WorldWideScience

Sample records for surface vacancy density

  1. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study

    Science.gov (United States)

    Han, Zongying; Chen, Haipeng; Zhou, Shixue

    2017-02-01

    First-principles calculations with the density functional theory (DFT) have been carried out to study dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces. Results show that energy barriers of 1.42 eV and 1.28 eV require to be overcome for H2 dissociation on defect-free and vacancy defective Mg (0001) surfaces respectively, indicating that reactivity of Mg (0001) surface is moderately increased due to vacancy defect. Besides, the existence of vacancy defect changes the preferential H atom diffusion entrance to the subsurface and reduces the diffusion energy barrier. An interesting remark is that the minimum energy diffusion path of H atom from magnesium surface into bulk is a spiral channel formed by staggered octahedral and tetrahedral interstitials. The diffusion barriers computed for H atom penetration from the surface into inner-layers are all less than 0.70 eV, which is much smaller than the activation energy for H2 dissociation on the Mg (0001) surface. This suggests that H2 dissociation is more likely than H diffusion to be rate-limiting step for magnesium hydrogenation.

  2. Effect of transition metal Fe adsorption on CeO2 (110) surface in the methane activation and oxygen vacancy formation: A density functional theory study

    Science.gov (United States)

    Tian, Dong; Zeng, Chunhua; Wang, Hua; Cheng, Xianming; Zheng, Yane; Xiang, Chao; Wei, Yonggang; Li, Kongzhai; Zhu, Xing

    2017-09-01

    Methane activation and oxygen vacancy formation over transition metal Fe adsorption on CeO2 (110) are studied by using the method of density functional theory (DFT) + U method. A set of model configurations are generated by placing Fe at five surface sites, viz., O-top site, O-bridge site, Ce-bridge site, Ce-top and double oxygen-bridge sites. The study shows that the energetically most favorable configuration is Fe adsorption at the double oxygen-bridge site. Based on the calculated surface, subsurface and the second oxygen vacancies formation energy with (or without) Fe adsorption, it shows that the Fe adsorption is in favor of the surface, subsurface and second oxygen vacancies formation. For the surface and subsurface oxygen vacancy on the Fe/CeO2 (110) surface, the main factor responsible for lowering of Evac is that the adsorption induces structural distortions, whereas, for the second oxygen vacancy, half can be attributed to the large structural relaxation, half can be attributed to the electronic effects. After calculating and discussing about the CH4 activation on CeO2 (110) and Fe/CeO2 (110) surface with (or without) the surface or subsurface oxygen vacancies at the possible adsorption sites, the results show that when the CH4 adsorbed on the Fe/CeO2 (110) with the surface oxygen vacancy at the Ce1 and Ce2 sites, the CH4 decomposed into the CH(ads) and H(ads), its belongs to the chemical absorption, whereas, when the CH4 adsorbed on the other possible sites, the mentioned phenomenon is not occurred, its belongs to the physical absorption. This study reveals the correlation between surface reducibility and catalytic activity for methane oxidation on cerium-based materials, which might be beneficial in developing improved catalysts for methane combustion.

  3. Periodic density functional theory study of ethylene hydrogenation over Co{sub 3}O{sub 4} (1 1 1) surface: The critical role of oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li [Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University (China); Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Zou, Ji-Jun, E-mail: jj_zou@tju.edu.cn [Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University (China); Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2016-05-15

    Highlights: • H{sub 2} dissociates in heterolytic way following H atoms migration to form O−H bond. • H{sub 2} dissociation occurs at low temperature on perfect and oxygen defective Co{sub 3}O{sub 4}. • Oxygen vacancy promotes hydrogenation thermodynamically and kinetically. • O−H bond is weakened on oxygen defective surface. • Hydrogenation requires compromise between H−H activation and O−H breakage. - Abstract: Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co{sub 3}O{sub 4} (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H{sub 2} dissociation on Co{sub 3}O{sub 4} is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co{sub 3}O{sub 4} (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of O−H bond is a crucial factor for the hydrogenation reaction which involves the breakage of O−H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of O−H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  4. Vacancy Transport and Interactions on Metal Surfaces

    Science.gov (United States)

    2014-03-06

    AFRL-OSR-VA-TR-2013-0317 VACANCY TRANSPORT AND INTERACTIONS ON METAL SURFACES Gert Ehrlich UNIVERSITY OF ILLINOIS CHAMPAIGN Final Report 03/06/2014...30, 2012 Gert Ehrlich , PI Abstract This proposal is a study of vacancy transport and vacancy interaction on metal surfaces. Adatom self...Trembułowicz, Gert Ehrlich , Grażyna Antczak,Surface diffusion of gold on quasihexagonal-reconstructed Au(100) ,Physical Review B 84 (2011) 245445-1

  5. Living on the edge : STM studies of the creation, diffusion and annihilation of surface vacancies

    NARCIS (Netherlands)

    Schoots, Koen

    2007-01-01

    This thesis describes an STM study of the creation, diffusion and annihilation of missing atoms, so-called surface vacancies, in the Cu(100) surface. Because of the extremely high mobility of surface vacancies in combination with their extremely low density, we have been forced to use tracer

  6. Surface vacancy channels through ion channeling

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, 50937 Koeln (Germany); Rosandi, Yudi; Urbassek, Herbert M. [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2009-07-01

    Damage patterns of single ion impacts on Pt(111) have been studied by scanning tunneling microscopy (STM) and molecular dynamics simulations (MD). Low temperature experiments, where surface diffusion is absent, have been performed for argon and xenon ions with energies between 1 keV and 15 keV at an angle of incidence of 86 {sup circle} measured with respect to the surface normal. Ions hitting preexisting illuminated step edges penetrate into the crystal and are guided in open crystallographic directions, one or more layers underneath the surface (subsurface channeling). In the case of argon channeling the resulting surface damage consists of adatom and vacancy pairs aligned in ion beam direction. After xenon channeling thin surface vacancy trenches along the ion trajectories - surface vacancy channels - are observed. They result from very efficient sputtering and adatom production along the ion trajectory. This phenomena is well reproduced in molecular dynamics simulations of single ion impacts at 0 K. The damage patterns of Argon and Xenon impacts can be traced back to the different energy losses of the particles in the channel. Channeling distances exceeding 1000 A for 15 keV xenon impacts are observed.

  7. Vacancy-induced magnetism in BaTiO3(001) thin films based on density functional theory.

    Science.gov (United States)

    Cao, Dan; Cai, Meng-Qiu; Hu, Wang-Yu; Yu, Ping; Huang, Hai-Tao

    2011-03-14

    The origin of magnetism induced by vacancies on BaTiO(3)(001) surfaces is investigated systematically by first-principles calculations within density-functional theory. The calculated results show that O vacancy is responsible for the magnetism of the BaO-terminated surface and the magnetism of the TiO(2)-terminated surface is induced by Ti vacancy. For the BaO-terminated surface, the magnetism mainly arises from the unpaired electrons that are localized in the O vacancy basin. In contrast, for the TiO(2)-terminated surface, the magnetism mainly originates from the partially occupied O-2p states of the first nearest neighbor O atoms surrounding the Ti vacancy. These results suggest the possibility of implementing magneto-electric coupling in conventional ferroelectric materials.

  8. Anisotropic behavior and inhomogeneity of atomic local densities of states in graphene with vacancy groups

    Directory of Open Access Journals (Sweden)

    V.V. Eremenko

    2016-06-01

    Full Text Available The electron local density of states (LDOS are calculated for graphene with isolated vacancies, divacancies and vacancy group of four nearest-neighbor vacancies. A strong anisotropy of behavior of LDOS near Fermi level is demonstrated for atoms near defect. Effect of next-to-nearest neighbor interaction on the properties of graphene with vacancies is established.

  9. A DFT study of methane activation on graphite surfaces with vacancy defects

    Institute of Scientific and Technical Information of China (English)

    Fengsi Liu; Wei Chu; Wenjing Sun; Ying Xue; Qian Jiang

    2012-01-01

    The activation of methane on graphite surfaces with monovacancies and 5-8-5 vacancies have been investigated using density functional theory.Sixteen different initial adsorption configurations were investigated to identify the most favorable activation site.It is found that methane tends to be activated on the defective graphite surfaces,and the most stable configuration is that methane activation happened in the center hole of the monovacancy site,with a reaction energy of 1.13 eV.Electron transfer and weaker electrostatic potential of the vacancy region indicate that carbon atom of methane tends to fill the vacancy and makes the system more stable.

  10. Surface effects on nitrogen vacancy centers neutralization in diamond

    OpenAIRE

    Newell, Arthur N.; Dowdell, Dontray A.; Santamore, D. H.

    2016-01-01

    The performance of nitrogen vacancy (NV$^{-}$) based magnetic sensors strongly depends on the stability of nitrogen vacancy centers near the diamond surface. The sensitivity of magnetic field detection is diminished as the NV$^{-}$ turns into the neutralized charge state NV$^{0}$. We investigate the neutralization of NV$^{-}$ and calculate the ratio of NV$^{0}$ to total NV (NV$^{-}$+NV$^{0}$) caused by a hydrogen terminated diamond with a surface water layer. We find that NV$^{-}$ neutralizat...

  11. Ab initio study of oxygen-vacancy LaAlO3(001) surface

    Institute of Scientific and Technical Information of China (English)

    Tang Jin-Long; Zhu Jun; Qin Wen-Feng; Xiong Jie; Li Yan-Rong

    2008-01-01

    Density functional theory is used to investigate the surface structures and the energies of two possible terminated LaA1O3 (001) surfaces with oxygen vacancies,i.e.LaO- and A1O2-terminated surfaces.The large displacements of ions,deviated from their crystalline sites,can lead to the formation of the surface rumpling.From thermodynamics analysis,the AIO2-terminated surface with oxygen-vacancies is less stable than the LaO-terminated one.Some states in the gap lie under the Fermi level by about-leV in the LaO-terminated surface with oxygen vacancies.For the A1O2-terminated oxygen-vacancy surface,some O 2p states move into the mid-gap region and become partially unoccupied.The two types of termination surfaces exhibit conduction related to oxygen vacancies.Our results can contribute to the application of LAO films to high dielectric constant materials.

  12. The sputter cross section of a surface-vacancy island

    Energy Technology Data Exchange (ETDEWEB)

    Rosandi, Yudi, E-mail: rosandi@physik.uni-kl.de [Department of Physics, Universitas Padjadjaran, Jatinangor, Sumedang 45363 (Indonesia); Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2011-07-15

    Using molecular-dynamics simulation we investigate the effect of surface-vacancy islands on ion-induced sputtering. As an exemplary case, the sputtering of a Pt(1 1 1) surface by 5 keV Ar{sup +} ions incident at 83{sup o} towards the surface normal is investigated. We find that only the ascending step of the island induces sputtering. Wide vacancy islands exhibit the direct-hit, indirect-hit and channeling zones previously identified for surface steps and adatom islands. A special role is played by the descending step edge. Even though it is not sputtered itself, it deflects ion trajectories and may direct them to the ascending step edge thus enhancing sputtering. We derive a simple criterion based on the shadow cone of the descending step to decide whether a vacancy island contributes to sputtering or not.

  13. Ordering of vacancies on Si(001)

    NARCIS (Netherlands)

    Zandvliet, H.J.W.

    1997-01-01

    Missing dimer vacancies are always present on the clean Si(001) surface. The vacancy density can be increased by ion bombardment (Xe+, Ar+), etching (O2, Br2, I2, etc.) or Ni contamination. The equilibrium shape at low vacancy concentrations (<0.2¿0.3 monolayers) of these vacancy islands is elongate

  14. Oxygen vacancies at the surface of SrTiO3 thin films

    Science.gov (United States)

    Silva, Alexandre R.; Dalpian, Gustavo M.

    2013-03-01

    The 2-D electron gas at the interface between LaAlO3 (LAO) and SrTiO3 (STO), two band insulators, has been the subject of intense research owing to the fact that this interface can show metallic, superconducting, and magnetic effects, properties that are absent in the bulk counterparts. The metallic behavior has also been observed at the STO surface, without the need of the oxides' interface. Although the reason of this behavior is not well defined, there are three hypotheses for this: the polar catastrophe; the oxygen vacancies produced in the experiment, and cations intermixing. In this work, first principles calculations based on the density functional theory and using hybrid functionals were performed to reveal the atomic and the electronic structure of vacancies at the (001) surface of STO films. We have analyzed both the TiO2 and SrO-terminated surfaces. For pure surfaces, we observed atomic relaxations up to the 5th atomic layer. The surface band structure of ideal STO slabs shows that the STO thin films are insulating in both terminations, but insert surface levels in the gap of bulk STO. Defective STO slabs are observed to be metallic, and we observe a strong tendency for the oxygen vacancies to migrate into the surface. We thank financial support from brazilian agencies CAPES, CNPq and FAPESP.

  15. Vacancy formation in MoO3: hybrid density functional theory and photoemission experiments

    KAUST Repository

    Salawu, Omotayo Akande

    2016-09-29

    Molybdenum oxide (MoO3) is an important material that is being considered for numerous technological applications, including catalysis and electrochromism. In the present study, we apply hybrid density functional theory to investigate O and Mo vacancies in the orthorhombic phase. We determine the vacancy formation energies of different defect sites as functions of the electron chemical potential, addressing different charge states. In addition, we investigate the consequences of defects for the material properties. Ultraviolet photoemission spectroscopy is employed to study the valence band of stoichiometric and O defective MoO3. We show that O vacancies result in occupied in-gap states.

  16. Adsorption sites of single noble metal atoms on the rutile TiO2 (1 1 0) surface influenced by different surface oxygen vacancies.

    Science.gov (United States)

    Matsunaga, Katsuyuki; Chang, Teng-Yuan; Ishikawa, Ryo; Dong, Qian; Toyoura, Kazuaki; Nakamura, Atsutomo; Ikuhara, Yuichi; Shibata, Naoya

    2016-05-05

    Atomic adsorption of Au and Pt on the rutile (1 1 0) surface was investigated by atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) measurements combined with density functional theory calculations. Au single atoms were deposited on the surface in a vacuum condition, and the observed results were compared with Pt single atoms on the same surface prepared by the same experimental manner. It was found that Au single atoms are stably adsorbed only at the bridging oxygen vacancy sites, which is quite different from Pt single atoms exhibiting the most frequently observed adsorption at the basal oxygen vacancy sites. Such a difference in oxygen-vacancy effect between Au and Pt can be explained by electronic structures of the surface vacancies as well as characters of outermost atomic orbitals of Au and Pt.

  17. Surface effects on nitrogen vacancy centers neutralization in diamond

    Science.gov (United States)

    Newell, Arthur N.; Dowdell, Dontray A.; Santamore, D. H.

    2016-11-01

    The performance of nitrogen vacancy (NV-) based magnetic sensors strongly depends on the stability of nitrogen vacancy centers near the diamond surface. The sensitivity of magnetic field detection is diminished as the NV- turns into the neutralized charge state NV0. We investigate the neutralization of NV- and calculate the ratio of NV0 to total NV (NV-+NV0) caused by a hydrogen terminated diamond with a surface water layer. We find that NV- neutralization exhibits two distinct regions: near the surface, where the NV- is completely neutralized, and in the bulk, where the neutralization ratio is inversely proportional to depth following the electrostatic force law. In addition, small changes in concentration can lead to large differences in neutralization behavior. This phenomenon allows one to carefully control the concentration to decrease the NV- neutralization. The presence of nitrogen dopant greatly reduces NV- neutralization as the nitrogen ionizes in preference to NV- neutralization at the same depth. The water layer pH also affects neutralization. If the pH is very low due to cleaning agent residue, then we see a change in the band bending and the reduction of the two-dimensional hole gas region. Finally, we find that dissolved carbon dioxide resulting from direct contact with the atmosphere at room temperature hardly affects the NV- neutralization.

  18. Elastic Softening of Surface Acoustic Wave Caused by Vacancy Orbital in Silicon Wafer

    Science.gov (United States)

    Mitsumoto, Keisuke; Akatsu, Mitsuhiro; Baba, Shotaro; Takasu, Rie; Nemoto, Yuichi; Goto, Terutaka; Yamada-Kaneta, Hiroshi; Furumura, Yuji; Saito, Hiroyuki; Kashima, Kazuhiko; Saito, Yoshihiko

    2014-03-01

    We have performed surface acoustic wave (SAW) measurements to examine vacancies in a surface layer of a boron-doped silicon wafer currently used in semiconductor industry. A SAW with a frequency of fs = 517 MHz was optimally generated by an interdigital transducer with a comb gap of w=2.5 µm on a piezoelectric ZnO film deposited on the (001) silicon surface. The SAW propagating along the [100] axis with a velocity of vs=4.967 km/s is in agreement with the Rayleigh wave, which shows an ellipsoidal trajectory motion in the displacement components ux and uz within a penetration depth of λp = 3.5 µm. The elastic constant Cs of the SAW revealed the softening of ΔCs/Cs = 1.9 × 10-4 below 2 K down to 23 mK. Applied magnetic fields of up to 2 T completely suppress the softening. The quadrupole susceptibilities based on the coupling between the electric quadrupoles Ou, Ov, and Ozx of the vacancy orbital consisting of Γ8-Γ7 states and the symmetry strains ɛu, ɛv, and ɛzx associated with the SAW account for the softening and its field dependence on Cs. We deduced a low vacancy concentration N = 3.1 × 1012/cm3 in the surface layer within λp = 3.5 µm of the silicon wafer. This result promises an innovative technology for vacancy evaluation in the fabrication of high-density semiconductor devices in industry.

  19. Tailoring oxygen vacancies at ZnO( 1 1 ¯ 00 ) surface: An ab initio study

    Science.gov (United States)

    Korir, K. K.; Catellani, A.; Cicero, G.

    2016-09-01

    Oxygen vacancies in ZnO crystals have significant impacts on its properties and applications. On the basis of ab initio results, we describe the oxygen vacancy distribution and diffusion paths away from the ZnO( 1 1 ¯ 00 ) surface, aiming to elucidate thermodynamics and kinetic stability of the vacancies and a possible control mechanism. In view of defect engineering and sensor applications, we propose efficient routes to chemically control the equilibrium concentration of the oxygen vacancies at ZnO surfaces by exposure to specific reactive gases: we show that the oxygen vacancy concentration can be increased using sulfur oxide as post-growth treatment, while under exposure to ozone, no significant amount of oxygen vacancies can be sustained on the surface.

  20. Oxygen vacancies on SrO-terminated SrTi O3(001 ) surfaces studied by scanning tunneling spectroscopy

    Science.gov (United States)

    Sitaputra, Wattaka; Sivadas, Nikhil; Skowronski, Marek; Xiao, Di; Feenstra, Randall M.

    2015-05-01

    The electronic structure of SrTi O3(001 ) surfaces was studied using scanning tunneling spectroscopy and density-functional theory. With high dynamic range measurements, an in-gap transition level was observed on SrO-terminated surfaces, at 2.7 eV above the valence band maximum. The density of centers responsible for this level was found to increase with surface segregation of oxygen vacancies and decrease with exposure to molecular oxygen. Based on these findings, the level is attributed to surface O vacancies. A level at a similar energy is predicted theoretically on SrO-terminated surfaces. For Ti O2 -terminated surfaces, no discrete in-gap state was observed, although one is predicted theoretically. This lack of signal is believed to be due to the nature of the defect wave function involved, as well as the possible influence of transport limitations in the tunneling spectroscopy measurements.

  1. Vacancy-induced in-gap states in sodium tungsten bronzes: Density functional investigations

    Science.gov (United States)

    Paul, S.; Kumari, S.; Raj, S.

    2016-05-01

    We have performed extensive ab-initio self-consistent electronic-structure calculations on WO3 and NaWO3 with single- and double-oxygen-vacancy defects within the framework of density functional theory. Our calculated density of states reveals that the in-gap states in WO3 and NaWO3 are the consequence of oxygen vacancies in the system. The evolution of the induced states occurs from the unpaired electrons donated by the oxygen vacancy. We found that the energy positions of the in-gap states are sensitive to the oxygen vacancy concentrations. The in-gap states in NaWO3 are formed close to the valence band, which are pushed towards the conduction band with the increase in oxygen vacancies, whereas the states are formed mostly in the mid-gap region in the WO3 system. Our finding can now well explain the discrepancy in experimental band dispersion measurements from ARPES with that of WO3 and NaWO3 band calculations.

  2. Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions

    Science.gov (United States)

    Vuong, A.; Trevethan, T.; Latham, C. D.; Ewels, C. P.; Erbahar, D.; Briddon, P. R.; Rayson, M. J.; Heggie, M. I.

    2017-04-01

    AA-stacked graphite and closely related structures, where carbon atoms are located in registry in adjacent graphene layers, are a feature of graphitic systems including twisted and folded bilayer graphene, and turbostratic graphite. We present the results of ab initio density functional theory calculations performed to investigate the complexes that are formed from the binding of vacancy defects across neighbouring layers in AA-stacked bilayers. As with AB stacking, the carbon atoms surrounding lattice vacancies can form interlayer structures with sp 2 bonding that are lower in energy than in-plane reconstructions. The sp 2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp 2 bonded ‘wormhole’ or tunnel defect between the layers. We also identify a new class of ‘mezzanine’ structure characterised by sp 3 interlayer bonding, resembling a prismatic vacancy loop. The V 6 hexavacancy variant, where six sp 3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA-stacked layers. Our focus is on vacancy generation and aggregation in the absence of extreme temperatures or intense beams.

  3. Complexes of silicon, vacancy, and hydrogen in diamond: A density functional study

    Science.gov (United States)

    Thiering, Gergő; Gali, Adam

    2015-10-01

    Paramagnetic luminescent point defects in diamond are increasingly important candidates for quantum information processing applications. Recently, the coherent manipulation of single silicon-vacancy defect spins has been demonstrated in chemical vapor deposited diamond samples where silicon may be introduced as a contamination in the growth process. Hydrogen impurity may simultaneously enter diamond too and form complexes with silicon-vacancy defects. However, relatively little is known about these complexes in diamond. Here we report plane-wave supercell density functional theory results on various complexes of silicon vacancy and hydrogen in diamond. We found a family of complexes of silicon, vacancies, and hydrogen atoms that are thermally stable in diamond with relatively low formation energies that might form yet unobserved or unidentified silicon-related defects. These complexes often show infrared optical transitions and are paramagnetic. We tentatively assign one of these complexes to a recently reported but yet unidentified infrared absorber center. We show that this center has a metastable triplet state and might exhibit a spin-selective decay to the ground state, thus it is an interesting candidate for quantum information processing applications. We also discuss here methodology aspects of calculating hyperfine parameters and intradefect level excitations in systems with notoriously complex electron states within hybrid density functional approach. We also demonstrate that a simplified approach using ab initio data can be very powerful to predict the relative intensities of the phonon replica associated with quasilocal vibration modes in the photoexcitation spectrum.

  4. A hybrid density functional view of native vacancies in gallium nitride.

    Science.gov (United States)

    Gillen, Roland; Robertson, John

    2013-10-09

    We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the ϵ(0| - 1) transition level as an alternative candidate for the yellow luminescence in GaN.

  5. Oxygen vacancy in N-doped Cu2O crystals:A density functional theory study

    Institute of Scientific and Technical Information of China (English)

    Li Min; Zhang Jun-Ying; Zhang Yue; Wang Tian-Min

    2012-01-01

    The N-doping effects on the electronic properties of Cu2O crystals are investigated using density functional theory.The calculated results show that N-doped Cu2O with or without oxygen vacancy exhibits different modifications of electronic band structure.In N anion-doped Cu2O,some N 2p states overlap and mix with the O 2p valence band,leading to a slight narrowing of band gap compared with the undoped Cu2O.However,it is found that the coexistence of both N impurity and oxygen vacancy contributes to band gap widening which may account for the experimentally observed optical band gap widening by N doping.

  6. Vacancy segregation in the initial oxidation stages of the TiN(100) surface.

    Science.gov (United States)

    Zimmermann, Janina; Finnis, Mike W; Ciacchi, Lucio Colombi

    2009-04-07

    The well-known corrosion resistance and biocompatibility of TiN depend on the structural and chemical properties of the stable oxide film that forms spontaneously on its surface after exposure to air. In the present work, we focus on the atomistic structure and stability of the TiN(100) surface in contact with an oxidizing atmosphere. The early oxidation stages of TiN(100) are investigated by means of first-principles molecular dynamics (FPMD). We observe selective oxidation of Ti atoms and formation of an ultrathin Ti oxide layer, while Ti vacancies are left behind at the metal/oxide interface. Within the formalism of ab initio thermodynamics we compute the segregation energies of vacancies and vacancy clusters at the metal/oxide interface, comparing the stability of the system obtained by FPMD simulations with ideally reconstructed models. We find that the localization of Ti vacancies in the thin oxide layer and at the TiN/oxide interface is thermodynamically stable and may account for the early removal of N atoms from the interface by segregation of N vacancies from the bulk reservoir. We suggest that superficial oxidation may proceed along two distinct possible pathways: a thermodynamically stable path along the potential energy minimum surface and a metastable, kinetically driven path that results from the high heat release during the dissociation of O(2).

  7. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed

    2012-04-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  8. On the efficiency of combined ion implantation for the creation of near-surface nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Favaro de Oliveira, Felipe; Momenzadeh, Seyed Ali; Antonov, Denis; Fedder, Helmut; Denisenko, Andrej [3. Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart (Germany); Wrachtrup, Joerg [3. Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-08-15

    The efficiency of co-implantation of different ion species to generate near-surface nitrogen-vacancy (NV) centers in diamond is analyzed by comparing the areal densities of NV centers corresponding to various experimental conditions. In particular, the effect of helium (6 keV He{sub 2}{sup +}) and carbon (10 keV C{sup +}) co-implantation within a wide range of ion fluences are studied. The total density of NV centers by co-implantation are shown to be basically a sum of the nitrogen-induced NV centers and those activated from residual nitrogen impurities present in the substrate (approximately 1ppb) by the excess of vacancies at the carbon- and helium-induced ion tracks. Such low efficiency of the co-implantation events is discussed considering the model of local clusters of vacancies at each implantation-induced ion track. This is also experimentally supported by the presence of a photoluminescence (PL) background related to radiation-induced defects measured within all implanted areas with high carbon and helium ion fluences. Further limits set by the annealing temperature are also discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A computational modelling study of oxygen vacancies at LaCoO3 perovskite surfaces.

    Science.gov (United States)

    Khan, S; Oldman, R J; Corà, F; Catlow, C R A; French, S A; Axon, S A

    2006-11-28

    Atomistic computational modelling of the surface structure of the catalytically-active perovskite LaCoO(3) has been undertaken in order to develop better models of the processes involved during catalytic oxidation processes. In particular, the energetics of creating oxygen ion vacancies at the surface have been investigated for the three low index faces (100), (110) and (111). Two mechanisms for vacancy creation have been considered involving dopant Sr(2+) cations at the La(3+) site and reduction of Co(3+) to Co(2+). For both mechanisms, there is a general tendency that the smaller the cation defect separation, the lower the energy of the cluster, as would be expected from simple electrostatic considerations. In addition, there are clear indications that oxygen vacancies are more easily created at the surface than in the bulk. The results also confirm that the presence of defects strongly influences crystal morphology and surface chemistry. The importance of individual crystal surfaces in catalysis is discussed in terms of the energetics for the creation of oxygen vacancies.

  10. Termination-specific study of oxygen vacancy transition levels on SrTiO3(001) surfaces by scanning tunneling spectroscopy

    Science.gov (United States)

    Sitaputra, Wattaka; Sivadas, Nikhil; Skowronski, Marek; Xiao, Di; Feenstra, Randall

    2015-03-01

    We have studied the surface electronic structure of oxygen vacancies on SrTiO3(001) surfaces using scanning tunneling spectroscopy and DFT calculations with local spin density approximation (LSDA +U). With high dynamic range measurements, a mid-gap level associated with the surface oxygen vacancies was observed for SrO-terminated surfaces. TiO2-terminated surfaces, on the other hand, did not exhibit observable mid-gap states (this lack of signal is believed to be due to the nature of defect wavefunction involved, as well as possibly involving transport limitations in the STS measurements). Both vacuum-cleaved and MBE-grown surface have been studied. For the former, the Fermi level is pinned near mid-gap owing to disorder-induced surface states. The amount of surface disorder can be controlled in the case of epitaxially grown surfaces. Rougher MBE-grown surfaces were found to exhibit similar spectral characteristics to the cleaved surfaces, while a shift of the Fermi level toward the conduction band was observed for flatter grown surfaces. Notably, with a decreasing number of disorder-induced surface states, the Fermi level is found to be pinned within the observed band of oxygen vacancy levels. This research was supported by AFOSR Grant No. FA9550-12-1-0479, and it used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy under Contract No. DEAC02-05CH11231.

  11. Unusual Fe-H bonding associated with oxygen vacancies at the (001) surface of Fe3O4

    Science.gov (United States)

    Liu, Fangyang; Chen, Chen; Guo, Hangwen; Saghayezhian, Mohammad; Wang, Gaomin; Chen, Lina; Chen, Wei; Zhang, Jiandi; Plummer, E. W.

    2017-01-01

    An unusual Fe-H bonding rather than conventional OH bonding is identified at Fe3O4 (001) surface. This abnormal behavior is associated with the oxygen vacancies which exist on the surface region but also penetrate deep into the bulk Fe3O4. In contrast, OH bonding becomes preferential as generally expected on an ozone processed surface, which has appreciably less oxygen vacancies. Such bonding site selective behavior, depending on oxygen vacancy concentrations, is further confirmed with DFT calculations. The results demonstrate an opportunity for tuning the chemical properties of oxide surfaces or oxide clusters.

  12. Trapping of hydrochloric and hydrofluoric acid at vacancies on and underneath the ice I(h) basal-plane surface.

    Science.gov (United States)

    Pinheiro Moreira, Pedro Augusto Franco; de Koning, Maurice

    2013-10-31

    We investigate the uptake of HCl and HF at lattice vacancies in ice Ih as a function of their distance to the basal-plane surface layer using density-functional theory calculations. The results for HCl display large dispersions in the binding-energy results due to the appearance of distinct dissociation states. The layer-averaged results suggest that the uptake of HCl is most favorable in the two layers just below the surface, which is consistent with available experimental indications. The behavior of HF is found to be manifestly different due to the fact that it is a weaker acid. The dispersion in the binding-energy values is significantly less compared to the case of HCl, and the average values are essentially equal to the bulk value, regardless of layer position. This suggests that, in contrast to the case of HCl, there should not be any tendency for accumulation of HF near the surface.

  13. Local excitation of surface plasmon polaritons using nitrogen-vacancy centers

    CERN Document Server

    Garcia-Ortiz, Cesar E; Bozhevolnyi, Sergey I

    2016-01-01

    Surface plasmon polaritons (SPPs) are locally excited at silver surfaces using (~100) nm-sized nanodiamonds (NDs) with multiple nitrogen-vacancy (NV) centers (~400). The fluorescence from an externally illuminated (at 532 nm) ND and from nearby NDs, which are not illuminated but produce out-of-plane scattering of SPPs excited by the illuminated ND, exhibit distinctly different wavelength spectra, showing short-wavelength filtering due to the SPP propagation loss. The results indicate that NDs with multiple NV centers can be used as efficient sub-wavelength SPP sources in planar integrated plasmonics for various applications.

  14. Adiabatic density surface, neutral density surface, potential density surface, and mixing path

    Institute of Scientific and Technical Information of China (English)

    HUANG Rui-xin

    2014-01-01

    In this paper, adiabatic density surface, neutral density surface and potential density surface are compared. The adiabatic density surface is defined as the surface on which a water parcellcan move adiabatically, without changing its potential temperature and salinity. For a water parcelltaken at a given station and pressure level, the corresponding adiabatic density surface can be determined through simple calculations. This family of surface is neutrally buoyant in the world ocean, and different from other surfaces that are not truly neutrally buoyant. In order to explore mixing path in the ocean, a mixing ratio m is introduced, which is defined as the portion of potential temperature and salinity of a water parcellthat has exchanged with the environment during a segment of migration in the ocean. Two extreme situations of mixing path in the ocean are m=0 (no mixing), which is represented by the adiabatic density curve, and m=1, where the original information is completely lost through mixing. The latter is represented by the neutral density curve. The reality lies in between, namely, 0

  15. Positron annihilation study of vacancy-type defects in Al single crystal foils with the tweed structures across the surface

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Pavel, E-mail: kpv@ispms.tsc.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Cizek, Jacub, E-mail: jcizek@mbox.troja.mff.cuni.cz; Hruska, Petr [Charles University in Prague, Praha, CZ-18000 Czech Republic (Czech Republic); Anwad, Wolfgang [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, D-01314 Germany (Germany); Bordulev, Yuri; Lider, Andrei; Laptev, Roman [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Mironov, Yuri [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The vacancy-type defects in the aluminum single crystal foils after a series of the cyclic tensions were studied using positron annihilation. Two components were identified in the positron lifetime spectra associated with the annihilation of free positrons and positrons trapped by dislocations. With increasing number of cycles the dislocation density firstly increases and reaches a maximum value at N = 10 000 cycles but then it gradually decreases and at N = 70 000 cycles falls down to the level typical for the virgin samples. The direct evidence on the formation of a two-phase system “defective near-surface layer/base Al crystal” in aluminum foils at cyclic tension was obtained using a positron beam with the variable energy.

  16. Iron-oxygen vacancy defect centers in PbTi O3 : Newman superposition model analysis and density functional calculations

    Science.gov (United States)

    Meštrić, H.; Eichel, R.-A.; Kloss, T.; Dinse, K.-P.; Laubach, So.; Laubach, St.; Schmidt, P. C.; Schönau, K. A.; Knapp, M.; Ehrenberg, H.

    2005-04-01

    The Fe3+ center in ferroelectric PbTiO3 together with an oxygen vacancy forms a charged defect associate, oriented along the crystallographic c axis. Its microscopic structure has been analyzed in detail comparing results from a semiempirical Newman superposition model analysis based on fine-structure data and from calculations using density functional theory. Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor center. The position of the iron ion in the ferroelectric phase is found to be similar to the B site in the paraelectric phase. Partial charge compensation is locally provided by a directly coordinated oxygen vacancy. Using high-resolution synchrotron powder diffraction, it was verified that lead titanate remains tetragonal down to 12K , exhibiting a c/a ratio of 1.0721.

  17. The electronic properties of an oxygen vacancy at ZrO(2)-terminated (001) surfaces of a cubic PbZrO(3): computer simulations from the first principles.

    Science.gov (United States)

    Kotomin, E A; Piskunov, S; Zhukovskii, Yu F; Eglitis, R I; Gopejenko, A; Ellis, D E

    2008-08-07

    Combining B3PW hybrid exchange-correlation functional within the density functional theory (DFT) and a supercell model, we calculated from the first principles the electronic structure of both ideal PbZrO(3) (001) surface (with ZrO(2)- and PbO-terminations) and a neutral oxygen vacancy also called the F center. The atomic relaxation and electronic density redistributions are discussed. Thermodynamic analysis of pure surfaces indicates that ZrO(2) termination is energetically more favorable than PbO-termination. The O vacancy on the ZrO(2)-surface attracts approximately 0.3 e (0.7 e in the bulk PbZrO(3)), while the remaining electron density from the missing O(2-) ion is localized mostly on atoms nearest to a vacancy. The calculated defect formation energy is smaller than in the bulk which should lead to the vacancy segregation to the surface. Unlike Ti-based perovskites, the vacancy-induced (deep) energy level lies in PbZrO(3) in the middle of the band gap.

  18. High tunability of the work function of (001) surface of ReO{sub 3} with O-vacancies: First principles analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suchitra [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Pan, Jaysree [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Waghmare, Umesh V., E-mail: waghmare@jncasr.ac.in [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-07-21

    Physical and chemical properties of transition metal oxides are central to the emerging field of oxide electronics. However, they are greatly influenced by defects, particularly, oxygen vacancies, which are always present in oxides. Here, we show how the control of oxygen vacancies at (001) surface of ReO{sub 3} can be used to tune its work function from 7 to 3 eV, based on first-principles density functional theoretical calculations of its structure, electronic and magnetic properties. The work function is shown to correlate directly with the stability of surface and exhibit a linear dependence on surface energy. We further assess the stability of ReO{sub 3} surface by determining its phonon dispersion, and explain how the surface stresses effectively strengthen structural instability leading to size dependence of its pressure dependent structural phase transitions observed experimentally. Our results highlight how significantly oxygen vacancies alter the work function of a metallic oxide and has important consequences to development of electronic devices and catalysts based on oxide heterostructures.

  19. Density functional study of NO adsorption on undefected and oxygen defective Au–BaO(1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Añez, Rafael, E-mail: ranez@ivic.gob.ve [Laboratorio de Química Física y Catálisis Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Sierraalta, Aníbal; Bastardo, Anelisse [Laboratorio de Química Física y Catálisis Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Coll, David [Laboratorio de Físico Química Teórica de Materiales, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado, 21827 Caracas (Venezuela, Bolivarian Republic of); Garcia, Belkis [Instituto Universitario de Tecnología de Valencia IUTVAL, Valencia, Edo. Carabobo (Venezuela, Bolivarian Republic of)

    2014-07-01

    A periodic density functional approach has been used in order to explore the interaction of NO with undoped and Au doped BaO(1 0 0) surface. Due to oxygen vacancies increase the interaction between the doping metal and the surface, F{sub S} and F{sub S}{sup +} vacancies were studied and compared with the results obtained on the undefected doped BaO(1 0 0). Our results indicate that the high basicity of the BaO surface, besides the electron density changes produced by the oxygen vacancies, modify considerably how the Au atom interacts with the surface increasing the ionic character of the interaction. F{sub S} vacancy shows to be a promise center to activate de NO bond on the BaO(1 0 0) surface.

  20. One-dimensional diffusion of vacancies on an Sr/Si(100)-c(2 × 4)surface

    Institute of Scientific and Technical Information of China (English)

    Yang Jing-Jing; Du Wen-Han

    2013-01-01

    An Sr/Si(100)-c(2 × 4) surface is investigated by high-resolution scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS).The semiconductor property of this surface is confirmed by STS.The STM images of this surface shows that it is bias-voltage dependent and an atomic resolution image can be obtained at an empty state under a bias voltage of 1.5 V.Furthermore,one-dimensional (1D) diffusion of vacancies can be found in the room-temperature STM images.Sr vacancies diffuse along the valley channels,which are constructed by silicon dimers in the surface.Weak interaction between Sr and silicon dimers,low metal coverage,surface vacancy,and energy of thermal fluctuation at room temperature all contribute to this 1D diffusion.

  1. ANALYSIS OF SURFACE SINK OF EXPLORATION VACANCY IN GOLD MINING AREA OF ZHAOYUAN CTIY BASED ON RS AND GIS

    Institute of Scientific and Technical Information of China (English)

    WU Quan-yuan; AN Guo-qiang; BAO Wen-dong; ZHANG Zu-lu; XU Qiu-xiao; FANG Xue-mi

    2005-01-01

    Surface sink is a main geological calamity of gold mining areas and a main factor to restrict economic sustainable development of mining zone. Based on former investigations, this article draws the environment information of surface sink of exploration vacancy in gold mining area of Zhaoyuan City, Shangdong Province by RS technology. Through spatial simulation analysis and expert diagnoses on the basis of GIS technology, the article affirms the inducement factors of the surface sink. Then using these factors as distinguishing ones the authors prognosticate the criticality of other exploration vacancies. The results indicate that the surface sink area of study area in Zhaoyuan City, has already come to 0.78km2 and it is forecasted that 0.97km2 of the exploration vacancy belongs to high danger area. Decisive measures need taking in order to prevent this crucial problem. Another 1.57km2 of the exploration vacancies belongs to middle danger area, which will sink when meeting some inducing factors, such as earthquake. Still another 1.53kmn2 of the exploration vacancies belongs to low danger area that can not lead to surface sink when meeting common inducing factors.

  2. Active Free Surface Density Maps

    Science.gov (United States)

    Çelen, S.

    2016-10-01

    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  3. Nucleation and mobility model of Agn clusters adsorbed on perfect and oxygen vacancy MgO surfaces.

    Science.gov (United States)

    Liu, Yongfei; Wang, Yan; Chen, Guangju

    2011-05-01

    The structures and energy properties for Ag(n) (n = 1-8) metal clusters adsorbed on the perfect and oxygen vacancy MgO surfaces have been studied by using the DFT/UB3LYP method with an embedded cluster model. The nucleation and mobility model for the Ag(n) (n = 1-8) clusters on the perfect and oxygen vacancy MgO(100) surfaces was investigated. The results show that the Ag atoms locate initially at the surface oxygen vacancy sites; then, with the growth of Ag cluster sizes, the large Ag clusters move possibly out of the vacancy sites by a rolling model, and diffuse on the MgO surface under a certain temperature condition. The relative energies needed for moving out of the oxygen vacancy region for the adsorbed Ag(n) clusters with the rolling model have been predicted. The even-odd oscillation behaviors for the cohesive energies, nucleation energies, first ionization potentials and HOMO-LUMO gaps of the adsorbed Ag(n) clusters with the variation of cluster sizes have also been discussed.

  4. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    CERN Document Server

    Kumar, Shailesh; Garcia-Ortiz, Cesar E; Andersen, Sebastian K H; Roberts, Alexander S; Radko, Ilya P; Smith, Cameron L C; Kristensen, Anders; Bozhevolnyi, Sergey I

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the fir...

  5. Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces.

    Science.gov (United States)

    Singh, Sonal; Catledge, Shane A

    2013-01-28

    Fluorescent nanodiamonds were produced by incorporation of silicon-vacancy (Si-V) defect centers in as-received diamonds of averaged size ∼255 nm using microwave plasma chemical vapor deposition. The potential for further enhancement of Si-V emission in nanodiamonds (NDs) is demonstrated through controlled nitrogen doping by adding varying amounts of N(2) in a H(2) + CH(4) feedgas mixture. Nitrogen doping promoted strong narrow-band (FWHM ∼ 10 nm) emission from the Si-V defects in NDs, as confirmed by room temperature photoluminescence. At low levels, isolated substitutional nitrogen in {100} growth sectors is believed to act as a donor to increase the population of optically active (Si-V)(-) at the expense of optically inactive Si-V defects, thus increasing the observed luminescence from this center. At higher levels, clustered nitrogen leads to deterioration of diamond quality with twinning and increased surface roughness primarily on {111} faces, leading to a quenching of the Si-V luminescence. Enhancement of the Si-V defect through controlled nitrogen doping offers a viable alternative to nitrogen-vacancy defects in biolabeling/sensing applications involving sub-10 nm diamonds for which luminescent activity and stability are reportedly poor.

  6. Density functional study on the heterogeneous oxidation of NO over α-Fe2O3 catalyst by H2O2: Effect of oxygen vacancy

    Science.gov (United States)

    Song, Zijian; Wang, Ben; Yu, Jie; Ma, Chuan; Zhou, Changsong; Chen, Tao; Yan, Qianqian; Wang, Ke; Sun, Lushi

    2017-08-01

    Catalytic oxidation with H2O2 is a promising method for NOx emission control in coal-fired power plants. Hematite-based catalysts are attracting increased attention because of their surface redox reactivity. To elucidate the NO oxidation mechanism on α-Fe2O3 surfaces, density functional theory (DFT) calculations were conducted by investigating the adsorption characteristics of nitric oxide (NO) and hydrogen peroxide (H2O2) on perfect and oxygen defect α-Fe2O3 (0 0 1) surfaces. Results show that NO was molecularly adsorbed on two kinds of surfaces. H2O2 adsorption on perfect surface was also in a molecular form; however, H2O2 dissociation occurred on oxygen defect α-Fe2O3 (0 0 1) surface. The adsorption intensities of the two gas molecules in perfect α-Fe2O3 (0 0 1) surface followed the order NO > H2O2, and the opposite was true for the oxygen defect α-Fe2O3 (0 0 1). Oxygen vacancy remarkably enhanced the adsorption intensities of NO and H2O2 and promoted H2O2 decomposition on catalyst surface. As an oxidative product of NO, HNO2 was synthesized when NO and H2O2 co-adsorbed on the oxygen defect α-Fe2O3 (0 0 1) surface. Analyses of Mulliken population, electron density difference, and partial density of states showed that H2O2 decomposition followed the Haber-Weiss mechanism. The trends of equilibrium constants suggested that NO adsorption on α-Fe2O3 (0 0 1) surface was more favorable at low than at high temperatures, whereas H2O2 adsorption was favorable between 375 and 450 K. These calculations results well agreed with the experimental ones and further elucidates the reaction mechanisms.

  7. Zinc surface complexes on birnessite: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison

    2009-01-05

    Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.

  8. Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces.

    Science.gov (United States)

    Kumar, Santosh; Schelling, Patrick K

    2006-11-28

    We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces for 0.5 and 1.0 ML coverages using density functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at the stoichiometric ceria (111) surface. We find that single hydrogen bonds between the water and the oxide surface are favored in all cases. At stoichiometric surfaces, the water adsorption energy depends rather weakly on coverage. We predict that the observed coverage dependence of the water adsorption energy at stoichiometric surfaces is likely the result of dipole-dipole interactions between adsorbed water molecules. When oxygen vacancies are introduced in various surface layers, water molecules are attracted more strongly to the surface. We find that it is very slightly energetically favorable for adsorbed water to oxidized the reduced (111) surface with the evolution of H(2). In the event that water does not oxidize the surface, we predict that the effective attractive water-vacancy interaction will result in a significant enhancement of the vacancy concentration at the surface in agreement with experimental observations. Finally, we present our results in the context of recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface.

  9. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  10. Mobility-electron density relation probed via controlled oxygen vacancy doping in epitaxial BaSnO3

    Directory of Open Access Journals (Sweden)

    Koustav Ganguly

    2017-05-01

    Full Text Available The recently discovered high room temperature mobility in wide band gap semiconducting BaSnO3 is of exceptional interest for perovskite oxide heterostructures. Critical open issues with epitaxial films include determination of the optimal dopant and understanding the mobility-electron density (μ-n relation. These are addressed here through a transport study of BaSnO3(001 films with oxygen vacancy doping controlled via variable temperature vacuum annealing. Room temperature n can be tuned from 5 × 1019 cm−3 to as low as 2 × 1017 cm−3, which is shown to drive a weak- to strong-localization transition, a 104-fold increase in resistivity, and a factor of 28 change in μ. The data reveal μ ∝ n0.65 scaling over the entire n range probed, important information for understanding mobility-limiting scattering mechanisms.

  11. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  12. Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles

    Institute of Scientific and Technical Information of China (English)

    JING; Liqiang; YUAN; Fulong; HOU; Haige; XIN; Baifu; CAI; W

    2005-01-01

    The ZnO nanoparticles are prepared by a precipitation process, and also are characterized by means of the modern testing techniques such as XPS, ESR, SPS and PL. The activity of the as-prepared ZnO is evaluated in the photocatalytic oxidation of gas phase n-C7H16. The relationships of surface oxygen vacancies (SOV) with photoluminescence (PL) and photocatalytic performance are discussed in details. The results show that the smaller the particle size, the larger the SOV content, the stronger the PL signal, the higher the photocatalytic activity, indicating that the SOV, PL and photocatalytic activity have inherent relationships. This was because of the reasons that the PL signal is attributed to the free and binding excitons resulting from the SOV, while the SOV is favorable for a photocatalytic oxidation reaction since the SOV can easily capture the photoinduced electrons, and the captured electrons had strong interactions with the adsorbed oxygen. In addition, the surface states of ZnO nanoparticles, arising from the SOV and oxygen species, are very abundant.

  13. Vacancy diffusion in the Cu( 0 0 1 ) surface II: Random walk theory

    Science.gov (United States)

    Somfai, E.; van Gastel, R.; van Albada, S. B.; van Saarloos, W.; Frenken, J. W. M.

    2002-12-01

    We develop a version of the vacancy mediated tracer diffusion model, which follows the properties of the physical system of In atoms diffusing within the top layer of Cu(0 0 1) terraces. This model differs from the classical tracer diffusion problem in that (i) the lattice is finite, (ii) the boundary is a trap for the vacancy, and (iii) the diffusion rate of the vacancy is different, in our case strongly enhanced, in the neighborhood of the tracer atom. A simple continuum solution is formulated for this problem, which together with the numerical solution of the discrete model compares well with our experimental results.

  14. Oxygen vacancy origin of the surface band-gap state of TiO2(110).

    Science.gov (United States)

    Yim, C M; Pang, C L; Thornton, G

    2010-01-22

    Scanning tunneling microscopy and photoemission spectroscopy have been used to determine the origin of the band-gap state in rutile TiO2(110). This state has long been attributed to oxygen vacancies (O{b} vac). However, recently an alternative origin has been suggested, namely, subsurface interstitial Ti species. Here, we use electron bombardment to vary the O{b} vac density while monitoring the band-gap state with photoemission spectroscopy. Our results show that O{b} vac make the dominant contribution to the photoemission peak and that its magnitude is directly proportional to the O{b} vac density.

  15. Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La(1₋x)SrxFe(1₋y)CoyO(3₋δ) perovskite oxides for CO2 conversion

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Debtanu; Daza, Yolanda A.; Yung, Matthew M.; Kuhn, John N.; Bhethanabotla, Venkat R.

    2016-01-01

    Density functional theory (DFT) based investigation of two parameters of prime interest -- oxygen vacancy and surface terminations along (100) and (110) planes -- has been conducted for La(1-x)SrxFe(1-y)CoyO(3-..delta..) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the 'A' site and 'B' site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO2 adsorption strength. The theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography.

  16. Room-temperature vacancy migration in crystalline Si from an ion-implanted surface layer

    DEFF Research Database (Denmark)

    Larsen, Arne Nylandsted; Christensen, Carsten; Petersen, Jon Wulff

    1999-01-01

    examined, the vacancies migrate to a maximum depth of about 1 µm and at least one vacancy per implanted Ge ion migrates into the silicon crystal. The annealing of the E centers is accompanied, in an almost one-to-one fashion, by the appearance of a new DLTS line corresponding to a level at EC......–Et[approximate]0.15 eV that has donor character. It is argued that the center associated with this line is most probably the P2–V complex; it anneals at about 550 K. A lower limit of the RT-diffusion coefficient of the doubly charged, negative vacancy is estimated to be 4×10–11 cm2/s. ©1999 American Institute...

  17. Bonding Character and Formation Energy of Point Defects of He and Vacancy on (001) Surface of bcc Iron by First Principle Calculations

    Institute of Scientific and Technical Information of China (English)

    Jun CAI; Daogang LU

    2013-01-01

    The structure and energy of He impurities and vacancy on (001) surface of bcc iron are investigated by an ab initio method.Three cases for stabilities of a He atom at the surface are found: some of He atoms at surface atomic layers (SAL) relax into vacuum gap; some of surface He atoms at octahedral interstitial site relax into more stable tetrahedral interstitial site; some of surface He atoms still stay at tetrahedral interstitial site.The un-stability of the He atom at the surface system can be explained by deformation mechanism of charge densities and electronic densities of states.It is found that formation energy of the point defects from the topmost SAL to bulk-like atomic layer increase gradually,for example,the formation energies of a monovacancy at the first five topmost SALs are equal to 0.33,1.56,2.04,2.02 and 2.11 eV,respectively.The magnetic moments of Fe atoms in the surface atomic layers are also calculated.

  18. Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles

    DEFF Research Database (Denmark)

    Hellman, Anders; Iandolo, Beniamino; Wickman, Bjorn

    2015-01-01

    oxidation measurements conducted on thin-film hematite anodes, resulted in a measured onset potential of 1.66 V vs. RHE. Furthermore, the threshold potential between the hydroxyl- and oxygen-terminated hematite was determined as a function of pH. The results indicate that electrochemical water oxidation......The oxygen evolution reaction on hydroxyl- and oxygen-terminated hematite was investigated using first-principle calculations within a theoretical electrochemical framework. Both pristine hematite and hematite containing oxygen vacancies were considered. The onset potential was determined to be 1.......79 V and 2.09 V vs. the reversible hydrogen electrode (RHE) for the pristine hydroxyl- and oxygen-terminated hematite, respectively. The presence of oxygen vacancies in the hematite surface resulted in pronounced shifts of the onset potential to 3.09 V and 1.83 V. respectively. Electrochemical...

  19. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum- information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are e...

  20. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Larsen Lausen, Jens; García Ortíz, César Eduardo;

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs...

  1. Preparation of clean surfaces and Se vacancy formation in Bi2Se3 by ion bombardment and annealing

    Science.gov (United States)

    Zhou, Weimin; Zhu, Haoshan; Valles, Connie M.; Yarmoff, Jory A.

    2017-08-01

    Bismuth Selenide (Bi2Se3) is a topological insulator (TI) with a structure consisting of stacked quintuple layers. Single crystal surfaces are commonly prepared by mechanical cleaving. This work explores the use of low energy Ar+ ion bombardment and annealing (IBA) as an alternative method to produce reproducible and stable Bi2Se3 surfaces under ultra-high vacuum (UHV). It is found that a clean and well-ordered surface can be prepared by a single cycle of 1 keV Ar+ ion bombardment and 30 min of annealing. Low energy electron diffraction (LEED) and detailed low energy ion scattering (LEIS) measurements show no differences between IBA-prepared surfaces and those prepared by in situ cleaving in UHV. Analysis of the LEED patterns shows that the optimal annealing temperature is 450 °C. Angular LEIS scans reveal the formation of surface Se vacancies when the annealing temperature exceeds 520 °C.

  2. Effect of a radical exposure nitridation surface on the charge stability of shallow nitrogen-vacancy centers in diamond

    Science.gov (United States)

    Kageura, Taisuke; Kato, Kanami; Yamano, Hayate; Suaebah, Evi; Kajiya, Miki; Kawai, Sora; Inaba, Masafumi; Tanii, Takashi; Haruyama, Moriyoshi; Yamada, Keisuke; Onoda, Shinobu; Kada, Wataru; Hanaizumi, Osamu; Teraji, Tokuyuki; Isoya, Junichi; Kono, Shozo; Kawarada, Hiroshi

    2017-05-01

    A nitridation process of a diamond surface with nitrogen radical exposure far from the radio-frequency plasma for the stabilization of a negatively charged nitrogen-vacancy (NV-) centers near the surface is presented. At a nitrogen coverage of as high as 0.9 monolayers, high average Rabi contrasts of 0.40 ± 0.06 and 0.46 ± 0.03 have been obtained for single NV- centers formed by shallow nitrogen implantation with acceleration voltages of 1 and 2 keV, respectively. This indicates that nitrogen termination by a radical exposure process produces an electric charge state suitable for single NV- centers near the surface compared with the states obtained for alternatively terminated surfaces.

  3. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)

    DEFF Research Database (Denmark)

    Schaub, R.; Thostrup, P.; Lopez, Nuria

    2001-01-01

    Through an interplay between scanning tunneling microscopy experiments and density functional theory calculations, we determine unambiguously the active surface site responsible for the dissociation of water molecules adsorbed on rutile TiO2(110). Oxygen vacancies in the surface layer are shown...... to dissociate H2O through the transfer of one proton to a nearby oxygen atom, forming two hydroxyl groups for every vacancy. The amount of water dissociation is limited by the density of oxygen vacancies present on the clean surface exclusively. The dissociation process sets in as soon as molecular water...

  4. Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect

    Science.gov (United States)

    Li, Yingying; Wang, Changhua; Zheng, Han; Wan, Fangxu; Yu, Fei; Zhang, Xintong; Liu, Yichun

    2017-01-01

    Photothermooxidation has demonstrated a high efficiency in the removal of volatile organic compounds in air. Among photothermocatalysts, attention is presently focused on composites of noble metal/metal oxide or metal oxide/metal oxide. Instead, in this work, we present a case of single oxide WO3 subjected to hydrogen treatment as photothermocatalyst. With the increase of hydrogen treatment temperature, the color of WO3 changes from yellow to blue to dark blue and a phase transition from WO3 to WO2.72 to WO2 is accompanied, suggesting an increase of concentration of oxygen vacancy. Photothermocatalytic test against degradation of gaseous acetaldehyde at 60 °C under UV light shows that WO3-x sample with low concentration of oxygen vacancy displays the most significant synergetic effect between photocatalysis and thermocatalysis. Its photothermocatalytic activity in terms of CO2 evolution rate is 5.2 times higher than that of photocatalytic activity. However, WO3-WO2.72 and WO2 with high degree of oxygen deficiency show insignificant synergetic effect between photocatalysis and thermocatalysis. The reason for the different synergistic effect over above samples is believed to lie in balance between decreased activation energy of lattice oxygen and recombination of photogenerated electrons and holes induced by oxygen deficiency.

  5. Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal

    Science.gov (United States)

    Guo, Jun-Hong; Li, Ting-Hui; Hu, Fang-Ren; Liu, Li-Zhe

    2016-12-01

    Oxygen vacancies (OVs) play a critical role in the physical properties and applications of titanium dioxide nanostructures, which are widely used in electrochemistry and photo catalysis nowadays. In this work, OVs were artificially introduced in the surface of a pure TiO2 single crystal by pulsed laser irradiation. Raman spectra showed that the intensity of Eg mode was enhanced. Theoretical calculations disclose that this was caused by the strong coupling effect between the phonon vibration and plasmon induced by the OVs-related surface deformation, and good agreement was achieved between the experiments and theory. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574080, 11404162, 61505085, and 61264008) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130549).

  6. Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface

    Science.gov (United States)

    Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.

    2015-03-01

    We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles

  7. Surface current density K: an introduction

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The author discusses the vector surface of current density K used in electrical insulation studies. K is related to the vector tangential electric field Kt at the surface of a body by the vector equation K=ΓE t where Γ represents the surface conductivity. The author derives a surface continuity...... equation that represents the boundary condition which the potential distributions in the adjoining media must fulfill. The volume current may be small in comparison to the surface current, and consequently in deriving the potential solutions the first term in this equation can sometimes be neglected....

  8. Comparative study of the surface layer density of liquid surfaces

    Science.gov (United States)

    Chacón, E.; Fernández, E. M.; Duque, D.; Delgado-Buscalioni, R.; Tarazona, P.

    2009-11-01

    Capillary wave fluctuations blur the inherent structure of liquid surfaces in computer simulations. The intrinsic sampling method subtracts capillary wave fluctuations and yields the intrinsic surface structure, leading to a generic picture of the liquid surface. The most relevant magnitude of the method is the surface layer density ns that may be consistently determined from different properties: the layering structure of the intrinsic density profiles, the turnover rate for surface layer particles, and the hydrodynamic damping rate of capillary waves. The good agreement among these procedures provides evidence for the physical consistency of the surface layering hypothesis, as an inherent physical property of the liquid surfaces. The dependence of the surface compactness, roughness, and exchange rate with temperature is analyzed for several molecular interaction models.

  9. First principles investigations of the influence of O-adsorption on the structural and electronic properties of TiC(111) surfaces with vacancies

    Science.gov (United States)

    Ilyasov, Victor V.; Pham, Khang D.; Yalovega, Galina E.; Ershov, Igor V.; Ilyasov, Alexey V.; Nguyen, Chuong V.

    2016-07-01

    We used ab initio calculations to systematically investigate the adsorption of atomic oxygen on non-stoichiometric polar TiC(111) and Ti xC y(111) with Ti/C vacancies surface simulating its potential tructions with laser radiation. Local atomic structures of O/Ti xC y(111) polar surfaces were studied in the selected models as well as their thermodynamic and electronic properties based on the density functional theory. The bond length and adsorption energy for various reconstructions of the O/Ti xC y(111) surface atomic structure were established. We also have examined the effects of oxygen adsorption upon the band and electron spectra of TiC(111) surface in its various reconstructions. We have established a correlation between the energy level of flat bands (- 5.1 eV and - 5.7 eV) responsible for the doublet of singular peaks corresponding to partial densities of oxygen 2p electrons and the energy of oxygen adsorption in non-stoichiometric O/TiC y(111) systems. Effective charges of the oxygen atom and the titanium and carbon atoms nearest to it were identified in the examined adsorption models. We have established charge transfer from titanium atom to oxygen and carbon atoms determined by the reconstruction of local atomic and electronic structures. Charge transfer correlates with the electronegativity values of titanium, carbon, and oxygen atoms, and chemisorption processes. Calculated values of structural parameters in the studied models of ultrathin O/TiC(111) and O/Ti xC y(111) films correlate well with experimental findings and other theoretical results.

  10. Sensor-Free Surface Density Detector

    Science.gov (United States)

    Wu, Huixuan

    2016-11-01

    We have developed an optical-based method to measure the absolute air density on a wall surface in compressible turbulent boundary layers. The temporal resolution can be higher than 1MHz, and the spatial resolution can research 10 micron. For isothermal flows, our system can also be used to obtain the wall pressure distributions or volume-ratio of two-species gas. It is a powerful tool for observing turbulent fluctuations and flow separations in sub-, trans-, and supersonic airflows. The working principle of our method is to detect the air density by measuring the refractive index, which linearly depends on density and determines the transmission coefficient at the interface. For single- or multiple-point measurements, we do not need to install sensors on the wall surface, which is a big advantage compared to conventional methods. In 2D cases, a layer of anti-reflection coating is needed. The optical measurement range is not limited by the surface material or sensor. These advantages make our method a good complement or better alternative to the other approaches, such as focused laser differential interferometry technique, which provides density gradient, and pressure (temperature) sensitive paints, which depends significantly on the material properties.

  11. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  12. Leveraging zinc interstitials and oxygen vacancies for sensitive biomolecule detection through selective surface functionalization

    Science.gov (United States)

    Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Chaudhry, Shajee; Prasad, Shalini

    2015-03-01

    In this study, functionally engineered EIS technique was implemented to investigate the influence of surface functionalization on sensitivity of biomolecule detection using nanostructured ZnO platform. Organic molecules with thiol and carboxylic functional groups were chosen to control biomolecule immobilization on zinc and oxygen-terminated 2D planar and 1D nanostructured ZnO surfaces. The amount of functionalization and its influence on charge perturbations at the ZnO-electrolyte interface were studied using fluorescence and EIS measurements. We observed the dependence of charge transfer on both the polarity of platform and concentration of cross-linker molecules. Such selectively modified surfaces were used for detection of cortisol, a major stress indicator. Results demonstrated preferential binding of thiol groups to Zn terminations and thus leveraging ZnO interstitials increases the sensitivity of detection over larger dynamic range with detection limit at 10fg/mL.

  13. Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2

    Institute of Scientific and Technical Information of China (English)

    Jin-bing Li; Zhi-quan Jiang; Kun Qian; Wei-xin Huang

    2012-01-01

    Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures.Their structures were characterized with X-ray diffraction (XRD),laser Raman spectroscopy,X-ray photoelectron spectroscopy (XPS),temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy.Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts.However,XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/SiO2 as compared with bulk Co3O4.Meanwhile,TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2,and XAFS results demonstrate that Co3O4 in Co3O4(200)/SiO2 contains excess Co2+.Increasing calcination temperature results in oxidation of excess Co2+and the decrease of the concentration of surface oxygen vacancies,consequently the formation of stoichiometric Co3O4 on supported catalysts.Among all Co3O4/SiO2 catalysts,Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation,demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation.These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.

  14. Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2

    Science.gov (United States)

    Li, Jin-bing; Jiang, Zhi-quan; Qian, Kun; Huang, Wei-xin

    2012-02-01

    Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were characterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/SiO2 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SiO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the formation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silica-supported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.

  15. Gauge model with Ising vacancies: Multicritical behavior of self-avoiding surfaces

    Science.gov (United States)

    Maritan, A.; Seno, F.; Stella, A. L.

    1991-08-01

    A openZ2 gauge model with n-component-vector degrees of freedom on a dodecahedral lattice is coupled to an Ising system on the dual lattice. The statistics of interacting self-avoiding surfaces (SAS) is obtained in the n-->0 limit. At the percolative critical point an exact identification of the SAS critical behavior with that of Ising cluster hulls holds. This condition corresponds to a multicritical point for SAS, in universality class different from that of branched polymers. The model allows application of standard statistical methods to SAS. A mean-field calculation gives a phase diagram remarkably consistent with the above results.

  16. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Larsen Lausen, Jens; García Ortíz, César Eduardo

    2016-01-01

    polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces...... protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only...

  17. Effects of oxygen vacancy location on the electronic structure and spin density of Co-doped rutile TiO2 dilute magnetic semiconductors

    Institute of Scientific and Technical Information of China (English)

    Sun Yun-Bin; Zhang Xiang-Qun; Li Guo-Ke; Cheng Zhao-Hua

    2012-01-01

    According to density functional theory (DFT) using the plane wave base and pseudo-potential,we investigate the effects of the specific location of oxygen vacancy (V(O)) in a (Ti,Co)O6 distorted octahedron on the spin density and magnetic properties of Co-doped rutile TiO2 dilute magnetic semiconductors.Our calculations suggest that the VO location has a significant influence on the magnetic moment of individual Co cations.In the case where two Co atoms are separated far away from each other,when the V(O) is located at the equatorial site of a Co-contained octahedron,the ground state of the two Co cations is d6(t(32)g ↑,(t32)g ↓) without any magnetic moment.However,if the V(O) is located at the apical site,these two Co sites have different ground states and magnetic moments.The spin densities are also observed to be modified by the exchange coupling between the Co cations and the location of V(O).Some positive spin polarization is induced around the adjacent O ions.

  18. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110)

    DEFF Research Database (Denmark)

    Lopez, Nuria; schaub, R.; Thostrup, P.

    2003-01-01

    Through an interplay between scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we show that bridging oxygen vacancies are the active nucleation sites for Au clusters on the rutile TiO2(110) surface. We find that a direct correlation exists between a decrease...... model for the TiO2(110) system involving vacancy-cluster complex diffusion is presented....

  19. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density.

    Science.gov (United States)

    Kayaci, Fatma; Vempati, Sesha; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2014-09-07

    Oxygen vacancies (V(O)s) in ZnO are well-known to enhance photocatalytic activity (PCA) despite various other intrinsic crystal defects. In this study, we aim to elucidate the effect of zinc interstitials (Zn(i)) and V(O)s on PCA, which has applied as well as fundamental interest. To achieve this, the major hurdle of fabricating ZnO with controlled defect density requires to be overcome, where it is acknowledged that defect level control in ZnO is significantly difficult. In the present context, we fabricated nanostructures and thoroughly characterized their morphological (SEM, TEM), structural (XRD, TEM), chemical (XPS) and optical (photoluminescence, PL) properties. To fabricate the nanostructures, we adopted atomic layer deposition (ALD), which is a powerful bottom-up approach. However, to control defects, we chose polysulfone electrospun nanofibers as a substrate on which the non-uniform adsorption of ALD precursors is inevitable because of the differences in the hydrophilic nature of the functional groups. For the first 100 cycles, Zn(i)s were predominant in ZnO quantum dots (QDs), while the presence of V(O)s was negligible. As the ALD cycle number increased, V(O)s were introduced, whereas the density of Zn(i) remained unchanged. We employed PL spectra to identify and quantify the density of each defect for all the samples. PCA was performed on all the samples, and the percent change in the decay constant for each sample was juxtaposed with the relative densities of Zn(i)s and V(O)s. A logical comparison of the relative defect densities of Zn(i)s and V(O)s suggested that the former are less efficient than the latter because of the differences in the intrinsic nature and the physical accessibility of the defects. Other reasons for the efficiency differences were elaborated.

  20. First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces

    Science.gov (United States)

    Mun Wong, Kin; Alay-e-Abbas, S. M.; Shaukat, A.; Fang, Yaoguo; Lei, Yong

    2013-01-01

    In this paper, all electron full-potential linearized augmented plane wave plus local orbitals method has been used to investigate the structural and electronic properties of polar (0001) and non-polar (101¯0) surfaces of ZnO in terms of the defect formation energy (DFE), charge density, and electronic band structure with the supercell-slab (SS) models. Our calculations support the size-dependent structural phase transformation of wurzite lattice to graphite-like structure which is a result of the termination of hexagonal ZnO at the (0001) basal plane, when the stacking of ZnO primitive cell along the hexagonal principle c-axis is less than 16 atomic layers of Zn and O atoms. This structural phase transformation has been studied in terms of Coulomb energy, nature of the bond, energy due to macroscopic electric field in the [0001] direction, and the surface to volume ratio for the smaller SS. We show that the size-dependent phase transformation is completely absent for surfaces with a non-basal plane termination, and the resulting structure is less stable. Similarly, elimination of this size-dependent graphite-like structural phase transformation also occurs on the creation of O-vacancy which is investigated in terms of Coulomb attraction at the surface. Furthermore, the DFE at the (101¯0)/(1¯010) and (0001)/(0001¯) surfaces is correlated with the slab-like structures elongation in the hexagonal a- and c-axis. Electronic structure of the neutral O-vacancy at the (0001)/(0001¯) surfaces has been calculated and the effect of charge transfer between the two sides of the polar surfaces (0001)/(0001¯) on the mixing of conduction band through the 4s orbitals of the surface Zn atoms is elaborated. An insulating band structure profile for the non-polar (101¯0)/(1¯010) surfaces and for the smaller polar (0001)/(0001¯) SS without O-vacancy is also discussed. The results in this paper will be useful for the tuning of the structural and electronic properties of the

  1. Magnetic behavior in LiNbO{sub 3} nanocrystallites caused by oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Moreno, C.A. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Apdo. Postal 31109, México (Mexico); Farías-Mancilla, R. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Ave. del Charro #450, Cd. Juarez C.P., 32310 Chihuahua (Mexico); Matutes-Aquino, J.A. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Apdo. Postal 31109, México (Mexico); Elizalde-Galindo, J. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Ave. del Charro #450, Cd. Juarez C.P., 32310 Chihuahua (Mexico); Espinosa-Magaña, F.; González-Hernández, J. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Apdo. Postal 31109, México (Mexico); Hurtado-Macías, A., E-mail: abel.hurtado@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Apdo. Postal 31109, México (Mexico)

    2014-04-01

    Ferromagnetism is observed in LiNiO{sub 3} nanocrystals exposed to a reducing atmosphere intended to create oxygen vacancies. The existence of vacancies is confirmed by measuring the oxygen depletion across the selected nanoparticles by TEM. The magnetism shows no temperature dependence in the range of 4–300 K. The density functional theory was used to perform spin polarized electronic structure calculations for LiNiO{sub 3} with and without oxygen vacancies. The calculated magnetic data qualitatively support the observed magnetic behavior. - Highlights: • Oxygen vacancies were formed at the surface of LiNiO{sub 3} nanocrystals by a temperature programmed reduction process. • The observed ferromagnetism in LiNbO{sub 3} nanocrystals after a treatment in a reducing atmosphere shows no temperature dependence in the range of 4–300 K. • Magnetization based on density functional theory calculations was compared with the experimental data.

  2. The dynamics of ultraviolet-induced oxygen vacancy at the surface of insulating SrTiO{sub 3}(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Suwanwong, S. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Program in General Science Teaching, Faculty of Education, Vongchavalitkul University, Nakhon Ratchasima 30000 (Thailand); Eknapakul, T. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Rattanachai, Y. [Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000 (Thailand); Masingboon, C. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000 (Thailand); Rattanasuporn, S.; Phatthanakun, R.; Nakajima, H. [Synchrotron Light Research Institute, Nakhon Ratchasima 30000 (Thailand); King, P.D.C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS (United Kingdom); Hodak, S.K. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Meevasana, W., E-mail: worawat@g.sut.ac.th [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Thailand Center of Excellence in Physics, CHE, Bangkok 10400 (Thailand)

    2015-11-15

    Highlights: • The dynamics of UV-induced oxygen vacancy is studied from the change of surface resistance. • The formation of 2DEG at the insulating surface of SrTiO{sub 3} is confirmed by ARPES. • The UV-induced change in resistance responds differently to oxygen/gas exposure. • The behavior of resistance recovery suggests an alternative method of low-pressure sensing. - Abstract: The effect of ultra-violet (UV) irradiation on the electronic structure and the surface resistance of an insulating SrTiO{sub 3}(0 0 1) crystal is studied in this work. Upon UV irradiation, we show that the two-dimensional electron gas (2DEG) emerges at the insulating SrTiO{sub 3} surface and there is a pronounced change in the surface resistance. By combining the observations of the change in valance band and the resistance change under different environments of gas pressure and gas species, we find that UV-induced oxygen vacancies at the surface plays a major role in the resistance change. The dynamic of the resistance change at different oxygen pressures also suggests an alternative method of low-pressure sensing.

  3. Density functional study of adsorptions of CO2, NO2 and SO2 molecules on Zn(0002) surfaces

    Science.gov (United States)

    Nugraha; Saputro, A. G.; Agusta, M. K.; Yuliarto, B.; Dipojono, H. K.; Maezono, R.

    2016-08-01

    We report on a theoretical study of adsorptions of CO2, NO2 and SO2 molecules on ZnO(0002) surfaces using density functional theory-based (DFT-based) calculations. These adsorptions are done on perfect and defective ZnO(0002) surfaces. We find that all of these molecules are chemically adsorbed on the perfect ZnO(0002) surface. In the presence of Zn vacancy, we find that the surface is only active toward SO2 molecule. On the hydroxylated ZnO(0002) surfaces, CO2 and SO2 molecules can react with the preadsorbed OH molecule to form various adsorbates such as: carboxyl (COOH), bicarbonate (CO3H), sulfonyl hydroxide (SO3H), SO3 and water. However, NO2 molecule cannot react with the pre-adsorbed OH molecule and only physically adsorbed on the surface.

  4. Directional Local Density of States of Classical and Quantum Propagating Surface Plasmons

    Science.gov (United States)

    Berthel, Martin; Jiang, Quanbo; Pham, Aline; Bellessa, Joel; Genet, Cyriaque; Huant, Serge; Drezet, Aurélien

    2017-01-01

    We theoretically and experimentally introduce the concept of the local density of states (LDOS) associated with propagative surface plasmons (PSPs) launched along a structured thin gold film (a concept we call PSP LDOS). The alternative method couples a near-field optical microscope, in either the classical or the quantum regime of excitation, to a far-field leakage-radiation microscope. This method allows for selecting and collecting a very narrow portion of the directional SP wave vectors, thereby offering sufficient resolution to probe the collimation efficiency of a SP beam for a source near the focal point of a Bragg parabolic reflector. We are able to build and image the PSP LDOS in a fully integrated quantum SP launcher by depositing a diamond nanocrystal hosting nitrogen-vacancy centers at the focal point of the mirror. Our demonstration of the PSP LDOS with quantized SPs offers alternative prospects in the field of quantum plasmonics.

  5. Changes in charge density vs changes in formal oxidation states: The case of Sn halide perovskites and their ordered vacancy analogues

    Science.gov (United States)

    Dalpian, Gustavo M.; Liu, Qihang; Stoumpos, Constantinos C.; Douvalis, Alexios P.; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G.; Zunger, Alex

    2017-07-01

    Shifting the Fermi energy in solids by doping, defect formation, or gating generally results in changes in the charge density distribution, which reflect the ability of the bonding pattern in solids to adjust to such external perturbations. In the traditional chemistry textbook, such changes are often described by the formal oxidation states (FOS) whereby a single atom type is presumed to absorb the full burden of the perturbation (change in charge) of the whole compound. In the present paper, we analyze the changes in the position-dependence charge density due to shifts of the Fermi energy on a general physical basis, comparing with the view of the FOS picture. We use the halide perovskites CsSn X3 (X =F , Cl, Br, I) as examples for studying the general principle. When the solar absorber CsSn I3 (termed 113) loses 50 % of its Sn atoms, thereby forming the ordered vacancy compound C s2Sn I6 (termed 216), the Sn is said in the FOS picture to change from Sn(II) to Sn(IV). To understand the electronic properties of these two groups we studied the 113 and 216 compound pairs CsSnC l3 and C s2SnC l6 , CsSnB r3 and C s2SnB r6 , and CsSn I3 and C s2Sn I6 , complementing them by CsSn F3 and C s2Sn F6 in the hypothetical cubic structure for completing the chemical trends. These materials were also synthesized by chemical routes and characterized by x-ray diffraction, 119Sn-Mössbauer spectroscopy, and K -edge x-ray absorption spectroscopy. We find that indeed in going from 113 to 216 (equivalent to the introduction of two holes per unit) there is a decrease in the s charge on Sn, in agreement with the FOS picture. However, at the same time, we observe an increase of the p charge via downshift of the otherwise unoccupied p level, an effect that tends to replenish much of the lost s charge. At the end, the change in the charge on the Sn site as a result of adding two holes to the unit cell is rather small. This effect is theoretically explained as a "self-regulating response

  6. Changes in charge density vs changes in formal oxidation states: The case of Sn halide perovskites and their ordered vacancy analogues

    Energy Technology Data Exchange (ETDEWEB)

    Dalpian, Gustavo M.; Liu, Qihang; Stoumpos, Constantinos C.; Douvalis, Alexios P.; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G.; Zunger, Alex

    2017-07-01

    Shifting the Fermi energy in solids by doping, defect formation, or gating generally results in changes in the charge density distribution, which reflect the ability of the bonding pattern in solids to adjust to such external perturbations. In the traditional chemistry textbook, such changes are often described by the formal oxidation states (FOS) whereby a single atom type is presumed to absorb the full burden of the perturbation (change in charge) of the whole compound. In the present paper, we analyze the changes in the position-dependence charge density due to shifts of the Fermi energy on a general physical basis, comparing with the view of the FOS picture. We use the halide perovskites CsSnX3 (X = F, Cl, Br, I) as examples for studying the general principle. When the solar absorber CsSnI3 (termed 113) loses 50% of its Sn atoms, thereby forming the ordered vacancy compound Cs2SnI6 (termed 216), the Sn is said in the FOS picture to change from Sn(II) to Sn(IV). To understand the electronic properties of these two groups we studied the 113 and 216 compound pairs CsSnCl3 and Cs2SnCl6, CsSnBr3 and Cs2SnBr6, and CsSnI3 and Cs2SnI6, complementing them by CsSnF3 and Cs2SnF6 in the hypothetical cubic structure for completing the chemical trends. These materials were also synthesized by chemical routes and characterized by x-ray diffraction, 119Sn-Mössbauer spectroscopy, and K-edge x-ray absorption spectroscopy. We find that indeed in going from 113 to 216 (equivalent to the introduction of two holes per unit) there is a decrease in the s charge on Sn, in agreement with the FOS picture. However, at the same time, we observe an increase of the p charge via downshift of the otherwise unoccupied p level, an effect that tends to replenish much of the lost s charge. At the end, the change in the charge on the Sn site as a result of adding two holes to the unit cell is rather small. This effect is theoretically explained as a “self-regulating response” [Raebiger, Lany

  7. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    Energy Technology Data Exchange (ETDEWEB)

    Ayedh, H. M.; Svensson, B. G. [University of Oslo, Department of Physics/Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Hallén, A. [School of Information and Communication Technology (ICT), Royal Institute of Technology, SE-164 40 Kista-Stockholm (Sweden)

    2015-11-07

    The carbon vacancy (V{sub C}) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the V{sub C}-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (C{sub i}'s) and annihilation of V{sub C}'s in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the V{sub C} annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating V{sub C}'s. Concentrations of V{sub C} below ∼2 × 10{sup 11} cm{sup −3} can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the V{sub C}-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote C{sub i}-clustering and reduce dynamic defect annealing. These C{sub i}-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced C{sub i} injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the V{sub C}-concentration, which limit the net effect of the C{sub i} injection, and a competition between the two processes occurs.

  8. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  9. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy-to-computational c......Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy...... resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...

  10. The interactions between TiO2 and graphene with surface inhomogeneity determined using density functional theory.

    Science.gov (United States)

    Bukowski, Brandon; Deskins, N Aaron

    2015-11-28

    TiO2/graphene composites have shown promise as photocatalysts, leading to improved electronic properties. We have modeled using density functional theory TiO2/graphene interfaces formed between graphene with various defects/functional groups (C vacancy, epoxide, and hydroxyl) and TiO2 clusters of various sizes. We considered clusters from 3 to 45 atoms, the latter a nanoparticle of ∼1 nm in size. Our results show that binding to pristine graphene is dominated by van der Waals forces, and that C vacancies or epoxide groups lead to much stronger binding between the graphene and TiO2. Such sites may serve to anchor TiO2 to graphene. Graphene surfaces with hydroxyls however lead to OH transfer to TiO2 and weak interactions between the graphene and the hydroxylated TiO2 cluster. Charge transfer may occur between TiO2 and graphene in various directions (graphene to TiO2 or TiO2 to graphene), depending on the state of the graphene surface, based on overlap of the density of states. Our work indicates that graphene surface defects or functional groups may have a significant effect on the stability, structure, and photoactivity of these materials.

  11. Strain and Cohesive Energy of TiN Deposit on Al(001) Surface: Density Functional Calculation

    Science.gov (United States)

    Ren, Yuan; Liu, Xuejie

    2016-07-01

    To apply the high hardness of TiN film to soft and hard multilayer composite sheets, we constructed a new type of composite structural material with ultra-high strength. The strain of crystal and cohesive energy between the atoms in the eight structures of N atom, Ti atom, 2N2Ti island and TiN rock salt deposited on the Al(001) surface were calculated with the first-principle ultra-soft pseudopotential approach of the plane wave based on the density functional theory. The calculations of the cohesive energy showed that N atoms could be deposited in the face-centered-cubic vacancy position of the Al(001) surface and results in a cubic structure AlN surface. The TiN film could be deposited on the interface of β-AlN. The calculations of the strains showed that the strain in the TiN film deposited on the Al(001) surface was less than that in the 2N2Ti island deposited on the Al(001) surface. The diffusion behavior of interface atom N was investigated by a nudged elastic band method. Diffusion energy calculation showed that the N atom hardly diffused to the substrate Al layer.

  12. Applications of a tight-binding total energy method for transition and noble metals Elastic Constants, Vacancies, and Surfaces of Monatomic Metals

    CERN Document Server

    Mehl, M J; Mehl, Michael J.; Papaconstantopoulos, Dimitrios A.

    1996-01-01

    A recent tight-binding scheme provides a method for extending the results of first principles calculations to regimes involving $10^2 - 10^3$ atoms in a unit cell. The method uses an analytic set of two-center, non-orthogonal tight-binding parameters, on-site terms which change with the local environment, and no pair potential. The free parameters in this method are chosen to simultaneously fit band structures and total energies from a set of first-principles calculations for monatomic fcc and bcc crystals. To check the accuracy of this method we evaluate structural energy differences, elastic constants, vacancy formation energies, and surface energies, comparing to first-principles calculations and experiment. In most cases there is good agreement between this theory and experiment. We present a detailed account of the method, a complete set of tight-binding parameters, and results for twenty-nine of the alkaline earth, transition and noble metals.

  13. Estimation of the space density of low surface brightness galaxies

    NARCIS (Netherlands)

    Briggs, FH

    1997-01-01

    The space density of low surface brightness and tiny gas-rich dwarf galaxies are estimated for two recent catalogs: the Arecibo Survey of Northern Dwarf and Low Surface Brightness Galaxies and the Catalog of Low Surface Brightness Galaxies, List II. The goals are (1) to evaluate the additions to the

  14. Mapping of an Approximate Neutral Density Surface with Ungridded Data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and subsequently mix predominantly along such surfaces. Because of the nonlinear nature of the equation of state of seawater, the process of accurately mapping a neutral density surface necessarily involves lateral computation from one conductivity, temperature and depth (CTD) cast to the next in a logical sequence. By contrast, the depth of a potential density surface on any CTD cast is found solely from the data on this cast. The lateral calculation procedure causes a significant inconvenience. In a previous paper by present author published in this journal (You,2006), the mapping of neutral density surfaces with regularly gridded data such as Levitus data has been introduced. In this note, I present a new method to find the depth of a neutral density surface from a cast without having to specify an integration path in space.An appropriate reference point is required that is on the neutral density surface and thereafter the neutral density surface can be determined by using the CTD casts in any order. This method is only approximate and the likely errors can be estimated by plotting a scatter diagram of all the pressures and potential temperatures on the neutral density surfaces. The method assumes that the variations of potential temperature and pressure (with respect to the values at the reference point) on the neutral density surface are proportional.It is important to select the most appropriate reference point in order to approximately satisfy this assumption, and in practice this is found by inspecting the θ-p plot of data on the surface. This may require that the algorithm be used twice. When the straight lines on the θ-p plot, drawn from the reference point to other points on the neutral density surface, enclose an area that is external to the

  15. Magnetic moments in graphene with vacancies.

    Science.gov (United States)

    Chen, Jing-Jing; Wu, Han-Chun; Yu, Da-Peng; Liao, Zhi-Min

    2014-08-07

    Vacancies can induce local magnetic moments in graphene, paving the way to make magnetic functional graphene. Due to the interaction between magnetic moments and conduction carriers, the magnetotransport properties of graphene can be modulated. Here, the effects of vacancy induced magnetic moments on the electrical properties of graphene are studied via magnetotransport measurements and spin-polarized density functional theory calculations. We show by quantum Hall measurements that a sharp resonant Vπ state is introduced in the midgap region of graphene with vacancies, resulting in the local magnetic moment. The coupling between the localized Vπ state and the itinerant carrier is tuned by varying the carrier concentration, temperature, magnetic field, and vacancy density, which results in a transition between hopping transport and the Kondo effect and a transition between giant negative magnetoresistance (MR) and positive MR. This modulated magnetotransport is valuable for graphene based spintronic devices.

  16. Vacancy-Mediated Processes in the Oxidation of CO on PdO(101).

    Science.gov (United States)

    Weaver, Jason F; Zhang, Feng; Pan, Li; Li, Tao; Asthagiri, Aravind

    2015-05-19

    Metal oxide films can form on late transition-metal catalysts under sufficiently oxygen-rich conditions, and typically cause significant changes in the catalytic performance of these materials. Several investigations using sensitive in situ surface characterization techniques reveal that the CO oxidation activity of Pd and other late transition-metal catalysts increases abruptly under conditions at which metal oxide structures begin to develop. Findings such as these provide strong motivation for developing atomic-scale descriptions of oxidation catalysis over oxide films of the late transition-metals. Surface oxygen vacancies can play a central role in mediating oxidation catalysis promoted by metal oxides. In general, adsorbed reactants abstract oxygen atoms from the lattice of the oxide surface, thereby creating oxygen vacancies, while gaseous O2 replenishes the reactive surface oxygen atoms and eliminates oxygen vacancies. Oxygen vacancies also represent a distinct type of surface site on which the binding and reactivity of adsorbed species can differ compared with sites on the pristine oxide surface. Detailed characterization of vacancy-mediated rate processes is thus essential for developing reliable mechanistic descriptions of oxidation catalysis over reducible metal oxide films. Careful measurements performed in ultrahigh vacuum (UHV) using well-defined oxide surfaces in combination with molecular simulations afford the capability to isolate and characterize such reaction steps, and thus provide information that is needed for developing mechanistic models of oxidation catalysis over metal oxides. In this Account, we discuss vacancy-mediated processes that are involved in the oxidation of CO on the PdO(101) surface as determined from UHV surface science experiments and density functional theory (DFT) calculations. These studies show that CO binds strongly on Pd atoms that are located next to surface oxygen vacancies, and diffuses rapidly to these sites

  17. Vacancy Concentration in Ice

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Eldrup, Morten Mostgaard

    1977-01-01

    Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10.......Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10....

  18. Experimental surface charge density of the Si (100)-2x1H surface

    DEFF Research Database (Denmark)

    Ciston, J.; Marks, L.D.; Feidenhans'l, R.;

    2006-01-01

    We report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (100) 2x1H surface. By paying careful attention to parameterizing the bulk Si bonding, we are able to locate the hydrogen atoms at the surface, which could not be done previously. In addition, we...... are able to partially refine the local charge density at the surface. We find experimentally an increased, slightly localized bond density of approximately 0.31 electrons between each Si atom pair at the surface. Both the atomic positions and the charge density are in remarkably good agreement with density...

  19. Experimental surface charge density of the Si (100)-2x1H surface

    DEFF Research Database (Denmark)

    Ciston, J.; Marks, L.D.; Feidenhans'l, R.

    2006-01-01

    We report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (100) 2x1H surface. By paying careful attention to parameterizing the bulk Si bonding, we are able to locate the hydrogen atoms at the surface, which could not be done previously. In addition, we...... are able to partially refine the local charge density at the surface. We find experimentally an increased, slightly localized bond density of approximately 0.31 electrons between each Si atom pair at the surface. Both the atomic positions and the charge density are in remarkably good agreement with density...

  20. Impact of density information on Rayleigh surface wave inversion results

    Science.gov (United States)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  1. The Star Formation Law at Low Surface Density

    CERN Document Server

    Wyder, Ted K; Barlow, Tom A; Forster, Karl; Friedman, Peter G; Morrissey, Patrick; Neff, Susan G; Neill, James D; Schiminovich, David; Seibert, Mark; Bianchi, Luciana; Donas, Jose; Heckman, Timothy M; Lee, Young-Wook; Madore, Barrry F; Milliard, Bruno; Rich, R Michael; Szalay, A S; Yi, Sukyoung K

    2009-01-01

    We investigate the nature of the star formation law at low gas surface densities using a sample of 19 low surface brightness (LSB) galaxies with existing HI maps in the literature, UV imaging from the Galaxy Evolution Explorer satellite, and optical images from the Sloan Digital Sky Survey. All of the LSB galaxies have (NUV-r) colors similar to those for higher surface brightness star-forming galaxies of similar luminosity indicating that their average star formation histories are not very different. Based upon four LSB galaxies with both UV and FIR data, we find FIR/UV ratios significantly less than one, implying low amounts of internal UV extinction in LSB galaxies. We use the UV images and HI maps to measure the star formation rate and hydrogen gas surface densities within the same region for all of the galaxies. The LSB galaxy star formation rate surface densities lie below the extrapolation of the power law fit to the star formation rate surface density as a function of the total gas density for higher s...

  2. Modification of Surface Density of a Porous Medium

    Science.gov (United States)

    Stackpoole, Margaret M. (Inventor); Espinoza, Christian (Inventor)

    2016-01-01

    A method for increasing density of a region of a porous, phenolic bonded ("PPB") body adjacent to a selected surface to increase failure tensile strength of the adjacent region and/or to decrease surface recession at elevated temperatures. When the surface-densified PPB body is brought together with a substrate, having a higher failure tensile strength, to form a composite body with a PPB body/substrate interface, the location of tensile failure is moved to a location spaced apart from the interface, the failure tensile strength of the PPB body is increased, and surface recession of the material at elevated temperature is reduced. The method deposits and allows diffusion of a phenolic substance on the selected surface. The PPB body and the substrate may be heated and brought together to form the composite body. The phenolic substance is allowed to diffuse into the PPB body, to volatilize and to cure, to provide a processed body with an increased surface density.

  3. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    Science.gov (United States)

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

  4. Semilocal density functional theory with correct surface asymptotics

    Science.gov (United States)

    Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio

    2016-03-01

    Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.

  5. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  6. Revisiting the Fermi Surface in Density Functional Theory

    Science.gov (United States)

    Das, Mukunda P.; Green, Frederick

    2016-06-01

    The Fermi surface is an abstract object in the reciprocal space of a crystal lattice, enclosing the set of all those electronic band states that are filled according to the Pauli principle. Its topology is dictated by the underlying lattice structure and its volume is the carrier density in the material. The Fermi surface is central to predictions of thermal, electrical, magnetic, optical and superconducting properties in metallic systems. Density functional theory is a first-principles method used to estimate the occupied-band energies and, in particular, the isoenergetic Fermi surface. In this review we survey several key facts about Fermi surfaces in complex systems, where a proper theoretical understanding is still lacking. We address some critical difficulties.

  7. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    Science.gov (United States)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  8. Comparative studies of the fishtail effect associated with surface pinning and oxygen vacancy network in spiral and layer-by-layer grown Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Ionescu, M.; Horvat, J.; Liao, X.Z.; Liu, H.K.; Dou, S.X. [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW (Australia)

    1998-10-01

    Magnetic hysteresis loops (M-H) between 5 and 50 K were measured on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) crystals grown by the spiral or layer-by-layer growth mechanism using KCl flux and self-flux with a large temperature gradient growth technique. The spiral-grown crystals with a large density of spiral steps showed a strong fishtail effect with H{sub peak} at 1000-2000 Oe between 20 and 50 K, for both high-T{sub c} (86 K) and low-T{sub c} (76 K, oxygen underdoping) samples. For the layer-by-layer-grown crystals with an extremely smooth surface and annealed in oxygen-nitrogen, a weak fishtail effect with H{sub peak} at 300 Oe was observed between 20 and 40 K. The fishtail effect disappeared when the spirals were removed from the crystal surface, whereas the fishtail effect for the layer-by-layer-grown crystals was mainly controlled by oxygen content. The peak effect is fully reversible in the layer-by-layer-grown crystals by a proper annealing in oxygen and in nitrogen. From this comparison we conclude that the peak effect in Bi-2212 is caused by either surface pinning or oxygen vacancies for spiral- and layer-by-layer-grown crystals. Furthermore, the TEM study helps to show that the dislocation networks are not responsible for the fishtail effect. In the layer-by-layer-grown crystals, the presence of oxygen vacancies is a necessary but not a sufficient condition for the fishtail peak effect, but the networking of these vacancies may play a dominant role. (author)

  9. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  10. Inverse Calculation of Power Density for Laser Surface Treatment

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be ca

  11. Inverse calculation of power density for laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be

  12. Inverse calculation of power density for laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be ca

  13. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentia...... of interfacial tension becomes significant for particles with a radius of similar to 5 nm, when the area per molecule in the surface region is...

  14. Improved DFT Potential Energy Surfaces via Improved Densities.

    Science.gov (United States)

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

  15. Solvothermal, chloroalkoxide-based synthesis of monoclinic WO(3) quantum dots and gas-sensing enhancement by surface oxygen vacancies.

    Science.gov (United States)

    Epifani, Mauro; Comini, Elisabetta; Díaz, Raül; Andreu, Teresa; Genç, Aziz; Arbiol, Jordi; Siciliano, Pietro; Faglia, Guido; Morante, Joan R

    2014-10-01

    We report for the first time the synthesis of monoclinic WO3 quantum dots. A solvothermal processing at 250 °C in oleic acid of W chloroalkoxide solutions was employed. It was shown that the bulk monoclinic crystallographic phase is the stable one even for the nanosized regime (mean size 4 nm). The nanocrystals were characterized by X-ray diffraction, High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, Fourier transform infrared and Raman spectroscopy. It was concluded that they were constituted by a core of monoclinic WO3, surface covered by unstable W(V) species, slowly oxidized upon standing in room conditions. The WO3 nanocrystals could be easily processed to prepare gas-sensing devices, without any phase transition up to at least 500 °C. The devices displayed remarkable response to both oxidizing (nitrogen dioxide) and reducing (ethanol) gases in concentrations ranging from 1 to 5 ppm and from 100 to 500 ppm, at low operating temperatures of 100 and 200 °C, respectively. The analysis of the electrical data showed that the nanocrystals were characterized by reduced surfaces, which enhanced both nitrogen dioxide adsorption and oxygen ionosorption, the latter resulting in enhanced ethanol decomposition kinetics.

  16. Theoretical investigations of the effect of vacancies on the geometric and electronic structures of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Yao Jinhuan, E-mail: yaojinhuan@126.com [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); Li Yanwei, E-mail: lywhit@glite.edu.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); GuangXi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin, Guangxi 541004 (China); Li Ning [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); Le Shiru [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    The effects of S-vacancy and Zn-vacancy on the geometric and electronic structures of zinc blende ZnS are investigated by the first-principles calculation of the plane wave ultrasoft pseudopotential method based on the density functional theory. The results demonstrate that both S-vacancy and Zn-vacancy decrease the cell volume and induce slight deformation of the perfect ZnS. Furthermore, this change of geometric structure caused by Zn-vacancy is more obvious than the one due to the S-vacancy. The formation energy of S-vacancy is higher than that of Zn-vacancy, indicating that Zn-vacancy is easier to form than S-vacancy in ZnS crystal. Electronic structure analysis shows that Zn-vacancy increases the band-gap of ZnS from 2.03 eV to 2.15 eV, while the S-vacancy has almost no effect on the band-gap of ZnS. Bond population analysis shows that Zn-vacancy increases covalence character of the Zn-S bonds around Zn-vacancy, while S-vacancy shows a relatively weak effect on the covalence character of Zn-S bonds.

  17. Spin density wave order, topological order, and Fermi surface reconstruction

    CERN Document Server

    Sachdev, Subir; Chatterjee, Shubhayu; Schattner, Yoni

    2016-01-01

    In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small 'pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping.

  18. Oxygen adsorption on pyrite (100) surface by density functional theory

    Institute of Scientific and Technical Information of China (English)

    孙伟; 胡岳华; 邱冠周; 覃文庆

    2004-01-01

    Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference.The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.

  19. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  20. The nitrogen vacancy in aluminium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Vail, J M [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Chevrier, D K [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Pandey, R [Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States); Blanco, M A [Departamento de QuImica Fisica y AnalItica, Universidad de Oviedo, E-33006-Oviedo (Spain)

    2006-02-22

    We have carried out a computational study for the nitrogen vacancy in charge states +3, +2 and +1 in AlN in the metastable zinc-blende phase. The vacancy and its four nearest-neighbour Al ions are treated as a molecular cluster, embedded in an infinite classical shell-model crystal. The following ground state properties, all of which are determinable from experiment, have been calculated: total spin, nearest-neighbour displacement, electron spin density at nearest-neighbour nuclei and breathing-mode force constant. The issue of disproportionation among the three charge states is also addressed. Most importantly, the optical excitation energies are evaluated.

  1. Surface interactions involved in flashover with high density electronegative gases.

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  2. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  3. The central surface density of "dark halos" predicted by MOND

    CERN Document Server

    Milgrom, Mordehai

    2009-01-01

    Prompted by the recent claim, by Donato et al., of a quasi-universal central surface density of galaxy dark matter halos, I look at what MOND has to say on the subject. MOND, indeed, predicts a quasi-universal value of this quantity for objects of all masses and of any internal structure, provided they are mostly in the Newtonian regime; i.e., that their mean acceleration is at or above a0. The predicted value is qSm, with Sm= a0/2 pi G= 138 solar masses per square parsec for the nominal value of a0, and q a constant of order 1 that depends only on the form of the MOND interpolating function. This gives in the above units log(Sm)=2.14, which is consistent with that found by Doanato et al. of 2.15+-0.2. MOND predicts, on the other hand, that this quasi-universal value is not shared by objects with much lower mean accelerations. It permits halo central surface densities that are arbitrarily small, if the mean acceleration inside the object is small enough. However, for such low-surface-density objects, MOND pre...

  4. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...... approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity...... been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new...

  5. First-principles Study of the Au surfactant on the growth of Zn vacancies in ZnO nanostructures

    Institute of Scientific and Technical Information of China (English)

    刘亚明

    2007-01-01

    Influence of Au surfactant on the growth of Zn atom vacancies in ZnO nanostructures has been investigated by using first-principles slab calculations based on density functional theory.The adsorption of Au atoms on the Zn -terminated(0001)polar surface with a(2×2)sudace unit cell is studied by using a standard supercell model.It is found that (1)the binding energies of Au atoms on (0001)-Zn increase and the most stable position of the Au atom is invariable;(2)on the (0001)surface,the preferred sites for Zn atom vacancy are on the first layer of Zn atoms;(3)Under the Au surfactant,the Zn atom vacancies become more difficult to form.

  6. Orbital nodal surfaces: Topological challenges for density functionals

    Science.gov (United States)

    Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan

    2017-06-01

    Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] and Becke88 [Phys. Rev. A 38, 3098 (1988), 10.1103/PhysRevA.38.3098] energy functionals, i.e., the corresponding semilocal exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and van Leeuwen-Baerends (LB94) [Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] model potentials, we explicitly demonstrate exponential divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form, enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding such divergences.

  7. Solvation of complex surfaces via molecular density functional theory

    CERN Document Server

    Levesque, Maximilien; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-01-01

    We show that classical molecular density functional theory (MDFT), here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular CLAYFF force field. Solvent energetics and structure are found to depend weakly upon ...

  8. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  9. N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts

    Science.gov (United States)

    Xu, Lei; Wang, Zhimin; Wang, Jialu; Xiao, Zhaohui; Huang, Xiaobing; Liu, Zhigang; Wang, Shuangyin

    2017-04-01

    Developing highly active electrocatalysts for the oxygen evolution reaction (OER) with a high surface area, high catalytic activity, low cost and high conductivity is a big challenge for various energy technologies. Herein, for the first time, we realized the simultaneous nitrogen doping and etching of Co3O4 nanosheets to produce N-doped nanoporous Co3O4 nanosheets with oxygen vacancies by N2 plasma. The increase in active sites in N-doped Co3O4 nanosheets and improved electronic conductivity with N doping and oxygen vacancies results in excellent electrocatalytic activity for the OER. Compared with pristine Co3O4 nanosheets, the N-doped Co3O4 nanosheets with oxygen vacancies have a much lower required potential of 1.54 V versus a reversible hydrogen electrode than the pristine Co3O4 nanosheets (1.79 V) to reach the current density of 10 mA cm‑2. The N-doped and etched Co3O4 nanosheets have a much lower Tafel slope of 59 mV dec‑1 than pristine Co3O4 nanosheets (234 mV dec‑1). The enhanced electrocatalytic activity for the OER is caused by the increased surface area, N doping and the produced oxygen vacancies.

  10. Theoretical calculation and experimental study of influence of oxygen vacancy on the electronic structure and hemocompatibility of rutile TiO2

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this work,the relationship between electronic structure and hemocompatibility of oxygen deficient rutile TiO2-x was studied by both theoretical calculation and experimental study. Based on the local density functional theory,first-principals method was performed to calculate the electronic structure of rutile TiO2 with different oxygen vacancy concentration. In the range of less than 10% of (or equal) physically realistic O vacancy concentration,the band gap of rutile TiO2 increases with increasing O vacancy concentration,leading the TiO2 changes from a p-type to an n-type semiconductor. The valance band of TiO2 is predominated by O 2p orbital,while the conduction band is occupied by Ti 3d orbital for different O vacancy concentration. The O vacancy results in the occupation of electrons at the bottom of conduction band of TiO2,and the donor density increases with increasing O vacancy concentration. When materials come in contact with blood,the n-type semiconductor feature of oxygen deficient TiO2-x with the bottom of conduction band occupied by electrons would prevent charge transfer from fibrinogen into the surface of materials,thus inhibiting the aggregation and activation of platelets,therefore improving the hemocompatibility of rutile TiO2-x.

  11. 77 FR 71478 - Notice of Rail Energy Transportation Advisory Committee Vacancies

    Science.gov (United States)

    2012-11-30

    ... Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Vacancies AGENCY... vacancies on the Board's Rail Energy Transportation Advisory Committee for (1) a representative from a state... those vacancies. DATES: Suggestions of candidates for membership on RETAC are due December 27,...

  12. Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-Quan; LIU Ming-Hai; LAN Chao-Hui; CHEN Wei; LUO Zhi-Qing; HU Xi-Wei

    2008-01-01

    @@ An estimation method of plasma density based on surface plasmons theory for surface-wave plasmas is proposed. The number of standing-wave is obtained directly from the discharge image, and the propagation constant is calculated with the trim size of the apparatus in this method, then plasma density can be determined with the value of 9.1 × 1017 m-3. Plasma density is measured using a Langmuir probe, the value is 8.1 × 1017 m-3 which is very close to the predicted value of surface plasmons theory. Numerical simulation is used to check the number of standing-wave by the finite-difference time-domain (FDTD) method also. All results are compatible both of theoretical analysis and experimental measurement.

  13. A hybrid density functional study on the electron and hole trap states in anatase titanium dioxide.

    Science.gov (United States)

    Yamamoto, Takenori; Ohno, Takahisa

    2012-01-14

    We present a theoretical study on electron and hole trap states in the bulk and (001) surface of anatase titanium dioxide using screened hybrid density functional calculations. In both the bulk and surface, calculations suggest that the neutral and ionized oxygen vacancies are possible electron traps. The doubly ionized oxygen vacancy is the most stable in the bulk, and is a candidate for a shallow donor in colorless anatase crystals. The hole trap states are localized at oxygen anions in both the bulk and surface. The self-trapped electron centered at a titanium cation cannot be produced in the bulk, but can be formed at the surface. The electron trap level at the surface oxygen vacancy is consistent with observations by photoelectron spectroscopy. The optical absorptions and luminescence in UV-irradiated anatase nanoparticles are found to come from the surface self-trapped hole and the surface oxygen vacancy.

  14. Solvation of complex surfaces via molecular density functional theory.

    Science.gov (United States)

    Levesque, Maximilien; Marry, Virginie; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-12-14

    We show that classical molecular density functional theory, here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational, and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular Clay Force Field (CLAYFF). Solvent energetics and structure are found to depend weakly upon the atomic charges distribution of the clay surface, even for a rather polar solvent. We conclude on the consequences of such findings for force-field development.

  15. Electronic Properties of the Zirconium Crystal with Vacancies and Dynamics of Vacancies: ab-initio Calculations and Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    V.O. Kharchenko

    2015-06-01

    Full Text Available Within this paper we have the studied structural and electronic properties of zirconium crystal with vacancies from the first principles. We have defined the optimal values for the lattice constants. The corresponding densities of states and energetic spectrum were calculated. These results gave a possibility to define the Fermi structure of the zirconium crystal with vacancies. In the framework of the molecular dynamics simulations we have studied the dynamics of the ensemble of periodically located vacancies in the zirconium crystal with an increase in temperature. We have analyzed the reconstruction of atomic structure and change in the total volume of the crystal with the temperature growth. The dependencies of the volume expansion coefficient for the pure zirconium without vacancies end zirconium crystal with different vacancies concentration on the temperature were studied.

  16. Surface modification for polystyrene colloidal particles with controlled charge densities.

    Science.gov (United States)

    Lee, Jongman; Kwon, Oh-Sun; Shin, Kwanwoo; Song, Ju-Myung; Kim, Joon-Seop; Seo, Young-Soo; Tael, Giyoong; Jon, Sangyong

    2007-11-01

    A significant amount of polystyrene sulfonated acid (PSSA) and poly(styrene-ran-acrylic acid) (PSAA) random copolymer can be adsorbed by dispersion of PS particles via a swelling-quenching process. A THF-water mixed solvent was used in the swelling process and a large amount of pure water was used, to give a low concentration of THF% in quenching process. Our results showed that functional PSSA groups were randomly and tightly adsorbed to the PS particles. When the mol.% of charged segments was increased, the progressive adsorption of PSSA chains to the PS particles leads to an increase in the electrophoretic mobility and zeta-potential of aqueous dispersions. Thus, we were able to obtain well-distributed surface charge density on the PS particles.

  17. The role of vacancy, impurity, impurity-vacancy complex in the kinetics of LiNH2 complex hydrides:a first-principles study

    Institute of Scientific and Technical Information of China (English)

    Liu Gui-Li; Zhang Guo-Ying; Zhang Hui; Zhu Sheng-Long

    2011-01-01

    This paper studies first-principles plane-wave pseudopotential based on density functional theory of hydrogen vacancy, metal impurity, impurity-vacancy complex in LiNH2, a promising material for hydrogen storage. It finds easy formation of H vacancy in the form of impurity-vacancy complex, and the rate-limiting step to the H diffusion. Based on the analysis of the density of states, it finds that the improvement of the dehydrogenating kinetics of LiNH2 by Ti catalysts and Mg substitution is due to the weak bonding of N-H and the new system metal-like, which makes H atom diffuse easily. The mulliken overlap population analysis shows that H vacancy leads to the H local diffusion, whereas impurity-vacancy complexes result from H nonlocal diffusion, which plays a dominant role in the process of dehydrogenation reaction of LiNH2.

  18. Platinum Clusters on Vacancy-Type Defects of Nanometer-Sized Graphene Patches

    Directory of Open Access Journals (Sweden)

    Hisayoshi Kobayashi

    2012-07-01

    Full Text Available Density functional theory calculations found that spin density distributions of platinum clusters adsorbed on nanometer-size defective graphene patches with zigzag edges deviate strongly from those in the corresponding bare clusters, due to strong Pt-C interactions. In contrast, platinum clusters on the pristine patch have spin density distributions similar to the bare cases. The different spin density distributions come from whether underlying carbon atoms have radical characters or not. In the pristine patch, center carbon atoms do not have spin densities, and they cannot influence radical characters of the absorbed cluster. In contrast, radical characters appear on the defective sites, and thus spin density distributions of the adsorbed clusters are modulated by the Pt-C interactions. Consequently, characters of platinum clusters adsorbed on the sp2 surface can be changed by introducing vacancy-type defects.

  19. Vacancy complexes induce long-range ferromagnetism in GaN

    KAUST Repository

    Zhang, Zhenkui

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μB, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  20. Surface density effects in quenching: cause or effect?

    CERN Document Server

    Lilly, Simon J

    2016-01-01

    There are very strong observed correlations between the specific star-formation rates (sSFR) of galaxies and their mean surface mass densities, {\\Sigma}, as well as other aspects of their internal structure. These strong correlations have often been taken to indicate that the internal structure of a galaxy must play a major physical role, directly or indirectly, in the control of star-formation. In this paper we show by means of a very simple toy model that these correlations can arise naturally without any such physical role once the observed evolution of the size-mass relation for star-forming galaxies is taken into account. In particular, the model reproduces the sharp threshold in {\\Sigma} between galaxies that are star-forming and those that are quenched, and the evolution of this threshold with redshift. Similarly, it produces iso-quenched-fraction contours in the ${f_Q(m,R_e)}$ plane that are almost exactly parallel to lines of constant {\\Sigma} for centrals and shallower for satellites. It does so wit...

  1. Measuring protoplanetary disk gas surface density profiles with ALMA

    CERN Document Server

    McPartland, Jonathan P Williams Conor

    2016-01-01

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best (2014) to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, Mgas = 0.048 solar masse, and accretion disk characteristic size Rc = 213au and gradient gamma = 0.39. The same parameters match the C18O 2--1 image and indicates an abundance ratio [13CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2--1 image library and fit simulated data. For disks with gas masses 3-10 Jupiter masses at 150pc, ALMA observations with a resolutio...

  2. Adsorption behavior of SO2 on vacancy-defected graphene: A DFT study

    Science.gov (United States)

    Zhou, Qingxiao; Ju, Weiwei; Su, Xiangying; Yong, Yongliang; Li, Xiaohong

    2017-10-01

    The adsorption of an SO2 molecule on the perfect and point-defective graphene surfaces were investigated using density functional theory (DFT). The geometric structure, adsorption energy, charge transfer, and electronic properties were calculated and analyzed to characterize the effect of vacancy on the adsorption process of SO2 on the graphene. The result indicated that the presence of vacancy enhanced the adsorption stability with the larger adsorption energy and net charge transfer compared to that of perfect graphene. Moreover, the SO2 molecule on different adsorption sites exhibited dissimilar states because of the adsorption. Furthermore, the results of the electronic properties revealed that the adsorption of SO2 induced an opening of the band gap.

  3. HYDROGEN VACANCY INTERACTION IN TUNGSTEN

    NARCIS (Netherlands)

    FRANSENS, [No Value; ELKERIEM, MSA; PLEITER, F

    1991-01-01

    Hydrogen-vacancy interaction in tungsten was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. Hydrogen trapping at an In-111-vacancy cluster manifests itself as a change of the local electric field gradient, which gives rise to an observable

  4. Full compensation of oxygen vacancies in EuTiO3 (001) epitaxial thin film stabilized by a SrTiO3 surface protection layer

    Science.gov (United States)

    Shimamoto, K.; Hatabayashi, K.; Hirose, Y.; Nakao, S.; Fukumura, T.; Hasegawa, T.

    2013-01-01

    We fabricated highly insulating EuTiO3 (001) epitaxial thin films capped with SrTiO3 protection layers on SrTiO3 (001) substrates by combining pulsed laser deposition and post-annealing processes. The epitaxial SrTiO3 protection layer played a significant role in compensation of oxygen vacancies in the EuTiO3 thin films by preventing excess oxidation of the films and by "locking" the EuTiO3 perovskite structure in an epitaxial manner from the top during the air-annealing process. The obtained EuTiO3 thin films demonstrated an antiferromagnetic transition at 5.4 K, quantum paraelectricity down to ˜25 K, and a magnetoelectric coupling comparable to that of bulk EuTiO3.

  5. Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter

    CERN Document Server

    Robles, Victor H

    2012-01-01

    The scalar field dark matter (SFDM) model proposes that galaxies form by condensation of a scalar field (SF) very early in the universe forming Bose-Einstein Condensates (BEC) drops, i.e., in this model haloes of galaxies are gigantic drops of SF. Here big structures form like in the LCDM model, by hierarchy, thus all the predictions of the LCDM model at big scales are reproduced by SFDM. This model predicts that all galaxies must be very similar and exist for bigger redshifts than in the LCDM model. In this work we show that BEC dark matter haloes fit high-resolution rotation curves of a sample of thirteen low surface brightness galaxies. We compare our fits to those obtained using a Navarro-Frenk-White and Pseudo-Isothermal (PI) profiles and found a better agreement with the SFDM and PI profiles. The mean value of the logarithmic inner density slopes is -0.27 +/- 0.18. As a second result we find a natural way to define the core radius with the advantage of being model-independent. Using this new definition ...

  6. Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO(3): LDA + U study.

    Science.gov (United States)

    Cuong, Do Duc; Lee, Bora; Choi, Kyeong Mi; Ahn, Hyo-Shin; Han, Seungwu; Lee, Jaichan

    2007-03-16

    We find, using a local density approximation +Hubbard U method, that oxygen vacancies tend to cluster in a linear way in SrTiO(3), a prototypical perovskite oxide, accompanied by strong electron localization at the 3d state of the nearby Ti transition metal ion. The vacancy clustering and the associated electron localization lead to a profound impact on materials properties, e.g., the reduction in free-carrier densities, the appearance of characteristic optical spectra, and the decrease in vacancy mobility. The high stability against the vacancy migration also suggests the physical reality of the vacancy cluster.

  7. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    OpenAIRE

    Li, Shen; Chen, Xiang-Dong; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    We demonstrate an optical far-field super-resolution microscopy using array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of nitrogen vacancy center. And the locating of nitrogen vacancy center with spatial resolution of 6.1 nm is realized with the charge state depletion nanoscopy. The nanostructures on the surface of diam...

  8. Surface electrochemical properties of red mud (bauxite residue): zeta potential and surface charge density.

    Science.gov (United States)

    Liu, Yanju; Naidu, Ravendra; Ming, Hui

    2013-03-15

    The surface electrochemical properties of red mud (bauxite residue) from different alumina refineries in Australia and China were studied by electrophoresis and measuring surface charge density obtained from acid/base potentiometric titrations. The electrophoretic properties were measured from zeta potentials obtained in the presence of 0.01 and 0.001 M KNO(3) over a wide pH range (3.5-10) by titration. The isoelectric point (IEP) values were found to vary from 6.35 to 8.70 for the red mud samples. Further investigation into the surface charge density of one sample (RRM) by acid/base potentiometric titration showed similar results for pH(PZC) with pH(IEP) obtained from electrokinetic measurements. The pH(IEP) determined from zeta potential measurements can be used as a characteristic property of red mud. The minerals contained in red mud contributed to the different values of pH(IEP) of samples obtained from different refineries. Different relationships of pH(IEP) with Al/Fe and Al/Si ratios (molar basis) were also found for different red mud samples.

  9. Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond

    Science.gov (United States)

    Chang, Shery L. Y.; Barnard, Amanda S.; Dwyer, Christian; Boothroyd, Chris B.; Hocking, Rosalie K.; Ōsawa, Eiji; Nicholls, Rebecca J.

    2016-05-01

    Detonation nanodiamond particles (DND) contain highly-stable nitrogen-vacancy (N-V) centers, making it important for quantum-optical and biotechnology applications. However, due to the small particle size, the N-V concentrations are believed to be intrinsically very low, spawning efforts to understand the formation of N-V centers and vacancies, and increase their concentration. Here we show that vacancies in DND can be detected and quantified using simulation-aided electron energy loss spectroscopy. Despite the small particle size, we find that vacancies exist at concentrations of about 1 at%. Based on this experimental finding, we use ab initio calculations to predict that about one fifth of vacancies in DND form N-V centers. The ability to directly detect and quantify vacancies in DND, and predict the corresponding N-V formation probability, has a significant impact to those emerging technologies where higher concentrations and better dispersion of N-V centres are critically required.Detonation nanodiamond particles (DND) contain highly-stable nitrogen-vacancy (N-V) centers, making it important for quantum-optical and biotechnology applications. However, due to the small particle size, the N-V concentrations are believed to be intrinsically very low, spawning efforts to understand the formation of N-V centers and vacancies, and increase their concentration. Here we show that vacancies in DND can be detected and quantified using simulation-aided electron energy loss spectroscopy. Despite the small particle size, we find that vacancies exist at concentrations of about 1 at%. Based on this experimental finding, we use ab initio calculations to predict that about one fifth of vacancies in DND form N-V centers. The ability to directly detect and quantify vacancies in DND, and predict the corresponding N-V formation probability, has a significant impact to those emerging technologies where higher concentrations and better dispersion of N-V centres are critically

  10. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    Science.gov (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  11. Theory of optical excitation and relaxation phenomena at semiconductor surfaces: linking density functional and density matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N. [Technische Universitaet Berlin, Institut fuer Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Berlin (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Scheffler, M. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Kratzer, P. [Universitaet Duisburg-Essen, Fachbereich Physik - Theoretische Physik, Duisburg (Germany); Knorr, A. [Technische Universitaet Berlin, Institut fuer Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Berlin (Germany)

    2007-08-15

    A theory for the description of optical excitation and the subsequent phonon-induced relaxation dynamics of nonequilibrium electrons at semiconductor surfaces is presented. In the first part, the fundamental dynamical equations for electronic occupations and polarisations are derived using density matrix formalism (DMT) for a surface-bulk system including the interaction of electrons with the optical field and electron-phonon interactions. The matrix elements entering these equations are either determined empirically or by density functional theory (DFT) calculations. In the subsequent parts of the paper, the dynamics at two specific semiconductor surfaces are discussed in detail. The electron relaxation dynamics underlying a time-resolved two photon photoemission experiment at an InP surface is investigated in the limit of a parabolic four band model. Moreover, the electron relaxation dynamics at a Si(100) surface is analysed. Here, the coupling parameters and the band structure are obtained from an DFT calculations. (orig.)

  12. The Band-Edge Behavior of the Density of Surfacic States

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Werner [Ruhr Universitaet Bochum, Fakultaet fuer Mathematik and SFB-TR 12 (Germany)], E-mail: werner.kirsch@rub.de; Klopp, Frederic [Universite de Paris-Nord, LAGA, UMR 7539 CNRS, Institut Galilee (France)], E-mail: klopp@math.univ-paris13.fr

    2006-05-15

    This paper is devoted to the asymptotics of the density of surfacic states near the spectral edges for a discrete surfacic Anderson model. Two types of spectral edges have to be considered: fluctuating edges and stable edges. Each type has its own type of asymptotics. In the case of fluctuating edges, one obtains Lifshitz tails the parameters of which are given by the initial operator suitably 'reduced' to the surface. For stable edges, the surface density of states behaves like the surface density of states of a constant (equal to the expectation of the random potential) surface potential. Among the tools used to establish this are the asymptotics of the surface density of states for constant surface potentials.

  13. Characterization of lacunae density in pictorial surfaces using GIS software

    Directory of Open Access Journals (Sweden)

    Frederico Henriques

    2010-01-01

    Full Text Available This study deals with the application of simple image-processing techniques, in a geographic information system (GIS environment, on a detailed digital photography of a retabular painting. The aim is to register semi-automatically the lacunae density, through reclassification, and point density estimation. The digital photography image used on the exercise displays a detail of a 16th century panel painting named "Resurrection of Lazarus", from the Rotunda of Christ Convent, in Tomar, Portugal. The final result is a thematic pathology map of lacunae type.

  14. Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection.

    Science.gov (United States)

    Li, Guowei; Blake, Graeme R; Palstra, Thomas T M

    2017-03-21

    Vacancies exist throughout nature and determine the physical properties of materials. By manipulating the density and distribution of vacancies, it is possible to influence their physical properties such as band-gap, conductivity, magnetism, etc. This can generate exciting applications in the fields of water treatment, energy storage, and physical devices such as resistance-change memories. In this review, we focus on recent progress in vacancy engineering for the design of materials for energy harvesting applications. A brief discription of the concept of vacancies, the way to create and control them, as well as their fundamental properties, is first provided. Then, emphasis is placed on the strategies used to tailor vacancies for metal-insulator transitions, electronic structures, and introducing magnetism in non-magnetic materials. Finally, we present representative applications of different structures with vacancies as active electrode materials of lithium or sodium ion batteries, catalysts for water splitting, and hydrogen evolution.

  15. The role of vacancies and local distortions in the design of new phase-change materials.

    Science.gov (United States)

    Wuttig, Matthias; Lüsebrink, Daniel; Wamwangi, Daniel; Wełnic, Wojciech; Gillessen, Michael; Dronskowski, Richard

    2007-02-01

    Phase-change materials are of tremendous technological importance ranging from optical data storage to electronic memories. Despite this interest, many fundamental properties of phase-change materials, such as the role of vacancies, remain poorly understood. 'GeSbTe'-based phase-change materials contain vacancy concentrations around 10% in their metastable crystalline structure. By using density-functional theory, the origin of these vacancies has been clarified and we show that the most stable crystalline phases with rocksalt-like structures are characterized by large vacancy concentrations and local distortions. The ease by which vacancies are formed is explained by the need to annihilate energetically unfavourable antibonding Ge-Te and Sb-Te interactions in the highest occupied bands. Understanding how the interplay between vacancies and local distortions lowers the total energy helps to design novel phase-change materials as evidenced by new experimental data.

  16. Effect of Random Clustering on Surface Damage Density Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M J; Feit, M D

    2007-10-29

    Identification and spatial registration of laser-induced damage relative to incident fluence profiles is often required to characterize the damage properties of laser optics near damage threshold. Of particular interest in inertial confinement laser systems are large aperture beam damage tests (>1cm{sup 2}) where the number of initiated damage sites for {phi}>14J/cm{sup 2} can approach 10{sup 5}-10{sup 6}, requiring automatic microscopy counting to locate and register individual damage sites. However, as was shown for the case of bacteria counting in biology decades ago, random overlapping or 'clumping' prevents accurate counting of Poisson-distributed objects at high densities, and must be accounted for if the underlying statistics are to be understood. In this work we analyze the effect of random clumping on damage initiation density estimates at fluences above damage threshold. The parameter {psi} = a{rho} = {rho}/{rho}{sub 0}, where a = 1/{rho}{sub 0} is the mean damage site area and {rho} is the mean number density, is used to characterize the onset of clumping, and approximations based on a simple model are used to derive an expression for clumped damage density vs. fluence and damage site size. The influence of the uncorrected {rho} vs. {phi} curve on damage initiation probability predictions is also discussed.

  17. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    Science.gov (United States)

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  18. Hydrogen-vacancy-dislocation interactions in α-Fe

    Science.gov (United States)

    Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.

    2017-02-01

    Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.

  19. Study on Surface Properties for Non-polar Fluids with Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    吴畏; 陆九芳; 付东; 刘金晨; 李以圭

    2004-01-01

    The density functional theory, simplified by the local density approximation and mean-field approximation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used as the perturbation term. Three parameters, elk, d and ms, are regressed from the vapor-liquid equilibria, and the surface properties, including density profile, surface tension and local surface tension profile are predicted with these parameters.

  20. Phonon spectral densities of Cu surfaces: Application to Cu(211)

    Science.gov (United States)

    Mărinică, M.-C.; Raşeev, G.; Smirnov, K. S.

    2001-05-01

    Power phonon spectra of vicinal stepped surfaces of Cu(211) have been calculated using a molecular dynamics method combined with a semiempirical potential. The potential is based on an analytic form of inverse powers proposed by Finnis and Sinclair with the parametrization of Sutton and Chen. One of the four independent parameters of the potential was rescaled to reproduce the bulk phonon spectrum of Cu while retaining other properties of the bulk Cu close to the experimental values. Using this potential, we calculated the power surface phonon spectra, projection of the spectra at the high-symmetry points of surface Brillouin zone (SBZ), and the mean square displacements (MSD's) of atoms of the Cu(211) surface. The calculated projected phonon spectra at Γ¯ and at two new SBZ points (at X¯ and Y¯) compare favorably with experiment and theory when available. The MSD of the Cu(211) surface is also well reproduced and its temperature dependence shows that anharmonicity of the atomic motion becomes important above 200 K.

  1. Characterisation and modelling of vacancy dynamics in Ni–Mn–Ga ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Merida, D., E-mail: david.merida@ehu.es [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); García, J.A. [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); BC Materials (Basque Centre for Materials, Application and Nanostructures), 48040 Leioa (Spain); Sánchez-Alarcos, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Pérez-Landazábal, J.I.; Recarte, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona (Spain); Plazaola, F. [Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain)

    2015-08-05

    Highlights: • We study the dynamics of vacancies for three different Ni–Mn–Ga alloy samples. • The formation and migration energies have been obtained experimentally. • The entropic factor and the distance a vacancy has to reach a sink are measured. • We present a theoretical model to explain the dynamics of vacancies. • Results are applicable for any thermal treatment and extensible to other alloys. - Abstract: The dynamics of vacancies in Ni–Mn–Ga shape memory alloys has been studied by positron annihilation lifetime spectroscopy. The temperature evolution of the vacancy concentration for three different Ni–Mn–Ga samples, two polycrystalline and one monocrystalline, have been determined. The formation and migration energies and the entropic factors are quite similar in all cases, but vary slightly according to composition. However, the number of jumps a vacancy has to overtake to reach a sink is five times higher in the single crystal. This is an expected result, due to the role that surfaces and grain boundaries should play in balancing the vacancy concentration. In all cases, the initial vacancy concentration for the samples quenched from 1173 K lies between 1000 ppm and 2000 ppm. A phenomenological model able to explain the dynamics of vacancies has been developed in terms of the previous parameters. The model can reproduce the vacancy dynamics for any different kind of thermal history and can be easily extended to other alloys.

  2. Single-charge-exchange reactions and the neutron density at the surface of the nucleus

    Science.gov (United States)

    Loc, Bui Minh; Auerbach, Naftali; Khoa, Dao T.

    2017-07-01

    In this paper, we study the charge-exchange reaction to the isobaric analog state using two types of transition densities. One transition density is equal to the difference of the total neutron density minus the total proton density and the other one is the density of the excess neutrons only. We show that for projectiles that do not probe the interior of the nucleus but mostly the surface of this nucleus, distinct differences in the cross section arise when two types of transition densities are employed. We demonstrate this by considering the (3He,t ) reaction.

  3. Effect of Density and Surface Roughness on Optical Properties of Silicon Carbide Optical Components

    Institute of Scientific and Technical Information of China (English)

    LIU Gui-Ling; HUANG Zheng-Ren; LIU Xue-Jian; JIANG Dong-Liang

    2008-01-01

    @@ The effect of density and surface roughness on the optical properties of silicon carbide optical components is investigated.The density is the major factor of the total reflectance while the surface roughness is the major factor of the diffuse reflectance.The specular reflectance of silicon carbide optical components can be improved by increasing the density and decreasing the surface roughness,in the form of reducing bulk absorption and surface-related scattering,respectively.The contribution of the surface roughness to the specular reflectance is much greater than that of the density.When the rms surface roughness decreases to 2.228nm,the specular reflectance decreases to less than 0.7% accordingly.

  4. Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets

    National Research Council Canada - National Science Library

    Ollila, O H Samuli; Lamberg, Antti; Lehtivaara, Maria; Koivuniemi, Artturi; Vattulainen, Ilpo

    2012-01-01

    .... Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface...

  5. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  6. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  7. The B-ring's surface mass density from hidden density waves: Less than meets the eye?

    CERN Document Server

    Hedman, M M

    2016-01-01

    Saturn's B ring is the most opaque ring in our solar system, but many of its fundamental parameters, including its total mass, are not well constrained. Spiral density waves generated by mean-motion resonances with Saturn's moons provide some of the best constraints on the rings' mass density, but detecting and quantifying such waves in the B ring has been challenging because of this ring's high opacity and abundant fine-scale structure. Using a wavelet-based analyses of 17 occultations of the star gamma Crucis observed by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft, we are able to examine five density waves in the B ring. Two of these waves are generated by the Janus 2:1 and Mimas 5:2 Inner Lindblad Resonances at 96,427 km and 101,311 km from Saturn's center, respectively. Both of these waves can be detected in individual occultation profiles, but the multi-profile wavelet analysis reveals unexpected variations in the pattern speed of the Janus 2:1 wave that might arise...

  8. Temporal evolution of the snow density near the surface at Dome C on Antarctica Plateau

    Science.gov (United States)

    Champollion, N.; Picard, G.; Arnaud, L.; Macelloni, G.; Remy, F.

    2014-12-01

    Snow density near the surface, i.e. the first 5 - 10 first centimeters, is essential for surface mass balance retrieval from satellite or stakes, thermal diffusion for surface energy budget, firn densification for ice-core interpretation and air / snow chemistry exchange on ice sheets. It is related to the local meteorological conditions such as precipitation, wind and temperature (metamorphism). A long term temporal and spatial evolution of the snow density near the surface on ice sheets could be use to monitor climate evolution. Passive and active microwave offer the possibility to study recent climate evolution with respectively 30 and 20 years of measurements, a very good temporal repeatability and a large spatial coverage. The aim of this paper is (1) to derive the snow density near the surface, called "surface snow density", from AMSR-E passive microwave observations and ENVISAT radar altimetry measurements, and (2) to study the temporal evolution of this density. Surface snow density is also jointly estimated from passive microwave observations and radar altimetry measurements by two independent methods. For both methods, the estimation of density is based on the surface reflection of electromagnetic wave in the microwave domain, which mainly depends on dielectric contrast between air and snow. For passive microwave observations, the polarization ratio is derived in order to be most sensitive to snow density variations near the surface. Then, the Dense Media Radiative Transfer theory is used for modeling and quantify the relationship between polarization ratio and surface snow density. For radar altimetry measurements, the total microwave backscatter coefficient is used because it depends on surface snow density and roughness. Validation of the surface snow density estimations is performed at Dome C on the Antarctica Plateau from in situ measurements of snow density. Uncertainties about the two retrieval methods (from AMSR-E and ENVISAT observations) are

  9. Graphene with vacancies: Supernumerary zero modes

    Science.gov (United States)

    Weik, Norman; Schindler, Johannes; Bera, Soumya; Solomon, Gemma C.; Evers, Ferdinand

    2016-08-01

    The density of states ϱ (E ) of graphene is investigated within the tight-binding (Hückel) approximation in the presence of vacancies. They introduce a nonvanishing density of zero modes nzm that act as midgap states, ϱ (E ) =nzmδ (E ) +smooth . As is well known, the actual number of zero modes per sample can, in principle, exceed the sublattice imbalance, Nzm≥|NA-NB| , where NA,NB denote the number of carbon atoms in each sublattice. In this paper, we establish a stronger relation that is valid in the thermodynamic limit and that involves the concentration of zero modes, nzm>|cA-cB| , where cA and cB denote the concentration of vacancies per sublattice; in particular, nzm is nonvanishing even in the case of balanced disorder, NA/NB=1 . Adopting terminology from benzoid graph theory, the excess modes associated with the current carrying backbone (percolation cluster) are called supernumerary. In the simplest cases, such modes can be associated with structural elements such as carbon atoms connected with a single bond, only. Our result suggests that the continuum limit of bipartite hopping models supports nontrivial "supernumerary" terms that escape the present continuum descriptions.

  10. HI observations of low surface brightness galaxies : Probing low-density galaxies

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS; vanderHulst, JM

    1996-01-01

    We present Very Large Array (VLA) and Westerbork Synthesis Radio Telescope (WSRT) 21-cm HI observations of 19 late-type low surface brightness (LSB) galaxies. Our main findings are that these galaxies, as well as having low surface brightnesses, have low HI surface densities, about a factor of simil

  11. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas;

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  12. Electronic properties and STM images of vacancy clusters and chains in functionalized silicene and germanene

    Science.gov (United States)

    Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.

    2017-01-01

    Electronic properties and STM topographical images of X (=F, H, O) functionalized silicene and germanene have been investigated by introducing various kind of vacancy clusters and chain patterns in monolayers within density functional theory (DFT) framework. The relative ease of formation of vacancy clusters and chain patterns is found to be energetically most favorable in hydrogenated silicene and germanene. F- and H-functionalized silicene and germanene are direct bandgap semiconducting with bandgap ranging between 0.1-1.9 eV, while O-functionalized monolayers are metallic in nature. By introducing various vacancy clusters and chain patterns in both silicene and germanene, the electronic and magnetic properties get modified in significant manner e.g. F- and H-functionalized silicene and germanene with hexagonal and rectangle vacancy clusters are non-magnetic semiconductors with modified bandgap values while pentagonal and triangle vacancy clusters induce metallicity and magnetic character in monolayers; hexagonal vacancy chain patterns induce direct-to-indirect gap transition while zigzag vacancy chain patterns retain direct bandgap nature of monolayers. Calculated STM topographical images show distinctly different characteristics for various type of vacancy clusters and chain patterns which may be used as electronic fingerprints to identify various vacancy patterns in silicene and germanene created during the process of functionalization.

  13. Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    First-principles calculations of the conventional and acoustic surface plasmons (CSPs and ASPs) on the (111) surfaces of Cu, Ag, and Au are presented. The effect of s-d interband transitions on both types of plasmons is investigated by comparing results from the local density approximation...

  14. Ab initio analysis of a vacancy and a self-interstitial near single crystal silicon surfaces: Implications for intrinsic point defect incorporation during crystal growth from a melt

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Gent 9000 (Belgium)

    2012-10-15

    The microscopic model of the Si (001) crystal surface was investigated by first principles calculations to clarify the behavior of intrinsic point defects near crystal surfaces. A c(4 x 2) structure model was used to describe the crystal surface in contact with vacuum. The calculations show lower formation energy near the surface and the existence of formation energy differences between the surface and the bulk for both types of intrinsic point defects. The tetrahedral (T)-site and the dumbbell (DB)-site, in which a Si atom is captured from the surface and forms a self-interstitial, are found as stable sites near the third atomic layer. The T-site has a barrier of 0.48 eV, whereas the DB-site has no barrier for the interstitial to penetrate into the crystal from the vacuum. Si atoms in a melt can migrate and reach at the third layer during crystal growth when bulk diffusion coefficient is used. Therefore, the melt/solid interface is always a source of intrinsic point defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N.

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  16. Monte Carlo Simulations of Density Profiles for Hard-Sphere Chain Fluids Confined Between Surfaces

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using extended continuum configurational-bias (ECCB) method. It is shown that the enrichment of beads near surfaces is happened at high densities due to the bulk packing effect, on the contrary, the depletion is revealed at low densities owing to the configurational entropic contribution. Comparisons with those calculated by density functional theory presented by Cai et al. indicate that the agreement between simulations and predictions is good. Compressibility factors of bulk HSCFs calculated using volume fractions at surfaces were also used to test the reliability of various equations of state of HSCFs by different authors.

  17. Detecting neighborhood vacancy level in Detroit city using remote sensing

    Science.gov (United States)

    Li, X.; Wang, R.; Yang, A.; Vojnovic, I.

    2015-12-01

    With the decline of manufacturing industries, many Rust Belt cities, which enjoyed prosperity in the past, are now suffering from financial stress, population decrease and urban poverty. As a consequence, urban neighborhoods deteriorate. Houses are abandoned and left to decay. Neighborhood vacancy brings on many problems. Governments and agencies try to survey the vacancy level by going through neighborhoods and record the condition of each structure, or by buying information of active mailing addresses to get approximate neighborhood vacancy rate. But these methods are expensive and time consuming. Remote sensing provides a quick and comparatively cost-efficient way to access spatial information on social and demographical attributes of urban area. In our study, we use remote sensing to detect a major aspect of neighborhood deterioration, the vacancy levels of neighborhoods in Detroit city. We compared different neighborhoods using Landsat 8 images in 2013. We calculated NDVI that indicates the greenness of neighborhoods with the image in July 2013. Then we used thermal infrared information from image in February to detect human activities. In winter, abandoned houses will not consume so much energy and therefore neighborhoods with more abandoned houses will have smaller urban heat island effect. Controlling for the differences in terms of the greenness obtained from summer time image, we used thermal infrared from winter image to determine the temperatures of urban surface. We find that hotter areas are better maintained and have lower house vacancy rates. We also compared the changes over time for neighborhoods using Landsat 7 images from 2003 to 2013. The results show that deteriorated neighborhoods have increased NDVI in summer and get colder in winter due to abandonment of houses. Our results show the potential application of remote sensing as an easily accessed and efficient way to obtain data about social conditions in cities. We used the neighborhood

  18. 7 CFR 982.35 - Vacancy.

    Science.gov (United States)

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON Order Regulating Handling Hazelnut Control Board § 982.35 Vacancy. To fill any vacancy occasioned by...

  19. Can cold dark matter paradigm explain the central-surface-densities relation?

    Science.gov (United States)

    Chan, Man-Ho

    2017-07-01

    Recently, a very strong correlation between the central surface density of stars and dynamical mass in 135 disk galaxies has been obtained. It has been shown that this central-surface-densities relation agrees very well with Modified Newtonian Dynamics (MOND). In this article, we show that if we assume the baryons have an isothermal distribution and dark matter exists, then it is possible to derive by means of the Jeans equation an analytic central-surface-densities relation connecting dark matter and baryons that agrees with the observed relation. We find that the observed central-surface-densities relation can also be accommodated in the context of dark matter provided the latter is described by an isothermal profile. Therefore, the observed relation is consistent with not only MOND.

  20. Study of Fusion Dynamics Using Skyrme Energy Density Formalism with Different Surface Corrections

    Institute of Scientific and Technical Information of China (English)

    Ishwar Dutt; Narinder K. Dhiman

    2010-01-01

    @@ Within the framework of Skyrme energy density formalism, we investigate the role of surface corrections on the fusion of colliding nuclei. The coefficient of surface correction is varied between 1/36 and 4/36, and its impact is studied on about 180 reactions. The detailed investigations indicate a linear relationship between the fusion barrier heights and strength of the surface corrections. Our analysis of the fusion barriers advocate the strength of surface correction of 1/36.

  1. Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer

    Science.gov (United States)

    Zhang, Yang; Zhang, Xintong; Wang, Dan; Wan, Fangxu; Liu, Yichun

    2017-05-01

    Introducing appropriate amount of oxygen vacancies by hydrogenation treatment is a simple and efficient way to improve the photoelectrochemical performance of nanostructured oxide photoanodes. However, the hydrogenation effect is often not durable due to the gradual healing of oxygen vacancies at or close to surface of photoanodes. Herein, we tackled the problem by conformal coating the hydrogenated nanoporous BiVO4 (H-BiVO4) photoanode with an ultrathin layer of amorphous TiO2. Photoelectrochemical measurements showed that a 4 nm-thick TiO2 layer could significantly improve the stability of H-BiVO4 photoanode for repeated working test, with negligible influence on the initial photocurrent compared to the uncoated one. Mott-Schottky and linear sweep voltammetry measurements showed that donor density and photocurrent density of the H-BiVO4 electrode almost decayed to the values of pristine BiVO4 electrode after 3 h test, while the amorphous TiO2-coated electrode only degraded by 6% and 5% of the initial values respectively in the same period. The investigation thus suggested that the amorphous TiO2 layer did protect the oxygen vacancies in H-BiVO4 photoanode by isolating these oxygen vacancies from environmental oxygen, while at the same time not impeding the interfacial charge transfer to water molecules due to its leaky nature.

  2. Density-functional calculation of van der Waals forces for free-electron-like surfaces

    DEFF Research Database (Denmark)

    Hult, E.; Hyldgaard, P.; Rossmeisl, Jan;

    2001-01-01

    A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...... shows that the van der Waals density functional is applicable to realistic surfaces. The need for physically correct surface models, especially for open surfaces, is also illustrated. Finally the parameters for the anisotropic interaction of O-2 with Al are calculated....

  3. Sensitivity of the Meridional Overturning Circulation to the Pattern of the Surface Density Flux

    Science.gov (United States)

    2010-09-01

    a better prognosis of anthropogenic climate change . Figure 1. Classical representation of the global thermohaline circulation and oceanic...modeling efforts and long-term strategy related to climate change . 15. NUMBER OF PAGES 105 14. SUBJECT TERMS Meridional Overturning Circulation ... Thermohaline Circulation , Thermocline, Residual-Mean Theory, Air-Sea Fluxes, Surface Density Flux , Mixed-Layer Density, Water-mass Transformation

  4. A Density Functional Study of Atomic Carbon Adsorption on δ-Pu(111)Surface

    Institute of Scientific and Technical Information of China (English)

    WEI Hong-Yuan; XIONG Xiao-Ling; SONG Hong-Tao; LUO Shun-Zhong

    2010-01-01

    @@ Adsorption of atomic carbon on δ-Pu(111)surface is investigated systematically using density functional theory with RPBE functional.The adsorption energies,adsorption structures,Mulliken population,work functions,layer and projected density of states are calculated in wide ranges of coverage,which have never been studied before as far as we know.

  5. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  6. First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3.

    Science.gov (United States)

    Cao, D; Cai, M Q; Zheng, Yue; Hu, W Y

    2009-12-14

    The possibilities of vacancy-induced magnetism in perovskite BaTiO(3) are investigated by first-principles calculations. Calculated results show that both titanium and oxygen vacancies could induce magnetism, but the barium vacancy did not induce magnetism. New and interesting magnetic properties of half-metallic magnetism are found in BaTiO(3) induced by the Ti-vacancy. Based on the density of states and the spin charge density distribution of BaTiO(3), we discuss the different origins of magnetism induced by the partial spin-polarized O 2p states around Ti vacancies and the partially filled d-states Ti around the oxygen vacancies. The discrepancy between the magnetic moments in the cubic phase and the tetragonal phase is due to anisotropic spin polarization induced by structure distortions. Our calculations would enable exploring magneto-electric coupling in nonmagnetic ferroelectric oxides.

  7. 7 CFR 932.33 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Regulating Handling Olive Administrative Committee § 932.33 Vacancies. To fill any vacancy occasioned by the failure of any person selected as a member, or as an alternate member of the committee to qualify, or in....29 insofar as such provisions are applicable. If nomination to fill any such vacancy is not...

  8. Interaction of oxygen vacancies in yttrium germanates

    KAUST Repository

    Wang, Hao

    2012-01-01

    Forming a good Ge/dielectric interface is important to improve the electron mobility of a Ge metal oxide semiconductor field-effect transistor. A thin yttrium germanate capping layer can improve the properties of the Ge/GeO 2 system. We employ electronic structure calculations to investigate the effect of oxygen vacancies in yttrium-doped GeO 2 and the yttrium germanates Y 2Ge 2O 7 and Y 2GeO 5. The calculated densities of states indicate that dangling bonds from oxygen vacancies introduce in-gap states, but the system remains insulating. However, yttrium-doped GeO 2 becomes metallic under oxygen deficiency. Y-doped GeO 2, Y 2Ge 2O 7 and Y 2GeO 5 are calculated to be oxygen substoichiometric under low Fermi energy conditions. The use of yttrium germanates is proposed as a way to effectively passivate the Ge/dielectric interface. This journal is © 2012 the Owner Societies.

  9. From density to interface fluctuations: the origin of wavelength dependence in surface tension.

    Science.gov (United States)

    Hiester, Thorsten

    2008-12-01

    The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension gamma(q) can be defined and expressed in terms of the direct correlation function c(r,r;{'}) , the equilibrium density profile rho_{0}(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or gamma(q) , respectively. This result generalizes the Mecke-Dietrich surface tension gamma_{MD}(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning gamma_{MD}(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].

  10. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    CERN Document Server

    Antonov, A N; Sarriguren, P; de Guerra, E Moya

    2016-01-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS) and also with results of other theoretical methods.

  11. Behaviors of helium in vanadium:Stability, diffusion, vacancy trapping and ideal tensile strength

    Institute of Scientific and Technical Information of China (English)

    Lijiang Gui; Yuelin Liu; Weitian Wang; Yinan Liu; Kameel Arshad; Ying Zhang; Guanghong Lu; Junen Yao

    2013-01-01

    The behaviors of helium in vanadium including stability, diffusion, and its interaction with vacancy as well as its effects on the ideal tensile strength was investigated by a first-principles method. The activation energy barrier of helium was calculated to be 0.09 eV, which is consistent with the experimental result. The results indicated that the vacancy can lead to a directed helium segregation into the vacancy to form a helium cluster since the vacancy provides a “lower atomic and electron density region”as a large driving force for helium binding. It is easy for a mono-vacancy to trap helium and form a HenV complex. The first-principles computational tensile test demonstrates that helium obviously decreased the tensile strength of vanadium.

  12. Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabova, M. A., E-mail: Mehrabova@mail.ru; Madatov, R. S. [Azerbaijan National Academy of Sciences, Institute of Radiation Problems (Azerbaijan)

    2011-08-15

    The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smaller than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.

  13. Electronic and optical properties of vacancy-doped WS2 monolayers

    Directory of Open Access Journals (Sweden)

    Jian-wei Wei

    2012-12-01

    Full Text Available Monolayers of tungsten disulfide doped with atomic vacancies have been investigated for the first time by density functional theory calculations. The results reveal that the atomic vacancy defects affect the electronic and optical properties of the tungsten disulfide monolayers. The strongly ionic character of the W-S bonds and the non-bonding electrons of the vacancy defects result in spin polarization near the defects. Moreover, the spin polarization of single W atomic vacancies has a larger range than for one or two S atomic vacancies. In particular, increased intensity of absorption and red shift of optical absorption are universally observed in the presence of these atomic defects, which are shown to be a fundamental factor in determining the spin transport and optical absorption of tungsten disulfide monolayers.

  14. Measuring surface state density and energy distribution in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, Eliezer; Cohen, Gilad; Gross, Shahar; Henning, Alexander; Matok, Max; Rosenwaks, Yossi [Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University (Israel); Kretinin, Andrey V. [School of Physics and Astronomy, University of Manchester (United Kingdom); Shtrikman, Hadas [Department of Condensed Matter Physics, Braun Center for Submicrometer Research, Weizmann Institute of Science, Rehovot (Israel)

    2014-02-15

    Semiconducting nanowires are expected to have applications in various areas as transistors, sensors, resonators, solar cells, and thermoelectric systems. Understanding the surface properties is crucial for the fabrication of high-performance devices. Due to the large surface-to-volume ratio of nanowires, their surface electronic properties, like surface states, can a have a large effect on the performance of both electronic and optoelectronic devices. At present, determination of the surface state density depends on a combination of experimental measurements of the capacitance and/or drain current, in a nanowire field-effect transistor, and a fitting to simulation. This technique follows certain assumptions, which can severely harm the accuracy of the extracted density of states. In this report, we demonstrate a direct measurement of the surface state density of individual InAs and silicon nanowires. The method is based on measuring the surface potential of a nanowire field-effect transistor, with respect to a changing gate bias. The extracted density of states at the surface helps to explain various electronic phenomena in such devices. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Full charge-density calculation of the surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....

  16. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    Science.gov (United States)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  17. The Partial Density of States of CO2 Molecules Adsorption on the Fe (111) Surface

    Science.gov (United States)

    Wu, Junfang

    2017-09-01

    The state of CO2 molecules adsorption on Fe (111) surface is studied by simulation with the software, the partial density of states the adsorption is obtained. Through the graphical distribution, the pseudogap and the partial density of states at the Fermi level of the CO2 molecules adsorption on the Fe (111) surface is analyzed and compared. The key mechanism of CO2 molecules adsorption on the Fe (111) surface is revealed. The results showed that the CO2 molecules adsorption on the bridge position of Fe (111) surface is stable. The main reason of O atom and Fe atom combining with the bonding is that the resonance of the density of states happed between the O 2p orbital and Fe 3d orbital.

  18. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  19. Numerical Modeling of the Stability of Face-Centered Cubic Metals with High Vacancy Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Brian P. Somerday; M. I. Baskes

    1998-12-01

    The objective of this research is to assess the possibility of forming an atomically porous structure in a low-density metal, e.g., Al with vacancies up to 0.20/lattice site; and to examine the effects of hydrogen and vacancy concentration on the stability of an atomically porous structure that has been experimentally produced in nickel. The approach involves numerical modeling using the Embedded-Atom Method (EAM). High vacancy concentrations cause the Al lattice to disorder at 300K. In contrast, Ni retains the face-centered-cubic structure at 300K for vacancy concentrations up to 0.15 Vac/lattice site. Unexpectedly, the lattice with 0.15 Vac/lattice site is more stable than the lattice with 0.10 or 0.20 Vac/lattice site. The Ni systems with 0.10 and 0.15 Vac/lattice site exhibit domains consisting of uniform lattice rotations. The Ni lattice with 0.15 Vac/lattice site is more stable with an initial distribution of random vacancies compared to ordered vacancies. The equilibrium lattice structures of Ni a d Al containing vacancies and H are less ordered to structures with vacancies only at 300K.

  20. Thermodynamics, structure, and charge state of hydrogen-vacancy complexes in δ-plutonium

    Science.gov (United States)

    Taylor, Christopher D.; Francis, Michael F.; Schwartz, Daniel S.

    2014-06-01

    Hydrogen-vacancy complexes can form in a material due to the exothermic binding of hydrogen atoms to vacancy sites. We explore the structure and electronic properties of hydrogen-vacancy complexes in δ-Pu using a density functional theory supercell approach, with up to eight hydrogen atoms stored in the vacancy site. We find that the hydrogen atoms bind to the inner edge of the vacancy site, preferring pseudo-octahedral configurations that optimize the Pu-H bond length. Hydrogen binding to the vacancy site remains exothermic, with binding energies around -0.4 eV/H atom. A statistical mechanics analysis is derived and applied to reveal the range of hydrogen chemical potentials that would lead to hydrogen-vacancy complex formation. We find that these chemical potentials are higher than those required to form the hydride phase, indicating that hydriding should occur before any appreciable concentration of vacancy-hydrogen complexes is realized. Some remarks are made comparing this theoretical finding to the experimental work on this topic, with suggestions given for future work that may help reconcile some apparent contradictions.

  1. Using gravity data to estimate the density of surface rocks of Taiwan region

    Science.gov (United States)

    Lo, Y. T.; Horng-Yen, Y.

    2016-12-01

    Surface rock density within terrain correction step is one of the important parameters for obtaining Bouguer anomaly map. In the past study, we obtain the Bouguer anomaly map considering the average density correction of a wide range of the study area. In this study, we will be the better estimate for the correction of the density of each observation point. A correction density that coincides with surface geology is in order to improve the accuracy of the cloth cover anomaly map. The main idea of estimating correction of the density using gravity data statistics are two method, g-H relationship and Nettleton density profile method, respectively. The common advantages of these methods are in the following: First, density estimating is calculated using existing gravity observations data, it may be avoided the trouble of directly measure the rock density. Second, after the establishment the measuring point s of absolute gravity value, latitude, longitude and elevation into the database, you can always apply its database of information and terrain data with the value to calculate the average rock density on any range. In addition, each measuring point and numerical data of each terrain mesh are independent, if found to be more accurate gravity or terrain data, simply update a document data alone, without having to rebuild the entire database. According the results of estimating density distribution map, the trends are broadly distributed close to Taiwan Geology Division. The average density of the backbone mountain region is about 2.5 to 2.6 g/cm^3, the average density of east Central Mountain Range and Hsuehshan Range are about 2.3 to 2.5 g/cm^3, compared with the western foothills of 2.1-2.3 g/cm^3, the western plains is from 1.8 to 2.0 g/cm^3.

  2. Comparing near-surface and bulk densities of asteroids using radar scattering properties

    Science.gov (United States)

    Zambrano Marin, Luisa Fernanda; Nolan, Michael C.; Taylor, Patrick A.; Virkki, Anne

    2016-10-01

    Dual-polarization radar measurements of asteroids provide a joint constraint on the near-surface density and porosity, which can give insights on asteroid composition and evolution. Magri et al. (2001) used (433) Eros radar and spacecraft data as calibration for estimating the near-surface densities and porosities of 45 other radar-detected asteroids (36 main-belt and 9 near-Earth). At that time, only (433) Eros had both radar observations and a measured bulk density. Now that there have been spacecraft observations of several other asteroids and radar measurements of the densities of several binary near-Earth asteroids with various compositions, we can expand the calibration to include those objects. We begin by applying the method of Magri et al. to Ceres, Vesta, Itokawa, 1994 CC, 2001 SN263, 1998 QE2, and 2000 DP107 to explore the differences between the bulk density and the near-surface density measured with radar. We expect significant differences between Ceres and Vesta and the small near-Earth asteroids as the porosities of these objects are expected to be quite different. However, we expect that small binary objects likely have similar internal structures, so that any differences should depend on composition and perhaps surface weathering.Reference: Magri et al., "Radar constraints on asteroid Properties using 433 Eros as ground truth". Meteoritics & Planetary Science 36, 1697-1709, 2001.

  3. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    Science.gov (United States)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  4. Density functional theory study of SO{sub 2}-adsorbed Ni(1 1 1) and hydroxylated NiO(1 1 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xin [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Dong, Chaofang, E-mail: cfdong@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Chen, Zhanghua [School of Mathematics and Physics. University of Science and Technology Beijing, Beijing 100083 (China); Xiao, Kui; Li, Xiaogang [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2015-11-15

    Highlights: • The adsorption of O{sub 2} on Ni surface is weakened with the increasing coverage of O. • SO{sub 2} can adsorb on clean Ni(1 1 1) surface by molecular form. • SO{sub 2} can only adsorb on hydroxylated NiO surface with O vacancies. • The atomic O strengthens the adsorption of SO{sub 2} on substrate and passive film. • Unbroken passive film surface can inhibit the adsorption of SO{sub 2} effectively. - Abstract: Spin polarized, DFT + U periodic calculation is used as an effective way to model the adsorption process of SO{sub 2} on hydroxylated NiO(1 1 1) surface. The adsorption of atomic O and O{sub 2} on the clean Ni(1 1 1) surface is calculated to investigate the forming process of passive film. The molecular and dissociated adsorptions of H{sub 2}O on NiO(1 1 1) surface are evaluated to construct defect-free hydroxylated NiO(1 1 1) surface. The adsorption of SO{sub 2} and atomic O on clean Ni(1 1 1) surface is also investigated to compare with the adsorption capacity between passive film and substrate. With respect to the single adsorption process of SO{sub 2} on defect-free hydroxylated NiO(1 1 1) surface, the effects of O vacancy of surface and atomic O closed to the surface are investigated. The calculation results show that there is no chemical adsorption of SO{sub 2} on the defect-free hydroxylated NiO(1 1 1) surface with or without atomic O. Either single SO{sub 2} or SO{sub 2} with atomic O prefer adsorbing on the hydroxylated NiO(1 1 1) surface with O vacancies. The adsorption behavior is strengthened with the increase of percentage of surface O vacancy. The existence of atomic O leads to the production of SO{sub 3} on the hydroxylated NiO(1 1 1) surface and strengthens the adsorption capacity of SO{sub 2}. Furthermore, the results also reveal the relationship between the charge transfer and the adsorption energy of SO{sub 2} and atomic O on the hydroxylated NiO(1 1 1) surface and clean Ni(1 1 1) surface. We inferred that broken

  5. A Simple Model for the Relationship Between Star Formation and Surface Density

    CERN Document Server

    Dobbs, C L

    2009-01-01

    We investigate the relationship between the star formation rate per unit area and the surface density of the ISM (the local Kennicutt-Schmitt law) using a simplified model of the ISM and a simple estimate of the star formation rate based on the mass of gas in bound clumps, the local dynamical timescales of the clumps, and an efficiency parameter of around 5 per cent. Despite the simplicity of the approach, we are able to reproduce the observed linear relation between star formation rate and surface density of dense (molecular) gas. We use a simple model for the dependence of H_2 fraction on total surface density to argue why neither total surface density nor the HI surface density are good local indicators of star formation rate. We also investigate the dependence of the star formation rate on the depth of the spiral potential. Our model indicates that the mean star formation rate does not depend significantly on the strength of the spiral potential, but that a stronger spiral potential, for a given mean surf...

  6. Diffuse Surface Scattering in the Plasmonic Resonances of Ultra-Low Electron Density Nanospheres

    CERN Document Server

    Monreal, R Carmina; Apell, S Peter

    2015-01-01

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here we investigate the role that different surface effects, namely electronic spill-out and diffuse surface scattering, play in the optical properties of these ultra-low electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior both in position and width for large particles and a strong blueshift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultra-low electron density ...

  7. Effect of collision cascade density on swelling and surface topography of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Titov, A.I. [State Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Karaseov, P.A., E-mail: platon.karaseov@rphf.spbstu.ru [State Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Karabeshkin, K.V.; Belyakov, V.S.; Arkhipov, A.V. [State Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Kucheyev, S.O. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2013-11-15

    We study the surface topography and swelling of GaN irradiated at room temperature with 1.3 keV/amu F, P, PF{sub 2}, and PF{sub 4} ions. These irradiation conditions reveal the effect of the collision cascade density on ion-induced swelling and roughening of the GaN surface. Results show that, for F and P ions that create dilute collision cascades, swelling dominates erosion. In the case of molecular ion irradiation, characterized by larger cascade densities, surface erosion dominates swelling. For the conditions studied, surface roughness scales with the thickness of surface amorphous layers when these layers are thinner than about 20 nm.

  8. Determination of the Wenzel roughness parameter by the Power Spectral Density of functional Alumina surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, P.L.G., E-mail: pedro.lovato@ufrgs.br [Programa de Pós-Graduação em Microeletrônica, Instituto de Física da Universidade Federal do Rio Grande do Sul, CEP. 91501-970 Porto Alegre (Brazil); Horowitz, F. [Programa de Pós-Graduação em Microeletrônica, Instituto de Física da Universidade Federal do Rio Grande do Sul, CEP. 91501-970 Porto Alegre (Brazil); Felde, N.; Schröder, S.; Coriand, L.; Duparré, A. [Fraunhofer Institute for Applied Optics and Precision Engineering, D 07745 Jena (Germany)

    2016-05-01

    The Wenzel roughness parameter of isotropic Gaussian surfaces is analytically described in terms of the Power Spectral Density function without the smooth surface approximation. This Wenzel roughness parameter — Power Spectral Density link was examined for distinct roughnesses of Aluminum-oxide thin films. The Power Spectral Density functions of the surfaces were determined in a wide spatial frequency range by combining different scan areas of Atomic Force Microscopy measurements. The calculated results presented a good agreement with the Wenzel roughness parameter values obtained directly from the topography measured by Atomic Force Microscopy. Finally, wetting behavior was ascertained through determination of water contact angles, including superhydrophobic behavior. This approach, together with an empirical procedure based on a structural parameter, can predict the wetting properties of a surface by taking all its relevant roughness components into account. - Highlights: • Wenzel roughness parameter and Power Spectral Density are theoretically linked. • The formula is tested for Alumina surfaces with distinct roughnesses. • The formula agrees with the experimental data from Atomic Force Microscopy. • The proper contribution of topography in surface wetting can be ascertained.

  9. Influence of electropolishing current densities on sulfur generation at niobium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, P.V., E-mail: tyagipv@ornl.gov [The Graduate University for Advanced Studies, Tsukuba, Ibaraki (Japan); Nishiwaki, M.; Noguchi, T.; Sawabe, M.; Saeki, T.; Hayano, H.; Kato, S. [KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2013-11-15

    We report the effect of different current densities on sulfur generation at Nb surface in the electropolishing (EP) with aged electrolyte. In this regard, we conducted a series of electropolishing (EP) experiments in aged EP electrolyte with high (≈50 mA/cm{sup 2}) and low (≈30 mA/cm{sup 2}) current densities on Nb surfaces. The experiments were carried out both for laboratory coupons and a real Nb single cell cavity with six witness samples located at three typical positions (equator, iris and beam pipe). Sample's surfaces were investigated by XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). The surface analysis showed that the EP with a high current density produced a huge amount of sulfate/sulfite particles at Nb surface whereas the EP with a low current density was very helpful to mitigate sulfate/sulfite at Nb surface in both the experiments.

  10. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    Science.gov (United States)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-01-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec−1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm−2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction. PMID:28220847

  11. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    Science.gov (United States)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-02-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.

  12. Electrostatic force density for a scanned probe above a charged surface

    Energy Technology Data Exchange (ETDEWEB)

    Passian, A.; Wig, A.; Meriaudeau, F.; Buncick, M.; Thundat, T.; Ferrell, T. L.

    2001-07-15

    The Coulomb interaction of a dielectric probe tip with a uniform field existing above a semi-infinite, homogeneous dielectric substrate is studied. The induced polarization surface charge density and the field distribution at the bounding surface of the dielectric medium with the geometry of half of a two sheeted hyperboloid of revolution located above the dielectric half space interfaced with a uniform surface charge density is calculated. The force density on the hyperboloidal probe medium is calculated as a function of the probe tip shape. The calculation is based on solving Laplace's equation and employing a newly derived integral expansion for the vanishing dielectric limit of the potential. The involved numerical simulations comprise the evaluation of infinite double integrals involving conical functions.

  13. Electrostatic force density for a scanned probe above a charged surface

    Science.gov (United States)

    Passian, A.; Wig, A.; Meriaudeau, F.; Buncick, M.; Thundat, T.; Ferrell, T. L.

    2001-07-01

    The Coulomb interaction of a dielectric probe tip with a uniform field existing above a semi-infinite, homogeneous dielectric substrate is studied. The induced polarization surface charge density and the field distribution at the bounding surface of the dielectric medium with the geometry of half of a two sheeted hyperboloid of revolution located above the dielectric half space interfaced with a uniform surface charge density is calculated. The force density on the hyperboloidal probe medium is calculated as a function of the probe tip shape. The calculation is based on solving Laplace's equation and employing a newly derived integral expansion for the vanishing dielectric limit of the potential. The involved numerical simulations comprise the evaluation of infinite double integrals involving conical functions.

  14. Optical coherence tomography identifies lower labial salivary gland surface density in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jan K Nowak

    Full Text Available The labial minor salivary glands (LSGs are easily accessible mucus-secreting structures of the alimentary tract that may provide new information on the basis of gastrointestinal complications of cystic fibrosis (CF. It was shown that they are destructed in the course of cystic fibrosis. We employed wide-field, micrometer resolution in vivo optical coherence tomography to assess the surface density of LSGs in 18 patients with CF and 18 healthy subjects. The median LSGs' surface densities in CF patients, and in the control group were 4.32 glands/cm2 and 6.58 glands/cm2, respectively (p = 0.006; Mann-Whitney U test. A lower LSG surface density is a previously unrecognized CF-related pathology of the alimentary tract.

  15. A comparative study of atomic oxygen adsorption at Pd surfaces from Density Functional Theory

    Science.gov (United States)

    Bukas, Vanessa J.; Reuter, Karsten

    2017-04-01

    Based on density functional theory, we present a detailed investigation into the on-surface adsorption of atomic oxygen at all three low-index Pd facets in the low-coverage regime. Relying on one consistent computational framework allows for a systematic comparison with respect to surface symmetry, while discerning trends in the adsorption geometries, energies, work functions, and electron densities. We overall find a persisting degree of O-Pd hybridization that is accompanied by minimal charge transfer from the substrate to the adsorbate, thereby resulting in comparable binding energies and diffusion barriers at the three surfaces. Small differences in reactivity are nevertheless reflected in subtle variations of the underlying electronic structure which do not, however, follow the expected order according to atom packing density.

  16. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    Science.gov (United States)

    Ahn, Kwangseok; Kim, Jong Beom; Kim, Hyo Jung; Lee, Hyun Hwi; Lee, Dong Ryeol

    2015-01-01

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 -2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  17. The structure and properties of vacancies in Si nano-crystals calculated by real space pseudopotential methods

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, S.P. [Departments of Physics and Chemical Engineering, Center of Computational Materials, Institute of Computational Engineering and Sciences, University of Texas, Austin, TX 78712 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 (United States)], E-mail: spbeckman@gmail.com; Chelikowsky, James R. [Departments of Physics and Chemical Engineering, Center of Computational Materials, Institute of Computational Engineering and Sciences, University of Texas, Austin, TX 78712 (United States)

    2007-12-15

    The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancy's electronic properties and energy of formation are directly related to the local symmetry of the vacancy site. The formation energy for vacancies and Frenkel pair are calculated. It is found that both defects have lower energy in smaller crystals. In a 2 nm nano-crystal the energy to form a Frenkel pair is 1.7 eV and the energy to form a vacancy is no larger than 2.3 eV. The energy barrier for vacancy diffusion is examined via a nudged elastic band algorithm.

  18. Polarity-induced oxygen vacancies at LaAlO3∕SrTiO3 interfaces

    NARCIS (Netherlands)

    Zhong, ZhiCheng; Xu, P.X.; Kelly, Paul J.

    2010-01-01

    Using first-principles density-functional-theory calculations, we find a strong position and thickness dependence of the formation energy of oxygen vacancies in LaAlO3∣SrTiO3 (LAO∣STO) multilayers and interpret this with an analytical capacitor model. Oxygen vacancies are preferentially formed at p-

  19. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: r.gonzalez@crya.unam.mx [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet

  20. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta, E-mail: l.buzi@fz-juelich.de [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Temmerman, Greg De [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Oost, Guido Van [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Möller, Sören [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany)

    2014-12-15

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10{sup 23} D{sup +}/m{sup 2} s and low: 9 · 10{sup 21} D{sup +}/m{sup 2} s). Particle fluence and ion energy, respectively 10{sup 26} D{sup +}/m{sup 2} and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion.

  1. Surface density of dark matter haloes on galactic and cluster scales

    Science.gov (United States)

    Del Popolo, A.; Cardone, V. F.; Belvedere, G.

    2013-02-01

    In this paper, we analysed the correlation between the central surface density and the halo core radius of galaxies, and cluster of galaxies dark matter (DM) haloes, in the framework of the secondary infall model. We used Del Popolo secondary infall model taking into account ordered and random angular momentum, dynamical friction and DM adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that r* (the halo characteristic radius) is not a universal quantity as claimed by Donato et al. and Gentile et al. On the contrary, we find a correlation with the halo mass M200 in agreement with Cardone & Tortora, Boyarsky et al. and Napolitano, Romanowsky & Tortora, but with a significantly smaller scatter, namely 0.16 ± 0.05. We also consider the baryon column density finding this latter being indeed a constant for low-mass systems, such as dwarfs, but correlating with mass with a slope of α = 0.18 ± 0.05. In the case of the surface density of DM for a system composed only of DM, as in dissipationless simulations, we get α = 0.20 ± 0.05. These results leave little room for the recently claimed universality of (dark and stellar) column density.

  2. Assessment of the Tao-Mo nonempirical semilocal density functional in applications to solids and surfaces

    Science.gov (United States)

    Mo, Yuxiang; Car, Roberto; Staroverov, Viktor N.; Scuseria, Gustavo E.; Tao, Jianmin

    2017-01-01

    Recently, Tao and Mo developed a semilocal exchange-correlation density functional. The exchange part of this functional is derived from a density-matrix expansion corrected to reproduce the fourth-order gradient expansion of the exchange energy in the slowly-varying-density limit, while the correlation part is based on the Tao-Perdew-Staroverov-Scuseria (TPSS) correlation functional, with a modification for the low-density limit. In the present paper, the Tao-Mo (TM) functional is assessed by computing various properties of solids and jellium surfaces. This includes 22 lattice constants and bulk moduli, 30 band gaps, seven cohesive energies, and jellium surface exchange and correlation energies for the density parameter rs in the range from 2 to 3 bohr. Our calculations show that the TM approximation can yield consistently high accuracy for most properties considered here, with mean absolute errors (MAEs) of 0.025 Å for lattice constants, 7.0 GPa for bulk moduli, 0.08 eV/atom for cohesive energies, and 35 erg /c m2 for surface exchange-correlation energies. The MAE in band gaps is larger than that of TPSS, but slightly smaller than the errors of the local spin-density approximation, Perdew-Burke-Ernzerhof generalized gradient approximation, and revised TPSS. However, band gaps are still underestimated, particularly for large-gap semiconductors, compared to the Heyd-Scuseria-Ernzerhof nonlocal screened hybrid functional.

  3. Interplay of oxygen vacancies and electronic correlations in SrVO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Backes, Steffen; Kim, Aaram J.; Jeschke, Harald O.; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main (Germany); Lechermann, Frank [Institut fuer Theoretische Physik, Universitaet Hamburg (Germany); Rozenberg, Marcelo J. [Laboratoire de Physique des Solides, Universite Paris-Sud, Orsay (France); Santander Syro, Andres F. [CSNSM, Universite Paris-Sud and CNRS/IN2P3, Orsay (France)

    2016-07-01

    We investigate the role of oxygen vacancies in SrVO{sub 3} within LDA+DMFT (density functional theory combined with dynamical mean-field theory). We show that, in addition to the usual t{sub 2g} lower Hubbard band, oxygen vacancies are responsible for an additional peak around -1 eV of V 3d{sub z}{sup 2} orbital character, which is not present in the bulk system without vacancies. We discuss our results in the light of recent angle-resolved photoemission (ARPES) experiments.

  4. Insulating ferromagnetic oxide films: the controlling role of oxygen vacancy ordering

    Energy Technology Data Exchange (ETDEWEB)

    Salafranca Laforga, Juan I [ORNL; Salafranca, Juan [Universidad Complutense de Madrid, Spain; Biskup, Nevenko [ORNL; Mehta, Virat [University of California, Berkeley; Oxley, Mark P [ORNL; Suzuki, Yuri [Stanford University; Pennycook, Stephen J [University of Tennessee, Knoxville (UTK); Pantelides, Sokrates T. [Vanderbilt University, Nashville; Varela del Arco, Maria [ORNL

    2014-01-01

    The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film s electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.

  5. Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms

    Directory of Open Access Journals (Sweden)

    Bi-Ru Wu

    2012-03-01

    Full Text Available We investigate the electronic structure of graphane with hydrogen vacancies, which are supposed to occur in the process of hydrogenation of graphene. A variety of configurations is considered and defect states are derived by density functional calculation. We find that a continuous chain-like distribution of hydrogen vacancies will result in conduction of linear dispersion, much like the transport on a superhighway cutting through the jungle of hydrogen. The same conduction also occurs for chain-like vacancies in an otherwise fully fluorine-adsorbed graphene. These results should be very useful in the design of graphene-based electronic circuits.

  6. Density functional theory calculations of tetracene on low index surfaces of copper crystal

    Institute of Scientific and Technical Information of China (English)

    Dou Wei-Dong; Zhang Han-Jie; Bao Shi-Ning

    2009-01-01

    This paper carries out the density functional theory calculations to study the adsorbate-substrate interaction between tetracene and Cu substrates (Cu (110) and Cu (100) surface). On each of the surfaces, two kinds of geometry are calculated, namely 'flat-lying' mode and 'upright standing' mode. For 'flat-lying' geometry, the molecule is found to be aligned with its longer molecular axis along close-packed direction of the substrata surfaces. For 'upright standing' geometry, the long axis of tetracene is found to be parallel to the surface normal of the substrate on Cu (110) surface. However, tetracene appears as 'tilted' mode on Cu (100) surface. Structures with 'flat-lying' mode have much larger adsorption energy and charge transfer upon adsorption than that with 'upright standing' mode, indicating the preference of 'flat-lying' geometry on both Cu (110) and Cu (100) surface.

  7. Density, Molar Volume, and Surface Tension of Liquid Al-Ti

    Science.gov (United States)

    Wessing, Johanna Jeanette; Brillo, Jürgen

    2017-02-01

    Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.

  8. Dynamics of single Fe atoms in graphene vacancies.

    Science.gov (United States)

    Robertson, Alex W; Montanari, Barbara; He, Kuang; Kim, Judy; Allen, Christopher S; Wu, Yimin A; Olivier, Jaco; Neethling, Jan; Harrison, Nicholas; Kirkland, Angus I; Warner, Jamie H

    2013-04-10

    Focused electron beam irradiation has been used to create mono and divacancies in graphene within a defined area, which then act as trap sites for mobile Fe atoms initially resident on the graphene surface. Aberration-corrected transmission electron microscopy at 80 kV has been used to study the real time dynamics of Fe atoms filling the vacancy sites in graphene with atomic resolution. We find that the incorporation of a dopant atom results in pronounced displacements of the surrounding carbon atoms of up to 0.5 Å, which is in good agreement with density functional theory calculations. Once incorporated into the graphene lattice, Fe atoms can transition to adjacent lattice positions and reversibly switch their bonding between four and three nearest neighbors. The C atoms adjacent to the Fe atoms are found to be more susceptible to Stone-Wales type bond rotations with these bond rotations associated with changes in the dopant bonding configuration. These results demonstrate the use of controlled electron beam irradiation to incorporate dopants into the graphene lattice with nanoscale spatial control.

  9. DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S

    Science.gov (United States)

    Zhou, Qingxiao; Yuan, Lei; Yang, Xi; Fu, Zhibing; Tang, Yongjian; Wang, Chaoyang; Zhang, Hong

    2014-08-01

    The adsorption of formaldehyde (H2CO) on modified graphene sheets, combining vacancy and dopants (B, N, and S), was investigated by employing the density functional theory (DFT). It was found that the vacancy-defected graphene was more sensitive to absorb H2CO molecule compared with the pristine one. Furthermore, the H2CO molecule tended to be chemisorbed on vacancy-defected graphene with dopants, which exhibited larger adsorption energy and net charge transfer than that of one without dopants. The results of partial electronic density of states (PDOS) indicated that the defect-dopant combination effect on the adsorption process was mainly owing to the contribution of the hybridization between dopants and C atoms around the vacancy. We hope our results will be useful for the application of graphene for chemical sensors to detect formaldehyde gas.

  10. Structure and physical properties of silicon clusters and of vacancy clusters in bulk silicon

    CERN Document Server

    Sieck, A

    2000-01-01

    different from the solid. The calculated stabilities and positron-lifetimes of vacancy clusters in bulk silicon indicate the positron-lifetimes of about 435 ps detected in irradiated silicon to be related to clusters of 9 or 10 vacancies. The vacancies in these clusters form neighboring hexa-rings and, therefore, minimize the number of dangling bonds. In this thesis the growth-pattern of free silicon clusters and vacancy clusters in bulk silicon is investigated. The aim is to describe and to better understand the cluster to bulk transition. Silicon structures in between clusters and solids feature new interesting physical properties. The structure and physical properties of silicon clusters can be revealed by a combination of theory and experiment, only. Low-energy clusters are determined with different optimization techniques and a density-functional based tight-binding method. Additionally, infrared and Raman spectra, and polarizabilities calculated within self-consistent field density-functional theory are...

  11. Calculated Grain Size-Dependent Vacancy Supersaturation and its Effect on Void Formation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Foreman, A. J. E.

    1974-01-01

    In order to study the effect of grain size on void formation during high-energy electron irradiations, the steady-state point defect concentration and vacancy supersaturation profiles have been calculated for three-dimensional spherical grains up to three microns in size. In the calculations...... of vacancy supersaturation as a function of grain size, the effects of internal sink density and the dislocation preference for interstitial attraction have been included. The computations show that the level of vacancy supersaturation achieved in a grain decreases with decreasing grain size. The grain size...... dependence of the maximum vacancy supersaturation in the centre of the grains is found to be very similar to the grain size dependence of the maximum void number density and void volume swelling measured in the central regions of austenitic stainless steel grains. This agreement reinforces the interpretation...

  12. Vacancy-induced transmission in three-dimensional photonic crystal slabs.

    Science.gov (United States)

    Keilman, J; Caruso, K; Citrin, D S

    2015-07-01

    The transmission spectra of finite-thickness slabs of three-dimensional (3D) diamond-lattice photonic crystals of air spheres in a dielectric background in which various concentrations of randomly located vacancies are present are studied. We find that resonant modes associated with isolated defects couple to form an extended defect band, leading to a significant increase in transmission for frequencies inside the 3D photonic bandgap. Outside the 3D gap, vacancies induce scattering from evanescent to propagating modes, leading to an increase in transmission near the pseudo-gap edges within the gap. The local defect density of states for several concentrations of vacancies is computed; thus, it is shown that the total number of defect states and the range of supported frequencies increase due to increasing vacancy density.

  13. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, Gilad, E-mail: zorn@ge.com; Castner, David G. [National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, Washington 98195-1653 (United States); Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi, E-mail: Mingdi-Yan@uml.edu [Department of Chemistry, Portland State University, Portland, Oregon 97207-0751 (United States)

    2015-03-15

    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.

  14. CO oxidation on PdO catalysts with perfect and defective rutile-TiO2 as supports: Elucidating the role of oxygen vacancy in support by DFT calculations

    Science.gov (United States)

    Li, Xiao; Sun, Xiongfei; Xu, Xianglan; Liu, Wenming; Peng, Honggen; Fang, Xiuzhong; Wang, Hongming; Wang, Xiang

    2017-04-01

    To explore metal oxide-oxide support interactions and their effects, the mechanism of CO oxidation on PdO catalysts with rutile TiO2 or TiO2-x (TiO2 with a bridging oxygen vacancy) as the support, was studied by density functional theory calculations, compared with that on pure PdO surface. For TiO2 as the support, support effect leads to the change of the preferential CO adsorption sites from the coordinatively unsaturated Pd (Pdcus) site on pure PdO surface to the bridging site of coordinatively unsaturated Pd and O atoms (Pdcus and Ocus), thus altering the reaction pathway of CO oxidation, whereas the support effect has little influence on the energy barrier. However, for TiO2-x as the support, the presence of the oxygen vacancy leads to the energy barrier remarkably decreased compared with that on pure or TiO2-supported PdO surface. The change of Bader charges indicates the oxygen vacancy in the support can tune the oxidizability of PdO surface active oxygen Ocus, thus adjusting the CO adsorption strength at the bridging site of Pdcus and Ocus to be favorable for the extraction process of Ocus. Tuning oxygen vacancies in supports can be used as a new perspective to design improved supported oxide catalysts.

  15. Collaborative tool for collecting reference data on the density of constructed surfaces worldwide

    Science.gov (United States)

    Elvidge, Christopher D.; Tuttle, Benjamin T.; Sutton, Paul C.

    2010-11-01

    We have developed a web-based interface for the collection of surface cover type data using gridded point counts on displays of high spatial resolution color satellite imagery available in Google Earth. The system is designed to permit a distributed set of analysts to contribute gridded point counts to a common database. Our application of the system is to develop a calibration for estimating the density of constructed surface areas worldwide at 1 km2 resolution based on the brightness of satellite observed lights and population count. The system has been used to collect a test data set and a preliminary calibration for estimating the density of constructed surfaces. We believe the web-based system could have applications for research projects and analyses that require the collection of surface cover type data from diverse locations.

  16. Excited state surfaces in density functional theory: a new twist on an old problem.

    Science.gov (United States)

    Wiggins, Paul; Williams, J A Gareth; Tozer, David J

    2009-09-07

    Excited state surfaces in density functional theory and the problem of charge transfer are considered from an orbital overlap perspective. For common density functional approximations, the accuracy of the surface will not be uniform if the spatial overlap between the occupied and virtual orbitals involved in the excitation has a strong conformational dependence; the excited state surface will collapse toward the ground state in regions where the overlap is very low. This characteristic is used to predict and to provide insight into the breakdown of excited state surfaces in the classic push-pull 4-(dimethylamino)benzonitrile molecule, as a function of twist angle. The breakdown is eliminated using a Coulomb-attenuated functional. Analogous situations will arise in many molecules.

  17. Formation and Migration of Oxygen Vacancies in SrCoO3 and their effect on Oxygen Evolution Reactions

    KAUST Repository

    Tahini, Hassan A.

    2016-07-18

    Perovskite SrCoO3 is a potentially useful material for promoting the electrocatalytic oxygen evolution reaction, with high activities predicted theoretically and observed experimentally for closely related doped perovskite materials. However, complete stoichiometric oxidation is very difficult to realize experimentally – in almost all cases there are significant fractions of oxygen vacancies present. Here, using first principles calculations we study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic and kinetic points of view. We find that an oxygen vacancy donates two electrons to neighboring Co sites in the form of localized charge. The formation energy of a single vacancy is very low and estimated to be 1.26 eV in the dilute limit. We find that a vacancy is quite mobile with a migration energy of ~0.5 eV. Moreover, we predict that oxygen vacancies exhibit a tendency towards clustering which is in accordance with the material’s ability to form a variety of oxygen-deficient structures. These vacancies have a profound effect on the material’s ability to facilitate OER, increasing the overpotential from ~0.3 V for the perfect material to ~0.7 for defective surfaces. A moderate compressive biaxial strain (2%) is predicted here to increase the surface oxygen vacancy formation energy by ca. 30%, thus reducing the concentration of surface vacancies and thereby preserving the OER activity of the material.

  18. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, C.D.; Outcalt, S.L. [National Institute of Standards and Technology, Boulder, CO (United States)

    1997-12-31

    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m{sup 3}, and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of {+-}0.02 K, pressures with a precision of {+-}0.1% of full scale, densities with a precision of {+-}0.5 kg/m{sup 3}, surface tensions with a precision of {+-}0.2 mN/m, and compositions with a precision of {+-}0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus.

  19. Effect of surface structure of kaolinite on aggregation, settling rate, and bed density.

    Science.gov (United States)

    Du, Jianhua; Morris, Gayle; Pushkarova, Rada A; Smart, Roger St C

    2010-08-17

    The flocculation and solid/liquid separation of four well-characterized kaolinites (2 well, 2 poorly crystallized) have been studied for comparison of surface structure (SEM), aggregate structure during flocculation (cryo-SEM), settling rate, and bed density (with raking). It is shown that major differences in these properties are largely due to crystallinity and consequent surface structure of the extensive (larger dimension "basal") face. Well-crystallized kaolinites, with higher Hinckley indices and lower aspect ratios, have relatively smooth, flat basal surfaces and thicker edge planes promoting both effective initial bridging flocculation (largely edge-edge) and structural rearrangement to face-face during the raking process. This results in faster settling rates and more compact bed structures. Poorly crystallized kaolinites, with low Hinckley indices and high aspect ratios, exhibit ragged, stepped structures of the extensive face with a high proportion of nanosized islands forming cascade-like steps (i.e., multiple edges) contributing up to 30% of the specific surface area and providing flocculant adsorption sites (hydroxyl groups) across this extensive face. This leads to bridging flocculation taking place on both edge and extensive ("basal") planes, producing low-density edge-face structures during flocculation which leads to slow settling rates and poor bed densities. In particular, the complex surface morphology of the poorly crystallized kaolinites resists the transformation of edge-face structures to dense face-face structures under shear force introduced by raking. This results in low sediment density for poorly crystallized kaolinites. The studies suggest that the main influence on settling rates and bed densities of kaolinites in mineral tailings is likely to be related to the crystallinity and surface morphology of the kaolinite. They also suggest that interpretation of kaolinite behavior based on models of a flat (001) basal plane and edge sites

  20. Diffuse Surface Scattering and Quantum Size Effects in the Surface Plasmon Resonances of Low Carrier Density Nanocrystals

    CERN Document Server

    Monreal, R Carmina; Apell, S Peter

    2016-01-01

    The detailed understanding of the physical parameters that determine Localized Surface Plasmon Resonances (LSPRs) is essential to develop new applications for plasmonics. A relatively new area of research has been opened by the identification of LSPRs in low carrier density systems obtained by doping semiconductor quantum dots. We investigate theoretically how diffuse surface scattering of electrons in combination with the effect of quantization due to size (QSE) impact the evolution of the LSPRs with the size of these nanosystems. Two key parameters are the length $R_0$ giving the strength of the QSE and the velocity $\\beta_T$ of the electronic excitations entering in the length scale for diffuse surface scattering. While the QSE itself only produces a blueshift in energy of the LSPRs, the diffuse surface scattering mechanism gives to both energy and linewidth an oscillatory-damped behavior as a function of size, with characteristic lengths that depend on material parameters. Thus, the evolution of the LSPRs...

  1. Estimating the amount and distribution of radon flux density from the soil surface in China.

    Science.gov (United States)

    Zhuo, Weihai; Guo, Qiuju; Chen, Bo; Cheng, Guan

    2008-07-01

    Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.

  2. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Litnovsky, A.; Philipps, V.; Van Oost, G.; Möller, S.

    2014-01-01

    Systematic study of deuterium irradiation effects on tungsten was done under ITER - relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER - like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux

  3. Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W.; Hogendoorn, K. J.; Versteeg, G. F.

    2005-01-01

    The physical solubility of N2O in and the density and viscosity of aqueous piperazine solutions have been measured over a temperature range of (293.15 to 323.15) K for piperazine concentrations ranging from about (0.6 to 1.8) kmol·mr-3. Furthermore, the present study contains experimental surface

  4. Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W.; Hogendoorn, K. J.; Versteeg, G. F.

    2005-01-01

    The physical solubility of N2O in and the density and viscosity of aqueous piperazine solutions have been measured over a temperature range of (293.15 to 323.15) K for piperazine concentrations ranging from about (0.6 to 1.8) kmol·mr-3. Furthermore, the present study contains experimental surface t

  5. Density functional theory calculations of the stress of oxidised (110) silicon surfaces

    CERN Document Server

    Melis, C; Colombo, L; Mana, G

    2016-01-01

    The measurement of the lattice-parameter of silicon by x-ray interferometry assumes the use of strain-free crystals. This might not be the case because surface relaxation, reconstruction, and oxidation cause strains without the application of any external force. In a previous work, this intrinsic strain was estimated by a finite element analysis, where the surface stress was modeled by an elastic membrane having a 1 N/m tensile strength. The present paper quantities the surface stress by a density functional theory calculation. We found a value exceeding the nominal value used, which potentially affects the measurement accuracy.

  6. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2009-01-01

    A density functional theory (DFT)-based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous......, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active...

  7. Dynamics of the artificially created vacancies in the monomolecular C60 layers

    Science.gov (United States)

    Olyanich, D. A.; Utas, T. V.; Zotov, A. V.; Saranin, A. A.

    2015-07-01

    Dynamics of single and double vacancies within the monomolecular C60 layer on the In-modified Au/Si(111) √{ 3} ×√{ 3} surface have been studied by means of variable temperature scanning tunneling microscopy (STM). The vacancies were deliberately created in the layer using STM tip impact in the regimes below decomposition threshold. Single vacancy motion has been found to be a thermally activated process characterized by the activation energy of 1.5 ± 0.3 eV. This is an effective activation energy which agrees with the net value consisted of the term responsible for vacancy migration within the free-standing C60 layer, 0.88 eV and that for individual C60 migration on (Au, In)/Si(111) surface, 0.4 eV. Mobility of C60 vacancies has been found to be affected by In adatoms. It can be slowed down by more than an order of magnitude by deposition of only 0.2 monolayer of additional In. The double vacancies have been found to be more mobile than single vacancies in which its effect is provided by a specific rotational mechanism of their motion.

  8. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.

    Science.gov (United States)

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Xu, Mingyuan; Fan, Jonathan A; Fan, Liang-Shih

    2016-11-30

    We perform ab initio DFT+U calculations and experimental studies of the partial oxidation of methane to syngas on iron oxide oxygen carriers to elucidate the role of oxygen vacancies in oxygen carrier reactivity. In particular, we explore the effect of oxygen vacancy concentration on sequential processes of methane dehydrogenation, and oxidation with lattice oxygen. We find that when CH4 adsorbs onto Fe atop sites without neighboring oxygen vacancies, it dehydrogenates with CHx radicals remaining on the same site and evolves into CO2via the complete oxidation pathway. In the presence of oxygen vacancies, on the other hand, the formed methyl (CH3) prefers to migrate onto the vacancy site while the H from CH4 dehydrogenation remains on the original Fe atop site, and evolves into CO via the partial oxidation pathway. The oxygen vacancies created in the oxidation process can be healed by lattice oxygen diffusion from the subsurface to the surface vacancy sites, and it is found that the outward diffusion of lattice oxygen atoms is more favorable than the horizontal diffusion on the same layer. Based on the proposed mechanism and energy profile, we identify the rate-limiting steps of the partial oxidation and complete oxidation pathways. Also, we find that increasing the oxygen vacancy concentration not only lowers the barriers of CH4 dehydrogenation but also the cleavage energy of Fe-C bonds. However, the barrier of the rate-limiting step cannot further decrease when the oxygen vacancy concentration reaches 2.5%. The fundamental insight into the oxygen vacancy effect on CH4 oxidation with iron oxide oxygen carriers can help guide the design and development of more efficient oxygen carriers and CLPO processes.

  9. Step density waves on growing vicinal crystal surfaces - Theory and experiment

    Science.gov (United States)

    Ranguelov, Bogdan; Müller, Pierre; Metois, Jean-Jacques; Stoyanov, Stoyan

    2017-01-01

    The Burton, Cabrera and Frank (BCF) theory plays a key conceptual role in understanding and modeling the crystal growth of vicinal surfaces. In BCF theory the adatom concentration on a vicinal surface obeys to a diffusion equation, generally solved within quasi-static approximation where the adatom concentration at a given distance x from a step has a steady state value n (x) . Recently, we show that going beyond this approximation (Ranguelov and Stoyanov, 2007) [6], for fast surface diffusion and slow attachment/detachment kinetics of adatoms at the steps, a train of fast-moving steps is unstable against the formation of steps density waves. More precisely, the step density waves are generated if the step velocity exceeds a critical value related to the strength of the step-step repulsion. This theoretical treatment corresponds to the case when the time to reach a steady state concentration of adatoms on a given terrace is comparable to the time for a non-negligible change of the step configuration leading to a terrace adatom concentration n (x , t) that depends not only on the terrace width, but also on its "past width". This formation of step density waves originates from the high velocity of step motion and has nothing to do with usual kinetic instabilities of step bunching induced by Ehrlich-Schwoebel effect, surface electromigration and/or the impact of impurities on the step rate. The so-predicted formation of step density waves is illustrated by numerical integration of the equations for step motion. In order to complete our previous theoretical treatment of the non-stationary BCF problem, we perform an in-situ reflection electron microscopy experiment at specific temperature interval and direction of the heating current, in which, for the first time, the step density waves instability is evidenced on Si(111) surface during highest possible Si adatoms deposition rates.

  10. Density functional theory calculations on oxygen adsorption on the Cu{sub 2}O surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohu [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Zhang, Xuemei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); Tian, Xinxin [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Wang, Shengguang, E-mail: shengguang.wang@gmail.com [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Synfuels China Co., Ltd., Huairou, Beijing 101407 (China); Feng, Gang, E-mail: fengg.sshy@sinopec.com [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Shanghai Research Institute of Petrochemical Technology SINOPEC, Shanghai 201208 (China)

    2015-01-01

    Graphical abstract: - Highlights: • Atomic oxygen adsorption on Cu{sub 2}O(110) and Cu{sub 2}O(100) induces surface reconstruction. • Atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(100) surface is stronger than on the Cu{sub 2}O(111) surface. • Dissociative adsorption was found to be energetically favorable. • Atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(111) surface induces magnetism. - Abstract: In order to understand various surface properties such as corrosion and potential catalytic activity of Cu{sub 2}O surfaces in the presence of environmental gases, we report here spin-polarized density functional theory calculations of the adsorptions of atomic and molecular oxygen on three surface Cu{sub 2}O facets. Atomic oxygen adsorbs at the hollow site formed with copper atoms of Cu{sub 2}O(111), while its adsorption on the Cu{sub 2}O(110) and Cu{sub 2}O(100) induces surface reconstruction. Molecular oxygen adsorbs on one coordinated unsaturated surface copper atom and two coordinated saturated copper atoms of Cu{sub 2}O(111), on the top of two surface copper atoms of Cu{sub 2}O(110), and on four surface copper atoms on Cu{sub 2}O(100). It was found that atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(100) surface is stronger than on the Cu{sub 2}O(111) surface. Atomic O and molecular O{sub 2} adsorption on the surface of Cu{sub 2}O(111) induces magnetism. This is different from other systems previously known to exhibit point defect ferromagnetism. On all three surfaces, dissociative adsorption was found to be energetically favorable.

  11. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  12. The Relation between Stellar and Dynamical Surface Densities in the Central Regions of Disk Galaxies

    CERN Document Server

    Lelli, Federico; Schombert, James M; Pawlowski, Marcel S

    2016-01-01

    We use the SPARC (Spitzer Photometry & Accurate Rotation Curves) database to study the relation between the central surface density of stars Sstar and dynamical mass Sdyn in 135 disk galaxies (S0 to dIrr). We find that Sdyn correlates tightly with Sstar over 4 dex. This central density relation can be described by a double power law. High surface brightness galaxies are consistent with a 1:1 relation, suggesting that they are self-gravitating and baryon dominated in the inner parts. Low surface brightness galaxies systematically deviate from the 1:1 line, indicating that the dark matter contribution progressively increases but remains tightly coupled to the stellar one. The observed scatter is small (~0.2 dex) and largely driven by observational uncertainties. The residuals show no correlations with other galaxy properties like stellar mass, size, or gas fraction.

  13. The interaction between light impurities and vacancies in titanium and aluminum metals: A DFT study

    Directory of Open Access Journals (Sweden)

    Andrey I. Kartamyshev

    2016-06-01

    Full Text Available In this paper, we present binding energies between hydrogen (H, carbon (C, nitrogen (N and oxygen (O atoms and a vacancy in the hexagonal closed-packed (HCP lattice of titanium (Ti and the face centered cubic (FCC lattice of aluminum (Al, calculated using the density functional theory (DFT. We have also investigated the trapping of up to five hydrogen atoms by a vacancy and the reduction of the vacancy formation energy, due to the formation of a hydrogen–vacancy complex. We used the molecular-dynamics modeling with consecutive relaxation at 0K to obtain an atomic configuration of the vacancy–impurity complex, corresponding to the global energy minimum. According to our calculations, C–V, H–V, C– (H–V, N–(H–V complexes are stable in the Al lattice with only H–V complex being stable in Ti. The formation of C–(H–V and N–(H–V complexes in the Al lattice results in the negative vacancy formation energy. The formation of H–V complex decreases the vacancy formation energy by 0.26eV in the Ti lattice. A vacancy in the Ti lattice can trap up to four hydrogen atoms.

  14. Strategies to Suppress Cation Vacancies in Metal Oxide Alloys: Consequences for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Toroker, Maytal; Carter, Emily A.

    2015-09-01

    First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.

  15. Oxygen vacancies in amorphous-Ta2O5 from first-principles calculations

    Science.gov (United States)

    Lee, Jihang; Kioupakis, Emmanouil; Lu, Wei

    Oxygen vacancies are thought to play a crucial role in the electrical and optical properties of tantalum pentoxide (Ta2O5) devices. Even though numerous experimental studies on oxygen vacancies in Ta2O5 exist, experimentally detected defects are ambiguously identified due to the absence of an accurate and conclusive theoretical analysis. We investigate oxygen vacancies in amorphous Ta2O5 with first-principles calculations based on hybrid density functional theory. The calculated thermodynamic and optical transition levels of stable oxygen vacancies are in good agreement with measured values from a variety of experimental methods, providing conclusive clues for the identification of the defect states observed in experiments. We determine the concentration of oxygen vacancies and their dominant oxidation state as a function of growth conditions. We analyze the characteristics of extra electrons introduced by donor-like oxygen vacancies, which include the formation of polarons. Our results provide insight into the fundamental properties of oxygen vacancies in Ta2O5, which is essential to controlling the properties of films and optimize the performance of devices. This research was supported by the AFOSR through MURI grant FA9550-12-1-0038 and the National Science Foundation CAREER award through Grant No. DMR-1254314. Computational resources were provided by the DOE NERSC facility.

  16. Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface

    Science.gov (United States)

    Simeni Simeni, M.; Roettgen, A.; Petrishchev, V.; Frederickson, K.; Adamovich, I. V.

    2016-12-01

    Time-resolved electron density, electron temperature, and gas temperature in nanosecond pulse discharges in helium and O2-He mixtures near liquid water surface are measured using Thomson/pure rotational Raman scattering, in two different geometries, (a) ‘diffuse filament’ discharge between a spherical high-voltage electrode and a grounded pin electrode placed in a reservoir filled with distilled water, with the tip exposed, and (b) dielectric barrier discharge between the high-voltage electrode and the liquid water surface. A diffuse plasma filament generated between the electrodes in helium during the primary discharge pulse exhibits noticeable constriction during the secondary discharge pulse several hundred ns later. Adding oxygen to the mixture reduces the plasma filament diameter and enhances constriction during the secondary pulse. In the dielectric barrier discharge, diffuse volumetric plasma occupies nearly the entire space between the high voltage electrode and the liquid surface, and extends radially along the surface. In the filament discharge in helium, adding water to the container results in considerable reduction of plasma lifetime compared to the discharge in dry helium, by about an order of magnitude, indicating rapid electron recombination with water cluster ions. Peak electron density during the pulse is also reduced, by about a factor of two, likely due to dissociative attachment to water vapor during the discharge pulse. These trends become more pronounced as oxygen is added to the mixture, which increases net rate of dissociative attachment. Gas temperature during the primary discharge pulse remains near room temperature, after which it increases up to T ~ 500 K over 5 µs and decays back to near room temperature before the next discharge pulse several tens of ms later. As expected, electron density and electron temperature in diffuse DBD plasmas are considerably lower compared to peak values in the filament discharge. Use of Thomson

  17. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds.

    Science.gov (United States)

    Bradac, C; Gaebel, T; Naidoo, N; Sellars, M J; Twamley, J; Brown, L J; Barnard, A S; Plakhotnik, T; Zvyagin, A V; Rabeau, J R

    2010-05-01

    Nitrogen-vacancy colour centres in diamond can undergo strong, spin-sensitive optical transitions under ambient conditions, which makes them attractive for applications in quantum optics, nanoscale magnetometry and biolabelling. Although nitrogen-vacancy centres have been observed in aggregated detonation nanodiamonds and milled nanodiamonds, they have not been observed in very small isolated nanodiamonds. Here, we report the first direct observation of nitrogen-vacancy centres in discrete 5-nm nanodiamonds at room temperature, including evidence for intermittency in the luminescence (blinking) from the nanodiamonds. We also show that it is possible to control this blinking by modifying the surface of the nanodiamonds.

  18. Diffusion dynamics of vacancy on Re(0 0 0 1), compared with adatom

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Hu Wangyu, E-mail: wangyuhu2001@yahoo.com.c [Department of Applied Physics, Hunan University, Changsha 410082 (China); Liu Yanhui [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-05-01

    Using molecular dynamics (MD) simulations along with our recently constructed modified analytic embedded-atom method, the diffusion dynamics of single vacancy and adatom on Re(0 0 0 1) surface are studied. The diffusion coefficients of Re adatom and vacancy are calculated, and are found to present Arrhenius diagram. The diffusion migration energies (E{sub m}) and prefactors (D{sub 0}) are obtained from the Arrhenius relation. The calculated E{sub m} for adatom is in agreement with the recent low-temperature field ion microscope experimental data. The E{sub m} and D{sub 0} show that the vacancy has very low diffusive rate.

  19. Hydroxyl-dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl photocatalyst

    KAUST Repository

    Wu, Sujuan

    2017-05-02

    Photoinduced oxygen vacancies (OVs) are widely investigated as a vital point defect in wide-band-gap semiconductors. Still, the formation mechanism of OVs remains unclear in various materials. To elucidate the formation mechanism of photoinduced OVs in bismuth oxychloride (BiOCl), we synthesized two surface hydroxyl discrete samples in light of the discovery of the significant variance of hydroxyl groups before and after UV light exposure. It is noted that OVs can be obtained easily after UV light irradiation in the sample with surface hydroxyl groups, while variable changes were observed in samples without surface hydroxyls. Density functional theory (DFT) calculations reveal that the binding energy of Bi-O is drastically influenced by surficial hydroxyl groups, which is intensely correlated to the formation of photoinduced OVs. Moreover, DFT calculations reveal that the adsorbed water molecules are energetically favored to dissociate into separate hydroxyl groups at the OV sites via proton transfer to a neighboring bridging oxygen atom, forming two bridging hydroxyl groups per initial oxygen vacancy. This result is consistent with the experimental observation that the disappearance of photoinduced OVs and the recovery of hydroxyl groups on the surface of BiOCl after exposed to a H2O(g)-rich atmosphere, and finally enables the regeneration of BiOCl photocatalyst. Here, we introduce new insights that the evolution of photoinduced OVs is dependent on surface hydroxyl groups, which will lead to the regeneration of active sites in semiconductors. This work is useful for controllable designs of defective semiconductors for applications in photocatalysis and photovoltaics.

  20. Density and stability of soil organic carbon beneath impervious surfaces in urban areas.

    Science.gov (United States)

    Wei, Zongqiang; Wu, Shaohua; Yan, Xiao; Zhou, Shenglu

    2014-01-01

    Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those in open areas in Yixing City, China. The SOC density (0-20 cm) under impervious surfaces was, on average, 68% lower than that in open areas. Furthermore, there was a significantly (Psoils, whereas the correlation was not apparent for the impervious-covered soils, suggesting that the artificial soil sealing in urban areas decoupled the cycle of C and N. Cumulative CO2-C evolved during the 28-d incubation was lower from the impervious-covered soils than from the open soils, and agreed well with a first-order decay model (Ct = C1+C0(1-e-kt)). The model results indicated that the SOC underlying capped surfaces had weaker decomposability and lower turnover rate. Our results confirm the unique character of urban SOC, especially that beneath impervious surface, and suggest that scientific and management views on regional SOC assessment may need to consider the role of urban carbon stocks.

  1. Surface hardening utilizing high-density plasma nitriding on stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lleonart-Davila, G; Gaudier, J; Rivera, R; Leal, D; Gonzalez-Lizardo, A; Leal-Quiros, E [Plasma Engineering Laboratory, Polytechnic University of Puerto Rico, San Juan, PR 00918 (Puerto Rico)

    2008-10-15

    By using a plasma nitriding procedure at the PUPR Mirror Cusp Plasma machine, surface hardness is increased in 302/304-type stainless steel samples by exposing them to high-ion-density plasma at high vacuum. This method successfully dopes the surface of the material with strengthening nitrogen ions, without the use of chemical procedures that sacrifice the resistance to corrosion of the given material. A 500 V negative bias is placed on the sample exposed to the nitrogen plasma, where high-energy ions are therefore attracted and immersed into the metallic matrix microns into the surface of the stainless steel. This potential maintains a constant surface temperature at approximately 800 deg. C. The plasma parameters including ion density and plasma temperature were diagnosed using single Langmuir probes. The stainless steel samples were then tested using scanning electron microscopy (SEM), and Vickers micro-hardness testing to determine the increment in the surface harness of the material. The SEM showed a significant presence of nitrogen imbedded in the grains of the stainless steel surface.

  2. A new experimental method for determining liquid density and surface tension

    Science.gov (United States)

    Chou, Kjo-Chih; Hu, Jian-Hong

    1991-02-01

    A summary concerning the measurement of liquid density relying on the Archimedes principle has been presented, based on which a new effective method with a specially designed bob for determining liquid density has been suggested. The application of this method to ethyl alcohol solution and liquid glycerol, as well as a theoretical error analysis, shows that this new method is significant, because not only can it simplify the procedure of measurement but it can also offer more precise results. Besides, this method can further provide surface tension or contact angle simultaneously. It is expected that this new method will find its application in hightemperature melts.

  3. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    Science.gov (United States)

    Li, Shen; Chen, Xiang-dong; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-09-01

    We demonstrate optical far-field super-resolution microscopy using an array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of the nitrogen vacancy center. Locating the nitrogen vacancy center with a spatial resolution of 6.1 nm is realized with charge state depletion nanoscopy. The nanostructures on the surface of a diamond are then imaged with a resolution below the optical diffraction limit. The results offer an approach to build a general-purpose optical super-resolution microscopy technique and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy centers.

  4. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    CERN Document Server

    Li, Shen; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    We demonstrate an optical far-field super-resolution microscopy using array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of nitrogen vacancy center. And the locating of nitrogen vacancy center with spatial resolution of 6.1 nm is realized with the charge state depletion nanoscopy. The nanostructures on the surface of diamond are then imaged with resolution below optical diffraction limit. The results offer an approach to built a general-purpose optical super-resolution microscopy and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy center.

  5. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    CERN Document Server

    McGaugh, Stacy S

    2015-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For $R_0 = 8$ kpc, the models have stellar mass $5 < M_* < 6 \\times 10^{10}$ M$_{\\odot}$, scale length $2.0 \\le R_d \\le 2.9$ kpc, LSR circular velocity $222 \\le \\Theta_0 \\le 233$ km s$^{-1}$, and solar circle stellar surface density $34 \\le \\Sigma_d(R_0) \\le 61$ M$_{\\odot}$ pc$^{-2}$. The present inter-arm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus A...

  6. Surface roughness and dislocation density in InP/InGaAs layers

    Science.gov (United States)

    Masson, Denis P.; Laframboise, Sylvain

    2004-12-01

    A subtle roughening of the surface of a buried 60 nm InGaAs epitaxial layer was detected using a combination of sample cleaving, selective chemical etching and Field Emission Scanning Electron Microscopy (FESEM). In our technology, InGaAs is the photo-absorbing layer of Metal Organic Chemical Vapor Deposition (MOCVD) grown layers used in the monolithic integration of active photo detectors and a passive mux/demux. Conventional Photo-Luminescence (PL) and X-Ray Diffraction (XRD) techniques used to monitor and optimize the growth of epitaxial layers did not show this microscopic surface roughness. The appearance of roughness in the InGaAs layer was linked to very large changes in the dislocation density of the layers grown over the rough surface. Increases of up to three orders of magnitude in the Etch Pit Density (EPD from 104 to 107 cm-2) were revealed using a standard Huber Etch. The Huber Etch also showed the preferred formation of "pairs" of dislocations threading out from a common point on the rough InGaAs surface. Changes in growth conditions resulted in the complete elimination of roughness and of excessive dislocation densities

  7. 7 CFR 1150.136 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE DAIRY PROMOTION PROGRAM Dairy Promotion and Research Order National Dairy Promotion and Research Board § 1150.136 Vacancies. To fill any vacancy...

  8. 7 CFR 1160.205 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order National Fluid Milk Processor Promotion Board § 1160.205 Vacancies. To fill any vacancy occasioned by...

  9. 7 CFR 993.32 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Order Regulating Handling Prune Marketing Committee § 993.32 Vacancies. In the event of any committee vacancy occasioned by the removal, resignation, disqualification, or death of any member, or in the event... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing...

  10. 7 CFR 989.34 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... CALIFORNIA Order Regulating Handling Raisin Administrative Committee § 989.34 Vacancies. To fill any vacancy occasioned by the failure of any person selected as a member or as an alternate member of the committee to... set forth in §§ 989.29 and 989.30, insofar as such provisions are applicable. If nomination to...

  11. Chemical Potential of Vacancies in Metal Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Jun; W.R.Tyson

    2000-01-01

    In this paper, a concept, the chemical potential of vacancies in metal crystals, has been derived from the partial mole free energy of vacancies based on a model of an atom-vacancy binary solution.For a pure metal crystal containing the mole concentration of vacancies, Cv and it's value in thermal equilibrium,C0, at temperature T the chemical potential can be expressed respectively as: μ v(Cv)=RT[1+1n(C√Co)]and μ v (Co)=RT The second term in μ v(Cv) is the chemical potential of the vacancies referred to the standardstate concentration given by J. P. Hirth [1] and first term is the standard-state one presented in this paper.

  12. Theoretical study of multiatomic vacancies in single-layer hexagonal boron nitride

    Science.gov (United States)

    Urasaki, Syu; Kageshima, Hiroyuki

    2017-02-01

    The physical properties of multiatomic vacancies are investigated by first-principles total-energy calculations. The formation energies of various vacancies as functions of chemical potential and charge states are calculated. The relationship between optimized atomic structures and charge states is analyzed. On the basis of the results, it is confirmed that the variations of formation energies and atomic structures are closely related to the changes in electronic states. In addition, the stabilities of generally large multiatomic vacancies are estimated on the basis of edges and corner energies. It is found that larger vacancies are not stable and have lower densities than smaller ones. The results are also compared with previous theoretical and experimental results.

  13. Control of carbon vacancy in SiC toward ultrahigh-voltage power devices

    Science.gov (United States)

    Kimoto, T.; Kawahara, K.; Zippelius, B.; Saito, E.; Suda, J.

    2016-11-01

    A carbon vacancy defect is one of the most abundant point defects in SiC (as-grown, irradiated, annealed) and of technological importance because the acceptor-like level of a carbon monovacancy (Z1/2 center: EC - 0.63 eV) works as the primary carrier-lifetime killer in 4H-SiC. The carbon vacancy defects can be preferentially generated by either low-energy electron irradiation or high-temperature treatment in an inert gas ambient. On the other hand, the carbon vacancy defects can be almost eliminated by either a carbon-ion implantation process or thermal oxidation. By combination of these techniques, the density of carbon vacancy defects can be controlled in the wide range from 1011 cm-3 to 1015 cm-3 or even higher.

  14. First-principles calculations of the vacancy formation energy in transition and noble metals

    DEFF Research Database (Denmark)

    Korzhavyi, P.A.; Abrikosov, Igor A.; Johansson, Börje

    1999-01-01

    Abstract: The vacancy formation energy and the vacancy formation volume of the 3d, 4d, and 5d transition and noble metals have been calculated within the local-density approximation. The calculations employ the order-N locally self-consistent Green's-function method in conjunction with a supercell...... energy through a transition-metal series and the effects of crystal and magnetic structure are investigated and discussed. [S0163-1829(99)07717-6]....... approach and include electrostatic multipole corrections to the atomic sphere approximation. The results are in excellent agreement with available full-potential calculations and with the vacancy formation energies obtained in positron annihilation measurements. The variation of the vacancy formation...

  15. Study of vacancies and extended defects in SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zschornak, M. [Institute of Ion Beam Physics and Materials Research, FZ Dresden-Rossendorf, 01328 Dresden (Germany); Institute of Structural Physics, TU-Dresden, 01062 Dresden (Germany); Gutmann, E.; Stoecker, H.; Shakhverdova, I.; Weissbach, T.; Meyer, D.C. [Institute of Structural Physics, TU-Dresden, 01062 Dresden (Germany); Gemming, S. [Institute of Ion Beam Physics and Materials Research, FZ Dresden-Rossendorf, 01328 Dresden (Germany)

    2009-07-01

    SrTiO{sub 3} is an oxide crystallizing with cubic perovskite-type of structure that exhibits a high tunability of dielectric, electric, mechanical and optical properties by means of defects. Apart from dopants, also intrinsic oxygen vacancies or ordered stacking faults, e.g. Ruddlesden-Popper (RP) phases SrO(SrTiO{sub 3}){sub n}, may influence these properties. We have investigated the structural stability, electronic properties and surface energies of such RP phases up to n=5 by means of density-functional theory. Further, we have theoretically verified an anisotropic reversible elastic softening along an O-deficient left angle 100 right angle direction recently found in nano-indentation of SrTiO{sub 3} under influence of an electric field.

  16. Gas surface density, star formation rate surface density, and the maximum mass of young star clusters in a disk galaxy. I. The flocculent galaxy M33

    CERN Document Server

    Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel

    2012-01-01

    We analyze the relationship between maximum cluster mass, M_max, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H2) and star formation rate (Sigma_SFR) in the flocculent galaxy M33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M_max is proportional to Sigma_gas^4.7, M_max is proportional Sigma_H2^1.3, and M_max is proportional to Sigma_SFR^1.0. We rule out that these correlations result from the size of sample; hence, the change of the maximum cluster mass must be due to physical causes.

  17. Spatial location engineering of oxygen vacancies for optimized photocatalytic H2 evolution activity.

    Science.gov (United States)

    Bi, Wentuan; Ye, Chunmiao; Xiao, Chong; Tong, Wei; Zhang, Xiaodong; Shao, Wei; Xie, Yi

    2014-07-23

    Enhanced H2 evolution efficiency is achieved via manipulating the spatial location of oxygen vacancies in niobates. The ultrathin K4 Nb6O17 nanosheets which are rich in surface oxygen vacancies show enhanced optical absorption and band gap narrowing. Meanwhile, the fast charge separation effectively reduces the probability of hole-electron recombination, enabling 20 times hydrogen evolution rate compared with the defect-free bulk counterpart.

  18. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides

    Science.gov (United States)

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E.

    2016-06-01

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

  19. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    Science.gov (United States)

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  20. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    Science.gov (United States)

    Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; Al-Ostaz, Ahmed

    2016-11-01

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (-16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (-13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (-7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  1. Phase-sensitive lock-in imaging of surface densities of states

    Science.gov (United States)

    Svec, Martin; Mutombo, Pingo; Shukrinov, Pavel; Dudr, Viktor; Cháb, Vladimír

    2006-01-01

    A new way of imaging the local density of states has been devised through a combination of the constant-height scanning tunnelling microscopy operational mode and lock-in techniques. We have obtained current images simultaneously with real space dynamical conductance maps (d I/d V) for energies around the Fermi level, on the Si(111)-(7 × 7) surface. We reconstructed the normalized dynamical conductance spectra—(d I/d V)/(I/V). Since the (d I/d V)/(I/V) curves are closely related to the local densities of states, we compared their sum over the unit cell to photoelectron spectra and theoretical calculations. We find that the results are in good agreement. Consequently, the extent of localization of surface electronic states at lattice positions was determined.

  2. Near-exponential surface densities as hydrostatic, nonequilibrium profiles in galaxy discs

    CERN Document Server

    Struck, Curtis

    2016-01-01

    Apparent exponential surface density profiles are nearly universal in galaxy discs across Hubble types, over a wide mass range, and a diversity of gravitational potential forms. Several processes have been found to produce exponential profiles, including the actions of bars and spirals, and clump scattering, with star scattering a common theme in these. Based on reasonable physical constraints, such as minimal entropy gradients, we propose steady state distribution functions for disc stars, applicable over a range of gravitational potentials. The resulting surface density profiles are generally a power-law term times a Sersic-type exponential. Over a modest range of Sersic index values, these profiles are often indistinguishable from Type I exponentials, except at the innermost radii. However, in certain parameter ranges these steady states can appear as broken, Type II or III profiles. The corresponding velocity dispersion profiles are low order power-laws. A chemical potential associated with scattering can...

  3. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

    Science.gov (United States)

    Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2014-02-01

    Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

  4. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    Science.gov (United States)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.

  5. Density wave like transport anomalies in surface doped Na2IrO3

    Directory of Open Access Journals (Sweden)

    Kavita Mehlawat

    2017-05-01

    Full Text Available We report that the surface conductivity of Na2IrO3 crystal is extremely tunable by high energy Ar plasma etching and can be tuned from insulating to metallic with increasing etching time. Temperature dependent electrical transport for the metallic samples show signatures of first order phase transitions which are consistent with charge or spin density wave like phase transitions predicted recently. Additionally, grazing-incidence small-angle x-ray scattering (GISAXS reveal that the room temperature surface structure of Na2IrO3 does not change after plasma etching.

  6. Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations

    Science.gov (United States)

    Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi

    2017-07-01

    The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.

  7. A collocation method for surface tension calculations with the density gradient theory

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M.

    2016-01-01

    Surface tension calculations are important in many industrial applications and over a wide range of temperatures, pressures and compositions. Empirical parachor methods are not suitable over a wide condition range and the combined use of density gradient theory with equations of state has been...... proposed in literature. Often, many millions of calculations are required in the gradient theory methods, which is computationally very intensive. In this work, we have developed an algorithm to calculate surface tensions an order of magnitude faster than the existing methods, with no loss of accuracy...

  8. Constructing multiscale gravitational energy spectra from molecular cloud surface density PDF - interplay between turbulence and gravity

    Science.gov (United States)

    Li, Guang-Xing; Burkert, Andreas

    2016-09-01

    Gravity is believed to be important on multiple physical scales in molecular clouds. However, quantitative constraints on gravity are still lacking. We derive an analytical formula which provides estimates on multiscale gravitational energy distribution using the observed surface density probability distribution function (PDF). Our analytical formalism also enables one to convert the observed column density PDF into an estimated volume density PDF, and to obtain average radial density profile ρ(r). For a region with N_col ˜ N^{-γ _N}, the gravitational energy spectra is E_p(k)˜ k^{-4(1 - 1/γ _N)}. We apply the formula to observations of molecular clouds, and find that a scaling index of -2 of the surface density PDF implies that ρ ˜ r-2 and Ep(k) ˜ k-2. The results are valid from the cloud scale (a few parsec) to around ˜ 0.1 pc. Because of the resemblance the scaling index of the gravitational energy spectrum and the that of the kinetic energy power spectrum of the Burgers turbulence (where E ˜ k-2), our result indicates that gravity can act effectively against turbulence over a multitude of physical scales. This is the critical scaling index which divides molecular clouds into two categories: clouds like Orion and Ophiuchus have shallower power laws, and the amount of gravitational energy is too large for turbulence to be effective inside the cloud. Because gravity dominates, we call this type of cloud g-type clouds. On the other hand, clouds like the California molecular cloud and the Pipe nebula have steeper power laws, and turbulence can overcome gravity if it can cascade effectively from the large scale. We call this type of cloud t-type clouds. The analytical formula can be used to determine if gravity is dominating cloud evolution when the column density PDF can be reliably determined.

  9. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals.

    Science.gov (United States)

    Gao, Yuxian; Li, Rongtan; Chen, Shilong; Luo, Liangfeng; Cao, Tian; Huang, Weixin

    2015-12-21

    Reduction behaviors, oxygen vacancies and hydroxyl groups play decisive roles in the surface chemistry and catalysis of oxides. Employing isothermal H2 reduction we simultaneously reduced CeO2 nanocrystals with different morphologies, created oxygen vacancies and produced hydroxyl groups. The morphology of CeO2 nanocrystals was observed to strongly affect the reduction process and the resultant oxygen vacancy structure. The resultant oxygen vacancies are mainly located on the surfaces of CeO2 cubes and rods but in the subsurface/bulk of CeO2 octahedra. The reactivity of isolated bridging hydroxyl groups on CeO2 nanocrystals was found to depend on the local oxygen vacancy concentration, in which they reacted to produce water at low local oxygen vacancy concentrations but to produce both water and hydrogen with increasing local oxygen vacancy concentration. These results reveal a morphology-dependent interplay among the reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals, which deepens the fundamental understanding of the surface chemistry and catalysis of CeO2.

  10. Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti

    Science.gov (United States)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; hide

    2017-01-01

    We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  11. Modeling the Images of Relativistic Jets Lensed by Galaxies with Different Mass Surface Density Distributions

    OpenAIRE

    Larchenkova, T. I.; Lutovinov, A. A.; Lyskova, N. S.

    2011-01-01

    The images of relativistic jets from extragalactic sources produced by gravitational lensing by galaxies with different mass surface density distributions are modeled. In particular, the following models of the gravitational lens mass distribution are considered: a singular isothermal ellipsoid, an isothermal ellipsoid with a core, two- and three-component models with a galactic disk, halo, and bulge. The modeled images are compared both between themselves and with available observations. Dif...

  12. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh [NSTRI, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2016-08-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO{sub 4} . 7H{sub 2}O concentration at 13.83 g/L and (NH{sub 4}){sub 2}SO{sub 4} concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  13. Surface Density of dark matter haloes on galactic and cluster scales

    CERN Document Server

    Del Popolo, A; Belvedere, G

    2013-01-01

    In this paper, in the framework of the secondary infall model, the correlation between the central surface density and the halo core radius of galaxy, and cluster of galaxies, dark matter haloes was analyzed, this having recently been studied on a wide range of scales. We used Del Popolo (2009) secondary infall model taking into account ordered and random angular momentum, dynamical friction, and dark matter (DM) adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that $r_\\ast$ (the halo characteristic radius) is not an universal quantity as claimed by Donato et al. (2009) and Gentile et al. (2009). On the contrary, we find a correlation with the halo mass $M_{200}$ in agreement with Cardone & Tortora (2010), Boyarsky at al. (2009) and Napolitano et al. (2010), but with a significantly smaller scatter, namely $0.16 \\pm 0.05$. We also consider the baryon column density finding this latter being ...

  14. The characteristic of unsaturated polyester resin wettability toward glass fiber orientation, density and surface treatment

    Directory of Open Access Journals (Sweden)

    Saputra Asep H.

    2017-01-01

    Full Text Available Wettability of composite is one of key to increase mechanical properties of composite that affected by structure of reinforcement and type of resin used. Therefore, this research focused on the effect of orientation, density and surface treatment on fiber to the characteristic of composite’s wettability, which is observed by contact angle and wetting time. The fiber used in this research is fiberglass, and the method for contact angle measurement is direct observation from the camera recorder and the data record will be processed and analyzed by using image processing method. The result for those variations can be obtained from the relation of variations toward contact angle and wetting time. According to result of research, fiber with orientation 45°/45° gives lower contact angle but longer wetting time than fiber with orientation 0°/90°. For orientation 45°/45°, the differences in wetting time is 15 second longer than orientation 0°/90°. In case of fiber density, the sheet with fiber density of 900 has 7 second faster for wetting time than sheet with fiber density of 1250. The surface treatment with NaOH 5% can accelerate the wetting time until 10 second.

  15. Non-destructive image analysis of soil surface porosity and bulk density dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F., E-mail: lfpires@uepg.b [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Cassaro, F.A.M. [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Bacchi, O.O.S.; Reichardt, K. [Laboratory of Soil Physics, Center for Nuclear Energy in Agriculture, USP/CENA, C.P. 96, C.E.P. 13.400-970, Piracicaba, SP (Brazil)

    2011-04-15

    A gamma-ray computed tomography (CT) scanner was used to evaluate changes in the structure of clayey soil samples with surface compaction submitted to wetting and drying (W-D) cycles. The obtained results indicate that W-D cycles promoted an increasing of about 10% in soil porosity with a decreasing of about 6% in soil bulk density of this compacted region. With the use of the CT it was also possible to define the thickness of the compacted region that in our case was of about 8.19 mm. This last information is very important, for instance, to estimate hydraulic parameters in infiltration models. Finally, CT analysis showed that the compacted region remained at the surface samples, even after the application of the W-D cycles. -- Research highlights: {yields} Gamma-ray tomography allowed non-destructive analysis of soil bulk density and porosity changes. {yields} Soil porosity increased about 10% with the wetting and drying cycles. {yields} Soil bulk density in the compacted region decreased about 6% with the wetting and drying cycles. {yields} Detailed bulk density and porosity analysis changes were obtained for layers of 1.17 mm.

  16. Ice Lines, Planetesimal Composition and Solid Surface Density in the Solar Nebula

    CERN Document Server

    Robinson, Sarah E; Bodenheimer, Peter; Laughlin, Gregory; Turner, Neal J; Beichman, C A

    2008-01-01

    To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2-3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, we calculate the solid surface density in the solar nebula as a function of heliocentric distance and time. We find three effects that strongly favor giant planet formation: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) recent lab results (Collings et al. 2004) showing that the ammonia and water ice lines should coincide, and (3) the presence of a substantial amount of methane ice in the trans-Saturnian region. Our results show higher solid surface densitie...

  17. Capillary waves and the decay of density correlations at liquid surfaces

    Science.gov (United States)

    Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro

    2016-12-01

    Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.

  18. Universal MOND relation between the baryonic and `dynamical' central surface densities of disc galaxies

    CERN Document Server

    Milgrom, Mordehai

    2016-01-01

    I derive a new MOND relation for pure-disc galaxies: The `dynamical' central surface density, $\\Sigma^0_D$, deduced from the measured velocities, is a universal function of only the true, `baryonic' central surface density, $\\Sigma^0_B$: $\\Sigma^0_D=\\Sigma_M \\mathcal{S}(\\Sigma^0_B/\\Sigma_M)$, where $\\Sigma_M\\equiv a_0/2\\pi G$ is the MOND surface density constant. This surprising result is shown to hold in both existing, nonrelativistic MOND theories (the nonlinear Poisson formulation, and QUMOND). $\\mathcal{S}(y)$ is derived, giving in the two limits: $\\Sigma^0_D=\\Sigma^0_B$ for very high arguments, and $\\Sigma^0_D=(4\\Sigma_M\\Sigma^0_B)^{1/2}$ for $\\Sigma^0_B/\\Sigma_M\\ll 1$. This study was prompted by the recent finding of a correlation between related attributes in a large sample of disc galaxies by Lelli et al. (2016). The MOND relation is shown to agree very well with these results.

  19. Dislocation nucleation and vacancy formation during high-speed deformation of fcc metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2001-01-01

    dislocation densities in the foils after deformation. This was interpreted as evidence for a new dislocation-free deformation mechanism, resulting in a very high vacancy production rate. In this paper we investigate this proposition using large-scale computer simulations of bulk and thin films of copper......Recently, a dislocation-free deformation mechanism was proposed by Kiritani et al. on the basis of a series of experiments where thin foils of fee metals were deformed at very high strain rates. In the experimental study, they observed a large density of stacking fault tetrahedra but very low....... The dislocations are nucleated as single Shockley partials. The large stresses required before dislocations are nucleated result in a very high dislocation density, and therefore in many inelastic interactions between the dislocations. These interactions create vacancies and a very large vacancy concentration...

  20. X-Ray surface brightness and gas density fluctuations in the Coma cluster

    CERN Document Server

    Churazov, E; Zhuravleva, I; Schekochihin, A; Parrish, I; Sunyaev, R; Forman, W; Boehringer, H; Randall, S

    2011-01-01

    X-ray surface brightness fluctuations in the core ($650 \\times 650$ kpc) region of the Coma cluster observed with XMM-Newton and Chandra are analyzed using a 2D power spectrum approach. The resulting 2D spectra are converted to 3D power spectra of gas density fluctuations. The characteristic amplitude of the volume filling density fluctuations relative to the smooth underlying density distribution varies from 7-10% on scales of $\\sim$500 kpc down to $\\sim$5% at scales $\\sim$ 30 kpc. On smaller spatial scales, projection effects smear the density fluctuations by a large factor, precluding strong limits on the fluctuations in 3D. On the largest scales probed (hundreds of kpc), the dominant contributions to the observed fluctuations most likely arise from perturbations of the gravitational potential by the two most massive galaxies in Coma, NGC4874 and NGC4889, and the low entropy gas brought to the cluster by an infalling group. Other plausible sources of density fluctuations are discussed, including turbulence...

  1. Periodic Density Functional Theory Study of Water Adsorption on the a-Quartz (101) Surface.

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Kubicki, James D. [Pennsylvania State University; Sofo, Jorge O. [Pennsylvania State University

    2011-01-01

    Plane wave density functional theory (DFT) calculations have been performed to study the atomic structure, preferred H2O adsorption sites, adsorption energies, and vibrational frequencies for water adsorption on the R-quartz (101) surface. Surface energies and atomic displacements on the vacuum-reconstructed, hydrolyzed, and solvated surfaces have been calculated and compared with available experimental and theoretical data. By considering different initial positions of H2O molecules, the most stable structures of water adsorption at different coverages have been determined. Calculated H2O adsorption energies are in the range -55 to -65 kJ/mol, consistent with experimental data. The lowest and the highest O-H stretching vibrational bands may be attributed to different states of silanol groups on the watercovered surface. The dissociation energy of the silanol group on the surface covered by the adsorption monolayer is estimated to be 80 kJ/mol. The metastable states for the protonated surface bridging O atoms (Obr), which may lead to hydrolysis of siloxane bonds, have been investigated. The calculated formation energy of a Q2 center from a Q3 center on the (101) surface with 2/3 dense monolayer coverage is equal to 70 kJ/mol which is in the range of experimental activation energies for quartz dissolution.

  2. Comparative assessment of surface fluxes from different sources using probability density distributions

    Science.gov (United States)

    Gulev, Sergey; Tilinina, Natalia; Belyaev, Konstantin

    2015-04-01

    Surface turbulent heat fluxes from modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA) as well as from satellite products (SEAFLUX, IFREMER, HOAPS) were intercompared using framework of probability distributions for sensible and latent heat fluxes. For approximation of probability distributions and estimation of extreme flux values Modified Fisher-Tippett (MFT) distribution has been used. Besides mean flux values, consideration is given to the comparative analysis of (i) parameters of the MFT probability density functions (scale and location), (ii) extreme flux values corresponding high order percentiles of fluxes (e.g. 99th and higher) and (iii) fractional contribution of extreme surface flux events in the total surface turbulent fluxes integrated over months and seasons. The latter was estimated using both fractional distribution derived from MFT and empirical estimates based upon occurrence histograms. The strongest differences in the parameters of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the western boundary current extension regions and high latitudes, while the highest differences in the fractional contributions of surface fluxes may occur in mid ocean regions being closely associated with atmospheric synoptic dynamics. Generally, satellite surface flux products demonstrate relatively stronger extreme fluxes compared to reanalyses, even in the Northern Hemisphere midlatitudes where data assimilation input in reanalyses is quite dense compared to the Southern Ocean regions.

  3. Error estimates for density-functional theory predictions of surface energy and work function

    Science.gov (United States)

    De Waele, Sam; Lejaeghere, Kurt; Sluydts, Michael; Cottenier, Stefaan

    2016-12-01

    Density-functional theory (DFT) predictions of materials properties are becoming ever more widespread. With increased use comes the demand for estimates of the accuracy of DFT results. In view of the importance of reliable surface properties, this work calculates surface energies and work functions for a large and diverse test set of crystalline solids. They are compared to experimental values by performing a linear regression, which results in a measure of the predictable and material-specific error of the theoretical result. Two of the most prevalent functionals, the local density approximation (LDA) and the Perdew-Burke-Ernzerhof parametrization of the generalized gradient approximation (PBE-GGA), are evaluated and compared. Both LDA and GGA-PBE are found to yield accurate work functions with error bars below 0.3 eV, rivaling the experimental precision. LDA also provides satisfactory estimates for the surface energy with error bars smaller than 10%, but GGA-PBE significantly underestimates the surface energy for materials with a large correlation energy.

  4. Kinetic Control of Histidine-Tagged Protein Surface Density on Supported Lipid Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Jeffrey A. [Univ. of California, Berkeley, CA (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2008-02-28

    Nickel-chelating lipids are general tools for anchoring polyhistidine-tagged proteins to supported lipid bilayers (SLBs), but controversy exists over the stability of the protein-lipid attachment. In this study, we show that chelator lipids are suitable anchors for building stable, biologically active surfaces but that a simple Langmuirian model is insufficient to describe their behavior. Desorption kinetics from chelator lipids are governed by the valency of surface binding: monovalently bound proteins desorb within minutes (t1/2 ≈ 6 min), whereas polyvalently bound species remain bound for hours (t1/2 ≈ 12 h). Evolution between surface states is slow, so equilibrium is unlikely to be reached on experimental timescales. However, by tuning incubation conditions, the populations of each species can be kinetically controlled, providing a wide range of protein densities on SLBs with a single concentration of chelator lipid. In conclusion, we propose guidelines for the assembly of SLB surfaces functionalized with specific protein densities and demonstrate their utility in the formation of hybrid immunological synapses.

  5. Density matrix treatment of non-adiabatic photoinduced electron transfer at a semiconductor surface.

    Science.gov (United States)

    Micha, David A

    2012-12-14

    Photoinduced electron transfer at a nanostructured surface leads to localized transitions and involves three different types of non-adiabatic couplings: vertical electronic transitions induced by light absorption emission, coupling of electronic states by the momentum of atomic motions, and their coupling due to interactions with electronic density fluctuations and vibrational motions in the substrate. These phenomena are described in a unified way by a reduced density matrix (RDM) satisfying an equation of motion that contains dissipative rates. The RDM treatment is used here to distinguish non-adiabatic phenomena that are localized from those due to interaction with a medium. The fast decay of localized state populations due to electronic density fluctuations in the medium has been treated within the Lindblad formulation of rates. The formulation is developed introducing vibronic states constructed from electron orbitals available from density functional calculations, and from vibrational states describing local atomic displacements. Related ab initio molecular dynamics calculations have provided diabatic momentum couplings between excited electronic states. This has been done in detail for an indirect photoexcitation mechanism of the surface Ag(3)Si(111):H, which leads to long lasting electronic charge separation. The resulting coupled density matrix equations are solved numerically to obtain the population of the final charge-separated state as it changes over time, for several values of the diabatic momentum coupling. New insight and unexpected results are presented here which can be understood in terms of photoinduced non-adiabatic transitions involving many vibronic states. It is found that the population of long lasting charge separation states is larger for smaller momentum coupling, and that their population grows faster for smaller coupling.

  6. Adsorption of Ar on planar surfaces studied with a density functional theory

    Science.gov (United States)

    Sartarelli, Salvador A.; Szybisz, Leszek

    2009-11-01

    The adsorption of Ar on planar structureless substrates of alkali metals, alkaline-earth metal Mg, CO2 , and Au was analyzed by applying a density functional formalism which includes a recently proposed effective attractive pair potential conditioned to Ar. It is shown that this approach reproduces the experimental surface tension of the liquid-vapor interface over the entire bulk coexistence curve for temperatures T spanning from the triple point Tt up to the critical point Tc . The wetting properties were studied over the entire range temperatures Tt↔Tc . It was found that Ar wets all the investigated surfaces. The adsorption isotherms for alkali metals exhibit first-order phase transitions. Prewetting lines were resolved even for the less attractive surfaces. In the cases of Mg, CO2 , and Au a continuous growth for T≥Tt was obtained. A comparison with experimental data and other microscopic calculations is reported.

  7. Surface properties of magnetic rigid disks for high-density data storage

    Science.gov (United States)

    Tsai, Hsiao-chu; Eltoukhy, Atef

    1990-05-01

    The chemical toughened glass is shown to be very safe for the disk-drive application based upon Weibull analyses of spin-to-break test data. Investigations revealed that frictional performance of glass disks can be correlated with two parameters (zero crossing and peak to valley) of the surface profile as measured by phase-shift interferometry. To compare the surface characteristics of glass with a conventional Al disk, the piezoelectrical baseline signals were measured by a glide head while flying steadily over a disk without asperity hits. The results showed that the glass disk caused less disturbance to the slider than the Al disk and can thus provide an intrinsically better surface for low-fly-height, high-density application.

  8. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals.

    Science.gov (United States)

    Lesnyak, Vladimir; Brescia, Rosaria; Messina, Gabriele C; Manna, Liberato

    2015-07-29

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn(2+) and Cd(2+)) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu(2-x)Se) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core-shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu(+) ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu(2-x)Se samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature.

  9. Role of nitrogen vacancies in cerium doped aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com [Department of Physics, University of Gujrat, Gujrat (Pakistan); Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Asghar, Farzana [Department of Physics, University of Gujrat, Gujrat (Pakistan); Rana, Usman Ali; Ud-Din Khan, Salah [Sustainable Energy Technologies Center, College of Engineering, King Saud University, PO-Box 800, Riyadh 11421 (Saudi Arabia); Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Hussain, Fayyaz [Physics Department, Bahauddin Zakarya University, Multan (Pakistan); Ahmad, Iftikhar [Department of Mathematics, University of Gujrat, Gujrat (Pakistan)

    2016-08-15

    In this report, a systematic density functional theory based investigation to explain the character of nitrogen vacancies in structural, electronic and magnetic properties of Ce doped wurtzite AlN is presented. The work demonstrates the modification in the properties of the material upon doping thereby addressing dopant concentration and inter-dopant distance. The presence of anionic vacancy reveals spin polarization and introduction of magnetic character in the structure. The doping produced the magnetic character in the material which was of ferromagnetic nature in most cases except the situation when dopants separated by largest distance of 5.873 Å. The calculated values of total energy and exchange energy suggested the configuration including Ce{sub Al}–V{sub N} complex is more favorable and exhibits ferromagnetic ordering. - Highlights: • Ce doped AlN with and without nitrogen vacancy. • Dopant at nearest neighbor site introduce ferromagnetism. • Ce{sub Al}–V{sub N} complex is favorable in Ce:AlN.

  10. ADSORPTION OF ASSOCIATING FLUIDS AT ACTIVE SURFACES: A DENSITY FUNCTIONAL THEORY

    Directory of Open Access Journals (Sweden)

    S.Tripathi

    2003-01-01

    Full Text Available We present a density functional theory (DFT to describe adsorption in systems where molecules of associating fluids can bond (or associate with discrete, localized functional groups attached to the surfaces, in addition to other fluid molecules. For such systems as water adsorbing on activated carbon, silica, clay minerals etc. this is a realistic model to account for surface heterogeneity rather than using a continuous smeared surface-fluid potential employed in most of the theoretical works on adsorption on heterogeneous surfaces. Association is modelled within the framework of first order thermodynamic perturbation theory (TPT1. The new theory accurately predicts the distribution of bonded and non-bonded species and adsorption behavior under various conditions of bulk pressure, surface-fluid and fluid-fluid association strengths. Competition between the surface-fluid and fluid-fluid association is analyzed for fluids with multiple association sites and its impact on adsorption is discussed. The theory, supported by simulations demonstrates that the extent and the nature of adsorption (e.g. monolayer vary with the number of association sites on the fluid molecules.

  11. Physical origins of ruled surfaces on the reduced density matrices geometry

    Science.gov (United States)

    Chen, Ji-Yao; Ji, Zhengfeng; Liu, Zheng-Xin; Qi, Xiaofei; Yu, Nengkun; Zeng, Bei; Zhou, Duanlu

    2017-02-01

    The reduced density matrices (RDMs) of many-body quantum states form a convex set. The boundary of low dimensional projections of this convex set may exhibit nontrivial geometry such as ruled surfaces. In this paper, we study the physical origins of these ruled surfaces for bosonic systems. The emergence of ruled surfaces was recently proposed as signatures of symmetry-breaking phase. We show that, apart from being signatures of symmetry-breaking, ruled surfaces can also be the consequence of gapless quantum systems by demonstrating an explicit example in terms of a two-mode Ising model. Our analysis was largely simplified by the quantum de Finetti's theorem—in the limit of large system size, these RDMs are the convex set of all the symmetric separable states. To distinguish ruled surfaces originated from gapless systems from those caused by symmetry-breaking, we propose to use the finite size scaling method for the corresponding geometry. This method is then applied to the two-mode XY model, successfully identifying a ruled surface as the consequence of gapless systems.

  12. Multiple charge density wave states at the surface of TbT e3

    Science.gov (United States)

    Fu, Ling; Kraft, Aaron M.; Sharma, Bishnu; Singh, Manoj; Walmsley, Philip; Fisher, Ian R.; Boyer, Michael C.

    2016-11-01

    We studied TbT e3 using scanning tunneling microscopy (STM) in the temperature range of 298-355 K. Our measurements detect a unidirectional charge density wave (CDW) state in the surface Te layer with a wave vector consistent with that of the bulk qCDW=0.30 ±0.01 c* . However, unlike previous STM measurements, and differing from measurements probing the bulk, we detect two perpendicular orientations for the unidirectional CDW with no directional preference for the in-plane crystal axes (a or c axis) and no noticeable difference in wave vector magnitude. In addition, we find regions in which the bidirectional CDW states coexist. We propose that observation of two unidirectional CDW states indicates a decoupling of the surface Te layer from the rare-earth block layer below, and that strain variations in the Te surface layer drive the local CDW direction to the specific unidirectional or, in rare occurrences, bidirectional CDW orders observed. This indicates that similar driving mechanisms for CDW formation in the bulk, where anisotropic lattice strain energy is important, are at play at the surface. Furthermore, the wave vectors for the bidirectional order we observe differ from those theoretically predicted for checkerboard order competing with stripe order in a Fermi-surface nesting scenario, suggesting that factors beyond Fermi-surface nesting drive CDW order in TbT e3 . Finally, our temperature-dependent measurements provide evidence for localized CDW formation above the bulk transition temperature TCDW.

  13. Adsorption/Desorption of Low-density Lipoprotein on a Heparinized Surface of Gold Sensors

    Institute of Scientific and Technical Information of China (English)

    LAN Ping; JI Jing; HUANG Xiao-Jun; GUDURU Deepak; GROTH Thomas; VIENKEN J(o)rg; DING Hui

    2012-01-01

    Heparin has been considered to be a potentially useful ligand for low-density lipoprotein(LDL)detection and analysis in a clinical context.In order to construct an affinity surface for preferential adsorption of LDL,heparin-modified gold surface(GS-Hep)was fabricated by a self-assembling method and hydrophobic-modified gold surfaces(GS-Hydro)was used as a control.The morphologies of the modified gold surfaces were investigated by atomic force microscopy(AFM)and the quantity of heparin bound to gold surface was assayed by the toluidine blue(TB)colorimetric method.Water contact angles were determined to investigate wettability on GS-Hep and GS-Hydro.Surface plasmon resonance(SPR)technique was used subsequently to detect the selective binding of LDL with heparin.And the investigation on the effect of pH on LDL adsorption suggests that lower pH lead to higher quantities of LDL adsorption on GS-Hep.Compared with GS-Hydro,GS-Hep is selective for LDL from both single and binary protein solutions.Moreover,adsorbed LDL on GS-Hep could be washed off by injecting elution solution,such as NaCl solution,for the purpose of the regeneration of GS-Hep for further LDL adsorption.

  14. High Gas Surface Densities yet Low UV Attenuation in z $\\sim$ 1 Disc Galaxies

    CERN Document Server

    Nordon, Raanan

    2016-01-01

    The gas in galaxies is both the fuel for star formation and a medium that attenuates the light of the young stars. We study the relations between UV attenuation, spectral slope, star formation rates, and molecular gas surface densities in a sample of 28 z$\\sim$1 and a reference sample of 32 z$\\sim$0 galaxies that are detected in CO, far-infrared, and rest frame UV. The samples are dominated by disc-like galaxies close to the main SFR--mass relation. We find that the location of the z$\\sim$1 galaxies on the IRX-$\\beta$ plane is correlated with their gas-depletion time-scale $\\tau_{dep}$ and can predict $\\tau_{dep}$ with a standard deviation of 0.16 dex. We use IRX-$\\beta$ to estimate the mean total gas column densities at the locations of star formation in the galaxies, and compare them to the mean molecular gas surface densities as measured from CO. We confirm previous results regarding high $N_H/A_V$ in z$\\sim$1 galaxies. We estimate an increase in the gas filling factor by a factor of 4--6 from z$\\sim$0 to ...

  15. Resistance to sulfur poisoning of the gold doped nickel/yttria-stabilized zirconia with interface oxygen vacancy

    Science.gov (United States)

    Zhang, Yanxing; Yang, Zongxian

    2014-12-01

    The effects of IB metal (Gold, Silver, and Copper) dopants at the triple phase boundary (TPB) on the resistance to sulfur poisoning of the Nickel/Yttria-Stabilized Zirconia (YSZ) with interface oxygen vacancy (denoted as Ni/YSZ-Ov) are studied using the first-principles method based on density functional theory. Models with Au, Ag, Cu dopants at the TPB of Ni/YSZ-Ov are proposed. It is found that the Au dopant prefers to be at the neighbor of the oxygen vacancy site (denoted as NiAu-d/YSZ-Ov) while the Ag, Cu dopants tend to be located at the top Ni layer, which have little effects on the sulfur adsorption at the interface oxygen vacancy site. Compared with Ni/YSZ-Ov, the NiAu-d/YSZ-Ov can not only weaken the sulfur adsorption at the interface oxygen vacancy site, but also restrain the diffusion of sulfur to the interface oxygen vacancy. Instead, the adsorbed S at the oxygen vacancy is more easily to diffuse out of the interface oxygen vacancy site. So we propose that doping Au in Ni at the neighbor of the interface oxygen vacancy site would be good way to increase the resistance to sulfur poisoning of the Ni/YSZ-Ov anode.

  16. Towards understanding the carbon trapping mechanism in copper by investigating the carbon-vacancy interaction

    Institute of Scientific and Technical Information of China (English)

    Zhou Hong-Bo; Jin Shuo

    2013-01-01

    We propose a vacancy trapping mechanism for carbon-vacancy (C-V) complex formation in copper (Cu) according to the first-principles calculations of the energetics and kinetics of C-V interaction.Vacancy reduces charge density in its vicinity to induce C nucleation.A monovacancy is capable of trapping as many as four C atoms to form CnV (n =1,2,3,4)complexes.A single C atom prefers to interact with neighboring Cu at a vacancy with a trapping energy of-0.21 eV.With multiple C atoms added,they are preferred to bind with each other to form covalent-like bonds despite of the metallic Cu environment.For the CnV complexes,C2V is the major one due to its lowest average trapping energy (1.31 eV).Kinetically,the formation of the CnV complexes can be ascribed to the vacancy mechanism due to the lower activation energy barrier and the larger diffusion coefficient of vacancy than those of the interstitial C.

  17. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    Science.gov (United States)

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  18. Vacancy Defect Reconstruction and its Effect on Electron Transport in Si-C Nanotubes

    Directory of Open Access Journals (Sweden)

    S. Choudhary

    2011-01-01

    Full Text Available We investigate the vacancy defect reconstruction and its effect on I-V characteristics in a (4, 0 zigzag and (5, 5 armchair silicon-carbide nanotubes (SiCNTs by applying self consistent non-equilibrium Green’s function formalism in combination with the density-functional theory to a two probe molecular junction constructed from SiCNTs. The results show that single vacancies and di-vacancies in SiCNTs have different reconstructions. A single vacancy when optimized, reconstructs into a 5-1DB configuration in both zigzag and armchair SiCNTs, and a di-vacancy reconstructs into a 5-8-5 configuration in zigzag and into a 5-2DB configuration in armchair SiCNTs. Introduction of vacancy increases the band gap of (4, 0 metallic SiCNT and decreases the bandgap of (5, 5 semiconducting SiCNT, bias voltage dependent current characteristic show reduction in overall current in metallic SiCNT and an increase in overall current in semiconducting SiCNT.

  19. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2017-08-01

    Full Text Available The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  20. Decreased lung carcinoma cell density on select polymer nanometer surface features for lung replacement therapies

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    2010-04-01

    Full Text Available Lijuan Zhang1, Young Wook Chun2, Thomas J Webster21Department of Chemistry and 2Division of Engineering, Brown University, Providence, RI USAAbstract: Poly(lactic-co-glycolic acid (PLGA has been widely used as a biomaterial in regenerative medicine because of its biocompatibility and biodegradability properties. Previous studies have shown that cells (such as bladder smooth muscle cells, chondrocytes, and osteoblasts respond differently to nanostructured PLGA surfaces compared with nanosmooth surfaces. The purpose of the present in vitro research was to prepare PLGA films with various nanometer surface features and determine whether lung cancer epithelial cells respond differently to such topographies. To create nanosurface features on PLGA, different sized (190 nm, 300 nm, 400 nm, and 530 nm diameter polystyrene beads were used to cast polydimethylsiloxane (PDMS molds which were used as templates to create nanofeatured PLGA films. Atomic force microscopy (AFM images and root mean square roughness (RMS values indicated that the intended spherical surface nanotopographies on PLGA with RMS values of 2.23, 5.03, 5.42, and 36.90 nm were formed by employing 190, 300, 400, and 530 nm beads. A solution evaporation method was also utilized to modify PLGA surface features by using 8 wt% (to obtain an AFM RMS value of 0.62 nm and 4 wt% (to obtain an AFM RMS value of 2.23 nm PLGA in chloroform solutions. Most importantly, lung cancer epithelial cells adhered less on the PLGA surfaces with RMS values of 0.62, 2.23, and 5.42 nm after four hours of culture compared with any other PLGA surface created here. After three days, PLGA surfaces with an RMS value of 0.62 nm had much lower cell density than any other sample. In this manner, PLGA with specific nanometer surface features may inhibit lung cancer cell density which may provide an important biomaterial for the treatment of lung cancer (from drug delivery to regenerative medicine.Keywords: nanotechnology

  1. Gas surface density, star formation rate surface density, and the maximum mass of young star clusters in a disk galaxy. II. The grand-design galaxy M51

    CERN Document Server

    Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel

    2013-01-01

    We analyze the relationship between maximum cluster mass, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H_2), neutral gas (Sigma_HI) and star formation rate (Sigma_SFR) in the grand design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. We find for clusters older than 25 Myr that M_3rd, the median of the 5 most massive clusters, is proportional to Sigma_HI^0.4. There is no correlation with Sigma_gas, Sigma_H2, or Sigma_SFR. For clusters younger than 10 Myr, M_3rd is proportional to Sigma_HI^0.6, M_3rd is proportional to Sigma_gas^0.5; there is no correlation with either Sigma_H_2 or Sigma_SFR. The results could hardly be more different than those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but M_3rd is proportional to Sigma_g...

  2. Study of CO adsorption on perfect and defective pyrite(100)surfaces by density functional theory

    Institute of Scientific and Technical Information of China (English)

    Yudong Du; Wenkai Chen; Yongfan Zhang; Xin Guo

    2011-01-01

    First-principles calculations based on density functional theory(DFT)and the generalized gradient approximation(GGA)have been used to study the adsorption of CO molecule on the perfect and defective FeS2(100)surfaces.The defective Fe2S(100)surfaces are caused by sulfur deficiencies.Slab geometry and periodic boundary conditions are employed with partial relaxations of atom positions in calculations.Two molecular orientations,C-and O-down,at various distinct sites have been considered.Total energy calculations indicated that no matter on perfect or deficient surfaces,the Fe position is relatively more favored than the S site with the predicted binding energies of 120.8 kJ/mol and 140.8 kJ/mol,respectively.Moreover,CO was found to be bound to Fe atom in vertical configuration.The analysis of density of states and vibrational frequencies before and after adsorption showed clear changes of the C-O bond.

  3. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  4. Optimizing the surface density of polyethylene glycol chains by grafting from binary solvent mixtures

    Science.gov (United States)

    Arcot, Lokanathan; Ogaki, Ryosuke; Zhang, Shuai; Meyer, Rikke L.; Kingshott, Peter

    2015-06-01

    Polyethylene glycol (PEG) brushes are very effective at controlling non-specific deposition of biological material onto surfaces, which is of paramount importance to obtaining successful outcomes in biomaterials, tissue engineered scaffolds, biosensors, filtration membranes and drug delivery devices. We report on a simple 'grafting to' approach involving binary solvent mixtures that are chosen based on Hansen's solubility parameters to optimize the solubility of PEG thereby enabling control over the graft density. The PEG thiol-gold model system enabled a thorough characterization of PEG films formed, while studies on a PEG silane-silicon system examined the versatility to be applied to any substrate-head group system by choosing an appropriate solvent pair. The ability of PEG films to resist non-specific adsorption of proteins was quantitatively assessed by full serum exposure studies and the binary solvent strategy was found to produce PEG films with optimal graft density to efficiently resist protein adsorption.

  5. Density Functional Study on Adsorption of NO on AuSe (010) Surface

    Institute of Scientific and Technical Information of China (English)

    XU,Xiang-Lan; CHEN,Wen-Kai; WANG,Xia; SUN,Bao-Zhen; LI,Yi; LU,Chun-Hai

    2008-01-01

    NO molecule adsorption on (010) surface of gold selenide (AuSe) has been studied with a periodic slab model by means of the GGA-PW91 exchange-correlation functional within the framework of density functional theory (DFT). Four different on-top adsorption sites Au(1), Au(2), Se(1) and Se(2) were considered for α-AuSe and three on-top adsorption sites Au(1), Au(2) and Se(1) for β-AuSe. N-end and O-end adsorptions of NO were investigated for the above sites. The results show that N-end adsorptions are preferred for α- and β-AuSe and O-end adsorptions are not feasible and thought as physisorption with the weak adsorption energies from 6.0 to 10.8 kJ/mol. For the N-end adsorptions on α-and β-AuSe (010) surfaces, Au(2) sites are most favorable with the adsorption energies 89.0 and 78.0 kJ/mol for α-and β-AuSe, respectively. However, the adsorptions at Au1 sites are very weak with the adsorption energies of 27.8 and 7.5 kJ/mol, respectively. In case of the adsorption of N-down orientations of NO at Se sites for α-and β-AuSe (010) surfaces, the adsorption activities of Se(1) and Se(2) sites on the α-AuSe (010) surface and Se(1) site on the β-AuSe (010) surface are almost the same with the adsorption energies 51.2, 52.7 and 49.2 kJ/mol. The geometric optimizations for adsorption configurations were calculated along with accounting for stretching frequency and density of states in our work.

  6. 7 CFR 1207.324 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan National Potato Promotion Board § 1207.324 Vacancies. To fill...

  7. A density functional theory study on the acetylene cyclotrimerization on Pd-modified Au(111) surface

    Science.gov (United States)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2017-10-01

    Calculations based on the first-principle density functional theory were carried out to study the possible acetylene cyclotrimerization reactions on Pd-Au(111) surface and to investigate the effect of Au atom alloying with Pd. The adsorption of C2H2, C4H4, C6H6 and the PDOS of 4d orbitals of surface Pd and Au atoms were studied. The comparison of d-band center of Pd and Au atom before and after C2H2 or C4H4 adsorption suggests that these molecules affect the activity of Pd-Au(111) surface to some degree due to the high binding energy of the adsorption. In our study, the second neighboring Pd ensembles on Pd-Au(111) surface can adsorb two acetylene molecules on parallel-bridge site of two Au atoms and one Pd atom, respectively. Csbnd C bonds are parallel to each other and two acetylenes are adsorbed face to face to produce four-membered ring C4H4 firstly. The geometric effect and electronic effect of Pd-Au(111) surface with the second neighboring Pd ensembles both help to reduce this activation barrier.

  8. Adsorption properties of trifluoroacetic acid on anatase (101) and (001) surfaces: a density functional theory study.

    Science.gov (United States)

    Lamiel-Garcia, Oriol; Fernandez-Hevia, Daniel; Caballero, Amador C; Illas, Francesc

    2015-09-28

    The interaction of trifluoroacetic acid with anatase TiO2(101) and TiO2(001) surfaces has been studied by means of periodic density functional theory based calculations. On the former, the interaction is weak with the adsorbed molecules in a configuration almost indistinguishable from the gas phase structure. On the latter, the interaction is very strong; the molecule adsorbs as trifluoroacetate and releases a proton that binds an oxygen surface atom with a significant distortion of the substrate. The difference in adsorption the mode and strength can be understood from the different structural features of both surfaces and provides arguments to the role of trifluoroacetic as a morphological control agent in the solvothermal synthesis of TiO2 nanoparticles with predominant (001) facets. This, in turn, has a very significant impact on industrial production strategies of value-added TiO2 for photocatalytic applications. Analysis of calculated core level binding energies for F(1s) confirms the experimental assignment to F at the surface as F(-) at Ti surface sites and to F in -CF3 groups of the adsorbed molecule.

  9. Systematic control of surface Dirac fermion density on topological insulator Bi2Te3

    Science.gov (United States)

    Xu, Suyang; Xia, Yuqi; Grauer, David; Hor, Yewsan; Cava, Robert; Hasan, Zahid

    2010-03-01

    Three dimensional (3D) topological insulators are quantum materials with a spin-orbit induced bulk insulating gap that exhibit quantum-Hall-like phenomena in the absence of applied magnetic fields. They feature surface states that are topologically protected against scattering by time reversal symmetry. The proposed applications of topological insulators in device geometries rely on the ability to tune the chemical potential on their surfaces in the vicinity of the Dirac node. Here, we demonstrate a suite of surface control methods based on a combination of photo-doping and molecular-doping to tune the Dirac fermion density on the topological (111) surface of Bi2Te3. Their efficacy is demonstrated via direct electronic structure measurements using high resolution angle-resolved photoemission spectroscopy. These results open up new opportunities for probing topological behavior of Dirac electrons in Bi2Te3. At least one of the methods demonstrated here can be successfully applied to other topological insulators (Bi1-xSbx, Sb2Te3 and Bi2Se3). More importantly, our methods of topological surface state manipulation demonstrated here are highly suitable for future spectroscopic studies of topological phenomena which will complement the transport results gained from the traditional electrical gating techniques.

  10. Analytical performance of molecular beacons on surface immobilized gold nanoparticles of varying size and density.

    Science.gov (United States)

    Uddayasankar, Uvaraj; Krull, Ulrich J

    2013-11-25

    The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7×10(11)particles cm(-2)) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed

  11. Investigation of surface magnetic noise by shallow spins in diamond.

    Science.gov (United States)

    Rosskopf, T; Dussaux, A; Ohashi, K; Loretz, M; Schirhagl, R; Watanabe, H; Shikata, S; Itoh, K M; Degen, C L

    2014-04-11

    We present measurements of spin relaxation times (T1, T1ρ, T2) on very shallow (≲5  nm) nitrogen-vacancy centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30 times compared to bulk values, indicating the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01-0.1μB/nm2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples and chemical surface terminations. A low temperature measurement further confirms that fluctuations are thermally activated. The data support the atomistic picture where impurities are associated with the top carbon layers, and not with terminating surface atoms or adsorbate molecules. The low spin density implies that the presence of a single surface impurity is sufficient to cause spin relaxation of a shallow nitrogen-vacancy center.

  12. Selective Laser Sintering of PA2200: Effects of print parameters on density, accuracy, and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-12

    Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.

  13. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    Science.gov (United States)

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  14. Density functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces

    Science.gov (United States)

    Nosir, M. A.; Martin-Gondre, L.; Bocan, G. A.; Díez Muiño, R.

    2016-09-01

    We present Density functional theory (DFT) calculations for the investigation of the structural relaxation of Fe(1 1 1), as well as for the study of the interaction of nitrogen atoms and molecules with this surface. We perform spin polarized DFT calculations using VASP (Vienna Ab-initio Simulation Package) code. We use the supercell approach and up to 19 slab layers for the relaxation of the Fe(1 1 1) surface. We find a contraction of the first two interlayer distances with a relative value of Δ12 = - 7.8 % and Δ23 = - 21.7 % with respect to the bulk reference. The third interlayer distance is however expanded with a relative change of Δ34 = 9.7 % . Early experimental studies of the surface relaxation using Low Energy Electron Diffraction (LEED) and Medium Energy Ion Scattering (MEIS) showed contradictory results, even on the relaxation general trend. Our current theoretical results support the LEED conclusions and are consistent qualitatively with other recent theoretical calculations. In addition, we study the interaction energy of nitrogen atoms and molecules on the Fe(1 1 1) surface. The nitrogen atoms are adsorbed in the hollow site of the unit cell, with an adsorption energy consistent with the one found in previous studies. In addition, we find the three molecularly adsorbed states that are observed experimentally. Two of them correspond to the adsorbed molecule oriented normal to the surface and a third one corresponds to the molecule adsorbed parallel to the surface. We conclude that our results are accurate enough to be used to build a full six-dimensional potential energy surface for the N2 system.

  15. First-Principles Study of Electronic Properties in PbS((1)OO) with Vacancy Defect

    Institute of Scientific and Technical Information of China (English)

    DING Zong-Ling; XING Huai-Zhong; XU Sheng-Lan; HUANG Yan; CHEN Xiao-Shuang

    2007-01-01

    Electronic properties of both Pb and S vacancy defects in PbS(100) have been studied using the first-principles density functional theory (DFT) calculations with the plane-wave pseudopotentials. It is found that the density of states (DOS) near the top of the valence band and the bottom of the conduction band is significantly modified by these defects. Our calculation indicates that in the case of S vacancy defects the Fermi energy shifts to the conduction band making it as an n-type PbS (donor). However, in the case of Pb vacancy, because of the appreciable change of the DOS, the system acts as a p-type PbS (accepter). In addition, the structural relaxation shows that the defect leads to outward relaxation of the nearest-neighbouring atoms and inward relaxation of the next-nearest neighbouring atoms.

  16. Anomalies of free mantle surface for Asia region as an indicator of subcrustal density inhomogeneities

    Science.gov (United States)

    Senachin, V. N.; Baranov, A. A.

    2009-04-01

    Free mantle surface (FMS) is one of the important characteristics of the isostatic state of the Earth. FMS shows the degree of uplifting of the crust about the normal level, which corresponds to the homogeneous upper mantle. The FMS anomaly study can provide important information about the different geodynamic processes that responsible for the density heterogeneities in the upper mantle and the changing isostatic state of the lithosphere. Investigations of the FMS (Artemjev et. al, 1986) revealed main dependencies for the depth of the FMS under the continents and oceans. For the continental lithosphere it was found that the FMS depth depends on the thickness of the crust. Subsequently, the same dependence was revealed for the oceanic lithosphere using CRUST 2.0 model for all Earth (Senachin, 2008). In this study we present the updated FMS anomaly map for the Central and Southern Asia calculated using the crustal model AsCRUST-08 (Baranov, 2008), which has the resolution of 1x1 degree. We used the Moho map and density for upper, middle, and lower layers of crystalline crust for calculating the FSM anomalies. The Southern and Central Asia is tectonically complex region characterized by the great collision between the Asian and Indian plates, anomalously thick uplifted crust, and the large extensional zones near the southern and eastern margins of Asia. The evolution of the entire region is also strongly related to the active subduction along the Pacific border. The crustal model AsCRUST-08 provides substantially more detailed FMS data for the Asia region. We can see anomalous uplifting of the FMS up to 3 km in the extensional zones (Red Sea) and in the deep seafloor areas. Arabian Peninsula has the FMS depth about 6 km, which can be attributed to rather high density of the upper mantle. For Tibet region we reveal quite complex dependence between the FMS depth and the thickness of the crust. The central part with crustal thickness more then 45 km has elevated FMS

  17. Engineering Polarons at a Metal Oxide Surface

    Science.gov (United States)

    Yim, C. M.; Watkins, M. B.; Wolf, M. J.; Pang, C. L.; Hermansson, K.; Thornton, G.

    2016-09-01

    Polarons in metal oxides are important in processes such as catalysis, high temperature superconductivity, and dielectric breakdown in nanoscale electronics. Here, we study the behavior of electron small polarons associated with oxygen vacancies at rutile TiO2(110 ) , using a combination of low temperature scanning tunneling microscopy (STM), density functional theory, and classical molecular dynamics calculations. We find that the electrons are symmetrically distributed around isolated vacancies at 78 K, but as the temperature is reduced, their distributions become increasingly asymmetric, confirming their polaronic nature. By manipulating isolated vacancies with the STM tip, we show that particular configurations of polarons are preferred for given locations of the vacancies, which we ascribe to small residual electric fields in the surface. We also form a series of vacancy complexes and manipulate the Ti ions surrounding them, both of which change the associated electronic distributions. Thus, we demonstrate that the configurations of polarons can be engineered, paving the way for the construction of conductive pathways relevant to resistive switching devices.

  18. The electrical conductivity, density and surface tension of molten salts containing zirconium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Katyshev, S F; Teslyuk, L M; Eltsova, N V [Urals State Technical University-UPI, 19 Mira Str., Ekaterinburg 620002 (Russian Federation)], E-mail: tnv@htf.ustu.ru, E-mail: ksf@mail.ustu.ru

    2008-02-15

    The temperature dependencies of specific electric conductivity, density and surface tension of molten LiF-KF-ZrF{sub 4} mixtures in a wide concentration range were investigated using relative capillary method and method of maximum pressure in a gas bubble. The obtained values of molar electric conductivity, molar volumes and excess thermodynamic functions of melt surface layer have noticeable deviations from those calculated for ideal mixtures. This phenomenon can be explained by some specific interaction between the components of studied ternary mixtures. Mixing the components in such melts is accompanied by a noticeable interaction with predominant formation of stable zirconium fluoride complex ions. The values of deviations depend on the ionic composition of the salt mixtures.

  19. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model

    Science.gov (United States)

    Salazar-Camacho, Carlos; Villalobos, Mario

    2010-04-01

    We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in

  20. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    Science.gov (United States)

    Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.

    2016-10-01

    Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general

  1. Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO{sub 3}-buffered ferroelectric BaTiO{sub 3} film on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qiao [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zhang, Yuyang [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Contreras-Guerrero, Rocio; Droopad, Ravi [Ingram School of Engineering, Texas State University, San Marcos, Texas 78666 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37240 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore); Ogut, Serdar; Klie, Robert F. [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2015-11-16

    The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO{sub 3} thin films grown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO{sub 3} grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. Here, we use a combination of aberration-corrected scanning transmission electron microscopy and first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectric polarization of a BaTiO{sub 3} thin film grown on GaAs. We demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO{sub 3}), and propose that the presence of surface charge screening allows the formation of switchable domains.

  2. Polarity-induced oxygen vacancies at LaAlO3|SrTiO3 interfaces

    OpenAIRE

    Zhong, Zhicheng; Xu, P. X.; Kelly, Paul J.

    2010-01-01

    Using first-principles density-functional-theory calculations, we find a strong position and thickness dependence of the formation energy of oxygen vacancies in LaAlO3 vertical bar SrTiO3 (LAO vertical bar STO) multilayers and interpret this with an analytical capacitor model. Oxygen vacancies are preferentially formed at p-type SrO vertical bar AlO2 rather than at n-type LaO vertical bar TiO2 interfaces; the excess electrons introduced by the oxygen vacancies reduce their energy by moving to...

  3. Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies

    Science.gov (United States)

    Biškup, Neven; Salafranca, Juan; Mehta, Virat; Oxley, Mark P.; Suzuki, Yuri; Pennycook, Stephen J.; Pantelides, Sokrates T.; Varela, Maria

    2014-02-01

    The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film's electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.

  4. Micro-strain, dislocation density and surface chemical state analysis of multication thin films

    Science.gov (United States)

    Jayaram, P.; Pradyumnan, P. P.; Karazhanov, S. Zh.

    2016-11-01

    Multication complex metal oxide thin films are rapidly expanding the class of materials with many technologically important applications. Herein this work, the surface of the pulsed laser deposited thin films of Zn2SnO4 and multinary compounds obtained by substitution/co-substitution of Sn4+ with In3+ and Ga3+ are studied by X-ray photoelectron emission spectroscopy (X-PES) method. Peaks corresponding to the elements of Zn, Sn, Ga, In and O on the film surface has been identified and contribution of the elements has been studied by the computer aided surface analysis (CASA) software. Binding energies, full-width at half maximum (FWHM), spin-orbit splitting energies, asymmetric peak-shape fitting parameters and quantification of elements in the films are discussed. Studies of structural properties of the films by x-ray diffraction (XRD) technique showed inverse spinel type lattice with preferential orientation. Micro-strain, dislocation density and crystallite sizes in the film surface have been estimated.

  5. Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces

    Science.gov (United States)

    Malyi, Oleksandr I.; Chen, Zhong; Kulish, Vadym V.; Bai, Kewu; Wu, Ping

    2013-01-01

    Reactions of hydrogen sulfide (H2S) with Nickel/Ytrria-doped zirconia (Ni/YDZ) anode materials might cause degradation of the performance of solid oxide fuel cells when S containing fuels are used. In this paper, we employ density functional theory to investigate S adsorption on metal (M)-doped and undoped Ni(0 0 1) and Ni(1 1 1) surfaces. Based on the performed calculations, we analyze the effects of 12 alloying additions (Ag, Au, Al, Bi, Cd, Co, Cu, Fe, Sn, Sb, V, and Zn) on the temperature of transition between clean (S atoms do not adsorb on the surfaces) and contaminated (S atoms can adsorb on the surfaces spontaneously) M-doped Ni surfaces for different concentrations of H2S in the fuel. Predicted results are consistent with many experimental studies relevant to S poisoning of both Ni/YDZ and M-doped Ni/YDZ anode materials. This study is important to understand S poisoning phenomena and to develop new S tolerant anode materials.

  6. Micro-strain, dislocation density and surface chemical state analysis of multication thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jayaram, P., E-mail: jayarampnair@gmail.com [Department of Physics, MES Ponnani College Ponnani, Kerala (India); Pradyumnan, P.P. [Department of Physics, University of Calicut, Kerala 673 635 (India); Karazhanov, S.Zh. [Department for Solar Energy, Institute for Energy Technology, Kjeller (Norway)

    2016-11-15

    Multication complex metal oxide thin films are rapidly expanding the class of materials with many technologically important applications. Herein this work, the surface of the pulsed laser deposited thin films of Zn{sub 2}SnO{sub 4} and multinary compounds obtained by substitution/co-substitution of Sn{sup 4+} with In{sup 3+} and Ga{sup 3+} are studied by X-ray photoelectron emission spectroscopy (X-PES) method. Peaks corresponding to the elements of Zn, Sn, Ga, In and O on the film surface has been identified and contribution of the elements has been studied by the computer aided surface analysis (CASA) software. Binding energies, full-width at half maximum (FWHM), spin-orbit splitting energies, asymmetric peak-shape fitting parameters and quantification of elements in the films are discussed. Studies of structural properties of the films by x-ray diffraction (XRD) technique showed inverse spinel type lattice with preferential orientation. Micro-strain, dislocation density and crystallite sizes in the film surface have been estimated.

  7. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  8. Adsorption of atomic nitrogen and oxygen on [Formula: see text] surface: a density functional theory study.

    Science.gov (United States)

    Breedon, M; Spencer, M J S; Yarovsky, I

    2009-04-08

    The adsorption of atomic nitrogen and oxygen on the ([Formula: see text]) crystal face of zinc oxide (ZnO) was studied. Binding energies, workfunction changes, vibrational frequencies, charge density differences and electron localization functions were calculated. It was elucidated that atomic oxygen binds more strongly than nitrogen, with the most stable [Formula: see text] structure exhibiting a binding energy of -2.47 eV, indicating chemisorption onto the surface. Surface reconstructions were observed for the most stable minima of both atomic species. Positive workfunction changes were calculated for both adsorbed oxygen and nitrogen if the adsorbate interacted with zinc atoms. Negative workfunction changes were calculated when the adsorbate interacted with both surface oxygen and zinc atoms. Interactions between the adsorbate and the surface zinc atoms resulted in ionic-type bonding, whereas interactions with oxygen atoms were more likely to result in the formation of covalent-type bonding. The positive workfunction changes correlate with an experimentally observed increase in resistance of ZnO conductometric sensor devices.

  9. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Mizushima, Yoriko [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Youngsuk [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Disco Corporation, Ota, Tokyo 143-8580 (Japan); Nakamura, Tomoji [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Ohba, Takayuki [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Oshima, Nagayasu; Suzuki, Ryoichi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  10. Bilayer honeycomb lattice with ultracold atoms: Multiple Fermi surfaces and incommensurate spin density wave instability

    Science.gov (United States)

    Dey, Santanu; Sensarma, Rajdeep

    2016-12-01

    We propose an experimental setup using ultracold atoms to implement a bilayer honeycomb lattice with Bernal stacking. In the presence of a potential bias between the layers and at low densities, fermions placed in this lattice form an annular Fermi sea. The presence of two Fermi surfaces leads to interesting patterns in Friedel oscillations and RKKY interactions in the presence of impurities. Furthermore, a repulsive fermion-fermion interaction leads to a Stoner instability towards an incommensurate spin density wave order with a wave vector equal to the thickness of the Fermi sea. The instability occurs at a critical interaction strength which goes down with the density of the fermions. We find that the instability survives interaction renormalization due to vertex corrections and discuss how this can be seen in experiments. We also track the renormalization group flows of the different couplings between the fermionic degrees of freedom, and find that there are no perturbative instabilities, and that Stoner instability is the strongest instability which occurs at a critical threshold value of the interaction. The critical interaction goes to zero as the chemical potential is tuned towards the band bottom.

  11. Electronic Properties of Surfaces and Interfaces with Self-Consistent van der Waals Density Functional

    Science.gov (United States)

    Ferri, Nicola; Distasio, Robert A., Jr.; Car, Roberto; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-03-01

    The long-range van der Waals (vdW) energy is only a small part of the total energy, hence it is typically assumed to have a minor influence on the electronic properties. Here, we address this question through a fully self-consistent (SC) implementation of the Tkatchenko-Scheffler (TS) density functional. The analysis of TS-vdWSC effects on electron density differences for atomic and molecular dimers reveals quantitative agreement with correlated densities obtained from ``gold standard'' coupled-cluster quantum-chemical calculations. In agreement with previous work, we find a very small overall contribution from self-consistency in the structure and stability of vdW-bound molecular complexes. However, TS-vdWSC (coupled with PBE functional) significantly affects electronic properties of coinage metal (111) surfaces, leading to an increase of up to 0.3 eV in the workfunction in agreement with experiments. Furthermore, vdW interactions visibly influence workfunctions in hybrid organic/metal interfaces, changing Pauli push-back and charge transfer contributions.

  12. Methodologies to analyze surface bonding properties using parametric and density functional methods

    Science.gov (United States)

    Ruette, Fernando; Sánchez, Morella; Castellano, Olga; Soscún, Humberto

    This work presents two general methodologies to calculate bond adsorption energy (BAE) between surface and adsorbate using parametric quantum (PQM) and density functional (DFM) methods. The first one corresponds to the bond partition energy technique that is directly applied to PQMs by using energy partition approach and considering diatomic and monoatomic energy changes. The second methodology to evaluate BAE, as well as for PQMs and DFMs, is by means of the following equation: {BAE} = E_{ads} - Delta E_{s} - Delta E_{a'} where Eads is the adsorption energy and ΔEs and ΔEa correspond to energy changes in the surface and substrate due to adsorption, respectively. Applications to radical adsorption: H°, CH2°, and CH3° is performed on a grafitic grain model, using a polyaromatic hydrocarbon (PAH), such as coronene. The methods employed are a PQM (CATIVIC program) and DFMs (GAUSSIAN and DMol software packages). Results show that Eads is completely different of BAE, because of distortion of surface and adsorbate. There is a strong destabilization in the region adjacent to the adsorption site and stabilization in the rest of the surface. Two terms for BAE are reported: one that corresponds to direct bonding interaction (BAEb) and other to long range ones, due to electrostatic interaction (BAEe). Owing to the important effects of bond strength adsorbate-surface interaction, results suggest that BAE is fundamental for understanding bond activation in adsorbate and surface, cooperative effects, diffusion, reaction, and desorption process. In general, similar results were found for both CATIVIC and DFMs, by using the second methodology.

  13. Near-exponential surface densities as hydrostatic, non-equilibrium profiles in galaxy discs

    Science.gov (United States)

    Struck, Curtis; Elmegreen, Bruce G.

    2017-01-01

    Apparent exponential surface density profiles are nearly universal in galaxy discs across Hubble types, over a wide mass range, and a diversity of gravitational potential forms. Several processes have been found to produce exponential profiles, including the actions of bars and spirals, and clump scattering, with star scattering a common theme in these. Based on reasonable physical constraints, such as minimal entropy gradients, we propose steady-state distribution functions for disc stars, applicable over a range of gravitational potentials. The resulting surface density profiles are generally a power-law term times a Sérsic-type exponential. Over a modest range of Sérsic index values, these profiles are often indistinguishable from Type I exponentials, except at the innermost radii. However, in certain parameter ranges, these steady states can appear as broken, Type II or III profiles. The corresponding velocity dispersion profiles are low-order power laws. A chemical potential associated with scattering can help understand the effects of long-range scattering. The steady profiles are found to persist through constant velocity expansions or contractions in evolving discs. The proposed distributions and profiles are simple and solve the stellar hydrodynamic equations. They may be especially relevant to thick discs that have settled to a steady form via scattering.

  14. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.

    Science.gov (United States)

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A

    2016-10-01

    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tetrahedral shape and surface density wave of $^{16}$O caused by $\\alpha$-cluster correlations

    CERN Document Server

    Kanada-En'yo, Yoshiko

    2016-01-01

    $\\alpha$-cluster correlations in the $0^+_1$ and $3^-_1$ states of $^{12}$C and $^{16}$O are studied using the method of antisymmetrized molecular dynamics, with which nuclear structures are described from nucleon degrees of freedom without assuming existence of clusters. The intrinsic states of $^{12}$C and $^{16}$O have triangle and tetrahedral shapes, respectively, because of the $\\alpha$-cluster correlations. These shapes can be understood as spontaneous symmetry breaking of rotational invariance, and the resultant surface density oscillation is associated with density wave (DW) caused by the instability of Fermi surface with respect to particle-hole correlations with the wave number $\\lambda=3$. $^{16}$O($0^+_1$) and $^{16}$O($3^-_1$) are regarded as a set of parity partners constructed from the rigid tetrahedral intrinsic state, whereas $^{12}$C($0^+_1$) and $^{12}$C($3^-_1$) are not good parity partners as they have triangle intrinsic states of different sizes with significant shape fluctuation because...

  16. The Initial Mass Function and the Surface Density Profile of NGC 6231

    CERN Document Server

    Sung, Hwankyung; Bessell, M S

    2012-01-01

    We have performed new wide-field photometry of the young open cluster NGC 6231 to study the shape of the initial mass function (IMF) and mass segregation. We also investigated the reddening law toward NGC 6231 from optical to mid-infrared color excess ratios, and found that the total-to-selective extinction ratio is Rv = 3.2, which is very close to the normal value. But many early-type stars in the cluster center show large color excess ratios. We derived the surface density profiles of four member groups, and found that they reach the surface density of field stars at about 10', regardless of stellar mass. The IMF of NGC 6231 is derived for the mass range 0.8 -- 45 Msun. The slope of the IMF of NGC 6231 (Gamma = -1.1 +/- 0.1) is slightly shallower than the canonical value, but the difference is marginal. In addition, the mass function varies systematically, and is a strong function of radius - it is is very shallow at the center, and very steep at the outer ring suggesting the cluster is mass segregated. We ...

  17. DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingxiao [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yuan, Lei; Yang, Xi; Fu, Zhibing; Tang, Yongjian; Wang, Chaoyang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Hong, E-mail: hongzhang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China)

    2014-08-31

    Highlights: • The existence of vacancy in graphene enhanced the adsorption of H{sub 2}CO molecule. • There was chemical bond forming between H{sub 2}CO molecule and dopants (B, N, and S) in modified graphene. • The adsorption of H{sub 2}CO molecule changed the conductivity of B and S doped defected graphene. - Abstract: The adsorption of formaldehyde (H{sub 2}CO) on modified graphene sheets, combining vacancy and dopants (B, N, and S), was investigated by employing the density functional theory (DFT). It was found that the vacancy-defected graphene was more sensitive to absorb H{sub 2}CO molecule compared with the pristine one. Furthermore, the H{sub 2}CO molecule tended to be chemisorbed on vacancy-defected graphene with dopants, which exhibited larger adsorption energy and net charge transfer than that of one without dopants. The results of partial electronic density of states (PDOS) indicated that the defect-dopant combination effect on the adsorption process was mainly owing to the contribution of the hybridization between dopants and C atoms around the vacancy. We hope our results will be useful for the application of graphene for chemical sensors to detect formaldehyde gas.

  18. Role of vacancies in tuning the electronic properties of Au-MoS{sub 2} contact

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jie, E-mail: sujie0105@mail.nwpu.edu.cn, E-mail: lpfeng@nwpu.edu.cn; Li, Ning; Zhang, Yingying; Feng, Liping, E-mail: sujie0105@mail.nwpu.edu.cn, E-mail: lpfeng@nwpu.edu.cn; Liu, Zhengtang [State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072 (China)

    2015-07-15

    Understanding the electronic properties between molybdenum disulfide (MoS{sub 2}) and metal electrodes is vital for the designing and realization of nanoelectronic devices. In this work, influence of intrinsic vacancies in monolayer MoS{sub 2} on the electronic structure and electron properties of Au-MoS{sub 2} contacts is investigated using first-principles calculations. Upon formation of vacancies in monolayer MoS{sub 2}, both tunnel barriers and Schottky Barriers between metal Au and monolayer MoS{sub 2} are decreased. Perfect Au-MoS{sub 2} top contact exhibits physisorption interface with rectifying character, whereas Au-MoS{sub 2} contact with Mo-vacancy shows chemisorption interface with Ohmic character. Partial density of states and electron density of defective Au-MoS{sub 2} top contacts are much higher than those of perfect one, indicating the lower contact resistance and higher electron injection efficiency of defective Au-MoS{sub 2} top contacts. Notably, Mo-vacancy in monolayer MoS{sub 2} is beneficial to get high quality p-type Au-MoS{sub 2} top contact, whereas S-vacancy in monolayer MoS{sub 2} is favorable to achieve high quality n-type Au-MoS{sub 2} top contact. Our results provide guidelines for designing and fabrication of novel 2D nanoelectronic devices.

  19. Role of vacancies in tuning the electronic properties of Au-MoS2 contact

    Directory of Open Access Journals (Sweden)

    Jie Su

    2015-07-01

    Full Text Available Understanding the electronic properties between molybdenum disulfide (MoS2 and metal electrodes is vital for the designing and realization of nanoelectronic devices. In this work, influence of intrinsic vacancies in monolayer MoS2 on the electronic structure and electron properties of Au-MoS2 contacts is investigated using first-principles calculations. Upon formation of vacancies in monolayer MoS2, both tunnel barriers and Schottky Barriers between metal Au and monolayer MoS2 are decreased. Perfect Au-MoS2 top contact exhibits physisorption interface with rectifying character, whereas Au-MoS2 contact with Mo-vacancy shows chemisorption interface with Ohmic character. Partial density of states and electron density of defective Au-MoS2 top contacts are much higher than those of perfect one, indicating the lower contact resistance and higher electron injection efficiency of defective Au-MoS2 top contacts. Notably, Mo-vacancy in monolayer MoS2 is beneficial to get high quality p-type Au-MoS2 top contact, whereas S-vacancy in monolayer MoS2 is favorable to achieve high quality n-type Au-MoS2 top contact. Our results provide guidelines for designing and fabrication of novel 2D nanoelectronic devices.

  20. Ab initio studies of adatom- and vacancy-induced band bending in Bi2Se3

    Science.gov (United States)

    Förster, Tobias; Krüger, Peter; Rohlfing, Michael

    2015-01-01

    We investigate the influence of potassium adsorption and selenium vacancies in the surface layer on the electronic properties of the prototypical topological insulator Bi2Se3 . These modifications of the surface give rise to oscillations in the charge density that extend deep into the crystal. They result in a long-ranged potential perpendicular to the surface (also referred to as band bending) and new states in the band structure that are reminiscent of the states of a two-dimensional electron gas. Very similar effects have been observed in several experiments. The reorganization of the charge deep inside the crystal as a reaction to the surface modification constitutes a remarkable property of Bi2Se3 and is closely related to its layered structure. The emergence of the long-ranged potential as a direct consequence of the charge reorganization turns out to be a generic property of Bi2Se3 . However, calculations without spin-orbit coupling show that the band bending is not related to the nontrivial topological character of Bi2Se3 .

  1. STIR Proposal For Research Area 2.1.2 Surface Energy Balance: Transient Soil Density Impacts Land Surface Characteristics and Characterization

    Science.gov (United States)

    2015-12-22

    SECURITY CLASSIFICATION OF: Soil density is commonly treated as static in studies on land surface property dynamics. Magnitudes of errors associated...properties, and ii) evaluate impact of changing soil density on surface energy balance and heat and water transfer. Six soil properties were...ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT

  2. Response- Surface Analysis for Evaluation of Competition in Different Densities of Sesame (Sesamum indicum) and Bean (Phaseolus vulgaris) Intercropping

    OpenAIRE

    Koocheki, A.; M. Nassiri Mahalati; Y Alizadeh; R. Moradi

    2014-01-01

    Response surface models predict crop yield based on crop density and this is an important tool for evaluation competition at different density and hence selection of optimum density based on yield. In order to study intra and inter specific competition in intercropping bean (Phaseolus vulgaris) and sesame (Sesamum indicum), an experiment was conducted at the Agricultural Research Station, Ferdowsi University of Mashhad during the growing season of 2010. For this purpose a complete randomized ...

  3. Sea surface density gradients in the Nordic Seas during the Holocene as revealed by paired microfossil and isotope proxies

    DEFF Research Database (Denmark)

    Van Nieuwenhove, Nicolas; Hillaire-Marcel, Claude; Bauch, Henning A.

    2016-01-01

    We attempt to assess the Holocene surface-subsurface seawater density gradient on millennial time-scale based on the reconstruction of potential density (σθ) by combining data from dinoflagellate cyst assemblages and planktic foraminiferal (Neogloboquadrina pachyderma (s)) stable oxygen isotopes (δ...

  4. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces.

    Science.gov (United States)

    Chollet, Celine; Chanseau, Christel; Remy, Murielle; Guignandon, Alain; Bareille, Reine; Labrugère, Christine; Bordenave, Laurence; Durrieu, Marie-C

    2009-02-01

    Hybrid materials combining polyethylene terephthalate and different types of cells (endothelial and osteoblastic cells) have been developed thanks to the covalent grafting of different densities of RGD containing peptides onto the polymer surface. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions, coupling agent grafting and the immobilization of the RGDC peptides. High resolution mu-imager was used to evaluate RGD densities (varying between 0.6 and 2.4 pmol/mm(2)) and has exhibited the stability of the surface grafted peptides when treated in harsh conditions. The efficiency of this route for biomimetic modification of a PET surface was demonstrated by measuring the adhesion of MC3T3 and HSVEC cells and by focal adhesion observation. Results obtained prove that a minimal RGDC density of 1 pmol/mm(2) is required to improve MC3T3 and HSVEC cells responses. Indeed, cells seeded onto a RGDC-modified PET with a density higher than 1 pmol/mm(2) were able to establish focal adhesion as visualized by fluorescence microscope compared to cells immobilized onto unmodified PET and RGDC-modified PET with densities lower than 1 pmol/mm(2). Moreover, the number of focal contacts was enhanced by the increase of RGDC peptide densities grafted onto the material surface. With this study we proved that the density of peptides immobilized on the surface is a very important parameter influencing osteoblast or endothelial cell adhesion and focal contact formation.

  5. Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by γ-diethoxyphosphorous ester propyldiethoxymethylsilane,boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃.Phosphorus,silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy.The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis.The results show that linear low density polyethylene (LLDPE) composite,filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers,passes the V-O rating of UL-94 test and shows the limited oxygen index of 34%,and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously;The mechanical properties of MAH can be improved by surface-modification.The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.

  6. EVALUATION OF SURFACE QUALITY OF MEDIUM DENSITY FIBERBOARDS (MDF AND PARTICLEBOARDS AS FUNCTION OF WEATHERING

    Directory of Open Access Journals (Sweden)

    Aniela GARCIA PEREZ

    2012-12-01

    Full Text Available The objective of the study was to evaluate thesurface quality of commercially producedparticleboard and medium density fiberboard (MDFpanels as function of weathering. Four types ofpanels were exposed to three weathering cycles ofwater soaking, freezing, and heat exposures todetermine the influence of such conditions on theirsurface roughness. The stylus type equipment wasemployed to determine the roughness of controlsamples as well as after each one of the weatheringcycle. Two accepted roughness parameters, namelyaverage roughness (Ra and mean peak-to-valleyheight (Rz were used for the measurement of overallroughness changes of the specimens. Surfaces ofboth types of particleboard samples were adverselyinfluenced as a result of first cycle of weathering andthen they were reconditioned and subjected to twomore exposure cycles. In the case of MDF samplesthe first and the second weathering exposuresincreased roughness of the samples but they wererebalanced at the end of the third cycle. The highestRa value of 17.16μm was determined forparticleboard samples exposed to the first exposurecycle. Overall surface quality of MDF samples wereless influenced than those of particleboardspecimens. Based on the findings in this work itappears that stylus technique can effectively be usedto evaluate surface quality of such composite panelsas they are subjected to different weatheringexposures.

  7. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  8. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  9. Fermi Surface Topology of Na0.5CoO2 from the Hybrid Density Functional

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-Ying; XIANG Hong-Jun; YANG Jin-Long

    2005-01-01

    @@ The Fermi surface topology of Na0.5CoO2 is studied using the hybrid density functional theory. We first study a single (CoO2)0.5- layer model with the percentage of the nonlocal Hartree-Fock exchange changing from 0% to 20%. The results show that only when the mixed nonlocal Hartree-Fock exchange is between 1% and 5%, the Fermi surface topology is similar to the experimental one. With 3% HF exchange in the hybrid density functional,considering the effects of Na ions in the Na0.sCoO2 system, we find that the Fermi surface is split to double holes and small gaps open near the intersections between the Brillouin zone and the Fermi surface. Our results show that both the amounts of the nonlocal Hartree-Fock exchange in the hybrid density functional and the Na ions have much influence on the Fermi surface topology.

  10. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique

    Science.gov (United States)

    Kononenko, Vitali V.; Vlasov, Igor I.; Gololobov, Viktor M.; Kononenko, Taras V.; Semenov, Timur A.; Khomich, Andrej A.; Shershulin, Vladimir A.; Krivobok, Vladimir S.; Konov, Vitaly I.

    2017-08-01

    A strategy for nitrogen-vacancy (NV) center production in diamond under its irradiation by 266-nm femtosecond laser pulses is suggested: NV centers can be effectively and controllably created in the regime of nanoablation of a diamond surface. The NV concentration was found to increase logarithmically with the laser pulse number in the nanoablation regime, which is realized at a laser fluence of tool to produce the requisite number of vacancies near the diamond surface and, hence, to manage the formation of NV complexes.

  11. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys

    Science.gov (United States)

    Wróbel, J. S.; Nguyen-Manh, D.; Kurzydłowski, K. J.; Dudarev, S. L.

    2017-04-01

    The occurrence of segregation in dilute alloys under irradiation is a highly unusual phenomenon that has recently attracted attention, stimulated by the interest in the fundamental properties of alloys as well as by their applications. The fact that solute atoms segregate in alloys that, according to equilibrium thermodynamics, should exhibit full solubility, has significant practical implications, as the formation of precipitates strongly affects physical and mechanical properties of alloys. A lattice Hamiltonian, generalizing the so-called ‘ABV’ Ising model and including collective many-body inter-atomic interactions, has been developed to treat rhenium solute atoms and vacancies in tungsten as components of a ternary alloy. The phase stability of W–Re-vacancy alloys is assessed using a combination of density functional theory (DFT) calculations and cluster expansion (CE) simulations. The accuracy of CE parametrization is evaluated against the DFT data, and the cross-validation error is found to be less than 4.2 meV/atom. The free energy of W–Re-vacancy ternary alloys is computed as a function of temperature using quasi-canonical Monte Carlo simulations, using effective two, three and four-body interactions. In the low rhenium concentration range (<5 at. % Re), solute segregation is found to occur in the form of voids decorated by Re atoms. These vacancy-rhenium clusters remain stable over a broad temperature range from 800 K to 1600 K. At lower temperatures, simulations predict the formation of Re-rich rhenium–vacancy clusters taking the form of sponge-like configurations that contain from 30 to 50 at. % Re. The anomalous vacancy-mediated segregation of Re atoms in W can be rationalized by analyzing binding energy dependence as a function of Re to vacancy ratio as well as chemical Re–W and Re-vacancy interactions and short-range order parameters. DFT calculations show that rhenium–vacancy binding energies can be as high as 1.5 eV if the

  12. Coherent optical transitions in implanted nitrogen vacancy centers.

    Science.gov (United States)

    Chu, Y; de Leon, N P; Shields, B J; Hausmann, B; Evans, R; Togan, E; Burek, M J; Markham, M; Stacey, A; Zibrov, A S; Yacoby, A; Twitchen, D J; Loncar, M; Park, H; Maletinsky, P; Lukin, M D

    2014-01-01

    We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.

  13. Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D., E-mail: daniel.ramirez@ucv.c [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Lincot, D. [Institute de Recherche et Developpement sur l' Energie Photovoltaique-IRDEP, 6 Quai Watier 78401, Chatou Cedex (France)

    2010-02-15

    In this paper we report the zinc oxide nanorods (ZnO NRs) growth by electrochemical deposition onto polycrystalline gold electrodes modified with assemblies of polystyrene sphere monolayers (PSSMs). Growth occurs through the interstitial spaces between the hexagonally close packed spheres. ZnO NRs nucleate in the region where three adjacent spheres leave a space, being able to grow and projected over the PSSMs. The nanorod surface density (N{sub NR}) shows a linear dependence with respect to a PS sphere diameter selected. XRD analysis shows these ZnO NRs are highly oriented along the (0 0 2) plane (c-axis). This open the possibility to have electronic devices with mechanically supported nanometric materials.

  14. Modeling the Images of Relativistic Jets Lensed by Galaxies with Different Mass Surface Density Distributions

    CERN Document Server

    Larchenkova, T I; Lyskova, N S

    2011-01-01

    The images of relativistic jets from extragalactic sources produced by gravitational lensing by galaxies with different mass surface density distributions are modeled. In particular, the following models of the gravitational lens mass distribution are considered: a singular isothermal ellipsoid, an isothermal ellipsoid with a core, two- and three-component models with a galactic disk, halo, and bulge. The modeled images are compared both between themselves and with available observations. Different sets of parameters are shown to exist for the gravitationally lensed system B0218+357 in multicomponent models. These sets allow the observed geometry of the system and the intensity ratio of the compact core images to be obtained, but they lead to a significant variety in the Hubble constant determined from the modeling results.

  15. Multidimensionally constrained covariant density functional theories—nuclear shapes and potential energy surfaces

    Science.gov (United States)

    Zhou, Shan-Gui

    2016-06-01

    The intrinsic nuclear shapes deviating from a sphere not only manifest themselves in nuclear collective states but also play important roles in determining nuclear potential energy surfaces (PES’s) and fission barriers. In order to describe microscopically and self-consistently nuclear shapes and PES’s with as many shape degrees of freedom as possible included, we developed multidimensionally constrained covariant density functional theories (MDC-CDFTs). In MDC-CDFTs, the axial symmetry and the reflection symmetry are both broken and all deformations characterized by {β }λ μ with even μ are considered. We have used the MDC-CDFTs to study PES’s and fission barriers of actinides, the non-axial octupole Y 32 correlations in N = 150 isotones and shapes of hypernuclei. In this Review we will give briefly the formalism of MDC-CDFTs and present the applications to normal nuclei.

  16. Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.G.; /SLAC, SSRL /Stanford U., Geballe Lab.; Brouet, V.; /Orsay, LPS; He, R.; /SLAC, SSRL /Stanford U., Geballe Lab.; Lu, D.H.; /SLAC, SSRL; Ru, N.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.; Shen, Z.-X.; /SLAC, SSRL /Stanford U., Geballe Lab.

    2010-02-15

    The Fermi surface (FS) of ErTe{sub 3} is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large {Delta}{sub 1} = 175 meV gap arising from a CDW with c* - q{sub CDW1} {approx} 0.70(0)c* is in good agreement with the expected value. A second, smaller {Delta}{sub 2} = 50 meV gap is due to a second CDW with a* - q{sub CDW2} {approx} 0.68(5)a*. The temperature dependence of the FS, the two gaps and possible interaction between the CDWs are examined.

  17. Multidimensionally-constrained covariant density functional theories --- nuclear shapes and potential energy surfaces

    CERN Document Server

    Zhou, Shan-Gui

    2016-01-01

    The intrinsic nuclear shapes deviating from a sphere not only manifest themselves in nuclear collective states but also play important roles in determining nuclear potential energy surfaces (PES's) and fission barriers. In order to describe microscopically and self-consistently nuclear shapes and PES's with as many shape degrees of freedom as possible included, we developed multidimensionally-constrained covariant density functional theories (MDC-CDFTs). In MDC-CDFTs, the axial symmetry and the reflection symmetry are both broken and all deformations characterized by $\\beta_{\\lambda\\mu}$ with even $\\mu$ are considered. We have used the MDC-CDFTs to study PES's and fission barriers of actinides, the non-axial octupole $Y_{32}$ correlations in $N = 150$ isotones and shapes of hypernuclei. In this Review we will give briefly the formalism of MDC-CDFTs and present the applications to normal nuclei.

  18. Spatial heterogeneity of satellite derived land surface parameters and energy flux densities for LITFASS-area

    Directory of Open Access Journals (Sweden)

    A. Tittebrand

    2009-03-01

    Full Text Available Based on satellite data in different temporal and spatial resolution, the current use of frequency distribution functions (PDF for surface parameters and energy fluxes is one of the most promising ways to describe subgrid heterogeneity of a landscape. Objective of this study is to find typical distribution patterns of parameters (albedo, NDVI for the determination of the actual latent heat flux (L.E determined from highly resolved satellite data within pixel on coarser scale.

    Landsat ETM+, Terra MODIS and NOAA-AVHRR surface temperature and spectral reflectance were used to infer further surface parameters and radiant- and energy flux densities for LITFASS-area, a 20×20 km2 heterogeneous area in Eastern Germany, mainly characterised by the land use types forest, crop, grass and water. Based on the Penman-Monteith-approach L.E, as key quantity of the hydrological cycle, is determined for each sensor in the accordant spatial resolution with an improved parametrisation. However, using three sensors, significant discrepancies between the inferred parameters can cause flux distinctions resultant from differences of the sensor filter response functions or atmospheric correction methods. The approximation of MODIS- and AVHRR- derived surface parameters to the reference parameters of ETM (via regression lines and histogram stretching, respectively, further the use of accurate land use classifications (CORINE and a new Landsat-classification, and a consistent parametrisation for the three sensors were realized to obtain a uniform base for investigations of the spatial variability.

    The analyses for 4 scenes in 2002 and 2003 showed that for forest clear distribution-patterns for NDVI and albedo are found. Grass and crop distributions show higher variability and differ significantly to each other in NDVI but only marginal in albedo. Regarding NDVI-distribution functions NDVI was found to be the key variable for L.E-determination.

  19. Effect of Ar ion on the surface properties of low density polyethylene

    Science.gov (United States)

    Zaki, M. F.

    2016-04-01

    In this paper, low-density polyethylene (LDPE) was irradiated by argon ion with different fluences up to 1015ions/cm2. The optical, chemical and hardness properties have been investigated using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and micro-indentation tester, respectively. The results showed the ion beam bombardment induced decreases in the transmittance of the irradiated polymer samples. This change in transmittance can be attributed to the formation of conjugated bonds i.e. possible formation of defects and/or carbon clusters. The indirect optical band gap decreased from 3.0 eV for the pristine sample to 2.3 eV for that sample irradiated with the highest fluence of the Ar ion beam. Furthermore, the number of carbon atoms and clusters increased with increasing Ar ion fluences. FTIR spectra showed the formation of new bands of the bombarded polymer samples. Furthermore, polar groups were created on the surface of the irradiated samples which refer to the increase of the hydrophilic nature of the surface of the irradiated samples. The Vicker's hardness increased from 4.9 MPa for the pristine sample to 17.9 MPa for those bombarded at the highest fluence. This increase is attributed to the increase in the crosslinking and alterations of the bombarded surface into hydrogenated amorphous carbon, which improves the hardness of the irradiated samples. The bombarded LDPE surfaces may be used in special applications to the field of the micro-electronic devices and shock absorbers.

  20. Vacancy Induced Energy Band Gap Changes of Semiconducting Zigzag Single Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    DERELI, G.

    2017-08-01

    Full Text Available In this work, we have examined how the multi-vacancy defects induced in the horizontal direction change the energetics and the electronic structure of semiconducting Single-Walled Carbon Nanotubes (SWCNTs. The electronic structure of SWCNTs is computed for each deformed configuration by means of real space, Order(N Tight Binding Molecular Dynamic (O(N TBMD simulations. Energy band gap is obtained in real space through the behavior of electronic density of states (eDOS near the Fermi level. Vacancies can effectively change the energetics and hence the electronic structure of SWCNTs. In this study, we choose three different kinds of semiconducting zigzag SWCNTs and determine the band gap modifications. We have selected (12,0, (13,0 and (14,0 zigzag SWCNTs according to n (mod 3 = 0, n (mod 3 = 1 and n (mod 3 = 2 classification. (12,0 SWCNT is metallic in its pristine state. The application of vacancies opens the electronic band gap and it goes up to 0.13 eV for a di-vacancy defected tube. On the other hand (13,0 and (14,0 SWCNTs are semiconductors with energy band gap values of 0.44 eV and 0.55 eV in their pristine state, respectively. Their energy band gap values decrease to 0.07 eV and 0.09 eV when mono-vacancy defects are induced in their horizontal directions. Then the di-vacancy defects open the band gap again. So in both cases, the semiconducting-metallic ¬- semiconducting transitions occur. It is also shown that the band gap modification exhibits irreversible characteristics, which means that band gap values of the nanotubes do not reach their pristine values with increasing number of vacancies.

  1. Effect of edge vacancies on localized states in semi-infinite zigzag graphene sheet

    Science.gov (United States)

    Glebov, A. A.; Katkov, V. L.; Osipov, V. A.

    2016-12-01

    The effect of vacancies on the robustness of zero-energy edge electronic states in zigzag-type graphene layer is studied at different concentrations and distributions of defects. All calculations are performed by using the Green's function method and the tight-binding approximation. It is found that the arrangement of defects plays a crucial role in the destruction of the edge states. We have specified a critical distance between edge vacancies when their mutual influence becomes significant and affects markedly the density of electronic states at graphene edge.

  2. Vacancy induced metallicity at the CaHfO3/SrTiO3 interface

    KAUST Repository

    Nazir, Safdar

    2011-03-31

    Density functional theory is used to study the electronic properties of the oxide heterointerfaceCaHfO3/SrTiO3. Structural relaxation is carried out with and without O vacancies. As compared to related interfaces, strongly reduced octahedral distortions are found. Stoichiometric interfaces between the wide band gap insulatorsCaHfO3 and SrTiO3 turn out to exhibit an insulating state. However, interface metallicity is introduced by O vacancies, in agreement with experiment. The reduced octahedral distortions and necessity of O deficiency indicate a less complicated mechanism for the creation of the interfacial electron gas.

  3. Impact of Vacancies on Diffusive and Pseudodiffusive ElectronicTransport in Graphene

    Directory of Open Access Journals (Sweden)

    Paweł Lenarczyk

    2013-04-01

    Full Text Available We present a survey of the effect of vacancies on quantum transport in graphene,exploring conduction regimes ranging from tunnelling to intrinsic transport phenomena.Vacancies, with density up to 2%, are distributed at random either in a balanced mannerbetween the two sublattices or in a totally unbalanced configuration where only atomssitting on a given sublattice are randomly removed. Quantum transmission shows avariety of different behaviours, which depend on the specific system geometry and disorderdistribution. The investigation of the scaling laws of the most significant quantities allowsa deep physical insight and the accurate prediction of their trend over a large energy regionaround the Dirac point.

  4. An Anomalous Formation Pathway for Dislocation-Sulfur Vacancy Complexes in Polycrystalline Monolayer MoS2.

    Science.gov (United States)

    Yu, Zhi Gen; Zhang, Yong-Wei; Yakobson, Boris I

    2015-10-14

    Two-dimensional (2D) molybdenum disulfide (MoS2) has attracted significant attention recently due to its direct bandgap semiconducting characteristics. Experimental studies on monolayer MoS2 show that S vacancy concentration varies greatly; while recent theoretical studies show that the formation energy of S vacancy is high and thus its concentration should be low. We perform density functional theory calculations to study the structures and energetics of vacancy and interstitial in both grain boundary (GB) and grain interior (GI) in monolayer MoS2 and uncover an anomalous formation pathway for dislocation-double S vacancy (V2S) complexes in MoS2. In this pathway, a (5|7) defect in an S-polar GB energetically favorably converts to a (4|6) defect, which possesses a duality: dislocation and double S vacancy. Its dislocation character allows it to glide into GI through thermal activation at high temperatures, bringing the double vacancy with it. Our findings here not only explain why VS is predominant in exfoliated 2D MoS2 and V2S is predominant in chemical vapor deposition (CVD)-grown 2D MoS2 but also reproduce GB patterns in CVD-grown MoS2. The new pathway for sulfur vacancy formation revealed here provides important insights and guidelines for controlling the quality of monolayer MoS2.

  5. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    Science.gov (United States)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of

  6. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators.

    Directory of Open Access Journals (Sweden)

    Ellen Kenchington

    Full Text Available The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores, and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here

  7. Adsorption of Ne on alkali surfaces studied with a density functional theory

    Science.gov (United States)

    Sartarelli, Salvador A.; Szybisz, Leszek; Urrutia, Ignacio

    2009-01-01

    A density functional formalism is applied to investigate the wetting behavior of Ne adsorbed on planar substrates. The study is performed over the complete range of temperatures spanned from the triple point Tt up to the critical one Tc . For this purpose, an effective attractive pair potential was built on the basis of a separation procedure. This approach yields a good description of properties of the liquid-vapor interface at coexistence in the whole range of temperatures Tt⩽T⩽Tc . The adsorption of Ne on alkali metals and the alkaline-earth metal Mg is analyzed. This sequence of substrates exhibit increasing attractive strength leading to a variety of wetting situations throughout the interval Tt↔Tc . A comparison with experimental data and other microscopic calculations is done. The predictions of a simple model are discussed. For Ne/Rb we were able to resolve prewetting lines. Results obtained from a density functional are reported for Ne/K and Ne/Mg . In the case of the latter system the interesting behavior occurs close to Tt . According to our results, Ne wets surfaces of Na and Li, and this statement is in agreement with the whole picture of the analyzed substrates.

  8. Properties of superconductivity on a density wave background with small ungapped Fermi surface parts

    Science.gov (United States)

    Grigoriev, P. D.

    2008-06-01

    We investigate the properties and the microscopic structure of superconductivity (SC) coexisting and sharing the common conducting band with density wave (DW). Such coexistence may take place when the nesting of the Fermi surface (FS) is not perfect, and in the DW state some quasiparticle states remain on the Fermi level and lead to the Cooper instability. The dispersion of such quasiparticle states strongly differs from that without DW, and so do the properties of SC on the DW background. The upper critical field Hc2 in such a SC state increases as the system approaches the critical pressure, where the ungapped quasiparticles and superconductivity just appear, and it may considerably exceed the usual Hc2 value without DW. The spin-density wave (SDW) background strongly suppresses the singlet SC pairing, while it does not affect so much the triplet SC transition temperature. The results obtained explain the experimental observations in layered organic metals (TMTSF)2PF6 and α-(BEDT-TTF)2KHg(SCN)4 , where SC appears in the DW states under pressure and shows many unusual properties.

  9. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  10. Vacancy Duration, Wage Offers, and Job Requirements

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Chen, Long-Hwa

    Besides wage offers, credentials like education, work experience and skill requirements are key screening tools for firms in their recruitment of new employees. This paper adds some new evidence to a relatively tiny literature on firms' recruitment behaviour. In particular, our analysis...... is concerned with how vacancy durations vary with firms' minimum wage offers and minimum job requirements (regarding education, skills, age, gender and earlier work experience). The empirical analysis is based on ten employer surveys carried out by the DGBAS on Taiwan during the period 1996-2006. We estimate...... the business cycle. However, firms vary their skills requirements over the business cycle: our empirical analysis shows that, for a given wage offer, requirements are stricter in recessions and downturns. Separating between reasons for posting vacancies turned out important in explaining differences in vacancy...

  11. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Ruberto, C.; Lundqvist, Bengt

    2010-01-01

    This study explores atomic and molecular adsorption on a number of early transition-metal carbides (TMCs) in NaCl structure by means of density-functional theory calculations. The investigated substrates are the TM-terminated TMC(111) surfaces, of interest because of the presence of different types......, surface relaxations, Bader charges, and surface-localized densities of states (DOSs). Detailed comparisons between surface and bulk DOSs reveal the existence of transition-metal localized SRs (TMSRs) in the pseudogap and of several C-localized SRs (CSRs) in the upper valence band on all considered TMC(111......C, delta-MoC, TaC, and WC (in NaCl structure) and the adsorbates H, B, C, N, O, F, NH, NH2, and NH3. Trends in adsorption strength are explained in terms of surface electronic factors, by correlating the calculated adsorption-energy values with the calculated surface electronic structures. The results...

  12. Influence of current density on surface morphology and properties of pulse plated tin films from citrate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ashutosh; Bhattacharya, Sumit; Das, Siddhartha; Das, Karabi, E-mail: karabi@metal.iitkgp.ernet.in

    2014-01-30

    Bulk polycrystalline tin films have been processed by pulse electrodeposition technique from a simple solution containing triammonium citrate and stannous chloride. The cathodic investigations have been carried out by galvanostatic methods. As deposited samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis of the deposited films shows microcrystalline grains having β-Sn form. The surface morphology is very rough at lower current density, but becomes smooth at higher current density, and exhibits pyramid type morphology at all the current densities. The effect of current density on microhardness, melting behavior, and electrical resistivity are also reported here.

  13. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    Science.gov (United States)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  14. Adsorption and decomposition of dimethyl methylphosphonate on pristine and mono-vacancy defected graphene: A first principles study

    Science.gov (United States)

    Majumder, Chiranjib

    2017-10-01

    Here we report the adsorption and decomposition behavior of dimethyl methyl-phosphonate (DMMP) on pristine and defected graphene using the first principles theory. The primary objective of this study is to highlight the importance of a vacancy defect on the adsorption mechanism of a molecule. In order to account for the weak forces involved between the molecule and graphene, we have used dispersion corrected total energy calculations along with generalized gradient approximation scheme for the exchange correlation energy. Among various possible configurations, the most stable geometry shows oxygen atom of the DMMP molecule favors to be close to the surface plane and bind with one of the unsaturated carbon atoms at the defect site. The molecule-substrate interaction energy is stronger for defected graphene than pristine graphene. The decomposition of the DMMP molecule at the vacancy site of the defected graphene has been investigated. For the dissociative adsorption, it is seen that the Csbnd H bond of the DMMP breaks and H atom is transferred to one of the low-coordinated C-atoms at the vicinity of the defect, forming new Csbnd H bond. In addition, the Csbnd C bond formation between graphene and DMMP occurs. Finally, the nature of bonding and electronic structure at the interface was interpreted through site projected electronic density of states analysis.

  15. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  16. Automatic sulcal line extraction on cortical surfaces using geodesic path density maps.

    Science.gov (United States)

    Le Troter, A; Auzias, G; Coulon, O

    2012-07-16

    We present here a method that is designed to automatically extract sulcal lines on the mesh of any cortical surface. The method is based on the definition of a new function, the Geodesic Path Density Map (GPDM), within each sulcal basin (i.e. regions with a negative mean curvature). GPDM indicates at each vertex the likelihood that a shortest path between any two points of the basins boundary goes through that vertex. If the distance used to compute shortest path is anisotropic and constrained by a geometric information such as the depth, the GPDM indicates the likelihood that a vertex belongs to the sulcal line in the basin. An automatic GPDM adaptive thresholding procedure is proposed and sulcal lines are then defined. The process has been validated on a set of 25 subjects by comparing results to the manual segmentation from an expert and showed an average error below 2mm. It is also compared to our previous reference method in the context of inter-subject cortical surface registration and shows an significant improvement in performance. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Configurational study of amino-functionalized silica surfaces: A density functional theory modeling.

    Science.gov (United States)

    Hozhabr Araghi, Samira; Entezari, Mohammad H; Sadeghi Googheri, Mohammad Sadegh

    2015-06-01

    Despite extensive studies of the amino-functionalized silica surfaces, a comprehensive investigation of the effects of configuration and hydrolysis of 3-aminopropyltriethoxysilan (APTES) molecules attached on silica has not been studied yet. Therefore, the methods of quantum mechanics were used for the study of configuration and hydrolysis forms of APTES molecules attached on the surface. For this purpose, five different categories based on the number of hydrolyzed ethoxy groups including 16 configurations were designed and analyzed by the density functional theory (DFT) method. The steric hindrance as an effective factor on the stability order was extracted from structural analysis. Other impressive parameters such as the effects of hydrogen bond and electron delocalization energy were obtained by using the atoms in molecules (AIM) and natural bond orbitals (NBO) theories. Consequently, it was found that the stability of configurations was attributed to steric effects, hydrogen bond numbers and electron delocalization energy. The maximum stability was achieved when at least two of these parameters cooperate with each other.

  18. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  19. On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Refson, K.; Sposito, G.

    2009-06-01

    Photoreductive dissolution of layer type Mn(IV) oxides (birnessite) under sunlight illumination to form soluble Mn(II) has been observed in both field and laboratory settings, leading to a consensus that this process is a key driver of the biogeochemical cycling of Mn in the euphotic zones of marine and freshwater ecosystems. However, the underlying mechanisms for the process remain unknown, although they have been linked to the semiconducting characteristics of hexagonal birnessite, the ubiquitous Mn(IV) oxide produced mainly by bacterial oxidation of soluble Mn(II). One of the universal properties of this biogenic mineral is the presence of Mn(IV) vacancies, long-identified as strong adsorption sites for metal cations. In this paper, the possible role of Mn vacancies in photoreductive dissolution is investigated theoretically using quantum mechanical calculations based on spin-polarized density functional theory (DFT). Our DFT study demonstrates unequivocally that Mn vacancies significantly reduce the band-gap energy for hexagonal birnessite relative to a hypothetical vacancy-free MnO{sub 2} and thus would increase the concentration of photo-induced electrons available for Mn(IV) reduction upon illumination of the mineral by sunlight. Calculations of the charge distribution in the presence of vacancies, although not fully conclusive, show a clear separation of photo-induced electrons and holes, implying a slow recombination of these charge-carriers that facilitates the two-electron reduction of Mn(IV) to Mn(II).

  20. Formation and function of vacancies in Si/Ge Clathrates: The importance of broken symmetries

    Science.gov (United States)

    Bhattacharya, Amrita; Carbogno, Christian; Scheffler, Matthias; Dr. Matthias Scheffler Team, Prof.

    2015-03-01

    One promising material class for improved thermoelectrics are the clathrates, i.e., semiconducting host lattices encapsulating guest atom. Even in simple clathrates, such as, Si46 and Ge46, the introduction of guests can result in important but not yet understood effects: In Si hosts, the addition of K (or Ba) results in defect-free K8Si46 (Ba8Si46) phases. In spite of their structural and electronic similitude, Ge hosts behave fundamentally different upon filling, where, the spontaneously formed framework vacancies completely (or partially) balance the electron donated by K (or Ba) guests leading to K8Ge44(orBa8Ge43) clathrates. In this work, we use density-functional theory, carefully validating the exchange correlation functional, to compute the formation energies of vacancies and vacancy complexes in Si- and Ge-hosts as function of the filling of guests. By taking into account of the structural disorder, geometric relaxations, and vibrational entropies, we verify the experimentally found vacancy concentration and the thermodynamic stabilities of these compounds. We can trace back the contrasting behaviour of Si/Ge clathrates upon filling to a curious, charged vacancy induced break in symmetry that occurs in Si but not in Ge hosts.

  1. Magnetic properties of ZnO nanowires with Li dopants and Zn vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong; Cai, Ningning [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China); Yang, Chuanghua [School of Physics and Telecommunication Engineering, Shanxi University of Technology (SNUT), Hanzhong 723001, Shanxi (China); Chen, Jun [Beijing Applied Physics and Computational Mathematics, Beijing 100088 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China)

    2016-04-30

    The electronic and magnetic properties of ZnO nanowire with Li dopants and vacancies have been investigated using first-principles density functional theory. It is found that the Zn vacancy can induce magnetism while increasing the formation energy of the system. However, the calculated results indicate that the introduction of Li-dopants will reduce the formation energy of system. We also have studied the magnetic couplings with vacancies as well as their corresponding configurations with Li-dopants for four configurations of ZnO nanowires. The results show that ferromagnetic properties can be improved/reversed after the introduction of Li-dopants. Ferromagnetic mechanism is originated from the fierce p–p hybridization of O near the Fermi level. We find that ferromagnetism of Li-doped ZnO nanowires with Zn vacancies can be realized at room temperature and they are promising spintronic materials. - Highlights: • Li-dopants will reduce the formation energy of ZnO nanowires with Zn vacancy. • The fierce p–p hybridization of O near Fermi level is responsible for FM properties. • Li-doped ZnO–V{sub Zn} nanowire is a promising FM semiconductor material.

  2. Adsorption and Reaction of CO on (100) Surface of SrTiO3 by Density Function Theory Calculation

    Institute of Scientific and Technical Information of China (English)

    YUN Jiang-Ni; ZHANG Zhi-Yong; ZHANG Fu-Chun

    2008-01-01

    Adsorption and reaction of CO on two possible terminations of SrTi03 (100) surface are investigated by the first-principles calculation of plane wave ultrasoft pseudopotential based on the density function theory. The adsorption energy, Mulliken population analysis, density of states (DOS) and electronic density difference of CO on SrTi03 (100) surface, which have never been investigated before as far as we know are performed. The calculated results reveal that the Ti-CO orientation is the most stable configuration and the adsorption energy (0.449eV) is quite small. CO molecules adsorb weakly on the SrTiO3 (100) surface, there is predominantly electrostatic attraction between CO and the surface rather than a chemical bonding mechanism.

  3. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene.

    Science.gov (United States)

    Zhang, Yajun; Sahoo, Mpk; Wang, Jie

    2016-09-23

    Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.

  4. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene

    Science.gov (United States)

    Zhang, Yajun; Sahoo, MPK; Wang, Jie

    2016-10-01

    Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.

  5. Combining density functional and density matrix theory: Optical excitation and electron relaxation at the Si(001)2 x 1 surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, Norbert [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany); Fritz-Haber-Institut der MPG, Berlin (Germany); Kratzer, Peter [Fachbereich Physik, Duisburg (Germany); Scheffler, Matthias [Fritz-Haber-Institut der MPG, Berlin (Germany); Knorr, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany)

    2008-07-01

    A theoretical two-step approach to investigate the optical excitation and subsequent phonon-assisted relaxation dynamics at semiconductor surfaces is presented and applied to the Si(001)2 x 1-surface: In the first step, the electronic band structure and the Kohn-Sham wave functions are calculated by density-functional-theory (DFT) within the LDA. In the second step, dynamical equations are derived from density-matrix theory (DMT), whereby an optical field is considered via A.p-coupling and phonon induced relaxation by a deformation potential coupling term. Into these equations, the numerical results of the DFT calculation (Kohn-Sham eigenvalues and wave functions) enter as coupling matrix elements. By numerically solving the dynamical equations, the time-resolved population of the excited states can be evaluated. The results for the Si(001) surface correspond to the findings of recent experiments, in particular a short (intra-surface-band scattering) and a long (bulk-surface band scattering) timescale are dominating the relaxation process. The value of the experimental short timescale is reproduced by our calculations, whereas the long timescale cannot be accurately described by our theory.

  6. Ab initio studies of vacancies in (8,0) and (8,8) single-walled carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-09-01

    Full Text Available A systematic study of vacancies in single-walled carbon nanotubes and boron nitride nanotubes was carried out. First principles calculations within the framework of density functional theory using the CASTEP code are used to optimize fully...

  7. Chemisorption of oxygen and subsequent reactions on low index surfaces of β-Mo2C

    DEFF Research Database (Denmark)

    Shi, Xue Rong; Wang, Shengguang; Wang, Jianguo

    2016-01-01

    Oxygen chemisorption on β-Mo2C surfaces, the subsequent CO/CO2 desorption and oxygen diffusion to the carbon vacancy have been investigated by density-functional theory. The most stable structures together with the energetics of oxygen stepwise adsorption, CO/CO2 desorption and oxygen diffusion...

  8. Atomic Structure of a Spinel-like Transition Al2O3 (100) Surface

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Meinander, Kristoffer; Helveg, Stig

    2014-01-01

    We study a crystalline epitaxial alumina thin film with the characteristics of a spinel-type transition Al2O3(100) surface by using atom-resolved noncontact atomic force microscopy and density functional theory. It is shown that the films are terminated by an Al-O layer rich in Al vacancies...

  9. Effect of mono-vacancy on transport properties of zigzag carbon- and boron-nitride-nanotube heterostructures

    Science.gov (United States)

    Zhao, P.; Liu, D. S.; Chen, G.

    2013-04-01

    On the basis of first-principles density functional theory and non-equilibrium Green's function technique, we have investigated the effects of a mono-vacancy on the electronic transport properties of the carbon nanotube/boron nitride nanotube heterostructures. The results show that the electronic transport properties are strongly dependent on the position of the mono-vacancy, and the negative differential resistance and rectifying performances can be strengthened or weakened alternately with the position change of the mono-vacancy. Moreover, the performance change is more significant when the mono-vacancy occurs on the carbon nanotube part. These interesting phenomena are explained in terms of the evolution of the transmission spectrum with applied bias combined with molecular projected self-consistent Hamiltonian states analysis.

  10. Generating Tunable Magnetism in AlN Nanoribbons Using Anion/Cation Vacancies:a First-Principles Prediction

    Science.gov (United States)

    Chegeni, Mahdieh; Beiranvand, Razieh; Valedbagi, Shahoo

    2017-04-01

    Using first-principles approach, we theoretically study the effect of anion/cation vacancies on structural and electro-magnetic properties of zigzag AlN nanoribbons (ZAlNNRs). Calculations were performed using a full spin-polarized method within the density functional theory (DFT). Our findings shed light on how the edge states combined with vacancy engineering can affect electro-magnetic properties of ZAlNNRs. We found that depending on the nature and number of vacancies, ZAlNNRs can design as half-metal or semiconductor. Our results reveal a significant amount of spin magnetic moment for ZAlNNR with Al vacancies (VAl). These results may open new applications of AlN nano-materials in spintronics.

  11. Generating Tunable Magnetism in AlN Nanoribbons Using Anion/Cation Vacancies:a First-Principles Prediction

    Science.gov (United States)

    Chegeni, Mahdieh; Beiranvand, Razieh; Valedbagi, Shahoo

    2017-01-01

    Using first-principles approach, we theoretically study the effect of anion/cation vacancies on structural and electro-magnetic properties of zigzag AlN nanoribbons (ZAlNNRs). Calculations were performed using a full spin-polarized method within the density functional theory (DFT). Our findings shed light on how the edge states combined with vacancy engineering can affect electro-magnetic properties of ZAlNNRs. We found that depending on the nature and number of vacancies, ZAlNNRs can design as half-metal or semiconductor. Our results reveal a significant amount of spin magnetic moment for ZAlNNR with Al vacancies (VAl). These results may open new applications of AlN nano-materials in spintronics.

  12. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka

    Science.gov (United States)

    Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.

    2017-01-01

    Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.

  13. Formation of vacancy-type defects in titanium nickelide

    Directory of Open Access Journals (Sweden)

    Baturin Anatolii

    2015-01-01

    Full Text Available In this report we briefly review the current state-of-the-art and challenges in determining point defect properties from first-principles calculations as well as from experimental measurements in titanium nickelid. . Based on the vacancy formation energy and their activation energy for vacancy migration in TiNi, vacancy mediated diffusion mechanism was examined. The behavior of vacancy defects in the TiNi structural phase transition has been described.

  14. Atomistic Origins of Surface Defects in CH3NH3PbBr3 Perovskite and Their Electronic Structures.

    Science.gov (United States)

    Liu, Yunxia; Palotas, Krisztian; Yuan, Xiao; Hou, Tingjun; Lin, Haiping; Li, Youyong; Lee, Shuit-Tong

    2017-02-28

    The inherent instability of CH3NH3PbX3 remains a major technical barrier for the industrial applications of perovskite materials. Recently, the most stable surface structures of CH3NH3PbX3 have been successfully characterized by using density functional theory (DFT) calculations together with the high-resolution scanning tunneling microscopy (STM) results. The two coexisting phases of the perovskite surfaces have been ascribed to the alternate orientation of the methylammonium (MA) cations. Notably, similar surface defect images (a dark depression at the sites of X atoms) have been observed on surfaces produced with various experimental methods. As such, these defects are expected to be intrinsic to the perovskite crystals and may play an important role in the structural decomposition of perovskite materials. Understanding the nature of such defects should provide some useful information toward understanding the instability of perovskite materials. Thus, we investigate the chemical identity of the surface defects systematically with first-principles density functional theory calculations and STM simulations. The calculated STM images of the Br and Br-MA vacancies are both in good agreement with the experimental measurements. In vacuum conditions, the formation energy of Br-MA is 0.43 eV less than the Br vacancy. In the presence of solvation effects, however, the formation energy of a Br vacancy becomes 0.42 eV lower than the Br-MA vacancy. In addition, at the vacancy sites, the adsorption energies of water, oxygen, and acetonitrile molecules are significantly higher than those on the pristine surfaces. This clearly demonstrated that the structural decomposition of perovskites are much easier to start from these vacancy sites than the pristine surfaces. Combining DFT calculations and STM simulations, this work reveals the chemical identities of the intrinsic defects in the CH3NH3PbX3 perovskite crystals and their effects on the stability of perovskite materials.

  15. 7 CFR 924.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 924.26 Section 924.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... an alternate member of the committee to qualify, or in the event of the death, removal,...

  16. 7 CFR 945.28 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 945.28 Section 945.28 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... member or as an alternate to qualify, or in the event of the death, removal, resignation,...

  17. 7 CFR 920.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 920.26 Section 920.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... member or as an alternate member of the committee to qualify, or in the event of the death,...

  18. 7 CFR 930.27 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 930.27 Section 930.27 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... a member or as an alternate member of the Board to qualify, or in the event of the death,...

  19. 7 CFR 929.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 929.26 Section 929.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... member of the committee to qualify, or in the event of the death, removal, resignation,...

  20. 7 CFR 922.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 922.26 Section 922.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... qualify, or in the event of the death, removal, resignation, or disqualification of any member...

  1. 7 CFR 955.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 955.26 Section 955.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... member or as an alternate to qualify, or in the event of the death, removal, resignation,...

  2. 7 CFR 948.58 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 948.58 Section 948.58 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... of any person selected as a member or as an alternate to qualify, or in the event of the...

  3. High-surface step density on dendritic pd leads to exceptional catalytic activity for formic acid oxidation.

    Science.gov (United States)

    Patra, S; Viswanath, B; Barai, K; Ravishankar, N; Munichandraiah, N

    2010-11-01

    Dendritic Pd with corrugated surfaces, obtained by a novel AC technique, exhibits an exceptionally high catalytic activity for the oxidation of formic acid because of the presence of a high density of surface steps. The formation of twinned dendrites leads to a predominance of exposed 111 facets with a high density of surface steps as evident from high resolution electron microscopy investigations. These surface sites provide active sites for the adsorption of the formic acid molecules, thereby enhancing the reaction rate. Control experiments by varying the time of deposition reveal the formation of partially grown dendrites at shorter times indicating that the dendrites were formed by growth rather than particle attachment. Our deposition method opens up interesting possibilities to produce anisotropic nanostructures with corrugated surfaces by exploiting the perturbations involved in the growth process.

  4. Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography

    Science.gov (United States)

    Martinez‐Valdes, E.; Negro, F.; Laine, C. M.; Falla, D.; Mayer, F.

    2017-01-01

    Key points Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders.We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography.The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity.These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions.The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. Abstract A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be

  5. Formation of Sr adatom chains on SrTiO3 (1 1 0) surface determined by strain

    Science.gov (United States)

    Liang, Yan; Li, Fengmiao; Wang, Weihua; Yang, Hao; Guo, Jiandong

    2016-09-01

    The adsorption behavior of Sr adatoms on the SrTiO3 (1 1 0)-(4  ×  1) reconstructed surface with Ti2O3 vacancies distributed in a superstructure is studied by scanning tunneling microscopy and density functional theory calculations. With the adsorption amount increasing, all the Sr adatoms between adjacent Ti2O3 vacancies are closely packed along the quasi-1D stripes on the surface with a uniform separation from each other. The formation of such adatom chains is determined by the surface strain relief—the local lattice relaxations in response to Sr adatoms and Ti2O3 vacancies are incompatible, leading to the strong repulsive interaction between them. Consequently the distribution of Sr chains follows the long-range order of the growth template with their length tunable in a certain range by evaporation amount.

  6. Cathodoluminescent and electrical properties of an individual ZnO nanowire with oxygen vacancies

    Institute of Scientific and Technical Information of China (English)

    He Xiao-Bo; Yang Tian-Zhong; Cai Jin-Ming; Zhang Chen-Dong; Guo Hai-Ming; Shi Dong-Xia; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    A single ZnO nanowire with intrinsic oxygen vacancies is utilized to fabricate four-contact device with focus ion beam lithography technique.Cathodoluminescent spectra indicate strong near-UV and green emission at both room temperature and low temperatures.Experimented measurement shows the temperature-dependent conductivity of the ZnO nanowire at low temperatures(below 100 K).The further theoretical analysis confirms that weak localization plays an important role in the electrical transport,which is attributed to the surface states induced by plenty of oxygen vacancies in ZnO nanowire.

  7. Vacancy profile in reverse osmosis membranes studied by positron annihilation lifetime measurements and molecular dynamics simulations

    Science.gov (United States)

    Shimazu, A.; Goto, H.; Shintani, T.; Hirose, M.; Suzuki, R.; Kobayashi, Y.

    2013-06-01

    The positron annihilation technique using a slow positron beam can be used for the study of the vacancy profiles in typical reverse osmosis (RO) membranes. In this study, the vacancy profile in the polyamide membrane that exhibits a high permselectivity between ions and water was studied using the positron annihilation technique and molecular dynamics simulations. Ortho-positronium (o-Ps) lifetimes in the surface region of the membranes were evaluated by using a slow positron beam. The diffusion behavior of Na+ and water in the polyamides was simulated by molecular dynamics (MD) methods using the TSUBAME2 supercomputer at the Tokyo Institute of Technology and discussed with the vacancy profile probed by the o-Ps. The results suggested that the large hydration size of Na+ compared to the vacancy size in the polyamides contributes to the increased diffusivity selectivity of water/Na+ that is related to the NaCl desalination performance of the membrane. Both the hydration size of the ions and the vacancy size appeared to be significant parameters to discuss the diffusivity selectivity of water/ions in typical polyamide membranes.

  8. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals

    Science.gov (United States)

    Swinburne, Thomas D.; Arakawa, Kazuto; Mori, Hirotaro; Yasuda, Hidehiro; Isshiki, Minoru; Mimura, Kouji; Uchikoshi, Masahito; Dudarev, Sergei L.

    2016-08-01

    Vacancy-mediated climb models cannot account for the fast, direct coalescence of dislocation loops seen experimentally. An alternative mechanism, self climb, allows prismatic dislocation loops to move away from their glide surface via pipe diffusion around the loop perimeter, independent of any vacancy atmosphere. Despite the known importance of self climb, theoretical models require a typically unknown activation energy, hindering implementation in materials modeling. Here, extensive molecular statics calculations of pipe diffusion processes around irregular prismatic loops are used to map the energy landscape for self climb in iron and tungsten, finding a simple, material independent energy model after normalizing by the vacancy migration barrier. Kinetic Monte Carlo simulations yield a self climb activation energy of 2 (2.5) times the vacancy migration barrier for 1/2 () dislocation loops. Dislocation dynamics simulations allowing self climb and glide show quantitative agreement with transmission electron microscopy observations of climbing prismatic loops in iron and tungsten, confirming that this novel form of vacancy-free climb is many orders of magnitude faster than what is predicted by traditional climb models. Self climb significantly influences the coarsening rate of defect networks, with important implications for post-irradiation annealing.

  9. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals.

    Science.gov (United States)

    Swinburne, Thomas D; Arakawa, Kazuto; Mori, Hirotaro; Yasuda, Hidehiro; Isshiki, Minoru; Mimura, Kouji; Uchikoshi, Masahito; Dudarev, Sergei L

    2016-08-23

    Vacancy-mediated climb models cannot account for the fast, direct coalescence of dislocation loops seen experimentally. An alternative mechanism, self climb, allows prismatic dislocation loops to move away from their glide surface via pipe diffusion around the loop perimeter, independent of any vacancy atmosphere. Despite the known importance of self climb, theoretical models require a typically unknown activation energy, hindering implementation in materials modeling. Here, extensive molecular statics calculations of pipe diffusion processes around irregular prismatic loops are used to map the energy landscape for self climb in iron and tungsten, finding a simple, material independent energy model after normalizing by the vacancy migration barrier. Kinetic Monte Carlo simulations yield a self climb activation energy of 2 (2.5) times the vacancy migration barrier for 1/2〈111〉 (〈100〉) dislocation loops. Dislocation dynamics simulations allowing self climb and glide show quantitative agreement with transmission electron microscopy observations of climbing prismatic loops in iron and tungsten, confirming that this novel form of vacancy-free climb is many orders of magnitude faster than what is predicted by traditional climb models. Self climb significantly influences the coarsening rate of defect networks, with important implications for post-irradiation annealing.

  10. Localization of endocardial ectopic activity by means of noninvasive endocardial surface current density reconstruction

    Science.gov (United States)

    Lai, Dakun; Liu, Chenguang; Eggen, Michael D.; Iaizzo, Paul A.; He, Bin

    2011-07-01

    Localization of the source of cardiac ectopic activity has direct clinical benefits for determining the location of the corresponding ectopic focus. In this study, a recently developed current-density (CD)-based localization approach was experimentally evaluated in noninvasively localizing the origin of the cardiac ectopic activity from body-surface potential maps (BSPMs) in a well-controlled experimental setting. The cardiac ectopic activities were induced in four well-controlled intact pigs by single-site pacing at various sites within the left ventricle (LV). In each pacing study, the origin of the induced ectopic activity was localized by reconstructing the CD distribution on the endocardial surface of the LV from the measured BSPMs and compared with the estimated single moving dipole (SMD) solution and precise pacing site (PS). Over the 60 analyzed beats corresponding to ten pacing sites (six for each), the mean and standard deviation of the distance between the locations of maximum CD value and the corresponding PSs were 16.9 mm and 4.6 mm, respectively. In comparison, the averaged distance between the SMD locations and the corresponding PSs was slightly larger (18.4 ± 3.4 mm). The obtained CD distribution of activated sources extending from the stimulus site also showed high consistency with the endocardial potential maps estimated by a minimally invasive endocardial mapping system. The present experimental results suggest that the CD method is able to locate the approximate site of the origin of a cardiac ectopic activity, and that the distribution of the CD can portray the propagation of early activation of an ectopic beat.

  11. Extracting Extensor Digitorum Communis Activation Patterns using High-Density Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Xiaogang eHu

    2015-10-01

    Full Text Available The extensor digitorum communis muscle plays an important role in hand dexterity during object manipulations. This multi-tendinous muscle is believed to be controlled through separate motoneuron pools, thereby forming different compartments that control individual digits. However, due to the complex anatomical variations across individuals and the flexibility of neural control strategies, the spatial activation patterns of the extensor digitorum communis compartments during individual finger extension have not been fully tracked under different task conditions.The objective of this study was to quantify the global spatial activation patterns of the extensor digitorum communis using high-density (7×9 surface electromyogram (EMG recordings. The muscle activation map (based on the root mean square of the EMG was constructed when subjects performed individual four finger extensions at the metacarpophalangeal joint, at different effort levels and under different finger constraints (static and dynamic. Our results revealed distinct activation patterns during individual finger extensions, especially between index and middle finger extensions, although the activation between ring and little finger extensions showed strong covariance. The activation map was relatively consistent at different muscle contraction levels and for different finger constraint conditions. We also found that distinct activation patterns were more discernible in the proximal-distal direction than in the radial-ulnar direction. The global spatial activation map utilizing surface grid EMG of the extensor digitorum communis muscle provides information for localizing individual compartments of the extensor muscle during finger extensions. This is of potential value for identifying more selective control input for assistive devices. Such information can also provide a basis for understanding hand impairment in individuals with neural disorders.

  12. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals

    Science.gov (United States)

    Almadori, Y.; Borowik, Ł.; Chevalier, N.; Barbé, J.-C.

    2017-01-01

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm‑2 to values over 100 μm‑2.

  13. The local space density of Sb-Sdm galaxies as function of their scalesize, surface brightness and luminosity

    CERN Document Server

    De Jong, R S; Jong, Roelof S. de; Lacey, Cedric

    2000-01-01

    We investigate the dependence of the local space density of spiral galaxies on luminosity, scalesize and surface brightness. We derive bivariate space density distributions in these quantities from a sample of about 1000 Sb-Sdm spiral galaxies, corrected for selection effects in luminosity and surface brightness. The structural parameters of the galaxies were corrected for internal extinction using a description depending on galaxy surface brightness. We find that the bivariate space density distribution of spiral galaxies in the (luminosity, scalesize)-plane is well described by a Schechter luminosity function in the luminosity dimension and a log-normal scale size distribution at a given luminosity. This parameterization of the scalesize distribution was motivated by a simple model for the formation of disks within dark matter halos, with halos acquiring their angular momenta through tidal torques from neighboring objects, and the disk specific angular momentum being proportional to that of the parent halo....

  14. Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn compaction modelling

    DEFF Research Database (Denmark)

    Sørensen, L. S.; Simonsen, Sebastian Bjerregaard; Nielsen, K.;

    2010-01-01

    in estimating the mass balance of the Greenland ice sheet. We find firn dynamics and surface densities to be important factors in deriving the mass loss from remote sensing altimetry. The volume change derived from ICESat data is corrected for firn compaction, vertical bedrock movement and an intercampaign...... elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by surface density modelling. The firn compaction and density models are driven by a dynamically downscaled simulation of the HIRHAM5 regional climate model using ERA-Interim reanalysis lateral......ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat...

  15. Manipulation of the surface density of states of Ag(111) by means of resonators: Experiment and theory

    Science.gov (United States)

    Fernández, J.; Moro-Lagares, María; Serrate, D.; Aligia, A. A.

    2016-08-01

    We show that the density of surface Shockley states of Ag(111) probed by the differential conductance G (V )=d I /d V by a scanning-tunneling microscope (STM) can be enhanced significantly at certain energies and positions introducing simple arrays of Co or Ag atoms on the surface, in contrast to other noble-metal surfaces. Specifically we have studied resonators consisting of two parallel walls of five atoms deposited on the clean Ag(111) surface. A simple model in which the effect of the adatoms is taken into account by an attractive local potential and a small hybridization between surface and bulk at the position of the adatoms explains the main features of the observed G (V ) and allows us to extract the proportion of surface and bulk states sensed by the STM tip. These results might be relevant to engineer the surface spectral density of states, to study the effects of surface states on the Kondo effect, and to separate bulk and surface contributions in STM studies of topological surface states.

  16. Controlled Coupling of a Single Nitrogen-Vacancy Center to a Silver Nanowire

    DEFF Research Database (Denmark)

    Huck, Alexander; Kumar, Shailesh; Shakoor, Abdul

    2011-01-01

    We report on the controlled coupling of a single nitrogen-vacancy (NV) center to a surface plasmon mode propagating along a chemically grown silver nanowire (NW). We locate and optically characterize a single NV center in a uniform dielectric environment before we controllably position this emitter...

  17. 78 FR 64291 - Notice of Rail Energy Transportation Advisory Committee Vacancy

    Science.gov (United States)

    2013-10-28

    ... Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Vacancy AGENCY... Energy Transportation Advisory Committee (RETAC) for a representative of an electric utility. The Board... for a candidate for membership on RETAC are due November 27, 2013. ADDRESSES: Suggestions may...

  18. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BOMASS PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath

    2004-05-01

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to December 31, 2004 which covers the first six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, supply requests were processed and supplies including biomass test particles (hardwood sawdust AI14546) in the size range of 100-200 microns were obtained from a cofiring pilot plant research facility owned by Southern Company, Birmingham, AL. Morehouse has completed setting up of the gravimetric technique measurement system in the heat transfer laboratory, department of physics and dual degree engineering, Morehouse College. Simultaneously, REM, our subcontractor, has completed setting up of the electrodynamic balance (EDB) measurement system to characterize shape and mass for individual biomass particles. Testing of the gravimetric system, and calibration of the cameras and imaging systems using known sizes of polystyrene particles are in progress.

  19. Determination of surface charge density of α-alumina by acid-base titration

    Directory of Open Access Journals (Sweden)

    Justin W. Ntalikwa

    2007-04-01

    Full Text Available The surface charge density (σo of colloidal alpha alumina suspended in various 1:1 electrolytes was measured using acid-base titration. An autotitrator capable of dispensing accurately 25 plus or minus 0.1 μL of titrant was used. The pH and temperature in the titration cell were monitored using single junction electrodes and platinum resistance thermometers, respectively. A constant supply of nitrogen gas in the cell was used to maintain inert conditions. The whole set up was interfaced with a computer for easy data acquisition. It was observed that the material exhibits a point of zero charge (PZC, this occurred at pH of 7.8 plus or minus 0.1, 7.6 plus or minus 0.2, 8.5 plus or minus 0.1, 8.3 plus or minus 0.1 for NaCl, NaNO3, CsCl and CsNO3 systems, respectively. It was also observed that below PZC, σo increases with increase in electrolyte concentration (Co whereas above PZC, σo decreases with increase in Co. It was concluded that σo of this material is a function of pH and Co and that its polarity can be varied through zero by varying these parameters.

  20. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.

    Science.gov (United States)

    Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M

    2016-01-01

    Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.

  1. The Distribution of Mass Surface Densities in a High-Mass Protocluster

    CERN Document Server

    Lim, Wanggi; Kainulainen, Jouni; Ma, Bo; Butler, Micheal J

    2016-01-01

    We study the probability distribution function (PDF) of mass surface densities, $\\Sigma$, of infrared dark cloud (IRDC) G028.37+00.07 and its surrounding giant molecular cloud. This PDF constrains the physical processes, such as turbulence, magnetic fields and self-gravity, that are expected to be controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 parsecs, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a "super star cluster." We study $\\Sigma$ in two ways. First, we use a combination of NIR and MIR extinction maps that are able to probe the bulk of the cloud structure up to $\\Sigma\\sim1\\:{\\rm{g\\:cm}^{-2}}\\:$($A_V\\simeq200$~mag). Second, we study the FIR and sub-mm dust continuum emission from the cloud utilizing Herschel PACS and SPIRE images and paying careful attention to the effects of foreground and background contamination. We...

  2. Vibrational properties of vacancy in bcc transition metals using embedded atom method potentials

    Indian Academy of Sciences (India)

    Vandana Gairola; P D Semalty; P N Ram

    2013-06-01

    The embedded atom method (EAM) potentials, with the universal form of the embedding function along with the Morse form of pair potential, have been employed to determine the potential parameters for three bcc transition metals: Fe, Mo, and W, by fitting to Cauchy pressure $(C_{12} − C_{44})/2$, shear constants $G_{v} = (C_{11} − C_{12} + 3C_{44})/5$ and 44, cohesive energy and the vacancy formation energy. The obtained potential parameters are used to calculate the phonon dispersion spectra of these metals. Large discrepancies are found between the calculated results of phonon dispersion using the EAM and the experimental phonon dispersion results. Therefore, to overcome this inadequacy of the EAM model, we employ the modified embedded atom method (MEAM) in which a modified term along with the pair potential and embedding function is added in the total energy. The phonon dispersions calculated using potential parameters obtained from the MEAM show good agreement with experimental results compared to those obtained from the EAM. Using the calculated phonons, we evaluate the local density of states of the neighbours of vacancy using the Green’s function method. The local frequency spectrum of first neighbours of vacancy in Mo shows an increase at higher frequencies and a shift towards the lower frequencies whereas in Fe and W, the frequency spectrum shows a small decrease towards higher frequency and small shift towards lower frequency. For the second neighbours of vacancy in all the three metals, the local frequency spectrum is not much different from that of the host atom. The local density of states of the neighbours of the vacancy has been used to calculate the mean square displacements and the formation entropy of vacancy. The calculated mean square displacements of the first neighbours of vacancy are found to be higher than that of the host atom, whereas it is lower for the second neighbours. The calculated results of the formation entropy of the vacancy

  3. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study.

    Science.gov (United States)

    Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo

    2014-09-15

    In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets.

  4. Contribution of the entropy on the thermodynamic equilibrium of vacancies in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Metsue, Arnaud, E-mail: arnaud.metsue@univ-lr.fr; Oudriss, Abdelali; Bouhattate, Jamaa; Feaugas, Xavier [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17000 La Rochelle (France)

    2014-03-14

    The equilibrium vacancy concentration in nickel was determined from ab initio calculations performed with both generalized gradient approximation and local density approximation up to the melting point. We focus the study on the vacancy formation entropy expressed as a sum of a vibration and an electronic contribution, which were determined from the vibration modes and the electronic densities of states. Applying a method based on the quasi-harmonic approximation, the temperature dependence of the defect formation energy and entropy were calculated. We show that the vibrations of the first shell of atoms around the defect are predominant to the vibration formation entropy. On the other hand, the electronic formation entropy is very sensitive to the exchange-correlation potential used for the calculations. Finally, the vacancy concentration is computed at finite temperature with the calculated values for the defect formation energy and entropy. In order to reconcile point-defects concentration obtained with our calculations and experimental data, we conducted complementary calorimetric measurements of the vacancy concentration in the 1073–1273 K temperature range. Close agreement between theory and experiments at high temperature is achieved if the calculations are performed with the generalized gradient approximation and both vibration and electronic contributions to the formation entropy are taken into account.

  5. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory

    Science.gov (United States)

    Hu, Cong; Wang, Qi; Bai, Shuai; Xu, Min; He, Deyan; Lyu, Deyuan; Qi, Jing

    2017-02-01

    Oxygen vacancy (Vo) is believed to control the switching mechanism of metal oxide resistive switching memory. However, an accurate and quantitative theory to prove this point of view remains absent. In this letter, we propose a model combining the Poole-Frenkel effect, space charge limited current, and the modification of Vo density to simulate the current-voltage curves. The calculated results show reasonable agreements with the experimental data, which indicates that resistive switching between high resistance state and low resistance state in the devices of Al/ZnO/p+-Si is led by the density change of Vo. Furthermore, the essence of this leading effect of Vo density is explained by electrons capture and emission via oxygen vacancies. This research demonstrates the significance of Vo in theory and gives an insight into the switching mechanism.

  6. Adsorption of H2O,OH,and O on CuCl(111) Surface: A Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    Xia Wang; Wen-kai Chen; Bao-zhen Sun; Chun-hai Lu

    2008-01-01

    The adsorption of H2O molecule and its dissociation products,O and OH,on CuCl(111) surface was studied with periodic slab model by PW91 approach of GGA within the framework of density functional theory.The results of geometry optimization indicate that the top site is stable energetically for H2O adsorbed over the CuCl(111) surface.The threefold hollow site is found to be the most stable adsorption site for OH and O,and the calculated adsorption energies are 309.5 and 416.5 k J/mol,respectively.Adsorption of H2O on oxygen-precovered CuCl(111) surface to form surface hydroxyl groups is predicted to be exothermic by 180.1 kJ/mol.The stretching vibrational frequencies,MuUiken population analysis and density of states analysis are employed to interpret the possible mechanism for the computed results.

  7. Insertion torques influenced by bone density and surface roughness of HA–TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, T.; Chen, Y.; Nie, X., E-mail: xnie@uwindsor.ca

    2013-12-31

    Bio-ceramic TiO{sub 2} coatings containing calcium (Ca) and phosphorous (P) were deposited onto Ti–6Al–4V alloy screws using plasma electrolytic oxidation (PEO) processes in an alkaline electrolyte with hydroxyapatite (HA) suspension. Coating on each screw had different surface roughness and morphology. Insertion torque (IT) of the coated screws in low (10 pcf, pounds per cubic feet), medium–high (20 pcf), and high (40 pcf) density of artificial bones was measured in comparison with that of the uncoated and sandblasted screws having similar surface roughness. Higher insertion torques and final seating torques were obtained in the coated screws which may result in less micro-movement during the primary implantation stage and thus lower the risk of implant failure. Scanning electron microscopy (SEM) analysis indicated that all coatings still adhesively remained on the screw surfaces after inserted into the bones with different densities. The relationship between coefficient of friction and surface roughness was also addressed to better understand the results of insertion torque. It was found that a lower density bone (similar to aged bone) would need a surface-rougher coated screw to achieve a high torque while a high density bone can have a wide range of selections for surface roughness of the screw. - Highlights: • The insertion torque of PEO-coated screws is higher than machined and sandblasting implants. • Lower density bone needs a rougher coated implant to increase the insertion torque. • The composite HA–TiO{sub 2} coating could benefit dental implants in both primary and secondary stability stages.

  8. Spatial variability in cortex-muscle coherence investigated with magnetoencephalography and high-density surface electromyography.

    Science.gov (United States)

    Piitulainen, Harri; Botter, Alberto; Bourguignon, Mathieu; Jousmäki, Veikko; Hari, Riitta

    2015-11-01

    Cortex-muscle coherence (CMC) reflects coupling between magnetoencephalography (MEG) and surface electromyography (sEMG), being strongest during isometric contraction but absent, for unknown reasons, in some individuals. We used a novel nonmagnetic high-density sEMG (HD-sEMG) electrode grid (36 mm × 12 mm; 60 electrodes separated by 3 mm) to study effects of sEMG recording site, electrode derivation, and rectification on the strength of CMC. Monopolar sEMG from right thenar and 306-channel whole-scalp MEG were recorded from 14 subjects during 4-min isometric thumb abduction. CMC was computed for 60 monopolar, 55 bipolar, and 32 Laplacian HD-sEMG derivations, and two derivations were computed to mimic "macroscopic" monopolar and bipolar sEMG (electrode diameter 9 mm; interelectrode distance 21 mm). With unrectified sEMG, 12 subjects showed statistically significant CMC in 91-95% of the HD-sEMG channels, with maximum coherence at ∼25 Hz. CMC was about a fifth stronger for monopolar than bipolar and Laplacian derivations. Monopolar derivations resulted in most uniform CMC distributions across the thenar and in tightest cortical source clusters in the left rolandic hand area. CMC was 19-27% stronger for HD-sEMG than for "macroscopic" monopolar or bipolar derivations. EMG rectification reduced the CMC peak by a quarter, resulted in a more uniformly distributed CMC across the thenar, and provided more tightly clustered cortical sources than unrectifed sEMGs. Moreover, it revealed CMC at ∼12 Hz. We conclude that HD-sEMG, especially with monopolar derivation, can facilitate detection of CMC and that individual muscle anatomy cannot explain the high interindividual CMC variability.

  9. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  10. Hydrodeoxygenation of Phenol to Benzene and Cyclohexane on Rh(111) and Rh(211) Surfaces: Insights from Density Functional Theory

    DEFF Research Database (Denmark)

    Garcia-Pintos, Delfina; Voss, Johannes; Jensen, Anker Degn

    2016-01-01

    Herein we describe the C-O cleavage of phenol and cyclohexanol over Rh (111) and Rh (211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C-O bond cleavage of cyclohexanol is easier than that of...

  11. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry

    NARCIS (Netherlands)

    Tapavicza, Enrico; Tavernelli, Ivano; Rothlisberger, Ursula; Filippi, Claudia; Casida, Mark E.

    2008-01-01

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA)

  12. A Method for Absolute Determination of the Surface Areal Density of Functional Groups in Organic Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Min, Hyegeun; Son, Jin Gyeong; Kim, Jeong Won; Yu, Hyunung; Lee, Tae Geol; Moon, Dae Won [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-03-15

    To develop a methodology for absolute determination of the surface areal density of functional groups on organic and bio thin films, medium energy ion scattering (MEIS) spectroscopy was utilized to provide references for calibration of X-ray photoelectron spectroscopy (XPS) or Fourier transformation-infrared (FT-IR) intensities. By using the MEIS, XPS, and FT-IR techniques, we were able to analyze the organic thin film of a Ru dye compound (C{sub 58}H{sub 86}O{sub 8}N{sub 8}S{sub 2}Ru), which consists of one Ru atom and various stoichiometric functional groups. From the MEIS analysis, the absolute surface areal density of Ru atoms (or Ru dye molecules) was determined. The surface areal densities of stoichiometric functional groups in the Ru dye compound were used as references for the calibration of XPS and FT-IR intensities for each functional group. The complementary use of MEIS, XPS, and FT-IR to determine the absolute surface areal density of functional groups on organic and bio thin films will be useful for more reliable development of applications based on organic thin films in areas such as flexible displays, solar cells, organic sensors, biomaterials, and biochips.

  13. Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Sun, Honghao; Berg, Rolf Henrik

    2011-01-01

    A highly efficient method for functionalizing nanoparticles and directly quantifying conjugation efficiency and ligand surface density has been developed. Attachment of 3-azido-modifed RGD-peptides to PEGylated liposomes was achieved by using Cu-free click conditions. Upon coupling a fluorophore...

  14. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2009-01-01

    The aim of this study was to investigate motor unit (MU) characteristics of the biceps brachii in post-stroke patients, using high-density surface electromyography (sEMG). Eighteen chronic hemiparetic stroke patients took part. The Fugl-Meyer score for the upper extremity was assessed. Subjects

  15. Vacancy Duration, Wage Offers, and Job Requirements

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Chen, Long-Hwa

    is concerned with how vacancy durations vary with firms' minimum wage offers and minimum job requirements (regarding education, skills, age, gender and earlier work experience). The empirical analysis is based on ten employer surveys carried out by the DGBAS on Taiwan during the period 1996-2006. We estimate......Besides wage offers, credentials like education, work experience and skill requirements are key screening tools for firms in their recruitment of new employees. This paper adds some new evidence to a relatively tiny literature on firms' recruitment behaviour. In particular, our analysis...... logistic discrete hazard models with a rich set of job and firm characteristics as explanatory variables. The results show that vacancies associated with higher wage offers take, ceteris paribus, longer to be filled. The impact of firms' wage offers and credential requirements does not vary over...

  16. The use of surface power for characterisation of structure-borne sound sources of low modal density

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1996-01-01

    The use of the surface power methods for source characterisaiton of vibrating machinery of low modal density is investigated in this paper. It was demonstrated by Ohlrich and Larsen that this relatively simple, but very useful measurement technique for quantifying the vibratory strength...... of machinery, is very suitable in cases of high modal density, especially with respect to overall evaluation of machinery vibration characteristics and for estimation of the power produced by internal source mechanisms of the machine. Thus, it is envisaged that the method can be used in the development stage...... of new machines, in comparison studies of different machines, and in factory quality control to ensure that vibro-acoustic specifications are met. Carefully controlled experiments with an instrumented 3/4-scale structural model of a helicopter gearbox of low modal density, show that the surface power...

  17. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.

    2005-01-01

    are in excellent agreement with experimental values of lattice constants and bulk moduli. The adsorption of atomic hydrogen is used as a probe to compare the chemical properties of various carbide surfaces. Hydrogen adsorbs more strongly to the metal-terminated carbide surfaces than to the corresponding closest......-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon atoms...

  18. Help-wanted advertising and job vacancies

    OpenAIRE

    Valletta, Robert G.

    2005-01-01

    Due to its reliance on newspaper advertising, the help-wanted index is an indirect measure of job vacancies. However, the level of job advertisements appearing in newspapers may change for reasons that are unrelated to overall labor demand. For example, equal employment opportunity laws raised the level of newspaper job advertising in the 1960s and 1970s, while internet job advertising has served as an increasingly effective substitute for newspaper advertising in recent years. In this Econom...

  19. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  20. Structure and chemical reactivity of the polar three-fold surfaces of GaPd: a density-functional study.

    Science.gov (United States)

    Krajčí, M; Hafner, J

    2013-03-28

    The polar threefold surfaces of the GaPd compound crystallizing in the B20 (FeSi-type) structure (space group P2(1)3) have been investigated using density-functional methods. Because of the lack of inversion symmetry the B20 structure exists in two enantiomorphic forms denoted as A and B. The threefold {111} surfaces have polar character. In both nonequivalent (111) and (111) directions several surface terminations differing in structure and chemical composition are possible. The formation of the threefold surfaces has been studied by simulated cleavage experiments and by calculations of the surface energies. Because of the polar character of the threefold surfaces calculations for stoichiometric slabs permit only the determination of the average energy of the surfaces exposed on both sides of the slab. Calculations for nonstoichiometric slabs performed in the grand canonical ensemble yield differences of the surface energies for the possible terminations as a function of the chemical potential in the reactive atmosphere above the surface and predict a transition between Ga- and Pd-terminated surfaces as a function of the chemical potential. The {100} surfaces are stoichiometric and uniquely defined. The calculated surface energies are identical to the average energies of the {100} surfaces of the pure metals. The {210} surfaces are also stoichiometric, with an energy very close to that of the {100} surfaces. Assuming that for the {111} surfaces the energies of different possible terminations are in a proportion equal to that of the concentration-weighted energies of the {111} surfaces of the pure metals, surface energies for all possible {111} terminations may be calculated. The preferable termination perpendicular to the A direction consists of a bilayer with three Ga atoms in the upper and three Pd atoms in the lower part. The surface energy of this termination further decreases if the Pd triplet is covered by additional Ga atom. Perpendicular to the A direction

  1. Vacancy rearrangement processes in multiply ionized atoms

    Energy Technology Data Exchange (ETDEWEB)

    Czarnota, M [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Pajek, M [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Banas, D [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Dousse, J-Cl [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Maillard, Y-P [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Mauron, O [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Raboud, P A [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Berset, M [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Hoszowska, J [European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble (France); Slabkowska, K [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Torun (Poland); Polasik, M [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Torun (Poland); Chmielewska, D [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Rzadkiewicz, J [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Sujkowski, Z [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)

    2007-03-01

    We demonstrate that in order to interpret the x-ray satellite structure of Pd L{alpha}{sub 1,2}(L{sub 3}M{sub 4,5}) transitions excited by fast O ions, which was measured using a high-resolution von Hamos crystal spectrometer, the vacancy rearrangement processes, taking place prior to the x-ray emission, have to be taken into account. The measured spectra were compared with the predictions of the multi-con.guration Dirac-Fock (MCDF) calculations using the fluorescence and Coster-Kronig yields which were modiffed due to a reduced number of electrons available for relaxation processes and the effect of closing the Coster-Kronig transitions. We demonstrate that the vacancy rearrangement processes can be described in terms of the rearrangement factor, which can be calculated by solving the system of rate equations modelling the flow of vacancies in the multiply ionized atom. By using this factor, the ionization probability at the moment of collision can be extracted from the measured intensity distribution of x-ray satellites. The present results support the independent electron picture of multiple ionization and indicate the importance of use of Dirac-Hartree-Fock wave functions to calculate the ionization probabilities.

  2. Investigation of two-dimensional electron systems at low density on hydrogen-terminated silicon (111) surface

    Science.gov (United States)

    Hu, Binhui; Kott, Tomasz M.; Kane, B. E.

    2013-03-01

    Two-dimensional electron systems (2DESs) on hydrogen-terminated Si(111) surfaces show very high quality. The peak electron mobility of 325,000 cm2/Vs can be reached at T =90 mK and 2D electron density n2 d = 4 . 15 ×1011 cm-2, and the device shows the fractional quantum hall effect[1]. 2DESs on H-Si(111) at lower densities may exhibit new physics, because both valley degeneracy and effective mass lead to a large Wigner-Seitz radius rs at accessible densities. In these devices, phosphorus ion implantation is used to defined the contacts to the 2DESs[2]. The contacts themselves work at low temperature. However, at lower 2D electron density (ion implantation annealing parameters are adjusted to mitigate the issue. Possible measurement technique is also explored to overcome the problem.

  3. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Science.gov (United States)

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  4. Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ka; Chang, Yongqin, E-mail: chang@ustb.edu.cn; Lv, Liang; Long, Yi

    2015-10-01

    Highlights: • Nanocrystalline CeO{sub 2} films were prepared by a facile sol–gel spin coating method. • Oxygen vacancy concentrations can be controlled by annealing temperatures. • The films show perfect thermal stability at various annealing temperatures. • PL, XPS and Raman spectra are obviously affected by oxygen vacancy concentrations. - Abstract: Nanocrystalline CeO{sub 2} films with around 250 nm thickness were deposited on Si (0 0 1) substrates by a facile sol–gel process with spin coating method. The films are of cubic fluorite structure, and some lattice distortions exist in the film. The phase stability and small change in lattice parameter at different annealing temperatures indicate the good thermal stability of the nanocrystalline CeO{sub 2} films. The average grain-size and surface roughness of the films increase with the increase of annealing temperature. The content of Ce{sup 3+} and oxygen vacancy is very high in the nanocrystalline CeO{sub 2} films, while, the films still remain cubic phase regardless of its high level non-stoichiometric composition. All the annealed samples show two emission bands, and the defect peak centered at ∼500 nm shows a red-shift. The intensity of the green-emission band increases with the increasing annealing temperature, which might result from the increasing concentration of oxygen vacancies caused by the valence transition from Ce{sup 4+} to Ce{sup 3+}, and it has also been confirmed by the X-ray photoelectron spectroscopy results. This work demonstrates that oxygen vacancy plays an important role on the properties of the nanocrystalline CeO{sub 2} film, and it also provides a possible way to control the concentration of oxygen vacancies.

  5. Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.; Rugar, D., E-mail: rugar@us.ibm.com [IBM Research Division, Almaden Research Center, San Jose, California 95120 (United States); Center for Probing the Nanoscale, Stanford University, Stanford, California 94305 (United States); Mamin, H. J.; Sherwood, M. H.; Rettner, C. T.; Frommer, J. [IBM Research Division, Almaden Research Center, San Jose, California 95120 (United States)

    2014-07-28

    We investigate the effect of two different surface treatments on shallow nitrogen-vacancy (NV) centers in diamond. Short duration oxygen plasma exposure is found to damage near-surface NV centers, resulting in their disappearance in fluorescence images. Subsequent annealing creates large numbers of new NV centers, attributed to plasma-induced vacancy creation. By tracking individual NV centers during thermal oxidation, we show that oxidation at 550 °C results in modest improvement of spin coherence. Higher temperature oxidations correlate with gradual decline in spin coherence and eventual instability of NV centers before ultimate disappearance. This is indicative of a reduction of the NV-to-surface distance due to oxidative etching. Thermal oxidation can offer controlled access to near-surface NV spins at the nanometer scale, an important requirement for many applications of NV-based nanomagnetometry.

  6. Controlling the cytotoxicity of CdSe magic-sized quantum dots as a function of surface defect density.

    Science.gov (United States)

    Silva, Anielle Christine Almeida; Silva, Marcelo José Barbosa; da Luz, Felipe Andrés Cordero; Silva, Danielle Pereira; de Deus, Samantha Luara Vieira; Dantas, Noelio Oliveira

    2014-09-10

    Quantum dots are potentially very useful as fluorescent probes in biological systems. However, they are inherently cytotoxic because of their constituents. We controlled the cytotoxicity of CdSe magic-sized quantum dots (MSQDs) as a function of surface defect density by altering selenium (Se) concentration during synthesis. Higher Se concentrations reduced the cytotoxicity of the CdSe MSQDs and diminished mRNA expression of methallothionein because of the low cadmium ions (Cd(2+)) concentration adsorbed on the surface of the MSQDs. These results agree with luminescence spectra, which show that higher Se concentrations decrease the density of surface defects. Therefore, our results describe for the first time a simple way of controlling the cytotoxicity of CdSe MSQDs and making them safer to use as fluorescence probes in biological systems.

  7. Surface layer structure and average contact temperature of copper-containing materials under dry sliding with high electric current density

    Science.gov (United States)

    Fadin, V. V.; Aleutdinova, M. I.; Rubtsov, V. Ye.; Aleutdinov, K. A.

    2016-11-01

    Dry sliding of copper and powder composites of Cu-Fe and Cu-Fe-graphite compositions against 1045 steel under electric current of contact density higher than 250 A/cm2 has been studied, which demonstrated the change in surface layer structure and formation of tribolayer consisting of iron, copper and FeO oxide. Signs of quasi-viscous flow of worn surface were observed. It was noted that the thin contact layer containing about 40 at % of oxygen and 40% of Fe was the main factor decreasing the adhesion interaction. It was affirmed that the introduction of graphite into the primary structure of the composite leads to rather low content of FeO oxide and to the increased tendency of surface layer to catastrophic deterioration under sliding with contact current density of about 300 A/cm2. The temperature of contact did not exceed 400°C.

  8. Density functional theory of liquid crystals and surface anchoring: hard Gaussian overlap-sphere and hard Gaussian overlap-surface potentials.

    Science.gov (United States)

    Avazpour, A; Avazpour, L

    2010-12-28

    This article applies the density functional theory to confined liquid crystals, comprised of ellipsoidal shaped particles interacting through the hard Gaussian overlap (HGO) potential. The extended restricted orientation model proposed by Moradi and co-workers [J. Phys.: Condens. Matter 17, 5625 (2005)] is used to study the surface anchoring. The excess free energy is calculated as a functional expansion of density around a reference homogeneous fluid. The pair direct correlation function (DCF) of a homogeneous HGO fluid is approximated, based on the optimized sum of Percus-Yevick and Roth DCF for hard spheres; the anisotropy introduced by means of the closest approach parameter, the expression proposed by Marko [Physica B 392, 242 (2007)] for DCF of HGO, and hard ellipsoids were used. In this study we extend an our previous work [Phys. Rev. E 72, 061706 (2005)] on the anchoring behavior of hard particle liquid crystal model, by studying the effect of changing the particle-substrate contact function instead of hard needle-wall potentials. We use the two particle-surface potentials: the HGO-sphere and the HGO-surface potentials. The average number density and order parameter profiles of a confined HGO fluid are obtained using the two particle-wall potentials. For bulk isotropic liquid, the results are in agreement with the Monte Carlo simulation of Barmes and Cleaver [Phys. Rev. E 71, 021705 (2005)]. Also, for the bulk nematic phase, the theory gives the correct density profile and order parameter between the walls.

  9. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Elimelech, Orian [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel; Liu, Jing [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Plonka, Anna M. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Frenkel, Anatoly I. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Banin, Uri [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel

    2017-07-19

    Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sized NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.

  10. A posteriori testing of algebraic flame surface density models for LES

    Science.gov (United States)

    Ma, T.; Stein, O. T.; Chakraborty, N.; Kempf, A. M.

    2013-06-01

    In the application of Large Eddy Simulation (LES) to premixed combustion, the unknown filtered chemical source term can be modelled by the generalised flame surface density (FSD) using algebraic models for the wrinkling factor Ξ. The present study compares the behaviour of the various models by first examining the effect of sub-grid turbulent velocity fluctuation on Ξ through a one-dimensional analysis and by the LES of the ORACLES burner (Nguyen, Bruel, and Reichstadt, Flow, Turbulence and Combustion Vol. 82 [2009], pp. 155-183) and the Volvo Rig (Sjunnesson, Nelsson, and Max, Laser Anemometry, Vol. 3 [1991], pp. 83-90; Sjunnesson, Henrikson, and Löfström, AIAA Journal, Vol. 28 [1992], pp. AIAA-92-3650). Several sensitivity studies on parameters such as the turbulent viscosity and the grid resolution are also carried out. A statistically 1-D analysis of turbulent flame propagation reveals that counter gradient transport of the progress variable needs to be accounted for to obtain a realistic flame thickness from the simulations using algebraic FSD based closure. The two burner setups are found to operate mainly within the wrinkling/corrugated flamelet regime based on the premixed combustion diagram for LES (Pitsch and Duchamp de Lageneste, Proceedings of the Combustion Institute, Vol. 29 [2002], pp. 2001-2008) and this suggests that the models are operating within their ideal range. The performance of the algebraic models are then assessed by comparing velocity statistics, followed by a detailed error analysis for the ORACLES burner. Four of the tested models were found to perform reasonably well against experiments, and one of these four further excels in being the most grid-independent. For the Volvo Rig, more focus is placed upon the comparison of temperature data and identifying changes in flame structure amongst the different models. It is found that the few models which largely over-predict velocities in the ORACLES case and volume averaged ? in a

  11. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations

    Science.gov (United States)

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m :-n electrolyte. A perturbation series is developed in terms of g =4 π κ b , where b a n d 1 /κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m ≠n ), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  12. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding

    Science.gov (United States)

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G.

    2017-02-01

    In this manuscript we extend Wertheim’s two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  13. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    Science.gov (United States)

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  14. Effect of soil surface salt on the density and distribution of the snail Bithynia siamensis goniomphalos in northeast Thailand.

    Science.gov (United States)

    Suwannatrai, Apiporn; Suwannatrai, Kulwadee; Haruay, Surat; Piratae, Supawadee; Thammasiri, Chalida; Khampoosa, Panita; Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Tarbsripair, Pairat; Suwanwerakamtorn, Rasamee; Sukchan, Somsak; Boonmars, Thidarut; Malone, John B; Kearney, Michael T; Tesana, Smarn

    2011-05-01

    Opisthorchis viverrini infection is associated with human cholangiocarcinoma and northeast Thailand has the highest incidence of this disease in the world. Bithynia siamensis goniomphalos is the major freshwater snail intermediate host of O. viverrini in this area and an analysis based on geographical information systems was used to determine the effect of variation in soil surface salt on the density and distribution of this snail. A malacological survey was carried out in 56 water bodies in the Khorat basin, northeast Thailand at locations with various soil surface salt levels. Mollusk samples were collected from 10 ecologically representative water body sites with 10-20 sampling stations in each. The shoreline of clear, shallow water bodies was found to be the preferred B. s. goniomphalos habitat. The snails were exclusively found in water with salinity levels ranging between 0.05 and 22.11 parts per thousand (ppt), which supports the notion that B. s. goniomphalos prefers water with some saline content over pure, freshwater. The highest snail population densities were in rice fields, ponds, road-side ditches and canals within a water salinity range of 2.5-5.0 ppt. However, the presence of B. s. goniomphalos was negatively correlated with water salinity (P ≤0.05), both with regard to density and distribution. The areas with the highest density of B. s. goniomphalos were those with less than 1% soil surface salt (potential index = 0.314), while the lowest densities were found in areas exceeding 50% soil surface salt (potential index = 0.015).

  15. Effect of soil surface salt on the density and distribution of the snail Bithynia siamensis goniomphalos in northeast Thailand

    Directory of Open Access Journals (Sweden)

    Apiporn Suwannatrai

    2011-05-01

    Full Text Available Opisthorchis viverrini infection is associated with human cholangiocarcinoma and northeast Thailand has the highest incidence of this disease in the world. Bithynia siamensis goniomphalos is the major freshwater snail intermediate host of O. viverrini in this area and an analysis based on geographical information systems was used to determine the effect of variation in soil surface salt on the density and distribution of this snail. A malacological survey was carried out in 56 water bodies in the Khorat basin, northeast Thailand at locations with various soil surface salt levels. Mollusk samples were collected from 10 ecologically representative water body sites with 10-20 sampling stations in each. The shoreline of clear, shallow water bodies was found to be the preferred B. s. goniomphalos habitat. The snails were exclusively found in water with salinity levels ranging between 0.05 and 22.11 parts per thousand (ppt, which supports the notion that B. s. goniomphalos prefers water with some saline content over pure, freshwater. The highest snail population densities were in rice fields, ponds, road-side ditches and canals within a water salinity range of 2.5-5.0 ppt. However, the presence of B. s. goniomphalos was negatively correlated with water salinity (P ≤0.05, both with regard to density and distribution. The areas with the highest density of B. s. goniomphalos were those with less than 1% soil surface salt (potential index = 0.314, while the lowest densities were found in areas exceeding 50% soil surface salt (potential index = 0.015.

  16. The effect of oxygen vacancies on the electrical properties of TiO2-x Re-RAM switching devices

    Science.gov (United States)

    Benkraouda, Maamar

    2014-03-01

    The main goal of this work is to contribute toward an accurate determination of the electronic properties of Resistance random access memory (Re-RAM) using the density functional theory, which is the current state of the art method that employs high accuracy, it can treat a few hundred atoms on medium sized PC. All the fundamental properties are studied as a function of the mole fraction. The density of states arising from vacancy distribution, the electron transport and formation energy are analyzed. Using controllable mole fraction, various intermediate resistance states are induced. Oxygen vacancy has a considerable effect on the electrical properties of most transition metal oxides such as TiOx Re-RAM devices. The presence of oxygen vacancies is linked to the on-state conduction and resistance switching mechanism. Hydrogen is a ubiquitous impurity in most semiconductors, insertion of hydrogen atoms will remove some of defect states which were induced by oxygen vacancies; this will obviously have an effect on the conductive path, because hydrogen in the vacancy site results in the rupture of conductive channel by localizing electrons, the conductivity may decrease in this case.

  17. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    Science.gov (United States)

    Chen, Maoqi

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525

  18. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.

    Science.gov (United States)

    Chen, Maoqi; Holobar, Ales; Zhang, Xu; Zhou, Ping

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  19. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    Directory of Open Access Journals (Sweden)

    Maoqi Chen

    2016-01-01

    Full Text Available Decomposition of electromyograms (EMG is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6±4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85±1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  20. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.

    Science.gov (United States)

    Vojvodic, A; Ruberto, C; Lundqvist, B I

    2010-09-22

    This study explores atomic and molecular adsorption on a number of early transition-metal carbides (TMCs) in NaCl structure by means of density-functional theory calculations. The investigated substrates are the TM-terminated TMC(111) surfaces, of interest because of the presence of different types of surface resonances (SRs) on them and because of their technological importance in growth processes. Also, TM compounds have shown potential in catalysis applications. Trend studies are conducted with respect to both period and group in the periodic table, choosing the substrates ScC, TiC, VC, ZrC, NbC, δ-MoC, TaC, and WC (in NaCl structure) and the adsorbates H, B, C, N, O, F, NH, NH(2), and NH(3). Trends in adsorption strength are explained in terms of surface electronic factors, by correlating the calculated adsorption-energy values with the calculated surface electronic structures. The results are rationalized by use of a concerted-coupling model (CCM), which has previously been applied successfully to the description of adsorption on TiC(111) and TiN(111) surfaces (Ruberto et al 2007 Solid State Commun. 141 48). First, the clean TMC(111) surfaces are characterized by calculating surface energies, surface relaxations, Bader charges, and surface-localized densities of states (DOSs). Detailed comparisons between surface and bulk DOSs reveal the existence of transition-metal localized SRs (TMSRs) in the pseudogap and of several C-localized SRs (CSRs) in the upper valence band on all considered TMC(111) surfaces. The spatial extent and the dangling bond nature of these SRs are supported by real-space analyses of the calculated Kohn-Sham wavefunctions. Then, atomic and molecular adsorption energies, geometries, and charge transfers are presented. An analysis of the adsorbate-induced changes in surface DOSs reveals a presence of both adsorbate-TMSR and adsorbate-CSRs interactions, of varying strengths depending on the surface and the adsorbate. These variations are

  1. A density functional theory study of propylene epoxidation on RuO2(110) surface

    Science.gov (United States)

    Atmaca, Deniz Onay; Düzenli, Derya; Ozbek, M. Olus; Onal, Isik

    2016-11-01

    Propylene epoxidation is investigated on RuO2(110) and oxygen added RuO2-Oot(110) surfaces by periodic DFT computational method. The desired product propylene oxide (PO) as well as the undesired products acetone (AC) or propionaldehyde (PA) form on both surfaces through either surface intermediate oxometallopropylene (OMMP) or direct oxygen insertion mechanisms. On RuO2(110) surface, nucleophilic lattice oxygen at bridge position (Obr) favors the stable surface intermediate mechanism where high energy requirements for forward reactions are demonstrated in our calculations. On RuO2-Oot(110) surface, however, higher reactivity of the electrophilic oxygen (Oot) species lowers the reaction barriers and enables an exothermic reaction path to the direct oxygen insertion for PO production. Therefore, RuO2-Oot surface is expected to show a higher PO rate.

  2. Influence of charge densities of randomly sulfonated polystyrene surfaces on cell attachment and proliferation.

    Science.gov (United States)

    Khatua, Dibyendu; Kwak, Byeongdo; Shin, Kwanwoo; Song, Ju-Myung; Kim, Joon-Seop; Choi, Jai-Hak

    2011-05-01

    Attachment and proliferation of NIH-3T3 fibroblast cells on random polymer surfaces, polystyrene sulfonated acid (PSSAx) with five different degrees of sulfonation (x = 0%, 5%, 10%, 15% and 33%) and on a tissue culture polystyrene (TCPS) surface were studied. The surface properties, wettability and roughness were measured by water-contact angle and atomic force microscopy measurement. The wettability and surface roughness increased with increasing the content of sulfonic acid groups on the surfaces. The number of cells attached on the surface after seeding increased with increasing x and reached to the maximum value on PSSA15. The cell proliferation also increased with increasing x. However, cell proliferation was slow down on PSSA33 in comparison to PSSA10 and PSSA15 surfaces after 48 h culture.

  3. Abnormal changes in the density of thermal neutron flux in biocenoses near the earth surface.

    Science.gov (United States)

    Plotnikova, N V; Smirnov, A N; Kolesnikov, M V; Semenov, D S; Frolov, V A; Lapshin, V B; Syroeshkin, A V

    2007-04-01

    We revealed an increase in the density of thermal neutron flux in forest biocenoses, which was not associated with astrogeophysical events. The maximum spike of this parameter in the biocenosis reached 10,000 n/(sec x m2). Diurnal pattern of the density of thermal neutron flux depended only on the type of biocenosis. The effects of biomodulation of corpuscular radiation for balneology are discussed.

  4. Experimental and theoretical investigations of cadmium diffusion in vacancy-rich Cu(In, Ga)Se2 material

    Science.gov (United States)

    Biderman, Norbert J.

    Copper indium gallium selenide (Cu(In,Ga)Se2 or CIGS) has become a significant topic of research and development for photovoltaic application. CIGS photovoltaic devices have demonstrated record conversion efficiencies however are still below the maximum solar conversion efficiency. Losses in performance have been attributed structural defects including vacancies, doping, grain boundaries, and compositional non-uniformity that are poorly understood and controlled. The cadmium sulfide (CdS) buffer layer plays a critical role in high-performance CIGS photovoltaic devices, serving as the n-type component of the p-n junction formed with the p-type CIGS absorber layer. Cadmium diffusion into the CIGS surface during CdS deposition creates a buried p-n homojunction in addition to the CIGS/CdS p-n heterojunction. CdS is believed to assist in reducing carrier recombination at the CIGS/CdS interface, an important attribute of high-efficiency solar cells. In the present work, cadmium diffusion mechanisms in CIGS are experimentally investigated via secondary ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES). Two cadmium diffusion profiles with distinct Arrhenius diffusion kinetics within a single depth profile of the CIGS thin film are observed with SIMS and AES: an intense first-stage diffusion profile directly below the CIGS/CdS interface and a long-range, second-stage diffusion profile that extends deep into the thin film. Cadmium grain boundary diffusion is also detected in fine-grain CIGS samples. These multiple diffusion processes are quantified in the present work, and the two-stage cadmium diffusion profiles suggest distinctive lattice diffusion mechanisms. Calculations and modeling of general impurity diffusion via interstitial sites in CIGS are also conducted via numerical including cadmium, iron, and zinc. In the numerical simulations, the standard diffusion-reaction kinetics theory is extended to vacancy-rich materials like CIGS that contain 1 at

  5. NO2 interaction with Au atom adsorbed on perfect and defective MgO(100) surfaces: density functional theory calculations.

    Science.gov (United States)

    Ammar, H Y; Eid, Kh M

    2013-10-01

    The interactions of nitrogen dioxide molecule (NO2) on Au atom adsorbed on the surfaces of metal oxide MgO (100) on both anionic (O2-) and defect (F(s) and F(s)(+)-centers) sites have been studied using the Density Functional Theory (DFT) in combination with embedded cluster model. The adsorption energies of NO2 molecule (N-down as well as O-down) on O(-2), F(s) and F(s)(+)-sites were considered. Full optimization for the additive materials and partial optimization for MgO substrate surfaces have been done. The formation energies were evaluated for F(s) and F(s)(+) of MgO substrate surfaces. Some parameters, the Ionization Potential (IP) and electron Affinity (eA), for defect free and defect containing surfaces have been calculated. The interaction properties of NO2 have been analyzed in terms of the adsorption energy, the electron donation (basicity), the elongation of N-O bond length and the charge distribution by using Natural Bond Orbital (NBO) analysis. The adsorption properties were examined by calculation of the Density of State (DOS). The presence of the Au atom increases the surface chemistry of the anionic O(2-)-site of MgO substrate surfaces. On the other hand, the presence of the Au atom decreases the surface chemistry of the F(s) and F(s)(+)-sites of MgO substrate surfaces. Generally, the NO2 molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing F(s) and F(s)(+)-centers.

  6. Job Vacancy Rates in the Firm: An Empirical Analysis

    OpenAIRE

    Harry J. Holzer

    1990-01-01

    In this paper I present some evidence on the magnitudes and determinants of job vacancy rates at the firm level. The data are from a survey of firms in 1980 and 1982, as well as from 1980 Census data on industry and local area characteristics. The results show that overall job vacancy rates are low but there is substantial variation across firms, occupations, industries, and local areas. Unemployment rates, either local or aggregate, have negative effects on vacancy rates while average indust...

  7. The Influence of Surface Morphology of Buffer Layer on the Critical Current Density in YBCO Coated Conductors

    Directory of Open Access Journals (Sweden)

    Jie Xiong

    2013-01-01

    Full Text Available 1 μm-thick YBa2Cu3O7-δ (YBCO films were grown on the Y2O3/yttria stabilized zirconia (YSZ/CeO2 buffer layers with different surface morphologies using direct-current sputtering. The critical current density (Jc value of YBCO was 1.1 MA/cm2 when the root mean square surface roughness (Rrms of the buffer layer was 2.5 nm. As the Rrms of the buffer layer increased to 15 nm, the Jc decreased to 0.3 MA/cm2. X-ray diffraction and scanning electron microscopy showed the strong relevance of the evolution of the structure and surface morphologies of YBCO films with the buffer layer of different Rrms. A model was proposed to explain the influence of surface morphology on the superconducting properties of YBCO films.

  8. A density functional theory study of uranium-doped thoria and uranium adatoms on the major surfaces of thorium dioxide

    Science.gov (United States)

    Shields, Ashley E.; Santos-Carballal, David; de Leeuw, Nora H.

    2016-05-01

    Thorium dioxide is of significant research interest for its use as a nuclear fuel, particularly as part of mixed oxide fuels. We present the results of a density functional theory (DFT) study of uranium-substituted thorium dioxide, where we found that increasing levels of uranium substitution increases the covalent nature of the bonding in the bulk ThO2 crystal. Three low Miller index surfaces have been simulated and we propose the Wulff morphology for a ThO2 particle and STM images for the (100), (110), and (111) surfaces studied in this work. We have also calculated the adsorption of a uranium atom and the U adatom is found to absorb strongly on all three surfaces, with particular preference for the less stable (100) and (110) surfaces, thus providing a route to the incorporation of uranium into a growing thoria particle.

  9. Adsorption of Methanol and Methoxy on Cu(111) Surface: A First-principles Periodic Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    CHEN, Wen-Kai; LIU, Shu-Hong; CAO, Mei-Juan; LU, Chun-Hai; XU, Ying; LI, Jun-Qian

    2006-01-01

    Adsorption of methanol and methoxy at four selected sites (top, bridge, hcp, fcc) on Cu(111) surface has been investigated by density functional theory method at the generalized gradient approximation (GGA) level. The calculation on adsorption energies, geometry and electronic structures, Mulliken charges, and vibrational frequencies of CH3OH and CH3O on clean Cu(111) surface was performed with full-geometry optimization, and compared with the experimental data. The obtained results are in agreement with available experimental data. The most favorite adsorption site for methanol on Cu(111) surface is the top site, where C-O axis is tilted to the surface. Moreover,the preferred adsorption site for methoxy on Cu(111) surface is the fcc site, and it adsorbs in an upright geometry with pseudo-C3v local symmetry. Possible decomposition pathways also have been investigated by transition-state searching methods. Methoxy radical, CH3O, was found to be the decomposition intermediate. Methanol can be adsorbed on the surface with its oxygen atom directly on a Cu atom, and weakly chemisorbed on Cu(111) surface. In contrast to methanol, methoxy is strongly chemisorbed to the surface.

  10. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations

    DEFF Research Database (Denmark)

    Logadottir, Ashildur; Nørskov, Jens Kehlet

    2003-01-01

    In this paper we present DFT studies of all the elementary steps in the synthesis of ammonia from gaseous hydrogen and nitrogen over a ruthenium crystal. The stability and configurations of intermediates in the ammonia synthesis over a Ru(0001) surface have been investigated, both over a flat...... surface and over a stepped surface. The calculations show that the step sites on the surface are much more reactive than the terrace sites. The DFT results are then used to study the mechanism of promotion by alkalies over the Ru(0001) and to determine the rate-determining step in the synthesis of ammonia...

  11. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    Science.gov (United States)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  12. Optimal Density Profile of the Plasma Layer Shielded by a Conducting Surface for the Absorption of Electromagnetic Waves

    Institute of Scientific and Technical Information of China (English)

    王舸; 曹金祥; 宋法伦

    2003-01-01

    Based on the Born approximation, we reduce the approximate analysis solution to the normal and oblique incident electromagnetic wave scattering from the weakly ionized plasma layer shielded by a conducting surface. The solution is closely related to the density profile of the plasma layer. Employing the self-consistent base function, we yield the optimal density profile for the nonuniform plasma layer with the frequencies of incident electromagnetic waves ranging from 4-10 GHz. Numerical studies illustrate the optimal density profile can "survive" wide ranges of the plasma parameters. Different from the validity condition for the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation, the Born approximation is feasible even if the scale length is smaller than the wavelength.Therefore, the Born approximation is universal against the scattering problem from the weakly ionized plasma.

  13. An analysis of the impact of native oxide, surface contamination and material density on total electron yield in the absence of surface charging effects

    Science.gov (United States)

    Iida, Susumu; Ohya, Kaoru; Hirano, Ryoichi; Watanabe, Hidehiro

    2016-10-01

    The effects of the presence of a native oxide film or surface contamination as well as variations in material density on the total electron yield (TEY) of Ru and B4C were assessed in the absence of any surface charging effect. The experimental results were analyzed using semi-empirical Monte Carlo simulations and demonstrated that a native oxide film increased the TEY, and that this effect varied with film thickness. These phenomena were explained based on the effect of the backscattered electrons (BSEs) at the interface between Ru and RuO2, as well as the lower potential barrier of RuO2. Deviations in the material density from the theoretical values were attributed to the film deposition procedure based on fitting simulated TEY curves to experimental results. In the case of B4C, the TEY was enhanced by the presence of a 0.8-nm-thick surface contamination film consisting of oxygenated hydrocarbons. The effect of the low potential barrier of the contamination film was found to be significant, as the density of the B4C was much lower than that of the Ru. Comparing the simulation parameters generated in the present work with Joy's database, it was found that the model and the input parameters used in the simulations were sufficiently accurate.

  14. Influence of Zinc on the Surface Tension, Density and Molar Volume of (Ag-Sneut +Zn Liquid Alloys

    Directory of Open Access Journals (Sweden)

    Gąsior W.

    2016-03-01

    Full Text Available The dilatometric and maximum bubble pressure methods were applied for the measurements of the density and surface tension of liquid (Ag-Sneut +Zn lead-free solders. The experiments were carried out in the temperature range from 515 to 1223 K for the alloys of the zinc concentration equaling 0.01, 0.02, 0.04, 0.05, 0.1 and 0.2 of the mole fraction. It was found that the temperature dependence of both the density and the surface tension could be thought as linear, so they were interpreted by straight line equations. The experimental data of the molar volume of the investigated alloys were described by the polynomial dependent on the composition and temperature.

  15. Holographic fluid with bulk viscosity, perturbation of pressure and energy density at finite cutoff surface in the Einstein gravity

    CERN Document Server

    Hu, Ya-Peng; Wu, Xiao-Ning

    2014-01-01

    Using the gravity/fluid correspondence in our paper, we investigate the holographic fluid at finite cutoff surface in the Einstein gravity. After constructing the first order perturbative solution of the Schwarzschild-AdS black brane solution in the Einstein gravity, we focus on the stress-energy tensor of the dual fluid with transport coefficients at the finite cutoff surface. Besides the pressure and energy density of dual fluid are obtained, the shear viscosity is also obtained. The most important results are that we find that if we adopt different conditions to fix the undetermined parameters contained in the stress-energy tensor of the dual fluid, the pressure and energy density of the dual fluid can be perturbed. Particularly, the bulk viscosity of the dual fluid can also be given in this case.

  16. Surface cleaning and etching of 4H-SiC(0001) using high-density atmospheric pressure hydrogen plasma.

    Science.gov (United States)

    Watanabe, Heiji; Ohmi, Hiromasa; Kakiuchi, Hiroaki; Hosoi, Takuji; Shimura, Takayoshi; Yasutake, Kiyoshi

    2011-04-01

    We propose low-damage and high-efficiency treatment of 4H-SiC(0001) surfaces using atmospheric pressure (AP) hydrogen plasma. Hydrogen radicals generated by the AP plasma was found to effectively remove damaged layers on SiC wafers and improve surface morphology by isotropic etching. Localized high-density AP plasma generated with a cylindrical rotary electrode provides a high etching rate of 1.6 microm/min and yields smooth morphology by eliminating surface corrugation and scratches introduced by wafer slicing and lapping procedures. However, high-rate etching with localized plasma was found to cause an inhomogeneous etching profile depending on the plasma density and re-growth of the poly-Si layer at the downstream due to the decomposition of the vaporized SiH(x) products. On the other hand, for the purpose of achieving moderate etching and ideal cleaning of SiC surfaces, we demonstrated the application of a novel porous carbon electrode to form delocalized and uniform AP plasma over 4 inches in diameter. We obtained a reasonably moderate etching rate of 0.1 microm/min and succeeded in fabricating damage-free SiC surfaces.

  17. Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid-base titration

    Science.gov (United States)

    Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios

    2016-12-01

    Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.

  18. Effects of oxygen vacancies on polarization stability of barium titanate

    Science.gov (United States)

    Wang, Jun; Shen, YaoGen; Song, Fan; Ke, FuJiu; Bai, YiLong; Lu, ChunSheng

    2016-03-01

    Oxygen vacancy, a kind of native point defects in ferroelectric ceramics, usually causes an increase of the dielectric loss. Based on experimental observations, it is believed that all of the oxygen vacancies are an unfavorable factor for energy saving. By using molecular dynamics simulations, we show that the increase of coercive and saturated electric fields is due to the difficulty to switch local polarization near an oxygen vacancy, and so that a ferroelectric device has to sustain the rising consumption of energy. The simulation results also uncover how oxygen vacancies influence ferroelectric properties.

  19. Structures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation.

    Science.gov (United States)

    Tian, Xinxin; Wang, Tao; Yang, Yong; Li, Yong-Wang; Wang, Jianguo; Jiao, Haijun

    2014-12-28

    Spin-polarized density functional theory computations have been carried out to study the stable adsorption configurations of Cun (n = 1-7, 13) on Fe and Fe3C surfaces for understanding the initial stages of copper promotion in catalysis. At low coverage, two-dimensional aggregation is more preferred over dispersion and three-dimensional aggregation on the Fe(110) and Fe(100) surfaces as well as the metallic Fe3C(010) surfaces, while dispersion is more favorable over aggregation on the Fe(111) surface. On the Fe3C(001) and Fe3C(100) surfaces with exposed iron and carbon atoms, the adsorbed Cu atoms prefer dispersion at low coverage, while aggregation along the iron regions at high coverage. On the iron surfaces, the adsorption energies of Cun (n = 2-7) are highest on Fe(111), medium on Fe(100) and lowest on Fe(110). On the Fe3C surfaces, the adsorption energies of Cun (n = 1-3) are highest on Fe3C(100), medium on Fe3C(010) and lowest on Fe3C(001), while, for n = 4-7 and 13, Fe3C(010) has stronger adsorption than Fe3C(100). On the basis of their differences in electronegativity, the adsorbed Cu atoms can oxidize the metallic Fe(110), Fe(100) and Fe3C(010) surfaces and become negatively charged. On the Fe3C(001) and Fe3C(100) surfaces with exposed iron and carbon atoms, the adsorbed Cu atoms interacting with surface carbon atoms are oxidized and positively charged. Unlike the most stable Fe(110) and Fe3C(001) surfaces, where the Fe(110) surface has stronger Cu affinity than the Fe3C(001) surface, which is in agreement with the experimental finding, the less and least stable Fe3C(010) and Fe3C(100) surfaces have stronger Cu affinities than the Fe(110) and Fe(100) surfaces. Since less stable facets are not preferably formed thermodynamically, it is crucial to prepare such surfaces to explore Cu adsorption and promotion, and this provides challenges to surface sciences.

  20. Experimental (electrochemistry) and theoretical (ab initio and density functional theory) studies of hydrogen and sulfide adsorption on palladium (100) surface.

    OpenAIRE

    2001-01-01

    The adsorption of H And S2- species on Pd (100) has been studied with ab initio, density-functional calculations and electrochemical methods. A cluster of five Pd atoms with a frozen geometry described the surface. The computational calculations were performed through the GAUSSIAN94 program, and the basis functions adapted to a pseudo-potential obtained by using the Generator Coordinate Method adapted to the this program. Using the cyclic voltammetry technique through a Model 283 Potentiostat...