WorldWideScience

Sample records for surface vanadyl species

  1. n-Alkylamine-assisted preparation of a high surface area vanadyl phosphate/tetraethylorthosilicate nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, João Paulo L., E-mail: billbrujah@yahoo.com.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901 (Brazil); Zampronio, Elaine C.; Oliveira, Herenilton P. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901 (Brazil)

    2013-02-15

    Graphical abstract: CuK{sub α} X-ray diffraction patterns of the VP, VPOc, VPOcT, VPOcT200 and VPOcT500. Highlights: ► TEOS and octylamine incorporation into the VP was achieved by expanding the lamellar. ► The specific surface area increased from 15 m{sup 2} g{sup −1} in VP to 237 m{sup 2} g{sup −1} in VPOcT. ► The VPOcT exhibited thermal resistance up to 200 °C in air. ► Upon thermal treatment up to 500 °C, the surface area increased to 838 m{sup 2} g{sup −1}. -- Abstract: We have developed a vanadyl phosphate/tetraethylorthosilicate (VPO/TEOS) nanocomposite comprised of silicate chains interleaved with VPO layers, prepared by using an n-alkylamines such as octylamine as the structure directing agent. The nanocomposites were synthesized by reacting amine-intercalated vanadyl phosphate with tetraethylorthosilicate via the soft chemistry approach. The synthetic procedure encompassed the exfoliation of the layered vanadyl phosphate as well as the reorganization of this exfoliated solid into a mesostructured lamellar phase with the same V–P–O connectivity as in the original matrix. TEOS incorporation into the vanadyl phosphate was achieved by expanding the lamellar structure with n-alkylamine (Δd = 13 Å with n-octylamine). The specific surface area increased from 15 m{sup 2} g{sup −1} in the vanadyl phosphate matrix to 237 m{sup 2} g{sup −1} in VPOcT, and the isotherm curves revealed the characteristic hysteresis of mesoporous materials. Upon thermal treatment up to 500 °C, the surface area increased to 837 m{sup 2} g{sup −1}, which is suitable for catalytic purposes.

  2. Complexes of vanadyl and uranyl ions with the chelating groups of humic matter

    International Nuclear Information System (INIS)

    Goncalves, M.L.S.; Mota, A.M.

    1987-01-01

    The uranyl and vanadyl complexes formed with salicylic, phthalic and 3,4-dihydroxybenzoic acids have been studied by potentiometry in order to determine the stability constants of the Msub(m) Lsub(n) species formed in solution, and the constants for hydrolysis and polymeric complexes, at 25.0 0 , in 0.10, 0.40 and 0.70M sodium perchlorate. MINIQUAD was used in process the data to find the best models for the species in solution, and calculate the formation constants. The uranyl-salicylic acid sytem was also studied by spectrophotometry and the program SQUAD used to process the data obtained. The best models for these systems show that co-ordination of the uranyl ion by carboxylate groups is easier than for the vanadyl ion, whereas the vanadyl ion seems to form more stable complexes with phenolate groups. Both oxo-cations seem to tend to hydrolyse rather than form complexes when the L:M ratios are greater than unity. Although the change in the constants with ionic strength is small, the activity coefficients of the salicylate and phthalate species have been calculated at ionic strengths 0.40 and 0.70M, along with the interaction parameters with Na + , from the stability constants found for the species ML and H 2 L, according to the Bronsted-Guggenheim expression. (author)

  3. Improved performance of Nb-doped vanadyl pyrophosphate, catalyst for n-butane oxidation to maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Pavarelli, G.; Caldarelli, A.; Cavani, F. [Bologna Univ. (Italy). Dipt. di Chimica Industriale ' Toso Montanari' ; Cortelli, C.; Luciani, S. [Polynt SpA, Scanzorosciate (Italy)

    2013-11-01

    We report here about an investigation on the role of Nb{sup 5+} when used as a promoter for vanadyl pyrophosphate, catalyst for the oxidation of n-butane to maleic anhydride. The effect of Nb was very complex, a function of both its amount and the reaction temperature used. The optimal catalytic behavior was shown for very low Nb contents, i.e., for a V/Nb atomic ratio as low as 150. The main role of Nb was that of accelerating the formation of a limited amount of {gamma}-VOPO{sub 4} on the surface of vanadyl pyrophosphate, by accelerating the oxidation of V{sup 4+} into V{sup 5+} under reaction conditions. (orig.)

  4. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  5. Intercalation of cyclic ketones into vanadyl phosphate

    Czech Academy of Sciences Publication Activity Database

    Zima, Vítězslav; Melánová, Klára; Beneš, L.; Trchová, Miroslava; Dybal, Jiří

    2005-01-01

    Roč. 178, č. 1 (2005), s. 314-320 ISSN 0022-4596 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z40500505 Keywords : vanadyl phosphate Subject RIV: CA - Inorganic Chemistry Impact factor: 1.725, year: 2005

  6. A novel one-dimensional chain built of vanadyl ions and pyrazine-2,5-dicarboxylate

    NARCIS (Netherlands)

    Lankelma, M.; de Boer, J.; Ferbinteanu, M.; Dantas Ramos, A.L.; Tanasa, R.; Rothenberg, G.; Tanase, S.

    2015-01-01

    We present a new coordination polymer, {[VO(pzdc)(H2O)(2)] H2O}(n), built from vanadyl and pyrazine-2,5-dicarboxylate (pzdc) ions. It consists of a one-dimensional chain of vanadyl ions linked by pzdc ions. The carboxylate groups show monodentate coordination, while the pyrazine ring is present both

  7. Vanadyl complexes with dansyl-labelled di-picolinic acid ligands: synthesis, phosphatase inhibition activity and cellular uptake studies.

    Science.gov (United States)

    Collins, Juliet; Cilibrizzi, Agostino; Fedorova, Marina; Whyte, Gillian; Mak, Lok Hang; Guterman, Inna; Leatherbarrow, Robin; Woscholski, Rudiger; Vilar, Ramon

    2016-04-28

    Vanadium complexes have been previously utilised as potent inhibitors of cysteine based phosphatases (CBPs). Herein, we present the synthesis and characterisation of two new fluorescently labelled vanadyl complexes (14 and 15) with bridged di-picolinic acid ligands. These compounds differ significantly from previous vanadyl complexes with phosphatase inhibition properties in that the metal-chelating part is a single tetradentate unit, which should afford greater stability and scope for synthetic elaboration than the earlier complexes. These new complexes inhibit a selection of cysteine based phosphatases (CBPs) in the nM range with some selectivity. Fluorescence spectroscopic studies (including fluorescence anisotropy) were carried out to demonstrate that the complexes are not simply acting as vanadyl delivery vehicles but they interact with the proteins. Finally, we present preliminary fluorescence microscopy studies to demonstrate that the complexes are cell permeable and localise throughout the cytoplasm of NIH3T3 cells.

  8. Aqua-vanadyl ion interaction with Nafion® membranes

    Directory of Open Access Journals (Sweden)

    Vijayakumar eMurugesan

    2015-03-01

    Full Text Available Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions namely solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  9. Solubility studies of oxovanadium(V) formate and vanadyl formate in aqueous medium

    International Nuclear Information System (INIS)

    Tripathi, V.S.; Bairwa, K.K.; Naik, D.B.; Raje, N.H.; Bera, S.

    2014-01-01

    The solubility of oxovanadium(V) formate and vanadyl formate in aqueous medium has been determined. These compounds are important for preparation of strong reducing V(II) compounds which are used in stainless steel based nuclear power plants for decontamination

  10. EPR spectra of vanadyl(2) intra-complexes with amino acids in solutions

    International Nuclear Information System (INIS)

    Shodiev, U.M.; Musaev, Z.M.; Khodzhaev, O.F.; Usmankhodzhaeva, Ya.S.; Parpiev, N.A.

    1987-01-01

    EPR spectra of vanadyl (2) intracomplexes with glycine, α- and β-alanines, benzoylglycine, lencine, glutamine and the aspartic acid of VOL 2 xH 2 O composition as well as with cystine of VOLxH 2 O composition (where L-monodeprotonated, in case of cystine and the aspartic acid - dideprotonated form of the amino acid) in aqueous, methanol, dimethylsulfoxide and pyridine solutions are studied. It is established that the structure determined in the solid state is retained in the dimethylsulfoxide solution and partially - in methanol. In aqueous, pyridine and partially in methanol solutions complexes are distorted and two molecules of the amino acid are coordinated monodentately through oxygen atoms of the carboxyl group, and ''vacant'' coordination places in the equatorial plane take two molecules of the solvent. From the data obtained it follows that the metal - nitrogen bond in the vanadyl (2) complexes studied with amino acids is not so strong than the metal - oxygen bond of the carboxyl ligand group

  11. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Shibsankar; De, Sukanta, E-mail: sukanta.physics@presiuniv.ac.in [Department of physics, Presidency University, Kolkata-700073 (India)

    2016-05-06

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (– COOH group) and α-Vanadyl phosphates (VOPO{sub 4}2H{sub 2}O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na{sub 2}SO{sub 4} aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  12. Untypical (VOPO4) Layer in Vanadyl Phosphates with Variant Interlayer Gap of Double - Tiered Template

    Czech Academy of Sciences Publication Activity Database

    Yang, Y.-Ch.; Lai, Y-Ch.; Salazar, J.R.; Zima, Vítězslav; Lii, K-H.; Wang, S.-L.

    2010-01-01

    Roč. 49, č. 13 (2010), s. 6196-6202 ISSN 0020-1669 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : vanadyl * phosphate * structure Subject RIV: CA - Inorganic Chemistry Impact factor: 4.326, year: 2010

  13. Layered vanadyl (IV) nitroprusside: Magnetic interaction through a network of hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Gil, D.M. [Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN San Miguel de Tucumán (Argentina); Osiry, H. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México (Mexico); Pomiro, F.; Varetti, E.L. [CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 and 115, 1900, La Plata (Argentina); Carbonio, R.E. [INFIQC – CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq, Medina Allende, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Alejandro, R.R. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México (Mexico); Ben Altabef, A. [INQUINOA-UNT-CONICET, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN San Miguel de Tucumán (Argentina); and others

    2016-07-15

    The hydrogen bond and π-π stacking are two non-covalent interactions able to support cooperative magnetic ordering between paramagnetic centers. This contribution reports the crystal structure and related magnetic properties for VO[Fe(CN){sub 5}NO]·2H{sub 2}O, which has a layered structure. This solid crystallizes with an orthorhombic unit cell, in the Pna2{sub 1} space group, with cell parameters a=14.1804(2), b=10.4935(1), c=7.1722(8) Å and four molecules per unit cell (Z=4). Its crystal structure was solved and refined from powder X-ray diffraction data. Neighboring layers remain linked through a network of hydrogen bonds involving a water molecule coordinated to the axial position for the V atom and the unbridged axial NO and CN ligands. An uncoordinated water molecule is found forming a triple bridge between these last two ligands and the coordinated water molecule. The magnetic measurements, recorded down to 2 K, shows a ferromagnetic interaction between V atoms located at neighboring layers, with a Curie-Weiss constant of 3.14 K. Such ferromagnetic behavior was interpreted as resulting from a superexchange interaction through the network of strong OH····O{sub H2O}, OH····N{sub CN}, and OH····O{sub NO} hydrogen bonds that connects neighboring layers. The interaction within the layer must be of antiferromagnetic nature and it was detected close to 2 K. - Graphical abstract: Coordination environment for the metals in vanadyl (II) nitroprusside dihydrate. Display Omitted - Highlights: • Crystal structure of vanadyl nitroprusside dehydrate. • Network of hydrogen bonds. • Magnetic interactions through a network of hydrogen bonds. • Layered transition metal nitroprussides.

  14. Sizes of vanadyl petroporphyrins and asphaltene aggregates in toluene

    Energy Technology Data Exchange (ETDEWEB)

    Dechaine, Greg Paul; Gray, Murray R. [Department of Chemical and Materials Engineering, University of Alberta (Canada)], email: gpd@ualberta.ca

    2010-07-01

    This work focuses on the importance of removing vanadyl porphyrins components from crude oils and the methodology for doing it. The diffusion of asphaltene and vanadium components in diluted toluene was measured using a stirred diaphragm diffusion cell, which was equipped with a number of different cellulosic membranes of different pore size. In-situ UV/visible spectroscopy was used to observe filtrates of the process. The effective diffusivity of asphaltene structures was plotted for different pore sized membranes. It was noticed that asphaltene concentrations increased with increased pore sizes; particularly increasing at pore diameter of 5 nm. Moreover the effects of temperature and mass concentration were also investigated in this study. It was shown that increasing the temperature of the toluene causes the mobility of asphaltene to increase as well. Nevertheless, decreasing the concentration of asphaltene does not affect its mobility. It was shown that toluene samples from different sources showed different mobility.

  15. Partial oxidation of D-xylose to maleic anhydride and acrylic acid over vanadyl pyrophosphate

    International Nuclear Information System (INIS)

    Ghaznavi, Touraj; Neagoe, Cristian; Patience, Gregory S.

    2014-01-01

    Xylose is the second most abundant sugar after glucose. Despite its tremendous potential to serve as a renewable feedstock, few commercial processes exploit this resource. Here, we report a new technology in which a two-fluid nozzle atomizes a xylose-water solution into a capillary fluidized bed operating above 300 °C. Xylose-water droplets form at the tip of the injector, vaporize then react with a heterogeneous mixed oxide catalyst. A syringe pump metered the solution to the reactor charged with 1 g of catalyst. Product yield over vanadyl pyrophosphate was higher compared to molybdenum trioxide-cobalt oxide and iron molybdate; it reached 25% for maleic anhydride, 17% for acrylic acid and 11% for acrolein. Gas residence time was 0.2 s. The catalyst was free of coke even after operating for 4 h – based on a thermogravimetric analysis of catalyst withdrawn from the reactor. Below 300 °C, powder agglomerated at the tip of the injector at 300 °C; it also agglomerated with a xylose mass fraction of 7% in water. - Highlights: • D-xylose reacts to form maleic anhydride and acrylic acid above 250 °C. • Vanadyl pyrophosphate is both active and selective for maleic and acrylic acid. • Acid and acrolein yield approaches 50% for a xylose mass fraction of 3% in water. • Catalyst agglomerates at low temperatures and high xylose aqueous mass fraction. • Atomization quality is a determining factor to minimize agglomeration

  16. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Guimond, Sebastien

    2009-06-04

    The growth and the surface structure of well-ordered V{sub 2}O{sub 3}, V{sub 2}O{sub 5} and MoO{sub 3} thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V{sub 2}O{sub 3}(0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V{sub 2}O{sub 3} bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V{sub 2}O{sub 5}(001) and MoO{sub 3}(010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O{sub 2} in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V{sub 2}O{sub 5} and MoO{sub 3} layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a

  17. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    International Nuclear Information System (INIS)

    Guimond, Sebastien

    2009-01-01

    The growth and the surface structure of well-ordered V 2 O 3 , V 2 O 5 and MoO 3 thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V 2 O 3 (0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V 2 O 3 bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V 2 O 5 (001) and MoO 3 (010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O 2 in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V 2 O 5 and MoO 3 layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a monolayer is formed dur-ing the preparation of supported vanadia

  18. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    Directory of Open Access Journals (Sweden)

    Dan Li

    2017-03-01

    Full Text Available The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA and tri-n-butyl phosphate (TBP as the phase modifier. The extraction and stripping conditions of vanadium (IV and its separation from iron and aluminum were optimized. Under the optimal extraction conditions, the extraction of vanadium (IV and iron were 68% and 53%, respectively, while only 2% aluminum was extracted in a single contact, suggesting good separation of vanadium (IV from aluminum. Sulfuric acid solution was used for the stripping. Nearly 100% vanadium (IV and 95% aluminum were stripped, while only 10% iron was stripped under the optimal stripping conditions in a single contact, suggesting good separation of vanadium (IV from iron. After five stages of extraction and stripping, highly pure vanadyl sulfate containing 76.5 g/L V (IV with the impurities of 12 mg/L Fe and 10 mg/L Al was obtained, which is suitable for the electrolyte of a vanadium redox flow battery. Organic solution was well regenerated after stripping by oxalic acid solution to remove the remaining iron. The mechanism of vanadium (IV extraction using EHEHPA was also discussed based on the Fourier transform infrared spectroscopy (FT-IR analysis.

  19. Inter-molecule interaction for magnetic property of vanadyl tetrakis(thiadiazole) porphyrazine film on Au(1 1 1)

    Science.gov (United States)

    Hou, Jie; Wang, Yu; Eguchi, Keitaro; Nanjo, Chihiro; Takaoka, Tsuyoshi; Sainoo, Yasuyuki; Awaga, Kunio; Komeda, Tadahiro

    2018-05-01

    We report scanning tunneling microscope (STM) observation of vanadyl tetrakis(thiadiazole) porphyrazine (VOTTDPz) molecules, which is a family molecule of phthalocyanine (Pc) but without Csbnd H termination in the perimeter, deposited on Au(1 1 1) surface. Well-ordered film corresponding to 4 × 4 superstructure with respect to Au(1 1 1) surface is formed, in which the centers of the molecules are separated by 1.12 nm, which is much smaller than that observed for a VOPc molecule on Au(1 1 1), due to the absence of Csbnd H termination. At the same time, the azimuthal angles of neighboring molecules rotate with each other by 30°. A contrast variation of bright and dark molecules is observed, which are interpreted as O-up and O-down molecules, respectively, based on the density functional theory simulation. Spin-polarized local density of states calculation shows spin-polarized V 3d state, which is delocalized over the ring. Spin detection is executed by measuring Kondo resonance in the tunneling spectroscopy near the Fermi level, which is caused by the interaction of an isolated spin and conduction electron of the substrate. We detected asymmetric and weak Kondo peak for out-of-plane outer magnetic field of 0 T, which becomes strong and symmetric peak at 5 T, which is understood by the shift of the spin center of the Kondo resonance from V 3d to delocalized π state in ring with the magnetic field.

  20. Caracterização textural e estrutural de V2O5/TiO2 obtidos via sol-gel: comparação entre secagem convencional e supercrítica Textural and structural characterization of V2O5/TiO2 catalysts obtained by the sol-gel method: comparison between conventional and supercritical drying

    Directory of Open Access Journals (Sweden)

    Cristiane B. Rodella

    2002-05-01

    Full Text Available This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N2 adsorption at 77K, x-ray diffractometry (XRD and Fourier Transform Infrared (FT-IR. The surface area increases with the vanadia loading from 24 m² g-1, for pure TiO2, to 87 m² g-1 for 9wt.% of V2O5. The rutile form is predominant for pure TiO2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.

  1. Vanadyl sulfate, taurine, and combined vanadyl sulfate and taurine treatments in diabetic rats: effects on the oxidative and antioxidative systems.

    Science.gov (United States)

    Tas, Sibel; Sarandol, Emre; Ayvalik, Sedef Ziyanok; Serdar, Zehra; Dirican, Melahat

    2007-04-01

    Vanadyl sulfate (VS) and taurine are two promising agents in the treatment of diabetes related to their antihyperglycemic, antihyperlipidemic, and hyperinsulinemic effects. Data about the effects of VS on the oxidant-antioxidant system is limited and controversial. However, taurine is a well-documented antioxidant agent and our aim was to investigate the effects of VS, taurine and VS and taurine combination on the oxidative-antioxidative systems in streptozotocin-nicotinamide (STZ-NA) diabetic rats. Nicotinamide (230 mg/kg, i.p.) and streptozotocin (65 mg/kg, i.p.) were administered. VS (0.75 mg/mL) and taurine (1%) were added to drinking water for 5 weeks. Rats were divided as control (C), diabetes (D), diabetes+VS (D+VS), diabetes+taurine (D+T), diabetes+VS and taurine (D+VST). Plasma and tissue malondialdehyde (MDA) levels were measured by high-performance liquid chromatography and spectrophotometry, respectively. Paraoxonase and arylesterase activities were measured by spectrophotometric methods and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined using commercial kits. VS, taurine and VS and taurine combination treatments reduced the enhanced blood glucose, serum total cholesterol and triglyceride, tissue MDA and plasma MDA (except in the D+VS group) levels and increased the reduced serum insulin level, serum paraoxonase and arylesterase activities, GSH-Px activity and SOD activity (except in the D+VS group). The findings of the present study suggest that VS and taurine exert beneficial effects on the blood glucose and lipid levels in STZ-NA diabetic rats. However, VS might exert prooxidative or antioxidative effects in various components of the body and taurine and VS combination might be an alternative for sole VS administration.

  2. Dropping and semimicrotest glass reactions on beryllium, lenthanum, vanadyl and uranyl cations with synthetic organic dyes and their mutual determination in binary mixtures

    International Nuclear Information System (INIS)

    Shemyakin, F.M.; Novikova, A.A.; Reshetnyak, V.Yu.; Teplyakov, G.K.; Nekrasov, E.L.

    1978-01-01

    Coloured reactions for beryllium, lanthanum, vanadyl and uranyl cations with a number of organic dyes, have been studied. These reactions are used in dropping analysis on papers, impregnated with relevant dyes, and for semimicro-test glass reactions on the above cations. Sensitivity and maximum permissible dilution have been determined for each of the reactions. Mutual determinations of relevant couples of the above cations have been performed. It is shown, that such binary mixtures enable to freely open relevant cations

  3. Nonlinear effects in parallel magnetic fields in vanadyl and iron (111) ions solutions

    International Nuclear Information System (INIS)

    Ryzhov, V.A.; Fomichev, V.N.

    1983-01-01

    Nonlinear effects (NE) in vanadyl (VOSO 4 ) and iron (FeCl 3 x6H 2 O) solutions are investigated experimentally in the 268-323 K temperature range in parallel constant and variable linearly polarized magnetic fields, including conditions when EPR spectra are lacking due to strong resonance transition widening. It is shown that nonlinear effects are specified, on the one side, by the effect of a variable field on the relaxation processes and, on the other side, by resonance transitions in parallel fields. The relaxation and resonance effects contribute to different phase components of the second harmonic of magnetization, recorded in the experiment, at low frequences of a variable field (as compared to characteristic frequences of lattice motion). Therefore, separate analysis of the effects is possible. The presence of NE effects under conditions, when the EPR signal is not observed, and the possibility of the inverse problem solution using the variation technique on the base of simple models reveal that NE in parallel magnetic fields may be used for the investigation of paramagnets with a large EPR resonance transitions width

  4. Synthesis, surface group modification of 3D MnV2O6 nanostructures and adsorption effect on Rhodamine B

    International Nuclear Information System (INIS)

    Zhang, Wanqun; Shi, Lei; Tang, Kaibin; Liu, Zhongping

    2012-01-01

    Highlights: ► Fabrication of urchin-like MnV 2 O 6 with oxygen-containing surface groups. ► Mn 0.5 V 2 O 5 ·nH 2 O as an intermediate product holds the key to the final products. ► 3D architectures of MnV 2 O 6 with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV 2 O 6 nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV 2 O 6 nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV 2 O 6 by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn 0.5 V 2 O 5 ·nH 2 O, growth of aligned MnV 2 O 6 nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV 2 O 6 with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV 2 O 6 nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L −1 benzoyl peroxide showed good adsorption capability of Rhodamine B.

  5. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.

    Science.gov (United States)

    Arai, Yuji; Fuller, C C

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Synthesis, surface group modification of 3D MnV{sub 2}O{sub 6} nanostructures and adsorption effect on Rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wanqun, E-mail: wqz@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chemical Experimental Teaching Center, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Lei, E-mail: shil@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tang, Kaibin; Liu, Zhongping [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-07-15

    Highlights: ► Fabrication of urchin-like MnV{sub 2}O{sub 6} with oxygen-containing surface groups. ► Mn{sub 0.5}V{sub 2}O{sub 5}·nH{sub 2}O as an intermediate product holds the key to the final products. ► 3D architectures of MnV{sub 2}O{sub 6} with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV{sub 2}O{sub 6} nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV{sub 2}O{sub 6} nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV{sub 2}O{sub 6} by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn{sub 0.5}V{sub 2}O{sub 5}·nH{sub 2}O, growth of aligned MnV{sub 2}O{sub 6} nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV{sub 2}O{sub 6} with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV{sub 2}O{sub 6} nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L{sup −1} benzoyl peroxide showed good adsorption capability of Rhodamine B.

  7. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  8. Identification of surface species by vibrational normal mode analysis. A DFT study

    Science.gov (United States)

    Zhao, Zhi-Jian; Genest, Alexander; Rösch, Notker

    2017-10-01

    Infrared spectroscopy is an important experimental tool for identifying molecular species adsorbed on a metal surface that can be used in situ. Often vibrational modes in such IR spectra of surface species are assigned and identified by comparison with vibrational spectra of related (molecular) compounds of known structure, e. g., an organometallic cluster analogue. To check the validity of this strategy, we carried out a computational study where we compared the normal modes of three C2Hx species (x = 3, 4) in two types of systems, as adsorbates on the Pt(111) surface and as ligands in an organometallic cluster compound. The results of our DFT calculations reproduce the experimental observed frequencies with deviations of at most 50 cm-1. However, the frequencies of the C2Hx species in both types of systems have to be interpreted with due caution if the coordination mode is unknown. The comparative identification strategy works satisfactorily when the coordination mode of the molecular species (ethylidyne) is similar on the surface and in the metal cluster. However, large shifts are encountered when the molecular species (vinyl) exhibits different coordination modes on both types of substrates.

  9. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Science.gov (United States)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  10. New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shamie, Jack S. [Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago Illinois 60616 USA; Liu, Caihong [Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago Illinois 60616 USA; Shaw, Leon L. [Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago Illinois 60616 USA; Sprenkle, Vincent L. [Energy Storage and Conversion Energy Materials, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-12-29

    In this study, a new mechanism for the reduction of vanadyl acetylacetonate, VO(acac)2, to vanadium acetylacetonate, V(acac)3, is introduced. V(acac)3 has been studied for use in redox flow batteries (RFBs) for some time; however, contamination by moisture leads to the formation of VO(acac)2. In previous work, once this transformation occurs, it is no longer reversible because there is a requirement for extreme low potentials for the reduction to occur. Here, we propose that, in the presence of excess acetylacetone (Hacac) and free protons (H+), the reduction can take place between 2.25 and 1.5 V versus Na/Na+ via a one-electron-transfer reduction. This reduction can take place in situ during discharge in a novel hybrid Na-based flow battery (HNFB) with a molten Na–Cs alloy as the anode. The in situ recovery of V(acac)3 during discharge is shown to allow the Coulombic efficiency of the HNFB to be ≈100 % with little or no capacity decay over cycles. In addition, utilizing two-electron-transfer redox reactions (i.e., V3+/V4+ and V2+/V3+ redox couples) per V ion to increase the energy density of RFBs becomes possible owing to the in situ recovery of V(acac)3 during discharge. The concept of in situ recovery of material can lead to more advances in maintaining the cycle life of RFBs in the future.

  11. Macrophage activation by a vanadyl-aspirin complex is dependent on L-type calcium channel and the generation of nitric oxide

    International Nuclear Information System (INIS)

    Molinuevo, Maria Silvina; Etcheverry, Susana Beatriz; Cortizo, Ana Maria

    2005-01-01

    Bone homeostasis is the result of a tight balance between bone resorption and bone formation where macrophage activation is believed to contribute to bone resorption. We have previously shown that a vanadyl(IV)-aspirin complex (VOAspi) regulates cell proliferation and differentiation of osteoblasts in culture. In this study, we assessed VOAspi and VO effects and their possible mechanism of action on a mouse macrophage cell line RAW 264.7. Both vanadium compounds inhibited cell proliferation in a dose-dependent manner. Nifedipine completely reversed the VOAspi-induced macrophage cytotoxicity, while it could not block the effect of VO. VOAspi also stimulated nitric oxide (NO) production, the oxidation of dihydrorhodamine 123 (DHR-123) and enhanced the expression of both constitutive and inducible isoforms of nitric oxide syntases (NOS). All these effects were abolished by nifedipine. Althogether our finding give evidence that VOAspi-induced macrophage cytotoxicity is dependent on L-type calcium channel and the generation of NO though the induction of eNOS and iNOS. Contrary, the parent compound VO exerted a cytotoxic effect by mechanisms independent of a calcium entry and the NO/NOS activation

  12. Efeito do sulfato de vanadil sobre o comprometimento metabólico muscular induzido pela imobilização de membro posterior de ratos Efecto del sulfato de vanadil sobre comprometimiento metabólico muscular inducido por la inmovilización del miembro posterior en ratones Effect of the vanadyl sulphate on the muscular metabolic compromising induced by immobilization of posterior limb of rats

    Directory of Open Access Journals (Sweden)

    Gabriel Borges Delfino

    2006-12-01

    Full Text Available A proposta deste trabalho foi avaliar o efeito do sulfato de vanadil (SV no perfil metabólico muscular de membro posterior imobilizado de ratos. Ratos Wistar foram divididos nos grupos (n = 6: controle (C, imobilizado em posição neutra do tornozelo (I, tratado com sulfato de vanadil (SV, 0,25mM, VO e imobilizado tratado com SV (I + SV durante sete dias. Após o período experimental, foram avaliadas as reservas de glicogênio (RG dos músculos sóleo (S, gastrocnêmio branco (GB e vermelho (GV, tibial anterior (TA e extensor longo dos dedos (ELD, além do peso do S e ELD. A análise estatística foi realizada pela ANOVA seguida pelo teste de Tukey (p La propuesta de este trabajo ha sido la de evaluar el efecto del sulfato de vanadil (SV en el perfil metabólico muscular de miembro posterior inmovilizado de ratones. Ratones Wistar fueron divididos en grupos (n = 6: control (C, inmovilizado en posición neutra de tobillo (I, tratado con sulfato de vanadil (SV, 0,25mM, VO e inmovilizado tratado con SV (I + SV durante 7 días. Después del periodo experimental, fueron evaluadas las reservas de glicógeno (RG de los músculos soleo (S, gastrocnemio blanco (GB y colorado (GV, tibial anterior (TA y extensor largo de los dedos (ELD, además del peso de S y ELD. El análisis estadístico fue realizado por ANOVA seguido del test de Tukey (p The purpose of this study was to evaluate the metabolic performance of immobilized skeletal muscle in rats treated with vanadyl sulphate. Male Wistar rats were divided in groups (n = 6: control (C, immobilized (I, treated with vanadyl sulphate (VS, 0,25 mM and immobilized treated with vanadyl sulphate (I + VS during seven days. The concentration of vanadyl sulphate diluted in water was 0,25 mM. After experimental stage, the glycogen content (GC was evaluated in soleus (S, white gastrocnemius (WG, red gastrocnemius (RG, tibialis anterior (TA and extensor digitorum longus (EDL muscles, besides S and EDL weight. The

  13. Adatom Fe(III on the hematite surface: Observation of a key reactive surface species

    Directory of Open Access Journals (Sweden)

    Rosso Kevin M

    2004-06-01

    Full Text Available The reactivity of a mineral surface is determined by the variety and population of different types of surface sites (e.g., step, kink, adatom, and defect sites. The concept of "adsorbed nutrient" has been built into crystal growth theories, and many other studies of mineral surface reactivity appeal to ill-defined "active sites." Despite their theoretical importance, there has been little direct experimental or analytical investigation of the structure and properties of such species. Here, we use ex-situ and in-situ scanning tunneling microcopy (STM combined with calculated images based on a resonant tunneling model to show that observed nonperiodic protrusions and depressions on the hematite (001 surface can be explained as Fe in an adsorbed or adatom state occupying sites different from those that result from simple termination of the bulk mineral. The number of such sites varies with sample preparation history, consistent with their removal from the surface in low pH solutions.

  14. Effect of chemisorbed surface species on the photocatalytic activity of TiO2 nanoparticulate films

    International Nuclear Information System (INIS)

    Cao Yaan; Yang Wensheng; Chen Yongmei; Du Hui; Yue, Polock

    2004-01-01

    TiO 2 sols prepared in acidic and basic medium were deposited into films by a spin coating method. Photodegradation experiments showed that photocatalytic activity of the films prepared from acidic sol was much higher than that from basic sol. It is identified that there are more chemisorbed species of CO 2 on the surface of the TiO 2 films from the basic sol than on the surface of the TiO 2 films from the acidic sol. The chemisorbed species of CO 2 reduce the concentration of active species such as hydroxyl group and bridging oxygen on surface of the TiO 2 film and contribute to the formation of surface electron traps in the band gap which are detrimental to charge separation, thus lowering the photocatalytic activity

  15. Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing

    Directory of Open Access Journals (Sweden)

    Weikang Zhang

    2017-03-01

    Full Text Available Leaf surface is a multifunctional interface between a plant and its environment, which affects both ecological and biological processes. Leaf surface topography directly affects microhabitat availability and ability for deposition. In this study, atomic force microscopy (AFM and the resuspended particulate matter method were applied to evaluate the adsorptive capacity of the leaf surface. Patterns of particulate‐capturing capacities in different tree species and the effect of leaf surface features on these capacities were explored. Results indicated the following: (1 more total suspended particles (TSP per unit leaf area were captured by coniferous tree species than by broad‐leaved tree species in a particular order—i.e., Pinus tabuliformis > Pinus bungeana > Salix matsudana > Acer truncatum > Ginkgo biloba > Populus tomentosa; (2 Significant seasonal variation in particulate‐capturing capacities were determined. During the observation period, the broad‐leaved tree species capturing TSP and coarse particulate matter (PM10 clearly exhibited a ∩‐shape pattern— that is, increasing initially and later on decreasing; meanwhile, the ∩‐shape pattern was not clearly shown in P. tabuliformis and P. bungeana. However, no obvious patterns in the absorption of fine particulate matter (PM2.5 were found in the tested tree species; (3 The leaf surface topography, as observed by AFM and scanning electron microscopy, revealed that the broad‐leaved tree exhibits a good correlation between micro‐roughness of leaf surfaces and density of particles settling on leaf surfaces over time. However, the main factors affecting the adsorptive capacities of the leaves in coniferous trees are the number of stomata as well as the amount of epicuticular wax and the properties of the cuticle in different seasons.

  16. Improvements in biamperometric method for remote analysis of uranium

    International Nuclear Information System (INIS)

    Palamalai, A.; Thankachan, T.S.; Balasubramanian, G.R.

    1979-01-01

    One of the titrimetric methods most suitable for remote operations with Master Slave Manipulators inside hot cells is the biamperometric method. The biamperometric method for the analysis of uranium reported in the literature is found to give rise to a significant bias, especially with low aliquots of uranium and the waste volume is also considerable which is not desirable from the point of view of radioactive waste disposal. In the present method, the bias as well as waste volume are reduced. Also addition of vanadyl sulphate is found necessary to provide a sharp end point in the titration curve. The role of vanadyl sulphate in improving the titration method has been investigated by spectrophotometry and electrometry. A new mechanism for the role of vanadyl sulphate which is in conformity with the observations made in coulometric titration of uranium, is proposed. Interference from deliberate additions of high concentrations of stable species of fission product elements is found negligible. Hence this method is considered highly suitable for remote analysis of uranium in intensely radioactive reprocessing solutions for control purposes, provided radioactivity does not pose new problems. (auth.)

  17. [Diversity of Bacillus species inhabiting on the surface and endophyte of lichens collected from Wuyi Mountain].

    Science.gov (United States)

    Ge, Cibin; Liu, Bo; Che, Jianmei; Chen, Meichun; Liu, Guohong; Wei, Jiangchun

    2015-05-04

    The present work reported the isolation, identification and diversity of Bacillus species colonizing on the surface and endophyte in lichens collected from Wuyi Mountain. Nine lichen samples of Evernia, Stereocaulon, Menegazzia and other 6 genera belonging to 7 families were collected from Wuyi mountain nature reserve. The bacillus-like species colonizing on the surface and endophyte in these lichens were isolated and identified by 16S rRNA gene sequence analysis. There was no bacillus-like species isolated from Evernia, Ramalina and Lecarona. A total of 34 bacillus-like bacteria were isolated from another 6 lichen samples. These bacteria were identified as 24 species and were classified into Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus and Viridiibacillus. Paenibacillus and Bacillus are the dominant genera, and accounting for 41. 2% and 35. 3% of all isolated bacteria respectively. Brevibacillus, Lysinibacillus and Viridiibacillu were first reported being isolated from lichens. There were different species and quantity of bacillus colonizing on the surface and endophyte in different lichens. The quantity of bacillus colonizing on the surface of Physcia was more than 3.85 x 10(6) cfu/g and was the largest in the isolated bacteria, while the species of bacillus colonizing on the surface and endophyte in Stereocaulon was the most abundant. Most of the isolated bacteria were colonizing on (in) one lichen genera, but Paenibacillus taichungensis, Paenibacillus odorifer, Brevibacillus agri, Lysinibacillus xylanilyticus was respectively colonizing on (in) 2-3 lichen genera and Bacillus mycoides was colonizing on (in) Menegazzia, Cladonia Physcia, and Stereocaulon. There are species and quantity diversity of bacillus colonizing on (in) lichens.

  18. Quantitative monitoring of two simultaneously binding species using Label-Enhanced surface plasmon resonance.

    Science.gov (United States)

    Eng, Lars; Garcia, Brandon L; Geisbrecht, Brian V; Hanning, Anders

    2018-02-26

    Surface plasmon resonance (SPR) is a well-established method for biomolecular interaction studies. SPR monitors the binding of molecules to a solid surface, embodied as refractive index changes close to the surface. One limitation of conventional SPR is the universal nature of the detection that results in an inability to qualitatively discriminate between different binding species. Furthermore, it is impossible to directly discriminate two species simultaneously binding to different sites on a protein, which limits the utility of SPR, for example, in the study of allosteric binders or bi-specific molecules. It is also impossible in principle to discriminate protein conformation changes from actual binding events. Here we demonstrate how Label-Enhanced SPR can be utilized to discriminate and quantitatively monitor the simultaneous binding of two different species - one dye-labeled and one unlabeled - on a standard, single-wavelength SPR instrument. This new technique increases the versatility of SPR technology by opening up application areas where the usefulness of the approach has previously been limited. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by ICP-OES

    Science.gov (United States)

    Yong, Cheng

    2018-03-01

    The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.

  20. Distribution of the Ammoniated Species on the Surface of Ceres

    Science.gov (United States)

    Ammannito, E.; De Sanctis, M. C.; Carrorro, F. G.; Ciarniello, M.; Combe, J. P.; De Angelis, S.; Ehlmann, B. L.; Frigeri, A.; Marchi, S.; McSween, H. Y., Jr.; Raponi, A.; Toplis, M. J.; Tosi, F.; Castillo, J. C.; Capaccioni, F.; Capria, M. T.; Fonte, S.; Giardino, M.; Jaumann, R.; Longobardo, A.; Joy, S. P.; Magni, G.; McCord, T. B.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Polanskey, C. A.; Prettyman, T. H.; Rayman, M.; Raymond, C. A.; Schenk, P.; Zambon, F.; Russell, C. T.

    2016-12-01

    The Dawn spacecraft has been acquiring data on dwarf planet Ceres since January 2015 (1). The VIR spectrometer (0.25-5.0 μm) acquired data at different altitudes providing information on the composition of the surface of Ceres at resolutions ranging from few kilometers to about one hundred meters (2). The average spectrum of Ceres is well represented by a mixture of dark minerals, Mg- phyllosilicates, ammoniated clays, and Mg carbonates (3). This result confirms previous studies based on ground based spectra (4, 5). Maps of the surface at about 1 km/px show that the components identified in the average spectrum are present all across the surface with variations in their relative abundance (6). Some localized areas however have peculiar spectral characteristics. One example is the spectrum of the bright regions within Occator crater that is most consistent with a large amount of Na-carbonates and possibly ammonium salts (7). The presence of ammoniated species poses a constraint on the pH and redox condition during the evolution of Ceres. Therefore, we have studied the distribution across the surface of such species to better understand the evolutionary pathway of Ceres. References : (1) Russell, C. T. et al. 2016, Science. (2) De Sanctis M.C. et al., The VIR Spectrometer, 2011, Space Science Reviews. (3) De Sanctis M.C. et al. Ammoniated phyllosilicates on dwarf planet Ceres reveal an outer solar system origin, Nature, 2015. (4) King T. et al. (1992) Science, 255, 1551-1553. (5) Rivkin A.S. et al. (2006) Icarus, 185, 563-567. (6) Ammannito E. et al., Spectral diversity of Ceres surface as measured by VIR, 2016, Science. (7) De Sanctis et al. (2016), Nature

  1. Chemical profiles of body surfaces and nests from six Bornean stingless bee species.

    Science.gov (United States)

    Leonhardt, Sara Diana; Blüthgen, Nico; Schmitt, Thomas

    2011-01-01

    Stingless bees (Apidae: Meliponini) are the most diverse group of Apid bees and represent common pollinators in tropical ecosystems. Like honeybees they live in large eusocial colonies and rely on complex chemical recognition and communication systems. In contrast to honeybees, their ecology and especially their chemical ecology have received only little attention, particularly in the Old World. We previously have analyzed the chemical profiles of six paleotropical stingless bee species from Borneo and revealed the presence of species-specific cuticular terpenes- an environmentally derived compound class so far unique among social insects. Here, we compared the bees' surface profiles to the chemistry of their nest material. Terpenes, alkanes, and alkenes were the dominant compound groups on both body surfaces and nest material. However, bee profiles and nests strongly differed in their chemical composition. Body surfaces thus did not merely mirror nests, rendering a passive compound transfer from nests to bees unlikely. The difference between nests and bees was particularly pronounced when all resin-derived compounds (terpenes) were excluded and only genetically determined compounds were considered. When terpenes were included, bee profiles and nest material still differed, because whole groups of terpenes (e.g., sesquiterpenes) were found in nest material of some species, but missing in their chemical profile, indicating that bees are able to influence the terpene composition both in their nests and on their surfaces.

  2. The Adsorption of Cu Species onto Pyrite Surface and Its Effect on Pyrite Flotation

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-01-01

    Full Text Available The adsorption of Cu species onto pyrite surface and its effect on flotation were investigated by using microflotation tests, first-principle calculations, and XPS surface analysis. The results indicated that the flotation of pyrite appears to be activated with CuSO4 only at alkaline pH, while being depressed at acidic and neutral pH. The adsorption of copper ions on pyrite surface was pH-dependent, and the adsorption magnitude of copper ions at alkaline pH is higher than that at acidic and neutral pH due to a strong interaction between O atom in Cu(OH2 and surface Fe atom except for the interaction between Cu atom and surface S atom. At acidic and neutral pH, there is only an interaction between Cu atom and surface S atom. The adsorption was relatively weak, and more copper ions in solution precipitated the collector and depressed the flotation of pyrite. XPS analysis confirmed that more copper ionic species (Cu(I and Cu(II are adsorbed on the pyrite surface at alkaline pH than that at acidic and neutral pH.

  3. Uranium (VI) chemistry at the interface solution/minerals (quartz and aluminium hydroxide): experiments and spectroscopic investigations of the uranyl surface species

    International Nuclear Information System (INIS)

    Froideval, A.

    2004-09-01

    This study deals with the understanding of the uranyl chemistry at the 0.1 M NaNO 3 solution/mineral (quartz and aluminium hydroxide) interface. The aims are:(i) to identify and to characterize the different uranyl surface species (mononuclear, polynuclear complexes and/or precipitates...), i.e. the coordination environments of sorbed/precipitated uranyl ions, by using X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and time-resolved laser-induced fluorescence spectroscopy (TRLFS), and;(ii) to investigate the influence of pH, initial uranyl aqueous concentration and hydroxyl ligand concentration on the uranyl surface speciation. Our study on the speciation of uranyl ions at the quartz surface (i) confirms the formation of uranyl polynuclear/oligomers on quartz from moderate (1 μmol/m 2 ) to high (26 μmol/m 2 ) uranyl surface concentrations and (ii) show that theses polynuclear species coexist with uranyl mononuclear surface species over a pH range ≅ 5-8.5 and a wide range of initial uranyl concentration o f the solutions (10-100 μM). The uranyl concentration of these surface species depends on pH and on the initial uranyl aqueous concentration. Hydrate (surface-) precipitates and/or adsorbed polynuclear species and monomeric uranyl surface complexes are formed on aluminium hydroxide. Uranyl mononuclear complexes are predominant at acidic pH, as well as uranyl in solution or on the surface. Besides mononuclear species, precipitates and/or adsorbed polynuclear species are predominantly formed at neutral pH values on aluminium hydroxide. A main contribution of our investigations is that precipitation and/or adsorption of polynuclear species seem to occur at low uranyl surface concentrations (0.01-0.4 μmol/m 2 ). The uranyl surface speciation is mainly dependent on the pH and the aluminol ligand concentration. (author)

  4. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  5. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  6. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Azmer, Mohamad Izzat [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa [Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha (Qatar); Sulaiman, Khaulah, E-mail: khaulah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Touati, Farid [Department of Electrical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha (Qatar); Bawazeer, Tahani M. [Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah (Saudi Arabia); Alsoufi, Mohammad S. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah (Saudi Arabia)

    2017-03-31

    Highlights: • VOPcPhO:P3HT micro-structures with nano-porous surface morphology have been formed. • Multidimensional structures have been formed by electro-spraying technique. • The electro-sprayed films are very promising for the humidity sensors. - Abstract: In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  7. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  8. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  9. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  10. Micromorphology of leaf surface of Coelogyne Lindl. species (Orchidaceae Juss. in greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Alexander G. Gyrenko

    2013-04-01

    Full Text Available The micromorphological characteristics of both adaxial and abaxial leaf surfaces of the plants of five Coelogyne Lindl. species (C. assamicaLinden & Rchb.f., C. brachyptera Rchb.f., C. cumingii Lindl., C. fimbriataLindl., C. lentiginosaLindl. under glasshouse conditions have been described.

  11. Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dept of Materials Science and Engineering UCB; Dept of Applied Science and Technology, UCB; Institut de Ciencia de Materials de Barcelona, Barcelona, Spain; Instituto de Ciencia de Materiales de Madrid, Madrid, Spain; Department of Mechanical Engineering, Yale University; Salmeron, Miquel; Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge I.; Heyde, Markus; Qi, Yabing; Schwarz, Udo D.; Ogletree, D. Frank; Salmeron, Miquel

    2008-04-26

    The adsorption and dissociation of water on a Ru(0001) surface containing a small amount ({le} 3 %) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H{sub 2}O, H{sub 2}O-C complexes, H, O, OH and CH. Clusters of either pure H{sub 2}O or mixed H{sub 2}O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons has been used as supporting evidence.

  12. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study

    Science.gov (United States)

    Yuan, P.; Wu, D. Q.; He, H. P.; Lin, Z. Y.

    2004-04-01

    Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy of adsorbed pyridine molecules (Py-Raman) and in situ Py-IR have been used to investigate the hydroxyl species and acid sites on diatomite surfaces. The Lewis (L) and Brønsted (B) acid sites, and various hydroxyl species, including isolated hydroxyl groups, H-bonded hydroxyl groups and physically adsorbed water, are identified. The L acid sites in diatomite samples are resulted from the clay impurities, and the B acid sites are resulted from some moderate strength H-bonded hydroxyl groups. At room temperature, both of the isolated and H-bonded silanols associate with the physically adsorbed water by hydrogen bond. After calcination treatment, physically adsorbed water will be desorbed from the silanols, and the silanols will condense with the increase of temperature. Generally, the H-bonded silanols condense more easily than the isolated ones. The properties of surface hydroxyl species of diatomaceous silica are more similar to precipitated silica rather than fumed silica.

  13. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces......, is one possible explanation for the observed low global diffusion rates in the pore system of positively charged ions compared to the negatively charged ones. Here it is of interest to simulate the multi ionic diffusion behavior when assigning positively charged ions a comparably lower diffusion constant...

  14. 3-D Topo Surface Visualization of Acid-Base Species Distributions: Corner Buttes, Corner Pits, Curving Ridge Crests, and Dilution Plains

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md Mainul

    2017-01-01

    Species TOPOS is a free software package for generating three-dimensional (3-D) topographic surfaces ("topos") for acid-base equilibrium studies. This upgrade adds 3-D species distribution topos to earlier surfaces that showed pH and buffer capacity behavior during titration and dilution procedures. It constructs topos by plotting…

  15. Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity

    International Nuclear Information System (INIS)

    Liao, Hengcheng; Zuo, Peiyuan; Liu, Miaomiao

    2016-01-01

    Two Pd-loading routes and three Pd-precursor matters were adopted to prepare Pd/(Ce,Y)O_2/γ-Al_2O_3/cordierite monolithic catalyst. The surface active species on the catalyst were characterized by XPS, and its catalytic activity for methane combustion was tested, and the dynamics of the catalytic combustion reaction was also discussed. Pd-loading route and Pd-precursor mass have a significant influence on the catalytic activity and surface active species. The sol dipping method is more advanced than the aqueous solution impregnating method. PN-sol catalyst, by sol dipping combined with Pd(NO_3)_2-precursor, has the best catalytic activity. The physical reason is the unique active Pd phase coexisting with active PdO phase on the surface, and thus the Pd3d_5_/_2 binding energy of surface species and apparent activation energy of combustion reaction are considerably decreased. The catalytic activity index, Pd3d_5_/_2 binding energy and apparent activation energy are highly tied each other with exponential relations.

  16. A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus.

    Directory of Open Access Journals (Sweden)

    Bethany A Stahl

    Full Text Available Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual, and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment.

  17. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    International Nuclear Information System (INIS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Ikehara, Yuzuru; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O 2 /He or N 2 /He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation. (paper)

  18. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    Science.gov (United States)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  19. Distribution of essential trace elements in animals. Manganese and vanadium ion

    International Nuclear Information System (INIS)

    Sakurai, Hiromu; Nishida, Mikio; Koyama, Mutsuo; Takada, Jitsuya.

    1994-01-01

    We determined the tissue and subcellular distributions of Mn(II) by ESR and of total Mn by neutron activation analysis combined with chemical separation. Mn(II) contents of the thyroid, hypophysis, adrenal, pancreas, liver and kidney, tissues were low. In animals treated with Mn(II)Cl, the total Mn content of all tissues increased, but the Mn(II) content remained low. In subcellular distribution, the total Mn content was high in nuclear and mitochondrial fractions of liver and kidney, and in the microsomal and supernatant fractions of the pancreas. The ratio of Mn(II) to total Mn was relatively high in microsomes of the liver and kidney of control rats, and in the nuclear fraction of pancreas of Mn-treated rats. Partially purified liver and mitochondria were found to contain high level of Mn than the crude compartments, indicating that Mn is tightly bound in each cellular compartment. Distribution of Mn in organs and subcellular fractions of rats was investigated. Treatment of STZ resulted in unchanged Mn levels in most organs. Mn content, however, was decreased in the liver mitochondrial fraction and increased in supernatant fraction. Mn levels in both the liver and kidney of rats treated with cisplatin were increased after 7 days of drug administration. The distribution of vanadyl(+4) species estimated by ESR, and total V, determined by neutron activation analysis, were examined in organs and subcellular fractions of the liver of rats treated with vanadyl sulfate or sodium vanadate(+5). Both V compounds distributed in a similar manner in the following order; kidney>serum>liver≅blood>pancreas>testis>lung≅spleen. The ratio of vanadyl ion to total V in a whole homogenate was almost the same after the both treatments, but the ratios in subcellular fractions varies depending on the V compound and the fraction. Approximately 30-70% of the vanadium was reduced to vanadyl form in the subcellular fractions of the liver. (J.P.N.)

  20. Response of streptozotocin-induced diabetes in rats under oxidative stress of intermittent radiation exposure to either antioxidant or insulin mimic treatment

    International Nuclear Information System (INIS)

    Noaman, E.; El-Tahawy, N.A.; Hedayat, I.S.; Mansour, S.Z.; Fahmy, Y.N.

    2005-01-01

    Diabetic rats were treated with 0.5% a-lipoic acid, as a diet supplement, or was administered with vanadyl sulphate in drinking water at a dose of 75 mg/kg with or without whole body gamma radiation exposure with repeated dose of 4 Gy/week for 4 weeks. Both treatments significantly improved diabetes-induced increase in glucose concentration. Treating diabetic rats with a-lipoic acid prevented the diabetes-induced increase in thiobarbituric acid reactive substances in plasma and significantly improved liver glutathione levels. On the other hand, treating diabetic rats with vanadyl sulphate not only prevented diabetes-induced changes of either of these oxidative stress markers but also normalized glucose concentration and ameliorated the increase in body weight gain. Diabetes with or without radiation exposure induced increase in liver conjugated diene levels and such elevation was improved by the treatment with either a-lipoic acid or vanadyl sulphate. Treating diabetic rats with a-lipoic acid and vanadyl sulphate partially improved liver No*VlC-ATPase activity and sorbitol and myo-inositol contents. The increase in liver sorbitol levels in diabetic rats was ameliorated by either treatment. These studies suggest that diabetes-induced oxidative stress may be partially responsible for the development of diabetic complications and the treatment with vanadyl sulphate was more advantageous than a-lipoic acid in handling these complications

  1. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Enhanced photocatalytic activity of titania with unique surface indium and boron species

    Science.gov (United States)

    Yu, Yanlong; Wang, Enjun; Yuan, Jixiang; Cao, Yaan

    2013-05-01

    Indium and boron co-doped TiO2 photocatalysts were prepared by a sol-gel method. The structure and properties of photocatalysts were characterized by XRD, BET, XPS, UV-vis DRS and PL techniques. It is found that boron is mainly doped into the lattice of TiO2 in interstitial mode, while indium is present as unique chemical species of O-In-Clx (x = 1 or 2) on the surface. Compared with pure TiO2, the narrowness of band gap of TiO2 doped with indium and boron is due to the mixed valence band formed by B2p of interstitial doped B ions hybridized with lattice O2p. And the surface state energy levels of O-In-Clx (x = 1 or 2) and B2O3 species were located at about 0.4 and 0.3 eV below the conduction band respectively, which could lead to significant absorption in the visible-light region and facilitated the effectually separation of photogenerated carriers. Therefore, indium and boron co-doped TiO2 showed the much higher photocatalytic activities than pure TiO2, boron doped TiO2 (TiO2-B) and indium doped TiO2 (TiO2-In) under visible and UV light irradiation.

  3. Numerical investigation of three-dimensional single-species plasma equilibria on magnetic surfaces

    International Nuclear Information System (INIS)

    Lefrancois, Remi G.; Pedersen, Thomas Sunn; Boozer, Allen H.; Kremer, Jason P.

    2005-01-01

    Presented for the first time are numerical solutions to the three-dimensional nonlinear equilibrium equation for single-species plasmas confined on magnetic surfaces and surrounded by an equipotential boundary. The major-radial shift of such plasmas is found to be outward, qualitatively similar to the Shafranov shift of quasineutral plasmas confined on magnetic surfaces. However, this is the opposite of what occurs in the pure toroidal field equilibria of non-neutral plasmas (i.e., in the absence of magnetic surfaces). The effect of varying the number of Debye lengths in the plasma for the three-dimensional (3D) model is in agreement with previous 2D calculations: the potential varies significantly on magnetic surfaces for plasmas with few Debye lengths (a d ), and tends to be constant on surfaces when many Debye lengths are present (a > or approx. 10λ d ). For the case of a conducting boundary that does not conform to the outer magnetic surface, the plasma is shifted towards the conductor and the potential varies significantly on magnetic surfaces near the plasma edge. Debye shielding effects are clearly demonstrated when a nonuniform bias is applied to the boundary. Computed equilibrium profiles are presented for the Columbia Non-Neutral Torus [T. S. Pedersen, A. H. Boozer, J. P. Kermer, R. Lefrancois, F. Dahlgren, N. Pomphrey, W. Reiersen, and W. Dorland, Fusion Sci. Technol. 46, 200 (2004)], a stellarator designed to confine non-neutral plasmas

  4. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  5. Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean

    DEFF Research Database (Denmark)

    He, Peng; Hou, Xiaolin; Aldahan, Ala

    2013-01-01

    Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations of the is...... 129I in ocean environments and impact on climate at the ocean boundary layer.......Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations...... of the isotope in the Atlantic Ocean are, however, still unknown. We here present first data on 129I and 127I, and their species (iodide and iodate) in surface water transect along the northeastern Atlantic between 30° and 50°N. The results show iodate as the predominant species in the analyzed marine waters...

  6. Syntheses and structural characterization of vanado-tellurites and vanadyl-selenites: SrVTeO{sub 5}(OH), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}, Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Konatham, Satish; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2017-05-15

    Four new quaternary vanado-tellurites and vanadyl-selenites, namely, SrVTeO{sub 5}(OH)(1), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2), Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) have been synthesized and structurally characterized by single crystal X-ray diffraction. The oxidation state of vanadium is +5 in tellurites 1 and 2 and +4 in selenites 3 and 4. The structures of SrVTeO{sub 5}(OH)(1) and Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2) compounds consist of (VTeO{sub 5}(OH)){sup 2-} and (V{sub 2}Te{sub 2}O{sub 11}){sup 4-}anionic chains respectively, which are built from tetrahedral VO{sub 4} and disphenoidal TeO{sub 4} moieties. Similarly the structures of Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) respectively contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} anionic chains, which are made up of octahedral VO{sub 6} and pyramidal SeO{sub 3} units. Compounds 1 and 3 have been characterized by thermogravimetric and infrared spectroscopic methods. Compounds 1 and 2 are wide band gap semiconductors. - Graphical abstract: Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10} compounds contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} chains. - Highlights: • Four new vanado-tellurites and vanadyl-selenites are synthesized. • Their structural features are different. • The vanado-tellurites are wide band gap semiconductors.

  7. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  8. Enhanced photocatalytic activity of titania with unique surface indium and boron species

    International Nuclear Information System (INIS)

    Yu, Yanlong; Wang, Enjun; Yuan, Jixiang; Cao, Yaan

    2013-01-01

    Indium and boron co-doped TiO 2 photocatalysts were prepared by a sol–gel method. The structure and properties of photocatalysts were characterized by XRD, BET, XPS, UV–vis DRS and PL techniques. It is found that boron is mainly doped into the lattice of TiO 2 in interstitial mode, while indium is present as unique chemical species of O–In–Cl x (x = 1 or 2) on the surface. Compared with pure TiO 2 , the narrowness of band gap of TiO 2 doped with indium and boron is due to the mixed valence band formed by B2p of interstitial doped B ions hybridized with lattice O2p. And the surface state energy levels of O–In–Cl x (x = 1 or 2) and B 2 O 3 species were located at about 0.4 and 0.3 eV below the conduction band respectively, which could lead to significant absorption in the visible-light region and facilitated the effectually separation of photogenerated carriers. Therefore, indium and boron co-doped TiO 2 showed the much higher photocatalytic activities than pure TiO 2 , boron doped TiO 2 (TiO 2 –B) and indium doped TiO 2 (TiO 2 –In) under visible and UV light irradiation.

  9. On the nature of citrate-derived surface species on Ag nanoparticles: Insights from X-ray photoelectron spectroscopy

    Science.gov (United States)

    Mikhlin, Yuri L.; Vorobyev, Sergey A.; Saikova, Svetlana V.; Vishnyakova, Elena A.; Romanchenko, Alexander S.; Zharkov, Sergey M.; Larichev, Yurii V.

    2018-01-01

    Citrate is an important stabilizing, reducing, and complexing reagent in the wet chemical synthesis of nanoparticles of silver and other metals, however, the exact nature of adsorbates, and its mechanism of action are still uncertain. Here, we applied X-ray photoelectron spectroscopy, soft X-ray absorption near-edge spectroscopy, and other techniques in order to determine the surface composition and to specify the citrate-related species at Ag nanoparticles immobilized from the dense hydrosol prepared using room-temperature reduction of aqueous Ag+ ions with ferrous ions and citrate as stabilizer (Carey Lea method). It was found that, contrary to the common view, the species adsorbed on the Ag nanoparticles are, in large part, products of citrate decomposition comprising an alcohol group and one or two carboxylate bound to the surface Ag, and minor unbound carboxylate group; these may also be mixtures of citrate with lower molecular weight anions. No ketone groups were specified, and very minor surface Ag(I) and Fe (mainly, ferric oxyhydroxides) species were detected. Moreover, the adsorbates were different at AgNPs having various size and shape. The relation between the capping and the particle growth, colloidal stability of the high-concentration sol and properties of AgNPs is briefly considered.

  10. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  11. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    International Nuclear Information System (INIS)

    Cheng, He; Liu, Xin; Lu, Xinpei; Liu, Dawei

    2016-01-01

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  12. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, He; Liu, Xin; Lu, Xinpei [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Dawei, E-mail: ldw636@msn.com [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an (China)

    2016-07-15

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  13. Micromorphological study (ultrastructure of lamina surface, seeds, ultrasculpture of pollen grains of Gladiolus L. species (Iridaceae Juss. of Ukrainian flora

    Directory of Open Access Journals (Sweden)

    Zhygalova Svitlana L.

    2014-12-01

    Full Text Available Micro-morphological characteristics of the four Gladiolus L. species of the Ukrainian flora (G. imbricatus L., G. italicus Mill., G. palustris Gaudin and G. tenuis M. Bieb. as regards leaves, seeds and pollens are presented with this investigation in a detailed way. An examination of the surface structure of the leaves, seeds and pollen grains of the Gladiolus species indicates that the characteristics of the ultrastructure of leaves and of pollen grains are not diagnostic for distinguishing species, but they could be important at genus level (leaves: features such as being amphistomatic, having the same quantity of immersed stomata on both surfaces and having a high stomata index, the presence and localisation of papillae, the shape of epidermal cells; pollen grains: monosulcate type with two operculums. However, the type of surface ultrastructure of the seed coat is a diagnostic feature as at genus level so for species. It can be mentioned that propose the use of features such as the shape and position of the cicatricle, the type of cuticle, the shape and boundaries of cells of testa, and the anticlinal cell walls as diagnostic features at genera level. The shape of seeds, the presence and disposition of wing, the level of the periclinal cell walls of the seed coat and types of relief are additional diagnostic features for distinguishing of Gladiolus species.

  14. Enhanced photocatalytic activity of titania with unique surface indium and boron species

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlong; Wang, Enjun; Yuan, Jixiang [MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457 (China); Cao, Yaan, E-mail: caoyaan@yahoo.com [MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457 (China)

    2013-05-15

    Indium and boron co-doped TiO{sub 2} photocatalysts were prepared by a sol–gel method. The structure and properties of photocatalysts were characterized by XRD, BET, XPS, UV–vis DRS and PL techniques. It is found that boron is mainly doped into the lattice of TiO{sub 2} in interstitial mode, while indium is present as unique chemical species of O–In–Cl{sub x} (x = 1 or 2) on the surface. Compared with pure TiO{sub 2}, the narrowness of band gap of TiO{sub 2} doped with indium and boron is due to the mixed valence band formed by B2p of interstitial doped B ions hybridized with lattice O2p. And the surface state energy levels of O–In–Cl{sub x} (x = 1 or 2) and B{sub 2}O{sub 3} species were located at about 0.4 and 0.3 eV below the conduction band respectively, which could lead to significant absorption in the visible-light region and facilitated the effectually separation of photogenerated carriers. Therefore, indium and boron co-doped TiO{sub 2} showed the much higher photocatalytic activities than pure TiO{sub 2}, boron doped TiO{sub 2} (TiO{sub 2}–B) and indium doped TiO{sub 2} (TiO{sub 2}–In) under visible and UV light irradiation.

  15. Effect of template-induced surface species on electronic structure and photocatalytic activity of g-C{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yu; Guo, Xiaojuan; Bo, Xiangkun; Wang, Yongzheng [Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023 (China); Guo, Xiangke [Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); Xie, Mingjiang, E-mail: xiemingjiang@hotmail.com [Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023 (China); Guo, Xuefeng, E-mail: guoxf@nju.edu.cn [Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China)

    2017-02-28

    Highlights: • The effect of template on the surface chemistry of g-C{sub 3}N{sub 4} were investigated. • Template induces more non-graphitic species (sp{sup 3}−C−C− and −NH{sub x}) on g-C{sub 3}N{sub 4}. • Non-graphitic species influence electronic structure and performance of g-C{sub 3}N{sub 4}. - Abstract: In view of the fact that the photocatalytic activity of graphitic carbon nitride (g-C{sub 3}N{sub 4}) is greatly influenced by its electronic structure, herein, effect of templates induced surface species variation on the electronic structure and photocatalytic activity of the templated g-C{sub 3}N{sub 4} was investigated. By mixing the precursor of cyanamide with different templates (SiO{sub 2}, Al{sub 2}O{sub 3} and template-free) in the preparation of graphitic carbon nitride (g-C{sub 3}N{sub 4}), carbon nitrides with different surface species were obtained. The obtained carbon nitride (g-C{sub 3}N{sub 4}-Si) templated by SiO{sub 2} nanoparticles exhibits enlarged band gap (3.26 eV) and enhanced photo-degradation ability towards Methyl Orange (MO) compared to that of bulk g-C{sub 3}N{sub 4} (2.67 eV) synthesized from direct condensation/carbonization of melamine and Al{sub 2}O{sub 3}-templated g-C{sub 3}N{sub 4}-Al (2.76 eV). Detailed characterizations confirm that the introduction of templates in the synthesis process resulted in more non-graphitic species (sp{sup 3}−C−C− and −NH{sub x}) on the surface of the derived carbon nitrides, exerting remarkable effect on the electronic structure and photocatalytic performance.

  16. On synergism in inhibition of liquidphase oxidation of styrene and tetralin by organic phosphites and transition eleement acetylacetonates

    International Nuclear Information System (INIS)

    Pobedimskij, D.G.; Nasobullin, Sh.A.; Kadyrova, V.Kh.; Kirpichnikov, P.A.

    1976-01-01

    Synergism has been observed during inhibiting initiated oxidation of styrene or tetralin by organic phosphites in the presence of complex compounds of some transition metals. The results are given of non-additive intensification of antioxidative activity of triphenylphosphite (TPP) and tri-(4-methyl-6-tert.-- butyl)-phenyl-phosphite (TMBP) in the process of initiated oxidation of styrene or tetralin with addition of acetylacetonates of cobalt and vanadyl. During styrene oxidation, inhibition of the reaction with chelate complex of vanadyl is weakened considerably when phosphite is added into the reaction system. During tetralin oxidation, postcatalytic (or branched) oxidation is observed only for large concentration of vanadyl complex. Addition of TPP to above complex sharply increases the induction period. When the induction period is completed, oxidation of tetralin follows the mechanism of usual, i.e. initiated, reaction

  17. Magnetic studies reveal near-perfect paramagnetism in the molecular semiconductor vanadyl phthalocyanine (C{sub 32}H{sub 16}N{sub 8}VO)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengjun [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506-6315 (United States); Pi, Li [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031 (China); Seehra, Mohindar S., E-mail: mseehra@wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506-6315 (United States); Bindra, Jasleen; Van Tol, Hans; Dalal, Naresh S. [National High Magnetic Field Laboratory, and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States)

    2017-01-15

    Temperature (0.5–300 K) and magnetic field (H up to 90 kOe) dependences of the magnetization (M) of a powder sample of vanadyl phthalocyanine (VOPc) having the Phase II-triclinic structure are measured and analyzed. The data of χ = M/H vs. T measured in H = 1 kOe fit the modified Curie-Weiss (CW) law, χ = χ{sub o}+C/(T−θ), with C = 6.266×10{sup −4} emuK/gOe, θ = −0.1 K and χ{sub o} = −9.3×10{sup −7} emu/gOe. The Curie constant C yields magnetic moment μ = 1.704 μ{sub B}, S = 1/2, and g = 1.967 characteristic of VO{sup 2+}. The magnitude of θ = −0.1 K signifying very weak inter-ion antiferromagnetic exchange coupling is supported by the analysis of the variable frequency (9.8–336 GHz) electron paramagnetic resonance data. The isothermal data of M vs. H at ten temperatures between 0.5 K and 300 K when plotted as M vs. H/(T+0.1) collapses on to a single curve given by M = M{sub o}tanh {gμ_BH/[2k_B(T+0.1)]} with M{sub o} = Ngμ{sub B}S = 9.48 emu/g expected for S = 1/2 system, thus signifying near perfect paramagnetism in VOPc. - Highlights: • Magnetization M vs. temperature T from 0.5 K to 300 K in H = 1 kOe is reported. • M vs. T data fit Curie-Weiss law with θ = −0.1 K, S = 1/2, &g = 1.967 for VO{sup 2+}. • Isothermal M vs. H data (H up to 90 kOe) for ten T from 0.5 K to 300 K is reported. • M vs. H/(T−θ) plot for various T fit a single Brillouin function curve for S = 1/2. • Analysis of magnetic and EPR data in VOPc shows near perfect S = 1/2 paramagnetism.

  18. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    Science.gov (United States)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  19. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species

    International Nuclear Information System (INIS)

    Ward, L.P.; Purushotham, K.P.; Manory, R.R.

    2016-01-01

    Highlights: • Reduced surface roughness was observed after ion implantation. • W implantation increased residual stress. • Reduced friction and wear accompanied Mo implantation. • Mo implanted layer was more resistant to breakdown during wear testing. • Ion implantation effects can be complex on various implanting species properties. - Abstract: Improvement in the performance of TiN coatings can be achieved using surface modification techniques such as ion implantation. In the present study, physical vapor deposited (PVD) TiN coatings were implanted with Cr, Zr, Nb, Mo and W using the metal evaporation vacuum arc (MEVVA) technique at a constant nominal dose of 4 × 10 16 ions cm −2 for all species. The samples were characterized before and after implantation, using Rutherford backscattering (RBS), glancing incident angle X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical microscopy. Friction and wear studies were performed under dry sliding conditions using a pin-on-disc CSEM Tribometer at 1 N load and 450 m sliding distance. A reduction in the grain size and surface roughness was observed after implantation with all five species. Little variation was observed in the residual stress values for all implanted TiN coatings, except for W implanted TiN which showed a pronounced increase in compressive residual stress. Mo-implanted samples showed a lower coefficient of friction and higher resistance to breakdown during the initial stages of testing than as-received samples. Significant reduction in wear rate was observed after implanting with Zr and Mo ions compared with unimplanted TiN. The presence of the Ti 2 N phase was observed with Cr implantation.

  20. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface*

    Science.gov (United States)

    Fantappiè, Laura; Irene, Carmela; De Santis, Micaela; Armini, Alessandro; Gagliardi, Assunta; Tomasi, Michele; Parri, Matteo; Cafardi, Valeria; Bonomi, Serena; Ganfini, Luisa; Zerbini, Francesca; Zanella, Ilaria; Carnemolla, Chiara; Bini, Luca; Grandi, Alberto; Grandi, Guido

    2017-01-01

    In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides. PMID:28483926

  1. Active groups for oxidative activation of C-H bond in C{sub 2}-C{sub 5} paraffins on V-P-O catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    For the first time in scientific literature, in our joint work with Dr. G. Ladwig in 1978 it was established phase portraite of the oxide vanadium-phosphorus system within wide range of P/V ratios from 0.5 to 3.2. Some later those data were confirmed. By investigation of the properties of individual vanadium-phosphorus phases it was also shown that the active component of such catalysts in n-butane oxidation was vanadyl pyrophosphate phase (VO){sub 2}Pr{sub 2}O{sub 7}. From then the conclusion has been evidenced by numerous publications and at present it has been out of doubt practically all over the world. It was hypothized that the unique properties of (VO){sub 2}P{sub 2}O{sub 7} in the reaction of n-butane oxidation could be explained by the presence of paired vanadyl groups and nearness of the distances between neighbouring vanadyl pairs and that between the first and fourth carbon atoms in n-butane molecule. The molecule activation occured at the latter atoms by proton abstraction. A comparison of the results on n-butane and butenes oxidation over vanadyl pyrophosphate allowed to conclude that the paraffin oxidation did not take place due to the molecule dehydrogenation process at the first stage of its conversion. Up to now, more than 100 papers related to paraffins oxidation over vanadyl pyrophosphate and the physico-chemical properties of the catalyst have been published. The process of n-butane oxidation is realized in practice. But still, the question about the nature of active sites of the catalyst and the reaction mechanism remains open and provokes further investigations. The present paper deals with our opinion about the problem and the experimental results supporting it. (orig.)

  2. [(≡SiO)TaV (=CH2)Cl2], the first tantalum methylidene species prepared and identified on the silica surface

    KAUST Repository

    Chen, Yin

    2013-11-01

    A novel surface tantalum methylidene [(≡SiO)TaV (=CH 2)Cl2] was obtained via thermal decomposition of the well-defined surface species [(≡SiO)TaVCl2Me 2]. This first surface tantalum methylidene ever synthesized has been fully characterized and the kinetics of the a-hydrogen abstraction reaction has also been investigated in the heterogeneous system. © 2013 Elsevier B.V. All rights reserved.

  3. [(≡SiO)TaV (=CH2)Cl2], the first tantalum methylidene species prepared and identified on the silica surface

    KAUST Repository

    Chen, Yin; Callens, Emmanuel; Abou-Hamad, Edy; Basset, Jean-Marie

    2013-01-01

    A novel surface tantalum methylidene [(≡SiO)TaV (=CH 2)Cl2] was obtained via thermal decomposition of the well-defined surface species [(≡SiO)TaVCl2Me 2]. This first surface tantalum methylidene ever synthesized has been fully characterized and the kinetics of the a-hydrogen abstraction reaction has also been investigated in the heterogeneous system. © 2013 Elsevier B.V. All rights reserved.

  4. Using Google Earth Surface Metrics to Predict Plant Species Richness in a Complex Landscape

    Directory of Open Access Journals (Sweden)

    Sebastián Block

    2016-10-01

    Full Text Available Google Earth provides a freely available, global mosaic of high-resolution imagery from different sensors that has become popular in environmental and ecological studies. However, such imagery lacks the near-infrared band often used in studying vegetation, thus its potential for estimating vegetation properties remains unclear. In this study, we assess the potential of Google Earth imagery to describe and predict vegetation attributes. Further, we compare it to the potential of SPOT imagery, which has additional spectral information. We measured basal area, vegetation height, crown cover, density of individuals, and species richness in 60 plots in the oak forests of a complex volcanic landscape in central Mexico. We modelled each vegetation attribute as a function of surface metrics derived from Google Earth and SPOT images, and selected the best-supported linear models from each source. Total species richness was the best-described and predicted variable: the best Google Earth-based model explained nearly as much variation in species richness as its SPOT counterpart (R2 = 0.44 and 0.51, respectively. However, Google Earth metrics emerged as poor predictors of all remaining vegetation attributes, whilst SPOT metrics showed potential for predicting vegetation height. We conclude that Google Earth imagery can be used to estimate species richness in complex landscapes. As it is freely available, Google Earth can broaden the use of remote sensing by researchers and managers in low-income tropical countries where most biodiversity hotspots are found.

  5. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities.

    Science.gov (United States)

    Muadcheingka, Thaniya; Tantivitayakul, Pornpen

    2015-06-01

    The purposes of this investigation were to study the prevalence of Candida albicans and non-albicans Candida (NAC) species from oral candidiasis patients and evaluate the cell surface hydrophobicity (CSH) and biofilm forming capacity of the clinical isolates Candida species from oral cavity. This study identified a total of 250 Candida strains isolated from 207 oral candidiasis patients with PCR-RFLP technique. CSH value, total biomass of biofilm and biofilm forming ability of 117 oral Candida isolates were evaluated. C. albicans (61.6%) was still the predominant species in oral candidiasis patients with and without denture wearer, respectively, followed by C. glabrata (15.2%), C. tropicalis (10.4%), C. parapsilosis (3.2%), C. kefyr (3.6%), C. dubliniensis (2%), C. lusitaniae (2%), C. krusei (1.6%), and C. guilliermondii (0.4%). The proportion of mixed colonization with more than one Candida species was 18% from total cases. The relative CSH value and biofilm biomass of NAC species were greater than C. albicans (poral isolates NAC species had biofilm forming ability, whereas 78% of C. albicans were biofilm formers. Furthermore, the significant difference of relative CSH values between biofilm formers and non-biofilm formers was observed in the NAC species (poral cavity was gradually increasing. The possible contributing factors might be high cell surface hydrophobicity and biofilm forming ability. The relative CSH value could be a putative factor for determining biofilm formation ability of the non-albicans Candida species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface.

    Science.gov (United States)

    Fantappiè, Laura; Irene, Carmela; De Santis, Micaela; Armini, Alessandro; Gagliardi, Assunta; Tomasi, Michele; Parri, Matteo; Cafardi, Valeria; Bonomi, Serena; Ganfini, Luisa; Zerbini, Francesca; Zanella, Ilaria; Carnemolla, Chiara; Bini, Luca; Grandi, Alberto; Grandi, Guido

    2017-07-01

    In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Structural evolution of derived species on FeAl surface exposed to a N2 + SO2 atmosphere: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Espinosa-Medina, M.A.; Liu, H.B.; Canizal, G.; Ascencio, J.A.

    2007-01-01

    Characterizations were performed by scanning electron microscopy analysis with energy dispersive spectrometry and scanning probe microscope for structural evolution of derived species on FeAl surface exposed to a N 2 + SO 2 atmosphere at high temperature. First principle calculations were also employed in order to clarify the formation of new product on the surface and its mechanism. The results demonstrate that the tendency of the structure with oxygen atoms involve a stronger interaction and lower energy to be formed with the surface and consequently the possible production of oxide-species is more probable and multiple aggregates with different shapes can be generated for the temperatures of 625 and 700 deg. C, with no preferential crystal habit. Sample treated at 775 deg. C denotes the production of hexagonal crystals, which is externally characterized by polyhedrons growing in axial direction as fibbers with flat faces that match with the alumina

  8. Tracing variability in the iodine isotopes and species along surface water transect from the North Sea to the Canary Islands

    International Nuclear Information System (INIS)

    Peng He; Ala Aldahan; Uppsala University, Uppsala; Xiaolin Hou; Chinese Academy of Sciences, Xi'an; Possnert, Goran

    2016-01-01

    A complete transect of surface water samples from the North Sea to the Canary Islands was collected during a continuous period in 2010. The samples were analyzed for total 129 I and 127 I isotopes and their iodide and iodate species. The results indicate a large variability in the total 129 I and its species along the transect, whereas less change and variation are observed for the total 127 I and its species. Transport of 129 I from the western English Channel via Biscay Bay is the main source of 129 I in the northeastern Atlantic Ocean. (author)

  9. Temperature response surfaces for mortality risk of tree species with future drought

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occurs, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These

  10. Temperature response surfaces for mortality risk of tree species with future drought

    Science.gov (United States)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for

  11. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  12. Biophysical Mechanistic Modelling Quantifies the Effects of Plant Traits on Fire Severity: Species, Not Surface Fuel Loads, Determine Flame Dimensions in Eucalypt Forests.

    Science.gov (United States)

    Zylstra, Philip; Bradstock, Ross A; Bedward, Michael; Penman, Trent D; Doherty, Michael D; Weber, Rodney O; Gill, A Malcolm; Cary, Geoffrey J

    2016-01-01

    The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this.

  13. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    Science.gov (United States)

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.

  14. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO{sub 2} under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lina [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Wang, Changhua; Wan, Fangxu; Zheng, Han [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China)

    2017-02-28

    Highlights: • Anatase TiO{sub 2} was modified with Fe-ethoxide through wet impregnation method. • XPS and EPR investigation supported the formation of Vo and Fe species. • Vo improved the optical absorption properties to a larger extent. • Fe species inhibited the charge carrier recombination process. • Synergism between Vo and Fe species enhanced the photocatalytic activity. - Abstract: Surface grafting of transition-metal complexes or oxides is an appealing way to enhance the photocatalytic activity of TiO{sub 2} under visible-light excitation. However, the performance of these co-catalysts assistant TiO{sub 2} photocatalysts is still not sufficient enough due to their relatively weak visible-light absorption. Herein, we report a simple impregnation treatment with ferric ethoxide/ethanol solvent, followed with mild heating which can significantly enhance the visible-light absorption and photocatalytic activity of TiO{sub 2}. XPS and EPR analyses manifest that the oxygen vacancies (V{sub O}s) and Fe-species are simultaneously introduced to the surface of TiO{sub 2}. The chemical state and photocatalytic activity of the Fe-species-grafted TiO{sub 2−x} is dependent on the heating temperature after impregnation. The sample heat-treated at 250 °C exhibits the optimal photocatalytic performance for β-naphthol degradation with rate constant 6.0, 2.7, and 3.9 times higher than that of TiO{sub 2}, TiO{sub 2−x}, and Fe-TiO{sub 2}, respectively. The activity enhancement is discussed on the basis of the synergistic effect and energy-level matching of surface V{sub O}s and Fe-species co-catalyst, i.e. the V{sub O}s defects states increase the visible-light absorption and the Fe-species in the form of FeOOH promote the consumption of photo-generated electrons through multi-electron reduction of adsorbed molecule oxygen.

  15. Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models

    Science.gov (United States)

    Arai, Y.; McBeath, M.; Bargar, J.R.; Joye, J.; Davis, J.A.

    2006-01-01

    Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ???7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 ??M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and ?? charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in

  16. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Directory of Open Access Journals (Sweden)

    Murat Kaya

    Full Text Available In this study, we used Fourier transform infrared spectroscopy (FT-IR, elemental analysis (EA, thermogravimetric analysis (TGA, X-ray diffractometry (XRD, and scanning electron microscopy (SEM to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females. In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  17. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species.

    Science.gov (United States)

    Kaya, Murat; Lelešius, Evaldas; Nagrockaitė, Radvilė; Sargin, Idris; Arslan, Gulsin; Mol, Abbas; Baran, Talat; Can, Esra; Bitim, Betul

    2015-01-01

    In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed. First, we observed that the quantity of chitin was greater in males than in females and the dry weight of chitin between species ranged from 4.71% to 11.84%. Second, using SEM, we observed that the male chitin surface structure contained 25-90 nm wide nanofibers and 90-250 nm nanopores, while no pores or nanofibers were observed in the chitin surface structure of the majority of females (nanofibers were observed only in M. desertus females). In contrast, the elemental analysis, thermal properties, and crystalline index values for chitin were similar in males and females. Also, we carried out enzymatic digestion of the isolated chitins using commercial chitinase from Streptomyces griseus. We observed that there were no big differences in digestion rate of the chitins from both sexes and commercial chitin. The digestion rates were for grasshoppers' chitins; 88.45-95.48% and for commercial chitin; 94.95%.

  18. Genus- and species-level identification of dermatophyte fungi by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Witkowska, Evelin; Jagielski, Tomasz; Kamińska, Agnieszka

    2018-03-01

    This paper demonstrates that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast and reliable technique for detection and identification of dermatophyte fungi at both genus and species level. Dermatophyte infections are the most common mycotic diseases worldwide, affecting a quarter of the human population. Currently, there is no optimal method for detection and identification of fungal diseases, as each has certain limitations. Here, for the first time, we have achieved with a high accuracy, differentiation of dermatophytes representing three major genera, i.e. Trichophyton, Microsporum, and Epidermophyton. Two first principal components (PC), namely PC-1 and PC-2, gave together 97% of total variance. Additionally, species-level identification within the Trichophyton genus has been performed. PC-1 and PC-2, which are the most diagnostically significant, explain 98% of the variance in the data obtained from spectra of: Trichophyton rubrum, Trichophyton menatgrophytes, Trichophyton interdigitale and Trichophyton tonsurans. This study offers a new diagnostic approach for the identification of dermatophytes. Being fast, reliable and cost-effective, it has the potential to be incorporated in the clinical practice to improve diagnostics of medically important fungi.

  19. The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance

    Science.gov (United States)

    Visbal, Heidy; Fujiki, Satoshi; Aihara, Yuichi; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2014-12-01

    The influence of selected carbonate species on LiNi0.8Co0.15Al0.05O2 (NCA) surface for all-solid-state lithium-ion battery (ASSB) with a sulfide based solid electrolyte was studied for its electrochemical properties, structural stabilities, and surface characteristics. The rated discharge performance improved with the reduction of the carbonate concentration on the NCA surface due to the decrease of the interface resistance. The species and coordination of the adsorbed carbonates on the NCA surface were analyzed by diffuse reflectance Fourier transformed infrared (DRIFT) spectroscopy. The coordination of the adsorbed carbonate anion was determined based on the degree of splitting of the ν3(CO) stretching vibrations. It is found that the surface carbonate species exists in an unidentate coordination on the surface. They react with the sulfide electrolyte to form an irreversible passivation layer. This layer obstructs the charge transfer process at the cathode/electrolyte interface, and results in the rise of the interface resistance and drop of the rated discharge capability.

  20. Using supramolecular binding motifs to provide precise control over the ratio and distribution of species in multiple component films grafted on surfaces: demonstration using electrochemical assembly from aryl diazonium salts.

    Science.gov (United States)

    Gui, Alicia L; Yau, Hon Man; Thomas, Donald S; Chockalingam, Muthukumar; Harper, Jason B; Gooding, J Justin

    2013-04-16

    Supramolecular interactions between two surface modification species are explored to control the ratio and distribution of these species on the resultant surface. A binary mixture of aryl diazonium salts bearing oppositely charged para-substituents (either -SO3(-) or -N(+)(Me)3), which also reduce at different potentials, has been examined on glassy carbon surfaces using cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Striking features were observed: (1) the two aryl diazonium salts in the mixed solution undergo reductive adsorption at the same potential which is distinctively less negative than the potential required for the reduction of either of the two aryl diazonium salts alone; (2) the surface ratio of the two phenyl derivatives is consistently 1:1 regardless of the ratio of the two aryl diazonium salts in the modification solutions. Homogeneous distribution of the two oppositely charged phenyl species on the modified surface has also been suggested by XPS survey spectra. Diffusion coefficient measurements by DOSY NMR and DFT based computation have indicated the association of the two aryl diazonium species in the solution, which has led to changes in the molecular orbital energies of the two species. This study highlights the potential of using intermolecular interactions to control the assembly of multicomponent thin layers.

  1. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate

    Science.gov (United States)

    Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun

    2016-12-01

    Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC

  2. Mixtures of functionalized aromatic groups generated from diazonium chemistry as templates towards bimetallic species supported on carbon electrode surfaces

    International Nuclear Information System (INIS)

    Vilà, Neus; Bélanger, Daniel

    2012-01-01

    Mixtures of 4-sulfophenyl and 4-aminophenyl groups were grafted onto carbon electrodes by electrochemical reduction of their corresponding diazonium cations. Two experimental methodologies were tested in order to control primarily the composition of the binary organic films and subsequently the composition of the bimetallic Cu/Pt layers. The composition of the organic layers was controlled either by changing the ratio of the two components in solution and applying a cathodic potential at which both diazonium cations are electrochemically reduced. The organic layers were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. These binary organic films were subsequently used as templates to load bimetallic species to the carbon surface based on electrostatic interactions of 4-sulfophenyl and 4-aminophenyl groups with Cu 2+ and PtCl 6 2− ionic species dissolved in solution, respectively. The metal complexes, electrostatically bounded to the ionic sites of the grafted groups, were reduced by using NaBH 4 as reducing agent. The amount of Cu was estimated by stripping voltammetry in a sulfuric acid aqueous solution whereas adsorption/desorption of hydrogen was used to quantify the platinum present on the carbon surface. XPS analysis of the metallic surfaces was also performed to confirm the presence of the metals on the electrode surface. The results indicate that the composition of the bimetallic layers is controlled by the ratio of the 4-sulfophenyl and 4-aminophenyl grafted groups.

  3. Antibiotic susceptibility of body surface and gut micro flora of two aquatic leech species (Hirudinaria manillensis and Hirudinaria javanica in Malaysia

    Directory of Open Access Journals (Sweden)

    Parimannan Sivachandran

    2013-08-01

    Full Text Available Objective: To elucidate the antibiotic susceptibility of body surface and gut associated microflora of two local aquatic leech species Hirudinaria manillensis and Hirudinaria javanica. Methods: Four commercially available antibiotics (doxycycline, chloramphenicol, tetracycline and ciprofloxacin were used in this study. A total of 13 isolated gut and two surface micro flora from Hirudinaria manillensis and two gut and two surface micro flora from Hirudinaria javanica were tested for their antibiotic susceptibility. Results: Based on the susceptibility, it was observed that all the isolated bacteria were found to be susceptible to at least three of the antibiotics except Microbacterium resistens, Serratia marcescens and Morganella morganii. This study also found that the bacterial species Bacillus fusiformis has displayed resistance against tetracycline and Tsukamurella inchonensis against chloramphenicol. Conclusions: Among all the antibiotics tested, ciprofloxacin was found to be the best bactericidal agent. The immersion of leeches in ciprofloxacin before the application to the patient may be beneficial to prevent invasive infection of the patient. Further study is needed to sterilize the live leech by immersion/oral mode of administration for the tested antibiotics.

  4. Aqueous reactive species induced by a PCB surface micro-discharge air plasma device: a quantitative study

    Science.gov (United States)

    Chen, Chen; Li, Fanying; Chen, Hai-Lan; Kong, Michael G.

    2017-11-01

    This paper presents a quantitative investigation on aqueous reactive species induced by air plasma generated from a printed circuit board surface micro-discharge (SMD) device. Under the conditions amenable for proliferation of mammalian cells, concentrations of ten types of reactive oxygen and nitrogen species (RONS) in phosphate buffering solution (PBS) are measured by chemical fluorescent assays and electron spin resonance spectroscopy (ESR). Results show that concentrations of several detected RNS (NO2- , NO3- , peroxynitrites, and NO2\\centerdot ) are higher than those of ROS (H2O2, O2\\centerdot - , and 1O2) in the air plasma treated solution. Concentrations of NO3- can reach 150 times of H2O2 with 60 s plasma treatment. For short-lived species, the air plasma generates more copious peroxynitrite than other RONS including NO2\\centerdot , O2\\centerdot - , 1O2, and N{{O}\\centerdot } in PBS. In addition, the existence of reaction between H2O2 and NO2- /HNO2 to produce peroxynitrite is verified by the chemical scavenger experiments. The reaction relations between detected RONS are also discussed.

  5. Screening of penicillium species and optimisation of culture conditions for the production of ergot alkaloids using surface culture fermentation process

    International Nuclear Information System (INIS)

    Shahid, M.G.

    2015-01-01

    Abstract. The present study deals with the screening of fungal species and suitable fermentation medium for the production of ergot alkaloids. Various species of genus Penicillium were grown on different fermentation media by employing surface culture fermentation technique to achieve the most suitable medium and the best Penicillium sp. The results showed that medium M5 gave maximum yield with Penicillium commune. Different culture conditions such as effect of different carbon and nitrogen sources, their concentration levels, different pH values and sizes of inoculum on the production of ergot alkaloids were also studied to improve the yield. Maximum production of ergot alkaloids (4.32 mg/L) was achieved with 15 mL spore suspension at pH 5 in fermentation medium containing 35% (w/v) sucrose. All these results indicate that culture conditions are very much crucial to improve the yield of ergot alkaloids produced by Penicillium commune through surface culture process. (author)

  6. Potential Energy Surfaces and Dynamics of High Energy Species

    Science.gov (United States)

    2009-04-13

    explored include ionic liquids and a range of high-nitrogen content and nitrogen-oxygen content species. Polyhedral oligomeric silisesquioxanes are...Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Several papers on ionic liquids have been published or submitted as a result of this...in energetic ionic liquids . These are variously substituted triazolium, tertazolium, and pentazolium cations. The heats of formation of all species

  7. Response surface methodology to simplify calculation of wood energy potency from tropical short rotation coppice species

    Science.gov (United States)

    Haqiqi, M. T.; Yuliansyah; Suwinarti, W.; Amirta, R.

    2018-04-01

    Short Rotation Coppice (SRC) system is an option to provide renewable and sustainable feedstock in generating electricity for rural area. Here in this study, we focussed on application of Response Surface Methodology (RSM) to simplify calculation protocols to point out wood chip production and energy potency from some tropical SRC species identified as Bauhinia purpurea, Bridelia tomentosa, Calliandra calothyrsus, Fagraea racemosa, Gliricidia sepium, Melastoma malabathricum, Piper aduncum, Vernonia amygdalina, Vernonia arborea and Vitex pinnata. The result showed that the highest calorific value was obtained from V. pinnata wood (19.97 MJ kg-1) due to its high lignin content (29.84 %, w/w). Our findings also indicated that the use of RSM for estimating energy-electricity of SRC wood had significant term regarding to the quadratic model (R2 = 0.953), whereas the solid-chip ratio prediction was accurate (R2 = 1.000). In the near future, the simple formula will be promising to calculate energy production easily from woody biomass, especially from SRC species.

  8. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Reconstruction of the biogeochemistry and ecology of photoautotrophs based on the nitrogen and carbon isotopic compositions of vanadyl porphyrins from Miocene siliceous sediments

    Directory of Open Access Journals (Sweden)

    Y. Kashiyama

    2008-05-01

    Full Text Available We determined both the nitrogen and carbon isotopic compositions of various vanadyl alkylporphyrins isolated from siliceous marine sediments of the Onnagawa Formation (middle Miocene, northeastern Japan to investigate the biogeochemistry and ecology of photoautotrophs living in the paleo-ocean. The distinctive isotopic signals support the interpretations of previous works that the origin of 17-nor-deoxophylloerythroetioporphyrin (DPEP is chlorophylls-c1-3, whereas 8-nor-DPEP may have originated from chlorophylls-a2 or b2 or bacteriochlorophyll-a. Although DPEP and cycloheptanoDPEP are presumably derived from common precursory pigments, their isotopic compositions differed in the present study, suggesting that the latter represents a specific population within the photoautotrophic community. The average δ15N value for the entire photoautotrophic community is estimated to be –2 to +1‰ from the δ15N values of DPEP (–6.9 to –3.6‰; n=7, considering that the empirical isotopic relationships that the tetrapyrrole nuclei of chloropigments are depleted in 15N by ~4.8‰ and enriched in 13C by ~1.8‰ relative to the whole cells. This finding suggests that nitrogen utilized in the primary production was supplied mainly through N2-fixation by diazotrophic cyanobacteria. Based on the δ13C values of DPEP (–17.9 to –15.6‰; n=7, we estimated isotopic fractionation associated with photosynthetic carbon fixation to be 8–14‰. This range suggests the importance of β-carboxylation and/or active transport of the carbon substrate, indicating in turn the substantial contribution of diazotrophic cyanobacteria to primary production. Based on the δ15N values of 17-nor-DPEP (–7.4 to –2.4‰ n=7, the δ15N range of chlorophylls-c-producing algae was estimated to be –3

  10. Tracing variability in the iodine isotopes and species along surface water transect from the North Sea to the Canary Islands

    DEFF Research Database (Denmark)

    He, Peng; Aldahan, Ala; Hou, Xiaolin

    2016-01-01

    A complete transect of surface water samples from the North Sea to the Canary Islands was collected during a continuous period in 2010. The samples were analyzed for total 129I and 127I isotopes and their iodide and iodate species. The results indicate a large variability in the total 129I and its...

  11. Surface Species and Metal Oxidation State during H2-Assisted NH3-SCR of NOx over Alumina-Supported Silver and Indium

    Directory of Open Access Journals (Sweden)

    Linda Ström

    2018-01-01

    Full Text Available Alumina-supported silver and indium catalysts are investigated for the hydrogen-assisted selective catalytic reduction (SCR of NOx with ammonia. Particularly, we focus on the active phase of the catalyst and the formation of surface species, as a function of the gas environment. Diffuse reflectance ultraviolet-visible (UV-vis spectroscopy was used to follow the oxidation state of the silver and indium phases, and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS was used to elucidate the formation of surface species during SCR conditions. In addition, the NOx reduction efficiency of the materials was evaluated using H2-assisted NH3-SCR. The DRIFTS results show that the Ag/Al2O3 sample forms NO-containing surface species during SCR conditions to a higher extent compared to the In/Al2O3 sample. The silver sample also appears to be more reduced by H2 than the indium sample, as revealed by UV-vis spectroscopic experiments. Addition of H2, however, may promote the formation of highly dispersed In2O3 clusters, which previously have been suggested to be important for the SCR reaction. The affinity to adsorb NH3 is confirmed by both temperature programmed desorption (NH3-TPD and in situ DRIFTS to be higher for the In/Al2O3 sample compared to Ag/Al2O3. The strong adsorption of NH3 may inhibit (self-poison the NH3 activation, thereby hindering further reaction over this catalyst, which is also shown by the lower SCR activity compared to Ag/Al2O3.

  12. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    Science.gov (United States)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  13. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  14. Effect of vanadium compounds on acid phosphatase activity.

    Science.gov (United States)

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  15. Unraveling the role of support surface hydroxyls and its effect on the selectivity of C{sub 2} species over Rh/γ-Al{sub 2}O{sub 3} catalyst in syngas conversion: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Riguang; Duan, Tian; Wang, Baojun, E-mail: wangbaojun@tyut.edu.cn; Ling, Lixia

    2016-08-30

    Highlights: • The selectivity toward CH{sub x} (x = 1–3) depends on γ-Al{sub 2}O{sub 3} support and its surface properties. • Rh/γ-Al{sub 2}O{sub 3} catalyst exhibits the higher selectivity toward CH{sub x} (x = 1,2) formation from syngas. • C{sub 2} species (C{sub 2}H{sub 2},CHCO,CH{sub 2}CHO) are the main products on Rh/γ-Al{sub 2}O{sub 3} catalyst. • γ-Al{sub 2}O{sub 3} surface hydroxyls affect the selectivity of C{sub 2} species over Rh/γ-Al{sub 2}O{sub 3} catalyst. - Abstract: The supported Rh-based catalysts exhibit the excellent catalytic performances for syngas conversion to C{sub 2} species. In this study, all possible elementary steps leading to C{sub 2} species from syngas have been explored to identify the role of support and its surface hydroxyls over Rh/γ-Al{sub 2}O{sub 3} catalyst; Here, the results are obtained using density functional theory (DFT) method. Two models: Rh4 cluster supported on the dry γ-Al{sub 2}O{sub 3}(110) surface, D(Rh4), and on the hydroxylated γ-Al{sub 2}O{sub 3}(110) surface, H(Rh4), have been used to model Rh/γ-Al{sub 2}O{sub 3} catalyst. Our results show that CO prefers to be hydrogenated to CHO, subsequently, starting from CHO species, CH and CH{sub 2} species are the dominate monomers among CH{sub x}(x = 1–3) species rather than CH{sub 3} and CH{sub 3}OH on D(Rh4) and H(Rh4) surfaces, suggesting that γ-Al{sub 2}O{sub 3}-supported Rh catalyst exhibits the high selectivity towards CH{sub x} formation compared to the pure Rh catalyst. On the other hand, D(Rh4) is more favorable for C{sub 2} hydrocarbon (C{sub 2}H{sub 2}) formation, whereas H(Rh4) surface easily produces C{sub 2} hydrocarbon (C{sub 2}H{sub 2}) and C{sub 2} oxygenates (CHCO,CH{sub 2}CHO), indicating that the surface hydroxyls of support can affect the selectivity of C{sub 2} species over Rh/γ-Al{sub 2}O{sub 3} catalyst in syngas conversion. Moreover, compared to the pure Rh(111) surface, Rh/γ-Al{sub 2}O{sub 3} catalyst can achieve the

  16. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  17. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In{sub 2}S{sub 3} nanoflowers: dye charge-dependent roles of reactive species

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Suxiang [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China); Cai, Lejuan, E-mail: 494169965@qq.com [Central China Normal University, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry (China); Li, Dapeng, E-mail: lidapengabc@126.com; Fa, Wenjun; Zhang, Yange; Zheng, Zhi [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In{sub 2}S{sub 3} nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In{sub 2}S{sub 3} nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  18. Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.; Fitzhugh, R.D.

    2003-01-01

    We compared Al solubility and mobility in surface soils among six tree species (sugar maple [Acer saccharum], white ash [Fraxinus americana], red maple [Acer rubrum, L.], American beech [Fagus grandifolia, Ehrh.], red oak [Quercus rubra, L.], and hemlock [Tsuga canadensis, Carr.]) in a mixed

  19. Novel metal ion surface modification technique

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.; Yu, K.M.

    1990-10-01

    We describe a method for applying metal ions to the near-surface region of solid materials. The added species can be energetically implanted below the surface or built up as a surface film with an atomically mixed interface with the substrate; the metal ion species can be the same as the substrate species or different from it, and more than one kind of metal species can be applied, either simultaneously or sequentially. Surface structures can be fabricated, including coatings and thin films of single metals, tailored alloys, or metallic multilayers, and they can be implanted or added onto the surface and ion beam mixed. We report two simple demonstrations of the method: implantation of yttrium into a silicon substrate at a mean energy of 70 keV and a dose of 1 x 10 16 atoms/cm 2 , and the formation of a titanium-yttrium multilayer structure with ion beam mixing to the substrate. 17 refs., 3 figs

  20. SPECIES DIVERSITY AND COMMUNITY STRUCTURE OF SUCKING LICE IN YUNNAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    Xian-guoGuo; Ti-junQian; Li-junGuo; JingWang; Wen-geDong; LiZhang; Zhi-minMa; andWeiLi

    2004-01-01

    On the basis of investigating 9 counties (towns) in Yunnan Province of China, the species diversity and community structure of sucking lice on the body surface of small mammal hosts are studied in the paper. Species richness (S) is used to stand for the species diversity. The calculation of community diversity index and evenness are based on Shannon-Wiener's method. 2745 small mammals captured from the investigated sites belong to 10 families, 25 genera and 41 species in 5 orders (Rodentia, Insectivora, Scandentia, Logomorpha and Carnivora) while 18165 individuals of sucking lice collected from the body surface of the small mammal hosts are identified into 4 families, 6 genera and 22 species. The species of sucking lice are much less than the species of their hosts. Most species of small mammals have their fixed sucking lice on their body surface. One species of small mammals usually have few species of sucking lice (1 to 4 species). The close species of the hosts in the taxonomy are found to have the same or similar dominant species of sucking lice on their body surface. The results reveal that the species diversity of sucking lice on small mammals is very low with a very simple community structure. The results also imply there may be a close co-evolution relationship between the lice and the hosts.

  1. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland.

    Science.gov (United States)

    Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-09-01

    Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.

  2. Multi-species coral Sr/Ca-based sea-surface temperature reconstruction using Orbicella faveolata and Siderastrea siderea from the Florida Straits

    Science.gov (United States)

    Flannery, Jennifer A.; Richey, Julie N.; Thirumalai, Kaustubh; Poore, Richard Z.; DeLong, Kristine L.

    2017-01-01

    We present new, monthly-resolved Sr/Ca-based sea-surface temperature (SST) records from two species of massive coral, Orbicella faveolata and Siderastrea siderea, from the Dry Tortugas National Park, FL, USA (DTNP). We combine these new records with published data from three additional S. siderea coral colonies to generate a 278-year long multi-species stacked Sr/Ca-SST record from DTNP. The composite record of mean annual Sr/Ca-SST at DTNP shows pronounced decadal-scale variability with a range of 1 to 2°C. Notable cool intervals in the Sr/Ca-derived SST lasting about a decade centered at ~1845, ~1935, and ~1965 are associated with reduced summer Sr/Ca-SST (monthly maxima < 29°C), and imply a reduction in the spatial extent of the Atlantic Warm Pool (AWP). There is significant coherence between the composite DTNP Sr/Ca-SST record and the Atlantic Multidecadal Oscillation (AMO) index, with the AMO lagging Sr/Ca-SST at DTNP by 9 years. Low frequency variability in the Gulf Stream surface transport, which originates near DTNP, may provide a link for the lagged relationship between multidecadal variability at DTNP and the AMO.

  3. N.sub.2./sub.O decomposition and formation of NO.sub.x./sub. species on Fe-ferrierite. Effect of NO and CO addition on the decomposition and the role of surface species

    Czech Academy of Sciences Publication Activity Database

    Nováková, Jana; Sobalík, Zdeněk

    2005-01-01

    Roč. 105, 3-4 (2005), s. 169-177 ISSN 1011-372X R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : decomposition of N 2 O * surface species desorbed * low- and high-temperature pretreated samples * isotope labeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.088, year: 2005

  4. Uranium (VI) chemistry at the interface solution/minerals (quartz and aluminium hydroxide): experiments and spectroscopic investigations of the uranyl surface species; Chimie de l'uranium (VI) a l'interface solution/mineraux (quartz et hydroxyde d'aluminium): experiences et caracterisations spectroscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Froideval, A.

    2004-09-15

    This study deals with the understanding of the uranyl chemistry at the 0.1 M NaNO{sub 3} solution/mineral (quartz and aluminium hydroxide) interface. The aims are:(i) to identify and to characterize the different uranyl surface species (mononuclear, polynuclear complexes and/or precipitates...), i.e. the coordination environments of sorbed/precipitated uranyl ions, by using X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and time-resolved laser-induced fluorescence spectroscopy (TRLFS), and;(ii) to investigate the influence of pH, initial uranyl aqueous concentration and hydroxyl ligand concentration on the uranyl surface speciation. Our study on the speciation of uranyl ions at the quartz surface (i) confirms the formation of uranyl polynuclear/oligomers on quartz from moderate (1 {mu}mol/m{sup 2}) to high (26 {mu}mol/m{sup 2}) uranyl surface concentrations and (ii) show that theses polynuclear species coexist with uranyl mononuclear surface species over a pH range {approx_equal} 5-8.5 and a wide range of initial uranyl concentration o f the solutions (10-100 {mu}M). The uranyl concentration of these surface species depends on pH and on the initial uranyl aqueous concentration. Hydrate (surface-) precipitates and/or adsorbed polynuclear species and monomeric uranyl surface complexes are formed on aluminium hydroxide. Uranyl mononuclear complexes are predominant at acidic pH, as well as uranyl in solution or on the surface. Besides mononuclear species, precipitates and/or adsorbed polynuclear species are predominantly formed at neutral pH values on aluminium hydroxide. A main contribution of our investigations is that precipitation and/or adsorption of polynuclear species seem to occur at low uranyl surface concentrations (0.01-0.4 {mu}mol/m{sup 2}). The uranyl surface speciation is mainly dependent on the pH and the aluminol ligand concentration. (author)

  5. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  6. V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.

    Science.gov (United States)

    Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K

    2013-01-28

    An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.

  7. Phytophthora cinnamomi Colonized Reclaimed Surface Mined Sites in Eastern Kentucky: Implications for the Restoration of Susceptible Species

    Directory of Open Access Journals (Sweden)

    Kenton L. Sena

    2018-04-01

    Full Text Available Appalachian forests are threatened by a number of factors, especially introduced pests and pathogens. Among these is Phytophthora cinnamomi, a soil-borne oomycete pathogen known to cause root rot in American chestnut, shortleaf pine, and other native tree species. This study was initiated to characterize the incidence of P. cinnamomi on surface mined lands in eastern Kentucky, USA, representing a range of time since reclamation (10, 12, 15, and 20 years since reclamation. Incidence of P. cinnamomi was correlated to soil properties including overall soil development, as indicated by a variety of measured soil physical and chemical parameters, especially the accumulation of soil organic carbon. P. cinnamomi was detected in only two of the four sites studied, aged 15 and 20 years since reclamation. These sites were generally characterized by higher organic matter accumulation than the younger sites in which P. cinnamomi was not detected. These results demonstrate that P. cinnamomi is capable of colonizing reclaimed mine sites in Appalachia; additional research is necessary to determine the impact of P. cinnamomi on susceptible tree species at these sites.

  8. Inverse modelling of Köhler theory – Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species

    Directory of Open Access Journals (Sweden)

    S. Lowe

    2016-09-01

    Full Text Available In this study a novel framework for inverse modelling of cloud condensation nuclei (CCN spectra is developed using Köhler theory. The framework is established by using model-generated synthetic measurements as calibration data for a parametric sensitivity analysis. Assessment of the relative importance of aerosol physicochemical parameters, while accounting for bulk–surface partitioning of surface-active organic species, is carried out over a range of atmospherically relevant supersaturations. By introducing an objective function that provides a scalar metric for diagnosing the deviation of modelled CCN concentrations from synthetic observations, objective function response surfaces are presented as a function of model input parameters. Crucially, for the chosen calibration data, aerosol–CCN spectrum closure is confirmed as a well-posed inverse modelling exercise for a subset of the parameters explored herein. The response surface analysis indicates that the appointment of appropriate calibration data is particularly important. To perform an inverse aerosol–CCN closure analysis and constrain parametric uncertainties, it is shown that a high-resolution CCN spectrum definition of the calibration data is required where single-valued definitions may be expected to fail. Using Köhler theory to model CCN concentrations requires knowledge of many physicochemical parameters, some of which are difficult to measure in situ on the scale of interest and introduce a considerable amount of parametric uncertainty to model predictions. For all partitioning schemes and environments modelled, model output showed significant sensitivity to perturbations in aerosol log-normal parameters describing the accumulation mode, surface tension, organic : inorganic mass ratio, insoluble fraction, and solution ideality. Many response surfaces pertaining to these parameters contain well-defined minima and are therefore good candidates for calibration using a Monte

  9. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, William David [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO3/(MoO3 + V2O5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V+4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V2O5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V2O5, solid solutions of Mo in V2O5, V9Mo6O40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO3/(V2O5 + MoO3), determined by EDS analysis.

  10. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    De Carolis, E; Posteraro, B; Lass-Flörl, C; Vella, A; Florio, A R; Torelli, R; Girmenia, C; Colozza, C; Tortorano, A M; Sanguinetti, M; Fadda, G

    2012-05-01

    Accurate species discrimination of filamentous fungi is essential, because some species have specific antifungal susceptibility patterns, and misidentification may result in inappropriate therapy. We evaluated matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for species identification through direct surface analysis of the fungal culture. By use of culture collection strains representing 55 species of Aspergillus, Fusarium and Mucorales, a reference database was established for MALDI-TOF MS-based species identification according to the manufacturer's recommendations for microflex measurements and MALDI BioTyper 2.0 software. The profiles of young and mature colonies were analysed for each of the reference strains, and species-specific spectral fingerprints were obtained. To evaluate the database, 103 blind-coded fungal isolates collected in the routine clinical microbiology laboratory were tested. As a reference method for species designation, multilocus sequencing was used. Eighty-five isolates were unequivocally identified to the species level (≥99% sequence similarity); 18 isolates producing ambiguous results at this threshold were initially rated as identified to the genus level only. Further molecular analysis definitively assigned these isolates to the species Aspergillus oryzae (17 isolates) and Aspergillus flavus (one isolate), concordant with the MALDI-TOF MS results. Excluding nine isolates that belong to the fungal species not included in our reference database, 91 (96.8%) of 94 isolates were identified by MALDI-TOF MS to the species level, in agreement with the results of the reference method; three isolates were identified to the genus level. In conclusion, MALDI-TOF MS is suitable for the routine identification of filamentous fungi in a medical microbiology laboratory. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  11. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  12. Multicomponent transport in membranes for redox flow batteries

    Science.gov (United States)

    Monroe, Charles

    2015-03-01

    Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that

  13. In situ spectroscopic evidence for neptunium(V)-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces.

    Science.gov (United States)

    Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A

    2007-06-01

    Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.

  14. Conservation of myeloid surface antigens on primate granulocytes.

    Science.gov (United States)

    Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D

    1983-02-01

    Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.

  15. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Furukawa, Ryo, E-mail: suzuki@mat.usp.ac.jp; Akiyama, Tsuyoshi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo, E-mail: suzuki@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2015-02-27

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.

  16. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Furukawa, Ryo; Akiyama, Tsuyoshi; Oku, Takeo

    2015-01-01

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C 61 -butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance

  17. Vanadate, molybdate and tungstate for orthomolecular medicine.

    Science.gov (United States)

    Matsumoto, J

    1994-09-01

    Recent studies indicate that oxyanions, such as vanadate (V) or vanadyl (IV), cause insulin-like effects on rats by stimulating the insulin receptor tyrosine kinase. Tungstate (VI) and molybdate (VI) show the same effects on rat adipocytes and hepatocytes. Results of uncontrolled trials on volunteers accumulated in Japan also suggest that tungstate effectively regulates diabetes mellitus without detectable side effects. Since these oxyanions naturally exist in organisms, oxyanion therapy, the oral administration of vanadate, vanadyl, molybdate, or tungstate, can be considered to be orthomolecular medicine. Therefore, these oxyanions may provide a viable alternative to chemotherapy. Many diseases in addition to diabetes mellitus might also be treated since the implication of these results is that tyrosine kinases are involved in a variety of diseases.

  18. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    International Nuclear Information System (INIS)

    Jain, A.K.; Kumari, V.; Chaturvedi, G.K.

    1978-01-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35 + -1 0 and 45 + -1 0 and also the thermodynamic functions viz. ΔF, ΔH and ΔS (μ=0.1M KNO 3 ) (auth.)

  19. Life beneath the surface of the central Texan Balcones Escarpment: genus Anillinus Casey, 1918 (Coleoptera, Carabidae, Bembidiini: new species, a key to the Texas species, and notes about their way of life and evolution

    Directory of Open Access Journals (Sweden)

    Igor Sokolov

    2014-06-01

    Full Text Available The Texas fauna of the genus Anillinus Casey, 1918 includes three previously described species (A. affabilis (Brues, 1902, A. depressus (Jeannel, 1963 and A. sinuatus (Jeannel, 1963 and four new species here described: A. acutipennis Sokolov & Reddell sp. n. (type locality: Fort Hood area, Bell County, Texas; A. comalensis Sokolov & Kavanaugh sp. n. (type locality: 7 miles W of New Braunfels, Comal County, Texas; A. forthoodensis Sokolov & Reddell sp. n. (type locality: Fort Hood area, Bell County, Texas; A. wisemanensis Sokolov & Kavanaugh sp. n. (type locality: Wiseman Sink, Hays County, Texas. A key for identification of adults of these species is provided. The fauna includes both soil- and cave-inhabiting species restricted to the Balcones Fault Zone and Lampasas Cut Plain and adjacent areas underlain by the Edwards-Trinity Aquifer. Based on morphological and distributional data, we hypothesize that four lineages of endogean Anillinus species extended their geographical ranges from a source area in the Ouachita-Ozark Mountains to the Balconian region in central Texas. There the cavernous Edwards-Trinity aquifer system provided an excellent refugium as the regional climate in the late Tertiary and early Quaternary became increasingly drier, rendering life at the surface nearly impossible for small, litter-inhabiting arthropods. Isolated within the Edwards-Trinity aquifer system, these anilline lineages subsequently differentiated, accounting for the currently known diversity. The paucity of specimens and difficulty in collecting them suggest that additional undiscovered species remain to be found in the region.

  20. Life beneath the surface of the central Texan Balcones Escarpment: genus Anillinus Casey, 1918 (Coleoptera, Carabidae, Bembidiini): new species, a key to the Texas species, and notes about their way of life and evolution.

    Science.gov (United States)

    Sokolov, Igor M; Reddell, James R; Kavanaugh, David H

    2014-01-01

    The Texas fauna of the genus Anillinus Casey, 1918 includes three previously described species (A. affabilis (Brues), 1902, A. depressus (Jeannel), 1963 and A. sinuatus (Jeannel), 1963) and four new species here described: A. acutipennis Sokolov & Reddell, sp. n. (type locality: Fort Hood area, Bell County, Texas); A. comalensis Sokolov & Kavanaugh, sp. n. (type locality: 7 miles W of New Braunfels, Comal County, Texas); A. forthoodensis Sokolov & Reddell, sp. n. (type locality: Fort Hood area, Bell County, Texas); A. wisemanensis Sokolov & Kavanaugh, sp. n. (type locality: Wiseman Sink, Hays County, Texas). A key for identification of adults of these species is provided. The fauna includes both soil- and cave-inhabiting species restricted to the Balcones Fault Zone and Lampasas Cut Plain and adjacent areas underlain by the Edwards-Trinity Aquifer. Based on morphological and distributional data, we hypothesize that four lineages of endogean Anillinus species extended their geographical ranges from a source area in the Ouachita-Ozark Mountains to the Balconian region in central Texas. There the cavernous Edwards-Trinity aquifer system provided an excellent refugium as the regional climate in the late Tertiary and early Quaternary became increasingly drier, rendering life at the surface nearly impossible for small, litter-inhabiting arthropods. Isolated within the Edwards-Trinity aquifer system, these anilline lineages subsequently differentiated, accounting for the currently known diversity. The paucity of specimens and difficulty in collecting them suggest that additional undiscovered species remain to be found in the region.

  1. Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Dwiyitno; Dsikowitzky, Larissa; Nordhaus, Inga; Andarwulan, Nuri; Irianto, Hari Eko; Lioe, Hanifah Nuryani; Ariyani, Farida; Kleinertz, Sonja

    2016-01-01

    Non-target screening analyses were conducted in order to identify a wide range of organic contaminants in sediment and animal tissue samples from Jakarta Bay. High concentrations of di-iso-propylnaphthalenes (DIPNs), linear alkylbenzenes (LABs) and polycyclic aromatic hydrocarbons (PAHs) were detected in all samples, whereas phenylmethoxynaphthalene (PMN), DDT and DDT metabolites (DDX) were detected at lower concentrations. In order to evaluate the uptake and accumulation by economic important mussel (Perna viridis) and fish species, contaminant patterns of DIPNs, LABs and PAHs in different compartments were compared. Different patterns of these contaminant groups were found in sediment and animal tissue samples, suggesting compound-specific accumulation and metabolism processes. Significantly higher concentrations of these three contaminant groups in mussel tissue as compared to fish tissue from Jakarta Bay were found. Because P. viridis is an important aquaculture species in Asia, this result is relevant for food safety. - Highlights: • Analyses of surface sediment and animal tissue samples from a tropical coastal system • Non-target screening enabled identification of a wide range of organic contaminants. • Comparison of contaminant patterns in surface sediments and animal tissue samples • Results illustrate compound-specific accumulation and metabolism processes. • Higher concentrations of all contaminants in mussel tissue as compared to fish tissue

  2. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva; Viger-Gravel, Jasmine; Abou-Hamad, Edy; Samantaray, Manoja; Hamzaoui, Bilel; Gurinov, Andrei; Anjum, Dalaver H.; Gajan, David; Lesage, Anne; Bendjeriou-Sedjerari, Anissa; Emsley, Lyndon; Basset, Jean-Marie

    2016-01-01

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  3. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  4. Diversity of cuticular wax among Salix species and Populus species hybrids.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  5. Synthesis, characterization, ab initio calculations, thermal behaviour ...

    Indian Academy of Sciences (India)

    Administrator

    ticular, the starting temperature of decomposition of these complexes depends on the equatorial ligand. ... Vanadium oxide (vanadyl) ... red, mass and electronic spectral techniques. ... washed with 1 : 1 ethanol–water mixture and dried in.

  6. The evolution and diversity of a low complexity vaccine candidate, merozoite surface protein 9 (MSP-9), in Plasmodium vivax and closely related species.

    Science.gov (United States)

    Chenet, Stella M; Pacheco, M Andreína; Bacon, David J; Collins, William E; Barnwell, John W; Escalante, Ananias A

    2013-12-01

    The merozoite surface protein-9 (MSP-9) has been considered a target for an anti-malarial vaccine since it is one of many proteins involved in the erythrocyte invasion, a critical step in the parasite life cycle. Orthologs encoding this antigen have been found in all known species of Plasmodium parasitic to primates. In order to characterize and investigate the extent and maintenance of MSP-9 genetic diversity, we analyzed DNA sequences of the following malaria parasite species: Plasmodium falciparum, Plasmodium reichenowi, Plasmodium chabaudi, Plasmodium yoelii, Plasmodium berghei, Plasmodium coatneyi, Plasmodium gonderi, Plasmodium knowlesi, Plasmodium inui, Plasmodium simiovale, Plasmodium fieldi, Plasmodium cynomolgi and Plasmodium vivax and evaluated the signature of natural selection in all MSP-9 orthologs. Our findings suggest that the gene encoding MSP-9 is under purifying selection in P. vivax and closely related species. We further explored how selection affected different regions of MSP-9 by comparing the polymorphisms in P. vivax and P. falciparum, and found contrasting patterns between these two species that suggest differences in functional constraints. This observation implies that the MSP-9 orthologs in human parasites may interact differently with the host immune response. Thus, studies carried out in one species cannot be directly translated into the other. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The Macdonald and Savage titrimetric procedure scaled down to 4 mg sized plutonium samples. P. 1

    International Nuclear Information System (INIS)

    Kuvik, V.; Lecouteux, C.; Doubek, N.; Ronesch, K.; Jammet, G.; Bagliano, G.; Deron, S.

    1992-01-01

    The original Macdonald and Savage amperometric method scaled down to milligram-sized plutonium samples was further modified. The electro-chemical process of each redox step and the end-point of the final titration were monitored potentiometrically. The method is designed to determine 4 mg of plutonium dissolved in nitric acid solution. It is suitable for the direct determination of plutonium in non-irradiated fuel with a uranium-to-plutonium ratio of up to 30. The precision and accuracy are ca. 0.05-0.1% (relative standard deviation). Although the procedure is very selective, the following species interfere: vanadyl(IV) and vanadate (almost quantitatively), neptunium (one electron exchange per mole), nitrites, fluorosilicates (milligram amounts yield a slight bias) and iodates. (author). 15 refs.; 8 figs.; 7 tabs

  8. Surface water storage capacity of twenty tree species in Davis, California

    Science.gov (United States)

    Qingfu Xiao; E. Gregory. McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  9. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A K; Kumari, V; Chaturvedi, G K [Agra Coll. (India)

    1978-12-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35/sup +/-1/sup 0/ and 45/sup +/-1/sup 0/ and also the thermodynamic functions viz. ..delta..F, ..delta..H and ..delta..S (..mu..=0.1M KNO/sub 3/) (auth.).

  10. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  11. Spectroscopic studies of organometallic compounds on single crystal metal surfaces: Surface acetylides of silver (110)

    Science.gov (United States)

    Madix, Robert J.

    The nature of compounds formed by the reaction of organic molecules with metal surfaces can be studied with a battery of analytical methods based on both physicals and chemical understanding. In this paper the application of UPS, XPS, LEED and EELS as well as temperature programmed reaction spectroscopy (TPRS) and chemical titration methods to the characterization of surface complexes is discussed. Particular emphasis is given to the reaction of acetylene with a single crystal surface of silver, Ag(110). Previous work has shown that this surface, when clean, is unreactive to hydrocarbons, alcohols and carboxylic acids under ultra high vacuum conditions. Preadsorption of oxygen, however, renders the surface reactive, and a wide variety of organometallic surface compounds can be formed. As expected then, no stable adsorption state and no reaction was observed with clean Ag(110) following room temperature exposure to acetylene. Following exposure at 150 K, however, a weekly bound chemisorption state was observed to desorb at 195 K, indicating a binding energy to the surface of approximately 12 kcal/gmole. Reaction with preadsorbed oxygen gave water formulation upon dosing and produced surface intermediates which yeilded two acetylene desorption states at 195 and 175 K. Heating above 300 K to completely desorb the higher temperature state produced new, well-defined LEED Features due to residual surface carbon which disappeared when the surface was heated above 550 K. Clearly, there were distinc changes in the nature of the absorbed layer at 195, 300 and 550 K. These changes were reflected in XPS. For the weakly chemisorbed acetylene a large C(ls) peak at 285.6 eV with a small, broad, indistinc shoulder at higher binding energy (288.2) was observed. The spectrum of the species following acetylene desorption at 275 K, however, showed the formulation of a large C(ls) peak at 283.6 eV in addition to peaks characteristics of the weakly chemisorbed state. This result

  12. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    Directory of Open Access Journals (Sweden)

    Apurva K Pathak

    2012-02-01

    Full Text Available OBJECTIVE: In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. MATERIAL AND METHODS: The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB. Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. RESULTS: In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination were reported. CONCLUSIONS: The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species.

  13. Geochemical Cycling of Iodine Species in Soils

    International Nuclear Information System (INIS)

    Hu, Q.; Moran, J.E.; Blackwood, V.

    2007-01-01

    Iodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine in soils is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. In this study, we applied new analytical techniques to study the content and speciation of stable iodine in representative surface soils, and sorption and transport behavior of iodine species (iodide, iodate, and 4-iodoaniline) in sediments collected at numerous nuclear facilities in the United States, where anthropogenic 129 I from prior nuclear fuel processing activities poses an environmental risk. The surface soil samples were chosen for their geographic locations (e.g., near the ocean or nuclear facilities) and for their differing physico-chemical characteristics (organic matter, texture, etc). Extracted solutions were analyzed by IC and ICP-MS methods to determine iodine concentrations and to examine iodine speciation (iodide, iodate, and organic iodine). In natural soils, iodine is mostly (nearly 90% of total iodine) present as organic species, while inorganic iodine becomes important (up to 50%) only in sediments with low organic matter. Results from laboratory column studies, aimed at examining transport of different iodine species, showed much greater retardation of 4-iodoaniline than iodide or iodate. Careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment. In addition to speciation, input concentration and residence time effects will influence the biogeochemical cycling of anthropogenic 129I deposited on surface soils

  14. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

    Science.gov (United States)

    Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming

    2018-04-01

    Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.

  15. Floristic analysis of perennial species on flowerbeds in Belgrade with special attention on invasiveness of the recorded species

    Directory of Open Access Journals (Sweden)

    Popović Marija

    2012-01-01

    Full Text Available Urban areas are among the most important centres of invasive plant species distribution due to their richness in alien species. Because of that, a detailed floristic analysis of perennial flowerbeds was conducted in the central parks of Belgrade. A total of 53 perennial species were found, of which 55% were the alien species planted on 75% of the research area. Among them, two species (Aster novi belgii and Solidago canadensis are invasive and six species are potentially invasive in Serbia. These are planted on 5% and 20% of the flowerbeds, respectively. We can conclude that both the experts and institutions should be informed about the invasive species and potential damages. In the meantime, planting of native decorative species should be encouraged, since they will not pose a threat to natural habitats. Also, detailed research should be conducted in order to eradicate invasive and potentially invasive species from the surfaces around the research area.

  16. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    Science.gov (United States)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  17. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    International Nuclear Information System (INIS)

    Feng, Qicheng; Wen, Shuming; Zhao, Wenjuan; Deng, Jiushuai; Xian, Yongjun

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na_2S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na_2S, and the increase in the Na_2S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na_2S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na_2S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  18. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qicheng [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Wen, Shuming, E-mail: fqckmust@126.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Wenjuan [Kunming Metallurgical Research Institute, Kunming 650031 (China); Deng, Jiushuai; Xian, Yongjun [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na{sub 2}S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na{sub 2}S, and the increase in the Na{sub 2}S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na{sub 2}S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na{sub 2}S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  19. Vacuum-based surface modification of organic and metallic substrates

    Science.gov (United States)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous

  20. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  1. Effect of vanadium treatment on tissue distribution of biotrace elements in normal and streptozotocin-induced diabetic rats. Simultaneous analysis of V and Zn using radioactive multitracer

    International Nuclear Information System (INIS)

    Yasui, Hiroyuki; Takino, Toshikazu; Fugono, Jun; Sakurai, Hiromu; Hirunuma, Rieko; Enomoto, Shuichi

    2001-01-01

    Because vanadium ions such as vanadyl (VO 2+ ) and vanadate (VO 3- ) ions were demonstrated to normalize blood glucose levels of diabetic animals and patients, the action mechanism of vanadium treatment has been of interest. In this study, we focused on understanding interactions among trace elements in diabetic rats, in which a multitracer technique was used. The effects of vanadyl sulfate (VS)-treatment on the tissue distribution of trace vanadium ( 48 V) and zinc ( 65 Zn) in normal and streptozotocin (STZ)-induced diabetic rats were examined, and were evaluated in terms of the uptake ratio. The uptake ratio of both elements in tissues significantly changed between STZ-rats and those treated with VS. These results indicated that vanadium treatment in STZ-rats alters the tissue distribution of endogenous elements, suggesting the importance of the relationship between biotrace elements and pathophysiology. (author)

  2. Origins of the Messel oil shale and structure of petroporphyrins. Beitraege zur Entstehung des Messler Oelschiefers sowie zur Struktur von Petroporphyrinen

    Energy Technology Data Exchange (ETDEWEB)

    Springer, G.

    1985-02-13

    Porphyrins, which are ubiquitous in sediments, occur in the Messel region almost exclusively as vanadyl or nickel complexes. They are assumed to be derivatives of chlorophyll a and b. Their occurrence in this form is not considered as a phenomenon of biological significance but rather as the result of a process of selection. According to this point of view, the quantitative ratio of the vanadyl and nickel prophyrins should be reflected at least qualitatively by the vanadium/nickel ratio at the site. This is not the case in the Messel oil shale which has about equal vanadium and nickel concentrations but contains exclusively nickel-coordinated porphyrins. The recent observation that the methanogenic bacteria occurring in the anaerobic zones of sediments produce porphinoid nickel complexes by a process of biosynthesis suggests that a biological origin of the nickel central atoms cannot be excluded.

  3. Effect of inoculum size, bacterial species, type of surfaces and contact time to the transfer of foodborne pathogens from inoculated to non-inoculated beef fillets via food processing surfaces.

    Science.gov (United States)

    Gkana, E; Chorianopoulos, N; Grounta, A; Koutsoumanis, K; Nychas, G-J E

    2017-04-01

    The objective of the present study was to determine the factors affecting the transfer of foodborne pathogens from inoculated beef fillets to non-inoculated ones, through food processing surfaces. Three different levels of inoculation of beef fillets surface were prepared: a high one of approximately 10 7  CFU/cm 2 , a medium one of 10 5  CFU/cm 2 and a low one of 10 3  CFU/cm 2 , using mixed-strains of Listeria monocytogenes, or Salmonella enterica Typhimurium, or Escherichia coli O157:H7. The inoculated fillets were then placed on 3 different types of surfaces (stainless steel-SS, polyethylene-PE and wood-WD), for 1 or 15 min. Subsequently, these fillets were removed from the cutting boards and six sequential non-inoculated fillets were placed on the same surfaces for the same period of time. All non-inoculated fillets were contaminated with a progressive reduction trend of each pathogen's population level from the inoculated fillets to the sixth non-inoculated ones that got in contact with the surfaces, and regardless the initial inoculum, a reduction of approximately 2 log CFU/g between inoculated and 1st non-inoculated fillet was observed. S. Typhimurium was transferred at lower mean population (2.39 log CFU/g) to contaminated fillets than E. coli O157:H7 (2.93 log CFU/g), followed by L. monocytogenes (3.12 log CFU/g; P < 0.05). Wooden surfaces (2.77 log CFU/g) enhanced the transfer of bacteria to subsequent fillets compared to other materials (2.66 log CFU/g for SS and PE; P < 0.05). Cross-contamination between meat and surfaces is a multifactorial process strongly depended on the species, initial contamination level, kind of surface, contact time and the number of subsequent fillet, according to analysis of variance. Thus, quantifying the cross-contamination risk associated with various steps of meat processing and food establishments or households can provide a scientific basis for risk management of such products. Copyright © 2016 Elsevier Ltd

  4. Sorption of uranyl species on zircon and zirconia

    International Nuclear Information System (INIS)

    Lomenech, C.; Drot, R.; Simoni, E.; Ehrhardt, J.J.; Mielczarski, J.

    2002-01-01

    The safety of a long-term storage of radioactive waste in deep geological repositories would be strongly affected by the migration properties of radionuclides through the different barriers to the surface of the earth. Since the main process involved in the retention of radioactive ions is their sorption at the water/ mineral interface, a quantitative description of the sorption reactions is needed. Macroscopic data have for a long time been the only source of information used to propose a modelling of sorption equilibria, although they bring no direct information on the nature of the sorbed species; a microscopic structural investigation of the surface complexes is difficult indeed, because of the small amount of matter sorbed. Thus, in this study, parallel to the macroscopic measurements, different complementary spectroscopic techniques have been used in order to determine the nature of the surface species. As the final purpose of such a study is the simulation of the experimental retention data, the precise structural identification of the sorption equilibria will then be very useful to constrain the data simulation code. In this work, we present the results of both macroscopic and microscopic studies of the sorption of uranyl species on zircon and zirconia. The first part of our macroscopic approach was the surface characterisation of the non-sorbed materials by the determination of the specific areas, of the pH of the isoelectric points, and of the sorption site numbers, while the second part aimed at obtaining the sorption isotherms (percentage of sorption versus pH), which was performed using alpha spectrometry, for different uranyl concentrations, media (NaClO 4 or KNO 3 ) and ionic strengths. The spectroscopic identification of the different surface complexes and sorption sites has been carried out using four different spectroscopies. Whereas tune-resolved laser spectro-fluorimetry gave a direct answer concerning the number of surface species (only for a

  5. Oxidation of carbon monoxide cocatalyzed by palladium(0) and the H(5)PV(2)Mo(10)O(40) polyoxometalate probed by electron paramagnetic resonance and aerobic catalysis.

    Science.gov (United States)

    Goldberg, Hila; Kaminker, Ilia; Goldfarb, Daniella; Neumann, Ronny

    2009-08-17

    The H(5)PV(2)Mo(10)O(40) polyoxometalate and Pd/Al(2)O(3) were used as co-catalysts under anaerobic conditions for the activation and oxidation of CO to CO(2) by an electron transfer-oxygen transfer mechanism. Upon anaerobic reduction of H(5)PV(2)Mo(10)O(40) with CO in the presence of Pd(0) two paramagnetic species were observed and characterized by continuous wave electron paramagnetic resonance (CW-EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopic measurements. Major species I (65-70%) is assigned to a species resembling a vanadyl cation that is supported on the polyoxometalate and showed a bonding interaction with (13)CO. Minor species II (30-35%) is attributed to a reduced species where the vanadium(IV) atom is incorporated in the polyoxometalate framework but slightly distanced from the phosphate core. Under aerobic conditions, CO/O(2), a nucleophilic oxidant was formed as elucidated by oxidation of thianthrene oxide as a probe substrate. Oxidation reactions performed on terminal alkenes such as 1-octene yielded a complicated mixture of products that was, however, clearly a result of alkene epoxidation followed by subsequent reactions of the intermediate epoxide. The significant competing reaction was a hydrocarbonylation reaction that yielded a approximately 1:1 mixture of linear/branched carboxylic acids.

  6. Stand, species, and individual traits impact transpiration in historically disturbed forests.

    Science.gov (United States)

    Blakely, B.; Rocha, A. V.; McLachlan, J. S.

    2017-12-01

    Historic logging disturbances have changed the structure and species composition of most Northern temperate forests. These changes impact the process of transpiration - which in turn impacts canopy surface temperature - but the links among structure, composition, and transpiration remain unclear. For this reason, ecosystem models typically use simplified structure and composition to simulate the impact of disturbances on forest transpiration. However, such simplifications ignore real variability among stands, species, and individual trees that may strongly influence transpiration across spatial and temporal scales. To capture this variability, we monitored transpiration in 48 individual trees of multiple species in both undisturbed (400+ yr) and historically logged (80 - 120 yr) forests. Using modern and historic forest surveys, we upscaled our observations to stand and regional scales to identify the key changes impacting transpiration. We extended these inferences by establishing a relationship between transpiration and measured surface temperature, linking disturbance-induced changes in structure and composition to local and regional climate. Despite greater potential evapotranspiration and basal area, undisturbed forest transpired less than disturbed (logged) forest. Transpiration was a strong predictor of surface temperature, and the canopy surface was warmer in undisturbed forest. Transpiration differences among disturbed and undisturbed forests resulted from (1) lesser transpiration and dampened seasonality in evergreen species (2) greater transpiration in younger individuals within a species, and (3) strong transpiration by large individuals. When transpiration was scaled to the stand or regional level in a simplified manner (e.g. a single transpiration rate for all deciduous individuals), the resulting estimates differed markedly from the original. Stand- species- and individual-level traits are therefore essential for understanding how transpiration and

  7. Extractable Bacterial Surface Proteins in Probiotic–Host Interaction

    Directory of Open Access Journals (Sweden)

    Fillipe L. R. do Carmo

    2018-04-01

    Full Text Available Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp, this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs, and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.

  8. Surface Patterning Using Diazonium Ink Filled Nanopipette.

    Science.gov (United States)

    Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-11-03

    Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM).

  9. Test of vanadium pentoxide as anode for the electrooxidation of toluene

    Energy Technology Data Exchange (ETDEWEB)

    D' Elia, L.F. [Petroleos de Venezuela - Intevep, Caracas (Venezuela). Departamento de Tecnologias Emergentes; Rincon, L.; Ortiz, R. [Universidad de los Andes, Merida (Venezuela). Departamento de Quimica

    2004-11-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) films were prepared by electrochemical and thermal decomposition of vanadyl sulphate on titanium dioxide covered titanium plates and glassy carbon discs. The prepared material by thermal decomposition showed high surface area and good physical stability; while the electrodeposited films, although being homogeneous, showed poor adhesion. The V{sub 2}O{sub 5} electrodes were chemically and electrochemically stable in aqueous (1 M H{sub 2}SO{sub 4} + 1 M NaOH, pH 3) and organic (0.1 M But{sub 4}NPF{sub 6} + CH{sub 3}CN) solutions. In both cases, a well defined electrochemical response was observed. At the experimental conditions, the prepared materials were not active for the electrooxidation of toluene. The theoretical modeling suggests that the lack of activity is due to the weak interaction between toluene and the V{sub 2} O{sub 5} surface. (author)

  10. Test of vanadium pentoxide as anode for the electrooxidation of toluene

    Energy Technology Data Exchange (ETDEWEB)

    D' Elia, Luis F. [Petroleos de Venezuela (PDVSA)-Intevep, Departamento de Tecnologias Emergentes, Apartado 76343, Caracas 1070-A (Venezuela)]. E-mail: delialf@pdvsa.com; Rincon, L. [Universidad de los Andes, Facultad de Ciencias, Departamento de Quimica, Grupo de Quimica Teorica, Merida 5101 (Venezuela); Ortiz, R. [Universidad de los Andes, Facultad de Ciencias, Departamento de Quimica, Laboratorio de Electroquimica, Merida 5101 (Venezuela)

    2004-11-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) films were prepared by electrochemical and thermal decomposition of vanadyl sulphate on titanium dioxide covered titanium plates and glassy carbon discs. The prepared material by thermal decomposition showed high surface area and good physical stability; while the electrodeposited films, although being homogeneous, showed poor adhesion. The V{sub 2}O{sub 5} electrodes were chemically and electrochemically stable in aqueous (1 M H{sub 2}SO{sub 4} + 1 M NaOH, pH 3) and organic (0.1 M But{sub 4}NPF{sub 6} + CH{sub 3}CN) solutions. In both cases, a well defined electrochemical response was observed. At the experimental conditions, the prepared materials were not active for the electrooxidation of toluene. The theoretical modeling suggests that the lack of activity is due to the weak interaction between toluene and the V{sub 2}O{sub 5} surface.

  11. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  12. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Itai, Takaaki; Takahashi, Yoshio; Uruga, Tomoya; Tanida, Hajime; Iida, Atsuo

    2008-01-01

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-μm scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO 2 and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 μm 2 ) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-μm scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction

  13. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)], E-mail: itai-epss@hiroshima-u.ac.jp; Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Uruga, Tomoya; Tanida, Hajime [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Iida, Atsuo [Photon Factory, National Laboratory for High Energy Physics, O-ho, Tsukuba, Ibaraki 305 (Japan)

    2008-09-15

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-{mu}m scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO{sub 2} and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 {mu}m{sup 2}) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-{mu}m scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction.

  14. Leaf micromorphology of some Phyllanthus L. species (Phyllanthaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Solihani, N. S., E-mail: noorsolihani@gmail.com; Noraini, T., E-mail: norainitalip@gmail.com [School of Environmental and Natural Resource Sciences Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Azahana, A., E-mail: bell-azahana@yahoo.com [Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang (Malaysia); Nordahlia, A. S., E-mail: nordahlia@frim.gov.my [Forest Research Institute of Malaysia, 52109 Kepong, Selangor (Malaysia)

    2015-09-25

    Comparative leaf micromorphological study was conducted of five chosen Phyllanthus L. (Phyllanthaceae) species, namely P. acidus L., P. elegans Wall. ex Müll. Arg., P. emblica L., P. urinaria L. and P. pulcher Wall. ex Müll. Arg. The objective of this study is to identify the leaf micromorphological characteristics that can be used in species identification. The procedures involve examination under scanning electron microscope. Findings of this study have demonstrated variations in the leaf micromorphological characteristics such as in the types of waxes present on adaxial and abaxial epidermis surfaces, in the stomata and types of trichome. Common character present in all species studied are the presence of a thin film layer and buttress-like waxes on epidermal leaf surfaces. Diagnostics characters found in this study are the presence of papilla in P. elegens, amphistomatic stomata in P. urinaria and flaky waxes in P. pulcher. The result of this study has shown that leaf micromorphological characters have some taxonomic significance and can be used in identification of species in the genus Phyllanthus.

  15. Hydrogen Adsorption on Ga2O3 Surface: A Combined Experimental and Computational Study

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yun-xiang; Mei, Donghai; Liu, Chang-jun; Ge, Qingfeng

    2011-05-03

    In the present work, hydrogen adsorption on the Ga2O3 surfaces was investigated using Fourier transform infrared spectroscopy (FTIR) measurements and periodic density functional theory (DFT) calculations. Both the FTIR and DFT studies suggest that H2 dissociates on the Ga2O3 surfaces, producing OH and GaH species. The FTIR bands at 3730, 3700, 3630 and 3600 cm-1 are attributed to the vibration of the OH species whereas those at 2070 and 1990 cm-1 to the GaH species. The structures of the species detected in experiments are established through a comparison with the DFT calculated stretching frequencies. The O atom of the experimentally detected OH species is believed to originate from the surface O3c atom. On the other hand, the H atom that binds the coordinately unsaturated Ga atom results in the experimentally detected GaH species. Dissociation of H2 on the perfect Ga2O3 surface, with the formation of both OH and GaH species, is endothermic and has an energy barrier of 0.90 eV. In contrast, H2 dissociation on the defective Ga2O3 surface with oxygen vacancies, which mainly produces GaH species, is exothermic, with an energy barrier of 0.61 eV. Accordingly, presence of the oxygen vacancies promotes H2 dissociation and production of GaH species on the Ga2O3 surfaces. Higher temperatures are expected to favor oxygen vacancy creation on the Ga2O3 surfaces, and thereby benefit the production of GaH species. This analysis is consistent with the FTIR results that the bands assigned to GaH species become stronger at higher temperatures. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. Leaf surface anatomy in some woody plants from northeastern Mexico

    International Nuclear Information System (INIS)

    Maiti, R.; Rodriguez, H.G.; Balboa, P.C.R.; Kumari, A

    2016-01-01

    Studies on leaf surface anatomy of woody plants and its significance are rare. The present study was undertaken in the Forest Science Faculty Experimental Research Station, UANL, Mexico, with objectives to determine the variability in leaf surface anatomy in the woody plants of the Tamaulipan thornscrub and its utility in taxonomy and possible adaptation to the prevailing semiarid conditions. The results show the presence of large variability in several leaf anatomical traits viz., waxy leaf surface, type of stomata, its size, and distribution. The species have been classified on the basis of various traits which can be used in species delimitation and adaptation to the semiarid condition such as waxy leaf surface, absence sparse stomata on the leaf surface, sunken stomata. The species identified as better adapters to semi-arid environments on the basis of the presence and absence of stomata on both adaxial and abaxial surface viz., Eysenhardtia texana, Parkinsonia texana, Gymnosperma glutinosum, Celtis laevigata, Condalia hookeri and Karwinskia humboldtiana. (author)

  17. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    Science.gov (United States)

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  18. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  19. Surface topography and morphology characterization of PIII irradiated silicon surface

    International Nuclear Information System (INIS)

    Sharma, Satinder K.; Barthwal, Sumit

    2008-01-01

    The effect of plasma immersion ion implantation (PIII) treatment on silicon surfaces was investigated by micro-Raman and atomic force microscopy (AFM) technique. The surface damage was given by the implantation of carbon, nitrogen, oxygen and argon ions using an inductively coupled plasma (ICP) source at low pressure. AFM studies show that surface topography of the PIII treated silicon wafers depend on the physical and chemical nature of the implanted species. Micro-Raman spectra indicate that the significant reduction of intensity of Raman peak after PIII treatment. Plasma immersion ion implantation is a non-line-of-sight ion implantation method, which allows 3D treatment of materials. Therefore, PIII based surface modification and plasma immersion ion deposition (PIID) coatings are applied in a wide range of situations.

  20. A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization.

    Science.gov (United States)

    Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico

    2011-03-07

    Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.

  1. Some tropical species of Ganoderma (Polyporaceae) with pale context

    NARCIS (Netherlands)

    Furtado, João Salvador

    1967-01-01

    Five species of Ganoderma Karsten are discussed, which are confined to the tropics and characterized by the presence of a light-colored context, but which are devoid of the laccate upper surface of the pileus typical of the species of the Ganoderma lucidum-group. Ganoderma neurosporum J. Furtado is

  2. Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Baltes, M.; Voort, P. van der; Ramachandra Rao, R.; Catana, Gabriela; Schoonheydt, R.A.; Vansant, E.F.

    2000-01-01

    Alumina-supported vanadium oxide catalysts have been prepared by the molecular designed dispersion method, using the vanadyl acetylacetonate complex (VO(acac)2). The complex has been adsorbed on the support from solution, followed by thermal conversion into the corresponding supported vanadium oxide

  3. Analysis of surfaces for characterization of fungal burden - Does it matter?

    Science.gov (United States)

    Viegas, Carla; Faria, Tiago; Meneses, Márcia; Carolino, Elisabete; Viegas, Susana; Gomes, Anita Quintal; Sabino, Raquel

    2016-01-01

    Mycological contamination of occupational environments can be a result of fungal spores' dispersion in the air and on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results obtained in the air samples. In total, 42 settings were assessed by the analysis of air and surfaces samples. The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste management plants, 2 wastewater treatment plants and 1 horse stable) and a low fungal load (10 hospital canteens, 8 college canteens and 1 maternity hospital). In addition to culture-based methods, molecular tools were also applied to detect fungal burden in the settings with a higher fungal load. From the 218 sampling sites, 140 (64.2%) presented different species in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted the setting with the highest number of different species between the air and surface. We observed that surfaces sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, corroborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  4. Spatially Synchronous Extinction of Species under External Forcing

    Science.gov (United States)

    Amritkar, R. E.; Rangarajan, Govindan

    2006-06-01

    More than 99% of the species that ever existed on the surface of the Earth are now extinct and their extinction on a global scale has been a puzzle. One may think that a species under an external threat may survive in some isolated locations leading to the revival of the species. Using a general model we show that, under a common external forcing, the species with a quadratic saturation term first undergoes spatial synchronization and then extinction. The effect can be observed even when the external forcing acts only on some locations provided the dynamics contains a synchronizing term. Absence of the quadratic saturation term can help the species to avoid extinction.

  5. Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos.

    Science.gov (United States)

    Wang, Fan; Zhao, Hongwei; Xiang, Haiying; Wu, Lijun; Men, Xiao; Qi, Chang; Chen, Guoqiang; Zhang, Haibo; Wang, Yi; Xian, Mo

    2018-06-05

    Microbes on aging flue-cured tobaccos (ATFs) improve the aroma and other qualities desirable in products. Understanding the relevant organisms would picture microbial community diversity, metabolic potential, and their applications. However, limited efforts have been made on characterizing the microbial quality and functional profiling. Herein, we present our investigation of the bacterial diversity and predicted potential genetic capability of the bacteria from two AFTs using 16S rRNA gene sequences and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) software. The results show that dominant bacteria from AFT surfaces were classified into 48 genera, 36 families, and 7 phyla. In addition, Bacillus spp. was found prevalent on both ATFs. Furthermore, PICRUSt predictions of bacterial community functions revealed many attractive metabolic capacities in the AFT microbiota, including several involved in the biosynthesis of flavors and fragrances and the degradation of harmful compounds, such as nicotine and nitrite. These results provide insights into the importance of AFT bacteria in determining product qualities and indicate specific microbial species with predicted enzymatic capabilities for the production of high-efficiency flavors, the degradation of undesirable compounds, and the provision of nicotine and nitrite tolerance which suggest fruitful areas of investigation into the manipulation of AFT microbiota for AFT and other product improvements.

  6. Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA.

    Science.gov (United States)

    da Silva, Ludmila Bezerra; Miragaia, Lidia Dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima; Barbosa, Angela Silva

    2015-03-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn(2+)-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Effect of vanadium treatment on tissue distribution of biotrace elements in normal and streptozotocin-induced diabetic rats. Simultaneous analysis of V and Zn using radioactive multitracer

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Hiroyuki; Takino, Toshikazu; Fugono, Jun; Sakurai, Hiromu [Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto (Japan); Hirunuma, Rieko; Enomoto, Shuichi [Radioisotope Technology Division, Cyclotron Center, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama (Japan)

    2001-05-01

    Because vanadium ions such as vanadyl (VO{sup 2+}) and vanadate (VO{sup 3-}) ions were demonstrated to normalize blood glucose levels of diabetic animals and patients, the action mechanism of vanadium treatment has been of interest. In this study, we focused on understanding interactions among trace elements in diabetic rats, in which a multitracer technique was used. The effects of vanadyl sulfate (VS)-treatment on the tissue distribution of trace vanadium ({sup 48}V) and zinc ({sup 65}Zn) in normal and streptozotocin (STZ)-induced diabetic rats were examined, and were evaluated in terms of the uptake ratio. The uptake ratio of both elements in tissues significantly changed between STZ-rats and those treated with VS. These results indicated that vanadium treatment in STZ-rats alters the tissue distribution of endogenous elements, suggesting the importance of the relationship between biotrace elements and pathophysiology. (author)

  8. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  9. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  10. Analysis of surfaces for characterization of fungal burden – Does it matter?

    Directory of Open Access Journals (Sweden)

    Carla Viegas

    2016-08-01

    Full Text Available Objectives: Mycological contamination of occupational environments can be a result of fungal spores’ dispersion in the air and on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results obtained in the air samples. Material and Methods: In total, 42 settings were assessed by the analysis of air and surfaces samples. The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste management plants, 2 wastewater treatment plants and 1 horse stable and a low fungal load (10 hospital canteens, 8 college canteens and 1 maternity hospital. In addition to culture-based methods, molecular tools were also applied to detect fungal burden in the settings with a higher fungal load. Results: From the 218 sampling sites, 140 (64.2% presented different species in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted the setting with the highest number of different species between the air and surface. Conclusions: We observed that surfaces sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, corroborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios.

  11. An examination of surface epithelium structures of the embryo across the genus Poeciliopsis (Poeciliidae).

    Science.gov (United States)

    Panhuis, Tami M; Fris, Megan; Tuhela, Laura; Kwan, Lucia

    2017-12-01

    In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal-fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis. Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal-fetal nutrient transfer. Specifically, we studied cell apical-surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical-surface microridges or microvilli and presumed ionocytes and/or mucus-secreting cells. For three species, in the mid-stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical-surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical-surface microridges in a "fingerprint-like arrangement." Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic

  12. Is bicarbonate stable in and on the calcite surface?

    Science.gov (United States)

    Andersson, M. P.; Rodriguez-Blanco, J. D.; Stipp, S. L. S.

    2016-03-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3- CO32- + H+, when HCO3- is included in, and adsorbed on, a calcite surface. We have used cluster models (80-100 atoms) to represent the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from -6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 < pH < 6.35, where H2CO30 is the dominant dissolved species. When bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution, 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32- is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour of the carbonate species in calcite-water systems, particularly in the pH range where the bicarbonate species dominates in water and where the carbonate species dominates at the surface, i.e. when 7.5 < pH < 10.35. Our atomic scale data for the various calcite surface sites provide the needed input to improve and constrain surface complexation modelling and are especially useful for predicting behaviour in systems where experiments are difficult or impossible, such as at high temperature and pressure.

  13. Nitrile versus isonitrile adsorption at interstellar grain surfaces. II. Carbonaceous aromatic surfaces

    Science.gov (United States)

    Bertin, M.; Doronin, M.; Michaut, X.; Philippe, L.; Markovits, A.; Fillion, J.-H.; Pauzat, F.; Ellinger, Y.; Guillemin, J.-C.

    2017-12-01

    Context. Almost 20% of the 200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Of these 37 molecules, 30 are nitrile R-CN compounds, the remaining 7 belonging to the isonitrile R-NC family. How these species behave in their interactions with the grain surfaces is still an open question. Aims: In a previous work, we have investigated whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of various nature and morphologies. This study is a follow up of this work, where we focus on the adsorption on carbonaceous aromatic surfaces. Methods: The question is addressed by means of a concerted experimental and theoretical approach of the adsorption energies of CH3CN and CH3NC on the surface of graphite (with and without surface defects). The experimental determination of the molecule and surface interaction energies is carried out using temperature-programmed desorption in an ultra-high vacuum between 70 and 160 K. Theoretically, the question is addressed using first-principle periodic density functional theory to represent the organised solid support. Results: The adsorption energy of each compound is found to be very sensitive to the structural defects of the aromatic carbonaceous surface: these defects, expected to be present in a large numbers and great diversity on a realistic surface, significantly increase the average adsorption energies to more than 50% as compared to adsorption on perfect graphene planes. The most stable isomer (CH3CN) interacts more efficiently with the carbonaceous solid support than the higher energy isomer (CH3NC), however.

  14. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  15. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  16. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2017-08-31

    Highlights: • Surface annealing pretreatment on pyrite surfaces can select molecular adsorption. • Enriched monosulfide species on pyrite (100) surface favors NH{sub 2} adsorption form. • Enriching disulfide species on pyrite (100) surface promotes NH{sub 3}{sup +} adsorption form. • Unique structure of each aminoacid provides a particular fingerprint in the process. • Spectroscopy evidence, pretreatment surface processes drives molecular adsorption. - Abstract: This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH{sub 2} chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH{sub 3}{sup +} adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S{sub 2}{sup 2−}) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH{sub 2} to NH{sub 3}{sup +} species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  17. Sum frequency generation of CO on (III) and polycrystalline platinum electrode surfaces: Evidence for SFG invisible surface CO

    Energy Technology Data Exchange (ETDEWEB)

    Baldelli, S.; Markovic, N.; Ross, P.; Shen, Y.R.; Somorjai, G.

    1999-10-21

    The vibrational spectroscopy sum frequency generation (SFG) is used to investigate the adsorption of carbon monoxide on the single crystal (111) and polycrystalline platinum surfaces. By varying the frequency and polarization of the light beams, different surface species of CO species are probed. SFG signal intensities for different polarization indicate that adsorbed CO polarizability is significantly perturbed from the gas-phase molecule. The SFG signal of CO disappears well below the main oxidation potential of CO to CO{sub 2}. The disappearance of the CO signal is interpreted as a transformation in the CO layer to a state which is invisible to SFG. The invisible state is suggested to be CO with the bond axis nearly parallel to the platinum surface.

  18. Effect of surface silanol groups on the deposition of apatite onto silica surfaces: a computer simulation study

    CSIR Research Space (South Africa)

    Mkhonto, D

    2008-01-01

    Full Text Available the surface silicon and oxygen species rearrange to form O–Si–O links. Any dangling silicon and oxygen bonds at the silica surfaces are saturated by coordination to oxygen and calcium atoms in the apatite layer, but the extra reactivity afforded by these under...

  19. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  20. A new recipe for preparing oxidized TiO2(1 1 0) surfaces: An STM study

    Science.gov (United States)

    Hansen, Jonas Ø.; Matthiesen, Jesper; Lira, Estephania; Lammich, Lutz; Wendt, Stefan

    2017-12-01

    Using high-resolution scanning tunneling microscopy (STM), we have studied the oxidation of rutile TiO2(1 1 0)-(1 × 1) surfaces with Had species at room temperature. We followed the evolution of various stable species as function of the O2 exposure, and the nature of the ultimately dominating species in the Ti troughs is described. When O2 saturation was accomplished using a glass-capillary array doser, we found that on-top O (Oot) adatoms are the predominant surface species. In contrast, when O2 was supplied via backfilling of the chamber the predominant surface species are tentatively assigned to terminal OH groups. We argue that unintended reactions with the chamber walls have a strong influence on the formed surface species, explaining scattered results in the literature. On the basis of our STM data we propose an alternative, easy way of preparing oxidized TiO2(1 1 0) surfaces with Oot adatoms (o-TiO2). It is certain that o-TiO2(1 1 0) surfaces prepared according to this recipe do not have any residual surface O vacancies. This contradicts the situation when oxidizing reduced TiO2(1 1 0) surfaces with O vacancies, where some O vacancies persist.

  1. Production of molecules on a surface under plasma exposure: example of NO on pyrex

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Rousseau, A; Ionikh, Y

    2010-01-01

    We propose a new experimental approach to the study of surface-catalysed nitric oxide production under plasma exposure. Stable nitrogen species are grafted to the surface of a pyrex discharge tube during N 2 plasma pretreatment. These species are trapped by surface active sites and on being exposed to O 2 plasma, they initiate the production of NO molecules, which are detected using tunable diode laser absorption spectroscopy. Supposing that nitrogen species are adsorbed N atoms, we estimate the initial surface coverage as [N ads ] = 3 x 10 13 cm -2 . This gives an assessment of the lower boundary of the density of surface active sites.

  2. Prior indigenous technological species

    Science.gov (United States)

    Wright, Jason T.

    2018-01-01

    One of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.

  3. [Seasonality and landscape use by Tabanidae species (Diptera) in the Central Amazon, Brazil].

    Science.gov (United States)

    Ferreira-Keppler, Ruth L; Rafael, José A; Guerrero, José C H

    2010-01-01

    Adults of Tabanidae may become serious pests wherever they occur due to their attack to humans and others animals. Tabanids were captured near ground, water surface and at 25 m high on primary forests and forest gaps of anthropogenic origin, to understand their abundance, seasonality, diversity and similarity on such environments. Collections were carried out in the Base II of the War Instruction Center in the Jungle (CIGS) located at 54 km from Manaus municipality, Amazonas state. Two Malaise flight interception traps and four attraction traps (two suspended at 25 m high and two above the water surface of igarapé) were installed in forest gap and primary forest, areas for 10 consecutive days, during 15 months. A total of 2,643 specimens of 66 species were captured. Diachlorini (35 species /11 genera) was the most abundant tribe, followed by Tabanini (19 species /three genera), Chrysopsini (seven species /one genus) and Scionini (five species /two genera). Seventeen species were captured only in the primary forest, 11 in the anthropic clearing, and 38 species were common to both environments. The most abundant species were Phorcotabanus cinereus (Wiedemann), Tabanus occidentalis L, Chrysops laetus Fabricius and Tabanus angustifrons Macquart. The greatest richness was found in drier months (September/October) in both areas. Theforest gap showed higher abundance of specimens (1,827) than the primary forest (816). Traps suspended above the water surface were the most efficient (1,723 specimens) probably due to the dispersion of horseflies over small streams.

  4. Surface morphology of some articulated corallines from India

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Iyer, S.D.

    Surface structures of seven species belonging to four genera of subfamily Corallinoidae (Fly: Corallinaceae) were microscopically investigated Two distinct surface morphologies were revealed namely a 'Corallina type' (c-type) with round to irregular...

  5. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi......Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually......-species biofilm formation will facilitate the development of methods for combating bacterial biofilms in clinical, environmental, industrial, and agricultural areas. The most recent advances in the understanding of multi-species biofilms are summarized and discussed in the review....

  6. Imidazole-based Vanadium Complexes as Haloperoxidase Models ...

    African Journals Online (AJOL)

    Two homogeneous catalysts were prepared by reaction vanadyl sulphate with the free ligands. The activity of the catalysts was evaluated for the hydrogen peroxide facilitated oxidation of styrene and ethylbenzene and thioanisole. A maximum conversion of 99.9 % for styrene and 10.6 % for ethylbenzene was achieved.

  7. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows

    Science.gov (United States)

    Branco, Paulo; Santos, José M.; Katopodis, Christos; Pinheiro, António; Ferreira, Maria T.

    2013-01-01

    Fish are particularly sensitive to connectivity loss as their ability to reach spawning grounds is seriously affected. The most common way to circumvent a barrier to longitudinal connectivity, and to mitigate its impacts, is to implement a fish passage device. However, these structures are often non-effective for species with different morphological and ecological characteristics so there is a need to determine optimum dimensioning values and hydraulic parameters. The aim of this work is to study the behaviour and performance of two species with different ecological characteristics (Iberian barbel Luciobarbus bocagei–bottom oriented, and Iberian chub Squalius pyrenaicus–water column) in a full-scale experimental pool-type fishway that offers two different flow regimes–plunging and streaming. Results showed that both species passed through the surface notch more readily during streaming flow than during plunging flow. The surface oriented species used the surface notch more readily in streaming flow, and both species were more successful in moving upstream in streaming flow than in plunging flow. Streaming flow enhances upstream movement of both species, and seems the most suitable for fishways in river systems where a wide range of fish morpho-ecological traits are found. PMID:23741465

  8. Crystal structure of (2-formylphenolato-κ2O,O′oxido(2-{[(2-oxidoethylimino]methyl}phenolato-κ3O,N,O′vanadium(V

    Directory of Open Access Journals (Sweden)

    Sowmianarayanan Parimala

    2015-05-01

    Full Text Available In the unsymmetrical title vanadyl complex, [V(C9H9NO2(C7H5O2O], one of the ligands (2-formylphenol is disordered over two sets of sites, with an occupancy ratio of 0.55 (2:0.45 (2. The metal atom is hexacoordinated, with a distorted octahedral geometry. The vanadyl O atom (which subtends the shortest V—O bond occupies one of the apical positions and the remaining axial bond (the longest in the polyhedron is provided by the (disordered formyl O atoms. The basal plane is defined by the two phenoxide O atoms, the iminoalcoholic O and the imino N atom. The planes of the two benzene rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2° between the major parts. The crystal structure features weak C—H...O and C—H...π interactions, forming a lateral arrangement of adjacent molecules.

  9. Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution

    Science.gov (United States)

    Veillette, Julie; Sarrazin, Jozée; Gooday, Andrew J.; Galéron, Joëlle; Caprais, Jean-Claude; Vangriesheim, Annick; Étoubleau, Joël; Christian, James R.; Kim Juniper, S.

    2007-11-01

    The poorly known ferromanganese nodule fauna is a widespread hard substratum community in the deep sea that will be considerably impacted by large-scale nodule mining operations. The objective of this study was to analyze the spatial distribution of the fauna attached to nodules in the Clarion-Clipperton Fracture Zone at two scales; a regional scale that includes the east (14°N, 130°W) and the west (9°N, 150°W) zones and a local scale in which different geological facies (A, B, C and west) are recognizable. The fauna associated with 235 nodules was quantitatively described: 104 nodules from the east zone (15 of facies A, 50 of facies B and 39 of facies C) and 131 nodules from the west zone. Percent cover was used to quantify the extent of colonization at the time of sampling, for 42 species out of the 62 live species observed. Fauna covered up to 18% of exposed nodule surface with an average of about 3%. While species richness increased with exposed nodule surface, both at the regional and at the facies scales (except for facies A), total species density decreased (again except for facies A). When all nodules were included in the statistical analysis, there was no relation between faunal cover and exposed nodule surface. Nevertheless, faunal cover did decrease with exposed nodule surface for the east zone in general and for both facies B and C in particular. Species distributions among facies were significantly different but explained only a very small portion of the variance (˜5%). We identified two groups of associated species: a first group of two species and a second group of six species. The other species (34) were independently distributed, suggesting that species interactions play only a minor role in the spatial distribution of nodule fauna. The flux of particulate organic carbon to the bottom is the only major environmental factor considered to vary between the two zones within this study. We conclude that the higher species richness and higher

  10. Bartonella Species, an Emerging Cause of Blood-Culture-Negative Endocarditis.

    Science.gov (United States)

    Okaro, Udoka; Addisu, Anteneh; Casanas, Beata; Anderson, Burt

    2017-07-01

    Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana . We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella -mediated endocarditis and represents a potential reservoir for persistence by these bacteria. Copyright © 2017 American Society for Microbiology.

  11. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Science.gov (United States)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  12. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes.

    Science.gov (United States)

    Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud

    2018-01-01

    Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.

  13. Copepod communities from surface and ground waters in the everglades, south Florida

    Science.gov (United States)

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  14. Ion acceleration in multi-species cathodic plasma jet

    Science.gov (United States)

    Krasov, V. I.; Paperny, V. L.

    2016-05-01

    A general expression for ion-ion coupling in a multi-species plasma jet was obtained. The expression is valid for any value of the inter-species velocity. This expression has enabled us to review a hydrodynamic problem of expanding the cathodic plasma microjet with two ion species within the respective charge states Z1 = +1 and Z2 = +2 into a vacuum. We were able to illustrate that in scenario when the initial (i.e., acquired during a process of emission from cathode's surface) difference for ion's species velocity exceeds a threshold value, the difference remains noticeable (roughly about 10% of the average jet's velocity) at a distance of a few centimeters from the emission center. At this point, it can be measured experimentally.

  15. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions

    International Nuclear Information System (INIS)

    Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-01-01

    Highlights: • To examine surface hydroxyl functional groups of the calcined diatomite by TGA-DSC, FTIR, and XPS. • To calculate the optimized log K 1 , log K 2 and log C values and the surface species distribution of each surface reactive site using ProtoFit and PHREEQC, respectively. - Abstract: The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation–deprotonation behavior was determined by continuous acid–base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m 2 /g and large numbers of surface hydroxyl functional groups (i.e. ≡Si-OH, ≡Fe-OH, and ≡Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K 1 , log K 2 ) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation–deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent

  16. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shu-Cui [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022 (China); Wang, Zhi-Gang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Ji-Lin, E-mail: zjl@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Sun, De-Hui [Changchun Institute Technology, Changchun 130012 (China); Liu, Gui-Xia, E-mail: liuguixia22@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-02-01

    Highlights: • To examine surface hydroxyl functional groups of the calcined diatomite by TGA-DSC, FTIR, and XPS. • To calculate the optimized log K{sub 1}, log K{sub 2} and log C values and the surface species distribution of each surface reactive site using ProtoFit and PHREEQC, respectively. - Abstract: The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation–deprotonation behavior was determined by continuous acid–base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m{sup 2}/g and large numbers of surface hydroxyl functional groups (i.e. ≡Si-OH, ≡Fe-OH, and ≡Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K{sub 1}, log K{sub 2}) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation–deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.

  17. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  18. On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.; Heerwaarden, van C.C.; Ganzeveld, L.N.; Krol, M.C.; Lelieveld, J.

    2011-01-01

    Using a Large-Eddy Simulation model, we have systematically studied the inability of boundary layer turbulence to efficiently mix reactive species. This creates regions where the species are accumulated in a correlated or anti-correlated way, thereby modifying the mean reactivity. We quantify this

  19. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  20. Optical emission from low-energy ion-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Thomas, E.W.; Van der Weg, W.F.; Tolk, N.H.

    1977-01-01

    Impact of energetic heavy particles on surfaces gives rise to emission of optical radiation from reflected particles, sputtered particles and also from excited states of the solid. The present status of research in this area is reviewed with emphasis on understanding the basic mechanisms which give rise to formation of excited states. The spectral line shape from ejected atoms may be analyzed to provide information on the distribution of speeds and directions of the excited species; the line intensity provides a measure of the probability for creating the state. Formation of excited species is related both to the collision processes within the solid and also to the interaction of the recoiling ejected species with the target surface. Most ejected species are atomic but important examples of ejected molecules are also discussed. Luminescence induced in the solid itself is related to recombination of electron hole pairs and is related significantly to the presence of defects

  1. Directional mass transport in an atmospheric pressure surface barrier discharge.

    Science.gov (United States)

    Dickenson, A; Morabit, Y; Hasan, M I; Walsh, J L

    2017-10-25

    In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.

  2. Ion acceleration in multi-species cathodic plasma jet

    International Nuclear Information System (INIS)

    Krasov, V. I.; Paperny, V. L.

    2016-01-01

    A general expression for ion-ion coupling in a multi-species plasma jet was obtained. The expression is valid for any value of the inter-species velocity. This expression has enabled us to review a hydrodynamic problem of expanding the cathodic plasma microjet with two ion species within the respective charge states Z 1  = +1 and Z 2  = +2 into a vacuum. We were able to illustrate that in scenario when the initial (i.e., acquired during a process of emission from cathode's surface) difference for ion's species velocity exceeds a threshold value, the difference remains noticeable (roughly about 10% of the average jet's velocity) at a distance of a few centimeters from the emission center. At this point, it can be measured experimentally.

  3. The role of containerships as transfer mechanisms of marine biofouling species.

    Science.gov (United States)

    Davidson, Ian C; Brown, Christopher W; Sytsma, Mark D; Ruiz, Gregory M

    2009-10-01

    Fouling of ships is an important historical and enduring transfer mechanism of marine nonindigenous species (NIS). Although containerships have risen to the forefront of global maritime shipping since the 1950s, few studies have directly sampled fouling communities on their submerged surfaces, and little is known about differences in the fouling characteristics among commercial ship types. Twenty-two in-service containerships at the Port of Oakland (San Francisco Bay, California) were sampled to test the hypothesis that the extent and taxonomic richness of fouling would be low on this type of ship, resulting from relatively fast speeds and short port durations. The data showed that the extent of macroorganisms (invertebrates and algae) was indeed low, especially across the large surface areas of the hull. Less than 1% of the exposed hull was colonized for all apart from one vessel. These ships had submerged surface areas of >7000 m(2), and fouling coverage on this area was estimated to be species in its fouling assemblage, including non-native species (already established in San Francisco Bay) and mobile species that were not detected in visual surveys. In contrast to other studies, dry dock block areas did not support many organisms, despite little antifouling deterrence in some cases. Comparisons with previous studies suggest that the accumulation of fouling on containerships may be lower than on other ship types (eg bulkers and general cargo vessels), but more data are needed to determine the hierarchy of factors contributing to differences in the extent of macrofouling and non-native species vector risks within the commercial fleet.

  4. Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V^4+/5+, and Al2O3 Coating of Zeolite Y

    NARCIS (Netherlands)

    Catana, Gabriela; Rao, R.R.; Weckhuysen, B.M.; Voort, Pascal van der; Vansant, Etienne; Schoonheydt, R.A.

    1998-01-01

    A series of supported vanadium oxide catalysts were prepared by the incipient wetness method as a function of the support composition (Al2O3, SiO2, and USY), the metal oxide loading (0-1 wt %), and the impregnation salt (vanadyl sulfate and ammonium vanadate). These catalysts have been studied by

  5. Chemical diffusion on solid surfaces. Final report

    International Nuclear Information System (INIS)

    Hudson, J.B.

    1980-12-01

    The techniques of surface science have been applied to the problem of the measurement of the surface diffusion rate of an adsorbed species over the surface of a chemically dissimilar material. Studies were carried out for hydrogen and nitrogen adatoms on a Ni(100) surface and for silver adatoms on a sapphire surface. Positive results were obtained only for the case of nitrogen on Ni(100). In this system the diffusivity is characterized by the expression D = D 0 exp (/sup -ΔH//RT), with D 0 = 0.25 cm 2 /sec and ΔH = 28kcal/mol

  6. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  7. Glands on the foliar surfaces of tribe Cercideae (Caesapiniodeae, Leguminosae: distribution and taxonomic significance

    Directory of Open Access Journals (Sweden)

    JOAQUIM M. DUARTE-ALMEIDA

    2015-06-01

    Full Text Available Large elongated glands occur on Cercideae leaf surfaces. Leaves of Bauhinia (55 taxa, 53 species, Cercis (1 species, Phanera (1 species, Piliostigma (2 species, Schnella (19 species and Tylosema (1 species were observed to determine location and relative number of glands. They were only observed on the abaxial leaf surface of 42 Bauhinia taxa. The glands were analyzed by light stereomicroscope and scanning electron microscopy. They are large (up to 270 µm long and 115 µm wide and multicellular, containing lipophilic substances, probably volatile oils. Presence or absence and density of the glands in species of Bauhinia may be useful to determine species delimitation or distinction among infraspecific taxa. Higher density of glands is more common in species from "cerrado" (a savanna ecosystem and "caatinga" (a semiarid ecosystem from northeast Brazil areas. Bauhinia species devoid of foliar glands are frequently from humid forests.

  8. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  9. Coexistence and succession of copepod species in the Mandovi and Zuari estuaries, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Observations were made on the copepod species association and succession at six stations in the Mandovi-Zuari estuarine system of Goa, India. A total of 55 species belonging to 25 genera and 18 families were encountered in the surface collections...

  10. Trichomes morphology in petals of some Acanthaceae species.

    Directory of Open Access Journals (Sweden)

    Muhammad Amirul Aiman Ahmad Juhari

    2014-12-01

    Full Text Available A preliminary taxonomic study was carried out on seven Acanthaceae species namely as Andrographis paniculata, Pseuderanthemum graciliflorum, P. carruthersii,  Asystasia gangetica ssp. micrantha, Ruellia repens, Justicia comata and J. betonica. The study was undertaken to    investigate the morphology of trichomes present on the surfaces of flower petal. The variations found in this study are in their types and density. Based on observation, two forms of trichomes are present in all species studies which are glandular and non-glandular trichomes. There are seven types of trichomes found in this study. Trichomes types are shown to have systematic significance that can be used to differentiate and identify certain Acanthaceae species studied. 

  11. Effect of lead species on the durability of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Kuchinski, F.A.

    1987-01-01

    It has been shown that the incorporation of lead metal into the corrosion environment reduces the leaching rate of nuclear waste glasses. The present study evaluated the effects of lead metal, oxides, alloys, glasses and soluble species on the corrosion rate of a waste glass. The inherent durability of nuclear waste glasses comes from the about due to the insoluble surface film developed during corrosion. This surface film, enriched with iron, aluminum and calcium acts as a diffusion barrier to further corrosion. Except for PbO 2 , all lead species inhibited glass corrosion due to the formation of a surface film enriched in lead. No corroded glass layer was observed below the lead surface layer. Also, no glass corrosion products were found on the lead surface, except for small amounts of silicon. The transport and deposition of lead on the glass surface appears to be the key factors in preventing glass corrosion. At high glass surface area to volume ratios, the glass corroded considerably at short times since the dissolved lead source could not coat the entire glass surface rapidly enough to prevent continued corrosion. Also, experimental solution values did not agree with thermodynamics model predictions. This suggests that kinetic factors, namely diffusion barriers, are controlling the glass corrosion rate

  12. The protective nature of passivation films on zinc: surface charge

    International Nuclear Information System (INIS)

    Muster, Tim H.; Cole, Ivan S.

    2004-01-01

    The influence of oxide surface charge on the corrosion performance of zinc metals was investigated. Oxidised zinc species (zinc oxide, zinc hydroxychloride, zinc hydroxysulfate and zinc hydroxycarbonate) with chemical compositions similar to those produced on zinc during atmospheric corrosion were formed as particles from aqueous solution, and as passive films deposited onto zinc powder, and rolled zinc, surfaces. Synthesized oxides were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and electron probe X-ray microanalysis. The zeta potentials of various oxide particles, as determined by microelectrophoresis, are reported as a function of pH. Particulates containing a majority of zinc hydroxycarbonate and zinc hydroxysulfate crystallites were found to possess a negative surface charge below pH 6, whilst zinc oxide-hydroxide and zinc hydroxychloride crystallites possessed isoelectric points (IEP's) higher than pH 8. The ability of chloride species to pass through a bed of 3 μm diameter zinc powder was found to increase for surfaces possessing carboxy and sulfate surface species, suggesting that negatively charged surfaces can aid in the repulsion of chloride ions. Electrochemical analysis of the open-circuit potential as a function of time at a fixed pH of 6.5 showed that the chemical composition of passive films on zinc plates influenced the ability of chloride ions to access anodic sites for periods of approximately 1 h

  13. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2001-01-01

    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  14. Ion beam surface treatment: A new capability for rapid melt and resolidification of surfaces

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McIntyre, D.C.; Buchheit, R.G.; Greenly, J.B.; Thompson, M.O.

    1994-01-01

    The emerging capability to produce high average power (5--250 kW) pulsed ion beams at 0.2--2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This technique uses high energy, pulsed (≤100 ns) ion beams to directly deposit energy in the top 2--20 micrometers of the surface of any material. Depth of treatment is controllable by varying the ion energy and species. Deposition of the energy with short pulses in a thin surface layer allows melting of the layer with relatively small energies and allows rapid cooling of the melted layer by thermal diffusion into the underlying substrate. Typical cooling rates of this process (10 9 10 10 K/sec) cause rapid resolidification, resulting in production of non-equilibrium microstructures (nano-crystalline and metastable phases) that have significantly improved corrosion, wear, and hardness properties. We have conducted IBEST feasibility experiments with results confirming surface hardening, nanocrystaline grain formation, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning

  15. Ion acceleration in multi-species cathodic plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Krasov, V. I.; Paperny, V. L. [Irkutsk State University, Irkutsk 664003 (Russian Federation)

    2016-05-15

    A general expression for ion-ion coupling in a multi-species plasma jet was obtained. The expression is valid for any value of the inter-species velocity. This expression has enabled us to review a hydrodynamic problem of expanding the cathodic plasma microjet with two ion species within the respective charge states Z{sub 1} = +1 and Z{sub 2} = +2 into a vacuum. We were able to illustrate that in scenario when the initial (i.e., acquired during a process of emission from cathode's surface) difference for ion's species velocity exceeds a threshold value, the difference remains noticeable (roughly about 10% of the average jet's velocity) at a distance of a few centimeters from the emission center. At this point, it can be measured experimentally.

  16. A new isidiate species of Arthonia (Ascomycota: Arthoniaceae) from Costa Rica.

    Science.gov (United States)

    Grube, Martin; Lücking, Robert; Umaña-Tenorio, Loengrin

    2004-01-01

    The new corticolous species Arthonia isidiata is described from the Pacific lowlands of Costa Rica. A. isidiata is characterized by minute, cylindrical to coralloid isidia produced on the thallus surface. The species currently is known only from the type locality in Corcovado National Park, where it occurs abundantly in the coastal rainforest around Sirena Biological Station.

  17. Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior.

    Science.gov (United States)

    Agrawal, Anurag A; Fishbein, Mark; Jetter, Reinhard; Salminen, Juha-Pekka; Goldstein, Jessica B; Freitag, Amy E; Sparks, Jed P

    2009-08-01

    The leaf surface is the contact point between plants and the environment and plays a crucial role in mediating biotic and abiotic interactions. Here, we took a phylogenetic approach to investigate the function, trade-offs, and evolution of leaf surface traits in the milkweeds (Asclepias). Across 47 species, we found trichome densities of up to 3000 trichomes cm(-2) and epicuticular wax crystals (glaucousness) on 10 species. Glaucous species had a characteristic wax composition dominated by very-long-chain aldehydes. The ancestor of the milkweeds was probably a glaucous species, from which there have been several independent origins of glabrous and pubescent types. Trichomes and wax crystals showed negatively correlated evolution, with both surface types showing an affinity for arid habitats. Pubescent and glaucous milkweeds had a higher maximum photosynthetic rate and lower stomatal density than glabrous species. Pubescent and glaucous leaf surfaces impeded settling behavior of monarch caterpillars and aphids compared with glabrous species, although surface types did not show consistent differentiation in secondary chemistry. We hypothesize that pubescence and glaucousness have evolved as alternative mechanisms with similar functions. The glaucous type, however, appears to be ancestral, lost repeatedly, and never regained; we propose that trichomes are a more evolutionarily titratable strategy.

  18. Triisobutylaluminum: bulkier and yet more reactive towards silica surfaces than triethyl or trimethylaluminum

    KAUST Repository

    Kermagoret, Anthony; Kerber, Rachel Nathaniel; Conley, Matthew P.; Callens, Emmanuel; Florian, Pierre; Massiot, Dominique; Copé ret, Christophe; Delbecq, Franç oise; Rozanska, Xavier; Sautet, Philippe

    2013-01-01

    Triisobutylaluminum reacts with silica yielding three different Al sites according to high-field aluminum-27 NMR and first principle calculations: a quadruply grafted dimeric surface species and two incorporated Al(O)x species (x = 4 or 5). This result is in stark contrast to the bis-grafted species that forms during Et3Al silica grafting. Thus the isobutyl ligands, which render R3Al monomeric, lead to greater reactivity towards the silica surface. © 2013 The Royal Society of Chemistry.

  19. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Science.gov (United States)

    Reolon, Luciano Antonio; Martello, Carolina Lumertz; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer

    2014-01-01

    The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  20. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Directory of Open Access Journals (Sweden)

    Luciano Antonio Reolon

    Full Text Available The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae, the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  1. Characterization of the parameters at the origin of the chemical species hideout process at the fuel rod surface in boiling conditions

    International Nuclear Information System (INIS)

    Peybernes, J.; March, P.

    1999-01-01

    Current trends in nuclear power generation (and particularly in pressurized water reactors) are toward plant life extension and extended fuel burnup. A higher heat generation rate can induce local boiling regimes at the fuel rod surface in the hottest channels of the core, which can strongly modify the chemical environment of the cladding and influence the oxidation rate of zirconium alloys. Tests performed in out-of-pile loops under severe chemical and thermal-hydraulic conditions (nucleate boiling, higher lithium contents compared to PWRs) reveal two important phenomena: an increase of the oxidation rate of Zircaloy-4 cladding materials in 'high' lithiated environments; an enrichment of the chemical additives in the primary water (boron, lithium) at the surface of the cladding under nucleate boiling conditions. The latter phenomenon, also called 'hideout effect', is mainly controlled by some thermal hydraulic parameters such as bubble diameters and nucleation site density. These parameters strongly depend on the oxide morphology (roughness, porosity). The lack of reliable data in high temperature water environments has led to the development of a specific instrumentation based on visualization. The fitting of windows on the REGGAE out-of-pile loop provides an optical access to the two-phase flow regime under PWR operating conditions, allowing for the characterization of the parameters at the origin of the chemical species hideout process. These direct observations of the cladding surfaces subjected to nucleate boiling conditions provide information about the development of the boiling mechanisms in relation to the morphology of the oxide layers (porosity, thickness, roughness). (author)

  2. Covalent Immobilization of Enoxacin onto Titanium Implant Surfaces for Inhibiting Multiple Bacterial Species Infection and In Vivo Methicillin-Resistant Staphylococcus aureus Infection Prophylaxis.

    Science.gov (United States)

    Nie, Bin'en; Long, Teng; Ao, Haiyong; Zhou, Jianliang; Tang, Tingting; Yue, Bing

    2017-01-01

    Infection is one of the most important causes of titanium implant failure in vivo A developing prophylactic method involves the immobilization of antibiotics, especially vancomycin, onto the surface of the titanium implant. However, these methods have a limited effect in curbing multiple bacterial infections due to antibiotic specificity. In the current study, enoxacin was covalently bound to an amine-functionalized Ti surface by use of a polyethylene glycol (PEG) spacer, and the bactericidal effectiveness was investigated in vitro and in vivo The titanium surface was amine functionalized with 3-aminopropyltriethoxysilane (APTES), through which PEG spacer molecules were covalently immobilized onto the titanium, and then the enoxacin was covalently bound to the PEG, which was confirmed by X-ray photoelectron spectrometry (XPS). A spread plate assay, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to characterize the antimicrobial activity. For the in vivo study, Ti implants were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and implanted into the femoral medullary cavity of rats. The degree of infection was assessed by radiography, micro-computed tomography, and determination of the counts of adherent bacteria 3 weeks after surgery. Our data demonstrate that the enoxacin-modified PEGylated Ti surface effectively prevented bacterial colonization without compromising cell viability, adhesion, or proliferation in vitro Furthermore, it prevented MRSA infection of the Ti implants in vivo Taken together, our results demonstrate that the use of enoxacin-modified Ti is a potential approach to the alleviation of infections of Ti implants by multiple bacterial species. Copyright © 2016 American Society for Microbiology.

  3. Surface poisoning in the nucleation and growth of palladium atomic layer deposition with Pd(hfac){sub 2} and formalin

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, D.N. [Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO 80309 (United States); George, S.M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO 80309 (United States); Department of Chemical and Biological Engineering, University of Colorado, 424 UCB, Boulder, CO (United States)

    2011-06-01

    Palladium (Pd) atomic layer deposition (ALD) can be performed with Pd(hfac){sub 2} (hfac = hexafluoroacetyl-acetone) and formalin as the reactants. For Pd ALD on oxide surfaces, the nucleation of Pd ALD has been observed to require between 20 and 100 ALD cycles. To understand the long nucleation periods, this study explored the surface reactions occurring during Pd ALD nucleation and growth on hydroxylated Al{sub 2}O{sub 3} substrates. In situ Fourier transform infrared (FTIR) spectroscopy on high surface area nanopowders was used to observe the surface species. The adsorption of Pd(hfac){sub 2} on hydroxylated Al{sub 2}O{sub 3} substrates was found to yield both Pd(hfac)* and Al(hfac)* surface species. The identity of the Al(hfac)* species was confirmed by separate FTIR studies of hfacH adsorption on the hydroxylated Al{sub 2}O{sub 3} substrates. Isothermal loss of the Al(hfac)* species revealed second-order kinetics at 448-523 K with an activation barrier of E{sub d} = 39.4 kcal/mol. The lack of correlation between Al(hfac)* and AlOH* species during the loss of Al(hfac)* species suggested that the Al(hfac)* species may desorb as Al(hfac){sub 3}. After Pd(hfac){sub 2} exposure and the subsequent formalin exposure on hydroxylated Al{sub 2}O{sub 3} substrates, only hfac ligands from Pd(hfac)* species were removed from the surface. In addition, the formalin exposure added formate species. The Al(hfac)* species was identified as the cause of the long nucleation period because Al(hfac)* behaves as a site blocker. The surface poisoning by Al(hfac)* species was corroborated by adsorbing hfacH prior to the Pd(hfac){sub 2} exposures. The amount of Pd(hfac)* species after Pd(hfac){sub 2} exposures decreased progressively versus the previous hfacH exposure. Pd ALD occurred gradually during the subsequent Pd ALD cycles as the Al(hfac)* species were slowly removed from the Al{sub 2}O{sub 3} surface. Ex situ transmission electron microscopy analysis revealed Pd nanoclusters

  4. Capturing characteristics of beryllium-7 in selected tree species

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Karube, Yoshiharu.

    1997-01-01

    With regard to 7 Be, a natural radioactive nuclide, the botanical capturing characteristics were compared between eight species of those trees which grow in a local district. The mechanism of such botanical capture by their leaves was discussed. The amounts of captured 7 Be were different by tree species. Higher radioactivities were found in the coniferous trees than in the broadleaf trees. The seasonal change of 7 Be radioactivity in leaves was significantly higher in winter and spring and lower in summer. Since airborne or fallout 7 Be particles stay on the upper face of leaves, the deposited amount depended on the surface area per weight of leaves particularly for evergreen trees. Because the 7 Be amount in leaves depended on the fallout capturing ability of leafs superficial skin as well as the cleaning effect of rain and the like, the radioactivity on the surface can change depending on the surface condition of leaves even in the case the levels of 7 Be fallout stayed the same. (author)

  5. Atom transfer as a preparative tool in coordination chemistry. Synthesis and characterization of Cr(V) nitrido complexes of bidentate ligands

    DEFF Research Database (Denmark)

    Birk, Torben; Bendix, Jesper

    2003-01-01

     = 11.8267(12) Å, ß = 106.528(7)°, V = 1441.7(2) Å3, Z = 4. Complexes 2 and 3 represent new coordination environments for first row transition metal nitrido complexes. The d-orbital energy splitting in these systems with relatively weak equatorial donors differs significantly from the pattern in vanadyl...

  6. Stepwise dehydrogenation of ammonia on Fcc-Co surfaces: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, F.F.; Ma, S.H., E-mail: mash.phy@htu.edu.cn; Jiao, Z.Y.; Dai, X.Q.

    2017-05-31

    Highlights: • On Co surfaces, oxygen atom not only strengthens ammonia-substrate interaction but also facilitates ammonia dissociation on the Co surfaces. • Pre-adsorbed O atom significantly promotes the stepwise dehydrogenation of ammonia on Co(110), giving rise to N atom strongly binding with the surface. • The dissociation of NH appears to be the rate-determining step on O-covered Co(111) and Co(100) surfaces. • The species N and NH produced in ammonia dehydrogenation are likely responsible for cobalt catalyst deactivation in the excess of oxygen atom. - Abstract: The stepwise dehydrogenation of ammonia on clean and O-covered Co surfaces have been studied by performing density functional theory (DFT) calculations. It is found that the interaction of species NH{sub x} (x = 0–3) with the Co surfaces become stronger with its further dehydrogenation, and oxygen atom not only strengthens ammonia-substrate interaction but also facilitates ammonia dissociation. Specifically, pre-adsorbed O atom significantly promotes the stepwise dehydrogenation of ammonia on Co(110), giving rise to N atom strongly binding with the surface. In contrast, the dissociation of NH appears to be the rate-determining step on O-covered Co(111) and Co(100) surfaces, due to the high energy barriers. And present results demonstrate that the species N and NH produced in ammonia dehydrogenation are likely responsible for cobalt catalyst deactivation in the excess of oxygen atom.

  7. Stepwise dehydrogenation of ammonia on Fcc-Co surfaces: A DFT study

    International Nuclear Information System (INIS)

    Ma, F.F.; Ma, S.H.; Jiao, Z.Y.; Dai, X.Q.

    2017-01-01

    Highlights: • On Co surfaces, oxygen atom not only strengthens ammonia-substrate interaction but also facilitates ammonia dissociation on the Co surfaces. • Pre-adsorbed O atom significantly promotes the stepwise dehydrogenation of ammonia on Co(110), giving rise to N atom strongly binding with the surface. • The dissociation of NH appears to be the rate-determining step on O-covered Co(111) and Co(100) surfaces. • The species N and NH produced in ammonia dehydrogenation are likely responsible for cobalt catalyst deactivation in the excess of oxygen atom. - Abstract: The stepwise dehydrogenation of ammonia on clean and O-covered Co surfaces have been studied by performing density functional theory (DFT) calculations. It is found that the interaction of species NH x (x = 0–3) with the Co surfaces become stronger with its further dehydrogenation, and oxygen atom not only strengthens ammonia-substrate interaction but also facilitates ammonia dissociation. Specifically, pre-adsorbed O atom significantly promotes the stepwise dehydrogenation of ammonia on Co(110), giving rise to N atom strongly binding with the surface. In contrast, the dissociation of NH appears to be the rate-determining step on O-covered Co(111) and Co(100) surfaces, due to the high energy barriers. And present results demonstrate that the species N and NH produced in ammonia dehydrogenation are likely responsible for cobalt catalyst deactivation in the excess of oxygen atom.

  8. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  9. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    International Nuclear Information System (INIS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-01-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis

  10. A new species of Mastigodiaptomus Light, 1939 from Mexico, with notes of species diversity of the genus (Copepoda, Calanoida, Diaptomidae

    Directory of Open Access Journals (Sweden)

    Martha Angélica Gutiérrez-Aguirre

    2016-11-01

    Full Text Available A new species of the genus Mastigodiaptomus Light, 1939, named Mastigodiaptomus cuneatus sp. n. was found in a freshwater system in the City of Mazatlán, in the northern region of Mexico. Morphologically, the females of this new species are distinguishable from those of its congeners by the following combination of features: the right distal corner of the genital double-somite and second urosomite have a wedge-shaped projection, the fourth urosomite has no dorsal projection and its integument is smooth. The males are distinct by the following features: the right caudal ramus has a wedge-shaped structure at the disto-ventral inner corner; the basis of the right fifth leg has one triangular and one rounded projection at the distal and proximal margins, respectively, plus one hyaline membrane on the caudal surface close to the inner margin; the aculeus length is almost the width of the right second exopod (Exp2; and the frontal and caudal surfaces of the right Exp2 are smooth. Furthermore, the analysis of the COI gene of M. cuneatus sp. n. has revealed that M. albuquerquensis (Herrick, 1895 is its nearest congener, with 18.64% of genetic distance. A key for the identification of the known species of the genus is provided.

  11. A new species of Mastigodiaptomus Light, 1939 from Mexico, with notes of species diversity of the genus (Copepoda, Calanoida, Diaptomidae)

    Science.gov (United States)

    Gutiérrez-Aguirre, Martha Angélica; Cervantes-Martínez, Adrián

    2016-01-01

    Abstract A new species of the genus Mastigodiaptomus Light, 1939, named Mastigodiaptomus cuneatus sp. n. was found in a freshwater system in the City of Mazatlán, in the northern region of Mexico. Morphologically, the females of this new species are distinguishable from those of its congeners by the following combination of features: the right distal corner of the genital double-somite and second urosomite have a wedge-shaped projection, the fourth urosomite has no dorsal projection and its integument is smooth. The males are distinct by the following features: the right caudal ramus has a wedge-shaped structure at the disto-ventral inner corner; the basis of the right fifth leg has one triangular and one rounded projection at the distal and proximal margins, respectively, plus one hyaline membrane on the caudal surface close to the inner margin; the aculeus length is almost the width of the right second exopod (Exp2); and the frontal and caudal surfaces of the right Exp2 are smooth. Furthermore, the analysis of the COI gene of Mastigodiaptomus cuneatus sp. n. has revealed that Mastigodiaptomus albuquerquensis (Herrick, 1895) is its nearest congener, with 18.64% of genetic distance. A key for the identification of the known species of the genus is provided. PMID:28138275

  12. Determination of trace elements in GPC fractions of oil-sand asphaltenes by INAA

    International Nuclear Information System (INIS)

    Jacobs, F.S.; Bachelor, F.W.; Filby, R.H.

    1984-01-01

    Asphaltene samples precipitated from Athabasca and Cold Lake oil-sand bitumens were separated into 12 fractions of varying molecular weight by preparative gel permeation chromatography (GPC). Each fraction was then analyzed by analytical GPC and visible spectrometry. Concentrations of As, Ce, Co, Cr, Eu, Ga, Hf, Hg, La, Ni, Sb, Sc, Se, Sm, Tb, Th, U, V, Zn, and Zr in the fractions were determined by neutron activation analysis. Molecular weights of the Athabasca fractions are generally higher than the corresponding Cold Lake fractions. Between 58% and 90% of the metal contents occur in the high molecular weight fractions of both asphaltenes. Except for V and Cr, which show biomodel distributions, all the elements have decreasing concentrations as the molecular weight of the fraction decreases. High molecular weight fractions, constituting about 55% of the whole asphaltenes, contain nonporphyrin bound vanadium compounds. It is estimated that 27% and 31% of V present in Athabasca and Cold Lake asphaltenes respectively occur as porphyrin type compounds, including vanadyl prophyrins released from the asphaltene micelle during the separation and vanadyl porphyrins bearing high-molecular-weight substituents

  13. Coexistence of surface and cave amphipods in an ecotone environment

    NARCIS (Netherlands)

    Luštrik, R.; Turjak, M.; Kralj-Fišer, S.; Fišer, C.

    2011-01-01

    Interspecific interactions between surface and subterranean species may be a key determinant for species distributions. Until now, the existence of competition (including predation) between these groups has not been tested. To assess the coexistence and potential role of interspecific interactions

  14. Dust retaining properties of leaves of some tree species

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, M I

    1960-05-01

    A study was made in Tashkent, Russia of the dust-retaining power of leaves of several tree species. Investigations were made in a park where these tree species were growing in close proximity, exposed to the effects of dust from the main city street and from the highway passing through the park. Observations on the dust-retaining power of leaves were made mostly during the summer and fall months. The dust-retaining power of leaves of different tree species varied with the dust concentration in the air. In the summer and fall when rains are scarce a steady accumulation of dust was observed on the surface of the leaves. 1 table.

  15. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  16. Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts

    International Nuclear Information System (INIS)

    Ranieri, Antonio; Di Rocco, Giulia; Millo, Diego; Battistuzzi, Gianantonio; Bortolotti, Carlo A.; Lancellotti, Lidia; Borsari, Marco; Sola, Marco

    2015-01-01

    Highlights: • Cytochrome c and its adduct with cardiolipin can be immobilized on a hydrophobic SAM. • Adsorbed cytochrome c and its adduct undergo extensive unfolding and axial ligand substitution. • An equilibrium between a six-coordinated and a five-coordinated form is observed in both cases. • The reduced five-coordinated form is stabilized by cardiolipin binding. • Immobilized cytochrome c exchanges electrons more slowly upon cardiolipin binding. - Abstract: Cytochrome c (cytc) and its adduct with cardiolipin (CL) were immobilized on a hydrophobic SAM-coated electrode surface yielding a construct which mimics the environment experienced by the complex at the inner mitochondrial membrane where it plays a role in cell apoptosis. Under these conditions, both species undergo an equilibrium between a six-coordinated His/His-ligated and a five-coordinated His/- ligated forms stable in the oxidized and in the reduced state, respectively. The thermodynamics of the oxidation-state dependent species conversion were determined by temperature-dependent diffusionless voltammetry experiments. CL binding stabilizes the immobilized reduced His/- ligated form of cytc which was found previously to catalytically reduce dioxygen. Here, this adduct is also found to show pseudoperoxidase activity, catalysing reduction of hydrogen peroxide. These effects would impart CL with an additional role in the cytc-mediated peroxidation leading to programmed cell death. Moreover, immobilized cytc exchanges electrons more slowly upon CL binding possibly due to changes in solvent reorganization effects at the protein-SAM interface

  17. Restoring abandoned agricultural lands in cold desert shrublands: Tradeoffs between water availability and invasive species

    Science.gov (United States)

    Jeanne C. Chambers; Eric P. Eldredge; Keirith A. Snyder; David I. Board; Tara Forbis de Queiroz; Vada Hubbard

    2014-01-01

    Restoration of abandoned agricultural lands to create resilient ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant-soil-water relations, and controlling invasive species. We asked if improving water relations via irrigation or surface mulch would result in negative tradeoffs between native species...

  18. Tuning antimicrobial properties of biomimetic nanopatterned surfaces.

    Science.gov (United States)

    Michalska, Martyna; Gambacorta, Francesca; Divan, Ralu; Aranson, Igor S; Sokolov, Andrey; Noirot, Philippe; Laible, Philip D

    2018-04-05

    Nature has amassed an impressive array of structures that afford protection from microbial colonization/infection when displayed on the exterior surfaces of organisms. Here, controlled variation of the features of mimetics derived from etched silicon allows for tuning of their antimicrobial efficacy. Materials with nanopillars up to 7 μm in length are extremely effective against a wide range of microbial species and exceed the performance of natural surfaces; in contrast, materials with shorter/blunter nanopillars (<2 μm) selectively killed specific species. Using a combination of microscopies, the mechanisms by which bacteria are killed are demonstrated, emphasizing the dependence upon pillar density and tip geometry. Additionally, real-time imaging reveals how cells are immobilized and killed rapidly. Generic or selective protection from microbial colonization could be conferred to surfaces [for, e.g., internal medicine, implants (joint, dental, and cosmetic), food preparation, and the agricultural industry] patterned with these materials as coatings.

  19. Spectroscopic identification of binary and ternary surface complexes of Np(V) on gibbsite.

    Science.gov (United States)

    Gückel, Katharina; Rossberg, André; Müller, Katharina; Brendler, Vinzenz; Bernhard, Gert; Foerstendorf, Harald

    2013-12-17

    For the first time, detailed molecular information on the Np(V) sorption species on amorphous Al(OH)3 and crystalline gibbsite was obtained by in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The results consistently demonstrate the formation of mononuclear inner sphere complexes of the NpO2(+) ion irrespective of the prevailing atmospheric condition. The impact of the presence of atmospheric equivalent added carbonate on the speciation in solution and on the surfaces becomes evident from vibrational data. While the 1:1 aqueous carbonato species (NpO2CO3(-)) was found to become predominant in the circumneutral pH range, it is most likely that this species is sorbed onto the gibbsite surface as a ternary inner sphere surface complex where the NpO2(+) moiety is directly coordinated to the functional groups of the gibbsite's surface. These findings are corroborated by results obtained from EXAFS spectroscopy providing further evidence for a bidentate coordination of the Np(V) ion on amorphous Al(OH)3. The identification of the Np(V) surface species on gibbsite constitutes a basic finding for a comprehensive description of the dissemination of neptunium in groundwater systems.

  20. Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology.

    Science.gov (United States)

    Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi

    2017-01-28

    The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness.

  1. Surface chemical characterization of PM{sub 10} samples by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Atzei, Davide, E-mail: datzei@unica.it [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari (Italy); Fantauzzi, Marzia; Rossi, Antonella [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari (Italy); Fermo, Paola [Dipartimento di Chimica, Università degli Studi Milano, Via Golgi 19, I-20133 Milano (Italy); Piazzalunga, Andrea [Dipartimento di Chimica, Università degli Studi Milano, Via Golgi 19, I-20133 Milano (Italy); Dipartimento di Scienze dell’Ambiente e del territorio, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, I-20122 Milano (Italy); Valli, Gianluigi; Vecchi, Roberta [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy)

    2014-07-01

    Samples of particulate matter (PM) collected in the city of Milan during wintertime were analyzed by X-ray photoelectron spectroscopy (XPS), thermal optical transmittance (TOT), ionic chromatography (IC) and X-ray fluorescence (XRF) in order to compare quantitative bulk analysis and surface analysis. In particular, the analysis of surface carbon is here presented following a new approach for the C1s curve fitting aiming this work to prove the capability of XPS to discriminate among elemental carbon (EC) and organic carbon (OC) and to quantify the carbon-based compounds that might be present in the PM. Since surface of urban PM is found to be rich in carbon it is important to be able to distinguish between the different species. XPS results indicate that aromatic and aliphatic species are adsorbed on the PM surface. Higher concentrations of (EC) are present in the bulk. Also nitrogen and sulfur were detected on the surfaces and a qualitative and quantitative analysis is provided. Surface concentration of sulfate ion is equal to that found by bulk analysis; moreover surface analysis shows an additional signal due to organic sulfur not detectable by the other methods. Surface appears to be also enriched in nitrogen.

  2. Semiaquilegia quelpaertensis (Ranunculaceae), a new species from the Republic of Korea.

    Science.gov (United States)

    Son, Dong Chan; Jeong, Keum Seon; Lee, Kang-Hyup; Kim, Heesoo; Chang, Kae Sun

    2017-01-01

    Semiaquilegia quelpaertensis sp. nov. , a new species belonging to the family Ranunculaceae, from Hallasan National Park in Jeju-do, Republic of Korea, is described and illustrated. The new species is similar to Semiaquilegia adoxoides (DC.) Makino, but can be readily distinguished by a thick underground stem, shallowly lobed leaflets, larger flowers, (4-)6 staminodes and conspicuously rugose tuberculate seed surface.

  3. Semiaquilegia quelpaertensis (Ranunculaceae), a new species from the Republic of Korea

    OpenAIRE

    Son,Dong Chan; Jeong,Keum Seon; Lee,Kang-Hyup; Kim,Heesoo; Chang,Kae Sun

    2017-01-01

    Semiaquilegia quelpaertensis sp. nov., a new species belonging to the family Ranunculaceae, from Hallasan National Park in Jeju-do, Republic of Korea, is described and illustrated. The new species is similar to Semiaquilegia adoxoides (DC.) Makino, but can be readily distinguished by a thick underground stem, shallowly lobed leaflets, larger flowers, (4–)6 staminodes and conspicuously rugose tuberculate seed surface.

  4. High Resolution Habitat Suitability Modelling For Restricted-Range Hawaiian Alpine Arthropod Species

    Science.gov (United States)

    Stephenson, N. M.

    2016-12-01

    Mapping potentially suitable habitat is critical for effective species conservation and management but can be challenging in areas exhibiting complex heterogeneity. An approach that combines non-intrusive spatial data collection techniques and field data can lead to a better understanding of landscapes and species distributions. Nysius wekiuicola, commonly known as the wēkiu bug, is the most studied arthropod species endemic to the Maunakea summit in Hawai`i, yet details about its geographic distribution and habitat use remain poorly understood. To predict the geographic distribution of N. wekiuicola, MaxEnt habitat suitability models were generated from a diverse set of input variables, including fifteen years of species occurrence data, high resolution digital elevation models, surface mineralogy maps derived from hyperspectral remote sensing, and climate data. Model results indicate that elevation (78.2 percent), and the presence of nanocrystalline hematite surface minerals (13.7 percent) had the highest influence, with lesser contributions from aspect, slope, and other surface mineral classes. Climatic variables were not included in the final analysis due to auto-correlation and coarse spatial resolution. Biotic factors relating to predation and competition also likely dictate wēkiu bug capture patterns and influence our results. The wēkiu bug range and habitat suitability models generated as a result of this study will be directly incorporated into management and restoration goals for the summit region and can also be adapted for other arthropod species present, leading to a more holistic understanding of metacommunity dynamics. Key words: Microhabitat, Structure from Motion, Lidar, MaxEnt, Habitat Suitability

  5. Non-ammonium reduced nitrogen species in atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Dod, R.L.; Gundel, L.A.; Benner, W.H.; Novakov, T.

    1983-08-01

    The traditional belief that ambient aerosol particles contain nitrogen predominantly in the form of inorganic ionic species such as NH/sub 4//sup +/ and NO/sub 3//sup -/ was challenged about 10 years ago by results from x-ray photoelectron spectroscopic analysis (ESCA) of California aerosol particles. A significant fraction (approx. 50%) of the reduced nitrogen was observed to have an oxidation state more reduced than ammonium, characteristic of organic nitrogen species. We have used a recently developed thermal evolved gas analysis method (NO/sub x/) in conjunction with ESCA to confirm the existence of these species in aerosol particles collected in both the United States and Europe. The agreement of EGA and ESCA analyses indicates that these species are found not only on the surface but also throughout the particles. 9 references, 6 figures.

  6. The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation.

    Science.gov (United States)

    Eckhart, V M; Geber, M A; Morris, W F; Fabio, E S; Tiffin, P; Moeller, D A

    2011-10-01

    Potential causes of species' geographic distribution limits fall into two broad classes: (1) limited adaptation across spatially variable environments and (2) limited opportunities to colonize unoccupied areas. Combining demographic studies, analyses of demographic responses to environmental variation, and species distribution models, we investigated the causes of range limits in a model system, the eastern border of the California annual plant Clarkia xantiana ssp. xantiana. Vital rates of 20 populations varied with growing season temperature and precipitation: fruit number and overwinter survival of 1-year-old seeds declined steeply, while current-year seed germination increased modestly along west-to-east gradients in decreasing temperature, decreasing mean precipitation, and increasing variation in precipitation. Long-term stochastic finite rate of increase, λ(s), exhibited a fourfold range and varied among geologic surface materials as well as with temperature and precipitation. Growth rate declined significantly toward the eastern border, falling below 1 in three of the five easternmost populations. Distribution models employing demographically important environmental variables predicted low habitat favorability beyond the eastern border. Models that filtered or weighted population presences by λ(s) predicted steeper eastward declines in favorability and assigned greater roles in setting the distribution to among-year variation in precipitation and to geologic surface material. These analyses reveal a species border likely set by limited adaptation to declining environmental quality.

  7. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  8. Oral candidiasis-adhesion of non-albicans Candida species

    Directory of Open Access Journals (Sweden)

    Bokor-Bratić Marija B.

    2008-01-01

    Full Text Available Oral candidiasis is an opportunistic infection caused primarily by Candida albicans. However, in recent years, species of non-albicans Candida have been implicated more frequently in mucosal infection. Candida species usually reside as commensal organisms and are part of normal oral microflora. Determining exactly how transformation from commensal to pathogen takes place and how it can be prevented is continuous challenge for clinical doctors. Candidal adherence to mucosal surfaces is considered as a critical initial step in the pathogenesis of oral candidiasis. Acrylic dentures, acting as reservoirs, play an important role in increasing the risk from Candida colonisation. Thus, this review discusses what is currently known about the adhesion of non-albicans Candida species of oral origin to buccal epithelial cells and denture acrylics.

  9. Interactions between kaolinite Al−OH surface and sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yonghua, E-mail: hyh19891102@163.com [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Liu, Wenli; Zhou, Jia [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Jianhua [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-11-30

    Highlights: • Sodium hexametaphosphate (NaHMP) can adsorb on kaolinite Al−OH terminated (001) surface easily. • The oxygen atoms of hexametaphosphate form strong hydrogen bonds with the hydrogen atoms of kaolinite Al−OH surface. • The electrostatic force is the main interaction between NaHMP and Al−OH surface. • The linear hexaphosphate −[PO{sub 3}]{sub m}− chains adsorb stably than −[HPO{sub 3}]{sub m}− chains. - Abstract: To investigate the dispersion mechanism of sodium hexametaphosphate on kaolinite particles, we simulated the interaction between linear polyphosphate chains and kaolinite Al−OH terminated surface by molecular dynamics, as well as the interaction between the [HPO{sub 4}]{sup 2−} anion and kaolinite Al−OH surface by density functional theory (DFT). The calculated results demonstrate that hexametaphosphate can be adsorbed by the kaolinite Al−OH surface. The oxygen atoms of hexametaphosphate anions may receive many electrons from the Al−OH surface and form hydrogen bonds with the hydrogen atoms of surface hydroxyl groups. Moreover, electrostatic force dominates the interactions between hexametaphosphate anions and kaolinite Al−OH surface. Therefore, after the adsorption of hexametaphosphate on kaolinite Al−OH surface, the kaolinite particles carry more negative charge and the electrostatic repulsion between particles increases. In addition, the adsorption of −[PO{sub 3}]{sub m}− species on the Al−OH surface should be more stable than the adsorption of −[HPO{sub 3}]{sub m}− species.

  10. Targeted modulation of reactive oxygen species in the vascular endothelium

    OpenAIRE

    Shuvaev, Vladimir V.; Muzykantov, Vladimir R.

    2011-01-01

    Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-mo...

  11. Process for neptunium analysis by absorption spectrophotometry

    International Nuclear Information System (INIS)

    Wagner, J.F.

    1987-01-01

    An aqueous solution of a neptunium compounds is treated by a reagent, preferentially a vanadyl sulfate oxidized by cerium IV ions, to obtain neptunium V by oxidation of neptunium IV and reduction of neptunium VI. The reagent is chosen for a negligible absorption at the wavelength used for neptunium V absorption spectrophotometry for instance 981 nm [fr

  12. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T. S. (Tim S.)

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  13. Hydrothermal synthesis of a new ethylenediammonium intercalated ...

    Indian Academy of Sciences (India)

    Unknown

    Vanadyl phosphate; hydrothermal synthesis; intercalation; single crystal ... presence of 'en'.7–15 In all these solids en molecules occur in suitable ... all the cases, the mixture was transferred to a 45 ml Teflon lined Parr acid digestion .... position cannot be fully occupied at the same time as it will lead to a P-P distance of.

  14. Variation in skin surface lipid composition among the Equidae.

    Science.gov (United States)

    Colton, S W; Downing, D T

    1983-01-01

    Skin surface lipids from Equus caballus, E. przewalskii, E. asinus, E. grevyi, E. hemionus onager and a mule (E. asinus/E. caballus) were analyzed in detail. In all species the surface lipid mixtures consisted of giant-ring lactones, cholesterol, cholesteryl esters and minor amounts of wax diesters. In E. caballus, the lactone hydroxyacids were entirely branched chained, while in E. asinus and E. grevyi they were almost exclusively straight chained. In E. przewalskii, the onager and the mule there were both straight and branched chain hydroxyacid lactones. These results are in harmony with published interpretations of the evolutionary relationships among Equus species.

  15. Statistical characterization of surface defects created by Ar ion bombardment of crystalline silicon

    International Nuclear Information System (INIS)

    Ghazisaeidi, M.; Freund, J. B.; Johnson, H. T.

    2008-01-01

    Ion bombardment of crystalline silicon targets induces pattern formation by the creation of mobile surface species that participate in forming nanometer-scale structures. The formation of these mobile species on a Si(001) surface, caused by sub-keV argon ion bombardment, is investigated through molecular dynamics simulation of Stillinger-Weber [Phys. Rev. B 31, 5262 (1985)] silicon. Specific criteria for identifying and classifying these mobile atoms based on their energy and coordination number are developed. The mobile species are categorized based on these criteria and their average concentrations are calculated

  16. Commelina Species Control with Desiccants Alone and in Mixtures

    OpenAIRE

    FERREIRA, S.D.; SALVALAGGIO, A.C.; MORATELLI, G.; VASCONCELOS, E.D.; COSTA, N.V.

    2017-01-01

    ABSTRACT: The objective of this study was to evaluate the chemical control of the species C. benghalensis and C. erecta with desiccants alone and mixtures, as well as the spreading of spray droplets on the leaf surfaces. The experimental design was completely randomized in a 2 x 16 factorial arrangement with four replications, totaling 32 treatments and 128 plots. The first factor is related to the species C. benghalensis and C. erecta and the second factor corresponds to the treatments carfe...

  17. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    Science.gov (United States)

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  18. Reproductive glycogenetics--a critical factor in pregnancy success and species hybridisation.

    Science.gov (United States)

    Jones, C J P; Aplin, J D

    2009-03-01

    Hybridisation occurs rarely in nature and experiments using interspecific transfer of embryos generally result in implantation failure. Here we show that appropriate glycosylation of the apposing surfaces of endometrium and trophoblast probably is an important factor and may play a critical role in pregnancy success. Examination of closely related species shows that each has its own specific pattern of glycosylation, or glycotype, at the fetomaternal interface and that interacting surfaces appear to show complementarity, suggesting the existence of a glycocode. Studies on a camel/llama hybrid show that for successful implantation to occur, a hybrid must have a placental glycosylation pattern similar to that of the host species, suggesting that the glycocode and appropriate glycosylation may be critical factors in the establishment and maintenance of pregnancy. This new field of reproductive glycogenetics is not only relevant to the development of new species but may also have important implications in the area of human fertility.

  19. Seasonality effect on the allelopathy of cerrado species

    Directory of Open Access Journals (Sweden)

    AB Gatti

    Full Text Available The Brazilian cerrado presents strong climate seasonality. During the dry season, plants may be exposed to stressful situations, such as a soil surface water deficit, that stimulate their chemical defenses. However, the seasonality effect on the production of allelopathic compounds of cerrado plant species is poorly understood. In this study, the phytotoxic activities of common native cerrado plants were evaluated during rainy and dry seasons. Crude leaves extracts (10% concentration: weight/volume, with dry leaves and distilled water from eleven species were tested on lettuce and sesame germination. The negative effects on germination percentages, rates and informational entropies of the target species were higher when submitted to plant extracts from the dry season, where the germination rate was the most sensible parameter. The higher sensibility of lettuce and the germination rate parameter showed this difference. Only two exceptions had higher effects for rainy season extracts; one species showed higher negative effects on germination informational entropy of lettuce and another species on the germination rate of sesame. Thus, increases in the allelopathic activity were seen in the majority of the studied cerrado plant species during the dry season. These distinct responses to stressful situations in a complex environment such as the Brazilian cerrado may support the establishment and survival of some species.

  20. Determination of incoming solar radiation in major tree species in Turkey.

    Science.gov (United States)

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Koc, Ayhan

    2012-07-01

    Light requirements and spatial distribution of major forest tree species in Turkey hasn't been analyzed yet. Continuous surface solar radiation data, especially at mountainous-forested areas, are needed to put forward this relationship between forest tree species and solar radiation. To achieve this, GIS-based modeling of solar radiation is one of the methods used in rangelands to estimate continuous surface solar radiation. Therefore, mean monthly and annual total global solar radiation maps of whole Turkey were computed spatially using GRASS GIS software "r.sun" model under clear-sky (cloudless) conditions. 147498 pure forest stand point-based data were used in the study for calculating mean global solar radiation values of all the major forest tree species of Turkey. Beech had the lowest annual mean total global solar radiation value of 1654.87 kWh m(-2), whereas juniper had the highest value of 1928.89 kWh m(-2). The rank order of tree species according to the mean monthly and annual total global solar radiation values, using a confidence level of p solar radiation values of sites and light requirements of forest trees ranked similarly.

  1. Do leaf surface characteristics affect Agrobacterium infection in tea

    Indian Academy of Sciences (India)

    The host range specificity of Agrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree of Agrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry.

  2. Endangered Species Day | Endangered Species Coalition

    Science.gov (United States)

    Annual Top 10 Report Protecting the Endangered Species Act Wildlife Voices Stand for Wolves Endangered Campaigns Wildlife Voices Protecting the Endangered Species Act Annual Top 10 Report Endangered Species Day Stand for Wolves Vanishing BOOK: A Wild Success The Endangered Species Act at 40 Endangered Species The

  3. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  4. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.; Mudiyanselage, Kumudu; Burrell, Anthony K; Sadowski, Jerzy T.; Idriss, Hicham

    2015-01-01

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  5. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  6. Semiaquilegia quelpaertensis (Ranunculaceae, a new species from the Republic of Korea

    Directory of Open Access Journals (Sweden)

    Dong Chan Son

    2017-11-01

    Full Text Available Semiaquilegia quelpaertensis sp. nov., a new species belonging to the family Ranunculaceae, from Hallasan National Park in Jeju-do, Republic of Korea, is described and illustrated. The new species is similar to Semiaquilegia adoxoides (DC. Makino, but can be readily distinguished by a thick underground stem, shallowly lobed leaflets, larger flowers, (4–6 staminodes and conspicuously rugose tuberculate seed surface.

  7. Larval settlement: the role of surface topography for sessile coral reef invertebrates.

    Science.gov (United States)

    Whalan, Steve; Wahab, Muhammad A Abdul; Sprungala, Susanne; Poole, Andrew J; de Nys, Rocky

    2015-01-01

    For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.

  8. Behavioral response of cave and surface Asellus aquaticus to water current

    OpenAIRE

    Dacar, Maja

    2017-01-01

    There are many questions regarding what influences the emergence of new species. Firstly and above all, is the appearance of differences within a certain specie, where a certain part is isolated from the group and continues its own evolution. One of these differences appear between the surface- and cave-dwelling Asellus aquaticus, as the ability to hold on to their surface. The discovery of these differences was carried out using a method of experiment, namely on the cave-dwelling Asellus ...

  9. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  10. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  11. Surface Dielectric Barrier Discharge Jet for Skin Disinfection

    Science.gov (United States)

    Creyghton, Yves; Meijer, Rogier; Verweij, Paul; van der Zanden, Frank; Leenders, Paul

    A consortium consisting of the research institute TNO, the medical ­university and hospital St Radboud and two industrial enterprises is working on a non-thermal plasma treatment method for hand disinfection. The group is seeking for cooperation, in particular in the field of validation methods and potential ­standardization for plasma based disinfection procedures. The present paper describes technical progress in plasma source development together with initial microbiological data. Particular properties of the sheet shaped plasma volume are the possibility of treating large irregular surfaces in a short period of time, effective plasma produced species transfer to the surface together with high controllability of the nature of plasma species by means of temperature conditioning.

  12. Ion bombardment induced topography evolution on low index crystal surfaces of Cu and Pb

    International Nuclear Information System (INIS)

    Tanovic, L.; Tanovic, N.; Carter, G.; Nobes, M.J.

    1993-01-01

    (100), (110) and (111) oriented single crystal surfaces of Cu and Pb have been bombarded with inert gas ions, self ions, ions of the other substrate species and Bi in the energy range 50-150 keV and in the fluence range 10 15 -10 18 ions.cm 2 . The evolving surface topography was observed by scanning electron microscopy. This topography was observed to be strongly influenced by ion species and surface orientation but the habit of the topography was delineated at low fluences and the features increased in size and density with increasing fluence with some mutation to the more stable of the features. As an example Bi and Pb bombardment of (100) Cu leads to little topographic evolution, (110) Cu develops a system of parallel ridges with (100) facets and (111) Cu develops a prismatic surface, each prism possessing (100) facets. These, and the more general, results cannot be explained by surface erosion by sputtering theory alone (this predicts surface stability of the lowest sputtering yield orientation (110), nor by surface free energy density minimisation criteria (this predicts stability of (111) surfaces). It is proposed that the observed topography is most strongly related to the crystallographic form of precipitates of implanted species. (orig.)

  13. Synthesis and photoactivity of the highly efficient Ag species/TiO2 nanoflakes photocatalysts

    International Nuclear Information System (INIS)

    Liu Yong; Hu Juncheng; Li Jinlin

    2011-01-01

    Research highlights: → Highly efficient Ag species-TiO 2 nanoflakes catalyst was prepared. → The variety and relative amount of Ag species in TiO 2 can be well tuned. → The enhanced photocatalytic activity can be attributed to the Ag species. - Abstract: Ag species/TiO 2 nanoflakes photocatalysts with different relative contents (Ag + , Ag 2+ , Ag 0 ) have been successfully synthesized by a simple template-free synthetic strategy. X-ray photoelectron spectroscopy, X-ray diffraction, and UV-vis diffuse reflectance spectra indicated that the dopant ions (Ag + or Ag 2+ ) were partly incorporated into the titanium dioxide nanoflakes. Meanwhile, part of the silver ions migrated to the surface after the subsequent calcination and aggregated into ultra-small metallic Ag nanoclusters (NCs) (1-2 nm), which are well dispersed on the surface of TiO 2 nanoflakes. The photocatalytic activities of the Ag species/TiO 2 materials obtained were evaluated by testing the photodegradation of the azo dye reactive brilliant X-3B (X-3B) under near UV irradiation. Interestingly, it was found that the maximum photocatalytic efficiency was observed when Ag species coexisted in three valence states (Ag + , Ag 2+ , Ag 0 NCs), which was higher than that of Degussa P25. The high photocatalytic activity of the Ag species/TiO 2 can be attributed to the synergy effect of the three Ag species.

  14. Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.; Wheeler, Lance M.; Anderson, Nicholas C.

    2017-01-01

    The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1 H– 29 Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1 H– 29 Si HETCOR and dipolar 2D 1 H– 1 H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Instead the 2D NMR spectra illustrate that there is large distribution of 1 H and 29 Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1 H– 29 Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29 Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3 ), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1 H and 29 Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.

  15. Unsaturated phosphatidylcholines lining on the surface of cartilage and its possible physiological roles

    Directory of Open Access Journals (Sweden)

    Crawford Ross W

    2007-08-01

    Full Text Available Abstract Background Evidence has strongly indicated that surface-active phospholipid (SAPL, or surfactant, lines the surface of cartilage and serves as a lubricating agent. Previous clinical study showed that a saturated phosphatidylcholine (SPC, dipalmitoyl-phosphatidylcholine (DPPC, was effective in the treatment of osteoarthritis, however recent studies suggested that the dominant SAPL species at some sites outside the lung are not SPC, rather, are unsaturated phosphatidylcholine (USPC. Some of these USPC have been proven to be good boundary lubricants by our previous study, implicating their possible important physiological roles in joint if their existence can be confirmed. So far, no study has been conducted to identify the whole molecule species of different phosphatidylcholine (PC classes on the surface of cartilage. In this study we identified the dominant PC molecule species on the surface of cartilage. We also confirmed that some of these PC species possess a property of semipermeability. Methods HPLC was used to analyse the PC profile of bovine cartilage samples and comparisons of DPPC and USPC were carried out through semipermeability tests. Results It was confirmed that USPC are the dominant SAPL species on the surface of cartilage. In particular, they are Dilinoleoyl-phosphatidylcholine (DLPC, Palmitoyl-linoleoyl-phosphatidylcholine, (PLPC, Palmitoyl-oleoyl-phosphatidylcholine (POPC and Stearoyl-linoleoyl-phosphatidylcholine (SLPC. The relative content of DPPC (a SPC was only 8%. Two USPC, PLPC and POPC, were capable of generating osmotic pressure that is equivalent to that by DPPC. Conclusion The results from the current study confirm vigorously that USPC is the endogenous species inside the joint as against DPPC thereby confirming once again that USPC, and not SPC, characterizes the PC species distribution at non-lung sites of the body. USPC not only has better anti-friction and lubrication properties than DPPC, they also

  16. Chlorodiethylaluminum supported on silica: A dinuclear aluminum surface species with bridging μ2-Cl-ligand as a highly efficient co-catalyst for the Ni-catalyzed dimerization of ethene

    KAUST Repository

    Kermagoret, Anthony

    2014-05-01

    Silica-supported chloro alkyl aluminum co-catalysts (DEAC@support) were prepared via Surface Organometallic Chemistry by contacting diethylaluminum chloride (DEAC) and high specific surface silica materials, i.e. SBA-15, MCM-41, and Aerosil SiO2. Such systems efficiently activate NiCl 2(PBu3)2 for catalytic ethene dimerization, with turnover frequency (TOF) reaching up to 498,000 molC2H4/ (molNi h) for DEAC@MCM-41. A detailed analysis of the DEAC@SBA-15 co-catalyst structure by solid-state aluminum-27 NMR at high-field (17.6 T and 20.0 T) and ultrafast spinning rates allows to detect six sites, characterized by a distribution of quadrupolar interaction principal values CQ and isotropic chemical shifts δiso. Identification of the corresponding Al-grafted structures was possible by comparison of the experimental NMR signatures with these calculated by DFT on a wide range of models for the aluminum species (mono- versus di-nuclear, mono- versus bis-grafted with bridging Cl or ethyl). Most of the sites were identified as dinuclear species with retention of the structure of DEAC, namely with the presence of μ2-Cl-ligands between two aluminum, and this probably explains the high catalytic performance of this silica-supported co-catalysts. © 2014 Elsevier Inc. All rights reserved.

  17. Laser spectroscopy and photochemistry on metal surfaces, pt.2

    CERN Document Server

    Dai, HL

    1995-01-01

    Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on sp

  18. Laser spectroscopy and photochemistry on metal surfaces, pt.1

    CERN Document Server

    Dai, HL

    1995-01-01

    Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on sp

  19. Seasonal Variations in Surface Metabolite Composition of Fucus vesiculosus and Fucus serratus from the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Esther Rickert

    Full Text Available Perennial macroalgae within the genus Fucus are known to exude metabolites through their outer thallus surface. Some of these metabolites have pro- and/or antifouling properties. Seasonal fluctuations of natural fouling pressure and chemical fouling control strength against micro- and macrofoulers have previously been observed in Fucus, suggesting that control strength varies with threat. To date, a study on the seasonal composition of surface associated metabolites, responsible for much of the fouling control, has not been done. We sampled individuals of the two co-occurring species F. vesiculosus and F. serratus at monthly intervals (six per species and month during a one-year field study. We analysed the chemical composition of surface associated metabolites of both Fucus species by means of gas chromatography-mass spectrometry (GC-MS to describe temporal patterns in chemical surface composition. Additionally, we correlated abiotic and biotic parameters recorded monthly within the sampled habitat with the variation in the chemical surface landscape of Fucus. Our study revealed that the chemical surface composition of both Fucus species exhibits substantial seasonal differences between spring/summer and autumn/winter months. Light and temperature explained most of the seasonal variability in surface metabolite composition of both Fucus species. A strong summerly up-regulation of eighteen saccharides and two hydroxy acids in F. vesiculosus as well as of four fatty acids and two saccharides in F. serratus was observed. We discuss how these up-regulated molecules may have a complex effect on associated microfoulers, both promoting or decreasing fouling depending on metabolite and bacterial identity. These seasonal shifts in the surface metabolome seem to exert a compound control of density and composition of the Fucus associated biofilm.

  20. Characterisation of surface antigens of Strongylus vulgaris of potential immunodiagnostic importance.

    Science.gov (United States)

    Nichol, C; Masterson, W J

    1987-08-01

    When antigens prepared by detergent washes of Strongylus vulgaris and Parascaris equorum were probed in an enzyme-linked immunosorbent assay test with horse sera from single species infections of S. vulgaris and P. equorum, a high degree of cross-reaction between the species was demonstrated. Western blot analysis of four common horse nematode species showed a large number of common antigens when probed with horse infection sera. Antisera raised in rabbits against the four species, including S. vulgaris, were also found to cross-react considerably. Rabbit anti-S. vulgaris sera were affinity adsorbed over a series of affinity chromatography columns, bound with cross-reactive surface antigens, to obtain S. vulgaris-specific antisera and thereby identify S. vulgaris-specific antigens by Western blotting. These studies revealed potentially specific antigens of apparent molecular weights of 100,000, 52,000, and 36,000. Of these bands, only the 52 kDa and 36 kDa appeared to be found on the surface as judged by 125I-labelling of intact worms by the Iodogen method, although neither protein was immunoprecipitated by horse infection sera. Finally, immunoprecipitation of in vitro translated proteins derived from larval S. vulgaris RNA suggests that two proteins may be parasite-derived. These findings are discussed both with respect to the surface of S. vulgaris and to the use of these species-specific antigens in immunodiagnosis.

  1. Catalyst surface characterized by high magnetic field NMR; Kojiba NMR ni yoru shokubai hyomen no kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S. [Chiba University, Chiba (Japan). Faculty of Engineering

    1997-08-01

    This paper introduces studies performed by the authors on observation of surface of solid catalysts by means of solid NMR measurement using the high-speed MAS technology which uses a high magnetic field device. In the studies, a device with 14.1T (resonant frequency of proton at 600 MHz) was used to conduct CP-MAS NMR measurement on {sup 29}Si to identify bonding of silica carrier in a fixed aluminum chloride catalyst. As a result, it was verified that the surface structure of aluminum chloride species deposited on the silica carrier turns to a structure in which AlCl2 species of a monomeric substance is bonded with a surface hydroxyl group and fixed in four- or five-orientation. When adjusted at low temperatures, an Al2Cl5 structure is formed, which is fixed as a dimeric substance with AlCl3 oriented in the AlCl2 species. It is conceived that the Al2Cl5 species has higher electrophilicity than the AlCl2 species as a result of AlCl3 oriented in AlCl2, whereas the hydroxyl group on the silica surface oriented with the Al2Cl5 species dissociates, discharging protons, thus showing strong acidity. 18 refs., 8 figs., 2 tabs.

  2. Palynological study of some species in Grumorsae group of the genus Ranunculus in Iran

    Directory of Open Access Journals (Sweden)

    Maneezheh Pakravan

    2014-12-01

    Full Text Available In this research, pollen grains of some species of Grumorsae group of Ranunculus were studied. In doing so, pollen grains of 13 species were studied by light microscope and the surface of nine pollen grains has studied by Scanning Electron Microscope. Among these species, in addition to previous pollen types in the genus Ranunculus, a new type (Thalictrum flavum L. was reported. Finally, we could distinguish the species based on pollen grains characters and prepare an identification key.

  3. Morphofunctional structure of the lingual papillae in three species of South American Camelids: Alpaca, guanaco, and llama.

    Science.gov (United States)

    Erdoğan, Serkan; Villar Arias, Silvia; Pérez, William

    2016-02-01

    The aim of this study was to compare the anatomical and functional characteristics of the lingual papilla among the Camelidae. For this purpose, tongues of alpaca, guanaco, and llama were used. Numerous long and thin filiform papillae were located in the median groove and none were detected on the rest of the dorsal surface of the lingual apex in alpaca. Secondary papillae originated from the base of some filiform papillae on the ventral surface of alpaca tongue. The bases of some filiform papillae of the lateral surface of the lingual apex were inserted into conspicuous grooves in guanaco and tips of filiform papillae on the dorsal surface of the lingual body were ended by bifurcated apex. On the dorsal surface of the lingual apex of llama, there were no filiform papillae but there were numerous filiform papillae on both the lateral margins of the ventral surface of the lingual apex. Fungiform papillae were distributed randomly on dorsal lingual surface and ventral margins of the tongues of all camelid species. Lenticular papillae were located on the lingual torus and varied in size and topographical distribution for each species. Circumvallate papillae had irregular surfaces in llama and alpaca, and smooth surface in guanaco. In conclusion, llama and alpaca tongues were more similar to each other, and tongues of all camelid species displayed more similarities to those of Bactrian and dromedary camels in comparison with other herbivores and ruminants. © 2015 Wiley Periodicals, Inc.

  4. LEAF RESIDUE DECOMPOSITION OF SELECTED ATLANTIC FOREST TREE SPECIES

    Directory of Open Access Journals (Sweden)

    Helga Dias Arato

    2018-02-01

    Full Text Available ABSTRACT Biogeochemical cycling is essential to establish and maintain plant and animal communities. Litter is one of main compartments of this cycle, and the kinetics of leaf decomposition in forest litter depend on the chemical composition and environmental conditions. This study evaluated the effect of leaf composition and environmental conditions on leaf decomposition of native Atlantic Forest trees. The following species were analyzed: Mabea fistulifera Mart., Bauhinia forficata Link., Aegiphila sellowiana Cham., Zeyheria tuberculosa (Vell, Luehea grandiflora Mart. et. Zucc., Croton floribundus Spreng., Trema micrantha (L Blume, Cassia ferruginea (Schrad Schrad ex DC, Senna macranthera (DC ex Collad. H. S. Irwin and Barney and Schinus terebinthifolius Raddi (Anacardiaceae. For each species, litter bags were distributed on and fixed to the soil surface of soil-filled pots (in a greenhouse, or directly to the surface of the same soil type in a natural forest (field. Every 30 days, the dry weight and soil basal respiration in both environments were determined. The cumulative decomposition of leaves varied according to the species, leaf nutrient content and environment. In general, the decomposition rate was lowest for Aegiphila sellowiana and fastest for Bauhinia forficate and Schinus terebinthifolius. This trend was similar under the controlled conditions of a greenhouse and in the field. The selection of species with a differentiated decomposition pattern, suited for different stages of the recovery process, can help improve soil restoration.

  5. Short Communication: Conductivity as an indicator of surface water ...

    African Journals Online (AJOL)

    Various water- soluble species are present in FeCr waste materials and in process water. Considering the size of the South African FeCr industry and its global importance, it is essential to assess the extent of potential surface water pollution in the proximity of FeCr smelters by such watersoluble species. In this study water ...

  6. Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals

    Directory of Open Access Journals (Sweden)

    Soheila Abachi

    2016-02-01

    Full Text Available This review paper summarizes the antibacterial effects of phytochemicals of various medicinal plants against pathogenic and cariogenic streptococcal species. The information suggests that these phytochemicals have potential as alternatives to the classical antibiotics currently used for the treatment of streptococcal infections. The phytochemicals demonstrate direct bactericidal or bacteriostatic effects, such as: (i prevention of bacterial adherence to mucosal surfaces of the pharynx, skin, and teeth surface; (ii inhibition of glycolytic enzymes and pH drop; (iii reduction of biofilm and plaque formation; and (iv cell surface hydrophobicity. Collectively, findings from numerous studies suggest that phytochemicals could be used as drugs for elimination of infections with minimal side effects.

  7. Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area.

    Science.gov (United States)

    Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi

    2017-09-04

    About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m 2  g -1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mine spoil prairies expand critical habitat for endangered and threatened amphibian and reptile species

    Science.gov (United States)

    Lannoo, Michael J.; Kinney, Vanessa C.; Heemeyer, Jennifer L.; Engbrecht, Nathan J.; Gallant, Alisa L.; Klaver, Robert W.

    2009-01-01

    Coal extraction has been occurring in the Midwestern United States for over a century. Despite the pre-mining history of the landscape as woodlands, spent surface coalfields are often reclaimed to grasslands. We assessed amphibian and reptile species on a large tract of coal spoil prairie and found 13 species of amphibians (nine frog and four salamander species) and 19 species of reptiles (one lizard, five turtle, and 13 snake species). Two state-endangered and three state species of special concern were documented. The amphibian diversity at our study site was comparable to the diversity found at a large restored prairie situated 175 km north, within the historic prairie peninsula.

  9. Rotavirus in various animal species in Ouagadougou, Burkina Faso ...

    African Journals Online (AJOL)

    SARAH

    2016-07-31

    Jul 31, 2016 ... various healthy animals in Ouagadougou, Burkina Faso. Methodology and results: A total of 618 faeces samples from various animal species with .... Young and adult dog faeces were ... laboratory, where samples were processed for cloacal .... of virus propagation such as contaminated surface, foods.

  10. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments.

    Science.gov (United States)

    Marques, Joana; Gonçalves, João; Oliveira, Cláudia; Favero-Longo, Sergio E; Paz-Bermúdez, Graciela; Almeida, Rubim; Prieto, Beatriz

    2016-10-01

    Contradictory evidence from biogeomorphological studies has increased the debate on the extent of lichen contribution to differential rock surface weathering in both natural and cultural settings. This study, undertaken in Côa Valley Archaeological Park, aimed at evaluating the effect of rock surface orientation on the weathering ability of dominant lichens. Hyphal penetration and oxalate formation at the lichen-rock interface were evaluated as proxies of physical and chemical weathering, respectively. A new protocol of pixel-based supervised image classification for the analysis of periodic acid-Schiff stained cross-sections of colonized schist revealed that hyphal spread of individual species was not influenced by surface orientation. However, hyphal spread was significantly higher in species dominant on northwest facing surfaces. An apparently opposite effect was noticed in terms of calcium oxalate accumulation at the lichen-rock interface; it was detected by Raman spectroscopy and complementary X-ray microdiffraction on southeast facing surfaces only. These results suggest that lichen-induced physical weathering may be most severe on northwest facing surfaces by means of an indirect effect of surface orientation on species abundance, and thus dependent on the species, whereas lichen-induced chemical weathering is apparently higher on southeast facing surfaces and dependent on micro-environmental conditions, giving only weak support to the hypothesis that lichens are responsible for the currently observed pattern of rock-art distribution in Côa Valley. Assumptions about the drivers of open-air rock-art distribution patterns elsewhere should also consider the micro-environmental controls of lichen-induced weathering, to avoid biased measures of lichen contribution to rock-art deterioration. © 2016 by the Ecological Society of America.

  11. Annual atmospheric mercury species in downtown Toronto, Canada.

    Science.gov (United States)

    Song, Xinjie; Cheng, Irene; Lu, Julia

    2009-03-01

    Real-time concentrations of atmospheric gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and mercury associated with particles having sizes RGM were 4.5 +/- 3.1 ng m(-3) (99.2%), 21.5 +/- 16.4 pg m(-3) (0.5%) and 14.2 +/- 13.2 pg m(-3) (0.3%), respectively. The concentrations for all the measured Hg species were highly variable throughout the year and were lower in winter than in the other three seasons. The maximum concentrations of Hg species were observed in June and were a result of the high number of Hg spikes (using [GEM] >10 ng m(-3) as an indicator) that occurred in the month. Nighttime (between 9pm-6am) concentrations of Hg species were higher than those of daytime. The results revealed: (1) an urban area is a continuous source of Hg species that have the potential to pose impacts on local, regional and global scales; (2) local/regional anthropogenic sources contributed significantly to the levels and the distributions of the Hg species in the urban atmosphere. More studies are needed to identify and quantify the anthropogenic sources of Hg and the Hg species emitted from these sources; (3) surface emission and photochemical reactions (including the reactions involving ozone) did not have significant influence on the levels of Hg species and their distribution in the urban atmosphere.

  12. A time effect in the early stages of a surface oxidation of a Pt(111 plane in alkaline solution

    Directory of Open Access Journals (Sweden)

    J. D. LOVIC

    2001-12-01

    Full Text Available A time effect in the early stages of surface oxidation of a Pt(111 plane in 0.1 M NaOH solution was studied by examining the reduction parts of the j/E profile recorded after holding the potential for various times at several values at the end of anodic-going sweeps. The processes associated with the two peaks, which appear in the anodic part of the voltammogram, are assigned to the early stages of a surface oxidation. Two OHad states are suggested based on the existence of reversibly or weakly bound OHad species and irreversibly or strongly bound OHad species. The reversibly bound OHad species are involved in the “normal” structure of the butterfly peak, while the irreversibly adsorbed OHad species can be obtained only by the slow diffusion of a part of the initially electrosorbed OH species from sites with low to sites with higher binding energies. The irreversibly reduced OHad species cannot be completely removed from the surface causing, therefore, some permanent transformation of the initial state of the surface. This kind of species was not detected in the area of the second oxidation peak. The phenomena observed in the reduction part of the j/E profile induced by a time effect in the second peak could be associated with a place-exchange mechanism between oxygen containing species, whatever they are, and the platinum surface.

  13. Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: hematite.

    Science.gov (United States)

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2013-05-14

    A better understanding of interaction with dissolved CO2 is required to rationally design and model the (photo)catalytic and sorption processes on metal (hydr)oxide nanoparticles (NPs) in aqueous media. Using in situ FTIR spectroscopy, we address this problem for rhombohedral 38 nm hematite (α-Fe2O3) nanoparticles as a model. We not only resolve the structures of the adsorbed carbonate species, but also specify their adsorption sites and their location on the nanoparticle surface. The spectral relationships obtained present a basis for a new method of characterizing the microscopic structural and acid-base properties (related to individual adsorption sites) of hydrated metal (hydr)oxide NPs using atmospherically derived CO2 as a probe. Specifically, we distinguish two carbonate species suggesting two principally different adsorption mechanisms. One species, which is more weakly adsorbed, has an inner-sphere mononuclear monodentate structure which is formed by a conventional ligand-exchange mechanism. At natural levels of dissolved carbonate and pH from 3 to 11, this species is attached to the most acidic/reactive surface cations (surface states) associated with ferrihydrite-like surface defects. The second species, which is more strongly adsorbed, presents a mixed C and O coordination of bent CO2. This species uniquely recognizes the stoichiometric rhombohedral {104} facets in the NP texture. Like in gas phase, it is formed through the surface coordination of molecular CO2. We address how the adsorption sites hosting these two carbonate species are affected by the annealing and acid etching of the NPs. These results support the nanosize-induced phase transformation of hematite towards ferrihydrite under hydrous conditions, and additionally show that the process starts from the roughened areas of the facet intersections.

  14. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites.

    Science.gov (United States)

    Sun, Jingzu; Pei, Yunfei; Li, Erwei; Li, Wei; Hyde, Kevin D; Yin, Wen-Bing; Liu, Xingzhong

    2016-11-21

    Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature.

  15. Acclimation responses to temperature vary with vertical stratification: implications for vulnerability of soil-dwelling species to extreme temperature events.

    Science.gov (United States)

    van Dooremalen, Coby; Berg, Matty P; Ellers, Jacintha

    2013-03-01

    The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent exposure to extreme temperatures for surface-dwelling species than for soil-dwelling species. Therefore soil-dwelling species are expected to have poor acclimation responses to cope with temperature changes. We used five species of surface-dwelling and four species of soil-dwelling Collembola that habituate different depths in the soil. We tested for differences in tolerance to extreme temperatures after acclimation to warm and cold conditions. We also tested for differences in acclimation of the underlying physiology by looking at changes in membrane lipid composition. Chill coma recovery time, heat knockdown time and fatty acid profiles were determined after 1 week of acclimation to either 5 or 20 °C. Our results showed that surface-dwelling Collembola better maintained increased heat tolerance across acclimation temperatures, but no such response was found for cold tolerance. Concordantly, four of the five surface-dwelling Collembola showed up to fourfold changes in relative abundance of fatty acids after 1 week of acclimation, whereas none of the soil-dwelling species showed a significant adjustment in fatty acid composition. Strong physiological responses to temperature fluctuations may have become redundant in soil-dwelling species due to the relative thermal stability of their subterranean habitat. Based on the results of the four species studied, we expect that unless soil-dwelling species can temporarily retreat to avoid extreme temperatures, the predicted increase in heat waves under climatic change renders these soil-dwelling species more vulnerable to extinction than species with better physiological capabilities. Being able to act under a larger thermal

  16. Reactions and reaction intermediates on iron surfaces--1. Methanol, ethanol, and isopropanol on Fe(100). 2. Hydrocarbons and carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, J.B.; Madix, R.J.

    1980-09-01

    Temperature-programed desorption and ESCA showed that the alcohols formed alkoxy intermediates on Fe(100) surfaces at room temperature, but that the methoxy and ethoxy species were much more stable than the isopropoxy intermediate. The alkoxy species reacted above 400/sup 0/K by decomposing into carbon monoxide and hydrogen, hydrogenation to alcohol, and scission of C-C and C-O bonds with hydrogenation of the hydrocarbon fragments. Ethylene, acetylene, and cis-2-butene formed stable, unidentified surface species. Methyl chloride formed stable surface methyl groups which decomposed into hydrogen and surface carbide at 475/sup 0/K. Formic and acetic acids yielded stable carboxylate intermediates which decomposed above 490/sup 0/K to hydrogen, carbon monoxide, and carbon dioxide. The studies suggested that the alkoxy surface species may be important intermediates in the Fischer-Tropsch reaction on iron.

  17. Incidence, adherence, and antibiotic resistance of coagulase-negative Staphylococcus species causing human disease.

    Science.gov (United States)

    Needham, C A; Stempsey, W

    1984-09-01

    Fifty-two isolates of coagulase-negative Staphylococcus species recovered from the blood or intravenous catheters of patients with clinically significant disease were compared to 60 similar isolates from patients who were presumably colonized. All isolates were identified and evaluated for ability to adhere to smooth surfaces, and resistance to anti-staphylococcal penicillins. S. epidermidis, S. hominis, and S. haemolyticus were the most frequently occurring species, representing 65%, 15%, and 10%, respectively, of disease isolates and 57%, 25%, and 8% of colonizers. The seven other species recovered accounted for only 10% of the total in both groups. Differences in isolation rates of each species within the two groups were not significant and were reflective of their reported incidence in the normal flora. All species of coagulase-negative Staphylococcus (except S. capitis and S. cohnii, which were isolated in very small numbers) were capable of adhering to smooth surfaces. S. hominis disease isolates were all capable of adherence, and the difference between the disease isolates and colonizers was statistically significant (p less than 0.02). This was not true for any other species that was analyzed nor for all isolates considered as a whole. Resistance to anti-staphylococcal penicillins was documented for all coagulase-negative Staphylococcus species, and was more frequent in S. epidermidis disease isolates than colonizers (p less than 0.05). No correlation was found between resistance to antistaphylococcal penicillins and ability to adhere.

  18. Geographic and species association of hepatitis B virus genotypes in non-human primates

    International Nuclear Information System (INIS)

    Starkman, S.E.; MacDonald, D.M.; Lewis, J.C.M.; Holmes, E.C.; Simmonds, P.

    2003-01-01

    Infection with hepatitis B virus (HBV) has been detected in human populations throughout the world, as well as in a number of ape species (Pan troglodytes, Gorilla gorilla, gibbons [Nomascus and Hylobates species] and Pongo pygmaeus). To investigate the distribution of naturally occurring HBV infection in these species and other African Old World monkey species (Cercopithecidae), we screened 137 plasma samples from mainly wild caught animals by polymerase chain reaction (PCR) using several of highly conserved primers from the HB surface (HBs) gene, and for HBs antigen (HBsAg) by ELISA. None of the 93 Cercopithecidae screened (6 species) showed PCR or serology evidence for HBV infection; in contrast 2 from 8 chimpanzees and 5 from 22 gibbons were PCR-positive with each set of primers. Complete genome sequences from each of the positive apes were obtained and compared with all previously published complete and surface gene sequences. This extended phylogenetic analysis indicated that HBV variants from orangutans were interspersed by with HBV variants from southerly distributed gibbon species (H. agilis and H. moloch) occupying overlapping or adjacent habitat ranges with orangutans; in contrast, HBV variants from gibbon species in mainland Asia were phylogenetically distinct. A geographical rather than (sub)species association of HBV would account for the distribution of HBV variants in different subspecies of chimpanzees in Africa, and explain the inlier position of the previously described lowland gorilla sequence in the chimpanzee clade. These new findings have a number of implication for understanding the origins and epidemiology of HBV infection in non-human primates

  19. The Ultrastructure Of Pollinia Of Ten Species Of Orchid In Substribe Aeridinae (ORCHIDACEAE)

    International Nuclear Information System (INIS)

    Sulistyono; Purbaningsih, Susiani; Pujoarianto, Agus

    2000-01-01

    Orchid taxonimy lags several decades behind the taxonomy of most other large interisting groups of plants. New methods and techiniques, like scanning and transmission electron microscope are rarely applied in orchid's taxonomy. It would be most benefical to orchid taxonomy if a better understanding of the pollinia could be obtained. The main purpose of this research is to study the ultrastructure pollinia of ten species of Aeridinae (Orchidaceae). The scanning electron microscope (SEM) has been used to study the pollinia of ten species of orchids in the substribe Aeridina. This work shows that the ultrastructure of the pollinias are different. Regarding at the number and the surface of pollinia in one flowe, the ten species of Aeridinae can be devided mto three main group: (1) the first group is the flowe with two pollinia with it surface porate : Ascocentrum miniatum; (2) the second group has the same number of pollinia, but with surface cleft : Phalaenopsis. Ph. amboinensis, Ph.cornu-cervi, Ph. Fuscata, Ph. Venosa, Rhychostylis retusa, Vanda limbota, and Vanda insignis: and the third (3)is the flower with four pollinia, unequel : Kingidium deliciosum

  20. Gas-surface interactions and heterogeneous chemistry on interstellar grains analogues

    Directory of Open Access Journals (Sweden)

    Cazaux S.

    2012-01-01

    Full Text Available Detailed laboratory studies and progress in surface science technique, have allowed in recent years the first experimental confirmation of surface reaction schemes, as introduced by Tielens, Hagen and Charnley [1,2]. In this paper, we review few heterogeneous processes which give routes to form elementary molecules considered as precursors for explaining the variety and richness of molecular species in the interstellar medium. Adsorption, diffusion and reaction processes are discussed. With emphasis on the experimental approaches, but also supported by theoretical developments, progresses in the understanding of the “catalytic role” of a dust grain surface in various physical conditions are described. Recent advances made on few important species (H2, H2O, CH3OH are used to illustrate basic properties and raise open questions.

  1. Method and Apparatus for Creating a Topography at a Surface

    Science.gov (United States)

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  2. A new species of Melanophryniscus (Anura, Bufonidae from the Campos Gerais region of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Giovanna C. Steinbach-Padilha

    2008-12-01

    Full Text Available A new species of Melanophryniscus is described from the Parque Estadual de Vila Velha, municipality of Ponta Grossa, Paraná State,Southern Brazil. The Parque Estadual de Vila Velha is located in the Campos Gerais region, an environment dominated by natural grasslands with patches of Araucaria Forest. The new species is distinguished from all congeners by its small size (12.8-14.0 mm snout-vent length in adult males and unique color pattern of copper brown dorsum covered with small spinulose black warts; ventral surface black finely spotted with white, posterior abdomen and ventral surfaces of the forearm, hand and foot with red stains. The new species is nocturnal and breeds in the water accumulated in the leaf-axils of phytotelmata.

  3. A new species of Pristimantis (Anura, Craugastoridae) from the Cajas Massif, southern Ecuador

    Science.gov (United States)

    Sánchez-Nivicela, Juan C.; Celi-Piedra, Elvis; Posse-Sarmiento, Valentina; Urgiles, Verónica L.; Yánez-Muñoz, Mario; Cisneros-Heredia, Diego F.

    2018-01-01

    Abstract A new species of Pristimantis is described from the highland paramos on the eastern slopes of the Cajas Massif, southern Andes of Ecuador, at 3400 m. This new species is characterized by having a distinctive reddish color, cutaneous macroglands in suprascapular region and surfaces of arm and legs, and by lacking dentigerous processes of vomers. The cutaneous macroglands are similar to those exhibited by several species of the Pristimantis orcesi group, and may suggest a close phylogenetic relationship. The new species could be a latitudinal substitution of Pristimantis orcesi in the southern Andes of Ecuador. PMID:29713233

  4. Initial oxidation of silver surfaces by S2-and S4+ species

    International Nuclear Information System (INIS)

    Kleber, Ch.; Wiesinger, R.; Schnoeller, J.; Hilfrich, U.; Hutter, H.; Schreiner, M.

    2008-01-01

    Silver has been exposed to each of the sulphurous gases under the influence of different humidity contents in the ambient atmosphere and in the presence and absence of aerial oxygen. The samples were investigated by means of in situ quartz crystal microbalance (QCM), tapping-mode atomic force microscopy (TM-AFM) and time of flight secondary ion mass spectrometry (TOF-SIMS) which enables to characterize the corrosion layer formed, the morphology and the chemical structure of the weathered surfaces. The investigations revealed that sulfidation by both gases is strongly dependent on the relative humidity (% RH) content and the aerial oxygen content in the ambient atmosphere. The results obtained are used to suggest new mechanisms for the sulfidation of silver surfaces exposed to humidified atmospheres with addition of SO 2 and H 2 S, respectively

  5. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Adem [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Sohrabnia, Nima [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Yilmaz, Ayşen [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2017-08-15

    Highlights: • M1 binds to the gold surface preferentially when co-deposited with M9 or O1. • Contact angles show similar trends regardless of the gold substrate roughness. • Contact angles were lower, with higher hysteresis, on template stripped gold. • Mixed carboranethiol SAMs have similar morphological properties regardless of mixing ratio. - Abstract: Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  6. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    Science.gov (United States)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment

  7. Bacteria contamination of touch surfaces in Polish hospital wards

    Directory of Open Access Journals (Sweden)

    Anna Różańska

    2017-08-01

    Full Text Available Background: The objective of the study has been to evaluate the pathogenic bacteria contamination of touch surfaces in hospital wards. Material and Methods: Samples were taken from frequently touched surfaces in the hospital environment in 13 units of various types. Culturing was carried out on solid blood agar and in growth broth (tryptic soy broth – TSB. Species identification was performed using the analytical profile index (API biochemical testing and confirmed with matrix assisted laser desorption ionization time-flight mass spectrometry (MALDI-TOF-MS system. Results: The total of 161 samples were taken for the study. Fifty-two of them, after 24 h of culture on a solid medium, demonstrated bacterial growth and further 60 samples had growth after prior multiplication in TSB. Overall, 69.6% of samples exhibited growth of 19 bacterial species. Pathogenic species – representing indicator organisms of efficiency of hospital cleaning – was demonstrated by 21.4% of samples. Among them Acinetobacter spp., Enterocococci spp. and Staphylococcus aureus were identified. Coagulase-negative staphylococci (CNS were predominant. The proportion of various groups of bacteria significantly varied in respective hospitals, and in various types of wards. Disturbing observation is a large proportion of resistance of isolated CNS strains as a potential reservoir of resistance genes. Conclusions: The results show that touch surfaces in hospital units are contaminated by both potentially pathogenic and pathogenic bacterial species. In connection with the reported, also in Poland, frequent omission or incorrect execution of hand hygiene by hospital staff, and probably patients, touch surfaces still constitute important reservoir of pathogenic bacteria. Improving hand hygiene compliance of health-care workers with recommendations is necessary for increasing biological safety of hospital environment. Med Pr 2017;68(3:459–467

  8. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales)

    DEFF Research Database (Denmark)

    Bensch, K.; Groenewald, J.Z.; Dijksterhuis, J.

    2010-01-01

    of this species. Cladosporium tenuissimum and C. oxysporum, two saprobes abundant in the tropics, are epitypified and shown to be allied to, but distinct from C. cladosporioides. Twenty-two species are newly described on the basis of phylogenetic characters and cryptic morphological differences. The most...... important phenotypic characters for distinguishing species within the C. cladosporioides complex, which represents a monophyletic subclade within the genus, are shape, width, length, septation and surface ornamentation of conidia and conidiophores; length and branching patterns of conidial chains and hyphal...... shape, width and arrangement. Many of the treated species, e.g., C. acalyphae, C. angustisporum, C. australiense, C. basiinflatum, C. chalastosporoides, C. colocasiae, C. cucumerinum, C. exasperatum, C. exile, C. flabelliforme, C. gamsianum, and C. globisporum are currently known only from specific...

  9. Woody vegetation and succession on the Fonde surface mine demonstration area, Bell County, Kentucky

    International Nuclear Information System (INIS)

    Wade, G.L.; Thompson, R.L.

    1999-01-01

    The long term impact of surface mining on vegetation and plant succession has always been of concern to environmentalists and residents of Appalachia. The Fonde Surface Mine Demonstration Area is a 7.3-ha, NE-NW-aspect contour coal mine at an elevation of 562 m. It was reclaimed in 1965 to show state-of-the-art surface mine reclamation techniques consistent with then-current law and regulations after coal mining in 1959 and 1963. The mine spoils were lightly graded to control erosion and crates a bench with water control and two sediment ponds. Soil pH ranged from 2.8 to 5.9. About 80 percent of the mine was planted with 18 tree and shrub species including plantations of mixed pine, mixed hardwoods, black locust, and shrubs for wildlife. In a complete floristic inventory conducted 25 years later, the authors found the woody flora consisted of 34 families, 53 genera, and 70 species including 7 exotics. This inventory of the Fonde mine shows that a diverse forest vegetation can be reestablished after extreme disturbances in Appalachia. Black locust, yellow poplar, and Virginia pine reproduction varied significantly among plantation types. Canopy tree species significantly affected ground layer cover, total species richness, number of tree seedling species, and total number of tree seedlings present. Mine soil type affected ground layer percent cover and total species richness. Pre-SMCRA (Surface Mining Control and Reclamation Act of 1977) reclaimed and inventoried mines can be used to evaluate biodiversity on post-SMCRA mines

  10. Woody vegetation and succession on the Fonde surface mine demonstration area, Bell County, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wade, G.L.; Thompson, R.L.

    1999-07-01

    The long term impact of surface mining on vegetation and plant succession has always been of concern to environmentalists and residents of Appalachia. The Fonde Surface Mine Demonstration Area is a 7.3-ha, NE-NW-aspect contour coal mine at an elevation of 562 m. It was reclaimed in 1965 to show state-of-the-art surface mine reclamation techniques consistent with then-current law and regulations after coal mining in 1959 and 1963. The mine spoils were lightly graded to control erosion and crates a bench with water control and two sediment ponds. Soil pH ranged from 2.8 to 5.9. About 80 percent of the mine was planted with 18 tree and shrub species including plantations of mixed pine, mixed hardwoods, black locust, and shrubs for wildlife. In a complete floristic inventory conducted 25 years later, the authors found the woody flora consisted of 34 families, 53 genera, and 70 species including 7 exotics. This inventory of the Fonde mine shows that a diverse forest vegetation can be reestablished after extreme disturbances in Appalachia. Black locust, yellow poplar, and Virginia pine reproduction varied significantly among plantation types. Canopy tree species significantly affected ground layer cover, total species richness, number of tree seedling species, and total number of tree seedlings present. Mine soil type affected ground layer percent cover and total species richness. Pre-SMCRA (Surface Mining Control and Reclamation Act of 1977) reclaimed and inventoried mines can be used to evaluate biodiversity on post-SMCRA mines.

  11. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  12. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  13. Surface migration in sorption processes

    International Nuclear Information System (INIS)

    Rasmuson, A.; Neretnieks, J.

    1983-03-01

    Diffusion rates of sorbing chemical species in granites and clays are in several experiments within the KBS study, higher than can be explained by pore diffusion only. One possible additional transport mechanism is transport of of sorbed molecules/ions along the intrapore surfaces. As a first step a literature investigation on on solid surfaces has been conducted. A lot of experimental evidence of the mobility of the sorbed molecules has been gathered through the years, particulary for metal surfaces and chemical engineering systems. For clays however, there are only a few articles, and for granites none. Two types of surface migration models have been proposed in the litterature: i) Surface flow as a result of a gradient in spreading pressure. ii) Surface diffusion as a result of a gradient in concentration. The surface flow model has only been applied to gaseous systems. However, it should be equally applicable to liquid systems. The models i) and ii) are conceptually very different. However, the resulting expressions for surface flux are complicated and it will not be an easy task to distinguish between them. There seem to be three ways of discriminating between the transport mechanisms: a) Temperature dependence. b) Concentration dependence. c) Order of magnitude. (Forf)

  14. Self-cleaning Foliar Surfaces Characterization using RIMAPS Technique and Variogram Method

    International Nuclear Information System (INIS)

    Rosi, Pablo E.

    2002-01-01

    Along the last ten years many important studies about characterization of self-cleaning foliar surfaces have been done and focused new interest on this kind of surfaces.These studies were possible due to the development of a novel preparation technique for this biological material that let us observe the delicate structures of a foliar surface under scanning electron microscope (S.E.M.).This technique consists of replacing the natural water of the specimen by glycerol. Digital S.E.M. images from both self-cleaning and non-self-cleaning foliar surfaces were obtained and analyzed using RIMAPS technique and Variograms method. Our results revealed the existence of a common and exclusive geometrical pattern that is found in species which present self-cleaning foliar surfaces.This pattern combines at least nine different directions.The results from the Variograms method showed that the stomata play a key role in the determination of foliar surface roughness. In addition, spectra from RIMAPS technique constitute a fingerprint of a foliar surface so they can be used to find evolutionary relationships among species.Further studies will provide more detailed information to fully elucidate the self-cleaning pattern, so it might be possible to reproduce it on an artificial surface and make it self-cleaning

  15. The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.

    2013-01-01

    Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824

  16. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  17. The hidden radiation chemistry in plasma modification and XPS analysis of polymer surfaces

    International Nuclear Information System (INIS)

    George, G.A.; Le, T.T.; Elms, F.M.; Wood, B.J.

    1996-01-01

    Full text: The surface modification of polymers using plasma treatments is being widely researched to achieve changes in the surface energetics and consequent wetting and reactivity for a range of applications. These include i) adhesion for polymer bonding and composite material fabrication and ii) biocompatibility of polymers when used as orthopedic implants, catheters and prosthetics. A low pressure rf plasma produces a variety of species from the introduced gas which may react with the surface of a hydrocarbon polymer, such as polyethylene. In the case of 0 2 and H 2 0, these species include oxygen atoms, singlet molecular oxygen and hydroxyl radicals, all of which may oxidise and, depending on their energy, ablate the polymer surface. In order to better understand the reactive species formed both in and downstream from a plasma and the relative contributions of oxidation and ablation, self-assembled monolayers of n-alkane thiols on gold are being used as well characterised substrates for quantitative X-ray photoelectron spectroscopy (XPS). The identification and quantification of oxidised carbon species on plasma treated polymers from broad, asymmetric XPS signals is difficult, so derivatisation is often used to enhance sensitivity and specificity. For example, trifluoroacetic anhydride (TFAA) selectively labels hydroxyl functionality. The surface analysis of a modified polymer surface may be confounded by high energy radiation chemistry which may occur during XPS analysis. Examples include scission of carbon-halogen bonds (as in TFM adducts), decarboxylation and main-chain polyene formation. The extent of free-radical chemistry occurring in polyethylene while undergoing XPS analysis may be seen by both ESR and FT-IR analysis

  18. Crustacean zooplankton species richness in Chilean lakes and ponds (23°-51°S

    Directory of Open Access Journals (Sweden)

    Patricio De los Ríos-Escalante

    2013-07-01

    Full Text Available Chilean inland-water ecosystems are characterized by their low species-level biodiversity. This study analyses available data on surface area, maximum depth, conductivity, chlorophyll-α concentration, and zooplankton crustacean species number in lakes and ponds between 23° and 51°S. The study uses multiple regression analysis to identify the potential factors affecting the species number. The partial correlation analysis indicated a direct significant correlation between chlorophyll-α concentration and species number, whereas the multiple regression analysis indicated a direct significant response of species number to latitude and chlorophyll-α concentration. These results agree with findings from comparable ecosystems in Argentina and New Zealand.

  19. Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci of samples of wastewater and surface water in Tunisia.

    Science.gov (United States)

    Ben Said, Leila; Klibi, Naouel; Lozano, Carmen; Dziri, Raoudha; Ben Slama, Karim; Boudabous, Abdellatif; Torres, Carmen

    2015-10-15

    One hundred-fourteen samples of wastewater (n=64) and surface-water (n=50) were inoculated in Slanetz-Bartley agar plates supplemented or not with gentamicin (SB-Gen and SB plates, respectively) for enterococci recovery. Enterococci were obtained from 75% of tested samples in SB media (72% in wastewater; 78% in surface-water), and 85 enterococcal isolates (one/positive-sample) were obtained. Enterococcus faecium was the most prevalent species (63.5%), followed by Enterococcus faecalis (20%), Enterococcus hirae (9.4%), Enterococcus casseliflavus (4.7%), and Enterococcus gallinarum/Enterococcus durans (2.4%). Antibiotic resistance detected among these enterococci was as follows [percentage/detected gene (number isolates)]: kanamycin [29%/aph(3')-IIIa (n=22)], streptomycin [8%/ant(6)-Ia (n=4)], erythromycin [44%/erm(B) (n=34)], tetracycline [18%/tet(M) (n=6)/tet(M)-tet(L) (n=9)], chloramphenicol [2%/cat(A) (n=1)], ciprofloxacin [7%] and trimethoprim-sulfamethoxazole [94%]. High-level-gentamicin resistant (HLR-G) enterococci were recovered from 15 samples in SB-Gen or SB plates [12/64 samples of wastewater (19%) and 3/50 samples of surface-water (6%)]; HLR-G isolates were identified as E. faecium (n=7), E. faecalis (n=6), and E. casseliflavus (n=2). These HLR-G enterococci carried the aac(6')-Ie-aph(2")-Ia and erm(B) genes, in addition to aph(3')-IIIa (n=10), ant(6)-Ia (n=9), tet(M) (n=13), tet(L) (n=8) and cat(A) genes (n=2). Three HLR-G enterococci carried the esp virulence gene. Sequence-types detected among HLR-G enterococci were as follows: E. faecalis (ST480, ST314, ST202, ST55, and the new ones ST531 and ST532) and E. faecium (ST327, ST12, ST296, and the new ones ST985 and ST986). Thirty-two different PFGE patterns were detected among 36 high-level-aminoglycoside-resistant enterococci recovered in water samples. Diverse genetic lineages of HLR-G enterococci were detected in wastewater and surface-water in Tunisia. Water can represent an important source for the

  20. Macromorphological and micromorphological studies of four selected passiflora species in peninsular malaysia

    International Nuclear Information System (INIS)

    Veeramohan, R.; Haron, N.W.

    2015-01-01

    Taxonomic studies of four selected Passiflora species; Passiflora edulis Sims (Passion fruit), Passiflora coccinea Aubl. (Scarlet passion flower), Passiflora foetida L. (Stinking passion flower) and Passiflora incarnata L. (Fragrant passion flower) were carried out to distinguish their morphological characteristics. Macromorphological characters on the leaves, flowers and fruits of all four Passiflora species were observed under a binocular microscope and they varied characteristically in terms of colour, texture and shape of flowers, leaves and fruits. Jeol JSM-7500F Scanning Electron Microscope was used to observe the micromorphological characters such as stomata, trichomes, and leaf surface indumentum of each Passiflora species. Micromorphologically, each species varied in types and sizes of stomata, epidermal. (author)

  1. Foliar injury responses of eleven plant species to ozone/sulfur dioxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, D T; Reinert, R A; Dunning, J A; Heck, W W

    1973-01-01

    Eleven plant species were exposed to ozone and/or sulfur dioxide to determine if a mixture of the two gases enhanced foliar injury. Tobacco, radish, and alfalfa developed more injury that the additive injury of the single gases. In other species, such as cabbage, broccoli, and tomato, the foliar injury from mixed-gas exposures was additive or less than additive. Leaf injury from the ozone/sulfur dioxide mixture appeared as upper surface flecking, stipple, bifacial necrosis, and lower surface glazing and, in general, appeared similar to injury from oxidant or ozone. The concentrations of ozone and sulfur dioxide that caused plant injury were similar to those found in urban areas. These concentrations may result in yield losses to plants grown under field conditions.

  2. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  3. Endangered Species and Irrigated Agriculture, Water Resource Competition in Western River Systems

    OpenAIRE

    United States Department of Agriculture, Economic Research Service

    1995-01-01

    This report characterizes several aspects of water allocation tradeoffs between fish species listed under the Federal Endangered Species Act and agriculture in the American West. The geographic intersection between endangered/threatened (E/T) fish and agricultural production reliant on surface water for irrigation is identified. Three findings are: (1) 235 counties, representing 22 percent of the West's counties, contain irrigated production that relies on water from rivers with E/T fish, ...

  4. Historical and projected interactions between climate change and insect voltinism in a multivoltine species

    Science.gov (United States)

    Patrick C. Tobin; Sudha Nagarkatti; Greg Loeb; Michael C. Saunders

    2008-01-01

    Climate change can cause major changes to the dynamics of individual species and to those communities in which they interact. One effect of increasing temperatures is on insect voltinism, with the logical assumption that increases in surface temperatures would permit multivoltine species to increase the number of generations per year. Though insect development is...

  5. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Priya Kalia

    Full Text Available Silicon (Si is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0-42 mM Si, at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface's water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and

  6. Application of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA on Testing for Surface-Coated Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    YounJung Jung

    2015-07-01

    Full Text Available Four different manufactured surface-coated silver nanoparticles (AgNPs with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (LumiMARA using multi-species of luminescent bacteria. The salt stability of four different AgNPs was measured by UV absorbance at 400 nm wavelength, and different surface-charged AgNPs in combination with bacteria were observed using scanning electron microscopy (SEM. Both branched polyethylenimine (BPEI-AgNPs and polyethylene glycol (PEG-AgNPs were shown to be stable with 2% NaCl (non-aggregation, whereas both citrate (Cit-AgNPs and tannic acid (Tan-AgNPs rapidly aggregated in 2% NaCl solution. The values of the 50% effective concentration (EC50 for BPEI-AgNPs in marine bacteria strains (1.57 to 5.19 mg/L were lower than those for the other surface-coated AgNPs (i.e., Cit-AgNPs, Tan-AgNPs, and PEG-AgNPs. It appears that the toxicity of AgNPs could be activated by the interaction of positively charged AgNPs with the negatively charged bacterial cell wall from the results of LumiMARA. LumiMARA for toxicity screening has advantageous compared to a single-species bioassay and is applicable for environmental samples as displaying ranges of assessment results.

  7. Tissue culture of three species of Laurencia complex

    Science.gov (United States)

    Shen, Songdong; Wu, Xunjian; Yan, Binlun; He, Lihong

    2010-05-01

    To establish a micropropagation system of three Laurencia complex species ( Laurencia okamurai, Laurencia tristicha, and Chondrophycus undulatus) by tissue culture techniques, we studied the regeneration characteristics and optimal culture conditions of axenic algal fragments cultured on solid medium and in liquid medium. Regeneration structures were observed and counted regularly under a reverse microscope to investigate the regeneration process, polarity and optimal illumination, and temperature and salinity levels. The results show that in most cultures of the three species, we obtained bud regeneration on solidified medium with 0.5% agar and in liquid medium. Rhizoid-like regeneration was filamentous and developed from the lower cut surface of fragments in L. okamurai, but was discoid and developed from the apical back side of bud regeneration in L. tristicha and C. undulatus. Regeneration polarity was localized to the apical part of algal fronds in all three species, and on fragments cut from the basal part of algae buds could develop from both the upper and the lower cut surfaces. Buds could develop from both the medullary and the cortical portions in L. okamurai and C. undulatus, while in L. tristicha, buds only emerged from the cortex. The optimal culture conditions for L. okamurai were 4 500 lx, 20°C and 35 (salinity); for C. undulatus, 4 500 lx, 20°C and 30; and for L. tristicha, 4 500 lx, 25°C and 30.

  8. Dissolution model for a glass having an adherent insoluble surface layer

    International Nuclear Information System (INIS)

    Harvey, K.B.; Larocque, C.A.B.

    1990-01-01

    Waste form glasses that contain substantial quantities of iron, manganese, and aluminum oxides, such as the Savannah River SRL TDS-131 glass, form a thick, hydrated surface layer when placed in contact with water. The dissolution of such a glass has been modeled with the Savannah River Model. The authors showed previously that the equations of the Savannah River Model could be fitted to published experimental data if a time-dependent diffusion coefficient was assumed for species of diffusing through the surface layer. The Savannah River Model assumes that all of the material dissolved from the glass enters solution, whereas it was observed that substantial quantities of material were retained in the surface layer. An alternative model, presented contains a mass balance equation that allows material either to enter solution or to be retained in the surface layer. It is shown that the equations derived using this model can be fitted to the published experimental data assuming a constant diffusion coefficient for species diffusing through the surface layer

  9. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles.

    Science.gov (United States)

    Hu, Qingsong; Liu, Yuling; Gu, Xueyuan; Zhao, Yaping

    2017-08-01

    Arsenic pollution poses severe threat to human health, therefore dealing with the problem of arsenic contamination in water bodies is extremely important. The adsorption behaviors of different arsenic species, such as arsenate (As(V)), p-arsanilic acid (p-ASA), roxarsone (ROX), dimethylarsenate (DMA) from water using mesoporous bimetal oxide magnetic manganese ferrite nanoparticles (MnFe 2 O 4 ) have been detailedly investigated. The adsorbent was synthesized via a facile co-precipitation approach and recovered conveniently owing to its strong magnetic properties. The obtained MnFe 2 O 4 with large surface area and abundant hydroxyly functional groups exhibited excellent adsorption performance for As(V) and p-ASA, in contrast to ROX and DMA with the maximum adsorption capacities of As(V), p-ASA, ROX and DMA of 68.25 mg g -1 , 59.45 mg g -1 , 51.49 mg g -1 , and 35.77 mg g -1 , respectively. The Langmuir model and the pseudo-second-order kinetic model correlated satisfactorily with the adsorption thermodynamics and kinetics, and thermodynamic parameters depicted the spontaneous endothermic nature for the adsorption of different arsenic species. The adsorption mechanism of different arsenic species onto MnFe 2 O 4 nanoparticles at various pH values could be explained by surface complexation and molecular structural variations. Attenuated Total internal Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) further proved that arsenic species were bonded to the surface of MnFe 2 O 4 through the formation of an inner-sphere complex between the arsenic acid moiety and surface metal centers. The results would help to know the interaction of arsenic species with iron-manganese minerals and the mobility of arsenic species in natural environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison of small mammal species diversity near wastewater outfalls, natural streams, and dry canyons

    International Nuclear Information System (INIS)

    Raymer, D.F.; Biggs, J.R.

    1994-03-01

    A wide range of plant and wildlife species utilizes water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to compare nocturnal small mammal communities at wet areas created by wastewater outfalls with communities in naturally created wet and dry areas. Thirteen locations within LANL boundaries were selected for small mammal mark-recapture trapping. Three of these locations lacked surface water sources and were classified as open-quotes dry,close quotes while seven sites were associated with wastewater outfalls (open-quotes outfallclose quotes sites), and three were located near natural sources of surface water (open-quotes naturalclose quotes sites). Data was collected on site type (dry, outfall or natural), location, species trapped, and the tag number of each individual captured. This data was used to calculate mean number of species, percent capture rate, and species diversity at each type of site. When data from each type of site was pooled, there were no significant differences in these variables between dry, outfall, and natural types. However, when data from individual sites was compared, tests revealed significant differences. All sites in natural areas were significantly higher than dry areas in daily mean number of species, percent capture rate, and species diversity. Most outfall sites were significantly higher than dry areas in all three variables tested. When volume of water from each outfall site was considered, these data indicated that the number of species, percent capture rate, and species diversity of nocturnal small mammals were directly related to the volume of water at a given outfall

  11. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    Science.gov (United States)

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  12. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    International Nuclear Information System (INIS)

    Lintott, D.R.; Goudey, J.S.; Wilson, J.; Swanson, S.; Drury, C.

    1997-01-01

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs

  13. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Lintott, D.R.; Goudey, J.S. [HydroQual Consultants, Inc., Calgary, AB (Canada); Wilson, J.; Swanson, S. [Golder Associates, Calgary, AB (Canada); Drury, C. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    1997-12-31

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs.

  14. Possible use of wetlands in ecological restoration of surface mined lands

    International Nuclear Information System (INIS)

    Atkinson, R.B.; Cairns, J. Jr.

    1994-01-01

    Surface mining for coal has dramatically altered millions of hectares throughout the Appalachian region of eastern North America. Flat benches and vertical high walls have replaced well-drained slopes, and wetlands have developed 'accidentally' on abandoned benches. Surface mining is continuing in this region, but new regulations do not include specifications for wetland construction in the reclamation process. Recent research has suggested that many ecosystem services appropriate for the Appalachian landscape could be performed by constructed wetlands. Inclusion of wetland construction in a reclamation plan could lead to a net increase in wetland acreage locally, as well as offset the loss of natural and/or accidental wetlands that are constructed to enhance nontreatment goals in reclamation. Study sites included 14 emergent wetlands in Wise County, Virginia. Sampling in June and August detected a total of 94 species in 36 vascular plant facilities. Obligate wetlands species, species that occur in wetlands over 99% of the time, were found in all 14 sites and included 26 species. The presence of so many wetland species without intentional management efforts suggests that wetland establishment could become a common component of mine reclamation. 18 refs., 2 tabs

  15. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    Science.gov (United States)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  16. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  17. Interaction between the genomes of Lactococcus lactis and phages of the P335 species

    Science.gov (United States)

    Kelly, William J.; Altermann, Eric; Lambie, Suzanne C.; Leahy, Sinead C.

    2013-01-01

    Phages of the P335 species infect Lactococcus lactis and have been particularly studied because of their association with strains of L. lactis subsp. cremoris used as dairy starter cultures. Unlike other lactococcal phages, those of the P335 species may have a temperate or lytic lifestyle, and are believed to originate from the starter cultures themselves. We have sequenced the genome of L. lactis subsp. cremoris KW2 isolated from fermented corn and found that it contains an integrated P335 species prophage. This 41 kb prophage (Φ KW2) has a mosaic structure with functional modules that are highly similar to several other phages of the P335 species associated with dairy starter cultures. Comparison of the genomes of 26 phages of the P335 species, with either a lytic or temperate lifestyle, shows that they can be divided into three groups and that the morphogenesis gene region is the most conserved. Analysis of these phage genomes in conjunction with the genomes of several L. lactis strains shows that prophage insertion is site specific and occurs at seven different chromosomal locations. Exactly how induced or lytic phages of the P335 species interact with carbohydrate cell surface receptors in the host cell envelope remains to be determined. Genes for the biosynthesis of a variable cell surface polysaccharide and for lipoteichoic acids (LTAs) are found in L. lactis and are the main candidates for phage receptors, as the genes for other cell surface carbohydrates have been lost from dairy starter strains. Overall, phages of the P335 species appear to have had only a minor role in the adaptation of L. lactis subsp. cremoris strains to the dairy environment, and instead they appear to be an integral part of the L. lactis chromosome. There remains a great deal to be discovered about their role, and their contribution to the evolution of the bacterial genome. PMID:24009606

  18. The roles of phosphate and tungstate species in surface acidities of TiO2-ZrO2 binary oxides - A comparison study

    Science.gov (United States)

    Chaudhary, Manchal; Shen, Po-fan; Chang, Sue-min

    2018-05-01

    Porous tungstated and phosphated TiO2-ZrO2 (TZ) binary oxides with high and strong acidity were successfully prepared by means of sol-gel or impregnation approaches. In addition, the influences of the two types of modifiers on the microstructures and acidity were systematically examined, compared, and clarified. The TZ oxide derived from a surfactant-templating method exhibited a high surface area of 195 m2/g with a pore size of 6.3 nm. Moreover, it had a high acidity of 859 μmol/g with a density of 4.4 μmol/nm2 because of defective surface. Phosphation significantly increased the acidity to 1547 μmol/g and showed the highest acid density of 6.7 μmol/nm2 at a surface P density of 22.7P/nm2. On the other hand, tungstated compounds just showed the highest acidity of 972 μmol/g and the highest acid density of 4.8 μmol/nm2 at 4.7 W/nm2. Compared to tungstate species, phosphate anions are more capable of promoting the acidity because they are able to distort the host network and inhibit elemental rearrangement. While Lewis acidity prevailed in the tungstated compounds, Brønsted acidity was dominant in the phosphated oxides. The Wdbnd O and Psbnd OH groups were responsible for strong acidity in the modified compounds. Phosphated compounds formed strong Brønsted acid sites on the Psbnd OH groups with a particular strength, and tungstation produced Lewis acid sites with a continuous strength on the metal ions adjacent to the tungstate moieties. Cyclic NH3 adsorption-desorption processes revealed that the active sites for NH3 adsorption were stable in both the tungstate and phosphate modified compounds, revealing that these solid acids are promising as the adsorbents for removal of base gases.

  19. A new species of Cinnamomum (Lauraceae) from the Bladen Nature Reserve, southern Belize.

    Science.gov (United States)

    Brewer, Steven W; Stott, Gail L

    2017-01-01

    A new species in the Lauraceae, Cinnamomum bladenense S.W. Brewer & G.L. Stott, is described from the Bladen Nature Reserve in southern Belize. The new species is similar to Cinnamomum brenesii (Standl.) Kosterm., from which it differs by its much smaller, narrowly-campanulate flowers, its inner tepals glabrous abaxially, its shorter petioles, its minutely sericeous younger twigs, and its abaxial leaf surfaces not glaucous and with prominent secondary venation. A description, preliminary conservation assessment, and photographs of the species as well as a key to and notes on the Cinnamomum of Belize are provided.

  20. Two new South American species of Solanum section Crinitum (Solanaceae

    Directory of Open Access Journals (Sweden)

    Frank Farruggia

    2010-11-01

    Full Text Available Two new species of Solanum section Crinitum are described here. Solanum falciforme Farruggia, sp. nov., closely resembles S. crinitum and S. lycocarpum, but differs by the presence of falcate trichomes on the young growth. It is endemic to the cerrado and adjacent woodlands of Distrito Federal, Bahia, Goiás and Minas Gerais, Brazil. The other species, Solanum pseudosycophanta Farruggia, sp.nov., has close affinities to S. sycophanta but differs from the latter inprominent long-stalked stellate hairs along the stem, calyx, petiole and the adaxial surface of the leaf, in contrast to S. sycophanta which is glabrous or pubescent with sessile to short-stalked multangulate hairs. This species is narrowly distributed in tropical montane forests of northern Peru and southern Ecuador.

  1. Surface composition of Europa based on VLT observations

    Science.gov (United States)

    Ligier, N.; Poulet, F.; Carter, J.

    2016-12-01

    Jupiter's moon Europa may harbor a global salty ocean under an 80-170 km thick outer layer consisting of an icy crust (Anderson et al. 1998). Meanwhile, the 10-50 My old surface, dated by cratering rates (Pappalardo et al. 1999) implies rapid surface recycling and reprocessing that could result in tectonic activity (Kattenhorn et al. 2014) and plumes (Roth et al. 2014). The surface could thus exhibit fingerprints of chemical species, as minerals characteristics of an ocean-mantle interaction and/or organics of exobiological interest, directly originating from the subglacial ocean. In order to re-investigate the composition of Europa's surface, a global mapping campaign of the satellite was performed with the near-infrared integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) and large signal noise ratio in comparison to previous observations are adequate to detect sharp absorptions in the wavelength range 1.45-2.45 μm. In addition, the spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s ( 35 by 70 km on Europa's surface), thus permitting a global scale study. Several icy and non-icy compounds were detected and mapped at <100 km resolution. They are unevenly distributed on the moon's surface. Amorphous and crystalline water ice are both present and, in spite of a particularly strong amorphization process likely engendered by the Io plasma torus, the crystalline form is found to be approximately twice as abundant as the amorphous ice based on the analysis of the 1.65 μm band. If the surface is dominated by small and mid-sized water ice grains (25-200 μm), crystalline water-ice grains exhibit spatial inhomogeneities in their distribution. The sulfuric acid hydrate distribution exhibits the typical "bullseye" feature on the trailing hemisphere. The presence of Mg-bearing chlorinated salts (chloride

  2. Effect of evaporation on the growth kinetics in a model for two species

    International Nuclear Information System (INIS)

    El-Nashar, Hassan F.

    2002-02-01

    A surface growth model for two species is proposed, when deposition, surface diffusion and evaporation are considered, in (1+1)-dimensions. A Monte Carlo simulation is carried out, focusing on the effect of evaporation on the evolution of the amount of roughness. The results show that the interplay between deposition, surface diffusion and evaporation slows down the rate of growth of the surface width. In addition, when the rate of evaporation increases, the surface width grows faster to a higher value, in comparison to the case of low rate of evaporation. This introduces changes in the scaling exponents which show that evaporation should be given equal or as much consideration as deposition and surface relaxation. (author)

  3. The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species.

    Science.gov (United States)

    Sato, Yukie; Alba, Juan M; Egas, Martijn; Sabelis, Maurice W

    2016-11-01

    When competing with indigenous species, invasive species face a problem, because they typically start with a few colonizers. Evidently, some species succeeded, begging an answer to the question how they invade. Here, we investigate how the invasive spider mite Tetranychus evansi interacts with the indigenous species T. urticae when sharing the solanaceous host plant tomato: do they choose to live together or to avoid each other's colonies? Both species spin protective, silken webs on the leaf surfaces, under which they live in groups of con- and possibly heterospecifics. In Spain, T. evansi invaded the non-crop field where native Tetranychus species including T. urticae dominated. Moreover, T. evansi outcompetes T. urticae when released together on a tomato plant. However, molecular plant studies suggest that T. urticae benefits from the local down-regulation of tomato plant defences by T. evansi, whereas T. evansi suffers from the induction of these defences by T. urticae. Therefore, we hypothesize that T. evansi avoids leaves infested with T. urticae whereas T. urticae prefers leaves infested by T. evansi. Using wild-type tomato and a mutant lacking jasmonate-mediated anti-herbivore defences, we tested the hypothesis and found that T. evansi avoided sharing webs with T. urticae in favour of a web with conspecifics, whereas T. urticae more frequently chose to share webs with T. evansi than with conspecifics. Also, T. evansi shows higher aggregation on a tomato plant than T. urticae, irrespective of whether the mites occur on the plant together or not.

  4. Systematic significance of anatomical characterization in some euphorbiaceous species

    International Nuclear Information System (INIS)

    Zahra, N.B.; Shinwari, Z.K.

    2014-01-01

    The study was aimed to explore the systematic potential of anatomical characters for identification and delimitation among Euphorbia species. Eight species of leafy spurges of genus Euphorbia L. (Euphorbiaceae) were evaluated for variations in micro morphological characters of foliar epidermal anatomy. While anatomical observations are of importance in the assessments and appraisals, use of these characters as an effective tool in interpreting phyletic evaluations and systematic delineations has its limitations too. The epidermal cell wall in majority of species was wavy to undulate on both adaxial and abaxial surfaces. The observations made in this study indicate that there is not a single type of stomata which appears as characteristic of the genus Euphorbia. Also their distribution whether epistomatic or hypostomatic is not a genus-characteristic. The trichomes found were simple, unicellular or multicellular, uniseriate. Present investigation revealed the utility of both qualitative and quantitative characters in systematic studies; also the potential influence in the delimitation of species cannot be ignored. Our results show that the micro-morphology of anatomical characters play an important role in definition of taxa at species and sectional levels. (author)

  5. Fish Species in a Changing World: The Route and Timing of Species Migration between Tropical and Temperate Ecosystems in Eastern Atlantic.

    Directory of Open Access Journals (Sweden)

    Awaluddin Halirin Kaimuddin

    2016-09-01

    Full Text Available The presence of tropical species has been reported in Atlantic-European waters with increasing frequency in recent years. Unfortunately, the history of their migrations is not well understood. In this study, we examined the routes and timing of fish migrations in several ecosystems of the East Atlantic Ocean, combining several publicly available and unpublicized datasets on species occurrences. The species studied were those noted as exotic or rare outside their previous known area of distribution. We used sea surface temperature (SST data obtained from 30 years of satellite observation to define three distinct time periods. Within these periods, temperature trends were studied in six ecosystems: the North Sea, the Celtic Sea, the South European Atlantic Waters, the Mediterranean Sea, the Canary Current and the Guinea Current. We also incorporated bathymetry data to describe the distribution of species. Measurement across a relatively large spatial extent was made possible by incorporating the capabilities of GIS.While SST increased consistently over time in all of the ecosystems observed, the change in number of species differed among ecosystems. The number of species in the middle regions, such as the South European Atlantic Shelf and the Western Mediterranean Sea, tended to increase over time. These regions received numbers of species from the lower or the upper latitudes according to season. Of all of the species observed in the recent period, 7 species from the Canary Current tended to be found in the Western Mediterranean Sea, and 6 species from these two regions extended their distributions to the South European Atlantic Shelf. Twelve species from the Canary Current moved seasonally to the Guinea Current. In the northern regions, 13 species moved seasonally in the North Sea and the Celtic Seas, and 12 of these species reached the South European Atlantic Shelf.This study presents a picture of routes and timing of species migration at the

  6. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces.

    Science.gov (United States)

    Daneshvar Alavi, Hessam Edin; Truelstrup Hansen, Lisbeth

    2013-01-01

    This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48-72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm(-2)) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.

  7. Morphometry of eyes, antennae and wings in three species of Siagona (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Federica Talarico

    2011-05-01

    Full Text Available In carabid beetles, physiological and behavioural characteristics reflect specific habitat demands and there is a strong correlation between body form and habit in species with different life style. In this study, we compared the morphometry and compound eye characteristics of three species of the genus Siagona: S. jenissoni, S. dejeani and S. europaea. These carabids have a stenotopic lifestyle in Mediterranean clayey soils, inhabiting the ground fissure system formed during the dry season. All species have a Mediterranean distribution and are nocturnal olfactory hunters, and are strict ant predators. For morphometric measurements, we considered body length (mm, wing length (mm, antenna length (mm, head width (mm, trochanter length (mm, number of ommatidia, eye surface area (mm2, ommatidia density (number of ommatidia/mm2 of eye surface area, head height (mm, thorax height (mm and abdomen height (mm. The data revealed intersexual and interspecific differences. The three species differ in relative length of the antennae, density and number of ommatidia and relative trochanter length. Significant differences occurred in wing sizes, which are well developed in S. europaea, the only species capable of flight. When eye size is compared with other ground beetles of various lifestyles, Siagona shows pronounced “microphthalmy” an adaptation to subterranean life in clayey crevices of tropical and subtropical climates with a marked dry season.

  8. Coupled diffusion of two species in a slab with an eroding boundary

    International Nuclear Information System (INIS)

    Leite, S.B.; Ozisik, M.N.; Verghese, K.

    1981-01-01

    The diffusion of two interchangeable species in a medium with an eroding boundary is analyzed by modeling the problem as the solution of two diffusion equations coupled at the source term for a slab with a moving boundary. Formal solutions are developed for the concentration of the two species as a function of time and position in the slab for arbitrary initial distributions of the diffusing species, arbitrary sources within the medium and boundary conditions of the third kind at the bounding surfaces. It is shown with an illustrative example, that the resulting coupled integral equations for the species can be solved very efficiently by an approach employing both a lower- and upper-bound starting function for the concentrations. (author)

  9. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    Science.gov (United States)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer

  10. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires

    International Nuclear Information System (INIS)

    Hou, W C; Hong, Franklin Chau-Nan

    2009-01-01

    This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 deg. C.

  11. Fatty acid methyl ester profiles of bat wing surface lipids.

    Science.gov (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  12. Behavioral choice across leech species: chacun à son goût.

    Science.gov (United States)

    Gaudry, Q; Ruiz, N; Huang, T; Kristan, W B; Kristan, W B

    2010-04-01

    At any one time, animals are simultaneously bombarded with many sensory stimuli, but they typically choose to respond to only a few of them. We used multidimensional analysis to determine the behavioral responses of six species of leeches to stimulation, as the responses are affected by species identity, diet, behavioral state and stimulus location. Our results show that each of the species tested while not feeding displayed remarkably similar behaviors in response to tactile stimulation of the surface of the body. When not feeding, stimulus location was the most reliable factor in determining behavioral response. While feeding, the three sanguivorous (bloodsucking) species tested ignored stimulation, whereas the three carnivorous leeches abandoned feeding in favor of locomotory responses, regardless of phylogenetic relationships. In the sanguivorous leeches, feeding abolished all mechanically elicited responses and mechanical stimulation in turn had no effect on feeding. We also show that the behavioral hierarchy of leeches was fixed and unchanging even in species that can consume both a carnivorous and a sanguivorous diet.

  13. Applications of ion scattering in surface analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1981-01-01

    The study of ion scattering from surfaces has made an increasingly important contribution both to the development of highly surface specific analysis techniques and to the understanding of the atomic collision processes associated with ion bombardment of solid surfaces. From an analysis point of view, by appropriate choice of parameters such as ion energy and species, scattering geometry and target temperature, it is possible to study not only the composition of the surface layer but also the detailed atomic arrangement. The ion scattering technique is thus particularly useful for the study of surface compositional and structural changes caused by adsorption, thermal annealing or ion bombardment treatments of simple or composite materials. Ion bombardment induced desorption, damage or atomic mixing can also be effectively studied using scattering techniques. By reviewing the application of the technique to a variety of these technologically important surface investigations, it is possible to illustrate the way in which ion scattering has developed as the understanding of the underlying physics has improved. (author)

  14. Evaluation of the Thermo Scientific™ SureTect™ Salmonella species Assay.

    Science.gov (United States)

    Cloke, Jonathan; Clark, Dorn; Radcliff, Roy; Leon-Velarde, Carlos; Larson, Nathan; Dave, Keron; Evans, Katharine; Crabtree, David; Hughes, Annette; Simpson, Helen; Holopainen, Jani; Wickstrand, Nina; Kauppinen, Mikko

    2014-03-01

    The Thermo Scientific™ SureTect™ Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested MethodsSM program to validate the SureTect Salmonella species Assay in comparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainless steel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation

  15. Surface functionalization of SBA-15 by the solvent-free method

    International Nuclear Information System (INIS)

    Wang Yimeng; Zheng Yingwu; Zhu Jianhua

    2004-01-01

    A solvent-free technique was employed for fast modification of mesoporous materials. Copper, chromium and iron oxide species could be highly dispersed in SBA-15 by manually grinding the corresponding precursor salts and the host, followed by calcinations for the first time. This method is more effective to spontaneously disperse oxide species onto SBA-15 than impregnation, probably forming monolayer or submonolayer dispersion of salts or oxides. Besides, Cr(VI) species dominate in the mixing sample while Cr(III) species dominate in the impregnation one. In the temperature programmed surface reaction of nitrosamines, the sample prepared by solvent-free method showed a higher catalytic activity than the impregnation one

  16. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Science.gov (United States)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  17. The first report of new species: Trichuris landak n. sp.

    Science.gov (United States)

    Purwaningsih, Endang

    2013-02-01

    To study nematode parasites morphology of Hystrix javanica (H. javanica), both through the feces and internal organs. Feces were observed by direct smear method, internal organs were observed after dissecting the host. Specimens for light microscopy examination were fixed with 70% warm alcohol, cleared and mounted in lactophenol for wet mounting. Specimens for SEM examination were postfixed in cacodylate buffer and glutaraldehyde, dehydrated through a graded series of alcohol and freeze dried. The specimens were attached to stubs with double cello-tape, coated with gold and observed with a JSM5310 LV electron microscope. Figures were made with the aid of a drawing tube attached to Olympus compound microscope, other figures were photographs of scanning electron microscope images. Measurements were given in micrometers as the mean followed by the range in parentheses, unless otherwise stated. The nematode species found in the intestine of H. javanica are Gireterakis girardi and a new species, Trihuris landak. The new species differs with previously reported species from Hystrix because of having stylet and short cervical alae. The pattern of bacillary band is closed to Trichuris trichiurus, the species that infect human, but differs because the surface of its vulva is not covered with densely spine. The species of nematodes found on H. javanica were Gireterakis girardi and a new species Trichuris landak n.sp. Those two species are newly recorded in Indonesia.

  18. Incorporating classic adsorption isotherms into modern surface complexation models: implications for sorption of radionuclides

    International Nuclear Information System (INIS)

    Kulik, D.A.

    2005-01-01

    Full text of publication follows: Computer-aided surface complexation models (SCM) tend to replace the classic adsorption isotherm (AI) analysis in describing mineral-water interface reactions such as radionuclide sorption onto (hydr) oxides and clays. Any site-binding SCM based on the mole balance of surface sites, in fact, reproduces the (competitive) Langmuir isotherm, optionally amended with electrostatic Coulomb's non-ideal term. In most SCM implementations, it is difficult to incorporate real-surface phenomena (site heterogeneity, lateral interactions, surface condensation) described in classic AI approaches other than Langmuir's. Thermodynamic relations between SCMs and AIs that remained obscure in the past have been recently clarified using new definitions of standard and reference states of surface species [1,2]. On this basis, a method for separating the Langmuir AI into ideal (linear) and non-ideal parts [2] was applied to multi-dentate Langmuir, Frumkin, and BET isotherms. The aim of this work was to obtain the surface activity coefficient terms that make the SCM site mole balance constraints obsolete and, in this way, extend thermodynamic SCMs to cover sorption phenomena described by the respective AIs. The multi-dentate Langmuir term accounts for the site saturation with n-dentate surface species, as illustrated on modeling bi-dentate U VI complexes on goethite or SiO 2 surfaces. The Frumkin term corrects for the lateral interactions of the mono-dentate surface species; in particular, it has the same form as the Coulombic term of the constant-capacitance EDL combined with the Langmuir term. The BET term (three parameters) accounts for more than a monolayer adsorption up to the surface condensation; it can potentially describe the surface precipitation of nickel and other cations on hydroxides and clay minerals. All three non-ideal terms (in GEM SCMs implementation [1,2]) by now are used for non-competing surface species only. Upon 'surface dilution

  19. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa.

    Science.gov (United States)

    Pang, X Y; Yang, Y S; Yuk, H G

    2017-09-01

    This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in the protection of biofilms against disinfection treatment. The populations of Salmonella in mono- or dual-species biofilms with P. aeruginosa on stainless steel (SS) coupons were determined before and after exposure to commercial disinfectant, 50 μg ml -1 chlorine or 200 μg ml -1 Ecolab ® Whisper™ V (a blend of four effective quaternary ammonium compounds (QAC)). In addition, EPS amount from biofilms was quantified and biofilm structures were observed using scanning electron microscopy (SEM). Antagonistic interactions between Salmonella and P. aeruginosa resulted in lower planktonic population level of Salmonella, and lower density in dual-species biofilms compared to mono-species biofilms. The presence of P. aeruginosa significantly enhanced disinfectant resistance of S. Typhimurium and S. Enteritidis biofilm cells for 2 days, and led to an average of 50% increase in polysaccharides amount in dual-species biofilms than mono-species biofilms of Salmonella. Microscopy observation showed the presence of large microcolonies covered by EPS in dual-species biofilms but not in mono-species ones. The presence of P. aeruginosa in dual-species culture inhibited the growth of Salmonella cells in planktonic phase and in biofilms, but protected Salmonella cells in biofilms from disinfection treatment, by providing more production of EPS in dual-species biofilms than mono-species ones. This study provides insights into inter-species interaction, with regard to biofilm population dynamics and disinfectant resistance. Thus, a sanitation protocol should be designed considering the protective role of secondary species to pathogens in biofilms on SS surface which has been widely used at food surfaces and manufacturers. © 2017 The Society

  20. Alphonsea glandulosa (Annonaceae, a New Species from Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Bine Xue

    Full Text Available Alphonsea glandulosa sp. nov. is described from Yunnan Province in south-west China. It is easily distinguished from all previously described Alphonsea species by the possession of glandular tissue at the base of the adaxial surface of the inner petals. Nectar was observed throughout the flowering period, including the pistillate phase and subsequent staminate phase. Small curculionid beetles were observed as floral visitors and are inferred to be effective pollinators since they carry pollen grains. A phylogenetic analysis was conducted to confirm the placement of this new species within Alphonsea and the evolution of the inner petal glands and specialized pollinator reward tissues throughout the family.

  1. Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species.

    Science.gov (United States)

    Sen, Abhishek; Khan, Indrani; Kundu, Debajyoti; Das, Kousik; Datta, Jayanta Kumar

    2017-06-01

    Identification of tree species that can biologically monitor air pollution and can endure air pollution is very much important for a sustainable green belt development around any polluted place. To ascertain the species, ten tree species were selected on the basis of some previous study from the campus of the University of Burdwan and were studied in the pre-monsoon and post-monsoon seasons. The study has been designed to investigate biochemical and physiological activities of selected tree species as the campus is presently exposed to primary air pollutants and their impacts on plant community were observed through the changes in several physical and biochemical constituents of plant leaves. As the plant species continuously exchange different gaseous pollutants in and out of the foliar system and are very sensitive to gaseous pollutants, they serve as bioindicators. Due to air pollution, foliar surface undergoes different structural and functional changes. In the selected plant species, it was observed that the concentration of primary air pollutants, proline content, pH, relative water holding capacity, photosynthetic rate, and respiration rate were higher in the pre-monsoon than the post-monsoon season, whereas the total chlorophyll, ascorbic acid, sugar, and conductivity were higher in the post-monsoon season. From the entire study, it was observed that the concentration of sulfur oxide (SO x ), nitrogen oxide (NO x ), and suspended particulate matter (SPM) all are reduced in the post-monsoon season than the pre-monsoon season. In the pre-monsoon season, SO x , NO x , and SPM do not have any significant correlation with biochemical as well as physiological parameters. SPM shows a negative relationship with chlorophyll 'a' (r = -0.288), chlorophyll 'b' (r = -0.267), and total chlorophyll (r = -0.238). Similarly, chlorophyll a, chlorophyll b, and the total chlorophyll show negative relations with SO x and NO x (p tree species according to their air

  2. Psittacanthus corderoi, a new species of Loranthaceae from the colombia Amazonia

    Directory of Open Access Journals (Sweden)

    Favio González

    2016-07-01

    Full Text Available Psittacanthus corderoi F. González, F. J. Roldán & Pabón-Mora, a species from the department of Amazonas, Colombia, is here described and illustrated for the first time. The new species is similar to P. lasianthus Sandwith, from Guyana and Venezuela, but it differs by various vegetative and floral traits. The most conspicuous diagnostic trait is the presence of numerous laciniae to 2 mm long on the outer surface of the petals, a trait unique in the genus.

  3. Surface Photochemistry of Adsorbed Nitrate: The Role of Adsorbed Water in the Formation of Reduced Nitrogen Species on α-Fe2O3 Particle Surfaces

    NARCIS (Netherlands)

    Nanayakkara, C.E.; Jayaweera, P.M.; Rubasinghege, G; Baltrusaitis, Jonas; Grassian, V.H.

    2014-01-01

    The surface photochemistry of nitrate, formed from nitric acid adsorption, on hematite (α-Fe2O3) particle surfaces under different environmental conditions is investigated using X-ray photoelectron spectroscopy (XPS). Following exposure of α-Fe2O3 particle surfaces to gas-phase nitric acid, a peak

  4. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  5. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  6. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    Science.gov (United States)

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (Pmacro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  7. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study

    International Nuclear Information System (INIS)

    Peng Xihong; Tang Fu; Copple, Andrew

    2012-01-01

    First principles density functional theory calculations were performed to study the effects of strain, edge passivation, and surface functional species on the structural and electronic properties of armchair graphene nanoribbons (AGNRs), with a particular focus on the work function. The work function was found to increase with uniaxial tensile strain and decrease with compression. The variation of the work function under strain is primarily due to the shift of the Fermi energy with strain. In addition, the relationship between the work function variation and the core level shift with strain is discussed. Distinct trends of the core level shift under tensile and compressive strain were discovered. For AGNRs with the edge carbon atoms passivated by oxygen, the work function is higher than for nanoribbons with the edge passivated by hydrogen under a moderate strain. The difference between the work functions in these two edge passivations is enlarged (reduced) under a sufficient tensile (compressive) strain. This has been correlated to a direct-indirect bandgap transition for tensile strains of about 4% and to a structural transformation for large compressive strains at about - 12%. Furthermore, the effect of the surface species decoration, such as H, F, or OH with different covering density, was investigated. It was found that the work function varies with the type and coverage of surface functional species. Decoration with F and OH increases the work function while H decreases it. The surface functional species were decorated on either one side or both sides of AGNRs. The difference in the work functions between one-sided and two-sided decorations was found to be relatively small, which may suggest an introduced surface dipole plays a minor role. (paper)

  8. Lunar atmosphere. How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere.

    Science.gov (United States)

    Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M

    2016-01-15

    Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition. Copyright © 2016, American Association for the Advancement of Science.

  9. Microbial deterioration of surface paint coatings. | Ogbulie | Global ...

    African Journals Online (AJOL)

    Bacterial and fungal species associated with the normal and deteriorated painted surface in Owerri, Imo State were isolated and identified. The bacteria genera isolated were Pseudomonas, Bacillus, Micrococcus, Staphylococcus, Enterobacter and Streptomces, whereas the fungal genera isolated were Rhizopus, ...

  10. Characteristics of laser textured silicon surface and effect of mud adhesion on hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Ali, H. [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Khaled, M. [CHEM Department, King Fahd University of Petroleum & Minerals, Dhahran (Saudi Arabia); Al-Aqeeli, N.; Abu-Dheir, N. [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Varanasi, K.K. [Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA (United States)

    2015-10-01

    Highlights: • Laser treatment increases surface microhardness and slightly lowers surface fracture toughness. • Residual stress formed is compressive and self-annealing effect of laser tracks lowers residual stress. • Nitride species lowers surface energy and adhesion work required to remove dust. • Mud residues do not have notable effect on fracture toughness and microhardness of treated surface. • Mud residues lower surface hydrophobicity. - Abstract: Laser gas assisted texturing of silicon wafer surface is carried out. Morphological and metallurgical changes in the treated layer are examined using the analytical tools. Microhardness and fracture toughness of the laser treated surface are measured using the indentation technique while residual stress formed is determined from the X-ray diffraction data. The hydrophobicity of the textured surfaces are assessed incorporating the contact angle data and compared with those of as received workpiece surfaces. Environmental dust accumulation and mud formation, due to air humidity, at the laser treated and as received workpiece surfaces are simulated and the effect of the mud residues on the properties of the laser treated surface are studied. The adhesion work due to the presence of the mud on the laser treated surface is also measured. It is found that laser textured surface composes of micro/nano poles and fibers, which in turn improves the surface hydrophobicity significantly. In addition, formation of nitride species contributes to microhardness increase and enhancement of surface hydrophobicity due to their low surface energy. The mud residues do not influence the fracture toughness and microhardness of the laser textured surface; however, they reduced the surface hydrophobicity significantly.

  11. Using a nitrogen dielectric barrier discharge for surface treatment

    International Nuclear Information System (INIS)

    Borcia, G; Anderson, C A; Brown, N M D

    2005-01-01

    In this paper, continuing previous work, we report on the installation and the testing of an experimental dielectric barrier discharge (DBD) reactor run in a controlled atmospheric pressure gaseous environment other than air. Here, the effects of a N 2 -DBD treatment on the surface of a test polymer material (UHMW polyethylene) are examined, reported, discussed and compared to results obtained previously following air-DBD treatment. Surface analysis and characterization were performed using x-ray photoelectron spectroscopy, contact angle measurement and scanning electron microscopy before and following the DBD processing described. The discharge parameters used were correlated with the changes in the surface characteristics found following DBD treatments of various durations in a nitrogen atmosphere. The work focuses on the control of the gaseous environment supporting the discharge and on the possibility of overcoming the potentially dominant effect of reactive oxygen-related species, derived from any residual air present. The results obtained underline the very high reactivity of such species in the discharge, but are encouraging in respect of the possibility of the implantation or generation of functional groups other than oxygen-related ones at the surface of interest. The processing conditions concerned simulate 'real' continuous high speed processing, allowing the planning of further experiments, where various gaseous mixtures of the type X + N 2 will be used for controlled surface functionalization

  12. Lactoperoxidase catalyzed radioiodination of cell surface immunoglobulin: incorporated radioactivity may not reflect relative cell surface Ig density

    International Nuclear Information System (INIS)

    Wilder, R.L.; Yuen, C.C.; Mage, R.G.

    1979-01-01

    Rabbit and mouse splenic lymphocytes were radioiodinated by the lactoperoxidase technique, extracted with non-ionic detergent, immunoprecipitated with high titered rabbit anti-kappa antisera, and compared by SDS-PAGE. Mouse sIg peaks were reproducibly larger in size than rabbit sIg peaks (often greater than 10 times). Neither differences in incorporation of label into the rabbit cell surface, nor differences in average sIg density explain this result. Total TCA-precipitable radioactivity was similar in each species. Estimation of the relative amounts of sIg in the mouse and rabbit showed similar average sIg densities. Differences in detergent solubility, proteolytic lability, or antisera used also do not adequately account for this difference. Thus, these data indicate that radioactivity incorporated after lactoperoxidase catalyzed cell surface radioiodination may not reflect cell surface Ig density. Conclusions about cell surface density based upon relative incorporation of radioactivity should be confirmed by other approaches

  13. Initial stages of benzotriazole adsorption on the Cu(111) surface

    Science.gov (United States)

    Grillo, Federico; Tee, Daniel W.; Francis, Stephen M.; Früchtl, Herbert; Richardson, Neville V.

    2013-05-01

    Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion.Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion. Electronic supplementary information (ESI) available: Calculated IR spectra, RAIRS assignments, modeling details, statistics on diffusion, experimental details, additional STM images, movie low coverage diffusing species. See DOI: 10.1039/c3nr00724c

  14. Influence of organic surface coatings on the sorption of anticonvulsants on mineral surfaces.

    Science.gov (United States)

    Qu, Shen; Cwiertny, David M

    2013-10-01

    Here, we explore the role that sorption to mineral surfaces plays in the fate of two commonly encountered effluent-derived pharmaceuticals, the anticonvulsants phenytoin and carbamazepine. Adsorption isotherms and pH-edge experiments are consistent with electrostatics governing anticonvulsant uptake on metal oxides typically found in soil and aquifer material (e.g., Si, Al, Fe, Mn, and Ti). Appreciable, albeit limited, adsorption was observed only for phenytoin, which is anionic above pH 8.3, on the iron oxides hematite and ferrihydrite. Adsorption increased substantially in the presence of cationic and anionic surfactants, species also commonly encountered in wastewater effluent. For carbamazepine, we propose the enhanced uptake results entirely from hydrophobic interactions with apolar tails of surfactant surface coatings. For phenytoin, adsorption also arises from the ability of surfactants to alter the net charge of the mineral surface and thereby further enhance favorable electrostatic interactions with its anionic form. Collectively, our results demonstrate that although pristine mineral surfaces are likely not major sinks for phenytoin and carbamazepine in the environment, their alteration with organic matter, particularly surfactants, can considerably increase their ability to retain these emerging pollutants in subsurface systems.

  15. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    International Nuclear Information System (INIS)

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; Abild-Pedersen, Frank; Nørskov, Jens K.; Chan, Karen

    2017-01-01

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. This shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.

  16. Reforesting unused surface mined lands by replanting with native trees

    Science.gov (United States)

    Patrick N. Angel; James A. Burger; Carl E. Zipper; Scott Eggerud

    2012-01-01

    More than 600,000 ha (1.5 million ac) of mostly forested land in the Appalachian region were surface mined for coal under the Surface Mining Control and Reclamation Act. Today, these lands are largely unmanaged and covered with persistent herbaceous species, such as fescue (Festuca spp.) and sericea lespedeza (Lespedeza cuneata [Dum. Cours.] G. Don,) and a mix of...

  17. Identification of variant-specific surface proteins in Giardia muris trophozoites.

    Science.gov (United States)

    Ropolo, Andrea S; Saura, Alicia; Carranza, Pedro G; Lujan, Hugo D

    2005-08-01

    Giardia lamblia undergoes antigenic variation, a process that might allow the parasite to evade the host's immune response and adapt to different environments. Here we show that Giardia muris, a related species that naturally infects rodents, possesses multiple variant-specific surface proteins (VSPs) and expresses VSPs on its surface, suggesting that it undergoes antigenic variation similar to that of G. lamblia.

  18. Identification of Variant-Specific Surface Proteins in Giardia muris Trophozoites

    OpenAIRE

    Ropolo, Andrea S.; Saura, Alicia; Carranza, Pedro G.; Lujan, Hugo D.

    2005-01-01

    Giardia lamblia undergoes antigenic variation, a process that might allow the parasite to evade the host's immune response and adapt to different environments. Here we show that Giardia muris, a related species that naturally infects rodents, possesses multiple variant-specific surface proteins (VSPs) and expresses VSPs on its surface, suggesting that it undergoes antigenic variation similar to that of G. lamblia.

  19. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  20. Post-discharge evolution of reactive species in the water activated by a surface air plasma: a modeling study

    Science.gov (United States)

    Liu, Z. C.; Liu, D. X.; Chen, C.; Liu, Z. J.; Yang, A. J.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2018-05-01

    Plasma-activated water (PAW) has been reported to sustain a bactericidal ability for months. However, many reactive species regarded as the main antibacterial agents in PAW have short lifetimes of less than one second. In order to explain the prolonged antibacterial ability of PAW and predict how to extend its effective time, we studied the post-discharge evolution of reactive species in PAW based on a system-level model reported previously. Three common storage conditions for PAW were considered within the post-discharge time of 14 d: (I) leaving the residual gas and PAW in the sealed reactor; (II) leaving PAW in the open air; (III) sealing the container of PAW. In comparison, storage condition III was the best condition to preserve the long-lived species including H2O2 and HNO2/, whereas storage condition I was the best method to preserve the short-lived species including OH, HO2 and ONOOH/ONOO‑. It suggests that the gas–liquid mass transfer plays an important role in the evolution of reactive species. We also found that O2NOOH/O2NOO‑ had an almost one order of magnitude higher concentration and a longer residue time than those of ONOOH/ONOO‑. This distinction suggests that the biological effect of O2NOOH/O2NOO‑ may be important.

  1. Investigations Of Surface-Catalyzed Reactions In A Mars Mixture

    Science.gov (United States)

    Dougherty, Max; Owens, W.; Meyers, J.; Fletcher, D. G.

    2011-05-01

    In the design of a thermal protection system (TPS) for a planetary entry vehicle, accurate modeling of the trajectory aero-heating poses a significant challenge owing to large uncertainties in chemical processes taking place at the surface. Even for surface-catalyzed reactions, which have been investigated extensively, there is no consensus on how they should be modeled; or, in some cases, on which reactions are likely to occur. Current TPS designs for Mars missions rely on a super-catalytic boundary condition, which assumes that all dissociated species recombine to the free stream composition.While this is recognized to be the the most conservative approach, discrepancies in aero-heating measurements in ground test facilities preclude less conservative design options, resulting in an increased TPS mass at the expense of scientific pay- load.Using two-photon absorption laser induced fluorescence in a 30 kW inductively coupled plasma torch facility, preliminary studies have been performed to obtain spatially-resolved measurements of the dominant species in a plasma boundary layer for a Martian atmosphere mixture over catalytic and non-catalytic surfaces.

  2. Investigation of ion diffusion towards plasmonic surfaces

    International Nuclear Information System (INIS)

    Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.

    2013-01-01

    Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)

  3. Surface reactivity of colloidal corrosion product and alloys in PWR conditions

    International Nuclear Information System (INIS)

    Lefevre, Gregory; Leclercq, Stephanie; Cabanas, Bruna-Martin; Delaunay, Sophie; Mansour, Carine; Berger, Gilles

    2012-09-01

    The corrosion of metallic components of water circuits of Pressurized Water Reactors generates colloidal particles. These particles are transported in the circuits, they sorb dissolved species and they can deposit on alloys in given parts of the circuits. Sorption and deposition generate several technical drawbacks in both primary and secondary circuits. According to the DLVO theory, adhesion between two surfaces is controlled by electrostatic and Van der Waals forces. The latter are always attractive and does not depends on solution chemistry. On the contrary, electrostatic forces are connected to the surface charge and depend strongly on the chemical properties of the solids and on the chemistry of the solution. Depending on the relative charge of the surfaces, these forces are attractive or repulsive and can have a major effect on the deposition behavior of particles. According to the surface complexation theory, the surface charge of metallic oxides results from sorption or desorption of protons, leading to positive or negative surface sites, and thus, strongly depends on the solution pH. Dissolved species can sorb on the surface, depending on the ionic charge of these species and on the surface charge. Thus, the knowledge of the surface charge of corrosion particles and alloys, their affinity towards several ions as protons, nickel, cobalt, sulfate, or borate ions has been shown to be useful to predict the transport of the contamination in the primary circuit, or to understand the accumulation of impurities in the steam generator in the secondary circuit. At room temperature, these data can be easily measured, or found in literature. In PWR conditions (high temperature, high pressure), most of the usual protocols and commercial instruments cannot be used. For several years, collaboration between EDF R and D and CNRS has been developed to get information about the surface reactivity of iron oxides, ferrites, and alloys in such conditions. Some of the results

  4. Surface structure and tribology of legless squamate reptiles.

    Science.gov (United States)

    Abdel-Aal, Hisham A

    2018-03-01

    Squamate reptiles (around 10,000 species of snakes and lizards) comprise a myriad of distinct terrestrial vertebrates. The diversity within this biological group offers a great opportunity for customized bio-inspired solutions that address a variety of current technological problems especially within the realm of surface engineering and tribology. One subgroup within squamata is of interest in that context, namely the legless reptiles (mainly snakes and few lizards). The promise of that group lies within their functional adaptation as manifested in optimized surface designs and locomotion that is distinguished by economy of effort even when functioning within hostile tribological environments. Legless reptiles are spread over a wide range in the planet, this geographical diversity demands customized response to local habitats. Customization, in turn, is facilitated through specialized surface design features. In legless reptiles, micro elements of texture, their geometry and topological layout advance mitigation of frictional effects both in locomotion and in general function. Lately, the synergy between functional traits and intrinsic surface features has emerged as focus of research across disciplines. Many investigations have sought to characterize the structural as well as the tribological response of legless species from an engineering point of view. Despite the sizable amount of data that have accumulated in the literature over the past two decades or so, no effort to review the available information, whence this review. This manuscript, therefore, endeavors to assess available data on surface metrology and tribological behavior of legless reptiles and to define aspects of that performance necessary to formulate an advanced paradigm for bio-inspired surface engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Stomatal characterization of five species of the genus Vanilla.

    Directory of Open Access Journals (Sweden)

    Delfino Reyes-López

    2015-06-01

    Full Text Available The objective was to characterize the stomata of five species of vanilla. Throughout 2012, leaf samples of V. planifolia G. Jackson, V. pompona Schiede, V. indora Schiede, V. insignis Ames and V. odorota Presl were taken from the vanilla germplasm bank at the Benemérita Universidad Autónoma de Puebla. The stomata size was obtained considering their length and width, as well as the index and stomata number of the abaxial and adaxial leaf surfaces in a randomized complete block design with three replications. V. pompona Schiede and V. inodora Schiede showed the highest stomatal index with 8713 and 8246 stomata per mm2, respectively, followed by V. odorata Presl with 4412 stomata per mm2. V. insignis Ames and V. planifolia G. Jackson showed the lowest stomata index with 2968 and 1378 stomata per mm2, respectively, in the abaxial leaf surface, these differences were statistically significant (P≤0.05. According to the position of the leaf stomata, V. planifolia G. Jackson and V. inodora Schiede can be considered to be hypostomatics since they showed stomata only in the abaxial leaf surface. V. insignis Ames, V. inodora Schiede and V. odorata Presl. can be considered to be anfiestomatic because they showed stomata in both the abaxial and adaxial leaf surfaces. V. inodora Schiede had smaller stomata compared with the other species.That is an important feature to be included in the genetic improvement of the genus Vanilla, because due to climate change, temperature will increase and precipitation will decrease, so Vainilla will require more efficient genotypes for water use.

  6. Stomatal characterization of five species of the genus Vanilla

    International Nuclear Information System (INIS)

    Reyes-Lopez, Delfino; Quiroz-Valentin, Jonathan; Kelso-Bucio, Henry Arturo; Huerta-Lara, Manuel; Avendano-Arrazate, Carlos Hugo; Lobato-Ortiz, Ricardo

    2015-01-01

    The stomata of five species of vanilla were characterized. Throughout 2012, leaf samples of V. planifolia G. Jackson, V. pompona Schiede, V. inodora Schiede, V. insignis Ames and V. odorota Presl were taken from the vanilla germplasm bank at the Benemerita Universidad Autonoma de Puebla, throughout 2012. The stomata size was obtained considering their length and width, as well as the index and stomata number of the abaxial and adaxial leaf surfaces in a randomized complete block design with three replications. The highest stomatal index with 8713 and 8246 stomata per mm"2, was showed in V. pompona Schiede an V. inodora Schiede respectively, followed by V. odorata Presl with 4412 stomata per mm"2. The lowest stomata index with 2968 and 1378 stomata per mm"2, was showed by V. insignis Ames and V. planifolia G. Jackson respectively, in the abaxial leaf surface, these differences were statistically significant (p≤0,05). According to the position of the leaf stomata, V. planifolia G. Jackson and V. inodora Schiede can be considered to be hypostomatics since they showed stomata only in the abaxial leaf surface. V. insignis Ames, V. inodora Schiede and V. odorata Presl. can be considered to be anfiestomatic because they showed stomata in both the abaxial and adaxial leaf surfaces. V. inodora Schiede has had smaller stomata compared with the other species. That is an important feature to be included in the genetic improvement of the genus Vanilla, because due to climate change, temperature will increase and precipitation will decrease, so Vainilla will require more efficient genotypes for water use. (author) [es

  7. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1983-11-01

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  8. Low temperature surface chemistry and nanostructures

    Science.gov (United States)

    Sergeev, G. B.; Shabatina, T. I.

    2002-03-01

    The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4-10 and 70-100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.

  9. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  10. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.

    Science.gov (United States)

    Mikucki, Michael; Zhou, Y C

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  11. Facile Dehydrogenation of Ethane on the IrO2(110) Surface.

    Science.gov (United States)

    Bian, Yingxue; Kim, Minkyu; Li, Tao; Asthagiri, Aravind; Weaver, Jason F

    2018-02-21

    Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO 2 (110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO 2 (110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K. Continued heating causes as much as 40% of the dissociated ethane to dehydrogenate and desorb as ethylene near 350 K, with the remainder oxidizing to CO x species. Both TPRS and DFT show that ethylene desorption is the rate-controlling step in the conversion of ethane to ethylene on IrO 2 (110) during TPRS. Partial hydrogenation of the IrO 2 (110) surface is found to enhance ethylene production from ethane while suppressing oxidation to CO x species. DFT predicts that hydrogenation of reactive oxygen atoms of the IrO 2 (110) surface effectively deactivates these sites as H atom acceptors, and causes ethylene desorption to become favored over further dehydrogenation and oxidation of ethane-derived species. The study reveals that IrO 2 (110) exhibits an exceptional ability to promote ethane dehydrogenation to ethylene near room temperature, and provides molecular-level insights for understanding how surface properties influence selectivity toward ethylene production.

  12. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  13. Sintopy of two Tropidurus lizard species (Squamata: Tropiduridae) in a rocky Cerrado habitat in Central Brazil

    OpenAIRE

    Faria,R. G.; Araujo,A. F. B.

    2004-01-01

    We studied the ecology of Tropidurus itambere and T. oreadicus that occur syntopically in rocky habitats of Cerrado vegetation in central Brazil during the dry season (April to September 2000). The two species are ecologically similar, but somewhat differentiated in vertical microhabitat use. The two species preferred rocky surface microhabitat. Both species demonstrated a unimodal activity pattern, with a peak between 10 and 15 h. Their diets were similar in composition and prey size. The mo...

  14. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    Science.gov (United States)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  15. Morphological comparison of Astropecten cingulatus and a new species of Astropecten (Paxillosida, Astropectinidae) from the Gulf of Mexico.

    Science.gov (United States)

    Lawrence, John M; Cobb, Janessa C; Herrera, Joan C; DurÁn-gonzÁlez, Alicia; SolÍs-marÍn, Francisco Alonso

    2018-04-09

    Astropecten cingulatus is a conspicuous species, which displays a large superomarginal plate series on the abactinal surface. Herein we describe a new species from off the Texas coast that shows the superficial appearance of A. cingulatus, including these large superomarginal plates, but with armature differing from that of typological A. cingulatus. This species shows the actinal surface of the inferomarginal plates without the squamules present on A. cingulatus. In addition, the adambulacral plates possessed but a single central large spine surrounded by a circle of spines rather than spine rows. The abactinal paxillar region was also very narrow. Statistical analysis of these and other morphological characters showed the specimens differed significantly from those of A. cingulatus. The regression of the slope of R:SM# vs. R was significant but the intercept was not. Therefore the two species are indistinguishable at small sizes based on R:SM. Compared to known Atlantic Astropecten spp. these observed characters warrant the description of a new species, Astropecten karankawai, for the specimens from off the coasts of Texas and Mexico.

  16. Nucleic acid interactions with pyrite surfaces

    International Nuclear Information System (INIS)

    Mateo-Marti, E.; Briones, C.; Rogero, C.; Gomez-Navarro, C.; Methivier, Ch.; Pradier, C.M.; Martin-Gago, J.A.

    2008-01-01

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces

  17. Nucleic acid interactions with pyrite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain)], E-mail: mateome@inta.es; Briones, C.; Rogero, C. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Gomez-Navarro, C. [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain); Methivier, Ch.; Pradier, C.M. [Laboratoire de Reactivite de Surface, UMR CNRS 7609. Universite Pierre et Marie Curie, 4, Pl Jussieu, 75005-Paris (France); Martin-Gago, J.A. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain)

    2008-09-03

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces.

  18. Observations of Metallic Species in Mercury's Exosphere

    Science.gov (United States)

    Killen, Rosemary M.; Potter, Andrew E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Anderson, Carrie M.; Burger, Matthew H.

    2010-01-01

    From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.

  19. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils

    International Nuclear Information System (INIS)

    Steely, Sarah; Amarasiriwardena, Dulasiri; Xing Baoshan

    2007-01-01

    The presence of antimony compounds is often suspected in the soil of apple orchards contaminated with lead arsenate pesticide and in the soil of shooting ranges. Nitric acid (1 M) extractable Sb from the shooting range (8300 μg kg -1 ) and the apple orchard (69 μg kg -1 ) had considerably higher surface Sb levels than the control site ( -1 ), and Sb was confined to the top ∼30 cm soil layer. Sb(V) was the principal species in the shooting range and the apple orchard surface soils. Size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) analysis of humic acids isolated from the two contaminated soils demonstrated that Sb has complexed to humic acid molar mass fractions. The results also indicate that humic acids have the ability to arrest the mobility of Sb through soils and would be beneficial in converting Sb(III) to a less toxic species, Sb(V), in contaminated areas. - The soil surface and depth distribution Sb(V) and Sb(III) species in a contaminated apple orchard and a shooting range, and the effect soil humic acids on inorganic antimony species is reported

  20. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  1. Ionic interactions in electroactive self-assembled monolayers of ferrocene species

    Science.gov (United States)

    Delong, Hugh C.; Donohue, John J.; Buttry, Daniel A.

    1991-04-01

    The electrochemical and interfacial behavior of two types of electroactive self-assembled monolayer systems is investigated at gold electrodes. The first type is a ferrocene-based surfactant (a redox surfactant) derived from (dimethylamino)methylferrocene via quaternization of the amino group with various n-alkylbromides. These have a long alkyl chain with 16 or 18 carbons in the chain pendent from the cationic ammonium group. These are referred to as C16 and C18. The second type is a ferrocene-based dimeric species with a disulfide functional group capable of providing a permanent anchor to the Au electrode, thus endowing monolayers of this species with exceptional stability towards desorption. The electrochemical quartz crystal microbalance (EQM) is used to monitor the mass changes which occur at the electrode surface during the redox processes of these two species.

  2. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    Science.gov (United States)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and

  3. Macro-invertebrate decline in surface water polluted with imidacloprid.

    Directory of Open Access Journals (Sweden)

    Tessa C Van Dijk

    Full Text Available Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001 between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051. However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1 (MTR seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  4. Distribution and Diversity of Pathogenic Leptospira Species in Peri-domestic Surface Waters from South Central Chile.

    Science.gov (United States)

    Mason, Meghan R; Encina, Carolina; Sreevatsan, Srinand; Muñoz-Zanzi, Claudia

    2016-08-01

    Leptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease. Water samples (n = 104) were collected from the peri-domestic environment of 422 households from farms, rural villages, and urban slums participating in a broader study on the eco-epidemiology of leptospirosis in the Los Rios Region, Chile, between October 2010 and April 2012. The secY region of samples, previously detected as pathogenic Leptospira by PCR, was amplified and sequenced. Sequences were aligned using ClustalW in MEGA, and a minimum spanning tree was created in PHYLOViZ using the goeBURST algorithm to assess sequence similarity. Sequences from four clinical isolates, 17 rodents, and 20 reference strains were also included in the analysis. Overall, water samples contained L. interrogans, L. kirschneri, and L. weilii, with descending frequency. All species were found in each community type. The distribution of the species differed by the season in which the water samples were obtained. There was no evidence that community-level prevalence of Leptospira in dogs, rodents, or livestock influenced pathogen diversity in the water samples. This study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists.

  5. Distribution and Diversity of Pathogenic Leptospira Species in Peri-domestic Surface Waters from South Central Chile.

    Directory of Open Access Journals (Sweden)

    Meghan R Mason

    2016-08-01

    Full Text Available Leptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease.Water samples (n = 104 were collected from the peri-domestic environment of 422 households from farms, rural villages, and urban slums participating in a broader study on the eco-epidemiology of leptospirosis in the Los Rios Region, Chile, between October 2010 and April 2012. The secY region of samples, previously detected as pathogenic Leptospira by PCR, was amplified and sequenced. Sequences were aligned using ClustalW in MEGA, and a minimum spanning tree was created in PHYLOViZ using the goeBURST algorithm to assess sequence similarity. Sequences from four clinical isolates, 17 rodents, and 20 reference strains were also included in the analysis. Overall, water samples contained L. interrogans, L. kirschneri, and L. weilii, with descending frequency. All species were found in each community type. The distribution of the species differed by the season in which the water samples were obtained. There was no evidence that community-level prevalence of Leptospira in dogs, rodents, or livestock influenced pathogen diversity in the water samples.This study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists.

  6. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-10-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium (Ca) and potassium (K) to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes; solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 references.

  7. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-11-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium and potassium to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes: solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 refs.

  8. Nocardiopsis species: Incidence, ecological roles and adaptations.

    Science.gov (United States)

    Bennur, Tahsin; Kumar, Ameeta Ravi; Zinjarde, Smita; Javdekar, Vaishali

    2015-05-01

    Members of the genus Nocardiopsis are ecologically versatile and biotechnologically important. They produce a variety of bioactive compounds such as antimicrobial agents, anticancer substances, tumor inducers, toxins and immunomodulators. They also secrete novel extracellular enzymes such as amylases, chitinases, cellulases, β-glucanases, inulinases, xylanases and proteases. Nocardiopsis species are aerobic, Gram-positive, non-acid-fast, catalase-positive actinomycetes with nocardioform substrate mycelia and their aerial mycelia bear long chains of spores. Their DNA possesses high contents of guanine and cytosine. There is a marked variation in properties of the isolates obtained from different ecological niches and their products. An important feature of several species is their halophilic or halotolerant nature. They are associated with a variety of marine and terrestrial biological forms wherein they produce antibiotics and toxins that help their hosts in evading pathogens and predators. Two Nocardiopsis species, namely, N. dassonvillei and N. synnemataformans (among the thirty nine reported ones) are opportunistic human pathogens and cause mycetoma, suppurative infections and abscesses. Nocardiopsis species are present in some plants (as endophytes or surface microflora) and their rhizospheres. Here, they are reported to produce enzymes such as α-amylases and antifungal agents that are effective in warding-off plant pathogens. They are prevalent as free-living entities in terrestrial locales, indoor locations, marine ecosystems and hypersaline habitats on account of their salt-, alkali- and desiccation-resistant behavior. In such natural locations, Nocardiopsis species mainly help in recycling organic compounds. Survival under these diverse conditions is mediated by the production of extracellular enzymes, antibiotics, surfactants, and the accumulation of compatible solutes. The accommodative genomic features of Nocardiopsis species support their existence

  9. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  10. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    Science.gov (United States)

    Ayedh, H. M.; Hallén, A.; Svensson, B. G.

    2015-11-01

    The carbon vacancy (VC) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the VC-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (Ci's) and annihilation of VC's in the epi-layer "bulk". Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the VC annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating VC's. Concentrations of VC below ˜2 × 1011 cm-3 can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the VC-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote Ci-clustering and reduce dynamic defect annealing. These Ci-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced Ci injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the VC-concentration, which limit the net effect of the Ci injection, and a competition between the two processes occurs.

  11. Estimation of miniature forest parameters, species, tree shape, and distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model

    International Nuclear Information System (INIS)

    Ding, Y.; Arai, K.

    2007-01-01

    A method for estimation of forest parameters, species, tree shape, distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model is proposed. The model is verified through experiments with the miniature model of forest, tree array of relatively small size of trees. Two types of miniature trees, ellipse-looking and cone-looking canopy are examined in the experiments. It is found that the proposed model and experimental results show a coincidence so that the proposed method is validated. It is also found that estimation of tree shape, trunk tree distance as well as distinction between deciduous or coniferous trees can be done with the proposed model. Furthermore, influences due to multiple reflections between trees and interaction between trees and under-laying grass are clarified with the proposed method

  12. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions

    Science.gov (United States)

    Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-02-01

    The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation-deprotonation behavior was determined by continuous acid-base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m2/g and large numbers of surface hydroxyl functional groups (i.e. tbnd Si-OH, tbnd Fe-OH, and tbnd Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K1, log K2) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation-deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.

  13. Molecular recognition on a cavitand-functionalized silicon surface.

    Science.gov (United States)

    Biavardi, Elisa; Favazza, Maria; Motta, Alessandro; Fragalà, Ignazio L; Massera, Chiara; Prodi, Luca; Montalti, Marco; Melegari, Monica; Condorelli, Guglielmo G; Dalcanale, Enrico

    2009-06-03

    A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexation-guest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O(-) terminations on the surface replace the guests' original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.

  14. Quantum chemical molecular dynamical investigation of alkyl nitrite photo-dissociated on copper surfaces

    International Nuclear Information System (INIS)

    Wang Xiaojing; Wang Wei; Han Peilin; Kubo, Momoji; Miyamoto, Akira

    2008-01-01

    An accelerated quantum chemical molecular dynamical code 'Colors-Excite' was used to investigate the photolysis of alkyl nitrites series, RONO (R=CH 3 and C(CH 3 ) 3 ) on copper surfaces. Our calculations showed that the photo-dissociated processes are associated with the alkyl substituents of RONO when adsorbed on copper surfaces. For R=CH 3 , a two-step photolysis reaction occurred, yielding diverse intermediate products including RO radical, NO, and HNO, consistent with those reported in gas phase. While for R=C(CH 3 ) 3 , only one-step photolysis reaction occurred and gave intermediate products of RO radical and NO. Consequently, pure RO species were achieved to adsorb on metal surfaces by removing the NO species in photolysis reaction. The detailed photo-dissociated behaviors of RONO on copper surfaces with different alkyl substituents which are uncovered by the present simulation can be extended to explain the diverse dissociative mechanism experimentally observed. The quantum chemical molecular dynamical code 'Colors-Excite' is proved to be highly applicable to the photo-dissociations on metal surfaces

  15. Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry

    Science.gov (United States)

    Stantcheva, T.; Herbst, E.

    2004-08-01

    We present a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In the model, the gas-phase chemistry is treated via rate equations while the diffusive granular chemistry is treated stochastically. The two phases are coupled through accretion and evaporation. A small network of surface reactions accounts for the surface production of the stable molecules water, formaldehyde, methanol, carbon dioxide, ammonia, and methane. The calculations are run for a time of 107 years at three different temperatures: 10 K, 15 K, and 20 K. The results are compared with those produced in a totally deterministic gas-grain model that utilizes the rate equation method for both the gas-phase and surface chemistry. The results of the different models are in agreement for the abundances of the gaseous species except for later times when the surface chemistry begins to affect the gas. The agreement for the surface species, however, is somewhat mixed. The average abundances of highly reactive surface species can be orders of magnitude larger in the stochastic-deterministic model than in the purely deterministic one. For non-reactive species, the results of the models can disagree strongly at early times, but agree to well within an order of magnitude at later times for most molecules. Strong exceptions occur for CO and H2CO at 10 K, and for CO2 at 20 K. The agreement seems to be best at a temperature of 15 K. As opposed to the use of the normal rate equation method of surface chemistry, the modified rate method is in significantly better agreement with the stochastic-deterministic approach. Comparison with observations of molecular ices in dense clouds shows mixed agreement.

  16. Structural, physical and electrochemical characteristics of a vanadium oxysulfide, a cathode material for lithium batteries

    Science.gov (United States)

    Ouvrard, G.; Tchangbédji, G.; Deniard, P.; Prouzet, E.

    A vanadium oxysulfide is obtained by a reaction between water solutions of a vanadyl salt and sodium sulfide at room temperature. After drying under mild conditions, the formulation of this phase is V 2O 3S·3H 2O. Thermogravimetric analyses show that it is not possible to remove completely water without losing sulfur. This is in agreement with proton nuclear magnetic resonance experiments which prove that water molecules are tightly bonded to vanadium. Magnetic susceptibility and X-ray absorption spectroscopy measurements allow to define the oxidation states of vanadium and sulfur, (IV) and (-II) respectively. From extended X-ray absorption fine structure spectroscopy at the vanadium K edge and infrared spectroscopy, the local structure around vanadium can be defined as a distorted octahedron, with a vanadyl bond and an opposite sulfur atom. Magnetic susceptibility and X-ray absorption spectroscopy measurements on chemically lithiated compounds show a complex charge transfer from lithium to the host structure upon lithium intercalation. If it appears that vanadium atoms are reduced, a possible role of sulfur atoms in the redox process has to be considered. Cycling tests of lithium batteries whose positive consists of oxysulfide are promising with 70 cycles under a regime of {C}/{8}, without noticeable loss in capacity of 120 Ah/kg.

  17. Distinct genetic differentiation and species diversification within two marine nematodes with different habitat preference in Antarctic sediments.

    Science.gov (United States)

    Hauquier, Freija; Leliaert, Frederik; Rigaux, Annelien; Derycke, Sofie; Vanreusel, Ann

    2017-05-30

    Dispersal ability, population genetic structure and species divergence in marine nematodes are still poorly understood, especially in remote areas such as the Southern Ocean. We investigated genetic differentiation of species and populations of the free-living endobenthic nematode genera Sabatieria and Desmodora using nuclear 18S rDNA, internal transcribed spacer (ITS) rDNA, and mitochondrial cytochrome oxidase I (COI) gene sequences. Specimens were collected at continental shelf depths (200-500 m) near the Antarctic Peninsula, Scotia Arc and eastern side of the Weddell Sea. The two nematode genera co-occurred at all sampled locations, but with different vertical distribution in the sediment. A combination of phylogenetic (GMYC, Bayesian Inference, Maximum Likelihood) and population genetic (AMOVA) analyses were used for species delimitation and assessment of gene flow between sampling locations. Sequence analyses resulted in the delimitation of four divergent species lineages in Sabatieria, two of which could not be discriminated morphologically and most likely constitute cryptic species. Two species were recognised in Desmodora, one of which showed large intraspecific morphological variation. Both genera comprised species that were restricted to one side of the Weddell Sea and species that were widely spread across it. Population genetic structuring was highly significant and more pronounced in the deeper sediment-dwelling Sabatieria species, which are generally less prone to resuspension and passive dispersal in the water column than surface Desmodora species. Our results indicate that gene flow is restricted at large geographic distance in the Southern Ocean, which casts doubt on the efficiency of the Weddell gyre and Antarctic Circumpolar Current in facilitating circum-Antarctic nematode species distributions. We also show that genetic structuring and cryptic speciation can be very different in nematode species isolated from the same geographic area, but with

  18. Probing molecules on a surface by Cs+ reactive ion scattering: identification of C2Hx (x≤4) hydrocarbons

    International Nuclear Information System (INIS)

    Kang, H.; Lee, C.W.; Hwang, C.H.; Kim, C.M.

    2003-01-01

    We studied molecular species appearing in the reactions of ethylene on a Pt(1 1 1) surface by the technique of Cs + reactive ion scattering (Cs + RIS). Dehydrogenation reaction of ethylene was examined for a surface temperature range of 100-800 K, and the RIS result verified the well-known sequence of forming di-σ-bonded ethylene (-CH 2 -CH 2 -), ethylidyne (≡C-CH 3 ), CH, and then surface carbons, as the temperature increased. In particular, the intermediate species in the conversion of ethylene to ethylidyne was closely investigated, which showed the presence of an ethylidene intermediate (≡CH-CH 3 ). In a study of H/D exchange reactions between surface C 2 D 4 and H, we successfully identified the ethylenes in which several deuterium atoms were substituted by hydrogen (C 2 D 4-x H x ,x=0-4), and quantitatively determined their relative populations. These examples demonstrate the ability of the Cs + RIS method to identify small hydrocarbons and their isotope-exchanged species on surfaces

  19. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily.

    Science.gov (United States)

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-05-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella.

  20. The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface

    International Nuclear Information System (INIS)

    Ciampi, Simone; Choudhury, Moinul H.; Ahmad, Shahrul Ainliah Binti Alang; Darwish, Nadim; Brun, Anton Le; Gooding, J.Justin

    2015-01-01

    Graphical abstract: The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface. ABSTRACT: The impact of the coverage of ferrocene moieties, attached to a silicon electrode modified via hydrosilylation of a dialkyne, on the kinetics of electron transfer between the redox species and the electrode is explored. The coverage of ferrocene is controlled by varying the coupling time between azidomethylferrocene and the distal alkyne of the monolayer via the copper assisted azide-alkyne cycloaddition reaction. All other variables in the surface preparation are maintained identical. What is observed is that the higher the surface coverage of the ferrocene moieties the faster the apparent rates of electron transfer. This surface coverage-dependent kinetic effect is attributed to electrons hopping between ferrocene moieties across the redox film toward hotspots for the electron transfer event. The origin of these hotspots is tentatively suggested to result from minor amounts of oxide on the underlying silicon surface that reduce the barrier for the electron transfer.

  1. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  2. Mechanisms of nanotoxicity: generation of reactive oxygen species.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; Hwang, Huey-Min; Ray, Paresh C; Yu, Hongtao

    2014-03-01

    Nanotechnology is a rapidly developing field in the 21(st) century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS). Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium. Copyright © 2014. Published by Elsevier B.V.

  3. Mechanisms of nanotoxicity: Generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2014-03-01

    Full Text Available Nanotechnology is a rapidly developing field in the 21st century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS. Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium.

  4. Two new species and a new record of Metacirolana Kussakin, 1979 (Crustacea: Isopoda: Cirolanidae) from Indonesia.

    Science.gov (United States)

    Sidabalok, Conni M; Bruce, Niel L

    2018-01-15

    Two new species of Metacirolana from coral reefs in Indonesia are described and Metacirolana spinosa (Bruce, 1980) is recorded for the first time in Indonesia. Metacirolana lombok sp. nov. and Metacirolana mioskon sp. nov. show similarities with several other species of Metacirolana forming a species group within the genus, characterized by small body size (2.0-3.5 mm), smooth body surfaces, weakly produced rostrum, lack of dorsal carinae and abundant chromatophores.

  5. A new species of sand-dwelling catfish, with a phylogenetic diagnosis of Pygidianops Myers (Siluriformes: Trichomycteridae: Glanapteryginae

    Directory of Open Access Journals (Sweden)

    Mário C. C. de Pinna

    Full Text Available A new species of sand-dwelling catfish genus Pygidianops, P. amphioxus, is described from the Negro and lower Amazon basins. The new species differs from its three congeners in the elongate eel-like body, the short barbels, and the small caudal fin, continuous with the body, among other traits of internal anatomy. The absence of anal fin further distinguishes P. amphioxus from all other Pygidianops species except P. magoi and the presence of eyes from all except P. cuao. The new Pygidianops seems to be the sister species to P. magoi, the two species sharing a unique mesethmoid with a dorsally-bent tip lacking cornua, and a produced articular process in the palatine for the articulation with the neurocranium. Pygidianops amphioxus is a permanent and highly-specialized inhabitant of psammic environments. Additional characters are proposed as synapomorphies of Pygidianops, including a hypertrophied symphyseal joint and associated ligament in the lower jaw; an elongate, laterally-directed, process on the dorsal surface of the premaxilla; and a rotated lower jaw, where the surface normally facing laterally in other glanapterygines is instead directed ventrally. These and other characters are incorporated into a revised phylogenetic diagnosis of Pygidianops.

  6. Modification of Au and Si(111):H surfaces towards biological sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Rappich, Joerg [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institut fuer Si Photovoltaik, Berlin (Germany); Sun, Guoguang; Hinrichs, Karsten; Rosu, Dana; Esser, Norbert [ISAS-Institute for Analytical Sciences, Department Berlin (Germany); Hovestaedt, Marc; Ay, Bernhard; Volkmer, Rudolf [Institut fuer Medizinische Immunologie, Charite Berlin, Berlin (Germany); Janietz, Silvia [Fraunhofer-Institut fuer Angewandte Polymerforschung, Golm (Germany)

    2010-07-01

    Within the topics to grow functional organic surfaces for biosensors we grafted carboxylbenzene, aminobenzene and maleimidobenzene onto Au and H-terminated Si surfaces by electrochemical deposition from 4-carboxylbenzene-diazonium tetrafluoroborate (4-CBDT), 4-aminobenzene-diazonium tetrafluoroborate (4-ABDT) and 4-maleimidobenzene-diazonium tetrafluoroborate (4-MBDT).The electron injection to the diazonium compound in solution (cathodic current) leads to the formation of intermediate radicals, which further react with the surface (Au or Si:H) and the respective molecule is grafted onto the surface.The aim was to functionalise these surfaces for further reaction with corresponding amines, acids or cysteine-modified peptides. Ex-situ infrared spectroscopic ellipsometry (IRSE) was applied to inspect the surface species before and after the functionalisation.

  7. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1998-01-01

    The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...

  8. Nature and analysis of chemical species: pollution effects on surface waters and groundwater

    International Nuclear Information System (INIS)

    Young, R.H.F.

    1975-01-01

    A literature review of 103 items covers: nutrients in surface waters; runoff and waste discharges primarily from energy-intensive activities; groundwater pollution causes, effects, controls and monitoring; land and subsurface wastewater disposal; radionuclides; biological effects; thermal effluents; and biological and mathematical models for rivers

  9. X-ray photoelectron spectroscopy study of CO2 reaction with polycrystalline uranium surface

    International Nuclear Information System (INIS)

    Liu Kezhao; Yu Yong; Zhou Juesheng; Wu Sheng; Wang Xiaolin; Fu Yibei

    1999-10-01

    The adsorption of CO 2 on 'clean' depleted polycrystalline uranium metal surface has been studied by X-ray photoelectron spectroscopy (XPS) at 300 K. The 'clean' surface were prepared by Ar + ion sputtering under ultra-high vacuum (UHV) condition with a base pressure 6.7 x 10 -8 Pa. The result s shows that adsorption of CO 2 on 'clean' uranium metal took place in total dissociation, and leads to the formation of uranium dioxide, uranium carbides and free carbon. The total dissociation of CO 2 produced carbon, oxygen species, CO 2 2- and CO 3 2- species. The diffusion tendency of carbon was much stronger than that of oxygen, and led to form a carbide in oxide-metal interface while the oxygen remained on their surface as an oxide

  10. Biofilm Formation by Pseudallescheria/Scedosporium Species: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Rodrigo Rollin-Pinheiro

    2017-08-01

    Full Text Available Pseudallescheria/Scedosporium species are medically important fungi that are present in soil and human impacted areas and capable of causing a wide spectrum of diseases in humans. Although little is known about their pathogenesis, their growth process and infection routes are very similar to those of Aspergillus species, which grow as biofilms in invasive infections. All nine strains tested here displayed the ability to grow as biofilms in vitro and to produce a dense network of interconnected hyphae on both polystyrene and the surfaces of central venous catheters, but with different characteristics. Scedosporium boydii and S. aurantiacum clinical isolates were able to form biofilms faster than the corresponding environmental strains, as evidenced in kinetic assays for S. boydii and CLSM for S. aurantiacum. Biofilms formed by Pseudallescheria/Scedosporium species had significantly higher resistance to the class of antifungal azole than was observed in planktonic cells, indicating a protective role for this structure. In addition, the clinical S. aurantiacum isolate that formed the most robust biofilms was also more virulent in a larvae Galleria mellonella infection model, suggesting that the ability to form biofilms enhances virulence in Pseudallescheria/Scedosporium species.

  11. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    Science.gov (United States)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron

  12. Plasma immersion surface modification with metal ion plasma

    International Nuclear Information System (INIS)

    Brown, I.G.; Yu, K.M.; Godechot, X.

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs

  13. X-ray impact induced desorption of gases from stainless steel surfaces

    International Nuclear Information System (INIS)

    Brumbach, S.; Kaminsky, M.

    1975-01-01

    During the operation of plasma devices the interaction of energetic photons with surfaces can cause gas release by photodesorption, and thereby contribute to plasma contamination. Measurements of gases released from stainless steel surfaces were made in an ultrahigh vacuum environment using x-rays characteristic for a tungsten target bremsstrahlung spectrum for electron energies varying from 15 to 50 keV. The predominant gas species observed mass spectrometically are CO 2 (m/e = 44), CO (m/e = 28), and O 2 (m/e = 32). Mean quantum yields for the release of these species from stainless steel were determined. For example, for fresh stainless steel surfaces irradiated by x-rays produced by 50 keV electrons, a mean quantum yield for molecular CO 2 release of 3 x 10 -4 molecules per photons in a bremsstrahlung spectrum at 50 keV electron energy was observed. Based on such a quantum yield an outgassing rate was determined

  14. Infrared surface analysis using a newly developed thin-sample preparation system.

    Science.gov (United States)

    Nagai, Naoto; Nishiyama, Itsuo; Kishima, Yoshio; Iida, Katsuhiko; Mori, Koichi

    2009-01-01

    We developed a new sampling system, the Nano Catcher, for measuring the surface chemical structure of polymers or industrial products and we evaluated the performance of the system. The system can directly pick up surface species whose depth is on the order of approximately 100 nm and can easily provide a sample for a Fourier transform infrared (FT-IR) system without the necessity of passing it over to a measurement plate. The FT-IR reflection data obtained from the Nano Catcher were compared with those obtained using the attenuated total reflection (ATR) method and sampling by hand. Chemical structural analysis of a depth region from a few tens of nanometers to a few hundred nanometers can be directly performed using this system. Such depths are beyond the scope of conventional X-ray photoelectron spectroscopy (XPS) and ATR methods. We can expect the use of the Nano Catcher system to lead to a great improvement in the detection of signals of surface species in these depth regions.

  15. The nuclear question: rethinking species importance in multi-species animal groups.

    Science.gov (United States)

    Srinivasan, Umesh; Raza, Rashid Hasnain; Quader, Suhel

    2010-09-01

    1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in

  16. The use of a well-defined surface organometallic complex as a probe molecule: [(≡SiO)TaVCl2Me2] shows different isolated silanol sites on the silica surface

    KAUST Repository

    Chen, Yin

    2014-01-01

    TaVCl2Me3 reacts with silica(700) and produces two different [(≡SiO)TaVCl2Me2] surface organometallic species, suggesting a heterogeneity of the highly dehydroxylated silica surface, which was studied with a combined experimental and theoretical approach. This journal is © the Partner Organisations 2014.

  17. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  18. Effect of vanadium compounds on acid phosphatase activity

    OpenAIRE

    Vescina, Cecilia M.; Sálice, Viviana C.; Cortizo, Ana María; Etcheverry, Susana B.

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activi...

  19. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus).

    Science.gov (United States)

    Di Fino, A; Petrone, L; Aldred, N; Ederth, T; Liedberg, B; Clare, A S

    2014-02-01

    In laboratory-based biofouling assays, the influence of physico-chemical surface characteristics on barnacle settlement has been tested most frequently using the model organism Balanus amphitrite (= Amphibalanus amphitrite). Very few studies have addressed the settlement preferences of other barnacle species, such as Balanus improvisus (= Amphibalanus improvisus). This study aimed to unravel the effects of surface physico-chemical cues, in particular surface-free energy (SFE) and surface charge, on the settlement of cyprids of B. improvisus. The use of well-defined surfaces under controlled conditions further facilitates comparison of the results with recent similar data for B. amphitrite. Zero-day-old cyprids of B. improvisus were exposed to a series of model surfaces, namely self-assembled monolayers (SAMs) of alkanethiols with varying end-groups, homogenously applied to gold-coated polystyrene (PS) Petri dishes. As with B. amphitrite, settlement of cyprids of B. improvisus was influenced by both SFE and charge, with higher settlement on low-energy (hydrophobic) surfaces and negatively charged SAMs. Positively charged SAMs resulted in low settlement, with intermediate settlement on neutral SAMs of similar SFE. In conclusion, it is demonstrated that despite previous suggestions to the contrary, these two species of barnacle show similar preferences in response to SFE; they also respond similarly to charge. These findings have positive implications for the development of novel antifouling (AF) coatings and support the importance of consistency in substratum choice for assays designed to compare surface preferences of fouling organisms.

  20. Retrospective analysis of diversity and species composition of marine macroalgae of Hainan Island (China)

    Science.gov (United States)

    Titlyanov, Eduard A.; Titlyanova, Tamara V.; Xia, Bangmei; Bartsch, Inka

    2016-09-01

    Retrospective analysis of diversity and species composition of marine macroalgae of Hainan Island in the period 1933-1992 is presented in this paper. There are two extensive sample collection periods of benthic macroalgae: the early collection (EC) covers a period between the early 1930s and the 1980s before considerable urbanization and reef degradation took place and a late collection (LC) was performed in 1990/1992 during a phase of rapid urbanization. Analysis of data also including an earlier published inventory of green algae covering the same collection sites (Titlyanov et al. 2011a) revealed that the marine flora of the island comprises 426 taxa in total, with 59% red algae, 18% brown algae and 23% green algae. In total 59 species of red algae, 11 species of brown algae and 37 species of green algae sampled during the LC are new records for Hainan Island. Considerable floristic changes between EC and LC became evident. In the LC there were significantly more filamentous, tubular or fine blade-like, and often epiphytic, green and red algae with a high surface-to-volume ratio. Additionally a reduction of green, brown and red algal species with larger fleshy or foliose thalli and a low surface-to-volume ratio was observed. It is assumed that the changes reflect the degradation of the coral reef ecosystem around Hainan, which was damaged by human activities especially in the 1950s-1970s.

  1. Assessment of 210Po deposition in moss species and soil around coal-fired power plant

    International Nuclear Information System (INIS)

    Nita Salina Abu Bakar; Ahmad Saat

    2013-01-01

    In the present study, the depositions of 210 Po were assessed in the surface soil and some mosses species found in the area around coal fired power plant using radiochemical deposition and alpha spectrometry counting system. The purposes of the study were to determine activity concentrations of 210 Po in mosses and surface soil collected around coal-fired power plant in relation to trace the potential source of 210 Po and to identify most suitable moss species as a bio-indicator for 210 Po deposition. In this study, different species of mosses, Orthodontium imfractum, Campylopus serratus and Leucobryum aduncum were collected in May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in Pontian, Johor. The 210 Po activity concentrations in mosses and soil varied in the range 102 ± 4 to 174 ± 8 Bq/kg dry wt. and 37 ± 2 to 184 ± 8 Bq/kg dry wt., respectively. Corresponding highest activity concentration of 210 Po observed in L. aduncum, therefore, this finding can be concluded this species was the most suitable as a bio-indicator for 210 Po deposition. On the other hand, it is clear the accumulation of 210 Po in mosses might be supplied from various sources of atmospheric deposition such as coal-fired power plant operation, industrial, plantation, agriculture and fertilizer activities, burned fuel fossil and forest; and other potential sources. Meanwhile, the main source of 210 Po in surface soil is supplied from the in situ deposition of radon decay and its daughters in the soil itself. (author)

  2. Structure of extremely nanosized and confined In-O species in ordered porous materials

    International Nuclear Information System (INIS)

    Ramallo-Lopez, J.M.; Renteria, M.; Miro, E.E.; Requejo, F.G.; Traverse, A.

    2003-01-01

    Perturbed-angular correlation, x-ray absorption, and small-angle x-ray scattering spectroscopies were suitably combined to elucidate the local structure of highly diluted and dispersed InO x species confined in the porous of the ZSM5 zeolite. This novel approach allow us to determined the structure of extremely nanosized In-O species exchanged inside the 10-atom-ring channel of the zeolite, and to quantify the amount of In 2 O 3 crystallites deposited onto the external zeolite surface

  3. A NEW SPECIES OF THE GENUS MICROPEPLUS (COLEOPTERA: STAPHYLINIDAE: MICROPEPLINAE) IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Cai-yunZhao; Hong-zhangZhou

    2004-01-01

    This paper describes a new species, Micropeplus dentatus, sp. nov., of the rove beetle subfamily Micropeplinae (Coleoptera: Staphylinidae) from Zhejiang Province, China. The new species belongs to tesserula group of the genus Micropeplus and is characterized mainly by two discal costae on elytron and no punctures on dorsal surface, strong carina on vertex, strong pseudepipleura and its special genitalia. It is similar to Micropeplus sharpi Sawada from Japan. The type specimens are deposited at the Institute of Zoology, the Chinese Academy of Sciences.

  4. [Characteristics of foliar delta13C values of common shrub species in various microhabitats with different karst rocky desertification degrees].

    Science.gov (United States)

    Du, Xue-Lian; Wang, Shi-Jie; Rong, Li

    2011-12-01

    By measuring the foliar delta13C values of 5 common shrub species (Rhamnus davurica, Pyracantha fortuneana, Rubus biflorus, Zanthoxylum planispinum, and Viburnum utile) growing in various microhabitats in Wangjiazhai catchment, a typical karst desertification area in Guizhou Province, this paper studied the spatial heterogeneity of plant water use at niche scale and the response of the heterogeneity to different karst rocky desertification degrees. The foliar delta13C values of the shrub species in the microhabitats followed the order of stony surface > stony gully > stony crevice > soil surface, and those of the majority of the species were more negative in the microhabitat soil surface than in the others. The foliar delta13C values decreased in the sequence of V. utile > R. biflorus > Z. planispinum > P. fortuneana > R. davurica, and the mean foliar delta13C value of the shrubs and that of typical species in various microhabitats all increased with increasing karst rocky desertification degree, differed significantly among different microhabitats. It was suggested that with the increasing degree of karst rocky desertification, the structure and functions of karst habitats were impaired, microhabitats differentiated gradually, and drought degree increased.

  5. ConSpeciFix: Classifying prokaryotic species based on gene flow.

    Science.gov (United States)

    Bobay, Louis-Marie; Ellis, Brian Shin-Hua; Ochman, Howard

    2018-05-16

    Classification of prokaryotic species is usually based on sequence similarity thresholds, which are easy to apply but lack a biologically-relevant foundation. Here, we present ConSpeciFix, a program that classifies prokaryotes into species using criteria set forth by the Biological Species Concept, thereby unifying species definition in all domains of life. ConSpeciFix's webserver is freely available at www.conspecifix.com. The local version of the program can be freely downloaded from https://github.com/Bobay-Ochman/ConSpeciFix. ConSpeciFix is written in Python 2.7 and requires the following dependencies: Usearch, MCL, MAFFT and RAxML. ljbobay@uncg.edu.

  6. Coleanthus subtilis (Tratt. Seidel - a new species to the Polish vascular flora

    Directory of Open Access Journals (Sweden)

    Jerzy Fabiszewski

    2011-01-01

    Full Text Available The authors describe the locality of a so far in Poland unknown species Coleanthus subtilis. It was discovered on the Oleśnica Plateau near Wroclaw. This grass occurs on a surface of ca. 15 ha, round muddy shores of fishponds. The large stand makes the impression to be at least 50-year old. Together with the grass of our interest there grow also other, not frequent to day, species like Veronica peregrina, Myosurus minimus and Limosella aquatica. The traditional management of fishponds makes the basis of maintenance of all the species and the whole community. The constant filling with water of the reservoirs and application of fertilisers threatens the existence of the whole rare and interesting ecosystem.

  7. Pogonophryne neyelovi, a new species of Antarctic short-barbeled plunderfish (Perciformes, Notothenioidei, Artedidraconidae from the deep Ross Sea

    Directory of Open Access Journals (Sweden)

    Gennadiy Shandikov

    2013-04-01

    Full Text Available This paper continues descriptions of new deep-water Antarctic barbeled plunderfishes of the poorly known and the most speciose notothenioid genus Pogonophryne. It is based on a comprehensive collection obtained by the authors in 2009–2010 during an Antarctic toothfish (Dissostichus mawsoni fishing trip. A new species, the hopbeard plunderfish P. neyelovi, the twenty-second species of the genus, is described. The new species belongs to dorsally-spotted short-barbeled species forming the “P. mentella” group. Pogonophryne neyelovi sp.n. is characterized by the following combination of characters: a very short and small mental barbel with an ovaloid and short terminal expansion covered by flattened scale-like processes that are mostly bluntly palmate; a moderately protruding lower jaw; a high second dorsal fin almost uniformly black and lacking a sharply elevated anterior lobe; pectoral fins striped anteriorly and uniformly light posteriorly; the anal and pelvic fins light; the dorsal surface of the head and the area anterior to the first dorsal fin covered with large, irregular dark brown blotches and spots; the ventral surface of the head, breast and belly without sharp dark markings. The new species is compared to the closest species P. brevibarbata, P. tronio, and P. ventrimaculata. English vernacular names are proposed for all species of the genus.

  8. Controlled interactions between anhydrous keggin-type heteropolyacids and silica support: Preparation and characterization of well-defined silica-supported polyoxometalate species

    KAUST Repository

    Grinenval, Eva

    2010-11-11

    Anhydrous Keggin-type phosphorus heteropolyacids were deposited on partially dehydroxylated silica by using the surface organometallic chemistry (SOMC) strategy. The resulting solids were characterized by a combination of physicochemical methods including IR, Raman, 1D and 2D 1H, and 31P MAS NMR, electron microscopy experiments and density functional theory (DFT) calculations. It is shown that the main surface species is [ - Si(OH...H+)]2[H+]1[PM 12O403-] where the polyoxometalate is linked to the support by proton interaction with two silanols. Two other minor species (10% each) are formed by coordination of the polyoxometalate to the surface via the interaction between all three protons with three silanol groups or via three covalent bonds formed by dehydroxylation of the above species. Comparison of the reactivity of these solids and of compounds prepared by a classical way shows that the samples prepared by the SOMC approach contain ca. 7 times more acid sites. © 2010 American Chemical Society.

  9. Surface science studies of ethene containing model interstellar ices

    Science.gov (United States)

    Puletti, F.; Whelan, M.; Brown, W. A.

    2011-05-01

    The formation of saturated hydrocarbons in the interstellar medium (ISM) is difficult to explain only by taking into account gas phase reactions. This is mostly due to the fact that carbonium ions only react with H_2 to make unsaturated hydrocarbons, and hence no viable route to saturated hydrocarbons has been postulated to date. It is therefore likely that saturation processes occur via surface reactions that take place on interstellar dust grains. One of the species of interest in this family of reactions is C_2H_4 (ethene) which is an intermediate in several molecular formation routes (e.g. C_2H_2 → C_2H_6). To help to understand some of the surface processes involving ethene, a study of ethene deposited on a dust grain analogue surface (highly oriented pyrolytic graphite) held under ultra-high vacuum at 20 K has been performed. The adsorption and desorption of ethene has been studied both in water-free and water-dominated model interstellar ices. A combination of temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) have been used to identify the adsorbed and trapped species and to determine the kinetics of the desorption processes. In all cases, ethene is found to physisorb on the carbonaceous surface. As expected water has a very strong influence on the desorption of ethene, as previously observed for other model interstellar ice systems.

  10. A New Species of Sexually Dimorphic Brittle Star of the Genus Ophiodaphne (Echinodermata: Ophiuroidea).

    Science.gov (United States)

    Tominaga, Hideyuki; Hirose, Mamiko; Igarashi, Hikaru; Kiyomoto, Masato; Komatsu, Miéko

    2017-08-01

    We describe a new species of sexually dimorphic brittle star, Ophiodaphne spinosa, from Japan associated with the irregular sea urchin, Clypeaster japonicus based on its external morphology, and phylogenetic analyses of mitochondrial COI (cytochrome c oxidase subunit I). Females of this new species of Ophiodaphne are characterized mainly by the presence of wavy grooves on the surface of the radial shields, needle-like thorns on the oral skeletal jaw structures, and a low length-to-width ratio of the jaw angle in comparison with those of type specimens of its Ophiodaphne congeners: O. scripta, O. materna, and O. formata. A tabular key to the species characteristics of Ophiodaphne is provided. Phylogenetic analyses indicate that the new species of Ophiodaphne, O. scripta, and O. formata are monophyletic. Our results indicate that the Japanese Ophiodaphne include both the new species and O. scripta, and that there are four Ophiodaphne species of sexually dimorphic brittle stars with androphorous habit.

  11. Estimating Effects of Species Interactions on Populations of Endangered Species.

    Science.gov (United States)

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management.

  12. Plastic debris in great skua (Stercorarius skua) pellets corresponds to seabird prey species.

    Science.gov (United States)

    Hammer, S; Nager, R G; Johnson, P C D; Furness, R W; Provencher, J F

    2016-02-15

    Plastic is a common item in marine environments. Studies assessing seabird ingestion of plastics have focused on species that ingest plastics mistaken for prey items. Few studies have examined a scavenger and predatory species that are likely to ingest plastics indirectly through their prey items, such as the great skua (Stercorarius skua). We examined 1034 regurgitated pellets from a great skua colony in the Faroe Islands for plastics and found approximately 6% contained plastics. Pellets containing remains of Northern fulmars (Fulmarus glacialis) had the highest prevalence of plastic. Our findings support previous work showing that Northern fulmars have higher loads of plastics than other sympatric species. This study demonstrates that marine plastic debris is transferred from surface feeding seabird species to predatory great skuas. Examination of plastic ingestion in species that do not ingest plastics directly can provide insights into how plastic particles transfer vertically within the food web. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Late Quaternary changes in surface productivity and oxygen ...

    Indian Academy of Sciences (India)

    Changes in the abundance of selected planktic foraminiferal species and some sedimentological parameters at ODP site 728A were examined to understand the fluctuations in the surface productivity and deep sea oxygenation in the NW Arabian Sea during last ∼540 kyr. The increased relative abundances of high fertility ...

  14. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ...

  15. Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.

    Science.gov (United States)

    Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle

    2018-04-24

    Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.

  16. Confronting species distribution model predictions with species functional traits.

    Science.gov (United States)

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  17. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Numerical analysis on the ion species ratios in a steady state hydrogen plasma

    International Nuclear Information System (INIS)

    Fukumasa, Osamu; Saeki, Setsuo; Osaki, Katashi; Sakiyama, Satoshi; Itatani, Ryohei.

    1984-07-01

    Ion species ratios in a hydrogen plasma are calculated systematically as a function of plasma parameters, i.e. the electron density, the electron temperature, the pressure of hydrogen gas and the plasma volume. Furthermore, in the present analysis, the recombination factor for hydrogen atoms at the wall surface of a vacuum vessel is treated as another plasma parameter. The most significant point is that ion species ratios depend strongly not only on plasma parameters, but also on the recombination factor. The proton ratio increases with decreasing value of the recombination factor. Primary electrons also play an important role for ion species ratios, and the presence of primary electrons causes the proton ratio to decrease. (author)

  19. Colacium Minimum (Euglenophyta, A New Epiphytic Species For Asia

    Directory of Open Access Journals (Sweden)

    Wołowski Konrad

    2015-12-01

    Full Text Available Colacium minimum Fott & Komárek, known so far from a few localities in Central Europe (Czech Republic, is reported here for the first time from Asia (Thailand. This epiphytic species was found growing on eight taxa of loricated euglenoids. The process of surface colonization of Trachelomonas Ehrenb. and Strombomonas Deflandre taxa by C. minimum in natural populations is briefly discussed and originally documented using LM and SEM.

  20. Surface metal adsorption on zooplankton carapaces: implications for exposure and effects in consumer organisms

    International Nuclear Information System (INIS)

    Robinson, K.A.; Baird, D.J.; Wrona, F.J.

    2003-01-01

    Metals adsorbed to prey surfaces may be a mechanism of exposure in predators. - The current study aimed to determine the potential of two important aquatic invertebrate crustacean species, Daphnia magna and Ceriodaphnia dubia, to adsorb cadmium on to their carapaces from aqueous solution. Using the Langmuir equation to model data outputs, it was shown that cadmium readily became associated with the carapace surfaces of both species, with uptake being dependent on exposure time and concentration. Maximum carapace-adsorption potential was found to be directly related to surface area, so that at predicted carapace saturation, D. magna neonates bound approximately five times more cadmium than the smaller C. dubia neonates. However, adsorption per unit surface area was found to be similar under the same exposure conditions. Results of surface metal adsorption studies in C. dubia suggested that short term exposures to high concentrations of aqueous cadmium would lead to similar levels of adsorption as obtained with long-term exposures to low concentrations. The study illustrates that contaminants adsorbed to prey surfaces may be an important mechanism of exposure to predators, and highlights some potential problems of feeding organisms during long-term toxicity tests

  1. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  2. Surface interaction of polyimide with oxygen ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P.S.; Bhoraskar, V.N.; Mandle, A.B.; Ganeshan, V.; Bhoraskar, S.V.

    2004-01-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis

  3. Surface interaction of polyimide with oxygen ECR plasma

    Science.gov (United States)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  4. Species delimitation in the Stenocereus griseus (Cactaceae) species complex reveals a new species, S. huastecorum.

    Science.gov (United States)

    Alvarado-Sizzo, Hernán; Casas, Alejandro; Parra, Fabiola; Arreola-Nava, Hilda Julieta; Terrazas, Teresa; Sánchez, Cristian

    2018-01-01

    The Stenocereus griseus species complex (SGSC) has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  5. Species delimitation in the Stenocereus griseus (Cactaceae species complex reveals a new species, S. huastecorum.

    Directory of Open Access Journals (Sweden)

    Hernán Alvarado-Sizzo

    Full Text Available The Stenocereus griseus species complex (SGSC has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  6. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...

  7. Nanoparticles for Control of Biofilms of Acinetobacter Species

    Directory of Open Access Journals (Sweden)

    Richa Singh

    2016-05-01

    Full Text Available Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases. Various methods have been developed for treatment and control of Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative. Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections.

  8. Screening of 18 species for digestate phytodepuration.

    Science.gov (United States)

    Pavan, Francesca; Breschigliaro, Simone; Borin, Maurizio

    2015-02-01

    This experiment assesses the aptitude of 18 species in treating the digestate liquid fraction (DLF) in a floating wetland treatment system. The pilot system was created in NE Italy in 2010 and consists of a surface-flow system with 180 floating elements (Tech-IA®) vegetated with ten halophytes and eight other wetland species. The species were transplanted in July 2011 in basins filled with different proportions of DLF/water (DLF/w); periodic increasing of the DLF/w ratio was imposed after transplanting, reaching the worst conditions for plants in summer 2012 (highest EC value 7.3 mS cm/L and NH4-N content 225 mg/L). It emerged that only Cynodon dactylon, Typha latifolia, Elytrigia atherica, Halimione portulacoides, Salicornia fruticosa, Artemisia caerulescens, Spartina maritima and Puccinellia palustris were able to survive under the system conditions. Halophytes showed higher dry matter production than other plants. The best root development (up to 40-cm depth) was recorded for Calamagrostis epigejos, Phragmites australis, T. latifolia and Juncus maritimus. The highest nitrogen (10-15 g/m(2)) and phosphorus (1-4 g/m(2)) uptakes were obtained with P. palustris, Iris pseudacorus and Aster tripolium. In conclusion, two halophytes, P. palustris and E. atherica, present the highest potential to be used to treat DLF in floating wetlands.

  9. Chiritopsis longzhouensis, a New Species of Gesneriaceae from Limestone Areas in Guangxi, China

    Directory of Open Access Journals (Sweden)

    Bo Pan

    2010-11-01

    Full Text Available A new species of Gesneriaceae, Chiritopsis longzhouensis B. Pan & W. H. Wu from limestone areas in Guangxi, China, is described and illustrated. The new species is similar to C. jingxiensis Yan Liu, W. B. Xu & H. S. Gao in the corolla shape, but differs in its leaf blade 2-4 × 1.3-2.5 cm, appressed pilose on both surfaces, Cymes 5-10, 1-3-branched, each 5-25-flowered, filaments geniculate about 1 mm above base, sparsely glandular-puberulent, staminodes 3.

  10. Photogeneration of reactive transient species upon irradiation of natural water samples: Formation quantum yields in different spectral intervals, and implications for the photochemistry of surface waters.

    Science.gov (United States)

    Marchisio, Andrea; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2015-04-15

    Chromophoric dissolved organic matter (CDOM) in surface waters is a photochemical source of several transient species such as CDOM triplet states ((3)CDOM*), singlet oxygen ((1)O2) and the hydroxyl radical (OH). By irradiation of lake water samples, it is shown here that the quantum yields for the formation of these transients by CDOM vary depending on the irradiation wavelength range, in the order UVB > UVA > blue. A possible explanation is that radiation at longer wavelengths is preferentially absorbed by the larger CDOM fractions, which show lesser photoactivity compared to smaller CDOM moieties. The quantum yield variations in different spectral ranges were definitely more marked for (3)CDOM* and OH compared to (1)O2. The decrease of the quantum yields with increasing wavelength has important implications for the photochemistry of surface waters, because long-wavelength radiation penetrates deeper in water columns compared to short-wavelength radiation. The average steady-state concentrations of the transients ((3)CDOM*, (1)O2 and OH) were modelled in water columns of different depths, based on the experimentally determined wavelength trends of the formation quantum yields. Important differences were found between such modelling results and those obtained in a wavelength-independent quantum yield scenario. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Harttia merevari, a new species of catfish (Siluriformes: Loricariidae from Venezuela

    Directory of Open Access Journals (Sweden)

    Francisco Provenzano R.

    Full Text Available Harttia merevari, a new species of loricariid catfish, is described from eight specimens captured in the upper Caura River, Orinoco River basin, Venezuela. The new species is recognized by the following combination of characters: abdomen naked; two or three preanal plates; a bony plate before each branchial opening; seven lateral plates between the pectoral and pelvic fins; maxillary barbel short and attached to the oral disk by a fleshy fold; head dorsal surface and anterior portion of the body light or dark yellow with numerous, round black spots; posterior region of the body light or dark yellow with five black transverse bands, dorsal central area of the two anterior bands diffused. The discovery of this new species extends the distribution of the genus northwest to include the Orinoco River basin on the northern slope of the Guyana shield.

  12. A new species of Ituglanis (Siluriformes: Trichomycteridae from the rio Uruguai basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    Juliano Ferrer

    2017-10-01

    Full Text Available ABSTRACT A new species of Ituglanis associated to the grasslands of the Pampa biome is described from the rio Uruguai basin, southern Brazil. The new species is distinguished from its congeners by the low number of ribs and by a unique color pattern composed of an outer layer with scattered round black blotches equivalent in size to the eye circumference over a reddish brown background on the lateral surface of the body. We provide the genetic sequences of the mitochondrial gene Cytochrome c Oxydase subunit I (COI for three of the paratypes and discuss aspects about the recent discovery of the new species.

  13. Thirteen-year hardwood tree performance on a Midwest surface mine

    International Nuclear Information System (INIS)

    Ashby, W.C.; Kolar, C.A.

    1998-01-01

    Black walnut (Juglans nigra L.), sweetgum (Liquidambar styraciflua L.), tuliptree (Liriodendron tulipifera L.), white oak (Quercus alba L.), bur oak (Q. macrocarpa Michx.), and pin oak (Q. palustris Muenchh.) seedlings were planted both fall 1980 and spring 1981 on mixed overburden strip-mining banks (ungraded), mixed overburden graded to approximate original contour (AOC) (graded), mixed overburden graded to AOC wit h 60 cm of replaced pre-mining surface soil materials (topsoil), and on old fields near the strip-mine (unmined). Black walnut and pin oak were also planted as seed, with a total of 6000 seedlings/seed spots in the study. Initial species field viability ranged from 86 to 100%. With one exception, after 3 growing seasons oak seedlings had 50% or greater survival. Survival was mostly lower after 3 years with some additional mortality by years 8 and 13. Height and diameter breast height were measured after 13 years. Survival and growth of trees planted fall or spring was similar overall with variable performance by species. Seedlings of several species on the ungraded site had over 50% survival after 13 years, with fewer trees where planted as seed. Mean height of all species combined was significantly greater on the ungraded than on any other site and was lowest on the topsoil site. The unmined sites had high variability in species survival and height. Better reclamation with trees resulted from a deep, well-drained rooting medium with minimal compaction and a mineral-rich surface soil including coarse fragments over 2 mm in size for long-term productivity

  14. The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Ranjita Sengupta

    2013-01-01

    Full Text Available Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health.

  15. Save Our Species: Protecting Endangered Species from Pesticides.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This full-size poster profiles 11 wildlife species that are endangered. Color illustrations of animals and plants are accompanied by narrative describing their habitats and reasons for endangerment. The reverse side of the poster contains information on the Endangered Species Act, why protecting endangered and threatened species is important, how…

  16. Are litter decomposition and fire linked through plant species traits?

    Science.gov (United States)

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.

    Directory of Open Access Journals (Sweden)

    Tingkun Chen

    Full Text Available The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss.

  18. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.

    Science.gov (United States)

    Chen, Tingkun; Cong, Qian; Qi, Yingchun; Jin, Jingfu; Choy, Kwang-Leong

    2018-01-01

    The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss.

  19. Bone bonding at natural and biomaterial surfaces.

    Science.gov (United States)

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  20. X-ray impact induced desorption of gases from surfaces

    International Nuclear Information System (INIS)

    Brumbach, S.; Kaminsky, M.

    1976-02-01

    Measurements of gases released from 302 stainless steel and gold surfaces before and after discharge cleaning were made in ultrahigh vacuum using x-rays with an energy distribution typical of a tungsten bremsstrahlung spectrum. Similar measurements were also made for Al 2 O 3 surfaces which had not been discharge cleaned. For the non-discharge-cleaned surfaces of stainless steel, Al 2 O 3 , and gold the predominant gas species observed mass spectrometrically was CO 2 . For some stainless steel and Al 2 O 3 surfaces CO and O 2 were also readily observed. Mean quantum yields for CO, O 2 and CO 2 release from such stainless steel surfaces, for example, ranged from less than 6 x 10 -5 to 9 x 10 -4 molecules per photons in the bremsstrahlung spectrum characteristic for 50 keV electron energy. After discharge cleaning a decrease in the mean quantum yields was observed for the stainless steel and gold surfaces