality require detailed understanding of the complex patterns of GW-SW exchange fluxes and residence time distributions in particular under changing climatic and landuse conditions. This study presents combined experimental and model-based investigations of the physical drivers and chemical controls of nutrient transport and transformation at the aquifer-river interfaces of two upland and lowland UK rivers. It combines the application of in-stream geophysical exploration techniques, multi-level mini-piezometer networks, active and passive heat tracing methods (including fibre-optic distributed temperature sensing - FO-DTS) for identifying hyporheic exchange fluxes and residence time distributions with multi-scale approaches of hyporheic pore-water sampling and reactive tracers for analysing the patterns of streambed redox conditions and chemical transformation rates. The analysis of hyporheic pore water from nested multi-level mini piezometers and passive gel probe samplers revealed significant spatial variability in streambed redox conditions and concentration changes of nitrogen species, dissolved oxygen and bio-available organic carbon. Hot spots of increased nitrate attenuation were identified beneath semi-confining peat lenses in the streambed of the investigated lowland river. The intensity of concentration changes underneath the confining peat pockets correlated with the state of anoxia in the pore water as well as the supply of organic carbon and hyporheic residence times. In contrast, at locations where flow inhibiting peat layers were absent or disrupted - fast exchange between aquifer and river caused a break-through of nitrate without significant concentration changes along

  18. The interaction between surface water and groundwater and its effect on water quality in the Second Songhua River basin, northeast China

    Indian Academy of Sciences (India)

    Bing Zhang; Xianfang Song; Yinghua Zhang; Ying Ma; Changyuan Tang; Lihu Yang; Zhong-Liang Wang

    2016-10-01

    The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes ($\\delta$D, $\\delta^{18}$O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow groundwater in the middle and upper reaches. The shallow groundwater is discharged to rivers in the downstream. The runoff from upper reaches mainly contributed the river flow in the downstream. The CCME WQI indicated that the quality of surface water and groundwater was ‘Fair’. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in the mixing water, and further affects the water quality with other factors.

  19. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    accounted for about 80 percent of that total. The upper 180 feet of productive aquifers in the Central Willamette and Southern Willamette subbasins produced about 70 percent of the total pumped volume. In this study, the USGS constructed a three-dimensional numerical finite-difference groundwater-flow model of the Willamette Basin representing the six hydrogeologic units, defined in previous investigations, as six model layers. From youngest to oldest, and [generally] uppermost to lowermost they are the: upper sedimentary unit, Willamette silt unit, middle sedimentary unit, lower sedimentary unit, Columbia River basalt unit, and basement confining unit. The high Cascade unit is not included in the groundwater-flow model because it is not present within the model boundaries. Geographic boundaries are simulated as no-flow (no water flowing in or out of the model), except where the Columbia River is simulated as a constant hydraulic head boundary. Streams are designated as head-dependent-flux boundaries, in which the flux depends on the elevation of the stream surface. Groundwater recharge from precipitation was estimated using the Precipitation-Runoff Modeling System (PRMS), a watershed model that accounts for evapotranspiration from the unsaturated zone. Evapotranspiration from the saturated zone was not considered an important component of groundwater discharge. Well pumping was simulated as specified flux and included public supply, irrigation, and industrial pumping. Hydraulic conductivity values were estimated from previous studies through aquifer slug and permeameter tests, specific capacity data, core analysis, and modeling. Upper, middle and lower sedimentary unit horizontal hydraulic conductivity values were differentiated between the Portland subbasin and the Tualatin, Central Willamette, and Southern Willamette subbasins based on preliminary model results.

  20. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-11-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  1. Overview of groundwater and surface water standards pertinent to the Idaho National Engineering Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Lundahl, A.L.; Williams, S.; Grizzle, B.J.

    1995-09-01

    This document presents an overview of groundwater- and surface water-related laws, regulations, agreements, guidance documents, Executive Orders, and DOE orders pertinent to the Idaho National Engineering Laboratory. This document is a summary and is intended to help readers understand which regulatory requirements may apply to their particular circumstances. However, the document is not intended to be used in lieu of applicable regulations. Unless otherwise noted, the information in this report reflects a summary and evaluation completed July 1, 1995. This document is considered a Living Document, and updates on changing laws and regulations will be provided.

  2. The Role of Channel Bar Influences on Groundwater / Surface Water Interactions

    Science.gov (United States)

    Shope, C. L.; Constantz, J. E.; Cooper, C. A.; McKay, W. A.

    2010-12-01

    Channel bars are dominant in-stream geomorphic island features present in a large range of river classes throughout the world, particularly in the arid western United States. A quantitative understanding of groundwater and surface water exchange through channel bar features is necessary to understand near-stream hyporheic flow patterns. The Truckee River in northwestern Nevada was used as a research site to quantitatively examine the influence of channel bars on near-stream water fluxes using heat as a tracer. This study provided the near-stream hydraulic physical framework for current and future research on nutrient cycling and biogeochemical impacts of near-stream exchange and can be used for assessing critical water quality impacts. Field activities included the installation and development of monitoring wells and piezometers, instrumentation of the piezometers with pressure transducers and temperature thermistors, and slug tests to estimate hydraulic conductivity. The potentiometric surface throughout the study site was monitored over time and the temperature thermistors were used to estimate transport using heat as a tracer. Horizontal and vertical Darcian water fluxes were estimated from field observations. To increase confidence in the hydraulic conductivity values for water flux estimates, heat-based numerical simulations were completed. Three-dimensional models of the channel bar study area were constructed and hydraulic conductivity was inversely estimated by minimizing the difference between observed and simulated head and temperature measurements. Numerical simulations indicated that lateral water fluxes between the channel bar and the stream were an order of magnitude greater than between the adjacent streambank and the stream. The fluxes at the downstream end of the channel bar were an order of magnitude greater than upstream fluxes. Net groundwater and surface water fluxes at the channel bar and stream interface were at least 2 times greater than

  3. Groundwater Surface Water Interactions in a Gold-Mined Dredged Floodplain of the Merced River

    Science.gov (United States)

    Sullivan, L.; Conklin, M. H.; Ghezzehei, T. A.

    2012-12-01

    The Merced River, originating in the Sierra Nevada, California, drains a watershed with an area of ~3,305 km2. Merced River has been highly altered due to diversions, mechanically dredged mining, and damming. A year of groundwater-surface water interactions were studied to elucidate the hydrological connection between the Main Canal, an unlined canal that contains Merced River water flows parallel to the river with an average elevation of 89m, the highly conductive previously dredged floodplain, and the Merced River with an average elevation of 84m. Upstream of the study reach, located in an undredged portion, of the floodplain are two fish farms that have been operating for approximately 40 years. This study reach has been historically important for salmon spawning and rearing, where more than 50% of the Chinook salmon of the Merced River spawn. Currently salmon restoration is focusing gravel augmentation and adding side channel and ignoring groundwater influences. Exchanges between the hyporheic and surrounding surface, groundwater, riparian, and alluvial floodplain habitats occur over a wide range of spatial and temporal scales. Pressure transducers were installed in seven wells and four ponds located in the dredged floodplain. All wells were drilled to the Mehrten Formation, a confining layer, and screened for last 3m. These groundwater well water levels as well as the surface water elevations of the Main Canal and the Merced River were used to determine the direction of sublateral surface flows using Groundwater Vistas as a user interface for MODFLOW. The well and pond waters and seepage from the river banks were sampled for anion/cation, dissolved organic carbon, total nitrogen, total iron, and total dissolved iron concentrations to determine water sources and the possibility of suboxic water. Field analysis indicated that water in all wells and ponds exhibit low dissolved oxygen, high conductivity rates, and oxidation/reduction potentials that switched from

  4. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (SE)); Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (SE))

    2007-10-15

    mineral has a central role in the forming of today's hydrochemistry in surface systems, and probably also on the composition of the dilute, non-brackish, groundwater in the upper parts of the fractured bedrock. The rich supply of calcium and the high alkalinity affects the structure of the whole ecosystem, for example by forming the oligotrophic hardwater lakes which are characteristic for the area. One major issue in the report is if there can be found any indications on deep groundwater discharge in the surface system. According to observations in surface water and shallow groundwater, and to the hydrological/hydrochemical conceptual model, there is probably no ongoing deep discharge into the freshwater surface system. In restricted areas there are, however, indications that relict marine remnants, which also includes deep saline signatures, prevail in the groundwater at relatively shallow depths in the Quaternary deposits, but not reach the surface due to the downwards directed groundwater flow pattern that generally prevail in the area. This hydrochemical pattern could according to the conceptual model probably be explained by influence from marine remnants formed under a previous hydrological regime and these signatures are preserved because of stagnant conditions in some areas

  5. Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach

    Directory of Open Access Journals (Sweden)

    N. P. Unland

    2013-09-01

    Full Text Available The interaction between groundwater and surface water along the Tambo and Nicholson rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC and temperature profiles. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater–surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day−1 than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day−1 and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day−1 due to bank return waters. While groundwater sampling from the bank of the Tambo River was intended to account for changes in groundwater chemistry associated with bank infiltration, variations in bank infiltration between sample sites remain unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson rivers was the highest under high-flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010.

  6. Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technical approach

    Directory of Open Access Journals (Sweden)

    N. P. Unland

    2013-03-01

    Full Text Available The interaction between groundwater and surface water along the Tambo and Nicholson Rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC and temperature profiling. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater–surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day−1 than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day−1 and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day−1. While groundwater sampling from the bank of the Tambo River was intended to account for the variability in groundwater chemistry associated with river-bank interaction, the spatial variability under which these interactions occurs remained unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson Rivers was the highest under high flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010.

  7. Evaluation of Some Organic Pollutants Transport into the Shallow Groundwater and Surface Water of Jiaxing Landfill Area

    Directory of Open Access Journals (Sweden)

    Souleymane Keita

    2009-01-01

    Full Text Available Problem statement: Hangjiahu regions belong to the Yangtze River Delta region in Zhejiang Province in China. The vast majority of this region is flat, so surface and groundwater both have a low flow rate. With the rapid economic development of the area, a large number of industrial and domestic garbage are generated. These landfill or garbage are exposed and stacked. Because of mismanagement of environment, the atmosphere under the leaching rainfall, results in harmful gases and leachate. A serious pollution of the atmosphere surrounding the dump, soil, surface water and groundwater occurred. By studying the area under different hydro geological conditions this groundwater pollution due to the landfill can be stopped and prevented. This research can also provide a scientific basis. Approach: Some samples were taken to some specific sampling points in order to do chemical analysis. A hydro geological investigation was done on the study area. By using all these data, groundwater pollution was evaluated and predicted through numerical simulation software: Groundwater Modeling System (GMS, from 2006-2007. Results: A total of six main organic pollutants were found in the entire study area including: toluene, dichloropropane, benzene, dichloroethane, chloroform and dichloromethane. There concentration increased form 2006 to 2007 and is higher in surface water than groundwater. Conclusion/Recommendations: Experimental and simulation results were compared and showed that close agreement between these two values were obtained. The application of ecological methods to remove harmful substances such as the cultivation of suitable plants is also necessary.

  8. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    Science.gov (United States)

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    The hydrogeology, hydrology, and geochemistry of groundwater and surface water in the upper (western) 860 square miles of the Yakima River Basin in Kittitas County, Washington, were studied to evaluate the groundwater-flow system, occurrence and availability of groundwater, and the extent of groundwater/surface-water interactions. The study area ranged in altitude from 7,960 feet in its headwaters in the Cascade Range to 1,730 feet at the confluence of the Yakima River with Swauk Creek. A west-to-east precipitation gradient exists in the basin with the western, high-altitude headwaters of the basin receiving more than 100 inches of precipitation per year and the eastern, low-altitude part of the basin receiving about 20 inches of precipitation per year. From the early 20th century onward, reservoirs in the upper part of the basin (for example, Keechelus, Kachess, and Cle Elum Lakes) have been managed to store snowmelt for irrigation in the greater Yakima River Basin. Canals transport water from these reservoirs for irrigation in the study area; additional water use is met through groundwater withdrawals from wells and surface-water withdrawals from streams and rivers. Estimated groundwater use for domestic, commercial, and irrigation purposes is reported for the study area. A complex assemblage of sedimentary, metamorphic, and igneous bedrock underlies the study area. In a structural basin in the southeastern part of the study area, the bedrock is overlain by unconsolidated sediments of glacial and alluvial origin. Rocks and sediments were grouped into six hydrogeologic units based on their lithologic and hydraulic characteristics. A map of their extent was developed from previous geologic mapping and lithostratigraphic information from drillers’ logs. Water flows through interstitial space in unconsolidated sediments, but largely flows through fractures and other sources of secondary porosity in bedrock. Generalized groundwater-flow directions within the

  9. Interaction between shallow groundwater, saline surface water and nutrient discharge in a seasonal estuary: the Swan-Canning system

    Science.gov (United States)

    Linderfelt, William R.; Turner, Jeffrey V.

    2001-09-01

    The Swan and Canning Rivers converge to form an estuary that is seasonally forced by wet winter and dry summer conditions. The estuary is also tidally forced due to its contact with the Indian Ocean. The perception that the occurrence of nuisance algal blooms has increased in frequency and severity in recent years has prompted the present investigation into the interaction of the shallow groundwater system with the Swan-Canning Estuary. The extent to which this interaction contributes to nutrient delivery to the river is a focus of the work.Groundwater interaction with the upper reaches of the Swan River is shown to occur at three length scales: (i) the scale of the river-bed sediments (i.e. 1000 m). Two-dimensional groundwater flow modelling in plan covering the regionally advected groundwater flow domain of the upper Swan River Estuary from the Causeway to Guildford shows that there is a net groundwater discharge to the Swan River of groundwater discharge of about 80 000 m3/day, or about 29 million m3/year. Between 1987 and 1996, the average surface tributary inflow to the Swan River was about 460 million m3/year. Thus groundwater discharge contributed approximately 6% of the total annual river flow. This percentage is clearly small in comparison to the total river flow. However, in the six months from November to April in summer, tributary flow into the Swan River declines sharply to an average total of approximately 12 million m3. Groundwater discharge during this six-month period is approximately 14 million m3 or about 55% of the surface tributary flow, and thus groundwater is a significant component of the total inflow to the Swan-Canning Estuary during this period. Nutrient concentrations, particularly ammonium, within the sediment pore fluids underlying the river are very high relative to concentrations in the river, such that groundwater discharge rates of this magnitude are capable of introducing significant nutrient loadings to the river. The nitrogen

  10. Physicochemical Assessment of Surface and Groundwater Quality of the Greater Chittagong Region of Bangladesh

    Directory of Open Access Journals (Sweden)

    M. J. Ahmed

    2010-12-01

    Full Text Available The study was carried out to assess surface and groundwater quality of the greater Chittagong (Chittagong and Cox’s Bazar districts and Chittagong Hill Tracts (Rangamati, Khagrachhari and Bandarban districts of Bangladesh. To study the various physicochemical and microbiological parameters, surface water samples from the Karnafuli, Halda, Sangu, Matamuhuri, Bakkhali, Naf, Kasalong, Chingri and Mayani Rivers, Kaptai Lake and groundwater samples from almost every Upazilas, smaller administrative unit of Bangladesh, were collected and analyzed. The statistical methods of sampling were used for collecting samples. Samples were preserved using suitable preservation methods. Water samples from the freshwater resources were collected from different points and tide conditions and at different seasons for continuous monitoring during the hydrological years 2008-2009. The collected samples were analyzed for the following parameters: pH, electrical conductivity (EC, total dissolved solids (TDS, total suspended solids (TSS, total solids (TS, dissolved oxygen (DO, transparency, acidity, dissolved carbon dioxide, total alkalinity, total hardness, chloride, ammonia-N, hydrogen sulfide, sulphate-S, o-phosphate-P, biochemical oxygen demand (BOD, chemical oxygen demand (COD, nitrate-N, nitrite-N, total nitrite and nitrate-N, arsenic, iron, manganese, copper, nickel, chromium, cadmium, lead, calcium, magnesium, sodium and potassium using the procedure outlined in the standard methods. Average values of maximum physicochemical and microbiological parameters studied for the Karnafuli River were found higher than the World Health Organization (WHO guideline. The maximum water quality parameters of Kaptai Lake and other Rivers of Chittagong region were existed within the permissible limits of WHO guideline. The data showed the water quality slightly differs in pre-monsoon and post-monsoon than monsoon season. The concentration of different constituents of most of

  11. Impacts of Near-term Climate Change on Surface Water - Groundwater Availability in the Nueces River basin, TX

    Science.gov (United States)

    Sinha, T.; Kumar, M.

    2014-12-01

    In arid and semi-arid regions, sustainability of surface water and groundwater resources is highly uncertain in the face of climate change as well as under competing demands due to urbanization, population growth and water needs to support ecosystem services. Most studies on climate change impact assessment focus on either surface water or groundwater resources alone. In this study, we utilize a fully coupled surface water and groundwater model, Penn-State Integrated Hydrologic Model (PIHM), and recent climate change projections from Climate Models Inter-comparison Project-5 (CMIP5) to evaluate impacts of near-term climate change on water availability in the Nueces River basin, TX. After performing calibration and validation of PIHM over multiple sites, hindcast simulations will be performed over the 1981-2010 period using data from multiple General Circulation Models (GCMs) obtained from the CMIP5 Project. The results will be compared to the observed data to understand added utility of hindcasts in improving the estimation of surface water and groundwater resources. Finally, we will assess the impacts of climate change on both surface water and groundwater resources over the next 20-30 years, which is a relevant time period for water management decisions.

  12. A regional coupled surface water/groundwater model of the Okavango Delta, Botswana

    Science.gov (United States)

    Bauer, Peter; Gumbricht, Thomas; Kinzelbach, Wolfgang

    2006-04-01

    In the endorheic Okavango River system in southern Africa a balance between human and environmental water demands has to be achieved. The runoff generated in the humid tropical highlands of Angola flows through arid Namibia and Botswana before forming a large inland delta and eventually being consumed by evapotranspiration. With an approximate size of about 30,000 km2, the Okavango Delta is the world's largest site protected under the convention on wetlands of international importance, signed in 1971 in Ramsar, Iran. The extended wetlands of the Okavango Delta, which sustain a rich ecology, spectacular wildlife, and a first-class tourism infrastructure, depend on the combined effect of the highly seasonal runoff in the Okavango River and variable local climate. The annual fluctuations in the inflow are transformed into vast areas of seasonally inundated floodplains. Water abstraction and reservoir building in the upstream countries are expected to reduce and/or redistribute the available flows for the Okavango Delta ecosystem. To study the impacts of upstream and local interventions, a large-scale (1 km2 grid), coupled surface water/groundwater model has been developed. It is composed of a surface water flow component based on the diffusive wave approximation of the Saint-Venant equations, a groundwater component, and a relatively simple vadose zone component for calculating the net water exchange between land and atmosphere. The numerical scheme is based on the groundwater simulation software MODFLOW-96. Since the primary model output is the spatiotemporal distribution of flooded areas and since hydrologic data on the large and inaccessible floodplains and tributaries are sparse and unreliable, the model was not calibrated with point hydrographs but with a time series of flooding patterns derived from satellite imagery (NOAA advanced very high resolution radiometer). Scenarios were designed to study major upstream and local interventions and their expected impacts

  13. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-01-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  14. Mucins in neoplasms of pancreas, ampulla of Vater and biliary system

    Science.gov (United States)

    Moschovis, Dimitrios; Bamias, Giorgos; Delladetsima, Ioanna

    2016-01-01

    Tumors of the pancreas, the ampulla of Vater, and the extrahepatic and intrahepatic bile ducts have significant histological similarities due to the common embryonic origin of the pancreatobiliary system. This obviates the need for discovery of biomarkers with diagnostic and prognostic value for these tumors. Mucins, especially MUC-1, -2, -4 and -5AC, are important candidates for developing into such reliable biomarkers. Increased expression of MUC1 occurs in pancreatic ductal adenocarcinomas and is associated with increased degrees of dysplasia in pancreatic intraepithelial neoplasia (PanIN). Positive expression of MUC2 in intraductal papillary mucinus neoplasms (IPMN) of the intestinal type indicates high potential progression to invasive carcinoma with de novo expression of MUC1, while absence of MUC2 expression in IPMNs of gastric type implies low potential to malignant evolution. De novo MUC4 expression correlates to the severity of dysplasia in PanIN and is associated with a poor prognosis in patients with pancreatic ductal adenocarcinomas. In biliary intraepithelial neoplasia (BilIN), increased expression of MUC1 is associated with higher degrees of dysplasia. Intrahepatic cholangiocarcinomas (ICC) are characterized by increased expression of all glycoforms of MUC1. Positive MUC2 expression in intraductal papillary neoplasm of the bile ducts (IPNB) of the intestinal type indicates high malignant potential with de novo expression of MUC1 in the invasive element. Absent MUC2 expression in any degree of BilIN may prove useful in differentiating them from IPNB. De novo expression of MUC4 is associated with poor prognosis in patients with ICC or carcinoma of the extrahepatic bile ducts (EHBDC). High de novo expression of MUC5AC is found in all degrees of BilIN and all types of IPNB and ICC. The MUC5AC is useful in the detection of neoplastic lesions of the bile duct at an early stage. Increased expression of mucin MUC1 in carcinoma of the ampulla of Vater

  15. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...

  16. Improving groundwater predictions utilizing seasonal precipitation forecasts from general circulation models forced with sea surface temperature forecasts

    Science.gov (United States)

    Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad

    2014-01-01

    Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using

  17. Interactions between groundwater and surface water in a Virginia coastal plain watershed. 2. Acid-base chemistry

    Science.gov (United States)

    O'Brien, A. K.; Eshleman, K.N.; Pollard, J.S.

    1994-01-01

    At the Reedy Creek watershed sulphate concentrations were higher and alkalinity lower in the groundwater in the hillslope than in the stream. Sulphate concentrations and alkalinity observed in groundwater in the wetland were usually between those of the hillslope and stream. These data suggest that the wetland is a sink for sulphate and acidity; sulphate reduction may be an important mechanism for generating alkalinity in the wetland. The DOC concentrations were higher in the stream and wetland groundwater than in hillslope groundwater. No consistent spatial patterns in sulphate concentrations were observed in surface water chemistry under base flow conditions. Stream discharge was found to be positively correlated with base flow sulphate concentrations and inversely correlated with alkalinity. A sulphate mass balance indicated that approximately 30% of the estimated 24.9 kg SO42-/ha yr wet atmospheric input was exported from the watershed as sulphate in stream runoff in the water year 1990. -from Authors

  18. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    Science.gov (United States)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  19. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (Sweden)); Soederbaeck, Bjoern; Kalinowski, Birgitta (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-10-15

    elevated areas, meteoric recharge has a great influence on the observed hydrochemistry, which is usually characterised by dilute fresh waters of low ionic strength. In lower areas close to the coast, there are indications of ongoing flushing of marine relicts since the area was covered by sea water. At most locations in the Laxemar-Simpevarp area, this flushing is more or less completed and concentrations of marine ions may be explained by deposition and anthropogenic sources. As much as 2/3 of the Cl input to the surface system has been estimated to originate from anthropogenic sources as road salt. One important question in the hydrochemical evaluation is whether there are any indications of deep groundwater discharge in the surface system. It can be concluded from observations in shallow groundwater that deep groundwater signatures are present in the Quaternary deposits in potential deep discharge areas beneath lakes and brackish bays. On land, no deep signatures have been detected neither in surface water nor in groundwater, which indicates that shallow meteoric recharge/discharge patterns dominate and that potential regional deep discharge is too dilute to be detected in surface water

  20. Sources of groundwater and characteristics of surface-water recharge at Bell, White, and Suwannee Springs, Florida, 2012–13

    Science.gov (United States)

    Stamm, John F.; McBride, W. Scott

    2016-12-21

    Discharge from springs in Florida is sourced from aquifers, such as the Upper Floridan aquifer, which is overlain by an upper confining unit that locally can have properties of an aquifer. Water levels in aquifers are affected by several factors, such as precipitation, recharge, and groundwater withdrawals, which in turn can affect discharge from springs. Therefore, identifying groundwater sources and recharge characteristics can be important in assessing how these factors might affect flows and water levels in springs and can be informative in broader applications such as groundwater modeling. Recharge characteristics include the residence time of water at the surface, apparent age of recharge, and recharge water temperature.The groundwater sources and recharge characteristics of three springs that discharge from the banks of the Suwannee River in northern Florida were assessed for this study: Bell Springs, White Springs, and Suwannee Springs. Sources of groundwater were also assessed for a 150-foot-deep well finished within the Upper Floridan aquifer, hereafter referred to as the UFA well. Water samples were collected for geochemical analyses in November 2012 and October 2013 from the three springs and the UFA well. Samples were analyzed for a suite of major ions, dissolved gases, and isotopes of sulfur, strontium, oxygen, and hydrogen. Daily means of water level and specific conductance at White Springs were continuously recorded from October 2012 through December 2013 by the Suwannee River Water Management District. Suwannee River stage at White Springs was computed on the basis of stage at a U.S. Geological Survey streamgage about 2.4 miles upstream. Water levels in two wells, located about 2.5 miles northwest and 13 miles southeast of White Springs, were also used in the analyses.Major ion concentrations were used to differentiate water from the springs and Upper Floridan aquifer into three groups: Bell Springs, UFA well, and White and Suwannee Springs. When

  1. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    Science.gov (United States)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  2. Variation in surface water-groundwater exchange with land use in an urban stream

    Science.gov (United States)

    Ryan, Robert J.; Welty, Claire; Larson, Philip C.

    2010-10-01

    SummaryA suite of methods is being utilized in the Baltimore metropolitan area to develop an understanding of the interaction between groundwater and surface water at multiple space and time scales. As part of this effort, bromide tracer experiments were conducted over two 10-day periods in August 2007 and May 2008 along two sections (each approximately 900 m long) of Dead Run, a small urban stream located in Baltimore County, Maryland, to investigate the influence of distinct zones of riparian land cover on surface-subsurface exchange and transient storage under low and high baseflow conditions. Riparian land cover varied by reach along a gradient of land use spanning parkland, suburban/residential, commercial, institutional, and transportation, and included wooded, meadow, turf grass, and impervious cover. Under summer low baseflow conditions, surface water-groundwater exchange, defined by gross inflow and gross outflow, was larger and net inflow (gross inflow minus gross outflow) had greater spatial variability, than was observed under spring high baseflow conditions. In addition, the fraction of nominal travel time attributable to transient storage ( Fmed) was lower and was more spatially variable under high baseflow conditions than under low baseflow conditions. The influence of baseflow condition on surface water-ground water exchange and transient storage was most evident in the subreaches with the least riparian forest cover and these effects are attributed to a lack of shading in reaches with little riparian forest cover. We suggest that under summer low baseflow conditions, the lack of shading allowed excess in-channel vegetation growth which acted as a transient storage zone and a conduit for outflow (i.e. uptake and evapotranspiration). Under spring high baseflow conditions the transient storage capacity of the channel was reduced because there was little in-channel vegetation.

  3. Management of Duodenal Adenomas Involving the Ampulla of Vater – A Warning against Limited Resection

    Directory of Open Access Journals (Sweden)

    Jeremy Rossaak

    2008-03-01

    Full Text Available Duodenal adenomas are uncommon, however, when present a proportion have dysplasia associated with the adenoma and therefore require treatment. The options range from less invasive endoscopic treatments to a pancreaticoduodenectomy. This case report describes two patients with adenomas involving the ampulla of Vater. One patient had familial adenomatous polyposis, the other was a renal transplant patient with a large adenoma. Both patients’ adenomas contained high-grade dysplasia. Both patients underwent a pancreaticoduodenectomy. Histology of both specimens demonstrated that the adenoma had migrated up the bile duct for at least 7 mm, and the pancreatic duct for 8 mm in one patient. Limited resection of ampullary adenomas may leave residual adenomatous tissue in the bile duct with the risk of recurrent adenomatous disease and malignant transformation.

  4. Response of surface and groundwater on meteorological drought in Topla River catchment, Slovakia

    Science.gov (United States)

    Fendekova, Miriam; Fendek, Marian; Vrablikova, Dana; Blaskovicova, Lotta; Slivova, Valeria; Horvat, Oliver

    2016-04-01

    Continuously increasing number of drought studies published in scientific journals reflects the attention of the scientific community paid to drought. The fundamental works among many others were published by Yevjevich (1967), Zelenhasic and Salvai (1987), later by Tallaksen and van Lanen Eds. (2004). The aim of the paper was to analyze the response of surface and groundwater to meteorological drought occurrence in the upper and middle part of the Topla River Basin, Slovakia. This catchment belongs to catchments with unfavourable hydrogeological conditions, being built of rocks with quite low permeability. The basin is located in the north-eastern part of Slovakia covering the area of 1050.05 km2. The response was analyzed using precipitation data from the Bardejov station (long-term annual average of 662 mm in 1981 - 2012) and discharge data from two gauging stations - Bardejov and Hanusovce nad Toplou. Data on groundwater head from eight observation wells, located in the catchment, were also used, covering the same observation period. Meteorological drought was estimated using characterisation of the year humidity and SPI index. Hydrological drought was evaluated using the threshold level method and method of sequent peak algorithm, both with the fixed and also variable thresholds. The centroid method of the cluster analysis with the squared Euclidean distance was used for clustering data according to occurrence of drought periods, lasting for 100 days and more. Results of the SPI index showed very good applicability for drought periods identification in the basin. The most pronounced dry periods occurred in 1982 - 1983, 1984, 1998 and 2012 being classified as moderately dry, and also in 1993 - 1994, 2003 - 2004 and 2007 evolving from moderately to severely dry years. Short-term drought prevailed in discharges, only three periods of drought longer than 100 days occurred during the evaluated period in 1986 - 1987, 1997 and 2003 - 2004. Discharge drought in the

  5. A dynamically-coupled groundwater, land surface and regional climate model to predict seasonal watershed flow and groundwater response, FINAL LDRD REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Kollet, S; Chow, F; Granvold, P; Duan, Q

    2007-02-23

    This final report is organized in four sections. Section 1 is the project summary (below), Section 2 is a submitted manuscript that describes the offline, or spinup simulations in detail, Section 3 is also a submitted manuscript that describes the online, or fully-coupled simulations in detail and Section 3, which is report that describes work done via a subcontract with UC Berkeley. The goal of this project was to develop and apply a coupled regional climate, land-surface, groundwater flow model as a means to further understand important mass and energy couplings between regional climate, the land surface, and groundwater. The project involved coupling three distinct submodels that are traditionally used independently with abstracted and potentially oversimplified (inter-model) boundary conditions. This coupled model lead to (1) an improved understanding of the sensitivity and importance of coupled physical processes from the subsurface to the atmosphere; (2) a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that will provide insight into the certainty of hydrologic forecasting, dominance and sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic model representation of weather predictions, precipitation and temperature, at the regional scale. Regional climate models are typically used for the simulation of weather, precipitation and temperature behavior over 10-1000 km domains for weather or climate prediction purposes, and are typically driven by boundary conditions derived from global climate models (GCMs), observations or both. The land or ocean surface typically represents a bottom boundary condition of these models, where important mass (water) and energy fluxes are approximated. The viability and influence of these

  6. A dynamically-coupled groundwater, land surface and regional climate model to predict seasonal watershed flow and groundwater response, FINAL LDRD REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Kollet, S; Chow, F; Granvold, P; Duan, Q

    2007-02-23

    This final report is organized in four sections. Section 1 is the project summary (below), Section 2 is a submitted manuscript that describes the offline, or spinup simulations in detail, Section 3 is also a submitted manuscript that describes the online, or fully-coupled simulations in detail and Section 3, which is report that describes work done via a subcontract with UC Berkeley. The goal of this project was to develop and apply a coupled regional climate, land-surface, groundwater flow model as a means to further understand important mass and energy couplings between regional climate, the land surface, and groundwater. The project involved coupling three distinct submodels that are traditionally used independently with abstracted and potentially oversimplified (inter-model) boundary conditions. This coupled model lead to (1) an improved understanding of the sensitivity and importance of coupled physical processes from the subsurface to the atmosphere; (2) a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that will provide insight into the certainty of hydrologic forecasting, dominance and sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic model representation of weather predictions, precipitation and temperature, at the regional scale. Regional climate models are typically used for the simulation of weather, precipitation and temperature behavior over 10-1000 km domains for weather or climate prediction purposes, and are typically driven by boundary conditions derived from global climate models (GCMs), observations or both. The land or ocean surface typically represents a bottom boundary condition of these models, where important mass (water) and energy fluxes are approximated. The viability and influence of these

  7. The assessment of the required groundwater quantity for the conservation of ecosystems and the achievement of a good ecological status of surface waters

    Directory of Open Access Journals (Sweden)

    Mitja Janža

    2016-12-01

    Full Text Available Assessment of the available quantity of groundwater is of essential importance for its sustainable use. Modern approaches for estimation of groundwater availability take into account all potential impacts of abstractions, including impacts on groundwater dependent ecosystems and impacts on surface waters ecological status. Groundwater body is in good quantitative status if groundwater abstractions do not cause signifiant damages to groundwater dependent ecosystems and signifiant diminution in the ecological status of surface water bodies. The methodology presented in this paper was developed as an integral part of the assessment of the quantitative status of groundwater bodies in Slovenia and is tailored to the characteristics of the groundwater dependent ecosystems as well as hydrological and hydrogeological conditions in the Slovenian territory. Two different approaches were implemented; for forest habitats on alluvial aquifers, and habitats of amphibians and molluscs in karst areas. Estimates of the required quantity of groundwater for groundwater dependent ecosystems conservation were performed at the level of groundwater bodies and annual averages of temporal variables of the water balance, calculated with the regional water balance model GROWA-SI. In the areas of groundwater bodies with groundwater dependent ecosystems estimated quantity present 0.1 % - 12.4 % of the groundwater recharge. The estimated share of annual renewable quantity of groundwater to maintain the ecological status of surface waters for the entire territory of Slovenia is 23.2 %. The largest share, 30 % is in north-eastern Slovenia and the lowest in the north-west part of Slovenia with a 16.6 % average annual renewable quantity.

  8. Examining regional groundwater-surface water dynamics using an integrated hydrologic model of the San Joaquin River basin

    Science.gov (United States)

    Gilbert, James M.; Maxwell, Reed M.

    2017-02-01

    Widespread irrigated agriculture and a growing population depend on the complex hydrology of the San Joaquin River basin in California. The challenge of managing this complex hydrology hinges, in part, on understanding and quantifying how processes interact to support the groundwater and surface water systems. Here, we use the integrated hydrologic platform ParFlow-CLM to simulate hourly 1 km gridded hydrology over 1 year to study un-impacted groundwater-surface water dynamics in the basin. Comparisons of simulated results to observations show the model accurately captures important regional-scale partitioning of water among streamflow, evapotranspiration (ET), snow, and subsurface storage. Analysis of this simulated Central Valley groundwater system reveals the seasonal cycle of recharge and discharge as well as the role of the small but temporally constant portion of groundwater recharge that comes from the mountain block. Considering uncertainty in mountain block hydraulic conductivity, model results suggest this component accounts for 7-23 % of total Central Valley recharge. A simulated surface water budget guides a hydrograph decomposition that quantifies the temporally variable contribution of local runoff, valley rim inflows, storage, and groundwater to streamflow across the Central Valley. Power spectra of hydrograph components suggest interactions with groundwater across the valley act to increase longer-term correlation in San Joaquin River outflows. Finally, model results reveal hysteresis in the relationship between basin streamflow and groundwater contributions to flow. Using hourly model results, we interpret the hysteretic cycle to be a result of daily-scale fluctuations from precipitation and ET superimposed on seasonal and basin-scale recharge and discharge.

  9. Hydrogeology and simulation of groundwater flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas, 1891-2009

    Science.gov (United States)

    Kasmarek, Mark C.

    2012-01-01

    In cooperation with the Harris–Galveston Subsidence District, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, the U.S. Geological Survey developed and calibrated the Houston Area Groundwater Model (HAGM), which simulates groundwater flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2009. Withdrawal of groundwater since development of the aquifer system has resulted in potentiometric surface (hydraulic head, or head) declines in the Gulf Coast aquifer system and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments.

  10. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    Science.gov (United States)

    Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  11. Use of a mixing model to investigate groundwater-surface water mixing and nitrogen biogeochemistry in the bed of a groundwater-fed river

    Science.gov (United States)

    Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao

    2010-05-01

    The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual

  12. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    Science.gov (United States)

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  13. Assessment of surface and groundwater quality for use in aquaculture in parts of northern Nigeria

    Directory of Open Access Journals (Sweden)

    S. A. Arabi,

    2011-08-01

    Full Text Available In recent times, fish farming (aquaculture has become a major source of income and a substitute for beef in many homes all over Nigeria because a kilogram of fish is cheaper especially the so call ice-fish compare to same kilogram of beef. As a result, many people have embraced fish farming and while some aquaculturist have recorded loss, only few got it right especially at the initial stage of the fish farming business. Some fish farm had average fish weighing a kilogram while others have average weighing less than half a kilogram due to many factors ranging from contamination of pond water from pile up of feeding stuff at bottom of the pond to the use of ground or surface water whose constituents or chemically controlled parameters have adverse effects on harvest in aquaculture. This study was carried out to ascertain the worth or not of surface and groundwater from parts of northern Nigeria for fish farming. Thirty seven surface and groundwater samples were collected during the peak of dry season and analyzed for physicochemical parameter, major and minor elements that can have adverse effects on fish farming using model V-2000 multi-analyte photometer, atomic absorption spectrophotometer, pH and conductivity meter. Some of the measurements were carried out in-situ, while others were carried out in the laboratory. Most of the samples (92% analyzed indicate that they can be used efficiently for aquaculture, only few were observed to have some adverse effects on the intended use and these include pH, salinity, sodium contents and residual sodium carbonate which are closely related to the pH of water samples analyzed. It can be summarized that the studied water samples are generally good for aquaculture.

  14. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  15. Arsenic Removal from Natural Groundwater by Electrocoagulation Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    A. M. García-Lara

    2014-01-01

    Full Text Available Contamination of natural groundwater by arsenic (As is a serious problem that appears in some areas of Northern Central Mexico (NCM. In this research, As was removed from NCM wells groundwater by the electrocoagulation (EC technique. Laboratory-scale arsenic electroremoval experiments were carried out at continuous flow rates between 0.25 and 1.00 L min−1 using current densities of 5, 10, and 20 A m−2. Experiments were performed under galvanostatic conditions during 5 min, at constant temperature and pH. The response surface methodology (RSM was used for the optimization of the processing variables (flow rate and current density, response modeling, and predictions. The highest arsenic removal efficiency from underground water (99% was achieved at low flow rates (0.25 L min−1 and high current densities (20 A m−2. The response models developed explained 93.7% variability for As removal efficiency.

  16. Incorporating Groundwater Dynamics and Surface/Subsurface Runoff Mechanisms in Regional Climate Modeling over River Basins in China

    Institute of Scientific and Technical Information of China (English)

    QIN Peihua; XIE Zhenghui; YUAN Xing

    2013-01-01

    To improve the capability of numerical modeling of climate-groundwater interactions,a groundwater component and new surface/subsurface runoff schemes were incorporated into the regional climate model RegCM3,renamed RegCM3_Hydro.20-year simulations from both models were used to investigate the effects of groundwater dynamics and surface/subsurface runoff parameterizations on regional climate over seven river basins in China.A comparison of results shows that RegCM3_Hydro reduced the positive biases of annual and summer (June,July,August) precipitation over six river basins,while it slightly increased the bias over the Huaihe River Basin in eastern China.RegCM3_Hydro also reduced the cold bias of surface air temperature from RegCM3 across years,especially for the Haihe and the Huaihe river basins,with significant bias reductions of 0.80℃ and 0.88℃,respectively.The spatial distribution and seasonal variations of water table depth were also well captured.With the new surface and subsurface runoff schemes,RegCM3_Hydro increased annual surface runoff by 0.11-0.62 mm d-1 over the seven basins.Though previous studies found that incorporating a groundwater component tends to increase soil moisture due to the consideration of upward groundwater recharge,our present work shows that the modified runoff schemes cause less infiltration,which outweigh the recharge from groundwater and result in drier soil,and consequently cause less latent heat and more sensible heat over most of the basins.

  17. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater-surface water exchange

    Science.gov (United States)

    Steelman, Colby M.; Kennedy, Celia S.; Capes, Donovan C.; Parker, Beth L.

    2017-06-01

    Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater-surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater-surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze-thaw cycle. Surface electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods captured conditions beneath the riverbed along a pool-riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle) and dominant surficial rock properties (competent versus weathered rock rubble surface). While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river ice during the winter season

  18. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  19. Groundwater-Surface Water Interaction: A Case Study of Embankment Dam Safety Assessment in Sweden.

    Science.gov (United States)

    Ferdos, F.; Dargahi, B.

    2015-12-01

    Seepage, when excessive and unimpeded, can cause embankment dam failure. Such failures are often initiated by internal erosion and piping. Modelling these phenomena in embankment dams, accounting for the groundwater-surface water interactions, is crucial when performing dam safety assessments. The aim of this study was to evaluate the applicability of modelling seepage flows in multi-region dams using a finite element based multi-physics model. The model was applied to the Trängslet dam, the largest dam in Sweden. The objectives were to analyze the characteristics of both the flow and the surface-ground water interactions occurring in the dam, including: i) the saturated and unsaturated laminar flow regimes within the dam body, ii) the non-linear through-flow in the dam shoulders' coarse material, iii) the influence of the surface waves in the reservoir on the seepage flow by coupling the physics to a hydrodynamic interface, and iv) the influence of a conceptual "erosion tunnel" on the seepage flow and its interaction with the surface water flow by coupling the physics to a CFD interface. The focus of the study was on the influence of the transient water head boundary condition, surface waves and the internal erosion tunnel on the location of the phreatic line and the seepage flow rate. The simulated seepage flow of the dam in its original condition tallied with the monitoring measurements (40-70 l/s). The main feature found was the relatively high position of the phreatic line, which could compromise the stability of the dam. The combination of the seepage model with the reservoir hydrodynamics indicated a negligible influence of the surface waves on seepage flow. Results from the combination of the seepage model with fluid dynamics indicated that a conceptual "erosion tunnel" placed within the dam, even as high as in the unsaturated zone, significantly affects the phreatic line's position. This also causes the seepage flow to increase by several orders of

  20. Using radon-222 to study coastal groundwater/surface-water interaction in the Crau coastal aquifer (southeastern France)

    Science.gov (United States)

    Mayer, Adriano; Nguyen, Bach Thao; Banton, Olivier

    2016-11-01

    Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada "single-well method" (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).

  1. Groundwater and Surface Water Availability via a Joint Simulation with a Double Control of Water Quantity and Ecologically Ideal Shallow Groundwater Depth: A Case Study on the Sanjiang Plain, Northeast China

    Directory of Open Access Journals (Sweden)

    Xihua Wang

    2016-09-01

    Full Text Available Joint assessment of groundwater-surface water resources can help develop sustainable regional water management plans for intensive agriculture. In this study, we estimated allowable groundwater and surface water quantities using a water balance model, WetSpass-GMS, for the Sanjiang Plain (10.9 × 104 km2, one of the most important grain production bases in China. We then applied a double control based on the groundwater availability and the concept of an ecologically ideal shallow groundwater depth (EISGD to three different water use scenarios: (A continuation of the current water use management; (B maximal use of water resources under a double control; and (C irrigation of 266.7 × 104 hectares that are suitable for rice cultivation. We found an annual allowable surface water quantity of 4.71 billion cubic meters for the region and an annual exploitable groundwater quantity of 4.65 billion cubic meters under full consideration of water requirements, i.e., sustaining river base flow, necessary riverine sediment transport, and ecological water supplies for wetlands and reservoirs. Our simulation results showed that for Scenario A, groundwater level in the region would continue falling, and that the groundwater levels in wet, normal and dry years would drop below the EISGD level in 2028, 2023 and 2019, respectively. For Scenario B, groundwater and surface water would be able to support rice paddies of 219.7 × 104 hectares, 212.7 × 104 hectares, and 209.3 × 104 hectares during wet, normal and dry years, respectively. For Scenario C, future demands on groundwater and surface water under wet, dry and normal years would all exceed their allowable supplies. Overall, this study indicates that integrated management plans promoting an increase of surface water use and a reduction in irrigation with groundwater should be developed for sustainable agriculture and ecological preservation on the Sanjiang Plain.

  2. Technical Basis for Evaluating Surface Barriers to Protect Groundwater from Deep Vadose Zone Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Ward, Anderson L.; Freedman, Vicky L.

    2010-02-03

    This document presents a strategy for evaluating the effectiveness of surface barriers for site-specific deep vadose zone remediation. The strategy provides a technically defensible approach to determine the depth to which a surface barrier can effectively isolate contaminants in the vadose at a specific site as a function of subsurface properties, contaminant distribution, barrier design, and infiltration control performance. The strategy also provides an assessment of additional data and information needs with respect to surface barrier performance for deep vadose zone applications. The strategy addresses the linkage between surface barriers and deep vadose zone in situ remediation activities, monitoring issues, and emerging science, technology, and regulatory objectives. In short, the report documents the existing knowledge base, identifies knowledge needs (based on data gaps), and suggests tasks whose outcomes will address those knowledge needs. More important, the report serves as a starting point to engage the regulator and stakeholder community on the viability of deploying surface barriers for deep vadose zone contamination. As that engagement unfolds, a systematic methodology can be formalized and instituted. The strategy is focused on deep vadose zone contamination and the methods needed to determine the impact to groundwater from those deep vadose zone contaminants. Processes that affect surface barrier performance, recharge in the areas surrounding the surface barrier, and the near-surface vadose zone beneath the barrier are acknowledged but are not addressed by this strategy. In addition, the collection of site-specific data on contaminant distribution and geologic structure and properties are programmatic responsibilities and are not provided by this strategy.

  3. A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland

    Directory of Open Access Journals (Sweden)

    C. Anibas

    2012-07-01

    Full Text Available As recognized in the European Water Framework Directive, groundwater-dependent wetlands and their diverse ecosystems have important functions which need to be protected. The vegetation in such habitats is often dependent on quality, quantity and patterns of river discharge and groundwater-surface water interaction on a local or reach scale. Since groundwater-surface water exchange studies on natural rivers and wetlands with organic soils are scarce, more functional analysis is needed. To this end we combined different field methods including piezometer nests, temperature as tracer and seepage meter measurements. Some of these measurements were used as inputs and/or as validation for the numerical 1-D heat transport model STRIVE. In transient mode the model was used to calculate spatially distributed vertical exchange fluxes from temperature profiles measured at the upper Biebrza River in Poland over a period of nine months. Time series of estimated fluxes and hydraulic head gradients in the hyporheic zone were used to estimate the temporal variability of groundwater-surface water exchange.

    This paper presents a hierarchical approach for quantifying and interpreting groundwater-surface water interaction in space and time. The results for the upper Biebrza show predominantly upward water fluxes, sections of recharge, however, exist along the reach. The fluxes depend more on hydraulic gradients than on riverbed conductivity. This indicates that the fluvio-plain scale is required for interpreting the exchange fluxes, which are estimated on a local scale. The paper shows that a conceptual framework is necessary for understanding the groundwater-surface water interaction processes, where the exchange fluxes are influenced by local factors like the composition of the riverbed and the position of the measurement on a local scale, and by regional factors like the hydrogeology and topography on a fluvio-plain scale. The hierarchical methodology

  4. On the development of a coupled land surface and groundwater model

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R.M.; Miller, N.L.

    2004-05-04

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the LSM lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budget models that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, groundwater models (GWM) for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM) and a variably-saturated GWM (ParFlow) have been coupled as a single column model. A set of simulations based on synthetic data and data from the Project for Intercomparison of Landsurface Parameterization Schemes (PILPS), version 2(d), 18-year dataset from Valdai, Russia demonstrate the temporal dynamics of this coupled modeling system. Changes in soil moisture and movement of the water table are used as indicators of mass conservation between the LSM and GWM. This study demonstrates the affect of aquifer storage and a dynamic water table on predicted watershed flow. The model's ability to capture certain cold processes such as frozen soil and freeze/thaw processes are discussed. Comparisons of the uncoupled and coupled modes are presented and the differences in simulations of soil moisture and shallow and deeper ground processes are

  5. Hydrochemical characteristic of surface and groundwater Lisichansk and Almazno-Marevske geological and industrial districts Nnorth-Eastern Donbas

    Directory of Open Access Journals (Sweden)

    Udalov Y.V.

    2014-12-01

    Full Text Available Incorporates a complex of problems accompanying the operation of coal deposits of Donbass. See hydrochemical characteristics of surface and groundwater Lisichansk and Almazno-Maryevskogo geological and industrial areas of the North-Eastern Donbass. Identified the main hydrochemical features of the waste mine waters of the enterprises of the coal industry on the territory of the studies. It is established that the surface waters of the study area exposed to intensive anthropogenic influence. Set content of basic elements-pollutants in surface waters. It is revealed that this pollution is of a complex nature. Identifies key elements contained in the effluent of industrial enterprises. Analyzed that a change of the chemical composition of groundwater has led to increased hardness and mineralization of water in the main water intakes of the research area. Identifies key elements-contaminants in groundwater. It was found that as a result of mine dewatering groundwater level fell over an area of 200km2, far exceeding the area of coal mining. This operational reserves fresh underground waters in the groundwater runoff module 1.2 dm3 / sec. km2 decreased by 200 - 300 m3 / day. Within funnel depression hydraulic connection is created not only a few confined aquifers, but also located near the mine fields. For example, in the area of Stakhanov the Luhansk region in general depression funnel width of about 25 km and a depth of 600-800m were 8 mine ("Central Irmino", "Maximovska" Ilyich, named after I.V. Chesnokov, "Krivoy Rog", 11-RAD "Brjankovsky" and "Dzerzhinsk". The purpose of research is general hydrochemical characteristics and identification of key elements polluting surface and groundwater Lisichanskiy and diamond-Marevskogo geological and industrial areas of the North-East Donbas.

  6. Key Challenges and Opportunities for Conjunctive Management of Surface and Groundwater in Mega-Irrigation Systems: Lower Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    Frank van Steenbergen

    2015-11-01

    Full Text Available This paper focuses on the scope of conjunctive management in the Lower Indus part of the Indus Basin Irrigation System (IBIS, and the contribution this could make towards food security and socio-economic development. The total Gross Command Area (GCA of the Lower Indus is 5.92 Mha, with a cultivable command area (CCA of 5.43 Mha, most of which is in Sindh Province. There is a limited use of groundwater in Sindh (about 4.3 Billion Cubic Meter (BCM for two reasons: first, there is a large area where groundwater is saline; and second, there is a high surface irrigation supply to most of the canal commands, e.g., average annual supply to rice command is 1723 mm, close to the annual reference crop evapotranspiration for the area, while there is an additional annual rainfall of about 200 mm. These high irrigation allocations, even in areas where groundwater is fresh, create strong disincentives for farmers to use groundwater. Consequently, areas are waterlogged to the extent of 50% and 70% before and after the monsoon, respectively, which contributes to surface salinity through capillary rise. In Sindh, about 74%–80% of the available groundwater recharge is lost in the form of non-beneficial evaporation. This gives rise to low cropping intensities and yields compared to fresh groundwater areas elsewhere in the IBIS. The drought of 1999–2002 has demonstrated a reduction in waterlogging without any corresponding reduction in crop yields. Therefore, in order to efficiently meet current water requirements of all the sectors, i.e., agriculture, domestic and industrial, an ab initio level of water reallocation and efficient water management, with consideration to groundwater quality and its safe yield, in various areas are recommended. This might systematically reduce the waterlogged areas, support greater cropping intensity than is currently being practiced, and free up water for horizontal expansion, such as in the Thar Desert.

  7. Stable isotope composition of surface and groundwater in Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Thomas G. [CICESE, Carret. Ensenada-Tijuana No 3819, Ensenada 22860 (Mexico); Frommen, Theresa [FU Berlin Malteserstr. 74-100, 12249 Berlin (Germany)

    2013-07-01

    Based on a total of 135 stable isotope analysis (δ{sup 18}O, δD) carried out on surface and groundwater samples, as well as on rainwater samples between 2004 and 2011 in 5 different regions in Baja California, an isotopic evaluation of the region was established. The results showed a depletion gradient of -0.25 0/00 δ{sup 18}O per 100 m rise in elevation throughout the study area. Considering an unaltered δ{sup 18}O signature for the thermal springs, the recharge areas of these waters are at elevations over 1400 m outside of the present watersheds, indicating the presence of regional flow systems next to the local flow regime feeding the cold springs and wells. The Mesa de Andrade area has a completely different signature with values of -105 for δ{sup 18}O and -13 for δD. (authors)

  8. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xinguo

    2014-01-01

    costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate......, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two....... A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...

  9. Application of isotopes to estimate water ages in variable time scales in surface and groundwaters

    Science.gov (United States)

    Kralik, Martin

    2014-05-01

    Water-Isotopes (2H, 3H, 18O) are ideal tracers not only to determine the origin of waters in precipitation, surface water (river + lakes) as well as in groundwater close to the surface and in deep groundwater but also the mean residence time (MRT) in many applied projects as drinking water supply, hydroelectric power plants, road tunnels etc. . Their application has a long history, but must be always evaluated by a feasible hydrogeological concept and/or other isotope and geochemical tracers. In Alpine areas the retention of precipitation in form of snow and ice in the winter half year is indicated by the lowest 18O-values. The snow melt of the highest part of the recharge area is marked by the lowest 18O-values in the river water, but may not coincide with the maximum flow. Time-series of precipitation station in the mountain and on river station indicate the arrival of the peak snow-melt water in the river and in Low-land areas 4-7 month later. Tritium series indicate that MRTs of several Austrian rivers are in the range of 4 - 6 years. The seasonal input variation of in 18O in precipitation and/or river waters can be used to calculate by lumped parameter models MRT of groundwater at a certain well and compare it with lysimeter measurements and transient model simulations. The MRT of the dispersion model is in good agreement with the estimated time calculated by the numerical transport model and the vertical lysimeter measurements. The MRT of spring water was studied by several methods (3H/3He, SF6 and 85Kr) and a long time series of 3H-measurements. The gas tracers are in good agreement in the range of 6-10 year whereas the 3H-series model (dispersion model) indicate ages in the range of 18-23 years. The hydrogeological concept indicate that the precipitation infiltrates in a mountainous karst area, but the transfer into the porous aquifer in the Vienna Basin occurs either through rivers draining away in the basin or through the lateral transport from the karst

  10. Surface water?groundwater interactions in an alluvial plain: Chemical and isotopic systematics

    Science.gov (United States)

    Négrel, Ph.; Petelet-Giraud, E.; Barbier, J.; Gautier, E.

    2003-06-01

    Our work on the Loire River forms part of a French National Research Program dedicated to wetlands and aims to better understand the global functioning of the system from the hydrological, geochemical, ecological and sociological aspects. The present study, using a coupled hydrological and geochemical (stable and Sr isotopes) approach, focuses on the 'Soulangy' site with its secondary anastomosing channels just below the confluence of the Loire and Allier rivers, and also on the 'Dorna``nt' site with two unconnected oxbow lakes 50 km upstream of the confluence. The stable isotopes of water ( δ18O, δ2H) show that the alluvial (or riverbank) aquifer feeds the Loire River during the summer, but is not recharged by the river during flood periods in the winter; the alluvial groundwater thus has a purely local origin from precipitation. The major elements reveal an anthropogenic input of Cl and more importantly of NO 3, especially near farms. The 87Sr/ 86Sr isotopes identify different groundwater layers in the alluvium, i.e. an upper and a lower alluvial aquifer, and a perched aquifer at Dornant, that have relatively complex relationships with the surface water. The two main rivers (Loire and Allier) present distinct geochemical characteristics reflecting the different lithologies that they drain upstream. In addition, the secondary channels, lying parallel to the Loire main stream at the Soulangy site, give different geochemical signatures, which shows that they are not fed by the same overflows of the Loire; they are more-or-less well connected to the upper level of the alluvial plain, and a longitudinal study of one of these channels has revealed a Loire River influence progressively replaced by a water contribution from the upper alluvial aquifer. Similarly, the two oxbow lakes at the Dornant site are not supplied by the same water during the summer months. A conceptual scheme of the Loire hydrosystem based on δ18O and 87Sr/ 86Sr suggests that the isotopic

  11. Fate of Uranium During Transport Across the Groundwater-Surface Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Peter R. [Princeton Univ., NJ (United States); Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-30

    Discharge of contaminated groundwater to surface waters is of concern at many DOE facilities. For example, at F-Area and TNX-Area on the Savannah River Site, contaminated groundwater, including uranium, is already discharging into natural wetlands. It is at this interface where contaminants come into contact with the biosphere. These this research addressed a critical knowledge gap focusing on the geochemistry of uranium (or for that matter, any redox-active contaminant) in wetland systems. Understanding the interactions between hydrological, microbial, and chemical processes will make it possible to provide a more accurate conceptual and quantitative understanding of radionuclide fate and transport under these unique conditions. Understanding these processes will permit better long-term management and the necessary technical justification for invoking Monitored Natural Attenuation of contaminated wetland areas. Specifically, this research did provide new insights on how plant-induced alterations to the sediment biogeochemical processes affect the key uranium reducing microorganisms, the uranium reduction, its spatial distribution, the speciation of the immobilized uranium, and its long-term stability. This was achieved by conducting laboratory mesocosm wetland experiments as well as field measurements at the SRNL. Results have shown that uranium can be immobilized in wetland systems. To a degree some of the soluble U(VI) was reduced to insoluble U(IV), but the majority of the immobilized U was incorporated into iron oxyhydroxides that precipitated onto the root surfaces of wetland plants. This U was immobilized mostly as U(VI). Because it was immobilized in its oxidized form, results showed that dry spells, resulting in the lowering of the water table and the exposure of the U to oxic conditions, did not result in U remobilization.

  12. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  13. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  14. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.|info:eu-repo/dai/nl/304838403

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic

  15. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic alg

  16. Use of Enterococcus, BST and sterols as indicators for poultry pollution source tracking in surface and groundwater

    Science.gov (United States)

    This study has applied Enterococcus, Bacterial Source Tracking (BST) and sterol analysis for pollution source identification from poultry sources. Fecal contamination was detected in 100% of surface water and 15% of groundwater sites tested. E. faecium was the dominant species in aged litter sampl...

  17. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data

    NARCIS (Netherlands)

    Sutanudjaja, E.H.; Beek, L.P.H. van; Jong, S.M. de; Geer, F.C. van; Bierkens, M.F.P.

    2014-01-01

    We explore the possibility of using remotely sensed soil moisture data and in situ discharge observations to calibrate a large-extent hydrological model. The model used is PCR-GLOBWB-MOD, which is a physically based and fully coupled groundwater-land surface model operating at a daily basis and havi

  19. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and domes

  20. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  1. An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Funder, S.G.; Rasmussen, J.J.;

    2010-01-01

    The practical implementation of the European Water Framework Directive has resulted in an increased focus on the hyporheic zone. In this paper, an integrated model was developed for evaluating the impact of point sources in groundwater on human health and surface water ecosystems. This was accomp...

  2. Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, Eastern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Roennback, Pernilla [School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar (Sweden)], E-mail: pernilla.ronnback@hik.se; Astroem, Mats [School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar (Sweden); Gustafsson, Jon-Petter [Department of Land and Water Resources Engineering, KTH, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2008-07-15

    This work, which was done within the Swedish nuclear waste management program, was carried out in order to increase the understanding of the mobility and fate of rare earth elements (REEs) in natural boreal waters in granitoidic terrain. Two areas were studied, Forsmark and Simpevarp, one of which will be selected as a site for spent nuclear fuel. The highest REE concentrations were found in the overburden groundwaters, in Simpevarp in particular (median {sigma}REE 52 {mu}g/L), but also in Forsmark (median {sigma}REE 6.7 {mu}g/L). The fractionation patterns in these waters were characterised by light REE (LREE) enrichment and negative Ce and Eu anomalies. In contrast, the surface waters had relatively low REE concentrations. They were characterised either by an increase in relative concentrations throughout the lanthanide series (Forsmark which has a carbonate-rich till) or flat patterns (Simpevarp with carbonate-poor till), and had negative Ce and Eu anomalies. In the bedrock groundwaters, the concentrations and fractionation patterns of REEs were entirely different from those in the overburden groundwaters. The median La concentrations were low (just above 0.1 {mu}g/L in both areas), only in a few samples were the concentrations of several REEs (and in a couple of rare cases all REEs) above the detection limit, and there was an increase in the relative concentrations throughout the lanthanide series. In contrast to these large spatial variations, the temporal trends were characterised by small (or non existent) variations in REE-fractionation patterns but rather large variations in concentrations. The Visual MINTEQ speciation calculations predicted that all REEs in all waters were closely associated with dissolved organic matter, and not with carbonate. In the hydrochemical data for the overburden groundwater in particular, there was however a strong indication of association with inorganic colloids, which were not included in the speciation model. Overall the

  3. Natural attenuation of organic contaminants at the interface between groundwater and surface water

    Energy Technology Data Exchange (ETDEWEB)

    Middeldorp, P.; Staps, S.; Rijnaarts, H. [TNO-MEP Environment, Energy and Process Innovation, Apeldoorn (Netherlands); Roelofsen, F.; Valstar, J. [TNO-NITG, Apeldoorn (Netherlands); Smits, J. [WL/Delf Hydraulics (Netherlands)

    2003-07-01

    There are strong indications that the interface between groundwater and surface water plays an important role in the natural degradation of organic contaminants (NA-interface). This is especially the case for mobile contaminants that are relatively persistent in an anaerobic (subsurface) environment, and are mineralised relatively easy under more oxidized environmental conditions (e.g. benzene, chlorobenzene, vinyl chloride, the light aliphatic fraction of mineral oil, etc.). These compounds are often also present as degradation products of natural or stimulated in situ biodegradation processes. Previous investigations have indicated indirectly that NA-interface processes contribute to a reduction of contaminant flux into surface water systems. Until now, no straightforward assessment and quantification of NA-interface has been performed. Moreover, limit values for allowable influx of contamination from a site into a surface water system do not exist. This prevents a possible beneficial use of NA-interface processes as a part of a cost-effective and integrated soil and water quality management. This project aims to gain more understanding of the occurrence of NA-interface processes, to quantify their contribution to emission reduction towards the surface water system and, in case of substantial contribution, to promote application of NA-interface as a part of a cost-effective integrated environmental management of contaminated sites and surrounding water bodies. The project's starting point is that the surface water is regarded as an object of risk and not as a reactor. Thus, effective degradation in the interface does not move environmental problems to surface water systems, but eliminates contaminants by natural occurring processes, thus protecting the aquatic ecosystem. (orig.)

  4. Integration of Urban Features into a Coupled Groundwater-Surface Water Model

    Science.gov (United States)

    Bhaskar, A. S.; Welty, C.; Maxwell, R. M.

    2012-12-01

    To better understand the feedbacks between urban development and water availability, we are coupling an integrated hydrologic model with an urban growth model, both of the Baltimore, Maryland, USA region. The urban growth model SLEUTH has been calibrated, validated and run by collaborators at Shippensburg University. We are using ParFlow.CLM as the integrated hydrologic model. This model is applied to the 13,000 sq. km. Baltimore metropolitan area, which spans the Gunpowder and Patapsco watersheds. The model domain includes both Piedmont and Coastal Plain physiographic provinces. We have incorporated characteristics of both the natural hydrogeologic system and the superimposed urban environment. Standard hydrogeologic information such as hydraulic conductivity of fractured bedrock, Coastal Plain sediments, and surficial soils, as well as saprolite thickness, porosity, and specific storage properties have been included. We have also quantified a number of aspects representing urban development, such as residential and municipal well pumping, municipal reservoir use, lawn watering, and water supply pipe leakage estimates. We have represented impervious surface coverage using low surface hydraulic conductivity values. The land surface fluxes in CLM (Common Land Model) use surface land cover and therefore represent reduced evapotranspiration in urban areas. A study of urban and natural watershed inflows and inflows in this region indicated some urban features significantly modify catchment water balances. We are particularly interested in the effects of these urban hydrologic features on groundwater recharge in the Baltimore area. Prior to inclusion of subsurface heterogeneity, we initialized the model by running it hourly from 2000 to 2007. The initialization was generated by a dynamic spin-up process, using the UMBC High Performance Computing Facility. Observed meteorological forcing, such as hourly precipitation and air temperature, are used by the land surface

  5. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    Energy Technology Data Exchange (ETDEWEB)

    FAYER JM; FREEDMAN VL; WARD AL; CHRONISTER GB

    2010-02-24

    tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive

  6. Multi-dimensional Inversion Modeling of Surface Nuclear Magnetic Resonance (SNMR Data for Groundwater Exploration

    Directory of Open Access Journals (Sweden)

    Warsa

    2014-07-01

    Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.

  7. Modeling groundwater-surface water interactions in an operational setting by linking object- oriented river basin management model (RiverWare) with 3-D finite-difference groundwater model (MODFLOW).

    Science.gov (United States)

    Valerio, A.; Rajaram, H.; Zagona, E.

    2007-12-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flow periods in riparian environments in the semi-arid southwestern United States. As an example, over-appropriation of human water use in the Middle Rio Grande region adversely impacts the habitat of the endangered Rio Grande silvery minnow. Improved management practices during low flow conditions could prevent channel desiccation and habitat destruction. We present a modeling tool with significant potential for improved decision-making in stream reaches influenced by significant surface-groundwater interactions. While river basin management models typically represent operational complexities such as human elements of water demand and consumption with a high degree of sophistication, they often represent groundwater-surface water interactions semi-empirically or at coarse resolution. In contrast, distributed groundwater models, with an adequately fine grid represent groundwater-surface water interactions accurately, but seldom incorporate complex details of water rights and user demands. To best exploit the strengths of both classes of models, we have developed a link between the object-oriented river management software package RiverWare and the USGS groundwater modeling program MODFLOW. An interactive time stepping approach is used in the linked model. RiverWare and MODFLOW run in parallel exchanging data after each time-step. This linked framework incorporates several features critical to modeling groundwater-surface interactions in riparian zones, including riparian ET, localized variations in seepage rates and rule-based water allocations to users and/or environmental flows, and is expected to be an improved tool for modeling groundwater-surface water interaction in regions where groundwater storage repose to changing river conditions is rapid. The performance of the linked model is illustrated through applications on the Rio Grande in the vicinity of

  8. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  9. Simulated potentiometric surface contours of prepumping conditions in layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 1 of the Death Valley regional ground-water flow...

  10. Simulated potentiometric surface contours of prepumping conditions in layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow...

  11. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow system...

  12. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  13. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow...

  14. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  15. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface

    DEFF Research Database (Denmark)

    Yu, R.; Gan, P.; Mackay, A.A.;

    2010-01-01

    We examined the presence of iron-oxidizing bacteria (IOB) at a groundwater surface water interface (GSI) impacted by reduced groundwater originating as leachate from an upgradient landfill. IOB enrichments and quantifications were obtained, at high vertical resolution, by an iron/oxygen opposing...... gradient cultivation method. The depth-resolved soil distribution profiles of water content, Fe2+, and total Fe indicated sharp gradients within the top 10 cm sediments of the GSI, where the IOB density was the highest. In addition, the vertical distribution of iron-reducing bacteria at the same sampling...

  16. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...... because of the occurrence of redox gradients, strongly reductive conditions and high biological activity. In order to meet the expectations of the EU Water Framework Directive, an evaluation of the impact of such plumes on surface water is needed. The aim of this work is to develop a groundwater transport...... number of geochemical processes, allows the simulation of soil geochemical transformations when microbial by-products are released to surface water, and the consideration of non-linear feedbacks on bacterial growth and pollutant transformations. Sensitivity analysis is performed through Monte Carlo...

  17. An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Funder, S.G.; Rasmussen, J.J.;

    2010-01-01

      The practical implementation of the European Water Framework Directive has resulted in an increased focus on the hyporheic zone. In this paper, an integrated model was developed for evaluating the impact of point sources in groundwater on human health and surface water ecosystems....... This was accomplished by coupling the system dynamics-based decision support system CARO-PLUS to the aquatic ecosystem model AQUATOX using an analytical volatilization model for the stream. The model was applied to a case study where a TCE contaminated groundwater plume is discharging to a stream. The TCE source...... will not be depleted for many decades, however measured and predicted TCE concentrations in surface water were found to be below human health risk management targets. Volatilization rapidly attenuates TCE concentrations in surface water. Thus, only a 300 m stream reach fails to meet surface water quality criteria...

  18. Unraveling brackish groundwater - surface water interaction in an agricultural field using direct measurements at the field scale

    Science.gov (United States)

    Delsman, Joost; Waterloo, Maarten; Groen, Michel; Groen, Koos

    2014-05-01

    Understanding the interaction between groundwater and surface water is important for a myriad of reasons, including flow forecasting, nutrient transport, and water allocation for agriculture and other water users. This understanding is especially important in deep polder areas in the Netherlands, where brackish groundwater seepage (upward flowing regional groundwater) results in a significant salt load to surface water, and may damage crops if salts reach the rootzone in dry summers. Research on groundwater - surface water interaction historically focused on relatively pristine headwater catchments, only recently shifting somewhat to agricultural catchments. The latter pose specific research challenges, as agricultural activities and active water management can have a significant influence on hydrology. A brackish seepage flux, with a different density as precipitation, may significantly influence flow paths to surface water. Research on this specific topic is, however, lacking. We therefore investigated the interaction between groundwater and surface water in an agricultural catchment with a significant brackish seepage flux. In addition, we investigated the effects of intake of fresh water during periods of precipitation deficits, a common management strategy in lowland regions. We instrumented an agricultural ditch to enable direct, 15 min interval measurements of water fluxes and salinity to both agricultural drains and the ditch separately. These measurements are supported by piezometer nests, soil moisture sensors, temperature sensors, geophysics and a meteorological tower. Measurements focused on the summer period and were taken during two measurement periods: May 2012 - November 2012, and April 2013 - October 2013. Our measurements allowed for a direct, high-frequency separation of hydrological flow routes on this agricultural field between flow to agricultural drains and the ditch. The salinity of seepage water allowed for a relatively easy separation of

  19. Reservoir sediments: a sink or source of chemicals at the surface water-groundwater interface.

    Science.gov (United States)

    Ammar, Rawaa; Kazpard, Véronique; Wazne, Mahmoud; El Samrani, Antoine G; Amacha, Nabil; Saad, Zeinab; Chou, Lei

    2015-09-01

    This study delineates the physical, chemical, and biological effects resulting from anthropogenic and endogenic activities in a sensitive dammed reservoir situated in a semi-arid region. The reservoir is characterized by two major flow regimes: a wet fill hydrologic regime and a dry spill one. A seasonal sampling campaign was carried out over a period of 2 years (2011-2013) where water samples were collected across the water column and from piezometers just outside the perimeter of the reservoir. Similarly, sediments were collected from the corresponding areas beneath the water column. The water samples were analyzed for environmental isotopic ratios, elemental composition, and physical, biological and chemical parameters, whereas the sediment and algal samples were subjected to physical, mineralogical, spectroscopic, and microscopic analyses. This investigation indicated that the dam had resulted in the alteration of the biogeochemical cycle of nutrients as well as the degradation of the sediment and water quality. The hydrological and biogeochemical processes were found to induce vertical downward transport of chemicals towards the fine grained calcareous sediments during the fill mode, whereas the sediments acted as a source of a chemical flux upward through the water column and downward towards the groundwater during the spill mode. The geomorphological characteristics of the reservoir enhanced the strong hydrological connectivity between the surface water and the groundwater where the reservoir responded quickly to natural and anthropogenic changes in the upper watershed. The water and sediments in the sensitive spill mode were of poor quality and should receive more attention due to the potential hazard for the associated hydro-project and the sustainability of the agricultural soil in the long term. Thus, a safe water and sediment management plan should be implemented in order to improve the dam functionality and to safeguard the precious water resources.

  20. Climate Variability and Water-Regulation Effects on Surface Water and Groundwater Interactions in California's Central Valley

    Science.gov (United States)

    Munoz-Arriola, F.; Dettinger, M. D.; Hanson, R. T.; Faunt, C.; Cayan, D. R.

    2011-12-01

    California's Central Valley is one of the most important agricultural areas in the world and is highly dependent on the availability and management of surface water and groundwater. As such, it is a valuable large-scale system for investigating the interaction of climate variability and water-resource management on surface-water and groundwater interactions. In the Central Valley, multiple tools are available to allow scientists to understand these interactions. However, the full effect of human activities on the interactions occurring along the Aquifer-Soil-Plant-Atmosphere continuum remains uncertain. Two models were linked to investigate how non-regulated (natural conditions) and regulated (releases from dams) surface-water inflows from the surrounding contributing drainage areas to the alluvial plains of the Central Valley affects the valley's surface-water supply and groundwater pumpage under different climate conditions. The Variable Infiltration Capacity (VIC) macroscale (surface) hydrologic model was used to estimate the non-regulated streamflow. The U.S. Geological Survey's recently developed Central Valley Hydrologic Model (CVHM) was used to route both the regulated and non-regulated streamflow to the Central Valley and simulate the resulting hydrologic system. The CVHM was developed using MODFLOW's Farm Process (MF-FMP) in order to simulate agricultural water demand, surface-water deliveries, groundwater pumpage, and return flows in 21 water-balance subregions. As such, the CVHM simulates conjunctive use of water, providing a broad perspective on changes in the water systems of the Valley. Inflows from the contributing mountain watersheds are simulated in CVHM using the streamflow-routing package for the 1961-2003 time period. In order to analyze the affect of climate variability, dry and wet years were identified from below the 10th and above the 90th percentiles, respectively, in a multi-decadal time series (1961-2003) of surface-water inflows. The

  1. Time prediction of an onset of shallow landslides based on the monitoring of the groundwater level and the surface displacement at different locations on a sandy model slope

    Science.gov (United States)

    Sasahara, Katsuo

    2016-04-01

    Location of monitoring of the deformation and the groundwater level in a slope is important for time-prediction of an onset of shallow landslides based on the monitoring. The analysis of the monitored data of the surface displacement and the groundwater level at different locations in sandy model slope under artificial rainfall was conducted in this study. The monitored data showed that the surface displacement increased with the increase of the groundwater level significantly. Then the analysis of the monitored data revealed that the relation between the surface displacement and the groundwater level can be modified as hyperbolic curve. The surface displacement grew larger and maximum groundwater level was smaller at farther location from the toe of the slope. Time-prediction of an onset of a landslide based on the monitored data at different location on the slope was proposed as following procedures. (1) To make a regression equation for the relation between the surface displacement and the groundwater level based on the monitored data at any time before the failure, (2) To make a regression equation for the relation between the time and the groundwater level based on the same data with (1), and (3) To incorporate the equation for the relation between the time and the groundwater level into that between the surface displacement and the groundwater level to derive the time - the surface displacement relation. (4) To derive the time - the inverse of the surface displacement velocity from the equation for the time - the surface displacement relation. The equation for the time - the surface displacement and the equation for the time - the inverse of the surface displacement velocity could simulate the actual phenomena of the slope well based on the monitored data at any location on the model slope.

  2. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    KAUST Repository

    Ajami, H.

    2014-06-26

    One of the main challenges in catchment scale application of coupled/integrated hydrologic models is specifying a catchment\\'s initial conditions in terms of soil moisture and depth to water table (DTWT) distributions. One approach to reduce uncertainty in model initialization is to run the model recursively using a single or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of spin-up time for an integrated groundwater-surface water-land surface model (ParFlow.CLM) by using a combination of ParFlow.CLM simulations and an empirical DTWT function. The methodology is examined in two catchments located in the temperate and semi-arid regions of Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced the spin-up time required by ParFlow.CLM by up to 50%, and we outline a methodology that is applicable to other coupled/integrated modelling frameworks when initialization from equilibrium state is required.

  3. The time of groundwater free surface lowering before foundation pit construction

    Directory of Open Access Journals (Sweden)

    A.D. Girgidov

    2012-06-01

    Full Text Available On the basis of plane free surface gravitations groundwater flow model and some assumptions similar to ones employing in infiltration and quasistationary problems the time of the necessary lowering of free surface before the building of pit is considered. For the lowering the group of wells along the pit perimeter is used. The wells are located so close to each other that formation a filtration flow by them is equivalent to dewatering by using a narrow vertical slit along the perimeter of the excavation.The time is calculated on the basis of condition that at the beginning of construction the level of ground water within the excavation must be below the design elevation of excavation bottom, and outside it smoothly changing water flow to the slit must be formed.The formulas for the time of lowering from initial natural level before building of pit to finite level equal to the bottom of pit are obtained. The example of calculation is discussed.

  4. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    Directory of Open Access Journals (Sweden)

    H. Ajami

    2014-06-01

    Full Text Available One of the main challenges in catchment scale application of coupled/integrated hydrologic models is specifying a catchment's initial conditions in terms of soil moisture and depth to water table (DTWT distributions. One approach to reduce uncertainty in model initialization is to run the model recursively using a single or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of spin-up time for an integrated groundwater-surface water-land surface model (ParFlow.CLM by using a combination of ParFlow.CLM simulations and an empirical DTWT function. The methodology is examined in two catchments located in the temperate and semi-arid regions of Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced the spin-up time required by ParFlow.CLM by up to 50%, and we outline a methodology that is applicable to other coupled/integrated modelling frameworks when initialization from equilibrium state is required.

  5. Identification of surface water-groundwater interaction by hydrogeochemical indicators and assessing its suitability for drinking and irrigational purposes in Chennai, Southern India

    Science.gov (United States)

    Brindha, K.; Neena Vaman, K. V.; Srinivasan, K.; Sathis Babu, M.; Elango, L.

    2014-06-01

    Large cities face water quality and quantity problems due to increasing population and improper disposal of solid and liquid wastes. It is essential to monitor the water quality to take corrective measures. This study was carried out in one of the densely populated metropolitan cities in India to ascertain the suitability of groundwater for drinking and irrigation activity, identify the processes controlling the geochemistry of groundwater and the impact of Adyar River on the groundwater quality. Magnesium and pH concentration in groundwater of this area were within the maximum permissible limits of WHO standards. Sodium and potassium concentration of groundwater were greater than the permissible limit in 30.8 % and in 50 % of the samples, respectively. About 35 % of the groundwater samples were not permissible for drinking based on the electrical conductivity (EC). The EC of groundwater was increasing towards the coast. In general, the quality of groundwater for irrigation purpose vary from moderate to good based on Na%, magnesium hazard, residual sodium carbonate, sodium absorption ratio, permeability index, and USDA classification. Na-Cl and Ca-Mg-Cl were the dominant groundwater and surface water type. Increased ionic concentration of groundwater towards the eastern part of the study area is due to the discharge of industrial effluents and domestic sewage into the Adyar River. Seawater intrusion is also one of the reasons for Na-Cl dominant groundwater near the coast. Evaporation and ion exchange were the major processes controlling groundwater chemistry in this area. The groundwater quality of this region is affected by the contaminated surface water.

  6. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  7. Calendar year 1993 groundwater quality report for the Bear Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater and surface water quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report contains groundwater and surface-water quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater and surface water report for the Bear Creek Regime is completed in two-parts; Part 1 (this report) containing the groundwater and surface-water quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater and surface-water quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  8. Metachronous Ampulla of Vater Carcinoma after Curative-Intent Surgery for Klatskin Tumor.

    Science.gov (United States)

    Chirita, D; Calita, M; Grasu, M; Dumitru, R; Gramaticu, I; Croitoru, A; Ionescu, M; Dumitrascu, T

    2015-01-01

    Resection represents the single hope for long-term survival in a patient diagnosed with a hilar cholangiocarcinoma (Klatskin tumor). However, the largest part of these patients develops a recurrent disease. Second metachronous periampullary cancers after a curative-intent surgery for a Klatskin tumor represent an exceptional pathology, and the management of these patients was poorly documented. Hereby, it is presented a 32-year-old patient with bile duct resection, left hemi-hepatectomy and loco-regional lymph nodes dissection, for a type IIIB Bismuth-Corlette Klatskin tumor, which, furthermore, 6 years later, underwent a pancreaticoduodenectomy for a metachronous carcinoma of the ampulla of Vater. The management and outcomes were discussed in the reported case, along with a literature review of the previously published patients. In conclusion, a metachronous periampullary carcinoma after resection of a Klatskin tumor should be distinguished from a loco-regional recurrent disease. While most of the patients with recurrences are suitable to only chemotherapy and or radiotherapy, a second curative-intent surgery (i.e., pancreaticoduodenectomy) is feasible in the largest part of the patients with a metachronous cancer, with good long-term outcomes.

  9. Perforation of the Papilla of Vater in Wire-Guided Cannulation

    Directory of Open Access Journals (Sweden)

    Yuichi Takano

    2016-01-01

    Full Text Available Background. WGC in ERCP is considered a safe technique, although rare complications can occur. One unique complication of WGC is the perforation of the papilla of Vater by the guidewire. Subjects and Methods. Of 2032 patients who underwent ERCP at our department between January 2010 and December 2014, we selected 208 patients who underwent WGC for naïve papilla as subjects. A detailed examination of patients in whom a perforation occurred was conducted, and risk factors for perforations were investigated. Results. The perforation was observed in 7 of 208 patients (3.4%. All patients recovered with conservative treatment without the need for surgery. The perforation rate was significantly higher in the patients with juxtapapillary duodenal diverticula than those without diverticula (12.5% versus 0.6%, p<0.001. Cannulation of the bile duct was ultimately achieved in 5 of 7 patients; PSP was performed for 4 of these patients. Conclusion. Caution must be exercised when dealing with patients who have a juxtapapillary duodenal diverticula because they are at higher risk of perforations. Because these are small perforations made by a wire, most of them heal with conservative treatment. However, perforations can make cannulation difficult, and PSP may be useful for deep cannulation.

  10. The advantages, and challenges, in using multiple techniques in the estimation of surface water-groundwater fluxes.

    Science.gov (United States)

    Shanafield, M.; Cook, P. G.

    2014-12-01

    When estimating surface water-groundwater fluxes, the use of complimentary techniques helps to fill in uncertainties in any individual method, and to potentially gain a better understanding of spatial and temporal variability in a system. It can also be a way of preventing the loss of data during infrequent and unpredictable flow events. For example, much of arid Australia relies on groundwater, which is recharged by streamflow through ephemeral streams during flood events. Three recent surface water/groundwater investigations from arid Australian systems provide good examples of how using multiple field and analysis techniques can help to more fully characterize surface water-groundwater fluxes, but can also result in conflicting values over varying spatial and temporal scales. In the Pilbara region of Western Australia, combining streambed radon measurements, vertical heat transport modeling, and a tracer test helped constrain very low streambed residence times, which are on the order of minutes. Spatial and temporal variability between the methods yielded hyporheic exchange estimates between 10-4 m2 s-1 and 4.2 x 10-2 m2 s-1. In South Australia, three-dimensional heat transport modeling captured heterogeneity within 20 square meters of streambed, identifying areas of sandy soil (flux rates of up to 3 m d-1) and clay (flux rates too slow to be accurately characterized). Streamflow front modeling showed similar flux rates, but averaged over 100 m long stream segments for a 1.6 km reach. Finally, in central Australia, several methods are used to decipher whether any of the flow down a highly ephemeral river contributes to regional groundwater recharge, showing that evaporation and evapotranspiration likely accounts for all of the infiltration into the perched aquifer. Lessons learned from these examples demonstrate the influences of the spatial and temporal variability between techniques on estimated fluxes.

  11. Quantifying the influence of surface water-groundwater interaction on nutrient flux in a lowland karst catchment

    Science.gov (United States)

    McCormack, T.; Naughton, O.; Johnston, P. M.; Gill, L. W.

    2016-06-01

    Nutrient contamination of surface waters and groundwaters is an issue of growing importance as the risks associated with agricultural run-off escalate due to increasing demands on global food production. In this study, the influence of surface water-groundwater interaction on the nutrient flux in a lowland karst catchment was investigated with the aid of alkalinity sampling and a hydrological model. The objective of the study was to determine the impact of ephemeral karst lakes (turloughs) on the surface water-groundwater nutrient flux, and whether these lakes act as sources or sinks of nutrients within the groundwater flow system. Water samples were tested from a variety of rivers, turloughs, boreholes and springs at monthly intervals over 3 years. Alkalinity sampling was used to elucidate the contrasting hydrological functioning between different turloughs. Such disparate hydrological functioning was further investigated with the aid of a hydrological model which allowed for an estimate of allogenically and autogenically derived nutrient loading into the karst system. The model also allowed for an investigation of mixing within the turloughs, comparing observed behaviours with the hypothetical conservative behaviour allowed for by the model. Within the turloughs, recorded nutrient concentrations were found to reduce over the flooded period, even though the turloughs hydrological functioning (and the hydrological model) suggested this would not occur under conservative conditions. As such, it was determined that nutrient loss processes were occurring within the system. Denitrification during stable flooded periods (typically 3-4 months per year) was deemed to be the main process reducing nitrogen concentrations within the turloughs, whereas phosphorus loss is thought to occur mostly via sedimentation and subsequent soil deposition. The results from this study suggest that, in stable conditions, ephemeral lakes can impart considerable nutrient losses on a karst

  12. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  13. Sustainable conjunctive use of surface and groundwater: modeling on the basin scale

    NARCIS (Netherlands)

    Alam, N.; Olsthoorn, T.N.

    2011-01-01

    Farmers in the Indus basin, Pakistan have generally switched to groundwater for additional water supplies due to the irregular supply of irrigation water; currently over 50% of the agricultural land in the basin is at least partially irrigated by tube-wells. These wells pump fresh groundwater, which

  14. Review of Electrical and Gravity Methods of Near-Surface Exploration for Groundwater

    Directory of Open Access Journals (Sweden)

    W. O. Raji

    2014-12-01

    Full Text Available The theory and practice of electrical and gravity methods of geophysics for groundwater exploration was reviewed with illustrations and data examples. With the goal of reducing cases of borehole/water-well failure attributed to the lack of the knowledge of the methods of geophysics for groundwater exploration and development, the paper reviews the basic concepts, field procedures for data acquisition, data processing, and interpretation as applied to the subject matter. Given a case study of groundwater exploration in University of Ilorin Campus, the three important techniques of electrical method of groundwater exploration are explained and illustrated using field data obtained in a previous study. Interpretation of resistivity data shows that an area measuring low resistivity (high conductivity, having thick pile of unconsolidated rock, and underlained by fracture crystalline is a ‘bright spot’ for citing borehole for groundwater abstraction in a basement complex area. Further to this, gravity method of groundwater exploration was discussed with field data from Wokbedilo community in Ethopia. Bouguer and reduced gravity anomaly results were presented as maps and contours to demonstrate how gravity data can be inverted to map groundwater aquifers and subsurface geological structures during groundwater exploration.

  15. Surface and Groundwater Quality in Some Oil Field Communities in the Niger Delta: Implications for Domestic Use and Building Construction

    Directory of Open Access Journals (Sweden)

    E.R. Daka

    2014-02-01

    Full Text Available The aim of this study was to determine surface and groundwater quality in some communities in the Niger Delta and to evaluate the implications for domestic use and building construction. Surface water samples were collected along the Nun River and Taylor creek in the greater Gbaran area; groundwater samples were collected from seven communities in that Gbarain and Ekpetiama kingdoms of Bayelsa State, Nigeria. The surface water turbidity values (24.18 to 130.42 NTU were above the Nigerian drinking water limits. TDS values were low (27-32 mg/L; pH (7.0 to 7.5, conductivity (54.00 to 63.00 &muS/cm, nitrate (0.09-0.61 mg/L. The measured values of conductivity, pH and TDS and nitrate fell within the NIS limits for drinking water in Nigeria. About 50% of the surface water samples had values of iron higher than the Nigerian standard for drinking water. Most of the samples gave values of chromium within the limit for drinking, with a few exceptions. pH of groundwater (6.3-7.8 mostly fell within the Nigerian drinking water limits (6.5-8.5. Mean electrical conductivity values of groundwater was 129.67 µS/cm, the TDS values (51.00 to 81.00 mg/L. The turbidity values ranged from <0.01 NTU to 38.11 NTU. Heavy metals concentrations were generally low; copper values ranged from <0.001 to 0.407 mg/L, chromium (0.020-0.059 mg/L, iron (0. 162 to 0.558 mg/L. The measured physicochemical variables of surface water and groundwater from the study area showed water quality values that were generally within the Nigerian standards for drinking water, apart from turbidity, iron and chromium in both surface and groundwater. However, all the measured parameters showed valued that are within acceptable limits for construction.

  16. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  17. Changes in the Regional Groundwater Aquifer and Potential Impacts on Surface Waters in Central Zealand, Denmark

    DEFF Research Database (Denmark)

    Thorn, Paul

    The regional, confined aquifer on the island of Zealand, in eastern Denmark, is the primary aquifer used for large-scale abstraction for the supplies of all larger cities, including Roskilde and the greater Copenhagen metropolitan area. Large-scale groundwater abstraction from this aquifer...... as previously they never did. This study analyzes the changes in the groundwater potential between 1936 and 2006 in two stream catchments in central Zealand (Elverdam and Langvad) to assess how groundwater abstraction has affected the regional aquifers potential for contribution to base-flow in the streams......, wetlands and lakes in the area. The results show that there was a significant impact on the regional groundwater aquifer in the Langvad river catchment, with groundwater as much as 17m lower in 1987 from 1936 (pre-abstraction). However, in the Elverdam river catchment, the levels remained virtually...

  18. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    Science.gov (United States)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  19. A Geo-Environmental Analysis of the Groundwater Resource vis-a-vis Surface Water Scenario in Guwahati City

    Directory of Open Access Journals (Sweden)

    Neelkamal Das

    2013-08-01

    Full Text Available Guwahati city is located on a unique geo-environmental setting with an interface of hills and valleys along with a prominent river front. The existence of various surface water sources, geo-hydrological set up and rainfall intensity play a significant role in the ground water regime of the city. However, rapid urbanisation of the city during the last few decades has altered the landscape of the city and disturbed the water retention capacity as well as the flow dynamics of various surface water sources, thereby affecting the infiltration rate to a great extent. Unprecedented rise in the population of the city has exerted more pressure on the various sources of water, particularly the groundwater resource. It has thus become imperative to utilise the various sources of water in a more systematic and scientific manner, giving due emphasis to the water requirement and the prevailing hydrological conditions of the area. Moreover, it is also observed that the city experiences an average annual rainfall of 162 cm with about 110 rainy days per year. The city thus has enough potential for harvesting the rainwater it receives, instead of allowing it to flow untapped. Rainwater can be tapped and utilised to revive the various surface water sources of the city, thereby facilitating natural groundwater recharge, as surface water bodies like wetlands, lakes and ponds do act as potential groundwater recharge zones.

  20. Understanding groundwater fracture-flow and near surface soil throughflow mixing within a mountain catchment using 36Cl/Cl, Yosemite National Park, California.

    Science.gov (United States)

    Shaw, G. D.; Conklin, M. H.; Nimz, G. J.

    2008-12-01

    In high elevation montane basins, there are typically limited observations to characterize watersheds. In this study we successfully use 36Cl and Cl- to characterize groundwater and near-surface water contributions to the upper Merced River and it's tributaries from Happy Isles to El Portal. Water fluxes typically consist of a variety of surface, near-surface and groundwater flow paths, which are complicated by faulted, folded, and fractured terrain. Surface water, snow, groundwater, and springs were sampled seasonally from July 2004 to October 2007. Snow 36Cl/Cl ratios are 3-30 times lower than in the Merced River water, but 36Cl/Cl ratios in the river increase 3-7 times from baseflow to the snowmelt season. This observation can be explained by characterizing endmembers in the watershed, and by determining how these endmembers vary temporally. Three endmembers mix in the catchment, and they include near-surface water with Cl- concentrations of 0.09 mg/L and 36Cl/Cl of 9976x10-15, groundwater primarily in contact with granitic rock with Cl- of 0.39 mg/L and 36Cl/Cl of 10711x10-15, and groundwater primarily in contact with metasedimentary rock with Cl- of 32.7 mg/L and 36Cl/Cl of 71x10-15. Metamorphic- dominated groundwater and granitic-dominated groundwater are further characterized by Ca2+/Cl- ratios (granitic-dominated groundwater is greater than 5, and metamorphic-dominated groundwater is less than 1). As the season transitions from snowmelt to baseflow, Cl- and 36Cl/Cl in surface water becomes more characteristic of both granitic and metamorphic-dominated groundwater depending on location. Plotting 1/Cl- verses 36Cl/Cl elucidates mixing lines which indicate that both groundwater endmembers have undergone evapotranspiration, but only the metamorphic-dominated groundwater shows evidence of incorporating significant amounts of rock chloride. The near-surface water is the dominant endmember during the snowmelt season and has similar Cl- concentrations as snow (~0

  1. Transduodenal ampullectomy in the treatment of villous adenomas and adenocarcinomas of the Vater's ampulla Ampulectomía transduodenal en el tratamiento de los adenomas vellosos y adenocarcinomas de la ampolla de Vater

    Directory of Open Access Journals (Sweden)

    J. A. Fraguela Mariña

    2004-12-01

    Full Text Available Introduction: adenomas are the most frequent tumors of the Vater's ampulla. Their capacity for malignant transformation following the adenoma-carcinoma sequence is well known. It is because of this that resection after diagnosis is required. The identification of the appropriate technique according to tumor features would require that patients not be undertreated or overtreated, which would give rise to serious consequences derived from their location. Patients and methods: villous adenomas and adenocarcinomas of the Vater's ampulla candidates for local resection were revised from January 1st, 1998 through June 30th, 2003. We describe the methods of diagnosis and ampulectomy techniques we performed. Results: we performed an ampulectomy by first intention in all 8 patients included in this study. However, pancreatoduodenectomy was necessary in two patients because of the closeness of resection margins. We had no mortality in this series, and morbidity was limited to two episodes of digestive bleeding that were controlled by electrocoagulation and embolization. The mean follow-up was 28.5 months (range, 6-72 months. Conclusions: the difficulty of precise preoperatory diagnosis in adenomas of the Vater's ampulla demands resection after identification. Ampulectomy is the treatment of choice for villous adenomas and T1 adenocarcinomas, with 1 cm of resection margin to avoid local recurrence.Introducción: los tumores más frecuentes de la ampolla de Vater son los adenomas. Es conocida su capacidad de malignización mediante la secuencia adenoma-carcinoma, por lo que requieren su resección, tras su diagnóstico. El establecimiento de la técnica adecuada según las características del tumor permitiría no infratratar o sobretratar pacientes, con las graves consecuencias que se derivan de ello, debido a su localización. Pacientes y métodos: se revisan los adenomas vellosos y adenocarcinomas de ampolla de Vater subsidiarios de resección local desde

  2. Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India

    Science.gov (United States)

    Krishna Kumar, S.; Hari Babu, S.; Eswar Rao, P.; Selvakumar, S.; Thivya, C.; Muralidharan, S.; Jeyabal, G.

    2017-09-01

    Water quality of Tiruvallur Taluk of Tiruvallur district, Tamil Nadu, India has been analysed to assess its suitability in relation to domestic and agricultural uses. Thirty water samples, including 8 surface water (S), 22 groundwater samples [15 shallow ground waters (SW) and 7 deep ground waters (DW)], were collected to assess the various physico-chemical parameters such as Temperature, pH, Electrical conductivity (EC), Total dissolved solids (TDS), cations (Ca, Mg, Na, K), anions (CO3, HCO3, Cl, SO4, NO3, PO4) and trace elements (Fe, Mn, Zn). Various irrigation water quality diagrams and parameters such as United states salinity laboratory (USSL), Wilcox, sodium absorption ratio (SAR), sodium percentage (Na %), Residual sodium carbonate (RSC), Residual Sodium Bicarbonate (RSBC) and Kelley's ratio revealed that most of the water samples are suitable for irrigation. Langelier Saturation Index (LSI) values suggest that the water is slightly corrosive and non-scale forming in nature. Gibbs plot suggests that the study area is dominated by evaporation and rock-water dominance process. Piper plot indicates the chemical composition of water, chiefly controlled by dissolution and mixing of irrigation return flow.

  3. Pesticides and their metabolites in selected Italian groundwater and surface water used for drinking

    Directory of Open Access Journals (Sweden)

    Luca Fava

    2010-01-01

    Full Text Available The control of groundwater and surface water quality in relation to the presence of pesticides and their metabolites is a rather complicated task. National and local authorities with the responsibility to guarantee an adequate quality of water cannot rely on international guidelines for monitoring activities. In a national project, forty-three pesticides and pesticide metabolites were selected on the basis of sale, monitoring and physical-chemical data, and investigated from some of the main Italian agricultural areas, susceptible to pesticide contamination. Twelve compounds were found in the tested water samples at levels exceeding the 0.1 µg/L European Union (EU limit for drinking water (European Directive 98/83/EC. Maximum levels up to 0.62 were determined. Several water samples were characterized by the simultaneous occurrence of pesticides and their metabolites (up to ten. In some samples, the total concentration of pesticides and their metabolites was higher than the EU limit of 0.5 µg/L. Total triazine concentrations up to 1.02 µg/L were found. In all the cases the highest concentrations were well below the respective guideline values defined by the World Health Organization (WHO for drinking water quality.

  4. Substance-related environmental monitoring strategies regarding soil, groundwater and surface water - an overview.

    Science.gov (United States)

    Kördel, Werner; Garelick, Hemda; Gawlik, Bernd M; Kandile, Nadia G; Peijnenburg, Willie J G M; Rüdel, Heinz

    2013-05-01

    Substance-related monitoring is an essential tool within environmental risk assessment processes. The soundness of policy decisions including risk management measures is often directly related to the reliability of the environmental monitoring programs. In addition, monitoring programs are required for identifying new and less-investigated pollutants of concern in different environmental media. Scientifically sound and feasible monitoring concepts strongly depend on the aim of the study. The proper definition of questions to be answered is thus of pivotal importance. Decisions on sample handling, storage and the analysis of the samples are important steps for the elaboration of problem-oriented monitoring strategies. The same applies to the selection of the sampling sites as being representative for scenarios to be investigated. These steps may become critical to handle for larger international monitoring programs and thus trigger the quality of their results. This study based on the work of an IUPAC (International Union of Pure and Applied Chemistry) task group addresses different kinds and approaches of substance-related monitoring of different compartments of soil, groundwater and surface water, and discusses their advantages and limitations. Further important aspects are the monitoring across policies and the monitoring data management using information systems.

  5. Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India

    Science.gov (United States)

    Krishna Kumar, S.; Hari Babu, S.; Eswar Rao, P.; Selvakumar, S.; Thivya, C.; Muralidharan, S.; Jeyabal, G.

    2016-07-01

    Water quality of Tiruvallur Taluk of Tiruvallur district, Tamil Nadu, India has been analysed to assess its suitability in relation to domestic and agricultural uses. Thirty water samples, including 8 surface water (S), 22 groundwater samples [15 shallow ground waters (SW) and 7 deep ground waters (DW)], were collected to assess the various physico-chemical parameters such as Temperature, pH, Electrical conductivity (EC), Total dissolved solids (TDS), cations (Ca, Mg, Na, K), anions (CO3, HCO3, Cl, SO4, NO3, PO4) and trace elements (Fe, Mn, Zn). Various irrigation water quality diagrams and parameters such as United states salinity laboratory (USSL), Wilcox, sodium absorption ratio (SAR), sodium percentage (Na %), Residual sodium carbonate (RSC), Residual Sodium Bicarbonate (RSBC) and Kelley's ratio revealed that most of the water samples are suitable for irrigation. Langelier Saturation Index (LSI) values suggest that the water is slightly corrosive and non-scale forming in nature. Gibbs plot suggests that the study area is dominated by evaporation and rock-water dominance process. Piper plot indicates the chemical composition of water, chiefly controlled by dissolution and mixing of irrigation return flow.

  6. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  7. Development of a visualization tool for integrated surface water-groundwater modeling

    Science.gov (United States)

    Tian, Yong; Zheng, Yi; Zheng, Chunmiao

    2016-01-01

    Physically-based, fully integrated surface water (SW)-groundwater (GW) models have been increasingly used in water resources research and management. The integrated modeling involves a large amount of scientific data. The use of three-dimensional (3D) visualization software to integrate all the scientific data into a comprehensive system can facilitate the interpretation and validation of modeling results. Nevertheless, at present few software tools can efficiently perform data visualization for integrated SW-GW modeling. In this study, a visualization tool named IHM3D was designed and developed specifically for integrated SW-GW modeling. In IHM3D, spatially distributed model inputs/outputs and geo-referenced data sets are visualized in a virtual globe-based 3D environment. End users can conveniently explore and validate modeling results within the 3D environment. A GSLFOW (an integrated SW-GW model developed by USGS) modeling case in the Heihe River Basin (Northwest China) was used to demonstrate the applicability of IHM3D at a large basin scale. The visualization of the modeling results significantly improved the understanding of the complex hydrologic cycle in this water-limited area, and provided insights into the regional water resources management. This study shows that visualization tools like IHM3D can promote data and model sharing in the water resources research community, and make it more practical to perform complex hydrological modeling in real-world water resources management.

  8. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  9. A remotely operated, field deployable tritium analysis system for surface and groundwater measurement

    Energy Technology Data Exchange (ETDEWEB)

    Cable, P.R.; Hofstetter, K.J.; Beals, D.M.; Jones, J.D.; Collins, S.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Noakes, J.E.; Spaulding, J.D.; Neary, M.P. [Center for Applied Isotope Studies, Athens, GA (United States); Peterson, R. [Sampling Systems, Inc., Old Ocean, TX (United States)

    1996-12-31

    A prototype system for the remote, in situ analysis of tritium in surface and ground waters has been developed at the Savannah River Site through the combined efforts of university, private industry, and government laboratory personnel under a project funded by the DOE/OTD. Using automated liquid scintillation counting techniques, the Field Deployable Tritium Analysis System (FDTAS) has been shown in laboratory and limited field tests to have sufficient sensitivity to measure tritium in water samples at environmental levels (10 Bq/L [{approximately}300 pCi/L] for a 100-minute count) on a near-real time basis. These limits are well below the EPA drinking water standard for tritium at 740 Bq/L (1) and lower than the normal upstream Savannah River tritium concentration of {approximately}40 Bq/L (2). The FDTAS consists of a fixed volume sampler (50 mL), an on-line water purification system, and a stop-flow liquid scintillation counter for detecting tritium in the purified sample. All operations are controlled and monitored by a remote computer using standard telephone line modem communications. The FDTAS offers a cost-effective alternative to the expensive and time-consuming methods of field sample collection and laboratory analyses for tritium in contaminated groundwater.

  10. Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A.

    Directory of Open Access Journals (Sweden)

    Karina Y. Gutiérrez-Jurado

    2017-02-01

    Full Text Available Better understanding of surface water (SW and groundwater (GW interactions and water balances has become indispensable for water management decisions. This study sought to characterize SW-GW interactions in three crop fields located in three different irrigated valleys in northern New Mexico by (1 estimating deep percolation (DP below the root zone in flood-irrigated crop fields; and (2 characterizing shallow aquifer response to inputs from DP associated with irrigation. Detailed measurements of irrigation water application, soil water content fluctuations, crop field runoff, and weather data were used in the water budget calculations for each field. Shallow wells were used to monitor groundwater level response to DP inputs. The amount of DP was positively and significantly related to the total amount of irrigation water applied for the Rio Hondo and Alcalde sites, but not for the El Rito site. The average irrigation event DP using data for the complete irrigation season at each of the three sites was 77.0 mm at El Rito, 54.5 mm at Alcalde and 53.1 mm at Rio Hondo. Groundwater level rise compared to pre-irrigation event water levels ranged from 3 to 1870 mm, and was influenced by differences in irrigation practices between sites. Crop evapotranspiration estimates averaged across irrigation events were highest in Rio Hondo (22.9 mm, followed by El Rito (14.4 mm and Alcalde (10.4 mm. Results from this study indicate there are strong surface water-groundwater connections in traditionally irrigated systems of northern New Mexico, connections that may be employed to better manage groundwater recharge and river flow.

  11. Effects of groundwater lateral flow on land surface processes: a case study in Heihe River Basin, north-west of China

    Science.gov (United States)

    Xie, Z.; Zeng, Y.; Yu, Y.

    2015-12-01

    As an important component of hydrologic cycle, groundwater is affected by topography, vegetation, climate condition, and anthropogenic activity. Groundwater horizontal convergence and divergence and vertical interaction with soil water result in variations of soil moisture, water and energy exchanges between the land surface and the atmosphere, which ultimately influences climate. In this work, a two-dimensional groundwater lateral flow scheme based on groundwater mass equation, is developed and incorporated into the land surface model CLM4.5 to investigate effects of groundwater lateral flow on land surface processes in a river basin. A 30-year simulation with groundwater lateral flow and a control run without the horizontal movement are conducted over Heihe River Basin, north-west China, from 1979 to 2012 using the developed model. Results show that with groundwater lateral flow, equilibrium distribution of groundwater table shows more spatial variability following topography rather than the water balance between local precipitation and evapotranspiration, and are much closer to well observations especially over middle reaches area. Along with shallower groundwater table over piedmont areas in the middle reaches, increased soil moisture is shown which alleviates the underestimation of CLM4.5 at here. Changes in evapotranspiration are occurred and it is mainly controlled by the variation of local surface soil moisture, since water is the major limitation factor of evapotranspiration over this arid area. Besides, groundwater lateral flow can change the distribution of surface runoff by changing the saturated area fraction of each model grid cell. Energy cycle also responds to the changes of hydrological cycle which redistributes the sensible heat flux and latent heat flux in the entire basin.

  12. Evaluation of surface water and groundwater contamination in a MSW landfill area using hydrochemical analysis and electrical resistivity tomography: a case study in Sichuan province, Southwest China.

    Science.gov (United States)

    Ling, Chengpeng; Zhang, Qiang

    2017-04-01

    As a primary disposal mean of municipal solid waste in China, the landfill has been recognized as one of the major threats to the surrounding surface water and groundwater environment due to the emission of leachate. The aim of this study was to determine the impact of leachate on the surface water and groundwater environment of the region of the Chang'an landfill, which is located in Sichuan province, China. The surface water and groundwater were sampled for hydrochemical analysis. Three electrical resistivity tomography profiles were conducted to evaluate the impact of leachate on the groundwater environment, and several laboratory tests were carried out to build the relationship between the soil bulk resistivity and the void fluid resistivity. The results showed that a seasonal creek named Longfeng creek, which crosses the landfill site, was contaminated by the leachate. The concentrations of COD, BOD5, and chlorides (Cl) of surface water samples increased by 12.3-105.7 times. The groundwater quality in the surface loose sediments along the valley deteriorated obviously from the landfill to 500 m downstream area. The laboratory tests of soil samples indicated that the resistivity value of 13 Ωm is a critical value whether the groundwater in the loose sediments is polluted. The groundwater at the site adjacent to the spillway in the landfill was partially contaminated by the emission of leachate. The groundwater contamination zones at 580 m downstream of the landfill were recognized at the shallow zones from 60 m left bank to 30 m right bank of Longfeng creek. The improved understanding of groundwater contamination around the landfill is beneficial for the landfill operation and groundwater environment remediation.

  13. Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment.

    Science.gov (United States)

    Siebert, Christian; Rödiger, Tino; Mallast, Ulf; Gräbe, Agnes; Guttman, Joseph; Laronne, Jonathan B; Storz-Peretz, Yael; Greenman, Anat; Salameh, Elias; Al-Raggad, Marwan; Vachtman, Dina; Ben Zvi, Arie; Ionescu, Danny; Brenner, Asher; Merz, Ralf; Geyer, Stefan

    2014-07-01

    The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(−1) west and to 179 mm a(−1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58–66 × 10(6) m(3) a(−1) (western wadis: 7–15 × 10(6) m(3) a(−1); eastern wadis: 51 × 10(6) m(3) a(−1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 × 10(6) m(3) a(−1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters.The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole.

  14. HESS Opinions "Integration of groundwater and surface water research: an interdisciplinary problem?"

    Directory of Open Access Journals (Sweden)

    R. Barthel

    2014-02-01

    Full Text Available Today there is a great consensus that water resources research needs to become more holistic, integrating perspectives of a large variety of disciplines. Groundwater and surface water (hereafter: GW and SW are typically identified as different compartments of the hydrological cycle and were traditionally often studied and managed separately. However, despite this separation, these respective fields of study are usually not considered to be different disciplines. They are often seen as different specialisations of hydrology with different focus, yet similar theory, concepts, methodology. The present article discusses how this notion may form a substantial obstacle in the further integration of GW and SW research and management. The article focusses on the regional scale (areas of approx. 103 to 106 km2, which is identified as the scale where integration is most greatly needed, but ironically the least amount of fully integrated research seems to be undertaken. The state of research on integrating GW and SW research is briefly reviewed and the most essential differences between GW hydrology (or hydrogeology, geohydrology and SW hydrology are presented. Groundwater recharge and baseflow are used as examples to illustrate different perspectives on similar phenomena that can cause severe misunderstandings and errors in the conceptualisation of integration schemes. It is also discussed that integration of GW and SW research on the regional scale necessarily must move beyond the hydrological aspects, by collaborating with social sciences and increasing the interaction between science and the society in general. The typical elements of an ideal interdisciplinary workflow are presented and their relevance with respect to integration of GW and SW is discussed. The overall conclusions are that GW hydrology and SW hydrogeology study rather different objects of interest, using different types of observation, working on different problem settings. They have

  15. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using...... the Distributed Temperature Sensing (DTS) system and instream temperature modelling. Locations of surface water–groundwater interactions were identified from the temperature data collected over a 2-km stream reach using a DTS system with 1-m spatial and 5-min temporal resolution. The stream under consideration...... exhibits three distinct thermal regimes within a 2 km reach length due to two major interactions. An energy balance model is used to simulate the instream temperature and to quantify the effect of these interactions on the stream temperature. This research demonstrates the effect of reach level small scale...

  16. Modeling the influence of surface waters on the head of Prekmursko polje groundwater body

    OpenAIRE

    Biro, Andrej

    2016-01-01

    The focus of the thesis is the simulation of the impact of river Mura on a groundwater aquifier Mursko and Prekmursko polje, spreading along the river Mura, between Goričko and Slovenske gorice hills. The existing numerical groundwater model was upgraded with the geometry of the river. Using HEC - RAS software, a floodwave was analysed and the results were used as input data for the groundwater model, designed in ModFlow software. The results represent the impact of the floodwave on the groun...

  17. Prediction of diffuse sulfate emissions from a former mining district and associated groundwater discharges to surface waters

    Science.gov (United States)

    Graupner, Bastian J.; Koch, Christian; Prommer, Henning

    2014-05-01

    Rivers draining mining districts are often affected by the diffuse input of polluted groundwaters. The severity and longevity of the impact depends on a wide range of factors such as the source terms, the hydraulic regime, the distance between pollutant sources and discharge points and the dilution by discharge from upstream river reaches. In this study a deterministic multi-mine life-cycle model was developed. It is used to characterize pollutant sources and to quantify the resulting current and future effects on both groundwater and river water quality. Thereby sulfate acts as proxy for mining-related impacts. The model application to the Lausitz mining district (Germany) shows that the most important factors controlling concentrations and discharge of sulfate are mixing/dilution with ambient groundwater and the rates of biological sulfate reduction during subsurface transport. In contrast, future impacts originating from the unsaturated zones of the mining dumps showed to be of little importance due to the high age of the mining dumps and the associated depletion in reactive iron-sulfides. The simulations indicate that currently the groundwater borne diffuse input of sulfate into the rivers Kleine Spree and Spree is ∼2200 t/years. Our predictions suggest a future increase to ∼11,000 t/years within the next 40 years. Depending on river discharge rates this represents an increase in sulfate concentration of 40-300 mg/L. A trend reversal for the surface water discharge is not expected before 2050.

  18. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    Energy Technology Data Exchange (ETDEWEB)

    FAYER JM; FREEDMAN VL; WARD AL; CHRONISTER GB

    2010-02-24

    tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive

  19. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater and Surface Water Quality Data for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1998. The Bear Creek Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the figures (maps and trend graphs) and data tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  20. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    Science.gov (United States)

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    Land application of municipal wastewater biosolids is the most common method of biosolids management used in North Carolina and the United States. Biosolids have characteristics that may be beneficial to soil and plants. Land application can take advantage of these beneficial qualities, whereas disposal in landfills or incineration poses no beneficial use of the waste. Some independent studies and laboratory analysis, however, have shown that land-applied biosolids can pose a threat to human health and surface-water and groundwater quality. The effect of municipal biosolids applied to agriculture fields is largely unknown in relation to the delivery of nutrients, bacteria, metals, and contaminants of emerging concern to surface-water and groundwater resources. Therefore, the North Carolina Department of Environment and Natural Resources (NCDENR) collaborated with the U.S. Geological Survey (USGS) through the 319 Nonpoint Source Program to better understand the transport of nutrients and bacteria from biosolids application fields to groundwater and surface water and to provide a scientific basis for evaluating the effectiveness of the current regulations.

  1. Human health risk assessment of dissolved metals in groundwater and surface waters in the Melen watershed, Turkey.

    Science.gov (United States)

    Çelebi, Ahmet; Sengörür, Bülent; Kløve, Bjørn

    2014-01-01

    Determination of metal risk levels in potable water and their effects on human health are vital in assessment of water resources. Risk assessment of metals to human health in a watershed, which has not been studied before, is the main objective of the present study. Surface and groundwater sampling was carried out between September 2010 and August 2011 in the Melen Watershed, Turkey, an important drinking water resource for millions of people. Metals were analyzed in the laboratory using inductively coupled plasma. Of the 26 different metals monitored, Al, B, Ba, Cr, Cu, Fe, Mn, Mo and V were found in surface water and As, B, Ba, Cr, Cu, Mn, Mo, V and Zn in groundwater. In groundwater, unitless hazard quotient (HQ) values were 6 for As, 2.7 for Mn and 1 for Zn, while in surface water all metals were below the risk level (HQ watersheds can pose a risk to human health and that potential carcinogenic impacts should receive more attention.

  2. Integrated groundwater-surface water modeling at the neighborhood scale in urbanized hydrologic systems

    Science.gov (United States)

    Barnes, M.; Welty, C.; Miller, A. J.; Cole, J.

    2013-12-01

    Modification of the hydrologic cycle by urban development is influenced by fine-scale spatial characteristics of cut-and-fill topography, road networks, and subsurface utilities. To address impacts on both groundwater and surface water in an integrated manner, we are using ParFlow, a parallel distributed watershed model, to conduct high-resolution simulations. We are applying ParFlow across six watershed subbasins with drainage areas of 0.3-0.6 km2 using a horizontal grid resolution of 10 m and vertical resolution of 1 m. Sites have been selected to represent a range of development intensity, age, and stormwater management practices, and each is instrumented for stage and discharge. A LIDAR-derived DEM defines model topography, and an orthoimagery and LIDAR-derived land cover classification from U. Vermont is used to develop model surface hydrologic properties. In some cases, portions of the watershed divide modified by large infrastructure elements, such as freeways, roads, and stormwater features, pose difficulties to overland flow routing within the model and to watershed delineation. In these cases, additional information, including the location of stormwater infrastructure, has been used to modify the DEM and represent where surface flow paths follow the storm drain network instead of topography. Results of these methods have improved estimation of domain extent and flow paths in overland flow tests of these basins. Boundary and initial conditions have been selected for each basin using legacy well data and a conceptual model of the Piedmont physiographic province hydrogeology. Steady-state simulations have been conducted in some cases to help refine model boundary conditions. Model spin-up has been conducted using surface forcing (P and ET) for the years 2008-2009 from NLDAS2 dataset. Ongoing analysis is focused on modeling the impact of development patterns and type of stormwater management. Challenges related to applying a coupled model in an urban setting

  3. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface and shallow ground-water hydrology : a literature review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife...

  4. Estimated potentiometric surface by D'Agnese and others (1998), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — D'Agnese and others (1998) developed a potentiometric surface to conceptualize the regional ground-water flow system and to construct numerical flow models of the...

  5. Digitized generalized areas where surface-water resources likely or potentially are susceptible to groundwater withdrawals in adjacent valleys, Great Basin National Park area, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Polygons delineate generalized areas in and around Great Basin National Park where surface-water resources likely or potentially are susceptible to groundwater...

  6. Subsurface crustacean communities as proxy for groundwater-surface water interactions in the Henares and Tajuña Rivers floodplains, central Spain

    Science.gov (United States)

    Rasines Ladero, Ruben; Iepure, Sanda; Careño, Francisco; de Bustamante, Irene

    2013-04-01

    In the last decades, the linkage between surface water - groundwater via the hyporheic zone and the alluvial floodplains become more and more acknowledged. Hydrological exchanges between the stream and hyporheic zone ensure the transport of matter and energy and provide support for biogeochemical processes occurring in-stream bed sediments. Furthermore, the hyporheic zone is directly linked to permeable alluvial aquifers of which exchanges in both directions ensure the withstanding of a mixt biotic community's that may originate either from the surface benthic habitats or from the shallow aquifer. Data on the subsurface crustacean assemblages are used to infer the surface-groundwater interaction in two-groundwater fed-streams in central Spain. The survey was conducted on 20 hyporheic sites (20-40 cm depth) and 28 shallow or deep boreholes. Multivariate statistics were applied to test for differences in crustacean communities resulting from changes in water chemistry between the upstream and downstream parts of the alluvial aquifer, and between the hyporheic zone and the alluvial aquifer. Our aims were to: 1) test whether groundwater discharges in-stream bed sediments are reflected in changes in the crustacean assemblage's structure; and 2) establish whether the surface water influence decreases with increasing groundwater depth and distance from the river. We further aimed to test whether the diversity-stability ecotonal paradigm associated with the distinct level of disturbances and stability at the interface surface-groundwater and the aquifer is reflected in groundwater crustacean community structure. We start from the assumption that groundwater ecosystems undergo significant changes in space and time, and that classical groundwater stability hypothesis ought to be changed to concepts operative for surface ecosystems: disturbance and resilience. The streams are characterised by distinct gradients of surface-groundwater exchanges at spatial scale, with major

  7. Using a coupled groundwater/surface-water model to predict climate-change impacts to lakes in the Trout Lake Watershed, northern Wisconsin

    Science.gov (United States)

    Hunt, Randall; Walker, John F.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John; Webb, Richard M.T.; Semmens, Darius J.

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes.

  8. Historic, Current, and Future Availability of Surface Water for Agricultural Groundwater Banking in the Central Valley, California

    Science.gov (United States)

    Kocis, T. N.; Dahlke, H. E.

    2015-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California. A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands for recharging groundwater. Understanding the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flows) is fundamental to assessing the feasibility of local-scale implementation of ag-GB. In this study, we estimate the current availability and forecast the future availability of winter (Nov to Apr) flood flows based on current and historic daily streamflow records for 200 stream gauges on tributaries to and streams within the Central Valley, California. For each gauge, we consider flows above a stationary 90th percentile as ideal for ag-GB because reservoir operations mitigate flood risk by releasing early winter flood flows. Results based on 70 years of data show that for 25% of the gauges there are significantly decreasing flow volumes above the 90th percentile and a decreasing number of days with flows above the 90th percentile. These flows, on average, make up 20% of the total annual winter flows. The majority of gauges further show, over the past 70 years, a decrease in total annual streamflow magnitude, a decrease in the magnitude of extreme flood events, and an increase in the frequency of flood events. Variations in winter flood flows due to climate change and climate variability are a challenge to water management in California. To aid the long-term forecast of streamflow conditions in California, we present a new water year type index for the Central Valley, which considers the variation in flow percentiles over time. Together, our results suggest that flexible, coordinated efforts for the local diversion of flood flows are needed to better utilize the increasingly rare winter flood

  9. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  10. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    Science.gov (United States)

    Negrel, Philippe; Pauwels, Hélène

    2017-04-01

    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and

  11. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    Science.gov (United States)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area

  12. Data Validation Package October 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management (LM), Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Inc., Grand Junction, CO (United States)

    2017-02-01

    Sampling Period: October 10–12, 2016. This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Samples were collected from 54 of 64 planned locations (16 of 17 former mill site wells, 15 of 18 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 3 of 3 bedrock wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations).

  13. Effect on Groundwater Quality from Proximal Surface Water Bodies and Effect on Arsenic Distribution in Bangladesh: Geochemical Controls

    Science.gov (United States)

    Barua, S.; Kulkarni, H.; Mladenov, N.; Khan, M. A.; Mahfuz, M.; Ahmed, K. M.; Datta, S.

    2014-12-01

    Matlab is one of the areas in SE Bangladesh highly affected with elevated concentrations of dissolved As in drinking waters. Matlab is stratigraphically composed of thick floodplain deposits of Holocene age overlying Plio-Pleistocene grey fine to coarse sands with considerable clay (Dupi Tila). The dissolved As concentrations in the studied area ranged from detection in shallow well waters (MPN= 3.6-74.1) was high as well as in ponds and canals (MPN= 8.5-433.4). Microbial activity in groundwater was lower than in unprotected surface waters. Freshness index (β:α), humification index (HIX), fluorescence source index (FI) values showed that DOM in shallow and surface water bodies was distinct from deep groundwater. Concurrent with the lower DOC in deeper wells, the overall fluorescence intensities decreased with depth. The results thus far point to more humic DOM in shallow groundwaters, which is not expected to be a labile carbon source for microorganisms, but which may be involved in complexation or other biogeochemical reactions that mobilize arsenic.

  14. Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray

    Science.gov (United States)

    Ferrer, I.; Thurman, E.M.; Barcelo, D.

    1997-01-01

    Solid-phase extraction (SPE) was combined with high-performance liquid chromatography/high-flow pneumatically assisted electrospray mass spectrometry (HPLC/ESP/MS) for the trace analysis of oxanilic and sulfonic acids of acetochlor, alachlor, and metolachlor. The isolation procedure separated the chloroacetanilide metabolites from the parent herbicides during the elution from C18 cartridges using ethyl acetate for parent compounds, followed by methanol for the anionic metabolites. The metabolites were separated chromatographically using reversed-phase HPLC and analyzed by negative-ion MS using electrospray ionization in selected ion mode. Quantitation limits were 0.01 ??g/L for both the oxanilic and sulfonic acids based on a 100-mL water sample. This combination of methods represents an important advance in environmental analysis of chloroacetanilide-herbicide metabolites in surface water and groundwater for two reasons. First, anionic chloroacetanilide metabolites are a major class of degradation products that are readily leached to groundwater in agricultural areas. Second, anionic metabolites, which are not able to be analyzed by conventional methods such as liquid extraction and gas chromatography/mass spectrometry, are effectively analyzed by SPE and high-flow pneumatically assisted electrospray mass spectrometry. This paper reports the first HPLC/MS identification of these metabolites in surface water and groundwater.

  15. Transplante renal em paciente pediátrico com associação de Vater: relato de caso Transplante renal en paciente pediátrico con asociación de Vater: relato de caso Renal transplantation in Vater association patient: case report

    Directory of Open Access Journals (Sweden)

    Antonio Paulo Nogueira Costa

    2003-06-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A associação de Vater é uma alteração politópica que inclui várias má-formações, sendo a hipoplasia radial a alteração mais freqüentemente encontrada ao nascimento. O objetivo deste relato é apresentar caso de associação de Vater em criança submetida a transplante renal. RELATO DO CASO: Paciente do sexo masculino, 11 anos, 23 kg, Hbs positivo submetido a esofagostomia com 30 horas de vida. Desde os 7 anos realiza hemodiálise, atualmente através de cateter atrial, por falta de outras vias de acesso. Submetido aos 11 anos a transplante renal com doador cadáver, sem intercorrências. Diurese adequada ao término das anastomoses vasculares. Drenagem de hematoma da fossa ilíaca D no primeiro dia de pós-operatório. Alta 21 dias após o transplante com função renal normal. CONCLUSÕES: A associação de Vater é uma ocorrência extremamente rara e complexa e o presente relato prende-se à realização, pela primeira vez, de transplante renal com doador cadáver em criança portadora desse defeito congênito, cujo resultado foi inteiramente satisfatório.JUSTIFICATIVA Y OBJETIVOS: La asociación de Vater es una alteración politópica que incluye varias mal-formaciones siendo la hipoplasia radial la alteración más frecuentemente encontrada en el nacimiento. El objetivo de este relato es presentar caso de asociación de Vater en niño sometido a transplante renal. RELATO DE CASO: Paciente del sexo masculino, 11 años, 23 kg, Hbs positivo sometido a esofagostomia con 30 horas de vida. Desde los 7 anos realiza hemodiálisis, actualmente a través de catéter atrial, por falta de otras vías de acceso. Sometido a los 11 años a transplante renal con donador cadáver, sin interocurrencias. Diuresis adecuada al término de las anastomosis vasculares. Drenaje de hematoma de la fosa ilíaca D en el primer día de pós-operatorio. Alta 21 días después del transplante con función renal normal. CONCLUSIONES

  16. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Everglades restoration. A century of water management for flood control and water storage in the Everglades resulted in the creation of the Water Conservation Areas (WCAs). Construction of the major canals began in the 1910s and the systems of levees that enclose the basins and structures that move water between basins were largely completed by the 1950s. The abandoned wetlands that remained outside of the Water Conservation areas tended to dry out and subside by 10 feet or more, which created abrupt transitions in land-surface elevations and water levels across the levees. The increases in topographic and hydraulic gradients near the margins of the WCAs, along with rapid pumping of water between basins to achieve management objectives, have together altered the patterns of recharge and discharge in the Everglades. The most evident change is the increase in the magnitude of recharge (on the upgradient side) and discharge (on the downgradient side) of levees separating WCA-2A from other basins or areas outside. Recharge and discharge in the vast interior of WCA-2A also likely have increased, but fluxes in the interior wetlands are more subtle and more difficult to quantify compared with areas close to the levees. Surface-water and ground-water interactions differ in fundamental ways between wetlands near WCA-2A's boundaries and wetlands in the basin's interior. The levees that form the WCA's boundaries have introduced step functions in the topographic and hydraulic gradients that are important as a force to drive water flow across the wetland ground surface. The resulting recharge and discharge fluxes tend to be unidirectional (connecting points of recharge on the upgradient side of the levee with points of discharge on the downgradient side), and fluxes are also relatively steady in magnitude compared with fluxes in the interior. Recharge flow paths are also relatively deep in their extent near levees, with fluxes passing entirely through the 1-m peat layer and inte

  17. Watershed Scale Analysis of Groundwater Surface Water Interactions and Its Application to Conjunctive Management under Climatic and Anthropogenic Stresses over the US Sunbelt

    Science.gov (United States)

    Seo, Seung Beom

    Although water is one of the most essential natural resources, human activities have been exerting pressure on water resources. In order to reduce these stresses on water resources, two key issues threatening water resources sustainability - interaction between surface water and groundwater resources and groundwater withdrawal impacts of streamflow depletion - were investigated in this study. First, a systematic decomposition procedure was proposed for quantifying the errors arising from various sources in the model chain in projecting the changes in hydrologic attributes using near-term climate change projections. Apart from the unexplained changes by GCMs, the process of customizing GCM projections to watershed scale through a model chain - spatial downscaling, temporal disaggregation and hydrologic model - also introduces errors, thereby limiting the ability to explain the observed changes in hydrologic variability. Towards this, we first propose metrics for quantifying the errors arising from different steps in the model chain in explaining the observed changes in hydrologic variables (streamflow, groundwater). The proposed metrics are then evaluated using a detailed retrospective analyses in projecting the changes in streamflow and groundwater attributes in four target basins that span across a diverse hydroclimatic regimes over the US Sunbelt. Our analyses focused on quantifying the dominant sources of errors in projecting the changes in eight hydrologic variables - mean and variability of seasonal streamflow, mean and variability of 3-day peak seasonal streamflow, mean and variability of 7-day low seasonal streamflow and mean and standard deviation of groundwater depth - over four target basins using an Penn state Integrated Hydrologic Model (PIHM) between the period 1956-1980 and 1981-2005. Retrospective analyses show that small/humid (large/arid) basins show increased (reduced) uncertainty in projecting the changes in hydrologic attributes. Further

  18. Data Validation Package, December 2015, Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, Evan [Navarro Research and Engineering, Inc., Oak Ridge, NV (United States); Denny, Angelita [USDOE Office of Legacy Management, Washington, DC (United States)

    2016-03-23

    Fifty-two groundwater samples and one surface water sample were collected at the Monument Valley, Arizona, Processing Site to monitor groundwater contaminants for evaluating the effectiveness of the proposed compliance strategy as specified in the 1999 Final Site Observational Work Plan for the UMTRA Project Site at Monument Valley, Arizona. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Samples were collected for metals, anions, nitrate + nitrite as N, and ammonia as N analyses at all locations.

  19. Investigating temporal and spatial patterns of groundwater-surface water interaction on a river reach by applying transient thermal modelling

    Science.gov (United States)

    Anibas, Christian; Debele Tolche, Abebe; Ghysels, Gert; Schneidewind, Uwe; Nossent, Jiri; Touhidul Mustafa, Syed Md; Huysmans, Marijke; Batelaan, Okke

    2017-04-01

    The quantification of groundwater-surface water interaction is an important challenge for hydrologists and ecologists. Within the last decade, many new analytical and numerical estimation methods have been developed, including heat tracer techniques. In a number of publications, their sources of errors were investigated, and future directions for the research in groundwater-surface water exchange were discussed. To improve our respective knowledge of the Belgian lowland Aa River we reinvestigate temperature data which was gathered in the river bed and used for the quantification of the 1D vertical groundwater-surface water exchange. By assuming a thermal steady state of the river bed temperature distribution, Anibas et al. (2011) were unable to use the full potential of the entire large data set. The analysis tool STRIVE is modified to use the river water temperature time series as the upper model boundary. This transient thermal set up overcomes many of the limitations of the steady state assumption and allows for the analysis of vertical 1D exchange fluxes in space and time. Results of about 380 transient simulations covering a period of more than 1.5 years show high absolute changes in exchange fluxes in the upstream part of the river. However, in the downstream part, the relative changes in fluxes are larger. The 26 spatially distributed thermal profiles along the river reach are interpolated using kriging based on variograms calculated from the temperature dataset. Results indicate gaining conditions for most locations and most of the time. Few places in the downstream part show losing conditions in late winter and early spring. While in autumn and winter the mean exchange fluxes can be -90 mmd-1, in spring to early summer fluxes are only -42 mmd-1. The river bed near the banks shows elevated fluxes compared to the center of the river. Probably driven by regional groundwater flow, the river bed near the left and right bank shows fluxes respectively a factor 3

  20. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    Directory of Open Access Journals (Sweden)

    W. G. Darling

    2003-01-01

    Full Text Available The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic 'baseline' for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003 considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers

  1. An Integrated Model of Surface Water and Groundwater Interactions at Yi-lan Area in Northeastern Taiwan

    Science.gov (United States)

    Chiu, Y.; Yeh, C. K.

    2015-12-01

    Interaction between surface water (SW) and groundwater (GW) plays an important role in local society and ecosystem, especially in areas with limited water resources. Historically, hydrologic simulations have not accounted for feedback looks between the GW system and other hydrologic processes. Integrated SW-GW modelling can provide a comprehensive and coherent understanding on basin-scale water cycle and better manage the water resources for sustainable usage. At Yi-lan area, hydrological modelling has been performed for both the entire SW and GW systems along, but fully integrated SW-GW modeling has not been attempted for this area. In order to enhance the efficiency of water useage, a coupled GW and SW flow model (GSFLOW), developed by U.S. Geological Survey, is selected as the numerical model to simulate the major processes of the hydrologic cycle. GSFLOW integrated PRMS with MODFLOW-2005 which perform surface hydrology simulation and 3-D groundwater simulation, respectively. The data of solar radiation, land use, precipitation, temperature, river stage, stream flow rate, groundwater level, and digital elevation model were collected from 2004-2012 to develop the simulation model. The coupled GSFLOW model is calibrated by automatic parameter estimation approach of using streamflows and groundwater levels. The singular value decomposition (SVD) method is performed to avoid the instability of solution during the model calibration. The calibrated results show that the state variables and fluxes in basin-scale water cycle can be simulated with high spatial and temporal resolutions, and all the important hydrologic processes can be characterized simultaneously in an integrated framework. The scenarios with different precipitation distributions and temperature patterns are conducted on the calibrated model to forecast the dynamic variations of hydrologic processes in the entire water basin. This study clearly demonstrated the benefits of using a physically based

  2. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    Science.gov (United States)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss

  3. Simulation of groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, east central Massachusetts

    Science.gov (United States)

    Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.

    2012-01-01

    The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results

  4. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin

  5. Integrated modeling of groundwater-surface water interactions in a tile-drained agricultural field: The importance of directly measured flow route contributions

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; McLaren, R.G.; Geer, F.C. van; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater-surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely av

  6. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  7. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain.

    Science.gov (United States)

    Brauns, Bentje; Bjerg, Poul L; Song, Xianfang; Jakobsen, Rasmus

    2016-07-01

    Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to: (a) understand pollutant exchange between surface water and groundwater, (b) quantify nutrient loadings, and (c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River (up to 29.8mg/L NH4-N and 6.8mg/L NO3-N), as well as nitrate via vertical transport from the field surface (up to 134.8mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320kg/ha/a. Nevertheless, both nitrogen species were only detected at low concentrations in shallow groundwater, averaging at 3.6mg/L NH4-N and 1.8mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.

  8. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Forsman, Jonas [Golder Associates, Stockholm (Sweden)

    2005-01-15

    Purpose: To study the flow of groundwater from rock masses at great depths and into the surface near deposits by use of mathematical models; and to estimate the spatial and temporal distribution of groundwater from great depths in the surface near deposits (quaternary deposits). The study is about the hydraulic interaction between the geosphere and the biosphere. Methodology: The system studied is represented by time dependent three dimensional mathematical models. The models include groundwater flows in the rock mass and in the quaternary deposits as well as surface water flows. The established groundwater models have such a resolution (degree of detail) that both rock masses at great depth and near surface deposits are included in the flow system studied. The modelling includes simulations under both steady state conditions and transient conditions The transient simulations represents the varying state of the groundwater system studied, caused by the variation in hydro-meteorological conditions during a normal year, a wet-year and a dry-year. The boundary condition along the topography of the model is a non-linear boundary condition, representing the ground surface above the sea and the varying actual groundwater recharge. Area studied: The area studied is located in Sweden, in the Northeast of the Uppland province, close to the Forsmark nuclear power plant. Water balance modelling: To obtain three significantly different groundwater recharge periods for the transient groundwater flow simulations a water balance modelling was carried out based on a statistical analysis of available hydro-meteorological data. To obtain a temporal distribution of the runoff (i.e. potential groundwater recharge), we have conducted a numerical time dependent water balance modelling. General conclusions of groundwater modelling: The discharge areas for the flow paths from great depth are given by the topography and located along valleys and lakes; the spatial and temporal extension of

  9. An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Funder, S.G.; Rasmussen, J.J.;

    2010-01-01

    . This was accomplished by coupling the system dynamics-based decision support system CARO-PLUS to the aquatic ecosystem model AQUATOX using an analytical volatilization model for the stream. The model was applied to a case study where a TCE contaminated groundwater plume is discharging to a stream. The TCE source...... will not be depleted for many decades, however measured and predicted TCE concentrations in surface water were found to be below human health risk management targets. Volatilization rapidly attenuates TCE concentrations in surface water. Thus, only a 300 m stream reach fails to meet surface water quality criteria....... An ecological risk assessment found that the TCE contamination did not impact the stream ecosystem. Uncertainty assessment revealed hydraulic conductivity to be the most important site-specific parameter. These results indicate that contaminant plumes with μgL-1 concentrations of TCE entering surface water...

  10. Dynamic Attribution of Global Water Demand to Surface Water and Groundwater Resources: Effects of Abstractions and Return Flows on River Discharge

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Wada, Yoshi; Bierkens, Marc

    2013-04-01

    As human water demand is increasing worldwide, groundwater is abstracted at rates that exceed groundwater recharge in many areas, resulting in depletion of existing groundwater stocks. Most studies, that focus on human water consumption and water stress indicate a gap between water demand and availability. However, between studies very different assumptions are made on how water abstraction is divided between surface water, groundwater, and other resources. Moreover, simplified assumptions are used of the interactions between groundwater and surface water. Here, we simulate at the global scale, the dynamic attribution of total water demand to surface water and groundwater resources, based on actual water availability and accounting for return flows and surface water- groundwater interactions. The global hydrological model PCR-GLOBWB is used to simulate water storages, abstractions, and return flows for the model period 1960-2010, with a daily time step at 0.5° x 0.5° spatial resolution. Total water demand is defined as requirements for irrigation, industry, and domestic use. Water abstractions are variably taken from surface water and groundwater resources depending on availability of both resources. Return flows of non-consumed abstracted water contribute to a single source; those of irrigation recharging groundwater, those of industry and domestic use discharging to surface waters. Groundwater abstractions are taken from renewable groundwater, or when exceeding recharge from an alternative unlimited resource. This resource consists of non-renewable groundwater, or non-local water, the former being an estimate of groundwater depletion. Results show that worldwide the effect of water abstractions is evident, especially on the magnitude and frequency of low flows when the contribution of groundwater through baseflow is substantial. River regimes are minimally affected by abstractions in industrial regions because of the high return flows. In irrigated regions the

  11. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    Science.gov (United States)

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  12. Hydrochemistry of surface water and groundwater in the shale bedrock, Cross River Basin and Niger Delta Region, Nigeria

    Science.gov (United States)

    Nganje, T. N.; Hursthouse, A. S.; Edet, Aniekan; Stirling, D.; Adamu, C. I.

    2017-05-01

    Water chemistry in the shale bedrock of the Cretaceous-Tertiary of the Cross River and Niger Delta hydrological basins has been investigated using major ions. To carry out a characterization of the water bearing units, 30 and 16 representatives surface and groundwater samples were collected. The evolution of the water is characterized by enhanced content of sodium, calcium and sulphate as a result of leaching of shale rock. The spatial changes in groundwater quality of the area shows an anomalous concentrations of ions in the central parts, while lower values characterize the eastern part of the basin covering Ogoja, Ikom and Odukpani areas. The values of total dissolved solids (TDS) and ions increases down gradient in the direction of groundwater flow. The dissolution of halite and gypsum explains part of the contained Na+, Ca2+, Cl- and SO4 2-, but other processes such as ion exchange, silicate weathering and pyrite oxidation also contribute to water composition. The assessment with contamination indicators such as TDS, hardness, chloride, nitrate and sulphate indicates that the water in area is suitable for human consumption in some locations. Modelling using MINTEQA2 program shows that the water from all the shale water bearing units are under saturated with respect to gypsum.

  13. Geochemical and isotopic evidences from groundwater and surface water for understanding of natural contamination in chronic kidney disease of unknown etiology (CKDu) endemic zones in Sri Lanka.

    Science.gov (United States)

    Edirisinghe, E A N V; Manthrithilake, H; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L

    2017-09-26

    Chronic kidney disease of unknown etiology (CKDu) is the main health issue in the dry zone of Sri Lanka. Despite many studies carried out, causative factors have not been identified yet clearly. According to the multidisciplinary researches carried out so far, potable water is considered as the main causative factor for CKDu. Hence, the present study was carried out with combined isotopic and chemical methods to understand possible relationships between groundwater; the main drinking water source, and CKDu in four endemic areas in the dry zone. Different water sources were evaluated isotopically ((2)H, (3)H and (18)O) and chemically from 2013 to 2015. Results revealed that prevalence of CKDu is significantly low with the groundwater replenished by surface water inputs. It is significantly high with the groundwater stagnated as well as groundwater recharged from regional flow paths. Thus, the origin, recharge mechanism and flow pattern of groundwater, as well as geological conditions which would be responsible for natural contamination of groundwater appear as the main causative factors for CKDu. Therefore, detailed investigations should be made in order to identify the element(s) in groundwater contributing to CKDu. The study recommends providing drinking water to the affected zones using water sources associated with surface waters.

  14. Revealing the connectivity of groundwater and surface water using electromagnetic induction measurements

    Science.gov (United States)

    Binley, A. M.; McLachlan, P.; Chambers, J. E.; Uhlemann, S.

    2016-12-01

    It is now widely recognised that hydrological and biogeochemical processes that occur at the interface of groundwater (GW) and surface water (SW) can have a significant impact on catchment water quality and ecosystem health. Significant heterogeneity in the fabric of the subsurface at the GW-SW interface can lead to complex fluid flow pathways, both of which can exert a strong control on biogeochemical cycling. Revealing such heterogeneity remains a challenge because of the limitations of traditional field experimental processes. Such traditional techniques are often invasive, which often prevents their use in ecologically sensitive environments. Furthermore, they are often limited to localised characterisation. Studies to date have thus focussed on relatively small (easily accessible) stream environments, at short reach, or plot, scales. There is a clear demand for techniques that can capture the heterogeneity of sediments and pore fluids over larger scales. Geophysical methods may offer valuable information at such scales, particularly when used in combination with traditional sampling approaches. The value of electrical methods for revealing detailed information about the heterogeneity of sediments at the GW-SW interface has been demonstrated, and in a few studies such methods have assisted tracer tests in mapping the solute pathways. However, most investigations have been confined to relatively small scale (tens of metres). There is growing (and renewed) interest in the use of frequency domain electromagnetic induction (EMI) techniques in hydrogeophysics. At the GW-SW interface these methods allow rapid, non-invasive exploration of the top few metres. Relatively recent technological developments have provided multi-coil instrumentation, permitting rapid assessment of electrical conductivity at multiple depths of investigation. Here, we demonstrate the effectiveness of EMI for revealing the heterogeneity of sediments and flow pathways at the GW-SW interface. We

  15. Rapid nutrient leaching to groundwater and surface water in clay soil areas

    NARCIS (Netherlands)

    Bronswijk, J.J.B.; Hamminga, W.; Oostindie, K.

    1995-01-01

    The mechanism and magnitude of nitrate leaching from grassland on a heavy clay soil were investigated by measuring nitrogen input, and nitrate concentrations in groundwater and drain discharge for two years. A bromide tracer was applied to study solute transport mechanisms. Nitrate transport in the

  16. Case studies of groundwater- surface water interactions and scale relationships in small alluvial aquifers

    NARCIS (Netherlands)

    Love, Dave; de Hamer, Wouter; Owen, Richard J.S.; Booij, Martijn J.; Uhlenbrook, Stefan; Hoekstra, Arjen Ysbert; van der Zaag, Pieter

    2007-01-01

    An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers

  17. Tracing wastewater effluents in surface and groundwaters: a couple approach with organic/inorganic tracers and isotopes

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Baran, Nicole; Soulier, Coralie

    2017-04-01

    In the context of land use change, the origins of contamination of water resources are often multiple, including for a single chemical element or molecule. For instance, excess of nitrates in both surface and groundwater can originate from agricultural practices and wastewater effluents. The discrimination of the origins and vectors of contamination in the environment is both an environmental and societal issue in order to define an integrated water resources management at the catchment or water body scale by implementing appropriate measures to effectively struggle against pollution. The objective of this study is to define a methodology for the identification of a "domestic wastewater" contamination within surface waters and groundwater. An ideal tracer should be conservative, persistent in the different water compartments, present in quantity above the detection limit and originate from a single type of pollution source. There is, however, no ideal tracer in the strict sense. Indeed, even chloride which is present in quantity in wastewater, and which behaves conservatively in the environment, is not an univocal tracer of wastewater, as it may come from atmospheric inputs, from the dissolution of evaporitic rocks, from the salting of roads or from fertilizers. To overcome this limitation, in this study, we propose a multi-tracer approach (chemical and isotopic) to identify and validate the relevance of foreseen tracers. Among the relevant tracers of wastewater, the following may be used for their intrinsic or combined discriminant power: 1) organic effluent tracers: nitrogen contents and isotopic ratios of nitrogen and oxygen of nitrates; 2) tracer of detergents: boron contents and boron isotopes; 3) pharmaceuticals tracers: e.g. carbamazepine, ibuprofen, paracetamol, gadolinium anomaly; 4) life-style tracers: e.g. caffeine. The originality of the study relies on small capacities wastewater treatment plants without tertiary treatment process. Results on a

  18. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China.

    Science.gov (United States)

    Yao, Linlin; Wang, Yanxin; Tong, Lei; Deng, Yamin; Li, Yonggang; Gan, Yiqun; Guo, Wei; Dong, Chuangju; Duan, Yanhua; Zhao, Ke

    2017-01-01

    The occurrence of 14 antibiotics (fluoroquinolones, tetracyclines, macrolides and sulfonamides) in groundwater and surface water at Jianghan Plain was investigated during three seasons. The total concentrations of target compounds in the water samples were higher in spring than those in summer and winter. Erythromycin was the predominant antibiotic in surface water samples with an average value of 1.60μg/L, 0.772μg/L and 0.546μg/L respectively in spring, summer and winter. In groundwater samples, fluoroquinolones and tetracyclines accounted for the dominant proportion of total antibiotic residues. The vertical distributions of total antibiotics in groundwater samples from three different depths boreholes (10m, 25m, and 50m) exhibited irregular fluctuations. Consistently decreasing of antibiotic residues with increasing of depth was observed in four (G01, G02, G03 and G05) groundwater sampling sites over three seasons. However, at the sampling sites G07 and G08, the pronounced high concentrations of total antibiotic residues were detected in water samples from 50m deep boreholes instead of those at upper aquifer in winter sampling campaign, with the total concentrations of 0.201μg/L and 0.100μg/L respectively. The environmental risks posed by the 14 antibiotics were assessed by using the methods of risk quotient and mixture risk quotient for algae, daphnids and fish in surface water and groundwater. The results suggested that algae might be the aquatic organism most sensitive to the antibiotics, with the highest risk levels posed by erythromycin in surface water and by ciprofloxacin in groundwater among the 14 antibiotics. In addition, the comparison between detected antibiotics in groundwater samples and the reported effective concentrations of antibiotics on denitrification by denitrifying bacteria, indicating this biogeochemical process driven by microorganisms won't be inhibitory influenced by the antibiotic residues in groundwater. Copyright © 2016

  19. Spatially distributed modelling of surface water-groundwater exchanges during overbank flood events - a case study at the Garonne River

    Science.gov (United States)

    Bernard-Jannin, Léonard; Brito, David; Sun, Xiaoling; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2016-08-01

    Exchanges between surface water (SW) and groundwater (GW) are of considerable importance to floodplain ecosystems and biogeochemical cycles. Flood events in particular are important for riparian water budget and element exchanges and processing. However SW-GW exchanges present complex spatial and temporal patterns and modelling can provide useful knowledge about the processes involved at the scale of the reach and its adjacent floodplain. This study used a physically-based, spatially-distributed modelling approach for studying SW-GW exchanges. The modelling in this study is based on the MOHID Land model, combining the modelling of surface water flow in 2D with the Saint-Venant equation and the modelling of unsaturated groundwater flow in 3D with the Richards' equation. Overbank flow during floods was also integrated, as well as water exchanges between the two domains across the entire floodplain. Conservative transport simulations were also performed to study and validate the simulation of the mixing between surface water and groundwater. The model was applied to the well-monitored study site of Monbéqui (6.6 km²) in the Garonne floodplain (south-west France) for a five-month period and was able to represent the hydrology of the study area. Infiltration (SW to GW) and exfiltration (SW to GW) were characterised over the five-month period. Results showed that infiltration and exfiltration exhibited strong spatiotemporal variations, and infiltration from overbank flow accounted for 88% of the total simulated infiltration, corresponding to large flood periods. The results confirmed that overbank flood events played a determinant role in floodplain water budget and SW-GW exchanges compared to smaller (below bankfull) flood events. The impact of floods on water budget appeared to be similar for flood events exceeding a threshold corresponding to the five-year return period event due to the study area's topography. Simulation of overbank flow during flood events was an

  20. A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland

    Directory of Open Access Journals (Sweden)

    C. Anibas

    2011-10-01

    Full Text Available Groundwater-surface water exchange studies on natural rivers and wetlands dominated by organic soils are scarce. We present a hierarchical approach to quantitatively investigate and interpret groundwater-surface water interaction in space and time by applying a combination of different field methods including piezometer nests, temperature and seepage measurements. The numerical 1-D heat transport model of STRIVE is used in transient mode to calculate vertical fluxes from thermal profiles measured along the upper Biebrza River, Poland over a period of nine months. The calculated fluxes show no clear spatial pattern of exchange fluxes unless an interpolation of the point estimates on a reach scale is performed. Significance of differences in net exchange rates versus morphological features are investigated with statistical tests. Time series of temperature and hydraulic head of the hyporheic zone are used to estimate the temporal variability of the groundwater-surface water exchange. Seepage meter measurements and slug tests were used for cross validation of modelled fluxes. Results show a strong heterogeneity of the thermal and physical soil properties along the reach, leading to a classification of these parameters for modelling purposes. The groundwater-surface water exchange shows predominantly upward water fluxes, however alternating sections of recharge exist. The exchange fluxes are significantly different dependent on the position of the river in the valley floor and the river morphology where fluxes are more dependent on hydraulic gradients than on river bed conductivity. Sections of higher fluxes are linked to the vicinity of the morainic plateau surrounding the rivers alluvium and to meanders, indicating that a perspective on the fluvio-plain scale is required for interpreting the estimated exchange fluxes. Since the vertical component of the exchange fluxes cannot explain the magnitude of the change in river discharge, a lateral flow

  1. Utilizing Resistivity Soundings and Forensic Geochemistry to Better Understand the Groundwater Contributions and the Interaction with Surface Water in a Streambed in the Texas Gulf Coast Area

    Science.gov (United States)

    Bighash, P.

    2012-12-01

    Water quality and quantity in a reservoir can be significantly affected by interactions between surface waters and adjacent aquifers. Environments that exhibit transient hydraulic conditions, such as changes in recharge and groundwater flow rates, are not well understood. The associated impacts to coastal water resources during elevated drought conditions can be better managed with a better understanding of the groundwater-surface water interaction and the transition zone. Proper characterization of the spatial and temporal extent of groundwater discharge is important for water resource management and contaminant migration pathways. The Texas coastal area has been experiencing exceptional drought conditions over the past few years which are expected to persist or intensify in the coming years. An investigation of how the hydrologic system is impacted by these conditions can be a valuable tool regarding water resource management, sustainability and conservation of the Gulf Coast region of South Texas. This study will be using resistivity soundings to vertically and laterally characterize groundwater-surface water interaction and provide a stratigraphic characterization of the transition zone in this area. Chemical and isotope tracers will be used to compliment the resistivity data in order to trace water sources in the surface water and transition zone. This information can aid in evaluating the extent of interaction and degree of mixing between the surface water and groundwater. The ultimate goal of this research is to provide new valuable information that could help professionals and researchers understand complex processes such as groundwater-surface water interaction using new methods that would improve the speed and accuracy of existing systems or techniques. This multidisciplinary approach can be useful in investigating land use impacts on groundwater inflow and in forecasting the availability of water resources in environmentally sensitive ecosystems such as

  2. Groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, phase 2, east-central Massachusetts

    Science.gov (United States)

    Eggleston, Jack R.; Zarriello, Phillip J.; Carlson, Carl S.

    2015-12-31

    The U.S. Geological Survey, in cooperation with the Town of Framingham, Massachusetts, has investigated the potential of proposed groundwater withdrawals at the Birch Road well site to affect nearby surface water bodies and wetlands, including Lake Cochituate, the Sudbury River, and the Great Meadows National Wildlife Refuge in east-central Massachusetts. In 2012, the U.S. Geological Survey developed a Phase 1 numerical groundwater model of a complex glacial-sediment aquifer to synthesize hydrogeologic information and simulate potential future pumping scenarios. The model was developed with MODFLOW-NWT, an updated version of a standard USGS numerical groundwater flow modeling program that improves solution of unconfined groundwater flow problems. The groundwater model and investigations of the aquifer improved understanding of groundwater–surface-water interaction and the effects of groundwater withdrawals on surface-water bodies and wetlands in the study area. The initial work also revealed a need for additional information and model refinements to better understand this complex aquifer system.

  3. A Conflict-Resolution Model for the Conjunctive Use of Surface and Groundwater Resources that Considers Water-Quality Issues: A Case Study

    Science.gov (United States)

    Bazargan-Lari, Mohammad Reza; Kerachian, Reza; Mansoori, Abbas

    2009-03-01

    The conjunctive use of surface and groundwater resources is one alternative for optimal use of available water resources in arid and semiarid regions. The optimization models proposed for conjunctive water allocation are often complicated, nonlinear, and computationally intensive, especially when different stakeholders are involved that have conflicting interests. In this article, a new conflict-resolution methodology developed for the conjunctive use of surface and groundwater resources using Nondominated Sorting Genetic Algorithm II (NSGA-II) and Young Conflict-Resolution Theory (YCRT) is presented. The proposed model is applied to the Tehran aquifer in the Tehran metropolitan area of Iran. Stakeholders in the study area have conflicting interests related to water supply with acceptable quality, pumping costs, groundwater quality, and groundwater table fluctuations. In the proposed methodology, MODFLOW and MT3D groundwater quantity and quality simulation models are linked with the NSGA-II optimization model to develop Pareto fronts among the objectives. The best solutions on the Pareto fronts are then selected using YCRT. The results of the proposed model show the significance of applying an integrated conflict-resolution approach to conjunctive use of surface and groundwater resources in the study area.

  4. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  5. Model reduction in coupled groundwater-surface water systems - potentials and limitations of the applied proper orthogonal decomposition (POD) method

    Science.gov (United States)

    Gosses, Moritz; Moore, Catherine; Wöhling, Thomas

    2016-04-01

    The complexity of many groundwater-surface water models often results in long model run times even on today's computer systems. This becomes even more problematic in combination with the necessity of (many) repeated model runs for parameter estimation and later model purposes like predictive uncertainty analysis or monitoring network optimization. Model complexity reduction is a promising approach to reduce the computational effort of physically-based models. Its impact on the conservation of uncertainty as determined by the (more) complex model is not well known, though. A potential under-estimation of predictive uncertainty has, however, a significant impact on model applications such as model-based monitoring network optimization. Can we use model reduction techniques to significantly reduce run times of highly complex groundwater models and yet estimate accurate uncertainty levels? Our planned research project hopes to assess this question and apply model reduction to non-linear groundwater systems. Several encouraging model simplification methods have been developed in recent years. To analyze their respective performance, we will choose three different model reduction methods and apply them to both synthetic and real-world test cases to benchmark their computational efficiency and prediction accuracy. The three methods for benchmarking will be proper orthogonal decomposition (POD) (following Siade et al. 2010), the eigenmodel method (Sahuquillo et al. 1983) and inversion-based upscaling (Doherty and Christensen, 2011). In a further step, efficient model reduction methods for application to non-linear groundwater-surface water systems will be developed and applied to monitoring network optimization. In a first step we present here one variant of the implementation and benchmarking of the POD method. POD reduces model complexity by working in a subspace of the model matrices resulting from spatial discretization with the same significant eigenvalue spectrum

  6. Impact of human activities on the physico-chemical quality of surface water and groundwater in the north of Marrakech (Morocco).

    Science.gov (United States)

    Oufline, Rachid; Hakkou, Rachid; Hanich, Lahoucine; Boularbah, Ali

    2012-09-01

    The aim of this study was to assess the impact of three sources of pollution (landfill leachate, wastewater and mining activities) on the physico-chemical characteristics of surface water and groundwater in the northern region of Marrakech (Morocco). Numerous groundwater samples and surface water (Tensift River) samples were collected during the dry season and analysed. The groundwater samples had a high conductivity, which varied between 0.95 and 7.40 mS/cm; the conductivity of the surface water samples varied between 1.31 and 15.84 mS/cm. pH varied between 6.64 and 8.10 for groundwater and between 6.70 and 8.40 for surface water. The results showed that groundwater and surface water had a degraded quality in the region. Principal component analysis (PCA) enabled identification of the impact of pollution sources by combining the upstream and the downstream points. These results also showed that, in the study area, the effect of wastewater and the mine were dominated those of the landfill.

  7. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    Science.gov (United States)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    The finite element application IWFM has been used to develop an integrated groundwater-surface water model for California's Central Valley, an area of ~50,000 km2, to simulate the evolution of the groundwater flow system and historical groundwater-surface water interactions on a monthly time step from October 1921 to September 2003. The Central Valley's hydrologic system changed significantly during this period. Prior to 1920, most surface water flowed unimpeded from source areas in the mountains surrounding the Central Valley through the Sacramento-San Joaquin Delta to the Pacific Ocean, and groundwater largely flowed from recharge areas on the valley rim to discharge as evapotransipration in extensive marshes along the valley's axis. Rapid agricultural development led to increases in groundwater pumping from ~0.5 km3/yr in the early 1920's to 13-18 km3/yr in the 1940's to 1970's, resulting in strong vertical head gradients, significant head declines throughout the valley, and subsidence of >0.3 m over an area of 13,000 km2. Construction of numerous dams and development of an extensive surface water delivery network after 1950 altered the surface water flow regime and reduced groundwater pumping to the current ~10 km3/yr, increasing net recharge and leading to local head gradient reversals and water level recoveries. A model calibrated to the range of historical flow regimes in the Central Valley will provide robust estimations of stream-groundwater interactions for a range of projected future scenarios. C2VSIM uses the IWFM application to simulate a 3-D finite element groundwater flow process dynamically coupled with 1-D land surface, stream flow, lake and unsaturated zone processes. The groundwater flow system is represented with three layers each having 1393 elements. Land surface processes are simulated using 21 subregions corresponding to California DWR water-supply planning areas. The surface-water network is simulated using 431 stream nodes representing 72

  8. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  9. Irrigated greywater in an urban sub-division as a potential source of metals to soil, groundwater and surface water.

    Science.gov (United States)

    Turner, Ryan D R; Warne, Michael St J; Dawes, Les A; Vardy, Suzanne; Will, Geoffrey D

    2016-12-01

    Increased water demands in dry countries such as Australia, have led to increased adoption of various water reuse practices. Irrigation of greywater (all water discharged from the bathrooms, laundry and kitchen apart from toilet waste) is seen as a potential means of easing water demands; however, there is limited knowledge of how greywater irrigation impacts terrestrial and aquatic environments. This study compared four greywater irrigated residential lots to adjacent non-irrigated lots that acted as controls. Accumulation and potential impacts of metals in soil, groundwater and surface water, as a result of greywater irrigation, were assessed by comparing measured concentrations to national and international guidelines. Greywater increased concentrations of some metals in irrigated soil and resulted in As, B, Cr and Cu exceeding guidelines after only four years of irrigation. Movement of metals from the irrigation areas resulted in metal concentrations in groundwater (Al, As, Cr, Cu, Fe, Mn, Ni and Zn) and surface water (Cu, Fe and Zn) exceeding environmental quality guidelines again within four years. These results are unlikely to be universally applicable but indicate the need to consider metals in greywater in order to minimize potential adverse environmental effects from greywater irrigation.

  10. Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington

    Science.gov (United States)

    Dougherty, Jennifer A.; Swarzenski, Peter W.; Dinicola, Richard S.; Reinhard, Martin

    2010-01-01

    Organic contaminants, such as pharmaceuticals and personal care products (PPCPs), pose a risk to water quality and the health of ecosystems. This study was designed to determine if a coastal community lacking point sources, such as waste water treatment plant effluent, could release PPCPs, herbicides, and plasticizers at detectable levels to their surface water and groundwater. Research was conducted in Liberty Bay, an embayment within Puget Sound, where 70% of the population (∼10,000) uses septic systems. Sampling included collection of groundwater and surface water with grab samples and the use of polar organic chemical integrative samplers (POCIS). We analyzed for a broad spectrum of 25 commonly used compounds, including PPCPs, herbicides, and a flame retardant. Twelve contaminants were detected at least once; only N,N-diethyl-meta-toluamide, caffeine, and mecoprop, a herbicide not attributed to septic systems, were detected in more than one grab sample. The use of POCIS was essential because contaminants were present at very low levels (nanograms), which is common for PPCPs in general, but particularly so in such a small community. The use of POCIS allowed the detection of five compounds that were not present in grab samples. Data suggest that the community is contaminating local water with PPCPs; this effect is likely to increase as the population and product usage increase. The results presented here are a first step toward assessing the transport of herbicides and PPCPs into this coastal system.

  11. Surface water - groundwater relationship in the downstream part of the Komadougou Yobe River (Eastern Sahelian Niger)

    Science.gov (United States)

    Hector, B.; Genthon, P.; Luxereau, A.; Descloîtres, M.; Moumouni Moussa, A.; Abdou, H.

    2012-04-01

    The Komadougou Yobe (KY) is a temporary river meandering on nearly 100 km along the Niger/Nigeria border in its lower part, before reaching the endoreic Lake Chad. There, seasonal flow from July to January is related to rainfall amount on the upstream Jos Plateau, Nigeria. In the semi-arid downstream area (350 mm annual rainfall in Diffa, Niger) the KY is the main source of recharge for the sandy quaternary aquifer which is used both for irrigation and for drinking water supply. The borders of the KY in Niger are subjected to an agricultural development involving intensive irrigated cropping of sweet pepper mainly produced for sale in Nigeria. Irrigation waters are mainly extracted from the KY, and therefore irrigation must stop when the River runs dry, but irrigation from wells is now developing with an increased risk of soil salinization. The flow rate of the KY has been impacted both by the 80s and 90s droughts, also underwent by the entire Sahel, and by the building up of a series of dams starting from the 70s in Nigeria. Therefore the KY and its relations with the underlying groundwaters should be carefully monitored to provide guidelines for policy makers in charge of the development of this area. However, in this remote area, data are scarce and often discontinuous : there are for example no continuous groundwater level data from before the drought. As part of the Lake Chad French IRD project, series of campaigns involving water level, exploration geophysics, gravity, soil sampling and social studies have been carried out between 2008 and 2011. They allowed to build a numerical model for groundwater-river interactions which in some instances has been compared with previously recorded data. This model is then forced with theoretical climatic senarii based on humid 60s data and data from the drought period. This allows discussing the relationships between the river and groundwaters in a changing climate. Our results militate for the setting up of a limited

  12. Simulation of groundwater and surface-water resources and evaluation of water-management alternatives for the Chamokane Creek basin, Stevens County, Washington

    Science.gov (United States)

    Ely, D. Matthew; Kahle, Sue C.

    2012-01-01

    A three-dimensional, transient numerical model of groundwater and surface-water flow was constructed for Chamokane Creek basin to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate the effects of potential increases in groundwater pumping on groundwater and surface-water resources in the basin. The Chamokane Creek model was constructed using the U.S. Geological Survey (USGS) integrated model, GSFLOW. GSFLOW was developed to simulate coupled groundwater and surface-water resources. The model uses 1,000-foot grid cells that subdivide the model domain by 102 rows and 106 columns. Six hydrogeologic units in the model are represented using eight model layers. Daily precipitation and temperature were spatially distributed and subsequent groundwater recharge was computed within GSFLOW. Streamflows in Chamokane Creek and its major tributaries are simulated in the model by routing streamflow within a stream network that is coupled to the groundwater-flow system. Groundwater pumpage and surface-water diversions and returns specified in the model were derived from monthly and annual pumpage values previously estimated from another component of this study and new data reported by study partners. The model simulation period is water years 1980-2010 (October 1, 1979, to September 30, 2010), but the model was calibrated to the transient conditions for water years 1999-2010 (October 1, 1998, to September 30, 2010). Calibration was completed by using traditional trial-and-error methods and automated parameter-estimation techniques. The model adequately reproduces the measured time-series groundwater levels and daily streamflows. At well observation points, the mean difference between simulated and measured hydraulic heads is 7 feet with a root-mean-square error divided by the total difference in water levels

  13. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  14. Large-Scale Groundwater Flow with Free Water Surface Based on Data from SKB's Site Investigation in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Woerman, Anders; Sjoegren, Bjoern; Marklund, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2004-12-01

    This report describes a data-base that covers entire Sweden with regard to various geographical parameters with implications to simulation of groundwater circulation on a regional and continental scale. The data-base include topography, stream network properties, and-use and water chemistry for limited areas. Furthermore, the report describes a computational (finite difference) code that solves the continuum equation for laminar, stationary and isotropic groundwater flow. The formulation accounts for a free groundwater surface except where the groundwater recharge into the stream network and lake bottoms. The theoretical background of the model is provided and the codes are described. The report also contain a simple user manual in a Matlab environment and provides and example calculation for the Forsmark area, Uppland, Sweden.

  15. Geo-electrical investigation of near surface conductive structures suitable for groundwater accumulation in a resistive crystalline basement environment: A case study of Isuada, southwestern Nigeria

    Science.gov (United States)

    Kayode, J. S.; Adelusi, A. O.; Nawawi, M. N. M.; Bawallah, M.; Olowolafe, T. S.

    2016-07-01

    This paper presents a geophysical surveying for groundwater identification in a resistive crystalline basement hard rock in Isuada area, Southwestern Nigeria. Very low frequency (VLF) electromagnetic and electrical resistivity geophysical techniques combined with well log were used to characterize the concealed near surface conductive structures suitable for groundwater accumulation. Prior to this work; little was known about the groundwater potential of this area. Qualitative and semi-quantitative interpretations of the data collected along eight traverses at 20 m spacing discovered conductive zones suspected to be fractures, faults, and cracks which were further mapped using Vertical Electrical Sounding (VES) technique. Forty VES stations were utilized using Schlumberger configurations with AB/2 varying from 1 to 100 m. Four layers i.e. the top soil, the weathered layer, the partially weathered/fractured basement and the fresh basement were delineated from the interpreted resistivity curves. The weathered layers constitute the major aquifer unit in the area and are characterized by moderately low resistivity values which ranged between about 52 Ωm and 270 Ωm while the thickness varied from 1 to 35 m. The depth to the basement and the permeable nature of the weathered layer obtained from both the borehole and the hand-dug wells was used to categorize the groundwater potential of the study area into high, medium and low ratings. The groundwater potential map revealed that about 45% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential and the remaining 45% constitutes high groundwater potential. The low resistivity, thick overburden, and fractured bedrock constitute the aquifer units and the series of basement depressions identified from the geoelectric sections as potential conductive zones appropriate for groundwater development.

  16. Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the Piedmont of South Taihang Mountains, China.

    Science.gov (United States)

    Li, Jing; Li, Fadong; Liu, Qiang; Suzuki, Yoshimi

    2014-12-01

    Irrigation projects have diverted water from the lower reaches of the Yellow River in China for more than 50 years and are unique in the world. This study investigated the effect of irrigation practices on the transfer and regional migration mechanisms of nitrate (NO3(-)) in surface water and groundwater in a Yellow River alluvial fan. Hydrochemical indices (EC, pH, Na(+), K(+), Mg(2+), Ca(2+), Cl(-), SO4(2-), and HCO(3-)) and stable isotopic composition (δ18O and δD) were determined for samples. Correlation analysis and principal component analysis (PCA) were performed to identify the sources of water constituents. Kriging was employed to simulate the spatial diffusion of NO3(-) and stable isotopes. Our results demonstrated that the groundwater exhibited more complex saline conditions than the surface water, likely resulting from alkaline conditions and lixiviation. NO3(-) was detected in all samples, 87.0% of which were influenced by anthropogenic activity. The NO3(-) pollution in groundwater was more serious than the common groundwater irrigation areas in the North China Plain (NCP), and was also slightly higher than that in surface water in the study area, but this was not statistically significant (p > 0.05). In addition, the groundwater sites with higher NO3(-) concentrations did not overlap with the spatial distribution of fertilizer consumption, especially in the central and western parts of the study area. NO3(-) distributions along the hydrogeological cross-sections were related to the groundwater flow system. Hydrochemical and environmental isotopic evidences indicate that surface water-groundwater interactions influence the spatial distribution of NO3(-) in the Piedmont of South Taihang Mountains.

  17. Data Validation Package - April and July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [Dept. of Energy (DOE), Washington, DC (United States). Office of Legacy Management; Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-02-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Domestic wells 0476 and 0477 were sampled in July because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0113, 0248, and 0477. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. No issues were identified during the data validation process that requires additional action or follow-up.

  18. Data Validation Package April 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management, Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-08-01

    This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Complete sample sets were collected from 42 of 48 planned locations (9 of 9 former mill site wells, 13 of 13 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Locations R6-M3, SW00-01, Seep 1, Seep 2, and Seep 5 were not sampled due to insufficient water availability. A partial sample was collected at location R4-M3 due to insufficient water. All samples from the permeable reactive barrier wells were filtered as specified in the program directive. Duplicate samples were collected from surface water location Sorenson and from monitoring wells 92-07 and RlO-Ml. Water levels were measured at all sampled wells and an additional set of wells. See Attachment2, Trip Report for additional details. The contaminants of concern (COCs) for the Monticello sites are arsenic, manganese, molybdenum, nitrate+ nitrite as nitrogen (nitrate+ nitrite as N), selenium, uranium, and vanadium. Locations with COCs that exceeded remediation goals are listed in Table 1 and Table 2. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in Attachment 3, Data Presentation. An assessment of anomalous data is included in Attachment 4.

  19. Data Validation Package October 2015 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management; Smith, Fred [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-01-21

    Sampling Period: October 12–14, 2015. This semiannual event includes sampling groundwater and surface water at the Monticello Mill Tailings Site. Sampling and analyses were conducted as specified in the 2004 Monticello Mill Tailings Site Operable Unit III Post-Record of Decision Monitoring Plan, Draft Final and Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Samples were collected from 52 of 61 planned locations (15 of 17 former mill site wells, 17 of 18 downgradient wells, 9 of 9 downgradient permeable reactive barrier wells, 2 of 7 seeps and wetlands, and 9 of 10 surface water locations). Locations MW00-07, Seep 1, Seep 2, Seep 3, Seep 5, Seep 6, SW00-01, T01-13, and T01-19 were not sampled because of insufficient water availability. All samples were filtered as specified in the monitoring plan. Duplicate samples were collected from surface water location W3-04 and from monitoring wells 82-08, 92-09, and 92-10. Water levels were measured at all but one sampled well and an additional set of wells. The contaminants of concern (COCs) for the Monticello Mill Tailings Site are arsenic, manganese, molybdenum, nitrate + nitrite as nitrogen (nitrate + nitrite as N), selenium, uranium, and vanadium. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in this report. Locations with COCs that exceeded remediation goals are listed.

  20. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  1. Occurrence of phosphorus in groundwater and surface water of northwestern Mississippi

    Science.gov (United States)

    Welch, Heather L.; Kingsbury, James A.; Coupe, Richard H.

    2010-01-01

    Previous localized studies of groundwater samples from the Mississippi River Valley alluvial (MRVA) aquifer have demonstrated that dissolved phosphorus concentrations in the aquifer are much higher than the national background concentration of 0.03 milligram per liter (mg/L) found in 400 shallow wells across the country. Forty-six wells screened in the MRVA aquifer in northwestern Mississippi were sampled from June to October 2010 to characterize the occurrence of phosphorus in the aquifer, as well as the factors that might contribute to high dissolved phosphorus concentrations in groundwater. Dissolved phosphorus concentrations ranged from 0.12 to 1.2 mg/L with a median concentration of 0.62 mg/L. The predominant subunit of the MRVA aquifer in northwestern Mississippi is the Holocene alluvium in which median dissolved phosphorus concentrations were higher than the Pleistocene valley trains deposits subunit. Highest phosphorus concentrations occurred in water from wells located along the Mississippi River. A general association between elevated phosphorus concentrations and dissolved iron concentrations suggests that reducing conditions that mobilize iron in the MRVA aquifer also might facilitate transport of phosphorus. Using baseflow separation to estimate the contribution of baseflow to total streamflow, the estimated contribution to the total phosphorus load associated with baseflow at the Tensas River at Tendal, LA, and at the Bogue Phalia near Leland, MS, was 23 percent and 8 percent, respectively. This analysis indicates that elevated concentrations of dissolved phosphorus in the MRVA aquifer could be a possible source of phosphorus to streams during baseflow conditions. However, the fate of phosphorus in groundwater discharge and irrigation return flow to streams is not well understood.

  2. Surface-water and groundwater interactions in an extensively mined watershed, upper Schuylkill River, Pennsylvania, USA

    Science.gov (United States)

    Cravotta, Charles A.; Goode, Daniel J.; Bartles, Michael D.; Risser, Dennis W.; Galeone, Daniel G.

    2014-01-01

    Streams crossing underground coal mines may lose flow, while abandoned mine drainage (AMD) restores flow downstream. During 2005-12, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near-neutral pH and elevated concentrations of iron, manganese, and sulfate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared to nearby streams, consistent with rapid infiltration and slow release of groundwater from the mine. Downstream of the AMD, dissolved iron was attenuated by oxidation and precipitation while dissolved CO2 degassed and pH increased. During high-flow conditions, the AMD and downstream waters exhibited decreased pH, iron, and sulfate with increased acidity that were modeled by mixing net-alkaline AMD with recharge or runoff having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high-flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and the West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality in streams.

  3. Application limits of the interpretation of near-surface temperature time series to assess groundwater recharge

    Science.gov (United States)

    Gosselin, J. S.; Rivard, C.; Martel, R.; Lefebvre, R.

    2016-07-01

    The main objective of this study was to test the application limits of a groundwater recharge assessment technique based on the inversion of a vertical one-dimensional numerical model of advective-conductive heat transport, using temperature time series at three different depths (1, 3, 5 m) in the unsaturated zone. For this purpose, several synthetic hourly datasets of subsurface temperatures, representing various weather, ground cover, and soil texture conditions, thus covering a wide range of groundwater recharge values, were produced with the vertical one-dimensional coupled heat and moisture transport simulator SHAW (Simultaneous Heat and Water model). Estimates of the vertical flux of water in the soil were then retrieved from these realistic temperature profiles using a simple one-dimensional numerical simulator of advective and conductive heat transport in the unsaturated zone that was developed as part of this study. The water flux was assumed constant on a weekly, monthly, semiannual, and annual basis. From these vertical water flux estimates, annual (potential) groundwater recharge rates were then computed and results were compared to those calculated previously with SHAW to assess the accuracy of the method. Results showed that, under ideal conditions, it would be possible to estimate annual recharge rates that are above 200 mm/y, with an acceptable error of less than 20%. These "ideal" conditions include the resolution of the water flux on a weekly basis, error-free temperature measurements below the soil freezing zone, and model parameter values (thermal conductivity and heat capacity of the soil) known a priori with no uncertainty. However, this work demonstrates that the accuracy of the method is highly sensitive to the uncertainty of the input model parameters of the numerical model used to carry out the inversion and to measurement errors of temperature time series. For the conditions represented in this study, these findings suggest that, despite

  4. Improving the representation of river-groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model

    KAUST Repository

    Zampieri, Matteo

    2012-02-01

    Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions and the ecosystem dynamics. In regional-scale climate applications land surface models (LSMs) are commonly coupled to atmospheric models to close the surface energy, mass and carbon balance. LSMs in these applications are used to resolve the momentum, heat, water and carbon vertical fluxes, accounting for the effect of vegetation, soil type and other surface parameters, while lack of adequate resolution prevents using them to resolve horizontal sub-grid processes. Specifically, LSMs resolve the large-scale runoff production associated with infiltration excess and sub-grid groundwater convergence, but they neglect the effect from loosing streams to groundwater. Through the analysis of observed data of soil moisture obtained from the Oklahoma Mesoscale Network stations and land surface temperature derived from MODIS we provide evidence that the regional scale soil moisture and surface temperature patterns are affected by the rivers. This is demonstrated on the basis of simulations from a land surface model (i.e., Community Land Model - CLM, version 3.5). We show that the model cannot reproduce the features of the observed soil moisture and temperature spatial patterns that are related to the underlying mechanism of reinfiltration of river water to groundwater. Therefore, we implement a simple parameterization of this process in CLM showing the ability to reproduce the soil moisture and surface temperature spatial variabilities that relate to the river distribution at regional scale. The CLM with this new parameterization is used to evaluate impacts of the improved representation of river-groundwater interactions on the simulated water cycle parameters and the surface energy budget at the regional scale. © 2011 Elsevier B.V.

  5. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    Science.gov (United States)

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  6. Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater

    Science.gov (United States)

    Leenheer, J.A.; Nanny, M.A.; McIntyre, C.

    2003-01-01

    13C NMR analyses of hydrophobic dissolved organic matter (DOM) fractions isolated from a landfill leachate contaminated groundwater near Norman, OK; the Colorado River aqueduct near Los Angeles, CA; Anaheim Lake, an infiltration basin for the Santa Ana River in Orange County, CA; and groundwater from the Tomago Sand Beds, near Sydney, Australia, found branched methyl groups and quaternary aliphatic carbon structures that are indicative of terpenoid hydrocarbon precursors. Significant amounts of lignin precursors, commonly postulated to be the major source of DOM, were found only in trace quantities by thermochemolysis/gas chromatography/mass spectrometry of the Norman Landfill and Tomago Sand Bed hydrophobic DOM fractions. Electrospray/tandem mass spectrometry of the Tomago Sand Bed hydrophobic acid DOM found an ion series differing by 14 daltons, which is indicative of aliphatic and aryl-aliphatic polycarboxylic acids. The product obtained from ozonation of the resin acid, abietic acid, gave a similar ion series. Terpenoid precursors of DOM are postulated to be derived from resin acid paper sizing agents in the Norman Landfill, algal and bacterial terpenoids in the Colorado River and Anaheim Lake, and terrestrial plant terpenoids in the Tomago Sand Beds.

  7. Modelling spatial and temporal variability of surface water-groundwater fluxes and heat exchange along a lowland river reach

    Science.gov (United States)

    Munz, Matthias; Schmidt, Christian; Fleckenstein, Jan; Oswald, Sascha

    2013-04-01

    In this study we used the deterministic, fully-integrated surface-subsurface flow and heat transport model (HydroGeoSphere) to investigate the spatial and temporal variability of surface water-groundwater (SFW-GW) interaction along a lowland river reach. The model incorporates the hydrological as well as the heat transport processes including (1) radiative fluxes warming and cooling the surface water; (2) seasonal groundwater temperature changes; (3) occasionally occurring heat inputs due to precipitation and (4) highly variable SFW-GW water advective heat exchange driven by the general relation between SFW and GW hydraulic heads and geomorphological structure of the riverbed. The study area is a 100 m long lowland river reach of the Selke river, at the boundary of the Harz mountains characterized by distinctive gravel bars. Continuous time series of hydraulic heads and temperatures at different depth in the river bank, the hyporheic zone and within the river are used to define the boundary conditions, to calibrate and to validate the numerical model. The 3D modelling results show that the water and heat exchange at the SFW-GW interface is highly variable in space with zones of daily temperature oscillations penetrating deep into the sediment and spots of daily constant temperature following the average GW temperature. To increase the understanding of evolving pattern, the observed temperature variations in space and time will be linked to dominant stream flow conditions, streambed morphology, advective and conductive heat exchange between SFW and GW and subsurface solute residence times. This study allows to analyse and quantify water and heat fluxes at the SFW-GW interface, to trace subsurface flow paths within the streambed sediments and thus improves the understanding of hyporheic zone exchange mechanisms. It is a sound basis for investigating quantitatively variations of sediment properties, boundary conditions and streambed morphology and also for subsequent

  8. MEK inhibitor treatment is effective in a patient with metastatic carcinoma of the ampulla of Vater with BRAF and NRAS mutations shown by next-generation sequencing.

    Science.gov (United States)

    Tahover, Esther; Bar Shalom, Rachel; Bogot, Naama; Kelsen, David; Gabizon, Alberto

    2016-07-01

    Here, we present a case of an 84-year-old woman who developed obstructive jaundice and was diagnosed with nonoperable adenocarcinoma originating from the ampulla of Vater, a lethal disease with a median overall survival of less than a year. Her tumor was examined by next-generation sequencing, which showed BRAF and NRAS mutations. To target these mutations, a MEK inhibitor was chosen for treatment. The patient has been treated with a MEK inhibitor for the last 12 months since diagnosis, with clinical and laboratory improvement and manageable side effects. PET-computed tomography imaging has shown stable disease or improvement in the primary and metastatic lesions. This is the first case report of an ampulla of a Vater cancer patient with NRAS and BRAF mutations, identified in next-generation sequencing, and treated successfully with a MEK inhibitor.

  9. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    Science.gov (United States)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  10. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  11. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia

    Science.gov (United States)

    Gebreyohannes, Tesfamichael; De Smedt, Florimond; Walraevens, Kristine; Gebresilassie, Solomon; Hussien, Abdelwasie; Hagos, Miruts; Amare, Kasa; Deckers, Jozef; Gebrehiwot, Kindeya

    2013-08-01

    The Geba basin is one of the most water-stressed areas of Ethiopia, with only a short rainy period from mid-June to mid-September. Because rainfall in this region has been consistently erratic in the last decades, both in time and space, rain-fed agriculture has become problematic. Hence, in order to supplement rain-fed agriculture by irrigation, a detailed understanding of local and regional surface water and groundwater resources is important. The main objective of this study is to assess the available water resources in the Geba basin using a spatially distributed water balance model (WetSpass). Relevant input data for the model is prepared in the form of digital maps using remote sensing images, GIS tools, FAO and NASA databases, field reconnaissance and processing of meteorological and hydrological observations. The model produces digital maps of long-term average, seasonal and annual surface runoff, evapotranspiration and groundwater recharge. Results of the model show that 76% of the precipitation in the basin is lost through evapotranspiration, 18% becomes surface runoff and only 6% recharges the groundwater system. Model predictions are verified against river flow observations and are shown to be reliable. Additional maps are derived of accumulated surface runoff, safe yield for groundwater abstraction and water deficit for crop growth. Comparison of existing reservoirs with the accumulated runoff map shows that many reservoirs have failed because their design capacity is much higher than the actual inflow. Comparison of the safe yield map with the crop water deficit map shows that in most areas groundwater can be safely abstracted to supplement the water deficit for crop growth during the wet summer season. However, in the dry winter season the crop water deficit is too high to be supplemented by groundwater abstraction in a sustainable way.

  12. Evaluating the Risks of Surface Spills Associated with Hydraulic Fracturing Activities to Groundwater Resources: a Modeling Study in the South Platte Alluvial Aquifer

    Science.gov (United States)

    Kanno, C.; McLaughlin, M.; Blotevogel, J.; Benson, D. A.; Borch, T.; McCray, J. E.

    2015-12-01

    Hydraulic fracturing has revolutionized the U.S.'s energy portfolio by making shale reservoirs productive and commercially viable. However, the public is concerned that the chemical constituents in hydraulic fracturing fluid, produced water, or natural gas itself could potentially impact groundwater or adjacent streams. Here, we conduct fate and transport simulations of surface spills, the most likely contamination pathway to occur during oil and gas production operations, to evaluate whether or not these spills pose risks to groundwater quality. We focus on the South Platte Alluvial Aquifer, which is located in the greater Denver metro area and overlaps a zone of high-density oil and gas development. The purpose of this work is to assess the mobility and persistence of chemical contaminants (e.g. biocides, friction reducers, surfactants, hydrocarbons, etc.) —based on sorption to soil, degradation potential, co-contaminant interactions, and spill conditions—and to understand the site characteristics and hydrologic conditions that would make a particular location prone to groundwater quality degradation in the event of an accidental release. We propose a coupled analytical-numerical approach that could be duplicated by environmental consultants. Results suggest that risk of groundwater pollution, based on predicted concentration at the groundwater table, is low in most areas of the South Platte system for the contaminants investigated under common spill conditions. However, substantial risk may exist in certain areas where the groundwater table is shallow. In addition, transport of certain contaminants is influenced by interactions with other constituents in produced or stimulation fluids. By helping to identify locations in the Front Range of Colorado that are at low or high risk for groundwater contamination due to a surface spill, it is our hope that this work will aid in improving prevention, mitigation, and remediation practices so that decision-makers can

  13. Groundwater, surface-water, and water-chemistry data from C-aquifer monitoring program, northeastern Arizona, 2005-11

    Science.gov (United States)

    Brown, Christopher R.; Macy, Jamie P.

    2012-01-01

    The C aquifer is a regionally extensive multiple-aquifer system supplying water for municipal, agricultural, and industrial use in northeastern Arizona, northwestern New Mexico, and southeastern Utah. An increase in groundwater withdrawals from the C aquifer coupled with ongoing drought conditions in the study area increase the potential for drawdown within the aquifer. A decrease in the water table and potentiometric surface of C aquifer is illustrated locally by the drying up of Obed Meadows, a natural peat deposit, and Hugo Meadows, a natural wetland, both south of Joseph City, Arizona. Continual increase in water use from the C aquifer, including a planned increase in pumpage by the City of Flagstaff, is justification for continued monitoring of the C-aquifer system in order to quantify physical and chemical responses to pumping stresses.

  14. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  15. Assessment of hydrogeologic terrains, well-construction characteristics, groundwater hydraulics, and water-quality and microbial data for determination of surface-water-influenced groundwater supplies in West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Paybins, Katherine S.

    2016-08-30

    In January 2014, a storage tank leaked, spilling a large quantity of 4-methylcyclohexane methanol into the Elk River in West Virginia and contaminating the water supply for more than 300,000 people. In response, the West Virginia Legislature passed Senate Bill 373, which requires the West Virginia Department of Health and Human Resources (WVDHHR) to assess the susceptibility and vulnerability of public surface-water-influenced groundwater supply sources (SWIGS) and surface-water intakes statewide. In response to this mandate for reassessing SWIGS statewide, the U.S. Geological Survey (USGS), in cooperation with the WVDHHR, Bureau of Public Health, Office of Environmental Health Services, compiled available data and summarized the results of previous groundwater studies to provide the WVDHHR with data that could be used as part of the process for assessing and determining SWIGS.

  16. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    Science.gov (United States)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  17. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona: 2011-2012

    Science.gov (United States)

    Macy, Jamie P.; Unema, Joel A.

    2014-01-01

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2011 to September 2012. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2011, total groundwater withdrawals were 4,480 acre-ft, industrial withdrawals were 1,390 acre-ft, and municipal withdrawals were 3,090 acre-ft. Total withdrawals during 2011 were about 39 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a slurry. From 2010 to 2011 total withdrawals increased by 11 percent; industrial withdrawals increased by approximately 19 percent, and total municipal withdrawals increased by 8 percent. From 2011 to 2012, annually measured water levels in the Black Mesa area declined in 8 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 9 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.0 feet. From the prestress period (prior to 1965) to 2012, the median water-level change for 34 wells in both

  18. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona - 2010-2011

    Science.gov (United States)

    Macy, Jamie P.; Brown, Christopher R.; Anderson, Jessica R.

    2012-01-01

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area is typically between 6 to 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2010 to September 2011. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2010, total groundwater withdrawals were 4,040 acre-ft, industrial withdrawals were 1,170 acre-ft, and municipal withdrawals were 2,870 acre-ft. Total withdrawals during 2010 were about 42 percent less than total withdrawals in 2005 because of Peabody Western Coal Company's discontinued use of water to transport coal in a slurry. From 2009 to 2010 total withdrawals decreased by 5 percent; industrial withdrawals decreased by approximately 16 percent, and total municipal withdrawals increased by 1 percent. From 2010 to 2011, annually measured water levels in the Black Mesa area declined in 7 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was 0.0 foot. Water levels declined in 11 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was -0.7 foot. From the prestress period (prior to 1965) to 2011, the median water-level change for 33 wells in both the

  19. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2012–2013

    Science.gov (United States)

    Macy, Jamie P.; Truini, Margot

    2016-03-02

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2012 to September 2013. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In calendar year 2012, total groundwater withdrawals were 4,010 acre-ft, industrial withdrawals were 1,370 acre-ft, and municipal withdrawals were 2,640 acre-ft. Total withdrawals during 2012 were about 45 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a coal slurry pipeline. From 2011 to 2012 total withdrawals decreased by 10 percent; industrial withdrawals decreased by approximately 1 percent, and total municipal withdrawals decreased by 15 percent.From 2012 to 2013, annually measured water levels in the Black Mesa area declined in 6 of 16 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was 0.8 feet. Water levels declined in 5 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.3 feet. From the prestress period (prior to 1965) to 2013, the median water

  20. Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990-2006

    Science.gov (United States)

    Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.

    2010-01-01

    nutrient management practices designed to reduce nutrient transport to streams by runoff. Conversely, sites with potential for shallow or deep groundwater contribution (some combination of permeable soils or permeable bedrock) had significantly greater contributions of nitrate from base flow. Effective nutrient management strategies would consider groundwater nitrate contributions in these areas. Mean annual base-flow nitrate concentrations were compared to shallow-groundwater nitrate concentrations for 27 sites. Concentrations in groundwater tended to be greater than base-flow concentrations for this group of sites. Sites where groundwater concentrations were much greater than base-flow concentrations were found in areas of high infiltration and oxic groundwater conditions. The lack of correspondingly high concentrations in the base flow of the paired surface-water sites may have multiple causes. In some settings, there has not been sufficient time for enough high-nitrate shallow groundwater to migrate to the nearby stream. In these cases, the stream nitrate concentrations lag behind those in the shallow groundwater, and concentrations may increase in the future as more high-nitrate groundwater reaches the stream. Alternatively, some of these sites may have processes that rapidly remove nitrate as water moves from the aquifer into the stream channel. Partitioning streamflow and nitrate load between the quick-flow and base-flow portions of the hydrograph coupled with relative scales of soil permeability can infer the importance of surface water compared to groundwater nitrate sources. Study of the relation of nitrate concentrations to base-flow index and the comparison of groundwater nitrate concentrations to stream nitrate concentrations during times when base-flow index is high can provide evidence of potential nitrate transport mechanisms. Accounting for the surface-water and groundwater contributions of nitrate is crucial to effective management and remediat

  1. Endoscopic sphincterotomy in patients with stenosis of ampulla of Vater: Three-year follow-up of exocrine pancreatic function and clinical symptoms

    Institute of Scientific and Technical Information of China (English)

    Nils Ewald; Axel Michael Marzeion; Reinhard Georg Bretzel; Hans Ulrich Kloer; Philip Daniel Hardt

    2007-01-01

    AIM: To investigate retrospectively the long-term effect of endoscopic sphincterotomy (ES) including exocrine pancreatic function in patients with stenosis of ampulla of Vater.METHODS: After diagnostic endoscopic retrograde cholangiopancreatography (ERCP) and ES because of stenosis of the ampulla of Vater (SOD Type I), follow-up examinations were performed in 60 patients (mean follow-up time 37.7 mo). Patients were asked about clinical signs and symptoms at present and before intervention using a standard questionnaire. Before and after ES exocrine pancreatic function was assessed by determination of immunoreactive fecal elastase 1. Serum enzymes indicating cholestasis as well as serum lipase and amylase were measured.RESULTS: Eighty percent of patients reported an improvement in their general condition after ES. The fecal elastase 1 concentrations (FEC) in all patients increased significantly after ES. This effect was even more marked in patients with pathologically low concentrations (< 200 ng/g) of fecal elastase prior to ES. The levels of serum lipase and amylase as well as serum alcaline phosphatase (AP) and gamma-glutamyltranspeptidase (GGT) decreased significantly after ES.CONCLUSION: The results of this study demonstrate that patients with stenosis of the ampulla of Vater can be successfully treated with endoscopic sphincterotomy. The positive effect is not only indicated by sustained improvement of clinical symptoms and cholestasis but also by improvement of exocrine pancreatic function.

  2. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  3. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    Science.gov (United States)

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  4. Investigat ing the effect of surface water – groundwater interactions on stream temperature using D istributed Temperature Sensing and instream temperature model

    DEFF Research Database (Denmark)

    Matheswaran, K.; Blemmer, M.; Mortensen, J.

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  5. Investigat ing the effect of surface water – groundwater interactions on stream temperature using D istributed Temperature Sensing and instream temperature model

    DEFF Research Database (Denmark)

    Matheswaran, K.; Blemmer, M.; Mortensen, J.;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  6. Chloride in Groundwater and Surface Water in Areas Underlain by the Glacial Aquifer System, Northern United States

    Science.gov (United States)

    Mullaney, John R.; Lorenz, David L.; Arntson, Alan D.

    2009-01-01

    A study of chloride in groundwater and surface water was conducted for the glacial aquifer system of the northern United States in forested, agricultural, and urban areas by analyzing data collected for the National Water-Quality Assessment Program from 1991 to 2004. Groundwater-quality data from a sampling of 1,329 wells in 19 states were analyzed. Chloride concentrations were greater than the secondary maximum contaminant level established by the U.S. Environmental Protection Agency of 250 milligrams per liter in 2.5 percent of samples from 797 shallow monitoring wells and in 1.7 percent of samples from 532 drinking-water supply wells. Water samples from shallow monitoring wells in urban areas had the largest concentration of chloride, followed by water samples from agricultural and forested areas (medians of 46, 12, and 2.9 milligrams per liter, respectively). An analysis of chloride:bromide ratios, by mass, and chloride concentrations compared to binary mixing curves for dilute groundwater, halite, sewage and animal waste, potassium chloride fertilizer, basin brines, seawater, and landfill leachate in samples from monitoring wells indicated multiple sources of chloride in samples from wells in urban areas and agricultural areas. Water from shallow monitoring wells in urban areas had the largest chloride:bromide ratio, and samples with chloride:bromide ratios greater than 1,000 and chloride concentrations greater than 100 milligrams per liter were dominated by halite; however, the samples commonly contained mixtures that indicated input from sewage or animal waste. Chloride:bromide ratios were significantly larger in samples from public-supply drinking-water wells than from private drinking-water wells, and ratios were significantly larger in all drinking-water wells in eastern and central regions of the glacial aquifer system than in west-central and western regions of the glacial aquifer system. Surface-water-quality data collected regularly during varying

  7. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin;

    2016-01-01

    experiments include five simulations. First MIKE SHE is forced by observed climate data in two versions i) with groundwater at a fixed uniform depth, and ii) with a dynamical groundwater component simulating shallow groundwater conditions in river valleys. iii) In a third simulation MIKE SHE is forced...

  8. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  9. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    Science.gov (United States)

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  10. Microbial analyses of groundwater and surfaces during the retrieval of experiment 3, A04, in MINICAN

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Edlund, Johanna; Eriksson, Lena [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2011-12-15

    The MINICAN project is located at the depth of 450 m in the Aespoe Hard Rock Laboratory (HRL) research tunnel. The aim of the project was to study corrosion of the cast iron inserts if a hole is introduced in the outer copper-canister. The experimental part of MINICAN started in 2007 and consists of five different experiment canisters (Table 1.1), denoted experiment A02-A06. Four of the MINICAN test copper canisters are surrounded by bentonite in a support steel cage, of which the bentonite in experiment A05 is fully compacted according to the KBS-3 approach (dry density 1,600 kg m{sup -3}) and experiments A02-A04 are compacted with bentonite to a lower density than will be used (dry density 1,300 kg m{sup -3}). Experiment A06 has no bentonite. In all the MINICAN copper canisters, holes with a diameter of 1 mm have been drilled to allow Aspo groundwater to come in contact with the interior cast iron inserts. This is done to mimic real accidental leakage during the KBS-3 type of long-time spent nuclear fuel storage. The project has been described in 1068871- Project Plan MINICAN, in AP TD F77.3-05-001, AP TD F77.3.08-44 and in AP TD F77.3.

  11. Radon as a tracer to characterize the interactions between groundwater and surface water around the ground source heat pump system in riverside area

    Science.gov (United States)

    Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun

    2016-04-01

    The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.

  12. Simulating groundwater-surface water interactions in the Canadian Prairies using a coupled land-atmosphere model (ParFlow-CLM)

    Science.gov (United States)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    The Canadian prairies are cold and dry. Surface depressions are ubiquitous, and contain permanent or ephemeral ponds. The ponds are filled by snowmelt and precipitation on the ponds and lose a significant portion of their water to evaporation, but also, depending on their landscape position, may spill to other ponds or channels, recharge groundwater, or received groundwater discharge. Since precipitation and actual evaporation are closely balanced, the pond water balances are very sensitive to change in climate, and the prairies in general have been subject to damaging floods and droughts, in particular in the last decade or two. A 2.25 km2 field site at St Denis, central Saskatchewan, contains over 100 ponds, some permanent, some ephemeral, some saline, some fresh, some recharging groundwater, some receiving groundwater discharge. The site has been extensively studied for almost 50 years, with about one decade of continuous meteorological data, and three years of detailed pond level, soil moisture and temperature, and groundwater data. The objective of this study was to assess the performance of PARFLOW-CLM (a coupled land-atmosphere model) in simulating the pond-groundwater interactions at this site. Our conceptual model of the site includes soil properties that are progressively weathered with depth, and we implement this in a simplified dual permeability mathematical model of the soil hydraulic properties, whereby storage is dominated by the matrix and flow is dominated by macropores. The model performance was surprisingly good, doing quite a good job of capturing the observed groundwater and pond level dynamics. The soil freezing regime is also captured reasonably well, though the timing and pattern of the zero degree isotherm during soil thaw, which is critically important for runoff generation processes, was not captured as well. The model provides credible insights into the spatial patterns of evapotranspiration, and the seasonal dynamics of subsurface

  13. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  14. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  15. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  16. Quantification of long-term wastewater fluxes at the surface water/groundwater-interface: An integrative model perspective using stable isotopes and acesulfame

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, I., E-mail: i.engelhardt@fz-juelich.de [Forschungszentrum Jülich, Institute of Bio- and Geosciences, Agrosphere — IBG-3 (Germany); Technical University of Darmstadt, Institute of Applied Geosciences (Germany); Barth, J.A.C. [GeoZentrum Nordbayern, University of Erlangen-Nuremberg (Germany); Bol, R. [Forschungszentrum Jülich, Institute of Bio- and Geosciences, Agrosphere — IBG-3 (Germany); Schulz, M.; Ternes, T.A. [Federal Institute of Hydrology (BfG) (Germany); Schüth, C. [Technical University of Darmstadt, Institute of Applied Geosciences (Germany); van Geldern, R. [GeoZentrum Nordbayern, University of Erlangen-Nuremberg (Germany)

    2014-01-01

    The suitability of acesulfame to trace wastewater-related surface water fluxes from streams into the hyporheic and riparian zones over long-term periods was investigated. The transport behavior of acesulfame was compared with the transport of water stable isotopes (δ{sup 18}O or δ{sup 2}H). A calibrated model based on a joint inversion of temperature, acesulfame, and piezometric pressure heads was employed in a model validation using data sets of acesulfame and water stable isotopes collected over 5 months in a stream and groundwater. The spatial distribution of fresh water within the groundwater resulting from surface water infiltration was estimated by computing groundwater ages and compared with the predicted acesulfame plume obtained after 153 day simulation time. Both, surface water ratios calculated with a mixing equation from water stable isotopes and simulated acesulfame mass fluxes, were investigated for their ability to estimate the contribution of wastewater-related surface water inflow within groundwater. The results of this study point to limitations for the application of acesulfame to trace surface water–groundwater interactions properly. Acesulfame completely missed the wastewater-related surface water volumes that still remained in the hyporheic zone under stream-gaining conditions. In contrast, under stream-losing conditions, which developed after periods of stagnating hydraulic exchange, acesulfame based predictions lead to an overestimation of the surface water volume of up to 25% in the riparian zone. If slow seepage velocities prevail a proportion of acesulfame might be stored in smaller pores, while when released under fast flowing water conditions it will travel further downstream with the groundwater flow direction. Therefore, under such conditions acesulfame can be a less-ideal tracer in the hyporheic and riparian zones and additional monitoring with other environmental tracers such as water stable isotopes is highly recommended

  17. Data Validation Package - June 2015 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2015-08-01

    Groundwater samples were collected during the 2015 sampling event from point-of-compliance (POC) wells 0171, 0173, 0176, 0179, 0181, and 0813 to monitor the disposition of contaminants in the middle sandstone unit of the Cedar Mountain Formation. Groundwater samples also were collected from alluvium monitoring wells 0188, 0189, 0192, 0194, and 0707, and basal sandstone monitoring wells 0182, 0184, 0185, and 0588 as a best management practice. Surface locations 0846 and 0847 were sampled to monitor for degradation of water quality in the backwater area of Brown’s Wash and in the Green River immediately downstream of Brown’s Wash. The Green River location 0801 is upstream from the site and is sampled to determine background-threshold values (BTVs). Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Water levels were measured at each sampled well. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. All six POC wells are completed in the middle sandstone unit of the Cedar Mountain Formation and are monitored to measure contaminant concentrations for comparison to proposed alternate concentration limits (ACLs), as provided in Table 1. Contaminant concentrations in the POC wells remain below their respective ACLs.

  18. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.

    Science.gov (United States)

    Galhardi, Juliana Aparecida; Bonotto, Daniel Marcos

    2016-09-01

    Effects of acid mine drainage (AMD) were investigated in surface waters (Laranjinha River and Ribeirão das Pedras stream) and groundwaters from a coal mining area sampled in two different seasons at Figueira city, Paraná State, Brazil. The spatial data distribution indicated that the acid effluents favor the chemical elements leaching and transport from the tailings pile into the superficial water bodies or aquifers, modifying their quality. The acid groundwaters in both sampling periods (dry: pH 2.94-6.04; rainy: pH 3.25-6.63) were probably due to the AMD generation and infiltration, after the oxidation of sulfide minerals. Such acid effluents cause an increase of the solubilization rate of metals, mainly iron and aluminum, contributing to both groundwater and surface water contamination. Sulfate in high levels is a result of waters' pollution due to AMD. In some cases, high sulfate and low iron contents, associated with less acidic pH values, could indicate that AMD, previously generated, is nowadays being neutralized. The chemistry of the waters affected by AMD is controlled by the pH, sulfide minerals' oxidation, oxygen, iron content, and microbial activity. It is also influenced by seasonal variations that allow the occurrence of dissolution processes and the concentration of some chemical elements. Under the perspective of the waters' quality evaluation, the parameters such as conductivity, dissolved sodium, and sulfate concentrations acted as AMD indicators of groundwaters and surface waters affected by acid effluents.

  19. GWSCREEN: A semi-analytical model for assessment of the groundwater pathway from surface or buried contamination: Version 2.0 theory and user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Rood, A.S.

    1993-06-01

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non radioactive substances from surface or buried sources. The code was designed for implementation in the Track I and Track II assessment of CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) sites identified as low probability hazard at the Idaho National Engineering Laboratory (DOE, 1992). The code calculates the limiting soil concentration such that, after leaching and transport to the aquifer, regulatory contaminant levels in groundwater are not exceeded. The code uses a mass conservation approach to model three processes: contaminant release from a source volume, contaminant transport in the unsaturated zone, and contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. Transport in the unsaturated zone is described by a plug flow model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation in groundwater. In Version 2.0, GWSCREEN has incorporated an additional source model to calculate the impacts to groundwater resulting from the release to percolation ponds. In addition, transport of radioactive progeny has also been incorporated. GWSCREEN has shown comparable results when compared against other codes using similar algorithms and techniques. This code was designed for assessment and screening of the groundwater pathway when field data is limited. It was not intended to be a predictive tool.

  20. Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2017-02-01

    Groundwater recharge variations in time and space are crucial for effective water management, especially in low-precipitation regions. To determine comprehensive groundwater recharge processes in a catchment with large seasonal hydrological variations, intensive field surveys were conducted in the Wangkuai Reservoir watershed located in the Taihang Mountains, North China, during three different times of the year: beginning of the rainy season (June 2011), mid-rainy season (August 2012), and dry season (November 2012). Oxygen and hydrogen isotope and chemical analyses were conducted on the groundwater, spring water, stream water, and reservoir water of the Wangkuai Reservoir watershed. The results were processed using endmember mixing analysis to determine the amount of contribution of the groundwater recharging processes. Similar isotopic and chemical signatures between the surface water and groundwater in the target area indicate that the surface water in the mountain-plain transitional area and the Wangkuai Reservoir are the principal groundwater recharge sources, which result from the highly permeable geological structure of the target area and perennial large-scale surface water, respectively. Additionally, the widespread and significant effect of the diffuse groundwater recharge on the Wangkuai Reservoir was confirmed with the deuterium (d) excess indicator and the high contribution throughout the year, calculated using endmember mixing analysis. Conversely, the contribution of the stream water to the groundwater recharge in the mountain-plain transitional area clearly decreases from the beginning of the rainy season to the mid-rainy season, whereas that of the precipitation increases. This suggests that the main groundwater recharge source shifts from stream water to episodic/continuous heavy precipitation in the mid-rainy season. In other words, the surface water and precipitation commonly affect the groundwater recharge in the rainy season, whereas the

  1. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  2. A web platform for integrated surface water - groundwater modeling and data management

    Science.gov (United States)

    Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf

    2016-04-01

    Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.

  3. Evolution of Specific Surface Area Inside Glass Immersed in Beishan Groundwater

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The surface area of the fissure inside the glass block is an important parameter influencing the long term behavior of high-level radioactive waste glass in the aqueous media during the deep geological

  4. Thermal infrared remote sensing in assessing groundwater and surface-water resources related to Hannukainen mining development site, northern Finland

    Science.gov (United States)

    Rautio, Anne B.; Korkka-Niemi, Kirsti I.; Salonen, Veli-Pekka

    2017-07-01

    Mining development sites occasionally host complicated aquifer systems with notable connections to natural surface water (SW) bodies. A low-altitude thermal infrared (TIR) imaging survey was conducted to identify hydraulic connections between aquifers and rivers and to map spatial surface temperature patterns along the subarctic rivers in the proximity of the Hannukainen mining development area, northern Finland. In addition to TIR data, stable isotopic compositions (δ 18O, δD) and dissolved silica concentrations were used as tracers to verify the observed groundwater (GW) discharge into the river system. Based on the TIR survey, notable GW discharge into the main river channel and its tributaries (61 km altogether) was observed and over 500 GW discharge sites were located. On the basis of the survey, the longitudinal temperature patterns of the studied rivers were found to be highly variable. Hydrological and hydrogeological information is crucial in planning and siting essential mining operations, such as tailing areas, in order to prevent any undesirable environmental impacts. The observed notable GW discharge was taken into consideration in the planning of the Hannukainen mining development area. The results of this study support the use of TIR imagery in GW-SW interaction and environmental studies in extensive and remote areas with special concerns for water-related issues but lacking the baseline research.

  5. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-10

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.

  6. Groundwater and surface water monitoring program for karst river basin: example of the Jadro and Žrnovnica Rivers

    Science.gov (United States)

    Jukić, D.; Denić-Jukić, V.

    2009-04-01

    have not been recorded at any of these stations. Since 1970s, Croatian waters carry out water quality monitoring on surface waters and springs in accordance with the National water quality monitoring program. In the Jadro and Žrnovnica Rivers catchment area, the National water quality monitoring program is performed at the following stations: Jadro-Izvorište, Jadro-Ribogojilište, Jadro-Ušće, Žrnovnica-Izvorište and Žrnovnica-Ušće. In line with the Croatian legislation that has been in force, the monitoring of water status at these stations has been performed 12 times a year by testing: mandatory indices (physico - chemical, oxygen regime, nutrients, microbiological, biological) and specific indices (metals, organic compounds). The group of mandatory indices serves for determining of the general ecological function of water, whereas the group of specific indices serves for a wider assessment of the general ecological function of water and for determination of the terms of water use for particular purposes. The proposed meteorological, surface water and groundwater monitoring programs for the basin of the Jadro and Žrnovnica Rivers have three main objectives: (1) harmonization of monitoring with requirements of the EU Water Directives, (2) collection of data essential for further investigation of hydrologic and hydrogeologic characteristics of the karst aquifer, (3) continuous collection of data required for water management at operational level. Following these objectives, the proposed monitoring programs detail the design of surveillance, operational and investigative monitoring for surface waters and the monitoring of quantitative and chemical status for groundwaters. The proposed monitoring programs cover all essential meteorological, hydrological and water quality parameters to the extent relevant for the water management at operational level and the further investigation of hydrologic and hydrogeologic characteristics of the karst aquifer. Groundwater

  7. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  8. Groundwater-surface water interaction along the Upper Biebrza River, Poland: a spatial-temporal approach with temperature, head and seepage measurements

    Science.gov (United States)

    Anibas, C.; Batelaan, O.; Verbeiren, B.; Buis, K.; Chormanski, J.; de Doncker, L.

    2010-12-01

    The knowledge of mechanisms of interaction of surface and groundwater in the hyporheic zone in rivers is essential for conserving, managing and restoring river adjacent wetlands and its habitats. Reliable estimation of groundwater-surface water exchange challenges hydrological sciences. A promising approach, overcoming limitations of individual methods, is the combination of different methodologies including flux estimates based on thermal measurements, piezometer nests, slug tests and seepage meters. In this contribution such a multi-methodology approach is tested for the Upper Biebrza River, Poland. Time series of thermal profiles are obtained for a period of 9 months. The thermal and physical soil properties show strong spatial and vertical heterogeneities typical for the peat soils of the area. Transient simulations with the numerical 1D heat transport model STRIVE were used to quantify the vertical advective fluxes in the riverbed allowing a first level investigation of groundwater-surface water exchange. The net exchange along the examined section during the 9 month is estimated as a 10.4 mm/d upward flux, which is evaluated as a relatively low intensity of groundwater seepage. Time series of both temperature and hydraulic head gradients were used to calculate hydraulic conductivities and to quantify transient groundwater-surface water exchanges for three locations. They indicated an exchange flux relatively relative stable in time only interrupted by peak values during flood events. Seepage meter measurements provided independent verification results. Interpolating calculated fluxes along the river with GIS techniques resulted in spatially distributed interaction maps. Sections of higher fluxes are statistically correlated to the proximity of the river to the morainic plateaus, which border the river alluvium. In sections where the river is central in the alluvium and relatively far away from the upland low or infiltrating conditions are obtained. This

  9. Using an Unmanned Arial Vehicle (UAV) and a thermal infrared camera to estimate temperature differences on a lake surface, revealing incoming groundwater seepage.

    Science.gov (United States)

    Hoffmann, Helene; Müller, Sascha; Friborg, Thomas

    2014-05-01

    UAVs are at the budding stage of becoming efficient tools in geosciences due to their fast coverage of large areas, creating opportunities to collect comprehensive amounts of spatially distributed data. In this survey a fixed-wing UAV is equipped with a thermal infrared camera (Optris PI 450) conducting spatially distributed measurements of radiometric surface temperature, from a small groundwater-fed lake. We hypothesis that larger temperature differences in the lake surface will reveal locations of incoming groundwater seepage. During wintertime, warmer groundwater will have great incentive to rise to the lake surface without significant mixing with colder lake water and hence enable detection of incoming groundwater seepage with surface measurements. The investigated area is a 300x150 m section of Lake Vaeng in southern Jutland, Denmark. Detecting areas of groundwater seepage into lakes and quantifying these fluxes are of great importance not only for water budgets but also in relation to lake environments. Incoming groundwater might be a large nutrient source in lakes. GPS coordinates from the UAV are correlated with each thermal image based on UTC time stamps. Geo-reference is further improved with ground control points in the form of 0.2x0.2 m aluminum foil rectangles. Aluminum stands out clearly in thermal images and using seven of these ground control points, evenly distributed in the investigated area, led to an accuracy of 0.3 m. Using the Structure from Motion photogrammetric technique, a point cloud model is produced and camera positions along with intrinsic and extrinsic properties are established. Distinct temperature differences of 1.5 C have been detected along the south-eastern shore of Lake Vaeng. The location of these hotspots is in agreement with temperature differences measured with Distributed Temperature Sensing (DTS) system - indicating zones of groundwater seepage into the lake. In addition to faster execution of large spatially distributed

  10. Representing spatial and temporal complexity in ecohydrological models: a meta-analysis focusing on groundwater - surface water interactions

    Science.gov (United States)

    McDonald, Karlie; Mika, Sarah; Kolbe, Tamara; Abbott, Ben; Ciocca, Francesco; Marruedo, Amaia; Hannah, David; Schmidt, Christian; Fleckenstein, Jan; Karuse, Stefan

    2016-04-01

    Sub-surface hydrologic processes are highly dynamic, varying spatially and temporally with strong links to the geomorphology and hydrogeologic properties of an area. This spatial and temporal complexity is a critical regulator of biogeochemical and ecological processes within the interface groundwater - surface water (GW-SW) ecohydrological interface and adjacent ecosystems. Many GW-SW models have attempted to capture this spatial and temporal complexity with varying degrees of success. The incorporation of spatial and temporal complexity within GW-SW model configuration is important to investigate interactions with transient storage and subsurface geology, infiltration and recharge, and mass balance of exchange fluxes at the GW-SW ecohydrological interface. Additionally, characterising spatial and temporal complexity in GW-SW models is essential to derive predictions using realistic environmental conditions. In this paper we conduct a systematic Web of Science meta-analysis of conceptual, hydrodynamic, and reactive and heat transport models of the GW-SW ecohydrological interface since 2004 to explore how these models handled spatial and temporal complexity. The freshwater - groundwater ecohydrological interface was the most commonly represented in publications between 2004 and 2014 with 91% of papers followed by marine 6% and estuarine systems with 3% of papers. Of the GW-SW models published since 2004, the 52% have focused on hydrodynamic processes and heat and reactive transport). Within the hydrodynamic subset, 25% of models focused on a vertical depth of limitations of incorporating spatial and temporal variability into GW-SW models are identified as the inclusion of woody debris, carbon sources, subsurface geological structures and bioclogging into model parameterization. The technological limitations influence the types of models applied, such as hydrostatic coupled models and fully intrinsic saturated and unsaturated models, and the assumptions or

  11. Median nitrate concentrations in groundwater in the New Jersey Highlands Region estimated using regression models and land-surface characteristics

    Science.gov (United States)

    Baker, Ronald J.; Chepiga, Mary M.; Cauller, Stephen J.

    2015-01-01

    Nitrate-concentration data are used in conjunction with land-use and land-cover data to estimate median nitrate concentrations in groundwater underlying the New Jersey (NJ) Highlands Region. Sources of data on nitrate in 19,670 groundwater samples are from the U.S. Geological Survey (USGS) National Water Information System (NWIS) and the NJ Private Well Testing Act (PWTA).

  12. Changing climate and landuse effects of surface and groundwater use in the Canadian River Basin

    Science.gov (United States)

    The extreme drought that occurred on the Southern High Plains in 2011 demonstrated that the ground and surface resources in the Canadian River watershed in Texas and New Mexico were unable to supply sufficient water for the region’s water needs. Variations in precipitation parameters (annual rainfal...

  13. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    . However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, while spaceborne observations have limited spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water level measurements, providing: i) high...

  14. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  15. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    Science.gov (United States)

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow

  16. Limits to Global Groundwater Consumption

    Science.gov (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  17. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: Evidence from isotopes and hydrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Li, Fadong, E-mail: lifadong@igsnrr.ac.cn; Liu, Qiang; Zhang, Yan

    2014-02-01

    Metals are ubiquitous in the environment. The aim of sustainable management of the agro-ecosystem includes ensuring that water continues to fulfill its function in agricultural production, cycling of elements, and as a habitat of numerous organisms. There is no doubt that the influence of large-scale irrigation projects has impacted the regional surface–groundwater interactions in the North China Plain (NCP). Given these concerns, the aim of this study is to evaluate the pollution, identify the sources of trace metals, analyze the influence of surface–groundwater interactions on trace metal distribution, and to propose urgent management strategies for trace metals in the agriculture area in China. Trace metals, hydrochemical indicators (EC, pH, concentrations of Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup −}, SO{sub 4}{sup 2−}, and HCO{sub 3}{sup −}) and stable isotopic composition (δ{sup 18}O and δ{sup 2}H) were determined for surface water (SW) and groundwater (GW) samples. Trace metals were detected in all samples. Concentrations of Fe, Se, B, Mn, and Zn in SW exceeded drinking water standards by 14.8%, 29.6%, 25.9%, 11.1%, and 14.8% higher, respectively, and by 3.8%, 23.1%, 11.5%, 11.5%, and 7.7% in GW. The pollution of trace metals in surface water was more serious than that in groundwater, and was also higher than in common irrigation areas in NCP. Trace metals were found to have a combined origin of geogenic and agriculture and industrial activities. Their distribution varied greatly and exhibited a certain relationship with the water flow direction, with the exception of a number of singular sites. Hydrochemical and environmental isotopic evidence indicates surface–groundwater interactions influence the spatial distribution of trace metal in the study area. Facing the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring net to warn of increased risk are

  18. The impact of surface water - groundwater interactions on nitrate cycling assessed by means of hydrogeologic and isotopic techniques in the Alento river basin (Italy)

    Science.gov (United States)

    Stellato, Luisa; Di Rienzo, Brunella; Di Fusco, Egidio; Rubino, Mauro; Marzaioli, Fabio; Terrasi, Filippo; D'Onofrio, Antonio; De Vita, Pantaleone; Allocca, Vincenzo; Salluzzo, Antonio; Rimauro, Juri; Romano, Nunzio; Celico, Fulvio

    2017-04-01

    Currently a major concern of water resources managers is to understand the fate and dynamics of nutrients in riverine ecosystems because of their potential impacts on both river quality and human health (e.g., European Council Directive 91/676/EEC). Nutrients are released within a catchment (or river basin) mainly by agricultural practices and urban/industrial activities, in addition to natural sources such as soils and organic matter. They are discharged into surface water bodies by means of nutrient-rich groundwater inflows and/or overland flow pathways, which can be important controls on hot moment/hot spot type biogeochemical behaviors. Groundwater has been recognized to have a major role in controlling stream ecosystem health since it influences stream ecology when surface and subsurface water are hydraulically connected. In particular, processes occurring at the reach or sub-reach scale more directly influence nutrient transport to rivers than larger scale processes. In this general context, the main scope of this study, within the framework of the IAEA Coordinated Research Project (CRP) "Environmental Isotopes and Age Dating Methods to Assess Nitrogen Pollution and Other Quality Issues in Rivers", was to spatially and temporally quantify groundwater inflows to the Alento river (Southern Italy) to characterize sw-gw interactions in the catchment in order to finally assess nitrates contamination of a groundwater dependent river ecosystem. Four sampling campaigns have been carried out in July and October 2014, in April 2015 and in June 2016 during which 1 spring, rain water, 17 surface water and 27 groundwater points were sampled all over the plain. The piezometric reconstruction has been realized by means of the monitoring of groundwater levels in 43 domestic and agricultural wells (10-15 m deep). The preliminary hydrogeological (water table morphology and stream discharge measurements), physico-chemical (T and EC), hydrochemical and isotopic (222Rn, δD and

  19. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  20. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    Science.gov (United States)

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplie