WorldWideScience

Sample records for surface uv fluxes

  1. A Grid of Synthetic Stellar UV Fluxes

    CERN Document Server

    Rodríguez-Merino, L H; Buzzoni, A; Bertone, E; Rodriguez-Merino, Lino H.; Chavez, Miguel; Buzzoni, Alberto; Bertone, Emanuele

    2001-01-01

    We present preliminary results of a large project aimed at creating an extended theoretical and observational database of stellar spectra in the ultraviolet wavelength range. This library will consist of IUE spectra at low and high resolution, and a set of LTE and NLTE theoretical fluxes. A first grid of 50 model fluxes with solar metallicity, in the wavelength interval 1000 - 4400 AA, is reported here. Calculations are based on the Kurucz (1993) SYNTHE code. The models span effective temperatures between 10,000 K and 50,000 K, and a surface gravity in the range 2.5 <= log g <= 5.0 dex.

  2. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies

    2009-11-01

    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  3. Dust Absorption and the Cosmic UV Flux Density

    CERN Document Server

    Massarotti, M; Buzzoni, A

    2001-01-01

    We study the evolution of the galaxy UV luminosity density as a function of redshift in the Hubble Deep Field North (HDF-N). We estimate the amount of energy absorbed by dust and hidden from optical observations by analyzing the HDF-N photometric data with the spectral energy distribution fitting method. According to our results, at redshifts 1 < z < 4.5, the global energy observed in the UV rest-frame at lambda=1500 A corresponds to only 7-11% of the stellar energy output, the rest of it being absorbed by dust and re-emitted in the far-IR. Our estimates of the comoving star formation rate density in the universe from the extinction-corrected UV emission are consistent with the recent results obtained with Submillimeter Common-User Bolometer Array (SCUBA) at faint sub-millimeter flux levels.

  4. The Total Solar Irradiance, UV Emission and Magnetic Flux during the Last Solar Cycle Minimum

    Directory of Open Access Journals (Sweden)

    E. E. Benevolenskaya

    2013-01-01

    Full Text Available We have analyzed the total solar irradiance (TSI and the spectral solar irradiance as ultraviolet emission (UV in the wavelength range 115–180 nm, observed with the instruments TIM and SOLSTICE within the framework of SORCE (the solar radiation and climate experiment during the long solar minimum between the 23rd and 24th cycles. The wavelet analysis reveals an increase in the magnetic flux in the latitudinal zone of the sunspot activity, accompanied with an increase in the TSI and UV on the surface rotation timescales of solar activity complexes. In-phase coherent structures between the midlatitude magnetic flux and TSI/UV appear when the long-lived complexes of the solar activity are present. These complexes, which are related to long-lived sources of magnetic fields under the photosphere, are maintained by magnetic fluxes reappearing in the same longitudinal regions. During the deep solar minimum (the period of the absence of sunspots, a coherent structure has been found, in which the phase between the integrated midlatitude magnetic flux is ahead of the total solar irradiance on the timescales of the surface rotation.

  5. The effect of the UV photon flux on the photoelectrocatalytic degradation of endocrine-disrupting alkylphenolic chemicals.

    Science.gov (United States)

    da Silva, Salatiel Wohlmuth; Viegas, Cheila; Ferreira, Jane Zoppas; Rodrigues, Marco Antônio Siqueira; Bernardes, Andréa Moura

    2016-10-01

    The photoelectrocatalytic (PEC) degradation of 4-nonylphenol ethoxylate (NP4EO) using a low, moderate, or high UV photon flux in different treatment times was investigated. The byproducts were verified using gas chromatography with flame ionization detection (GC-FID) and gas chromatography with quadrupole mass analyzer (GC-qMS). The GC results showed that the use of a low (2.89 μmol m(-2)s(-1)) or a high (36.16 μmol m(-2)s(-1)) UV photon flux reaching the anode surface was associated to the production of alcohols and the toxic byproduct nonylphenol (NP), leading to the same degradation pathway. Meanwhile, the use of a moderate UV photon flux (14.19 μmol m(-2)s(-1)) reaching the anode surface did not produce alcohols or the NP toxic byproduct. This study demonstrates that different UV photon fluxes will have an influence in the degradation of NP4EO with or without generation of toxic byproducts. Furthermore, it is concluded that, after the determination of the UV photon flux able to degrade NP4EO without NP formation, the treatment time is essential in removal of NP4EO, since increasing the treatment time of 4 to 10 h, when using the PEC best conditions (moderate UV photon flux), implies in a higher treatment efficiency.

  6. Skyglow effects in UV and visible spectra: Radiative fluxes

    Science.gov (United States)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  7. UV/Ozone Cleaning of Surfaces

    Science.gov (United States)

    1986-05-01

    clean surfaces under UV radiation maintained the surface cleanliness indefinitely. Duting the period 1974-1976, Vig et al.( 3 - 5 ) described a series of...probably no other device of which the performance is so critically dependent upon surface cleanliness . For example, the aging requirement for one 5 MHz...such a device changes the frequency by about one part in 106. The surface cleanliness must therefore be such that the rate of contamination transfer

  8. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  9. Heat Flux Apportionment to Heterogeneous Surfaces Using Flux Footprint Analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Heat flux data collected from the Baiyangdian Heterogeneous Field Experiment were analyzed using the footprint method. High resolution (25 m) Landsat-5 satellite imaging was used to determine the land cover as one of four surface types: farmland, lake, wetland, or village. Data from two observation sites in September 2005 were used. One site (Wangjiazhai) was characterized by highly heterogeneous surfaces in the central area of the Baiyangdian: lake/wetland. The other site (Xiongxian) was on land with more uniform surface cover. An improved Eulerian analytical flux footprint model was used to determine "source areas" of the heat fluxes measured at towers located at each site from surrounding landscapes of mixed surface types.In relative terms results show that wetland and lake areas generally contributed most to the observed heat flux at Wangjiazhai, while farmland contributed most at Xiongxian. Given the areal distribution of surface type contributions, calculations were made to obtain the magnitudes of the heat flux from lake, wetland and farmland to the total observed flux and apportioned contributions of each surface type to the sensible and latent heat fluxes. Results show that on average the sensible heat flux from wetland and farmland were comparable over the diurnal cycle, while the latent heat flux from farmland was somewhat larger by about 30-50 W m-2 during daytime. The latent and sensible fluxes from the lake source in daytime were about 50 W m-2 and 100 W m-2 less, respectively, than from wetland and farmland. The results are judged reasonable and serve to demonstrate the potential for flux apportionment over heterogeneous surfaces.

  10. Rapid Photocatalytic Degradation of Methylene Blue under High Photon Flux UV Irradiation: Characteristics and Comparison with Routine Low Photon Flux

    OpenAIRE

    2012-01-01

    This study examined the photocatalytic degradation efficiency under high UV photon flux (intensity normalized by photon energy) irradiation; the incident UV photon flux was 1 . 7 1 × 1 0 − 6 − 3 . 1 3 × 1 0 − 6 einstein c m − 2   s − 1 made by a super high-intensity UV apparatus. A comparative study between high photon flux photocatalytic process and routine low photon flux photocatalytic process for methylene blue degradation has been made in aqueous solution. The experimental results showed...

  11. Insulator Surface Flashover Due to UV Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Javedani, J B; Houck, T L; Lahowe, D A; Vogtlin, G E; Goerz, D A

    2009-07-27

    The surface of an insulator under vacuum and under electrical charge will flashover when illuminated by a critical dose of ultra-violet (UV) radiation - depending on the insulator size and material, insulator cone angle, the applied voltage and insulator shot-history. A testbed comprised of an excimer laser (KrF, 248 nm, {approx}16 MW, 30 ns FWHM,), a vacuum chamber, and a negative polarity dc high voltage power supply ({le} -60 kV) were assembled to test 1.0 cm thick angled insulators for surface-flashover. Several candidate insulator materials, e.g. High Density Polyethylene (HDPE), Rexolite{reg_sign} 1400, Macor{trademark} and Mycalex, of varying cone angles were tested against UV illumination. Commercial energy meters were used to measure the UV fluence of the pulsed laser beam. In-house designed and fabricated capacitive probes (D-dots, >12 GHz bandwidth) were embedded in the anode electrode underneath the insulator to determine the time of UV arrival and time of flashover. Of the tested insulators, the +45 degree Rexolite insulator showed more resistance to UV for surface flashover; at UV fluence level of less than 13 mJ/cm{sup 2}, it was not possible to induce a flashover for up to -60 kV of DC potential across the insulator's surface. The probes also permitted the electrical charge on the insulator before and after flashover to be inferred. Photon to electron conversion efficiency for the surface of Rexolite insulator was determined from charge-balance equation. In order to understand the physical mechanism leading to flashover, we further experimented with the +45 degree Rexolite insulator by masking portions of the UV beam to illuminate only a section of the insulator surface; (1) the half nearest the cathode and subsequently, (2) the half nearest the anode. The critical UV fluence and time to flashover were measured and the results in each case were then compared with the base case of full-beam illumination. It was discovered that the time for the

  12. Determination of Energy Fluxes Over Agricultural Surfaces

    OpenAIRE

    Josefina Argete

    1994-01-01

    An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass a...

  13. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  14. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  15. YAG laser welding with surface activating flux

    Institute of Scientific and Technical Information of China (English)

    樊丁; 张瑞华; 田中学; 中田一博; 牛尾诚夫

    2003-01-01

    YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.

  16. Dual active surface heat flux gage probe

    Science.gov (United States)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  17. A UV flux constraint on the formation of direct collapse black holes

    NARCIS (Netherlands)

    Latif, M. A.; Bovino, S.; Van Borm, C.; Grassi, T.; Schleicher, D. R. G.; Spaans, M.

    2014-01-01

    The ability of metal-free gas to cool by molecular hydrogen in primordial haloes is strongly associated with the strength of ultraviolet (UV) flux produced by the stellar populations in the first galaxies. Depending on the stellar spectrum, these UV photons can either dissociate H2 molecules directl

  18. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  19. Magnetic Flux Transport at the Solar Surface

    CERN Document Server

    Jiang, J; Cameron, R H; Solanki, S K; Gizon, L; Upton, L

    2014-01-01

    After emerging to the solar surface, the Sun's magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows -- differential rotation, meridional circulation, granular, supergranular flows, and active region inflows -- determine the evolution of the field (now taken to be purely radial). In this paper, we...

  20. Developing an Approach to Model UV Fluxes in Smoke Laden Conditions over Central Asia

    Science.gov (United States)

    Park, Y. H.; Sokolik, I. N.

    2016-12-01

    The UV characteristics of smoke aerosols are valuable inputs to the UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. The wavelength dependence of light absorption by aerosol particles is pronounced throughout the UV spectral region. Also in assumption that smoke consists of BC, OC, and Sulfate, the mass fraction of smoke is different with fire types. The purpose of this study is to introduce an approach to calculate the UV fluxes in the aerosol laden conditions, and investigate the irradiance compared to measured irradiance in the UV spectrum. To compute the spectral optical properties (e.g., the effective single scattering albedo, asymmetry parameter, and aerosol optical thickness) for the selected scenarios, the representative size distribution and the refractive index are selected and used in the Mie code. Smoke aerosol information (e.g. emission injection height, mass concentration of smoke components) from WRF Chem is applied to run tropospheric ultraviolet and visible (TUV) model. Using the TUV model, we make the comparisons between model and measured irradiance in UV spectrum in smoke aerosol conditions. An advantage of this approach and the uncertainty of the evaluation are discussed. Overall, the results of this investigation show that this approach is valuable to estimate UV fluxes in smoke laden conditions.

  1. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  2. A UV flux constraint on the formation of direct collapse black holes

    CERN Document Server

    Latif, M A; Van Borm, C; Grassi, T; Schleicher, D R G; Spaans, M

    2014-01-01

    The ability of metal free gas to cool by molecular hydrogen in primordial halos is strongly associated with the strength of ultraviolet (UV) flux produced by the stellar populations in the first galaxies. Depending on the stellar spectrum, these UV photons can either dissociate $\\rm H_{2}$ molecules directly or indirectly by photo-detachment of $\\rm H^{-}$ as the latter provides the main pathway for $\\rm H_{2}$ formation in the early universe. In this study, we aim to determine the critical strength of the UV flux above which the formation of molecular hydrogen remains suppressed. We presume that such flux is emitted by PopII stars implying atmospheric temperatures of $\\rm 10^{4}$ K. We performed three-dimensional cosmological simulations for five distinct halos and varied the strength of the UV flux below the Lyman limit in units of $\\rm J_{21}$. Our findings show that the value of $\\rm J_{21}^{crit}$ varies from halo to halo and is sensitive to the local thermal conditions of the gas. For the simulated halo...

  3. Surface Magnetic Flux Maintenance In Quiet Sun

    CERN Document Server

    Iida, Y

    2013-01-01

    We investigate surface processes of magnetic patches, namely merging, splitting, emergence, and cancellation, by using an auto-detection technique. We find that merging and splitting are locally predominant in the surface level, while the frequencies of the other two are less by one or two orders of magnitude. The frequency dependences on flux con- tent of surface processes are further investigated. Based on these observations, we discuss a possible whole picture of the maintenance. Our conclusion is that the photospheric magnetic field structure, especially its power-law nature, is maintained by the processes locally in the surface not by the interactions between different altitudes. We suggest a scenario of the flux maintenance as follows: The splitting and merging play a crucial role for the generation of the power-law distribution, not the emergence nor cancellation do. This power-law distribution results in another power-law one of the cancellation with an idea of the random convective transport. The can...

  4. UV surface habitability of the TRAPPIST-1 system

    Science.gov (United States)

    O'Malley-James, Jack T.; Kaltenegger, L.

    2017-07-01

    With the discovery of rocky planets in the temperate habitable zone (HZ) of the close-by cool star TRAPPIST-1, the question of whether such planets could harbour life arises. Habitable planets around red dwarf stars can orbit in radiation environments that can be life-sterilizing. Ultraviolet (UV) flares from these stars are more frequent and intense than solar flares. Additionally, their temperate HZs are closer to the star. Here we present UV surface environment models for TRAPPIST-1's HZ planets and explore the implications for life. TRAPPIST-1 has high X-ray/extreme-ultraviolet activity, placing planetary atmospheres at risk from erosion. If a dense Earth-like atmosphere with a protective ozone layer existed on planets in the HZ of TRAPPIST-1, UV surface environments would be similar to the present-day Earth. However, an eroded or an anoxic atmosphere would allow more UV to reach the surface, making surface environments hostile even to highly UV tolerant terrestrial extremophiles. If future observations detect ozone in the atmospheres of any of the planets in the HZ of TRAPPIST-1, these would be interesting targets for the search for surface life. We anticipate our assay to be a starting point for in-depth exploration of stellar and atmospheric observations of the TRAPPIST-1 planets to constrain their UV surface habitability.

  5. Experimental Evolution of UV-C Radiation Tolerance: Emergence of Adaptive and Non-Adaptive Traits in Escherichia coli Under Differing Flux Regimes

    Science.gov (United States)

    Moffet, A.; Okansinski, A.; Sloan, C.; Grace, J. M.; Paulino-Lima, I. G.; Gentry, D.; Rothschild, L. J.; Camps, M.

    2014-12-01

    High-energy ultraviolet (UV-C) radiation is a significant challenge to life in environments such as high altitude areas, the early Earth, the Martian surface, and space. As UV-C exposure is both a selection pressure and a mutagen, adaptation dynamics in such environments include a high rate of change in both tolerance-related and non-tolerance-related genes, as well changes in linkages between the resulting traits. Determining the relationship between the intensity and duration of the UV-C exposure, mutation rate, and emergence of UV-C resistance will inform our understanding of both the emergence of radiation-related extremophily in natural environments and the optimal strategies for generating artificial extremophiles. In this study, we iteratively exposed an Escherichia colistrain to UV-C radiation of two different fluxes, 3.3 J/m^2/s for 6 seconds and 0.5 J/m^2/s for 40 seconds, with the same overall fluence of 20 J/m^2. After each iteration, cells from each exposure regime were assayed for increased UV-C tolerance as an adaptive trait. The exposed cells carried a plasmid bearing a TEM beta-lactamase gene, which in the absence of antibiotic treatment is a neutral reporter for mutagenesis. Sequencing of this gene allowed us to determine the baseline mutation frequency for each flux. As an additional readout for adaptation, the presence of extended-spectrum beta-lactamase mutations was tested by plating UV-exposed cultures in cefotaxime plates. We observed an increase of approximately one-million-fold in UV-C tolerance over seven iterations; no significant difference between the two fluxes was found. Future work will focus on identifying the genomic changes responsible for the change in UV-C tolerance; determining the mechanisms of the emerged UV-C tolerance; and performing competition experiments between the iteration strains to quantify fitness tradeoffs resulting from UV-C adaptation.

  6. HONO fluxes from soil surfaces: an overview

    Science.gov (United States)

    Wu, Dianming; Sörgel, Matthias; Tamm, Alexandra; Ruckteschler, Nina; Rodriguez-Caballero, Emilio; Cheng, Yafang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Gaseous nitrous acid (HONO) contributes up to 80% of atmospheric hydroxyl (OH) radicals and is also linked to health risks through reactions with tobacco smoke forming carcinogens. Field and modeling results suggested a large unknown HONO source in the troposphere during daytime. By measuring near ground HONO mixing ratio, up to 30% of HONO can be released from forest, rural and urban ground as well as snow surfaces. This source has been proposed to heterogeneous reactions of nitrogen dioxide (NO2) on humic acid surfaces or nitric acid photolysis. Laboratory studies showed that HONO emissions from bulk soil samples can reach 258 ng m-2 s-1 (in term of nitrogen), which corresponding to 1.1 × 1012 molecules cm-2 s-1and ˜ 100 times higher than most of the field studies, as measured by a dynamic chamber system. The potential mechanisms for soil HONO emissions include chemical equilibrium of acid-base reaction and gas-liquid partitioning between soil nitrite and HONO, but the positive correlation of HONO fluxes with pH (largest at neutral and slightly alkaline) points to the dominance of the formation process by ammonia-oxidizing bacteria (AOB). In general soil surface acidity, nitrite concentration and abundance of ammonia-oxidizing bacteria mainly regulate the HONO release from soil. A recent study showed that biological soil crusts in drylands can also emit large quantities of HONO and NO, corresponding to ˜20% of global nitrogen oxide emissions from soils under natural vegetation. Due to large concentrations of microorganisms in biological soil crusts, particularly high HONO and NO emissions were measured after wetting events. Considering large areas of arid and arable lands as well as peatlands, up to 70% of global soils are able to emitting HONO. However, the discrepancy between large soil HONO emissions measured in lab and low contributions of HONO flux from ground surfaces in field as well as the role of microorganisms should be further investigated.

  7. [Relationship between surface UV radiation and air pollution in Beijing].

    Science.gov (United States)

    An, Jun-lin; Wang, Yue-si; Li, Xin; Sun, Yang; Shen, Shuang-he

    2008-04-01

    Based on the data of solar radiation and air pollutants collected in Beijing, the relationship between surface ultraviolet (UV) radiation and the content of air pollutants were analyzed, using the radiative transfer model TUV4.4 (Tropospheric Ultraviolet Visible). The results show that average total ozone content is 329 DU and higher in winter and spring, lower in summer and autumn. The inverse relationship exists between ground level UV radiation and total ozone content. This study also shows that a substantial reduction (up to 50%) in the UV radiation on days with high levels of air pollution. Larger fluctuations are found in UV radiation in the summer. The effects of clouds and air pollution on UV are higher than on total solar radiation, and the reduction in UV is about twice as large as the total solar radiation values. Strong reduction in the UV radiation reaching the ground is associated with the increase of tropospheric ozone and nitrogen oxides in Beijing. The correlation coefficient between ozone concentration and decrease in UV radiation is 0.70 in the early afternoon.

  8. UV spectral filtering by surface structured multilayer mirrors.

    Science.gov (United States)

    Huang, Qiushi; Paardekooper, Daniel Mathijs; Zoethout, Erwin; Medvedev, V V; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; Bijkerk, Fred

    2014-03-01

    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (λ=100-400  nm) and simultaneously a high reflectance of EUV light (λ=13.5  nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but reflective for UV light. The reflected UV is filtered out by blazed diffraction, interference, and absorption. A first demonstration pyramid structure was fabricated on a multilayer by using a straightforward deposition technique. It shows an average suppression of 14 times over the whole UV range and an EUV reflectance of 56.2% at 13.5 nm. This robust scheme can be used as a spectral purity solution for all XUV sources that emit longer wavelength radiation as well.

  9. The Mars aurora: UV detections and in situ electron flux measurements

    Science.gov (United States)

    Gérard, J.-C.; Soret, L.; Lundin, R.; Libert, L.; Stiepen, A.; Radioti, A.; Bertaux, J.-L.; Shematovich, V. I.; Bisikalo, D.

    2015-10-01

    A detailed search through the database of the SPICAM instrument on board Mars Express made it possible to identify 16 signatures of the CO Cameron and CO2+ doublet auroral emissions. These auroral UV signatures are all located in the southern hemisphere in the vicinity of the statistical boundary between open and closed field lines. The energy spectrum of the energetic electrons was simultaneously measured by ASPERA-3/ELS at higher altitude. The UV aurora is generally shifted from the region of enhanced downward electron energy flux by a few to several tens of degrees of latitude, suggesting that precipitation occurs in magnetic cusp like structures along inclined magnetic field lines. The ultraviolet brightness shows no proportionality with the electron flux measured at the spacecraft altitude. The Mars aurora appears as a sporadic short-lived feature. Results of Monte Carlo simulations will be compared with the observed brightness of the Cameron and CO2+ bands.

  10. UV spectral filtering by surface structured multilayer mirrors

    NARCIS (Netherlands)

    Huang, Q.; Paardekooper, Daniel Mathijs; Zoethout, E.; Medvedev, V. V.; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; F. Bijkerk,

    2014-01-01

    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (lambda = 100-400 nm) and simultaneously a high reflectance of EUV light (lambda = 13.5 nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but

  11. UV spectral filtering by surface structured multilayer mirrors

    NARCIS (Netherlands)

    Huang, Q.; Paardekooper, Daniel Mathijs; Zoethout, E.; Medvedev, V. V.; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; F. Bijkerk,

    2014-01-01

    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (lambda = 100-400 nm) and simultaneously a high reflectance of EUV light (lambda = 13.5 nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but ref

  12. Surface Flux Emergence and Coronal Eruption

    Science.gov (United States)

    Fang, Fang

    2016-05-01

    Among various active regions, delta-sunspots of aggregated spots of opposite polarities, are of particular interest due to their high productivity in energetic and recurrent eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact delta-sunspot with a sharp polarity inversion line (PIL). The formation of the delta-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  13. Surface renewal method for estimating sensible heat flux

    African Journals Online (AJOL)

    2008-09-18

    Sep 18, 2008 ... Keywords: surface energy balance, sensible heat flux, latent energy flux, evaporation ... Hill et al., 1992; Thiermann and Grassl, 1992; Green et al.,. 1994; De ...... the time traces over rangeland grass near Ione (California).

  14. Estimating surface fluxes using eddy covariance and numerical ogive optimization

    DEFF Research Database (Denmark)

    Sievers, J.; Papakyriakou, T.; Larsen, Søren Ejling;

    2015-01-01

    Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low-frequency con......Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low...

  15. On the correspondence between surface UV observations and TOMS determinations of surface UV: a potential method for quality evaluating world surface UV observations

    Directory of Open Access Journals (Sweden)

    C. Cornwall

    2003-06-01

    Full Text Available A comparison of erythemally weighted surface UV irradiance observations with similar NASA TOMS surface UV determinations is described. Comparisons are made for two observation periods: the Robertson-Berger (R-B meter period from 1974 to the late 1980s and the current period from 1996 to the present when more sophisticated UVB-1 instruments were used. The more primitive R-B meter observations that comprised the fi rst U.S. UV network are seen to drift downward with respect to those of the TOMS. While the UVB-1 observations did not appear to drift, a substantial bias is noted to exist between the TOMS and the UVB-1 stations collecting observations; the TOMS estimations tend to be higher. A portion of the bias may be attributed to errors in calibration, total ozone, and cosine response of the surface instrumentation. Unaccounted aerosol effects, although not considered to be large in the TOMS estimations, present another source of error. Comparisons are fi rst done for all sky conditions and then for clear sky conditions. The biases typically agree for all sky conditions within the uncertainties of the surface instruments' calibrations, liberally defi ned as ± 5%, implying that the TOMS cloud correction scheme performs reasonably well. Snow cover severely impacts the TOMS observations, giving considerably higher estimations. The biases for clear sky conditions ranged from 15% to 19% with no obvious drifts between the satellite and surface observations. The variation in the biases among stations is within the calibration uncertainties of the instruments, but the absolute bias is unexpectedly large. The standard deviations of the clear sky comparisons among all stations are steady at 4.8% ± 0.7%. A plot of the TOMS/UVB-1 ratio versus TOMS cloud refl ectivity observations is noisy, but qualitatively suggestive of a possible slight increase (~ 5% or greater over the range of clear to overcast skies. The results from these comparisons

  16. Estimating surface fluxes using eddy covariance and numerical ogive optimization

    DEFF Research Database (Denmark)

    Sievers, J.; Papakyriakou, T.; Larsen, Søren Ejling

    2015-01-01

    Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low-frequency con......Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low......-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low...

  17. UV Surface Environment of Earth-like Planets Orbiting FGKM Stars Through Geological Evolution

    CERN Document Server

    Rugheimer, S; Kaltenegger, L; Sasselov, D

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars at the 1AU equivalent distance for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present day levels at 2.0 Gyr ago, 0.8 Gyr ago and modern Earth (Following Kaltenegger et al. 2007). In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth-Sun levels. A pre-biotic Earth orbiting GJ...

  18. Obtaining evapotranspiration and surface energy fluxes with ...

    African Journals Online (AJOL)

    ... energy fluxes with remotely sensed data to improve agricultural water management. ... Remote sensing based energy balance models are presently most suited for ... concern the validation of the used model for spatial distribution analysis of

  19. Photochemical surface modification of PET by excimer UV lamp irradiation

    Science.gov (United States)

    Gao, S. L.; Häßler, R.; Mäder, E.; Bahners, T.; Opwis, K.; Schollmeyer, E.

    2005-09-01

    UV irradiation has interesting potential for the photochemical modification of polymers. In order to study cross-linking effects and/or thin-layer deposition following a treatment in the presence of bi-functional media or in inert atmosphere, irradiation of PET in various atmospheres was performed using a KrCl excimer lamp. Surface properties were investigated by atomic force microscopy, nanoindentation, micro-thermal analysis, and X-ray photo-electron spectroscopy. The studies reveal that surface chemical composition, morphology, adhesion, thermomechanics, and stiffness/modulus are strongly affected by UV irradiation in the presence of bi-functional media. Films treated in octadiene and argon show an increase of surface modulus, much less expansion, and lower soft/melt temperatures, which is an indication of the surface cross-linking effect and a decrease of crystallinity within the near-surface layer. In the case of a diallylphthalate-treated film, depending on the local structure, either a strong decrease of melting temperature or no melting point is found, which is attributed to the irregular cross linking and thickness of the modified layer associated with a decrease of surface modulus. A significant increase of the alkali resistance is found after irradiation, as a result of both wetting and cross-linking effects on the polymer surface.

  20. Cold Pool and Surface Flux Interactions in Different Environments

    Science.gov (United States)

    Grant, L. D.; van den Heever, S. C.

    2015-12-01

    Cold pools play important roles in tropical and midlatitude deep convective initiation and organization through their influence on near-surface kinematic and thermodynamic fields. Because temperature, moisture, and winds are perturbed within cold pools, cold pools can also impact surface sensible and latent heat fluxes. In turn, surface fluxes both within the cold pool and in the environment can modify the characteristics of cold pools and their evolution, with subsequent implications for convective initiation and organization. The two-way interaction between cold pools and surface energy fluxes has not been well studied and is likely to vary according to the environment and surface type. The goal of this study is therefore to investigate the mechanisms by which surface fluxes and cold pools interact in environmental conditions ranging from tropical oceanic to dry continental. This goal will be accomplished using high-resolution (grid spacings as fine as 10 m), idealized, 2D simulations of isolated cold pools; such modeling experiments have proven useful for investigating cold pools and their dynamics in many previous studies. In the proposed experiments, the surface flux formulation, surface type, and environmental conditions will be systematically varied. The impact of surface fluxes on various cold pool characteristics and their evolution, including the buoyancy, maximum vertical velocity, and moisture distribution, will be analyzed and presented. Results suggest that the mechanisms by which surface fluxes and cold pools interact vary substantially with the environment. Additionally, the indirect effects of surface fluxes on turbulent entrainment rates into the cold pool are found to play an important role in cold pool evolution. These results suggest that surface fluxes can impact the timing and manner in which cold pools initiate convection, and that their effects may be important to incorporate into cold pool parameterizations for climate simulations.

  1. Sea surface freshwater flux estimates from GECCO, HOAPS and NCEP

    Science.gov (United States)

    Romanova, V.; Köhl, A.; Stammer, D.; Klepp, C.; Andersson, A.; Bakan, S.

    2010-08-01

    Surface net freshwater flux fields, estimated from the GECCO ocean state estimation effort over the 50 yr period 1951-2001, are compared to purely satellite-based HOAPS freshwater flux estimates and to the NCEP atmospheric re-analysis net surface freshwater flux fields to assess the quality of all flux products and to improve our understanding of the time-mean surface freshwater flux distribution as well as its temporal variability. Surface flux fields are adjusted by the GECCO state estimation procedure together with initial temperature and salinity conditions so that the model simulation becomes consistent with ocean observations. The entirely independent HOAPS net surface freshwater flux fields result from the difference between SSM/I based precipitation estimates and fields of evaporation resulting from a bulk aerodynamic approach using SSM/I data and the Pathfinder SST. All three products agree well on a global scale. However, overall GECCO seems to have moved away from the NCEP/NCAR first guess surface fluxes and is often closer to the HOAPS data set. This holds for the time mean as well as for the seasonal cycle.

  2. Surface fluxes and tropical intraseasonal variability: a reassessment

    CERN Document Server

    Sobel, Adam H; Bellon, Gilles; Frierson, Dargan M

    2008-01-01

    The authors argue for the hypothesis that interactive feedbacks involving surface enthalpy fluxes are important to the dynamics of tropical intraseasonal variability. These include cloud-radiative feedbacks as well as surface turbulent flux feedbacks; the former effectively act to transport enthalpy from the ocean to the atmosphere, as do the latter. Evidence in favor of this hypothesis includes the observed spatial distribution of intraseasonal variance in precipitation and outgoing longwave radiation, the observed relationship between intraseasonal latent heat flux and precipitation anomalies in regions where intraseasonal variability is strong, and sensitivity experiments performed with a small number of general circulation and idealized models. The authors argue that it would be useful to assess the importance of surface fluxes to intraseasonal variability in a larger number of comprehensive numerical models. Such an assessment could provide insight into the relevance of interactive surface fluxes to real...

  3. The measurement of surface heat flux using the Peltier effect

    Energy Technology Data Exchange (ETDEWEB)

    Shewen, E.C. (Pavement Management Systems Ltd., Cambridge, Ontario (Canada)); Hollands, K.G.T., Raithby, G.D. (Univ. of Waterloo, Ontario (Canada))

    1989-08-01

    Calorimetric methods for measuring surface heat flux use Joulean heating to keep the surface isothermal. This limits them to measuring the heat flux of surfaces that are hotter than their surroundings. Presented in this paper is a method whereby reversible Peltier effect heat transfer is used to maintain this isothermality, making it suitable for surfaces that are either hotter or colder than the surroundings. The paper outlines the theory for the method and describes physical models that have been constructed, calibrated, and tested. The tested physical models were found capable of measuring heat fluxes with an absolute accuracy of 1 percent over a wide range of temperature (5-50C) and heat flux (15-500 W/m{sup 2}), while maintaining isothermality to within 0.03 K. A drawback of the method is that it appears to be suited only for measuring the heat flux from thick metallic plates.

  4. First-order chemistry in the surface-flux layer

    DEFF Research Database (Denmark)

    Kristensen, L.; Andersen, C.E.; Ejsing Jørgensen, Hans

    1997-01-01

    process, The analytic flux solution showed a clear deviation from the constant flux, characterizing a conserved scalar in the surface-flux layer. It decreases with height and is reduced by an order of magnitude of the surface flux at a height equal to about the typical mean distance a molecule can travel...... before destruction. The predicted mean concentration profile, however, shows only a small deviation from the logarithmic behavior of a conserved scalar. The solution is consistent with assuming a flux-gradient relationship with a turbulent diffusivity corrected by the Damkohler ratio, the ratio...... of a characteristic turbulent time scale and the scalar mean lifetime. We show that if we use only first-order closure and neglect the effect of the Damkohler ratio on the turbulent diffusivity we obtain another analytic solution for the profiles of the flux and the mean concentration which, from an experimental...

  5. Turbulent particle flux to a perfectly absorbing surface

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pecseli, H.L.

    2005-01-01

    average of the inward particle flux through the surface of this moving sphere. The variation of the flux with the radius in the sphere of interception, as well as the variation with basic flow parameters is described well by a simple model, in particular for radii smaller than a characteristic length...

  6. Wind-Speed—Surface-Heat-Flux Feedback in Dust Devils

    Science.gov (United States)

    Ito, Junshi; Niino, Hiroshi

    2016-06-01

    Strong winds associated with dust devils can induce locally large heat fluxes from the surface, and resulting enhanced buoyancy may further intensify the dust devils. This positive wind—surface-heat-flux feedback is studied using a large-eddy simulation of a convective boundary layer. A comparison of the results with and without the feedback process for the same environment demonstrates the significance of the feedback process for simulated dust devils.

  7. Influence of surface fluxes on polar low development: idealised simulations

    Science.gov (United States)

    Terpstra, Annick; Spengler, Thomas

    2016-04-01

    Polar lows develop during marine cold air outbreaks in regions with relative large sea surface temperature (SST) gradients. These conditions are favourable for large surface sensible and latent heat fluxes. Furthermore the differential heating resulting from SST gradients can provide a source for baroclinicity. We utilise an idealised numerical channel model to gain insight in the role of surface turbulence fluxes on the dynamical evolution of polar lows. The initial setup consists of a baroclinic jet in thermal wind balance with a meridional temperature gradient. To mimic cold air outbreaks we prescribe SST that is higher than the low level surface air temperature, where the SST features a meridional gradient similar to the SST gradient in the Nordic Seas during winter. This setup allows for a systematic investigation of the relative contributions from surface sensible and latent heat fluxes on polar low development by varying the intensity of the initial baroclinicity, moisture, and temperature difference between the SST and low level air temperature. In addition we investigate the relative role of sensible or latent heat fluxes with sensitivity experiments where the individual fluxes are switched off. As moisture is one of the main sources for polar low intensification, we analyse the moisture budget of the idealised simulations in greater detail. Identification of moisture sources and sinks, as well as diagnosing the moisture circulation rate shed further light on the role of surface fluxes on the intensification of polar lows.

  8. Assessment of interplay between UV wavelengths, material surfaces and food residues in open surface hygiene validation

    DEFF Research Database (Denmark)

    Abban, Stephen; Jakobsen, Mogens; Jespersen, Lene

    2014-01-01

    The use of UV-visible radiation for detecting invisible residue on different surfaces as a means of validating cleanliness was investigated. Wavelengths at 365, 395, 435, 445, 470 and 490 nm from a monochromator were used to detect residues of beef, chicken, apple, mango and skim milk. These were......-time hygiene validation of surfaces....

  9. Effective UV surface albedo of seasonally snow-covered lands

    Science.gov (United States)

    Tanskanen, A.; Manninen, T.

    2007-05-01

    At ultraviolet wavelengths the albedo of most natural surfaces is small with the striking exception of snow and ice. Therefore, snow cover is a major challenge for various applications based on radiative transfer modelling. The aim of this work was to determine the characteristic effective UV range surface albedo of various land cover types when covered by snow. First we selected 1 by 1 degree sample regions that met three criteria: the sample region contained dominantly subpixels of only one land cover type according to the 8 km global land cover classification product from the University of Maryland; the average slope of the sample region was less than 2 degrees according to the USGS's HYDRO1K slope data; the sample region had snow cover in March according to the NSIDC Northern Hemisphere weekly snow cover data. Next we generated 1 by 1 degree gridded 360 nm surface albedo data from the Nimbus-7 TOMS Lambertian equivalent reflectivity data, and used them to construct characteristic effective surface albedo distributions for each land cover type. The resulting distributions showed that each land cover type experiences a characteristic range of surface albedo values when covered by snow. The result is explained by the vegetation that extends upward beyond the snow cover and masks the bright snow covered surface.

  10. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  11. Inverse Estimation of Transient Heat Flux to Slab Surface

    Institute of Scientific and Technical Information of China (English)

    CUI Miao; YANG Kai; LIU Yun-fei; GAO Xiao-wei

    2012-01-01

    The transient heat flux was calculated using a model for inverse heat conduction problems based on temper- ature measurements. The unknown heat flux was taken as an optimization variable and solved by minimizing the differences between the calculated temperatures and the measured ones. Several examples were given to show the ef- fectiveness and the accuracy of the inverse algorithm in estimating the transient heat flux to a slab surface. The re sults show that the inverse approach can be applied in the steel industry or in other areas where the target of investi- gation is inaccessible to direct measurements or difficult to be directly modeled.

  12. Observational & modeling analysis of surface heat and moisture fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E. [Florida State Univ., Tallahassee, FL (United States)

    1995-09-01

    An observational and modeling study was conducted to help assess how well current GCMs are predicting surface fluxes under the highly variable cloudiness and flow conditions characteristic of the real atmosphere. The observational data base for the study was obtained from a network of surface flux stations operated during the First ISLSCP Field Experiment (FIFE). The study included examination of a surface-driven secondary circulation in the boundary layer resulting from a persistent cross-site gradient in soil moisture, to demonstrate the sensitivity of boundary layer dynamics to heterogeneous surface fluxes, The performance of a biosphere model in reproducing the measured surface fluxes was evaluated with and without the use of satellite retrieval of three key canopy variables with RMS uncertainties commensurate with those of the measurements themselves. Four sensible heat flux closure schemes currently being used in GCMs were then evaluated against the FIFE observations. Results indicate that the methods by which closure models are calibrated lead to exceedingly large errors when the schemes are applied to variable boundary layer conditions. 4 refs., 2 figs.

  13. Surface area and conductivity of polyaniline synthesized under UV irradiation

    Science.gov (United States)

    Budi, S.; Fitri, E.; Paristiowati, M.; Cahyana, U.; Pusparini, E.; Nasbey, H.; Imaddudin, A.

    2017-02-01

    This paper reports our study on the synthesis of high electrical conductivity and surface area polyaniline using oxidative polymerization under UV light irradiation. The formation of emeraldine structures of polyaniline was revealed by major absorption bands of FTIR (Fourier transform infrared spectroscopy) spectra attributed to C-N stretching, C=C stretching in the benzenoid ring, C=C stretching in the quinoid ring and QNH+B stretching. XRD (X-ray diffractometer) measurements confirmed typical diffraction patterns with a crystallinity of 13% and 16% for polyaniline prepared under non-stirred and stirred reaction, respectively. SEM (Scanning electron microscope) studies showed more uniform morphology of polyaniline was obtained with stirring reaction process compare to those prepared without stirring. Surface analysis using SAA (surface area analyzer) showed that pure polyaniline with the relatively high surface area of ca.28 m2/g was successfully prepared in this work. Based on four point probe measurement, the prepared polyaniline possesses high conductivity which is important in electrode application.

  14. Effects of Crop Growth and Development on Land Surface Fluxes

    Institute of Scientific and Technical Information of China (English)

    CHEN Feng; XIE Zhenghui

    2011-01-01

    In this study, the Crop Estimation through Resource and Environment Synthesis model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS_CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes underwent substantial changes when the leaf area index was changed from 0 to 6 n2 m-2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes.For quantitative evaluation of the effects of crop growth and development on surface fluxes in China, two numerical experiments were conducted over continental China: one by BATS_CERES and one by the original BATS. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crops in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, and root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulations and observations proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes.

  15. Reducing measurement scale mismatch to improve surface energy flux estimation

    Science.gov (United States)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2016-04-01

    Soil moisture importantly controls land surface processes such as energy and water partitioning. A good understanding of these controls is needed especially when recognizing the challenges in providing accurate hyper-resolution hydrometeorological simulations at sub-kilometre scales. Soil moisture controlling factors can, however, differ at distinct scales. In addition, some parameters in land surface models are still often prescribed based on observations obtained at another scale not necessarily employed by such models (e.g., soil properties obtained from lab samples used in regional simulations). To minimize such effects, parameters can be constrained with local data from Eddy-Covariance (EC) towers (i.e., latent and sensible heat fluxes) and Point Scale (PS) soil moisture observations (e.g., TDR). However, measurement scales represented by EC and PS still differ substantially. Here we use the fact that Cosmic-Ray Neutron Sensors (CRNS) estimate soil moisture at horizontal footprint similar to that of EC fluxes to help answer the following question: Does reduced observation scale mismatch yield better soil moisture - surface fluxes representation in land surface models? To answer this question we analysed soil moisture and surface fluxes measurements from twelve COSMOS-Ameriflux sites in the USA characterized by distinct climate, soils and vegetation types. We calibrated model parameters of the Joint UK Land Environment Simulator (JULES) against PS and CRNS soil moisture data, respectively. We analysed the improvement in soil moisture estimation compared to uncalibrated model simulations and then evaluated the degree of improvement in surface fluxes before and after calibration experiments. Preliminary results suggest that a more accurate representation of soil moisture dynamics is achieved when calibrating against observed soil moisture and further improvement obtained with CRNS relative to PS. However, our results also suggest that a more accurate

  16. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  17. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    Science.gov (United States)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  18. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  19. Seasonal variation of surface fluxes and atmospheric interaction in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Z.; Topcu, S. [Istanbul Technical Univ. (Turkey)

    1994-12-31

    A central objective of micrometeorological research is to establish fluxes from a knowledge of the mean temperature, humidity and wind speed profiles. The effect of time and spatial variations of surface heat and momentum fluxes is studied for various geographic regions. These analysis show the principal boundary conditions for micro and meso-scale analysis, air-sea interactions, weather forecasting air pollution, agrometeorology and climate changing models. The fluxes of heat and momentum can be obtained from observed profiles of wind speed and temperature using the similarity relations for the atmospheric surface layer. In recent years, harmonic analysis is a particularly useful tool in studying annual patterns of some meteorological parameters at the field of micrometeorological studies.

  20. Using ARM Data to Evaluate Satellite Surface Solar Flux Retrievals

    Energy Technology Data Exchange (ETDEWEB)

    Hinkelman, L.M.; Stackhouse, P.W.; Young, D.F.; Long, C.N.; Rutan, D.

    2005-03-18

    The accurate, long-term radiometric data collected by Atmospheric Radiation Measurement (ARM) has become essential to the evaluation of surface radiation budget data from satellites. Since the spatial and temporal characteristics of data from these two sources are very different, the comparisons are typically made for long-term average values. While such studies provide a general indication of the quality of satellite flux products, more detailed analysis is required to understand specific retrieval algorithm weaknesses. Here we show how data from the ARM shortwave flux analysis (SFA) value added product (VAP) are being used to assess solar fluxes in the Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB), release 2.5.

  1. Surface Energy Fluxes During Arctic Freeze-Up

    Science.gov (United States)

    Persson, Ola; Blomquist, Byron; Guest, Peter; Fairall, Christopher; Stammerjohn, Sharon; Brooks, Ian; Björk, Göran; Tjernström, Michael; Inoue, Jun

    2016-04-01

    This presentation will use atmospheric and ocean mixed-layer observations from three cruises during the past two years to examine the magnitude and variability of the air-ocean energy fluxes, the sources of the variability, the impact of the fluxes on the ocean mixed-layer thermal structure, and how these surface energy fluxes impact the initial ice formation. The measurements were made during the ACSE, Mirai, and Sea State field programs, the first two obtaining measurements near the ice edge in the Laptev and Chukchi Seas in September 2014 and the last along the advancing ice edge in the Beaufort/Chukchi Sea in October 2015. These time periods include the onset of continuous ocean heat loss, the initial episodic ice formation, and the core period for southward advance of the ice. Frequent atmospheric soundings and continuous remote-sensor measurements provide the vertical kinematic and thermodynamic structure in the lower troposphere. Broadband radiometers, turbulent flux sensors, surface temperature sensors, surface characterization instruments, and basic meteorological instrumentation provide continuous measurements of all surface energy flux terms (shortwave/longwave radiation, sensible/latent turbulent heat fluxes), allowing the quantification of the total energy exchange between the ocean and the atmosphere. Furthermore, each cruise provided continuous measurements of the upper-ocean temperature and salinity and frequent CTD measurements of the ocean temperature and salinity profiles, providing estimates of upper-ocean energy evolution. Various methods for characterizing the ocean surface (open ocean, ice cover, ice thickness, wave state, etc.) allow linking energy changes with changes in ocean surface conditions. Analyses of the September and October conditions show persistent ocean heat loss after Sep. 15 because of the reduction of downwelling shortwave radiation and strong impacts of off-ice airflow on turbulent heat fluxes and downwelling longwave

  2. Surface energy, CO2 fluxes and sea ice

    CSIR Research Space (South Africa)

    Gulev, SK

    2009-09-01

    Full Text Available , there are serious concerns about the recent decline in the number of VOS observations. Closure of global and regional energy balances still cannot be achieved without adjustments to the flux fields and/or the underlying surface meteorological variables. The impact...

  3. Convective boundary layers driven by nonstationary surface heat fluxes

    NARCIS (Netherlands)

    Van Driel, R.; Jonker, H.J.J.

    2011-01-01

    In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change

  4. Blistering on tungsten surface exposed to high flux deuterium plasma

    NARCIS (Netherlands)

    Xu, H.Y.; Liu, W.; Luo, G. N.; Yuan, Y.; Jia, Y. Z.; Fu, B. Q.; De Temmerman, G.

    2016-01-01

    The blistering behaviour of tungsten surfaces exposed to very high fluxes (1–2 × 1024/m2/s) of low energy (38 eV) deuterium plasmas was investigated as a function of ion fluence (0.2–7 × 1026 D/m2) and surface temperature (423–873 K). Blisters were observed under all conditions, especially up to

  5. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    Science.gov (United States)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2016-10-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  6. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    Science.gov (United States)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  7. Surface biomass flux across the coastal Mississippi shelf

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Donaghay, Percy; Yang, Haoping

    2016-05-01

    The exchange of water masses across the Mississippi shelf was used to determine the chlorophyll flux for an eight month period in 2013 through the major Mississippi River discharge period in Spring and Fall. Circulation models (NCOM and HYCOM) and SNPP satellite chlorophyll products were used to monitor the changes in the shelf transport and surface biological impact. The physical and biological response of cross shelf exchange was observed in rapidly changing dynamic movements of river plumes across the shelf as identified by the models and satellite products. Six sections on the shelf identified exchange corridors of transport and biomass chlorophyll flux of surface waters between the coast and offshore waters. During the eight month period, the nearshore waters show high carbon chlorophyll flux, averaging -60 x103 kg chl extending to offshore waters. However, at the outer shelf break, a significant carbon flux was observed moving shoreward onto the shelf from offshore waters, averaging +100 x103 kg chl, which is attributed to the dynamic Mississippi River plume. Results indicate a significant amount of offshore surface waters containing biological carbon can exchange across the shelf, clearly demonstrated through the combination of biological satellite products and physical models.

  8. A map of radon flux at the Australian land surface

    Directory of Open Access Journals (Sweden)

    A. D. Griffiths

    2010-06-01

    Full Text Available A time-dependent map of radon-222 flux density at the Australian land surface has been constructed with a spatial resolution of 0.05° and temporal resolution of one month. Radon flux density was calculated from a simple model utilising data from national gamma-ray aerial surveys, modelled soil moisture, and maps of soil properties. The model was calibrated against a large data set of accumulation-chamber measurements, thereby constraining it with experimental data. A notable application of the map is in atmospheric mixing and transport studies which use radon as a tracer, where it is a clear improvement on the common assumption of uniform radon flux density.

  9. A map of radon flux at the Australian land surface

    Directory of Open Access Journals (Sweden)

    A. D. Griffiths

    2010-09-01

    Full Text Available A time-dependent map of radon-222 flux density at the Australian land surface has been constructed with a spatial resolution of 0.05° and temporal resolution of one month. Radon flux density was calculated from a simple model utilising data from national gamma-ray aerial surveys; modelled soil moisture, available from 1900 in near real-time; and maps of soil properties. The model was calibrated against a data set of accumulation chamber measurements, thereby constraining it with experimental data. A notable application of the map is in atmospheric mixing and transport studies which use radon as a tracer, where it is a clear improvement on the common assumption of uniform radon flux density.

  10. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Randy R. [Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  11. UV surface brightness of galaxies from the local Universe to z ~ 5

    CERN Document Server

    Lerner, Eric J; Scarpa, Riccardo

    2014-01-01

    The Tolman test for surface brightness dimming was originally proposed as a test for the expansion of the Universe. The test, which is independent of the details of the assumed cosmology,is based on comparisons of the surface brightness (SB) of identical objects at different cosmological distances. Claims have been made that the Tolman test provides compelling evidence against a static model for the Universe. In this paper we reconsider this subject by adopting a static Euclidean Universe with a linear Hubble relation at all z (which is not the standard Einstein- de Sitter model),resulting in a relation between flux and luminosity that is virtually indistinguishable from the one used for LCDM models. Based on the analysis of the UV surface brightness of luminous disk galaxies from HUDF and GALEX datasets, reaching from the local Universe to z ~ 5 we show that the surface brightness remains constant as expected in a SEU. A re-analysis of previously-published data used for the Tolman test at lower redshift, whe...

  12. Blistering on tungsten surface exposed to high flux deuterium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.Y., E-mail: donaxu@163.com [Center of Interface Dynamics for Sustainability, Institute of Materials, CAEP, Chengdu 610200 (China); Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yuan, Y. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Jia, Y.Z.; Fu, B.Q. [Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); De Temmerman, G. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Trilateral Euregio Cluster, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); ITER Organization, Route de Vinon-sur-Verdon CS 90046-13067, St Paul Lez Durance Cedex (France)

    2016-04-01

    The blistering behaviour of tungsten surfaces exposed to very high fluxes (1–2 × 10{sup 24}/m{sup 2}/s) of low energy (38 eV) deuterium plasmas was investigated as a function of ion fluence (0.2–7 × 10{sup 26} D/m{sup 2}) and surface temperature (423–873 K). Blisters were observed under all conditions, especially up to temperatures of 873 K. The blister parameters are evaluated with blister size, blister density and surface coverage. The blister size always peaked at less than 0.5 μm and no blister larger than 10 μm is observed even at high fluence. The blister densities are found in high magnitude of 10{sup 6} blisters/m{sup 2}, with the surface coverages lower than 2%. The formation of cracks in the sub-surface region was observed by cross-section imaging. Changes in blister size and shape with fluence and temperature suggest processes of predominantly nucleation and subsequent growth of blisters. The smaller blister size is considered to be caused by a combination of flux-related effects such as enhanced defect formation in the near surface region, reduced deuterium diffusivity and relatively short exposure times.

  13. Blistering on tungsten surface exposed to high flux deuterium plasma

    Science.gov (United States)

    Xu, H. Y.; Liu, W.; Luo, G. N.; Yuan, Y.; Jia, Y. Z.; Fu, B. Q.; De Temmerman, G.

    2016-04-01

    The blistering behaviour of tungsten surfaces exposed to very high fluxes (1-2 × 1024/m2/s) of low energy (38 eV) deuterium plasmas was investigated as a function of ion fluence (0.2-7 × 1026 D/m2) and surface temperature (423-873 K). Blisters were observed under all conditions, especially up to temperatures of 873 K. The blister parameters are evaluated with blister size, blister density and surface coverage. The blister size always peaked at less than 0.5 μm and no blister larger than 10 μm is observed even at high fluence. The blister densities are found in high magnitude of 106 blisters/m2, with the surface coverages lower than 2%. The formation of cracks in the sub-surface region was observed by cross-section imaging. Changes in blister size and shape with fluence and temperature suggest processes of predominantly nucleation and subsequent growth of blisters. The smaller blister size is considered to be caused by a combination of flux-related effects such as enhanced defect formation in the near surface region, reduced deuterium diffusivity and relatively short exposure times.

  14. Sea Spray Effects on Surface Heat and Moisture Fluxes

    Science.gov (United States)

    2016-06-07

    Andreas, E. L., and E. C. Monahan, 1999: The role of whitecap bubbles in air- sea heat and moisture exchange. J. Phys. Oceanogr., in press. ...1 Sea Spray Effects on Surface Heat and Moisture Fluxes Edgar L Andreas U. S. Army Cold Regions Research and Engineering Laboratory 72 Lyme Road...www.crrel.usace.army.mil LONG-TERM GOAL The goal is to investigate, theoretically and through analyzing existing data, the role that sea spray plays in

  15. Impact of solar EUV flux on CO Cameron band and CO2+ UV doublet emissions in the dayglow of Mars

    CERN Document Server

    Jain, Sonal Kumar

    2011-01-01

    This study is aimed at making a calculation about the impact of the two most commonly used solar EUV flux models -- SOLAR2000 (S2K) of \\cite{Tobiska04} and EUVAC model of \\cite{Richards94} -- on photoelectron fluxes, volume emission rates, ion densities and CO Cameron and CO$_2^+$ UV doublet band dayglow emissions on Mars in three solar activity conditions: minimum, moderate, and maximum. Calculated limb intensities profiles are compared with SPICAM/Mars Express and Mariner observations. Analytical yield spectrum (AYS) approach has been used to calculate photoelectron fluxes in Martian upper atmosphere. Densities of prominent ions and CO molecule in excited triplet a$^3\\Pi$ state are calculated using major ion-neutral reactions. Volume emission rates of CO Cameron and CO$_2^+$ UV doublet bands have been calculated for dif{}ferent observations (Viking condition, Mariner and Mars Express SPICAM observations) on Mars. For the low solar activity condition, dayglow intensities calculated using the S2K model are $\\...

  16. Penetrative turbulence associated with mesoscale surface heat flux variations

    CERN Document Server

    Alam, Jahrul M

    2015-01-01

    This article investigates penetrative turbulence in the atmospheric boundary layer. Using a large eddy simulation approach, we study characteristics of the mixed layer with respect to surface heat flux variations in the range from 231.48 W/m$^2$ to 925.92 W/m$^2$, and observe that the surface heterogeneity on a spatial scale of $20$ km leads to downscale turbulent kinetic energy cascade. Coherent fluctuations of mesoscale horizontal wind is observed at 100m above the ground. Such a surface induced temporal oscillations in the horizontal wind suggest a rapid jump in mesocale wind forecasts, which is difficult to parameterize using traditional one-dimensional ensemble-mean models. Although the present work is idealized at a typical scale (20km) of surface heterogeneity, the results help develop effective subgrid scale parameterization schemes for classical weather forecasting mesoscale models.

  17. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  18. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion.

    Science.gov (United States)

    Hwang, Hyeon-Deuk; Kim, Hyun-Joong

    2011-10-15

    UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersions were synthesized by incorporating a hydroxy-terminated perfluoropolyether (PFPE) into the soft segment of polyurethane. The effects of the PFPE content on the UV-curing behavior, physical, surface, thermal properties and refractive index were investigated. The UV-curing behavior was analyzed by photo-differential scanning calorimetry. The surface free energy of the UV-cured film, which is related to the water or oil repellency, was calculated from contact angle measurements using the Lewis acid-base three liquids method. The surface free energy decreased significantly with increasing fluorine concentration because PFPE in the soft segment was tailored to the surface and produced a UV-cured film with a hydrophobic fluorine enriched surface, as confirmed by X-ray photoelectron spectroscopy. With increasing the fluorine content, the refractive indices of UV-cured films decreased. However, the UV-curing rate and final conversion was decreased with increasing contents of PFPE, which resulted in the decrease of the glass transition temperature (T(g)), crosslink density, tensile strength and surface hardness.

  19. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  20. Critical heat flux maxima during boiling crisis on textured surfaces

    Science.gov (United States)

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  1. Evaluation of Surface Cracks Using Magnetic Flux Leakage Testing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The magnetic field distribution characteristics of surface cracks with various widths are discussed based on finite element (FEM) results. The crack depth was 0.20 mm, the width range was from 0.02 to 1.00 mm. The results showed that crack width and lift-off (the distance between surface and sensor) will influence signals. Discussed in this paper is the influence of various lift-off parameters on the peak to peak values of the normal component in magnetic flux leakage testing. The effects can be applied to evaluate surface breaking cracks of different widths and depths.An idea is presented to smooth narrow, sharp crack tips using alternating current (AC) field magnetization.

  2. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry

    CERN Document Server

    Ranjan, Sukrit

    2016-01-01

    The UV environment is a key boundary condition for the origin of life. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multi-layer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is ...

  3. Multispectral UV imaging for surface analysis of MUPS tablets with special focus on the pellet distribution

    DEFF Research Database (Denmark)

    Novikova, Anna; Carstensen, Jens Michael; Rades, Thomas

    2016-01-01

    In the present study the applicability of multispectral UV imaging in combination with multivariate image analysis for surface evaluation of MUPS tablets was investigated with respect to the differentiation of the API pellets from the excipients matrix, estimation of the drug content as well as p...... image analysis is a promising approach for the automatic quality control of MUPS tablets during the manufacturing process.......In the present study the applicability of multispectral UV imaging in combination with multivariate image analysis for surface evaluation of MUPS tablets was investigated with respect to the differentiation of the API pellets from the excipients matrix, estimation of the drug content as well...... on the tablet surface allowed an estimation of the true drug content in the respective MUPS tablet. In addition, the pellet distribution in the MUPS formulations could be estimated by UV image analysis of the tablet surface. In conclusion, this study revealed that UV imaging in combination with multivariate...

  4. Spatial resolution in thin film deposition on silicon surfaces by combining silylation and UV/ozonolysis

    Science.gov (United States)

    Guo, Lei; Zaera, Francisco

    2014-12-01

    A simple procedure has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with hexamethyldisilazane, trichloro(octadecyl)silane, or trimethylchlorosilane was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces (as determined by x-ray photoelectron spectroscopy and ellipsometry). Residual film growth was still detected on the latter if the ALD was carried out at high temperatures (250 °C), because the silylation layer deteriorates under such harsh conditions and forms surface defects that act as nucleation sites for the growth of oxide grains (as identified by electron microscopy and scanning electron microscopy). We believe that the silylation-UV/O3 procedure advanced here could be easily implemented for the patterning of surfaces

  5. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry

    Science.gov (United States)

    Ranjan, Sukrit; Sasselov, Dimitar D.

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of NCO2, meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels.

  6. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  7. Evaluation of surface renewal and flux-variance methods above agricultural and forest surfaces

    Science.gov (United States)

    Fischer, M.; Katul, G. G.; Noormets, A.; Poznikova, G.; Domec, J. C.; Trnka, M.; King, J. S.

    2016-12-01

    Measurements of turbulent surface energy fluxes are of high interest in agriculture and forest research. During last decades, eddy covariance (EC), has been adopted as the most commonly used micrometeorological method for measuring fluxes of greenhouse gases, energy and other scalars at the surface-atmosphere interface. Despite its robustness and accuracy, the costs of EC hinder its deployment at some research experiments and in practice like e.g. for irrigation scheduling. Therefore, testing and development of other cost-effective methods is of high interest. In our study, we tested performance of surface renewal (SR) and flux variance method (FV) for estimates of sensible heat flux density. Surface renewal method is based on the concept of non-random transport of scalars via so-called coherent structures which if accurately identified can be used for the computing of associated flux. Flux variance method predicts the flux from the scalar variance following the surface-layer similarity theory. We tested SR and FV against EC in three types of ecosystem with very distinct aerodynamic properties. First site was represented by agricultural wheat field in the Czech Republic. The second site was a 20-m tall mixed deciduous wetland forest on the coast of North Carolina, USA. The third site was represented by pine-switchgrass intercropping agro-forestry system located in coastal plain of North Carolina, USA. Apart from solving the coherent structures in a SR framework from the structure functions (representing the most common approach), we applied ramp wavelet detection scheme to test the hypothesis that the duration and amplitudes of the coherent structures are normally distributed within the particular 30-minutes time intervals and so just the estimates of their averages is sufficient for the accurate flux determination. Further, we tested whether the orthonormal wavelet thresholding can be used for isolating of the coherent structure scales which are associated with

  8. Interaction of UV-Laser Radiation with Molecular Surface Films.

    Science.gov (United States)

    2014-09-26

    physics of organometallics on surfaces and in the gas phase, and the first observation of surface enhanced chemistry . DI ~(B ~ _ __ _ __ _ ___E_ _ 20...reverse if nee~tary an~d Identify by biock number) FIEL GROP SU GR- Laser, Microelectronics, Surface Chemistry 19 ABSTRACT i CoiEIDue on reverset of...eke chmry and iden NlY by bloch numberg -he surface chemistry of Laser Photodeposition has been explored. The findings include the photodissociation

  9. Extensive reduction of surface UV radiation since 1750 in world's populated regions

    Directory of Open Access Journals (Sweden)

    M. M. Kvalevåg

    2009-10-01

    Full Text Available Human activity influences a wide range of components that affect the surface UV radiation levels, among them ozone at high latitudes. We calculate the effect of human-induced changes in the surface erythemally weighted ultra-violet radiation (UV-E since 1750. We compare results from a radiative transfer model to surface UV-E radiation for year 2000 derived by satellite observations (from Total Ozone Mapping Spectroradiometer and to ground based measurements at 14 sites. The model correlates well with the observations; the correlation coefficients are 0.97 and 0.98 for satellite and ground based measurements, respectively. In addition to the effect of changes in ozone, we also investigate the effect of changes in SO2, NO2, the direct and indirect effects of aerosols, albedo changes and aviation-induced contrails and cirrus. The results show an increase of surface UV-E in polar regions, most strongly in the Southern Hemisphere. Furthermore, our study also shows an extensive surface UV-E reduction over most land areas; a reduction up to 20% since 1750 is found in some industrialized regions. This reduction in UV-E over the industrial period is particularly large in highly populated regions.

  10. Impact of UV/ozone surface treatment on AlGaN/GaN HEMTs

    Institute of Scientific and Technical Information of China (English)

    Yuan Tingting; Liu Xinyu; Zheng Yingkui; Li Chengzhan; Wei Ke; Liu Guoguo

    2009-01-01

    Surface treatment plays an important role in the process of making high performance AIGaN/GaN HEMTs. A clean surface is critical for enhancing device performance and long-term reliability. By experiment-ing with different surface treatment methods, we find that using UV/ozone treatment significantly influences the electrical properties of Ohmic contacts and Schottky contacts. According to these experimental phenomena and X-ray photoelectron spectroscopy surface analysis results, the effect of the UV/ozone treatment and the reason that it influences the Ohmic/Schottky contact characteristics of A1GaN/GaN HEMTs is investigated.

  11. Barents Sea heat – transport, storage and surface fluxes

    Directory of Open Access Journals (Sweden)

    Ø. Skagseth

    2009-07-01

    Full Text Available Sensitivity of the Barents Sea to variation in ocean heat transport and surface fluxes is explored using a 1-D column model. Mean monthly ocean transport and atmospheric forcing are synthesised and force model results that reproduce the observed winter convection and surface warming and freshening well. Model results are compared to existing estimates of the ocean to air heat fluxes and horizontally averaged profiles for the southern and northern Barents Sea. Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production. The northern Barents Sea, the major part of the area, receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss in the north, the balance is achieved by long wave loss removing most of the solar heating, and the model also suggests a positive sensible heat gain. During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. Despite large changes the Barents Sea heat loss remains robust, the temperature adjusts, and the yearly cycle remains. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport probably leads to a spreading of warm water further north.

  12. Comparative assessment of surface fluxes from different sources using probability density distributions

    Science.gov (United States)

    Gulev, Sergey; Tilinina, Natalia; Belyaev, Konstantin

    2015-04-01

    Surface turbulent heat fluxes from modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA) as well as from satellite products (SEAFLUX, IFREMER, HOAPS) were intercompared using framework of probability distributions for sensible and latent heat fluxes. For approximation of probability distributions and estimation of extreme flux values Modified Fisher-Tippett (MFT) distribution has been used. Besides mean flux values, consideration is given to the comparative analysis of (i) parameters of the MFT probability density functions (scale and location), (ii) extreme flux values corresponding high order percentiles of fluxes (e.g. 99th and higher) and (iii) fractional contribution of extreme surface flux events in the total surface turbulent fluxes integrated over months and seasons. The latter was estimated using both fractional distribution derived from MFT and empirical estimates based upon occurrence histograms. The strongest differences in the parameters of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the western boundary current extension regions and high latitudes, while the highest differences in the fractional contributions of surface fluxes may occur in mid ocean regions being closely associated with atmospheric synoptic dynamics. Generally, satellite surface flux products demonstrate relatively stronger extreme fluxes compared to reanalyses, even in the Northern Hemisphere midlatitudes where data assimilation input in reanalyses is quite dense compared to the Southern Ocean regions.

  13. Surface energy balance closure in an arid region: role of soil and heat flux

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Jacobs, A.F.G.; Holtslag, A.A.M.; Berkowicz, S.M.

    2004-01-01

    The large soil heat fluxes in hot desert regions are very important in energy balance studies. Surface energy balance (SEB) observations, however, reveal that there is an imbalance in Surface flux measurements and that it is difficult to isolate those flux measurements causing the imbalance errors.

  14. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  15. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  16. A Variational Method for Estimating Near-Surface Soil Moisture and Surface Heat Fluxes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; ZHANG Weidong; QIU Chongjian

    2007-01-01

    A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, I.e., the differences of wind, potential temperature, and specific humidity gradient between observations and those computed by the profile method, the difference of latent heat fluxes calculated using the ECMWF land surface evaporation scheme and the profile method, and a weak constraint for surface energy balance. By using an optimal algorithm, the best solutions are found. The method is tested with the data collected at Feixi Station (31.41°N, 117.08°E) supported by the China Heavy Rain Experiment and Study (HeRES) during 7-30 June 2001. The results show that estimated near-surface soil moistures can quickly respond to rainfall, and their temporal variation is consistent with that of measurements of average soil moisture over 15-cm top depth with a maximum error less than 0.03 m3 m-3. The surface heat fluxes calculated by this method are consistent with those by the Bowen ratio method, but at the same time it can overcome the instability problem occurring in the Bowen ratio method when the latter is about -1. Meanwhile, the variational method is more accurate than the profile method in terms of satisfying the surface energy balance. The sensitivity tests also show that the variational method is the most stable one among the three methods.

  17. Mechanistic study for immobilization of cysteine-labeled oligopeptides on UV-activated surfaces.

    Science.gov (United States)

    Ong, Lian Hao; Ding, Xiaokang; Yang, Kun-Lin

    2014-10-01

    In this study, we report immobilization of cysteine-labeled oligopeptides on UV activated surfaces decorated with N,N-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP). Our result shows that cysteine group, regardless of its position in the oligopeptide, is essential for successful immobilization of oligopeptide on the UV-activated surface. A possible reaction mechanism is nucleophilic addition of thiolates to surface aldehyde groups generated during UV activation. By using this technique, we are able to incorporate anchoring points into oligopeptides through cysteine residues. Furthermore, immobilized oligopeptides on the UV-activated surface is very stable even under harsh washing conditions. Finally, we show that an HPQ-containing oligopeptide can be immobilized on the UV-activated surface, but the final surface density and its ability to bind streptavidin are affected by the position of cysteine and HPQ. An oligopeptide with a cysteine at the N-terminus and a HPQ motif at the C-terminus gives the highest binding signal in the streptavidin-binding assay. This result is potentially useful for the development of functional oligopeptide microarrays for detecting target protein molecules.

  18. Litter dominates surface fluxes of carbonyl sulfide in a Californian oak woodland

    OpenAIRE

    Sun, Wu; Maseyk, Kadmiel; Lett, Céline; Seibt, Ulli

    2016-01-01

    Carbonyl sulfide (COS) is a promising tracer for partitioning terrestrial photosynthesis and respiration from net carbon fluxes, based on its daytime co-uptake alongside CO2 through leaf stomata. Because ecosystem COS fluxes are the sum of plant and soil fluxes, using COS as a photosynthesis tracer requires accurate knowledge of soil COS fluxes. At an oak woodland in Southern California, we monitored below-canopy surface (soil + litter) COS and CO2 fluxes for 40 days using chambers and laser ...

  19. Directional uv photoemission from (100) and (110) molybdenum surfaces

    DEFF Research Database (Denmark)

    Cinti, R. C.; Khoury, E. Al; Chakraverty, B. K.;

    1976-01-01

    A study of the (100) and (110) molybdenum surfaces by directional photoemission spectroscopy is presented. Energy distribution spectra formed by photoelectrons emitted normal to the surfaces have been measured for photon energies between 10.2 and 21.2 eV. The results are discussed in terms of cal...

  20. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  1. The influence of the spatial resolution of topographic input data on the accuracy of 3-D UV actinic flux and irradiance calculations

    Directory of Open Access Journals (Sweden)

    P. Weihs

    2011-10-01

    Full Text Available The aim of this study was to investigate the influence of the spatial resolution of a digital elevation map (DEM on the three-dimensional (3-D radiative transfer performance for both spectral ultraviolet (UV irradiance and actinic flux at 305 nm. Model simulations were performed for clear sky conditions for three case studies: the first and second one using three sites in the Innsbruck area and the third one using three sites at the Sonnblick Observatory and surrounding area. It was found that DEM resolution may change the altitude at some locations by up to 500 m, resulting in changes in the sky obscured by the horizon of up to 15%. The geographical distribution of UV irradiance and actinic flux shows that with larger pixel size, uncertainties in UV irradiance and actinic flux determination of up to 100% are possible. These large changes in incident irradiance and actinic flux with changing pixel size are strongly connected to shading effects. The effect of DEM pixel size on irradiance and actinic flux was studied at the six locations, and it was found that significant increases in irradiance and actinic flux with increasing DEM pixel size occurred at one valley location at high solar zenith angles in the Innsbruck area as well as for one steep valley location in the Sonnblick area. This increase in irradiance and actinic flux with increasing DEM resolution is most likely to be connected to shading effects affecting the reflections from the surroundings.

  2. Observed and modeled surface eddy heat fluxes in the eastern Nordic Seas

    OpenAIRE

    Isachsen, P.E. .; Koszalka, Inga Monika; LaCasce, J. H.

    2012-01-01

    Large-scale budget calculations and numerical model process studies suggest that lateral eddy heat fluxes have an important cooling effect on the Norwegian Atlantic Current (NwAC) as it flows through the Nordic Seas. But observational estimates of such fluxes have been lacking. Here, wintertime surface eddy heat fluxes in the eastern Nordic Seas are estimated from surface drifter data, satellite data and an eddy-permitting numerical model. Maps of the eddy heat flux divergence suggest advecti...

  3. Influence of the surface structure on the filtration performance of UV-modified PES membranes

    DEFF Research Database (Denmark)

    Kæselev, Bozena Alicja; Kingshott, P.; Jonsson, Gunnar Eigil

    2002-01-01

    Poly (ether sulfone) (PES) 50 kDa membranes were surface modified by irradiation with UV light (254 nm) in the presence of N-vinyl-2-pyrrolidine (NVP), 2-acrylamidoglycolic acid monohydrate (AAG) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AAP). The surfaces of the modified membranes were c...

  4. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    with uncertainties for same flux values resulting from climatological ship observations. For net satellite derived heat flux varying from 0 to 300 w/m sup(2) the uncertainties were found to be of the order of 50-90 w/m sup(2). For the same range of flux values...

  5. UV light induced surface modification of HDPE films with bioactive compounds

    Energy Technology Data Exchange (ETDEWEB)

    Daniloska, Vesna; Blazevska-Gilev, Jadranka; Dimova, Vesna [Faculty of Technology and Metallurgy, University St. Cyril and Methodius, Ruger Boskovic 16, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Fajgar, Radek [Institute of Chemical Process Fundamentals, ASCR, Rozvojova 135, Prague 6-Suchdol (Czech Republic); Tomovska, Radmila, E-mail: radmila_tomovska@ehu.es [Institute for Polymer Materials, POLYMAT, Centro Joxe Mari Korta, University of the Basque Country, P.O. Box 1072, 20080 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2010-01-15

    The development of different techniques for surface modification of polymers becomes popular in a last decade. These techniques preserve useful bulk polymer properties unchanged, while the activation of the polymer surface offers more possibilities for polymer applications. In this work, a new, one-step method for bio-activation of HDPE (high density polyethylene) surface by UV irradiation is presented. HDPE films coupled with selected active compound and a photoinitiator was treated by UV lamp, emitting light at 254 nm. For surface functionalization of HDPE films, the following compounds were employed: 2-aminopyridine (AP), N{sup 1}-(2-pyridylaminomethyl)-1,2,4-triazole (TA) and benzocaine (BC). The influence of irradiation time on the extent of surface changes was investigated. The modified polymer surfaces were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, scanning electron microscopy (SEM) and contact angle measurements, demonstrating successful functionalization of HDPE surface.

  6. Surface roughness length dynamic over several different surfaces and its effects on modeling fluxes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Roughness length and zero-plane displacement over three typical surfaces were calculated iteratively by least-square method, which are Yucheng Experimental Station for agriculture surfaces, Qianyanzhou Experimental Station for complex and undulant surfaces, and Changbai Mountains Experimental Station for forest surfaces. On the basis of roughness length dynamic, the effects of roughness length dynamic on fluxes were analyzed with SEBS model. The results indicate that, aerodynamic roughness length changes with vegetation conditions (such as vegetation height, LAI), wind speed, friction velocity and some other factors. In Yucheng and Changbai Mountains Experimental Station, aerodynamic roughness length over the fetch of flux tower changes with vegetation height and LAI obviously, that is, with the increase of LAI, roughness length increases to the peak value firstly, and then decreases. In Qianyanzhou Experimental Station, LAI changes slightly, so the relationship between roughness length and LAI is not obvious. The aerodynamic roughness length of Yucheng and Changbai Mountains Experimental Station changes slightly with wind direction, while aerodynamic roughness length of Qianyanzhou Experimental Station changes obviously with wind direction. The reason for that is the terrain in Yucheng and Changbai Mountains Experimental Station is relatively flat, while in Qianyanzhou Experimental Station the terrain is very undulant and heterogeneous. With the increase of wind speed, aerodynamic roughness length of Yucheng Experimental Station changes slightly, while it decreases obviously in Qianyanzhou Experimental Station and Changbai Mountains Experimental Station. Roughness length dynamic takes great effects on fluxes calculation, and the effects are analyzed by SEBS model. By comparing 1 day averaged roughness length in Yucheng Experimental Station and 5 day averaged roughness length of Qianyanzhou and Changbai Mountains Experimental Station with roughness length

  7. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pacha-Olivenza, Miguel A. [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Gallardo-Moreno, Amparo M., E-mail: amparogm@unex.es [Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Vadillo-Rodríguez, Virginia; González-Martín, M. Luisa [Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Pérez-Giraldo, Ciro [Department of Microbiology, Faculty of Medicine, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Galván, Juan C. [National Centre for Metallurgical Research (CENIM-CSIC), Av. Gregorio del Amo 8, 28040-Madrid (Spain)

    2013-04-01

    This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron–hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott–Schottky plots. EIS and Mott–Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24 h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections. Highlights: ► Bactericidal response of UV-treated Ti6Al4V is explained through electrochemistry. ► There is an increase in the superficial electrical conduction after UV-treatment. ► Higher corrosion currents for UV-treated against non-UV-treated samples are shown. ► EIS shows the recuperation on irradiated samples in agreement with microbial tests.

  8. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Directory of Open Access Journals (Sweden)

    M. Hess

    2008-02-01

    Full Text Available A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. Thus the method allows calculating the impact of UV radiation on biological systems, such as for instance the human skin or eye, in any natural or artificial environment. The method, a combination of radiation models, is explained and the correctness of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection at snow by more than 10%. In contrast in a street canyon the irradiance on a horizontal surface is reduced down to 30% in shadow and to about 75% for a position in the sun.

  9. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Science.gov (United States)

    Hess, M.; Koepke, P.

    2008-07-01

    A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  10. Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

    Science.gov (United States)

    Zhao, W.; Yang, Zh.; Chen, Zh.; Liu, J.; Wang, W. Ch.; Zheng, W. Yu.

    2016-05-01

    This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370-1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15-55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.

  11. Estimation of Turbulent Fluxes Using the Flux-Variance Method over an Alpine Meadow Surface in the Eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    WANG Shaoying; ZHANG Yu; L(U) Shihua; LIU Heping; SHANG Lunyu

    2013-01-01

    The flux-variance similarity relation and the vertical transfer of scalars exhibit dissimilarity over different types of surfaces,resulting in different parameterization approaches of relative transport efficiency among scalars to estimate turbulent fluxes using the flux-variance method.We investigated these issues using eddycovariance measurements over an open,homogeneous and flat grassland in the eastern Tibetan Plateau in summer under intermediate hydrological conditions during rainy season.In unstable conditions,the temperature,water vapor,and CO2 followed the flux-variance similarity relation,but did not show in precisely the same way due to different roles (active or passive) of these scalars.Similarity constants of temperature,water vapor and CO2 were found to be 1.12,1.19 and 1.17,respectively.Heat transportation was more efficient than water vapor and CO2.Based on the estimated sensible heat flux,five parameterization methods of relative transport efficiency of heat to water vapor and CO2 were examined to estimate latent heat and CO2 fluxes.The strategy of local determination of flux-variance similarity relation is recommended for the estimation of latent heat and CO2 fluxes.This approach is better for representing the averaged relative transport efficiency,and technically easier to apply,compared to other more complex ones.

  12. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat

  13. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat

  14. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    Science.gov (United States)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  15. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Gabriela Albara Lando

    2017-07-01

    Full Text Available Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR, scanning electron microscopy (SEM, and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  16. Seasonal Spatial Patterns of Surface Water Temperature, Surface Heat Fluxes and Meteorological Forcing Over Lake Geneva

    Science.gov (United States)

    Irani Rahaghi, A.; Lemmin, U.; Bouffard, D.; Riffler, M.; Wunderle, S.; Barry, D. A.

    2015-12-01

    In many lakes, surface heat flux (SHF) is the most important component controlling the lake's energy content. Accurate methods for the determination of SHF are valuable for water management, and for use in hydrological and meteorological models. Large lakes, not surprisingly, are subject to spatially and temporally varying meteorological conditions, and hence SHF. Here, we report on an investigation for estimating the SHF of a large European lake, Lake Geneva. We evaluated several bulk formulas to estimate Lake Geneva's SHF based on different data sources. A total of 64 different surface heat flux models were realized using existing representations for different heat flux components. Data sources to run the models included meteorological data (from an operational numerical weather prediction model, COSMO-2) and lake surface water temperature (LSWT, from satellite imagery). Models were calibrated at two points in the lake for which regular depth profiles of temperature are available, and which enabled computation of the total heat content variation. The latter, computed for 03.2008-12.2012, was the metric used to rank the different models. The best calibrated model was then selected to calculate the spatial distribution of SHF. Analysis of the model results shows that evaporative and convective heat fluxes are the dominant terms controlling the spatial pattern of SHF. The former is significant in all seasons while the latter plays a role only in fall and winter. Meteorological observations illustrate that wind-sheltering, and to some extent relative humidity variability, are the main reasons for the observed large-scale spatial variability. In addition, both modeling and satellite observations indicate that, on average, the eastern part of the lake is warmer than the western part, with a greater temperature contrast in spring and summer than in fall and winter whereas the SHF spatial splitting is stronger in fall and winter. This is mainly due to negative heat flux

  17. Comparative assessment of surface fluxes from different sources: a framework based on probability distributions

    Science.gov (United States)

    Gulev, S.

    2015-12-01

    Surface turbulent heat fluxes from modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA) as well as from satellite products (SEAFLUX, IFREMER, HOAPS) were intercompared using framework of probability distributions for sensible and latent heat fluxes. For approximation of probability distributions and estimation of extreme flux values Modified Fisher-Tippett (MFT) distribution has been used. Besides mean flux values, consideration is given to the comparative analysis of (i) parameters of the MFT probability density functions (scale and location), (ii) extreme flux values corresponding high order percentiles of fluxes (e.g. 99th and higher) and (iii) fractional contribution of extreme surface flux events in the total surface turbulent fluxes integrated over months and seasons. The latter was estimated using both fractional distribution derived from MFT and empirical estimates based upon occurrence histograms. The strongest differences in the parameters of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the western boundary current extension regions and high latitudes, while the highest differences in the fractional contributions of surface fluxes may occur in mid ocean regions being closely associated with atmospheric synoptic dynamics. Generally, satellite surface flux products demonstrate relatively stronger extreme fluxes compared to reanalyses, even in the Northern Hemisphere midlatitudes where data assimilation input in reanalyses is quite dense compared to the Southern Ocean regions. Our assessment also discriminated different reanalyses and satellite products with respect to their ability to quantify the role of extreme surface turbulent fluxes in forming ocean heat release in different regions.

  18. Preparation and UV-light Absorption Property of Oleic Acid Surface Modified ZnO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    KANG Jong-hun; GUO Yu-peng; CHEN Yue; WANG Zi-chen

    2011-01-01

    Syntheses of zince oxide(ZnO) nanoparticles by direct precipitation and surface modification with oleic acid were reported. ZnO nanoparticles were characterized via X-ray diffractometry(XRD), transmission electron microscopy(TEM), infrared spectroscopy(IR) and UV-Vis spectroscopy. The prepared ZnO nanoparticles were nearly spherical and highly crystalline with an average size of 29 nm. In addition, high UV-light absorption properties of oleic acid surface modified ZnO nanoparticles were successfully obtained for a dispersion of ZnO nanoparticles in ethanol.

  19. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  20. The influence of surface topography of UV coated and printed cardboard on the print gloss

    Directory of Open Access Journals (Sweden)

    Igor Karlović

    2010-09-01

    Full Text Available The incident light on the printed surface undergoes through several processes of scattering, absorbtion and reflectiondepending on the surface topography and structure of the material. The specular part of the surface reflection is commonlyattributed as the geometric component of the reflection, and when measured is associated with specular gloss.The diffuse part of the surface reflection contains the chromatic part of the reflection and is commonly calculatedthrough colorimetric values. Using UV coatings as surface enhacement materials which affect the optical propertiesof coated surfaces and final appearance of the printed product forms new surface topography over the existingone. We have investigated the influence of three different amounts of UV glossy and matte oveprint coating on themeasured specular gloss of printed cardboard samples. The different amount of coatings on the printed samples wereachived using three different screen stencils of 180 threads/cm, 150 threads/cm and 120 threads/cm thread count.The cardboard samples were analysed with AFM and SEM microscopes to obtain surface topography and roughnessvalues which were evaluated with the measured geometric values speficied as instrumental gloss. The surfaceswith a specific amount of UV coatings showed a new formed topography which influences the reflection of light.The changes in topography were evaluated through surface roughness parameters which showed a decline of surfaceroughness with tht additional ammount of glossy and matte coatings. The obtained and calculated correlations showthere is a high correlation between coating ammount and surface roughness change and gloss for the glossy UVcoating. The results for the matte UV coatings showed lower correlation for the gloss and surface roughness.

  1. Communication: Global flux surface hopping in Liouville space

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linjun, E-mail: linjun.wang@usc.edu, E-mail: prezhdo@usc.edu; Prezhdo, Oleg V., E-mail: linjun.wang@usc.edu, E-mail: prezhdo@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062 (United States); Sifain, Andrew E. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States)

    2015-11-21

    Recent years have witnessed substantial progress in the surface hopping (SH) formulation of non-adiabatic molecular dynamics. A generalization of the traditional fewest switches SH (FSSH), global flux SH (GFSH) utilizes the gross population flow between states to derive SH probabilities. The Liouville space formulation of FSSH puts state populations and coherences on equal footing, by shifting the hopping dynamics from Hilbert to Liouville space. Both ideas have shown superior results relative to the standard FSSH in Hilbert space, which has been the most popular approach over the past two and a half decades. By merging the two ideas, we develop GFSH in Liouville space. The new method is nearly as straightforward as the standard FSSH, and carries comparable computational expense. Tested with a representative super-exchange model, it gives the best performance among all existing techniques in the FSSH series. The obtained numerical results match almost perfectly the exact quantum mechanical solutions. Moreover, the results are nearly invariant under the choice of a basis state representation for SH, in contrast to the earlier techniques which exhibit notable basis set dependence. Unique to the developed approach, this property is particularly encouraging, because exact quantum dynamics is representation independent. GFSH in Liouville space significantly improves accuracy and applicability of SH for a broad range of chemical and physical processes.

  2. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  3. Field-testing of a Passive Surface Water Flux Meter for the Direct Measurement of Water and Solute Mass Fluxes

    Science.gov (United States)

    Atkinson, E. C.; Jawitz, J. W.; Annable, M. D.; Klammler, H.; Hatfield, K.

    2007-05-01

    The measurement of water and solute mass discharges in surface water flow systems is a fundamental hydrologic task for ecological and economic decision making. However, due to the extensive monetary, labor, and time costs of traditional monitoring devices and methods, many water quality monitoring programs lack the resources necessary to provide comprehensive descriptions of surface water impairments. The Passive Surface Water Flux Meter (PSFM) is a recently developed passive sampling device that measures water and solute fluxes within flowing surface water bodies. Devoid of mechanical components and power supply requirements, the relatively low-maintenance, low-cost design of the PSFM gives it considerable potential as a tool for extensive, large-scale surface water quality characterization and monitoring. The novelty of the PSFM extends to its direct mass-based approach to solute flux measurement, as compared to conventional, indirect concentration-based approaches. During this field-testing campaign, the PSFM was deployed in flowing surface water bodies of north- central Florida. The device contained a dual-packed porous media cartridge that performed simultaneous ion exchange to determine phosphate mass flux and equilibrium tracer desorption to determine water flux within the stream. The PSFM demonstrated accurate measurement of steady-state water and phosphate mass fluxes to within 15% over a range of stream velocities, solute concentrations, and deployment durations. The PSFM design described here was found to perform well in steady-flow conditions. The device was also shown to be effective under transient conditions of limited variability, but full transient testing remains for future work.

  4. Estimating local atmosphere-surface fluxes using eddy covariance and numerical Ogive optimization

    DEFF Research Database (Denmark)

    Sievers, Jakob; Papakyriakou, Tim; Larsen, Søren

    2014-01-01

    Estimating representative surface-fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modeling efforts, low-frequency cont......Estimating representative surface-fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modeling efforts, low......-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low...

  5. The UV Surface Environment on Young Planets: Implications for Prebiotic Chemistry & Life on Other Worlds

    Science.gov (United States)

    Ranjan, Sukrit; Simons Collaboration on the Origin of Life, Harvard Origins of Life Initiative

    2017-01-01

    Understanding the origin of life (abiogenesis) on Earth is key to understanding how it might start elsewhere. Recent laboratory studies suggest UV light may have played a critical role in the synthesis of molecules relevant to abiogenesis (prebiotic chemistry), such as RNA. I show that UV light interacts with prebiotic chemistry in ways that may be sensitive to the spectral shape and overall amplitude of irradiation. I use radiative transfer models to constrain the UV environment on early Earth (3.9 Ga). I find that the surface UV is insensitive to much of the considerable uncertainty in the atmospheric state, enabling me to constrain the UV environment for prebiotic chemistry on early Earth. Some authors have suggested Mars as a venue for prebiotic chemistry. Therefore, I explore plausible UV spectral fluences on Mars at 3.9 Ga. I find that the early Martian UV environment is comparable to Earth’s under conventional assumptions about the atmosphere. However, if the atmosphere was dusty or SO2 levels were high, UV fluence would have been strongly suppressed. Intriguingly, despite overall attenuation of UV fluence, SO2 preferentially attenuates destructive FUV radiation over prebiotically-useful NUV radiation, meaning high-SO2 epochs may have been more clement for the origin of life. Better measurements of the spectral dependence of prebiotic photoprocesses are required to constrain this hypothesis. Finally, I calculate the UV fluence on planets orbiting M-dwarfs. I find that UV irradiation on such planets is low compared to Earth. Laboratory studies are required to understand whether prebiotic photoprocesses that worked on Earth can function on low-UV M-dwarf planets. My work 1) provides initial conditions for laboratory studies of prebiotic chemistry, 2) constrains the inhabitability of Mars and planets orbiting M-dwarfs, and 3) demonstrates the need for laboratory studies to characterize the impact of variations in irradiating intensity and spectral shape on

  6. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling

    2010-01-01

    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...

  7. Estimating surface fluxes using eddy covariance and numerical ogive optimization

    DEFF Research Database (Denmark)

    Sievers, J.; Papakyriakou, T.; Larsen, Søren Ejling;

    2015-01-01

    -frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low...

  8. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  9. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector;

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from the ...

  10. Intermittency and energy fluxes in the surface layer of free-surface turbulence

    CERN Document Server

    Troiani, Guido; Olivieri, Angelo; Casciola, Carlo Massimo

    2016-01-01

    By analyzing hot-wire velocity data taken in an open channel flow, an unambiguous definition of surface-layer thickness is here provided in terms of the cross-over scale between backward and forward energy fluxes. It is shown that the turbulence in the surface layer does not conform to the classical description of two-dimensional turbulence, since the direct energy cascade persists at scales smaller than the cross-over scale, comparable with the distance from the free-surface. The multifractal analysis of the one-dimensional surrogate of the turbulent kinetic energy dissipation rate in terms of generalized dimensions and singularity spectrum indicates that intermittency is strongly depleted in the surface layer, as shown by the singularity spectrum contracted to a single point. The combination of intermittency indicators and energy fluxes allowed to identify the specific nature of the surface layer as alternative to classical paradigms of three- and two-dimensional turbulence which cannot fully capture the gl...

  11. Translational symmetry of high order tokamak flux surface shaping in gyrokinetics

    CERN Document Server

    Ball, Justin; Barnes, Michael

    2015-01-01

    A particular translational symmetry of the local nonlinear $\\delta f$ gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally translating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. With this geometry specification we find that, when performing an expansion in large flux surface shaping mode number, the governing equations of gyrokinetics are symmetric in the poloidal translation of the high order shaping effects. This allows us to take the fluxes from a single configuration and calculate the fluxes in any configuration that can be produced by translating the large mode number shaping effects. This creates a distinction between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror symmetry, which ...

  12. One-step surface selective modification of UV-curable hard coatings with photochemical metal organics

    Science.gov (United States)

    Lee, Yoon Kwang; Park, Chang-Sun; Park, Hyung-Ho

    2016-12-01

    An organic-inorganic hybrid bi-layer film with a selective distribution of inorganic components was synthesized from a one-pot process of UV irradiation. A photochemical metal oxide precursor (Sr 2-ethylhexanoate) varying from 0 to 4 wt% was dispersed in UV-curable coating materials. Under UV exposure, the bi-layer started reacting simultaneously but at different rates due to differences in the two UV-condensable components' reactivity. The effects of the dispersed inorganic component on the surface morphology and mechanical properties were investigated by atomic force microscopy and nanoindentation, respectively. The reaction process and rates were studied from linkage change using Fourier transform infrared spectroscopy at various UV exposure times (0-30 min). The elemental distribution and the interface on the coating layer were characterized by X-ray photoelectron spectroscopy from Ar etching, revealing continuous and gradual composition changes in depth. The results showed that a flattened and surface-selectively hardened SrO containing the coating film could be obtained by this simple process. Consequently, a small ratio of photochemical metal oxide reinforced the organic hard coating film's mechanical properties through the formation of an effective SrO top layer.

  13. Characterization of energy flux partitioning in urban environments: links with surface seasonal properties

    OpenAIRE

    Loridan, Thomas; C. S. B. Grimmond

    2012-01-01

    A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attribute...

  14. Predicting Solar Cycle 25 using Surface Flux Transport Model

    Science.gov (United States)

    Imada, Shinsuke; Iijima, Haruhisa; Hotta, Hideyuki; Shiota, Daiko; Kusano, Kanya

    2017-08-01

    It is thought that the longer-term variations of the solar activity may affect the Earth’s climate. Therefore, predicting the next solar cycle is crucial for the forecast of the “solar-terrestrial environment”. To build prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar activity is intensively discussed. Because we can determine the polar magnetic field at the solar minimum roughly 3 years before the next solar maximum, we may discuss the next solar cycle 3years before. Further, the longer term (~5 years) prediction might be achieved by estimating the polar magnetic field with the Surface Flux Transport (SFT) model. Now, we are developing a prediction scheme by SFT model as a part of the PSTEP (Project for Solar-Terrestrial Environment Prediction) and adapting to the Cycle 25 prediction. The predicted polar field strength of Cycle 24/25 minimum is several tens of percent smaller than Cycle 23/24 minimum. The result suggests that the amplitude of Cycle 25 is weaker than the current cycle. We also try to obtain the meridional flow, differential rotation, and turbulent diffusivity from recent modern observations (Hinode and Solar Dynamics Observatory). These parameters will be used in the SFT models to predict the polar magnetic fields strength at the solar minimum. In this presentation, we will explain the outline of our strategy to predict the next solar cycle and discuss the initial results for Cycle 25 prediction.

  15. Calibration of a distributed hydrology and land surface model using energy flux measurements

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  16. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture observations using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan C.; van de Giesen, Nick

    2016-11-01

    Surface heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology, and climate change studies, but in situ observations are costly and difficult. It has been demonstrated that surface heat fluxes can be estimated from assimilation of land surface temperature (LST). One approach is to estimate a neutral bulk heat transfer coefficient (CHN) to scale the sum of turbulent heat fluxes, and an evaporative fraction (EF) that represents the partitioning between fluxes. Here the newly developed particle batch smoother (PBS) is implemented. The PBS makes no assumptions about the prior distributions and is therefore well-suited for non-Gaussian processes. It is also particularly advantageous for parameter estimation by tracking the entire prior distribution of parameters using Monte Carlo sampling. To improve the flux estimation on wet or densely vegetated surfaces, a simple soil moisture scheme is introduced to further constrain EF, and soil moisture observations are assimilated simultaneously. This methodology is implemented with the FIFE 1987 and 1988 data sets. Validation against observed fluxes indicates that assimilating LST using the PBS significantly improves the flux estimates at both daily and half-hourly timescales. When soil moisture is assimilated, the estimated EFs become more accurate, particularly when the surface heat flux partitioning is energy-limited. The feasibility of extending the methodology to use remote sensing observations is tested by limiting the number of LST observations. Results show that flux estimates are greatly improved after assimilating soil moisture, particularly when LST observations are sparse.

  17. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Rolsted, M. M. M.

    2014-01-01

    The terrestrial vegetation is a source of UV radiation-induced aerobic methane (CH4) release to the atmosphere. Hitherto pectin, a plant structural component, has been considered as the most likely precursor for this CH4 release. However, most of the leaf pectin is situated below the surface wax...... layer, and UV transmittance of the cuticle differs among plant species. In some species, the cuticle effectively absorbs and/or reflects UV radiation. Thus, pectin may not necessarily contribute substantially to the UV radiation-induced CH4 emission measured at surface level in all species. Here, we...... investigated the potential of the leaf surface wax itself as a source of UV radiationinduced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation...

  18. How do uncertainties in NCEP R2 and CFSR surface fluxes impact tropical ocean simulations?

    Science.gov (United States)

    Wen, Caihong; Xue, Yan; Kumar, Arun; Behringer, David; Yu, Lisan

    2017-01-01

    NCEP/DOE reanalysis (R2) and Climate Forecast System Reanalysis (CFSR) surface fluxes are widely used by the research community to understand surface flux climate variability, and to drive ocean models as surface forcings. However, large discrepancies exist between these two products, including (1) stronger trade winds in CFSR than in R2 over the tropical Pacific prior 2000; (2) excessive net surface heat fluxes into ocean in CFSR than in R2 with an increase in difference after 2000. The goals of this study are to examine the sensitivity of ocean simulations to discrepancies between CFSR and R2 surface fluxes, and to assess the fidelity of the two products. A set of experiments, where an ocean model was driven by a combination of surface flux components from R2 and CFSR, were carried out. The model simulations were contrasted to identify sensitivity to different component of the surface fluxes in R2 and CFSR. The accuracy of the model simulations was validated against the tropical moorings data, altimetry SSH and SST reanalysis products. Sensitivity of ocean simulations showed that temperature bias difference in the upper 100 m is mostly sensitive to the differences in surface heat fluxes, while depth of 20 °C (D20) bias difference is mainly determined by the discrepancies in momentum fluxes. D20 simulations with CFSR winds agree with observation well in the western equatorial Pacific prior 2000, but have large negative bias similar to those with R2 winds after 2000, partly because easterly winds over the central Pacific were underestimated in both CFSR and R2. On the other hand, the observed temperature variability is well reproduced in the tropical Pacific by simulations with both R2 and CFSR fluxes. Relative to the R2 fluxes, the CFSR fluxes improve simulation of interannual variability in all three tropical oceans to a varying degree. The improvement in the tropical Atlantic is most significant and is largely attributed to differences in surface winds.

  19. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  20. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  1. Determination of Surface Fluxes Using a Bowen Ratio System

    African Journals Online (AJOL)

    USER

    Physics Department, University of Ghana, Legon, Ghana ... The Bowen ratio was measured as the ratio of air temperature and vapour ..... appear greater than sensible heat flux imply that Bowen ratio is low and, hence, there is water available.

  2. Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations

    CERN Document Server

    Cheung, M C M; Tarbell, T D; Title, A M

    2008-01-01

    We present results from numerical modeling of emerging flux regions on the solar surface. The modeling was carried out by means of 3D radiative MHD simulations of the rise of buoyant magnetic flux tubes through the convection zone and into the photosphere. Due to the strong stratification of the convection zone, the rise results in a lateral expansion of the tube into a magnetic sheet, which acts as a reservoir for small-scale flux emergence events at the scale of granulation. The interaction of the convective downflows and the rising magnetic flux undulates it to form serpentine field lines emerging into the photosphere. Observational characteristics including the pattern of emerging flux regions, the cancellation of surface flux and associated high speed downflows, the convective collapse of photospheric flux tubes, the appearance of anomalous darkenings, the formation of bright points and the possible existence of transient kilogauss horizontal fields are discussed in the context of new observations from t...

  3. Chemical imaging and solid state analysis at compact surfaces using UV imaging

    DEFF Research Database (Denmark)

    Wu, Jian X.; Rehder, Sönke; van den Berg, Frans

    2014-01-01

    Fast non-destructive multi-wavelength UV imaging together with multivariate image analysis was utilized to visualize distribution of chemical components and their solid state form at compact surfaces. Amorphous and crystalline solid forms of the antidiabetic compound glibenclamide...... and excipients in a non-invasive way, as well as mapping the glibenclamide solid state form. An exploratory data analysis supported the critical evaluation of the mapping results and the selection of model parameters for the chemical mapping. The present study demonstrated that the multi-wavelength UV imaging...

  4. Interaction and UV-Stability of Various Organic Capping Agents on the Surface of Anatase Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohsin Raza

    2014-04-01

    Full Text Available Anatase nanoparticles synthesized by the sol-gel method were surface-functionalized with long alkyl chain coupling agents as compatibilizers for a nonpolar environment, containing different anchor groups for surface interaction namely phosphonate (dodecyl phosphonate, carboxylate (dodecanoic acid, sulfate (sodium dodecyl sulphate, and amine (dodecyl amine. It was shown that the surface of the nanoparticles can be functionalized with the various surface groups applying similar reaction conditions. The kind of surface interaction was analyzed applying FTIR spectroscopy. The phosphonate and the carboxylate groups interact with the surface via quite strong covalent or coordinative interactions, respectively. The sulfate and amine based coupling agents on the other hand exhibit electrostatic interactions. UV stability studies of the surface bound groups revealed different degradation mechanisms for the various functionalities and moreover showed that phosphonates are the most stable among the investigated surface capping groups.

  5. Thermal response to the surface heat flux in a macrotidal coastal region (Nuevo Gulf, Argentina)

    Science.gov (United States)

    Rivas, Andrés L.; Pisoni, Juan P.; Dellatorre, Fernando G.

    2016-07-01

    At mid-latitudes, sea water temperature shows a strong seasonal cycle forced by the incident surface heat flux. As depth decreases, the heat flux incidence is damped by the horizontal flux, which prevents the indefinite growth of the seasonal temperature range. In the present work, cross-shore transport in the west coast of Nuevo Gulf (Argentina) was analyzed. Processes tending to cool the coastal waters in summer and to warm the coastal waters in winter, were identified through temperature measurements, surface heat flux and tidal height. The simplified models proposed here provide a feedback mechanism that links changes in surface heat flux with changes in the horizontal heat flux during both seasons. On shorter time scales, tide produces significant variations in the height of the water column, therefore influencing temperature fluctuations and the direction of the horizontal flow.

  6. A physically-based hybrid framework to estimate daily-mean surface fluxes over complex terrain

    Science.gov (United States)

    Huang, Hsin-Yuan; Hall, Alex

    2016-06-01

    In this study we developed and examined a hybrid modeling approach integrating physically-based equations and statistical downscaling to estimate fine-scale daily-mean surface turbulent fluxes (i.e., sensible and latent heat fluxes) for a region of southern California that is extensively covered by varied vegetation types over a complex terrain. The selection of model predictors is guided by physical parameterizations of surface flux used in land surface models and analysis showing net shortwave radiation that is a major source of variability in the surface energy budget. Through a structure of multivariable regression processes with an application of near-surface wind estimates from a previous study, we successfully reproduce dynamically-downscaled 3 km resolution surface flux data. The overall error in our estimates is less than 20 % for both sensible and latent heat fluxes, while slightly larger errors are seen in high-altitude regions. The major sources of error in estimates include the limited information provided in coarse reanalysis data, the accuracy of near-surface wind estimates, and an ignorance of the nonlinear diurnal cycle of surface fluxes when using daily-mean data. However, with reasonable and acceptable errors, this hybrid modeling approach provides promising, fine-scale products of surface fluxes that are much more accurate than reanalysis data, without performing intensive dynamical simulations.

  7. Comparison of surface fluxes and boundary-layer measurements at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Stone, Robert; Crepinsek, Sara; Albee, Robert; Makshtas, Alexander; Kustov, Vasily; Repina, Irina; Artamonov, Arseniy

    2014-05-01

    Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. This study analyzes and discusses variability of surface fluxes and basic meteorological parameters based on measurements made at several long-term research observatories near the coast of the Arctic Ocean located in USA (Barrow), Canada (Eureka), and Russia (Tiksi). Tower-based eddy covariance and solar radiation measurements provide a long-term near continuous temporal record of hourly average mass and energy fluxes respectively. The turbulent fluxes of the momentum, sensible heat, water vapor, and carbon dioxide are supported by additional atmospheric and surface/snow/permafrost measurements (mean wind speed, air temperature and humidity, upwelling and downwelling short-wave and long-wave atmospheric and surface radiation, snow depth, surface albedo, soil heat flux, active layer temperature profiles etc.) In this study we compare annual cycles of surface fluxes including solar radiation and other ancillary data to describe four seasons in the Arctic including spring onset of melt and fall onset of snow accumulation. Particular interest is a transition through freezing point, i.e. during transition from winter to spring and from summer to fall, when the carbon dioxide and/or water vapor turbulent fluxes change their direction. According to our data, in a summer period observed temporal variability of the carbon dioxide flux was generally in anti-phase with water vapor flux (downward CO2 flux and upward H2O flux). On average the turbulent flux of carbon

  8. Remote sensing for oil products on water surface via fluorescence induced by UV filaments

    Science.gov (United States)

    Sunchugasheva, E. S.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Geints, Yu. E.; Zemlyanov, A. A.

    2016-10-01

    Remote monitoring of water pollution, namely thin films of oil or oil products on water surface, can be carried out by laser fluorimetry. The pollutants fluorescence during its interaction with ultrashort UV laser pulses was experimentally studied in this paper. The laser pulses power was considered in a wide range of values including the filamentation regime. We compared fluorescence stimulated by femtosecond UV laser pulses with two central wavelengths (248 and 372 nm) for detection of crude oil and the following oil products: oil VM-5, oil 5W-40 and solvent WhiteSpirit. It was shown that shorter UV wavelengths are more suitable for fluorescence excitation. The spatial resolution of the fluorescence localization was no worse than 30 cm. We discuss techniques of high intensity emission delivery to the remote target as post-filamentation channels and multifilamentation beam propagation regime as well experimentally and numerically.

  9. IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Jarquin, J.; Fernandez-Guasti, M.; Haro-Poniatowski, E.; Hernandez-Pozos, J.L. [Laboratorio de Optica Cuantica, Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico D.F. (Mexico)

    2005-08-01

    We irradiated silicon (100) wafers with IR (1064 nm) and UV (355 nm) nanosecond laser pulses with energy densities within the ablation regime and used scanning electron microscopy to analyze the morphological changes induced on the Si surface. The changes in the wafer morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however if the experiment is carried out in O{sub 2} the final result is an array of microcones. We also employed a random scanning technique to irradiate the silicon wafer over large areas, in this case the microstructure patterns consist of a ''semi-ordered'' array of micron-sized cones. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Karapetian, Emil [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Aguilar, Guillermo [Department of Biomedical Engineering, University of California, Irvine, CA (United States); Kimel, Sol [Beckman Laser Institute, University of California, Irvine, CA (United States); Lavernia, Enrique J [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Nelson, J Stuart [Department of Biomedical Engineering, University of California, Irvine, CA (United States)

    2003-01-07

    Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux. (note)

  11. Exchange flux of total gaseous mercury between air and natural water surfaces in summer season

    Institute of Scientific and Technical Information of China (English)

    FENG; Xinbin; (冯新斌); Jonas; Sommar; Katarina; Gordfeldt; Oliver; Lindqvist

    2002-01-01

    The exchanges of mercury between surface and air are of significance in the biogeochemical cycling of Hg in the environment, but there are still few reliable data on air/surface exchange in aquatic systems. Field measurement campaigns over seawater surface at Kristineberg Marine Research Station (KMRS) and over Hovg?rds?n River surface at Knobesholm in southwestern Sweden were conducted to measure mercury flux using a dynamic flux chamber technique coupled with automatic mercury vapor-phase analyzers. Both sites show net emissions during summer time. Mercury fluxes measured over both river and seawater surfaces exhibit a consistently diurnal pattern with maximum fluxes during the daytime period and minimum fluxes during the nighttime period. At freshwater site, mercury flux is strongly correlated with the intensity of net solar radiation, and negatively correlated with relative humidity. A typical exponential relationship between mercury flux and water temperature was observed at freshwater measurement site. At seawater site, a strong correlation between mercury flux and intensity of solar radiation was obtained. The driving force of mercury emission from water surface to air is the super-saturation of dissolved gaseous mercury in aqueous phase.

  12. Characteristics of UV-MicroO3 Reactor and Its Application to Microcystins Degradation during Surface Water Treatment

    Directory of Open Access Journals (Sweden)

    Guangcan Zhu

    2015-01-01

    Full Text Available The UV-ozone (UV-O3 process is not widely applied in wastewater and potable water treatment partly for the relatively high cost since complicated UV radiation and ozone generating systems are utilized. The UV-microozone (UV-microO3, a new advanced process that can solve the abovementioned problems, was introduced in this study. The effects of air flux, air pressure, and air humidity on generation and concentration of O3 in UV-microO3 reactor were investigated. The utilization of this UV-microO3 reactor in microcystins (MCs degradation was also carried out. Experimental results indicated that the optimum air flux in the reactor equipped with 37 mm diameter quartz tube was determined to be 18∼25 L/h for efficient O3 generation. The air pressure and humidity in UV-microO3 reactor should be low enough in order to get optimum O3 output. Moreover, microcystin-RR, YR, and LR (MC-RR, MC-YR, and MC-LR could be degraded effectively by UV-microO3 process. The degradation of different MCs was characterized by first-order reaction kinetics. The pseudofirst-order kinetic constants for MC-RR, MC-YR, and MC-LR degradation were 0.0093, 0.0215, and 0.0286 min−1, respectively. Glucose had no influence on MC degradation through UV-microO3. The UV-microO3 process is hence recommended as a suitable advanced treatment method for dissolved MCs degradation.

  13. UV irradiation induced switching of surface charge polarity on pyrene modified Si nanowires

    Science.gov (United States)

    Zhao, Wen-Chao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-06-01

    It has been widely recognized that surface charge in nanomaterials can significantly affect their electrical properties. In this letter, we demonstrate that polarity of surface charge on pyrene modified silicon nanowires (SiNWs) can be switched by illumination of UV light. Unlike the reported conversion method via changing the surrounding pH value, switching process reported here takes place in real-time and does not require introduction of any other chemical species. Mechanisms of the surface charge polarity switching and potential applications of such systems were discussed.

  14. Poly(ethylene terephthalate) surface modification by deep UV (172 nm) irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhengmao Zhua; Michael J. Kelley

    2004-09-01

    The prospects of obtaining desired surface-mediated characteristics while retaining bulk-mediated physical properties and avoiding potential environmental issues with wet chemical technology lends considerable appeal to photochemical approaches. We investigated the response of poly(ethylene terephthalate) to 172 nm UV from a xenon excimer lamp in the absence of oxygen, using XPS, ToF/SIMS, and AFM. The main effects are increasing loss of a C=O moiety and carboxylic acid production without effect on topography up to a total fluence of 16 J/cm2. Above this level no further change in surface chemistry was evident, but surfaces became rougher, suggesting the onset of etching.

  15. Improving Surface Flux Parameterizations in the Navy’s Coastal Ocean Atmosphere Prediction System

    Science.gov (United States)

    2016-06-07

    Improving Surface Flux Parameterizations in the Navy’s Coastal Ocean Atmosphere Prediction System Shouping Wang Naval Research Laboratory...this research is to improve the surface flux and boundary layer turbulence parameteri- zation in COAMPS®1 for low- and high-wind events over the...processes and developing new parameterizations for the surface and boundary layer turbulence mixing. We pro- vide real-time COAMPS weather forecasts

  16. UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water

    Science.gov (United States)

    Jones, Lisa A.; Worobo, Randy W.

    2014-01-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253

  17. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    Science.gov (United States)

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.

  18. Surface Degradation and Nanoparticle Release of a Commercial Nanosilica/Polyurethane Coating Under UV Exposure.

    Science.gov (United States)

    Jacobs, Deborah S; Huang, Sin-Ru; Cheng, Yu-Lun; Rabb, Savelas A; Gorham, Justin M; Krommenhoek, Peter J; Yu, Lee L; Nguyen, Tinh; Sung, Lipiin

    2016-09-01

    Many coatings properties such as mechanical, electrical, and ultra violet (UV) resistance are greatly enhanced by the addition of nanoparticles, which can potentially increase the use of nanocoatings for many outdoor applications. However, because polymers used in all coatings are susceptible to degradation by weathering, nanoparticles in a coating may be brought to the surface and released into the environment during the life cycle of a nanocoating. Therefore, the goal of this study is to investigate the process and mechanism of surface degradation and potential particle release from a commercial nanosilica/polyurethane coating under accelerated UV exposure. Recent research at the National Institute of Standards and Technology (NIST) has shown that the matrix in an epoxy nanocomposite undergoes photodegradation during exposure to UV radiation, resulting in surface accumulation of nanoparticles and subsequent release from the composite. In this study, specimens of a commercial polyurethane (PU) coating, to which a 5 mass % surface treated silica nanoparticles solution was added, were exposed to well-controlled, accelerated UV environments. The nanocoating surface morphological changes and surface accumulation of nanoparticles as a function of UV exposure were measured, along with chemical change and mass loss using a variety of techniques. Particles from the surface of the coating were collected using a simulated rain process developed at NIST, and the collected runoff specimens were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to determine the amount of silicon released from the nanocoatings. The results demonstrated that the added silica nanoparticle solution decreased the photodegradation rate (i.e., stabilization) of the commercial PU nanocoating. Although the degradation was slower than the previous nanosilica epoxy model system, the degradation of the PU matrix resulted in accumulation of silica nanoparticles on the

  19. Correcting method of eddy covariance fluxes over non-flat surfaces and its application in ChinaFLUX

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhilin; SUN Xiaomin; ZHOU Yanlian; XU Jinping; YUAN Guofu; ZHANG Renhua

    2005-01-01

    Although Eddy Covariance (EC) technique is one of the best methods for estimating the energy and mass exchanges between underlying surface and atmosphere in micrometeorology, errors and uncertainties still exist without necessary corrections. In this paper, we will focus on the effect of coordinate system on the eddy fluxes. Based on the data observed over four sites (one farmland site, one grassland site and two forest sites), the effects of three coordinate system transforming methods (Double Rotation-DR, Triple Rotation-TR and Planar Fit-PF)on the turbulent fluxes are analyzed. It shows that (i) the corrected fluxes are more or less than the uncorrected fluxes, which is related mainly to the sloping degree of surface, wind speed and wind direction; and (ii) pitch angle has a sinusoidal dependence on wind direction, especially in the regular sloping terrain; and (iii) PF method is something like the simplification of TR or DR,and there are not obvious distinctions in correction in sloping grassland and flat farmland, but PF method is not suitable for uneven and irregular forest sites.

  20. Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    X. Chen

    2013-04-01

    Full Text Available Surface solar radiation is an important parameter in surface energy balance models and in estimation of evapotranspiration. This study developed a DEM based radiation model to estimate instantaneous clear sky solar radiation for surface energy balance system to obtain accurate energy absorbed by the mountain surface. Efforts to improve spatial accuracy of satellite based surface energy budget in mountainous regions were made in this work. Based on eight scenes of Landsat TM/ETM+ (Thematic Mapper/Enhanced Thematic Mapper+ data and observations around the Qomolangma region of the Tibetan Plateau, the topographical enhanced surface energy balance system (TESEBS was tested for deriving net radiation, ground heat flux, sensible heat flux and latent heat flux distributions over the heterogeneous land surface. The land surface energy fluxes over the study area showed a wide range in accordance with the surface features and their thermodynamic states. The model was validated by observations at QOMS/CAS site in the research area with a reasonable accuracy. The mean bias of net radiation, sensible heat flux, ground heat flux and latent heat flux is lower than 23.6 W m−2. The surface solar radiation estimated by the DEM based radiation model developed by this study has a mean bias as low as −9.6 W m−2. TESEBS has a decreased mean bias of about 5.9 W m−2 and 3.4 W m−2 for sensible heat and latent heat flux, respectively, compared to the Surface Energy Balance System (SEBS.

  1. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Flint, A.L.; Flint, L.E.

    1994-12-31

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages.

  2. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Flint, A.L.; Flint, L.E. [Geologic Survey, Mercury, NV (United States)

    1994-12-31

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages.

  3. Litter dominates surface fluxes of carbonyl sulfide in a Californian oak woodland

    Science.gov (United States)

    Sun, Wu; Maseyk, Kadmiel; Lett, Céline; Seibt, Ulli

    2016-02-01

    Carbonyl sulfide (COS) is a promising tracer for partitioning terrestrial photosynthesis and respiration from net carbon fluxes, based on its daytime co-uptake alongside CO2 through leaf stomata. Because ecosystem COS fluxes are the sum of plant and soil fluxes, using COS as a photosynthesis tracer requires accurate knowledge of soil COS fluxes. At an oak woodland in Southern California, we monitored below-canopy surface (soil + litter) COS and CO2 fluxes for 40 days using chambers and laser spectroscopy. We also measured litter fluxes separately and used a depth-resolved diffusion-reaction model to quantify the role of litter uptake in surface COS fluxes. Soil and litter were primarily COS sinks, and mean surface COS uptake was small (˜1 pmol m-2 s-1). After rainfall, uptake rates were higher (6-8 pmol m-2 s-1), and litter contributed a significant fraction (up to 90%) to surface fluxes. We observed rapid concurrent increases in COS uptake and CO2 efflux following the onset of rain. The patterns were similar to the Birch effect widely documented for soils; however, both COS and CO2 flux increases originated mainly in the litter. The synchronous COS-CO2 litter Birch effect indicates that it results from a rapid increase in litter microbial activity after rainfall. We expect that the drying-rewetting cycles typical for mediterranean and other semiarid ecosystems create a pronounced seasonality in surface COS fluxes. Our results highlight that litter uptake is an important component of surface COS exchange that needs to be taken into account in ecosystem COS budgets and model simulations.

  4. Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery

    Directory of Open Access Journals (Sweden)

    W. Ma

    2011-05-01

    Full Text Available Land surface heat fluxes are essential measures of the strengths of land-atmosphere interactions involving energy, heat and water. Correct parameterization of these fluxes in climate models is critical. Despite their importance, state-of-the-art observation techniques cannot provide representative areal averages of these fluxes comparable to the model grid. Alternative methods of estimation are thus required. These alternative approaches use (satellite observables of the land surface conditions. In this study, the Surface Energy Balance System (SEBS algorithm was evaluated in a cold and arid environment, using land surface parameters derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER data. Field observations and estimates from SEBS were compared in terms of net radiation flux (Rn, soil heat flux (G0, sensible heat flux (H and latent heat fluxE over a heterogeneous land surface. As a case study, this methodology was applied to the experimental area of the Watershed Allied Telemetry Experimental Research (WATER project, located on the mid-to-upstream sections of the Heihe River in northwest China. ASTER data acquired between 3 May and 4 June 2008, under clear-sky conditions were used to determine the surface fluxes. Ground-based measurements of land surface heat fluxes were compared with values derived from the ASTER data. The results show that the derived surface variables and the land surface heat fluxes furnished by SEBS in different months over the study area are in good agreement with the observed land surface status under the limited cases (some cases looks poor results. So SEBS can be used to estimate turbulent heat fluxes with acceptable accuracy in areas where there is partial vegetation cover in exceptive conditions. It is very important to perform calculations using ground-based observational data for parameterization in SEBS in the future

  5. Regionalization of surface heat fluxes and evapotranspiration over heterogeneous landscape of the Third Pole region

    Science.gov (United States)

    Ma, Yaoming

    2016-04-01

    Like Antarctica and the Arctic, the Third Pole region is drawing increased attention among the international academic community. It is centered on the Tibetan Plateau, stretching from the Pamir Plateau and Hindu-Kush on the west to the Hengduan Mountains on the east, and from the Kunlun and Qilian Mts on the north to the Himalayas on the south. Covering over 5,000,000 km2 in total and with an average elevation surpassing 4000 m. The exchange of energy and evapotranspiration (ET) between land surface and atmosphere over the Third Pole region play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. The parameterization methods based on satellite data and Atmospheric Boundary Layer (ABL) observations have been proposed and tested for deriving regional distribution of surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux, latent heat flux and ET over heterogeneous landscape. As cases study, the methods were applied to the whole Tibetan Plateau area and Nepal area. To validate the proposed methods, the ground-measured surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux in the Third Pole Environment Programme (TPE) Research Platform (TPEP) TPEP are compared to the derived values. The results show that the derived surface variables, land surface heat fluxes and ET over the study area are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface features. And the estimated land surface variables and land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference is less than 10% in the validation sites. It is therefore concluded that the proposed methods are successful for the retrieval of land surface variables and land surface heat fluxes over heterogeneous

  6. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Litnovsky, A.; Philipps, V.; Van Oost, G.; Möller, S.

    2014-01-01

    Systematic study of deuterium irradiation effects on tungsten was done under ITER - relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER - like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux

  7. Sensitivity of the Meridional Overturning Circulation to the Pattern of the Surface Density Flux

    Science.gov (United States)

    2010-09-01

    a better prognosis of anthropogenic climate change . Figure 1. Classical representation of the global thermohaline circulation and oceanic...modeling efforts and long-term strategy related to climate change . 15. NUMBER OF PAGES 105 14. SUBJECT TERMS Meridional Overturning Circulation ... Thermohaline Circulation , Thermocline, Residual-Mean Theory, Air-Sea Fluxes, Surface Density Flux , Mixed-Layer Density, Water-mass Transformation

  8. Fluxes over a heterogeneous land surface: results and perspectives of the LITFASS program

    NARCIS (Netherlands)

    Beyrich, F.; Richter, S.H.; Weisensee, U.; Herzog, H.J.; DeBruin, H.A.R.; Meijninger, W.M.L.

    2002-01-01

    From 1995 till 2001, the German Meteorological Service (DWD) has performed a research project (LITFASS='Lindenberg Inhomogeneous Terrain - Fluxes between Atmosphere and Surface: a Long-term Study') in order to develop and to test a strategy for the determination of the area-averaged turbulent fluxes

  9. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  10. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-10-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April–August 2004 of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10−3μg m−2 s−1, respectively ∼0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  11. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-02-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain four months of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the aerodynamic gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of −8 × 10−3 μg m−2 s−1, respectively ~0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment, deployed at Summit for a period of four months, allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and seasonal dependencies.

  12. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Science.gov (United States)

    Bocquet, F.; Helmig, D.; van Dam, B. A.; Fairall, C. W.

    2011-10-01

    A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April-August 2004) of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a) ozone gradients measured by commercial ultraviolet absorption analyzers, (b) ambient temperature gradients using aspirated thermocouple sensors, and (c) wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10-3μg m-2 s-1, respectively ∼0.01 cm s-1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach) was on the order of 10-2 cm s-1. This uncertainty typically accounted to ~20-100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  13. A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    Both TiO 2 and SiO 2 coated steel surfaces containing micro- and nanoscale binary structures with different surface roughness were successfully fabricated by means of a facile layer by layer deposition process followed by heat treatment. The resulting surfaces were modified by the low free energy chemical PTES (1H,1H,2H,2H-Perfluorodecyltriethoxysilane). The experimental results of wettability exhibit that such modified surfaces have a strong repulsive force to water droplets, their static contact angles exceed 165°, receding angle>160°, advanced angles>170° and slide angle<1°. The resulting surfaces not only exhibit superhydrophobic properties but also show strong UV resistance (after coating SiO 2 on top of TiO 2) and strong stability to various solvents including 0.01% HCl solution. © 2012 Elsevier B.V.

  14. Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation

    Institute of Scientific and Technical Information of China (English)

    Chengbin Xu; Dianbo Dong; Xuelian Meng; Xin Su; Xu Zheng; Yaoyao Li

    2013-01-01

    Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated.The effects of oxygen,irradiation intensity and soil moisture on the degradation of the three PAHs were observed.The results showed that oxygen,soil moisture and irradiation intensity enhanced the photolysis of the three PAHs on soil surfaces.The degradation of the three PAHs on soil surfaces is related to their absorption spectra and the oxidation-half-wave potential.The photolysis of PAHs on soil surfaces in the presence of oxygen followed pseudo first-order kinetics.The photolysis half-lives ranged from 37.87 days for benzo[a]pyrene to 58.73 days for phenanthrene.The results indicate that photolysis is a successful way to remediate PAHs-contaminated soils.

  15. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces

    Directory of Open Access Journals (Sweden)

    Marina A. González Lazo

    2016-08-01

    Full Text Available A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA within a low-shrinkage acrylated hyperbranched polymer (HBP and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the polymer-air interface within 30 min, leading to a ten-fold increase of fluorine concentration at the surface compared with the initial bulk concentration and a water contact angle (WCA of 108°. A 200 ms flash of UV light was used to chemically crosslink the PFUA at the HBP surface prior to UV printing with a polydimethylsiloxane (PDMS negative template of red and yellow rose petals and lotus leaves. This flash immobilization hindered the reverse migration of PFUA within the bulk HBP upon contacting the PDMS template, and enabled to produce texturized surfaces with WCA well above 108°. The synthetic red rose petal was hydrophobic (WCA of 125° and exhibited the adhesive petal effect. It was not superhydrophobic due to insufficient concentration of fluorine at its surface, a result of the very large increase of the surface of the printed texture. The synthetic yellow rose petal was quasi-superhydrophobic (WCA of 143°, roll-off angle of 10° and its self-cleaning ability was not good also due to lack of fluorine. The synthetic lotus leaf did not accurately replicate the intricate nanotubular crystal structures of the plant. In spite of this, the fluorine concentration at the surface was high enough and the leaf was superhydrophobic (WCA of 151°, roll-off angle below 5° and also featured self-cleaning properties.

  16. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  17. UV-Vis and Surface Photovoltage Spectra of Fe2O3/Polystyrene Composite Microspheres

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fe2O3 sol with the particle diameter of 3-5 nm was flocculated by the addition of SDS, and the flocculate formed was redispersed by the further addition of that surfactant. Thus the surfactant bilayer was formed on the surface of Fe2O3. The emulsion polymerization of styrene(St) adsolubilized on the surfactant adsorbed bilayer was carried out by initiator potassium persulfate(KPS). The UV-Vis and surface photovoltage spectra(SPS) indicate that the Fe2O3 particles were encapsulated in polystyrene(PSt) successfully.

  18. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F10 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  19. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F15 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  20. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F13 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  1. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F11 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  2. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F08 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  3. Surface Turbulent Fluxes, 1x1 deg Yearly Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  4. Surface Turbulent Fluxes, 1x1 deg Seasonal Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  5. Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms

    Science.gov (United States)

    Gulev, Sergey; Natalia, Tilinina

    2014-05-01

    Extreme turbulent heat fluxes in the North Atlantic and North Pacific mid latitudes were estimated from the modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA-25) for the period from 1979 onwards. We used direct surface turbulent flux output as well as reanalysis state variables from which fluxes have been computed using COARE-3 bulk algorithm. For estimation of extreme flux values we analyzed surface flux probability density distribution which was approximated by Modified Fisher-Tippett distribution. In all reanalyses extreme turbulent heat fluxes amount to 1500-2000 W/m2 (for the 99th percentile) and can exceed 2000 W/m2 for higher percentiles in the western boundary current extension (WBCE) regions. Different reanalyses show significantly different shape of MFT distribution, implying considerable differences in the estimates of extreme fluxes. The highest extreme turbulent latent heat fluxes are diagnosed in NCEP-DOE, ERA-Interim and NCEP-CFSR reanalyses with the smallest being in MERRA. These differences may not necessarily reflect the differences in mean values. Analysis shows that differences in statistical properties of the state variables are the major source of differences in the shape of PDF of fluxes and in the estimates of extreme fluxes while the contribution of computational schemes used in different reanalyses is minor. The strongest differences in the characteristics of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the WBCE extension regions and high latitudes. In the next instance we analyzed the mechanisms responsible for forming surface turbulent fluxes and their potential role in changes of midlatitudinal heat balance. Midlatitudinal cyclones were considered as the major mechanism responsible for extreme turbulent fluxes which are typically occur during the cold air outbreaks in the rear parts of cyclones when atmospheric conditions

  6. Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates

    Science.gov (United States)

    Allan, Richard; Liu, Chunlei

    2017-04-01

    The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty (Trenberth and Fasullo, 2013; Roberts et al., 2016). A combination of satellite-derived radiative fluxes at the top of atmosphere (TOA) adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis are used to estimate surface energy flux globally (Liu et al., 2015). Land surface fluxes are adjusted through a simple energy balance approach using relations at each grid point with the consideration of snowmelt to improve regional realism. The energy adjustment is redistributed over the oceans using a weighting function to avoid meridional discontinuities. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis input data and products. Zonal multiannual mean surface flux uncertainty is estimated to be less than 5 Wm-2 but much larger uncertainty is likely for regional monthly values. The meridional energy transport is calculated using the net surface heat fluxes estimated in this study and the result shows better agreement with observations in Atlantic than before. The derived turbulent fluxes (difference between the net heat flux and the CERES EBAF radiative flux at surface) also have good agreement with those from OAFLUX dataset and buoy observations. Decadal changes in the global energy budget and the hemisphere energy imbalances are quantified and present day cross-equator heat transports is re-evaluated as 0.22±0.15 PW southward by the atmosphere and 0.32±0.16 PW northward by the ocean considering the observed ocean heat sinks (Roemmich et al., 2006) . Liu et al. (2015) Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985-2012. J. Geophys. Res., Atmospheres. ISSN 2169-8996 doi: 10.1002/2015JD

  7. Constructing robust and functional micropatterns on polystyrene surfaces by using deep UV irradiation.

    Science.gov (United States)

    Palacios, Marta; García, Olga; Rodríguez-Hernández, Juan

    2013-02-26

    We report the preparation of different surface patterns based on the photo-cross-linking/degradation kinetics of polystyrene (PS) by using UV light. Upon exposure to UV light, PS can be initially cross-linked, whereas an excess of the exposure time or intensity provokes the degradation of the material. Typically photolithography employs either positive or negative photoresist layers that upon removal of either the exposed or the nonexposed areas transfer the pattern of the mask. Herein, we present a system that can be both negative and positive depending on several aspects, including the irradiation time, intensity, or presence of absorbing active species (photoinitiators) using a general setup. As a result of the optimization of the time of exposure and the use of an appropriate cover or the incorporation of an appropriate amount of photoinitiator (in this particular case IRG 651), different tailor-made surface patterns can be obtained. Moreover, changes of the chemical composition of the polystyrene using, for instance, block copolymers can lead to surface patterns with variable functional groups. In this study we describe the formation of surface patterns using polystyrene-block-poly(2,3,4,5,6-pentafluorostyrene) block copolymers. The introduction of fluorinated moieties clearly modifies the wettability of the films when compared with that of the same structures obtained with PS. As a consequence we present herein a patterning methodology that can simultaneously vary not only the morphology but also the surface chemical composition.

  8. A comparative study of the bactericidal activity and daily disinfection housekeeping surfaces by a new portable pulsed UV radiation device.

    Science.gov (United States)

    Umezawa, Kazuo; Asai, Satomi; Inokuchi, Sadaki; Miyachi, Hayato

    2012-06-01

    Daily cleaning and disinfecting of non-critical surfaces in the patient-care areas are known to reduce the occurrence of health care-associated infections. However, the conventional means for decontamination of housekeeping surfaces of sites of frequent hand contact such as manual disinfection using ethanol wipes are laborious and time-consuming in daily practice. This study evaluated a newly developed portable pulsed ultraviolet (UV) radiation device for its bactericidal activity in comparison with continuous UV-C, and investigated its effect on the labor burden when implemented in a hospital ward. Pseudomonas aeruginosa, Multidrug-resistant P. aeruginosa, Escherichia coli, Acinetobacter baumannii, Amikacin and Ciprofloxacin-resistant A. baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus and Bacillus cereus were irradiated with pulsed UV or continuous UV-C. Pulsed UV and continuous UV-C required 5 and 30 s of irradiation, respectively, to attain bactericidal activity with more than 2Log growth inhibition of all the species. The use of pulsed UV in daily disinfection of housekeeping surfaces reduced the working hours by half in comparison to manual disinfection using ethanol wipes. The new portable pulsed UV radiation device was proven to have a bactericidal activity against critical nosocomial bacteria, including antimicrobial-resistant bacteria after short irradiation, and was thus found to be practical as a method for disinfecting housekeeping surfaces and decreasing the labor burden.

  9. Surface and body waves in magnetic flux tubes. [in solar convection zone, photosphere, and corona

    Science.gov (United States)

    Abdelatif, T. E.

    1988-01-01

    The dispersion relation of surface and body waves in a magnetic flux tube is studied in detail. The properties of the fast and slow bodywaves are described in terms of the filtering characteristics of the flux tube. In addition to the axisymmetric and nonaxisymmetric distinction between the modes, an additional distinction is made between the fundamental mode and the rest of the modes. New results concerning the thin and large flux tube approximation are derived. The behavior of surface and body waves in the solar convection zone, photosphere, and corona is discussed.

  10. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy......% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance...... and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...

  11. Technical report. Video imaging of ethidium bromide-stained DNA gels with surface UV illumination.

    Science.gov (United States)

    Solioz, M

    1994-06-01

    We describe here the use of surface UV illumination to record ethidium bromide-stained DNA gels with a video camera. This mode of illumination allows the use of a standard video camera equipped with a red filter and results in a high signal strength. The assembly of a low-cost video system on this basis is described. It uses the public domain software called Image on a Macintosh computer and PostScript laser printer or a thermal printer to generate hard copies. The setup is sensitive enough to detect 500 pg of DNA on an ethidium bromide-stained DNA gel. The UV illumination method described here can also greatly improve the sensitivity of existing video recording equipment.

  12. Evaluation of surface layer flux parameterizations using in-situ observations

    Science.gov (United States)

    Katz, Jeremy; Zhu, Ping

    2017-09-01

    Appropriate calculation of surface turbulent fluxes between the atmosphere and the underlying ocean/land surface is one of the major challenges in geosciences. In practice, the surface turbulent fluxes are estimated from the mean surface meteorological variables based on the bulk transfer model combined with the Monnin-Obukhov Similarity (MOS) theory. Few studies have been done to examine the extent to which such a flux parameterization can be applied to different weather and surface conditions. A novel validation method is developed in this study to evaluate the surface flux parameterization using in-situ observations collected at a station off the coast of Gulf of Mexico. The main findings are: (a) the theoretical prediction that uses MOS theory does not match well with those directly computed from the observations. (b) The largest spread in exchange coefficients is shown in strong stable conditions with calm winds. (c) Large turbulent eddies, which depend strongly on the mean flow pattern and surface conditions, tend to break the constant flux assumption in the surface layer.

  13. Impact of Siberian observations on the optimization of surface CO2 flux

    Science.gov (United States)

    Kim, Jinwoong; Kim, Hyun Mee; Cho, Chun-Ho; Boo, Kyung-On; Jacobson, Andrew R.; Sasakawa, Motoki; Machida, Toshinobu; Arshinov, Mikhail; Fedoseev, Nikolay

    2017-02-01

    To investigate the effect of additional CO2 observations in the Siberia region on the Asian and global surface CO2 flux analyses, two experiments using different observation data sets were performed for 2000-2009. One experiment was conducted using a data set that includes additional observations of Siberian tower measurements (Japan-Russia Siberian Tall Tower Inland Observation Network: JR-STATION), and the other experiment was conducted using a data set without the above additional observations. The results show that the global balance of the sources and sinks of surface CO2 fluxes was maintained for both experiments with and without the additional observations. While the magnitude of the optimized surface CO2 flux uptake and flux uncertainty in Siberia decreased from -1.17 ± 0.93 to -0.77 ± 0.70 Pg C yr-1, the magnitude of the optimized surface CO2 flux uptake in the other regions (e.g., Europe) of the Northern Hemisphere (NH) land increased for the experiment with the additional observations, which affect the longitudinal distribution of the total NH sinks. This change was mostly caused by changes in the magnitudes of surface CO2 flux in June and July. The observation impact measured by uncertainty reduction and self-sensitivity tests shows that additional observations provide useful information on the estimated surface CO2 flux. The average uncertainty reduction of the conifer forest of Eurasian boreal (EB) is 29.1 % and the average self-sensitivities at the JR-STATION sites are approximately 60 % larger than those at the towers in North America. It is expected that the Siberian observations play an important role in estimating surface CO2 flux in the NH land (e.g., Siberia and Europe) in the future.

  14. Prevention of Ultraviolet (UV)-Induced Surface Damage and Cytotoxicity of Polyethersulfone Using Atomic Layer Deposition (ALD) Titanium Dioxide

    Science.gov (United States)

    Petrochenko, Peter E.; Scarel, Giovanna; Hyde, G. Kevin; Parsons, Gregory N.; Skoog, Shelby A.; Zhang, Qin; Goering, Peter L.; Narayan, Roger J.

    2013-04-01

    Nanostructured surfaces are finding use in several medical applications, including tissue scaffolds and wound dressings. These surfaces are frequently manufactured from biocompatible polymers that are susceptible to ultraviolet (UV) damage. Polyethersulfone (PES) is a biocompatible polymer that undergoes oxidation and degradation when exposed to ultraviolet (UV) light. A uniform TiO2 coating can protect PES during exposure to UV sources (e.g., germicidal lamps and sunlight). The goal of this study was to determine whether atomic layer deposition (ALD) can successfully be used to grow TiO2 onto PES, protect it from UV irradiation, and reduce macrophage in vitro cytotoxicity. TiO2 was ALD-coated onto PES at 21 nm thickness. Uncoated PES exposed to UV for 30 min visibly changed color, whereas TiO2-coated PES showed no color change, indicating limited degradation. Macrophages exposed to UV-treated PES for 48 h showed reduced cell viability (via MTT assay) to 18% of control. In contrast, the cell viability for UV-treated TiO2-coated PES was 90% of control. Non-UV treated PES showed no decrease in cell viability. The results indicate that ALD of TiO2 thin films is a useful technique to protect polymers from UV damage and to retain low cytotoxicity to macrophages and other types of cells that are involved in wound healing. TiO2- coated PES membranes also have potential use in direct methanol fuel cells and in wastewater treatment membranes.

  15. Efficiency of the UV/H2O2 process for the disinfection of humic surface waters.

    Science.gov (United States)

    Alkan, Ufuk; Teksoy, Arzu; Atesli, Ahu; Baskaya, Huseyin S

    2007-03-01

    The efficiency of the UV/H2O2 process for the disinfection of total coliforms and the prevention of bacterial regrowth in humic surface waters were investigated. Inactivation of total coliforms was determined in water samples containing various concentrations ranging from 0-10 mg/L dissolved organic carbon (DOC) of fulvic acid, which were exposed to various doses (68-681 mWs/cm2) of UV radiation in the presence of 0.125 mg/L and 3.000 mg/L of hydrogen peroxide. Disinfection efficiencies of the UV radiation and the UV/H2O2 processes were compared. The results of bacterial inactivation experiments showed that the performances of the UV and the UV/H2O2 (0.125) were comparable whereas the UV/H2O2 (3.000) process showed significant improvement in performance, especially, in highly humic waters. Inactivation coefficient appeared to be almost doubled by the addition of 3.000 mg/L hydrogen peroxide during the treatment of highly humic waters. In contradiction to significant regrowth which occurred in the single UV radiation treatment, residual bacteria following the UV/H2O2 (0.125) and the UV/H2O2 (3.000) treatments were completely inactivated during dark incubation indicating the elimination of possible bacterial regrowth.

  16. Quantification of the advected CO2 concentration due to upstream surface fluxes in aircraft vertical profiles

    Science.gov (United States)

    Font, A.; Morguí, J.-A.; Curcoll, R.; Rodó, X.

    2009-04-01

    A model framework which couples the Lagrangian Particle Dispersion Model FLEXPART (LPDM) with the new global surface flux inversion CarbonTracker from NOAA-ESRL (2007B release) is used to quantify the advected CO2 concentration from outbound surface fluxes to measured vertical profiles carried out during different seasons in 2006 at La Muela site in Spain (LMU; 41.60°N, 1.1°W). The Lagrangian Particle Dispersion Model FLEXPART (LPDM) calculates the influence of surface CO2 fluxes upwind of the study area, allowing us to identify those sources or sink areas that strongly modify the CO2 content of air masses that arrives at different altitudes of measured profiles. CarbonTracker is a new assimilation system that informs of global carbon fluxes at 1°x1° at 3 hours resolution. Coupling LPDM results with surface fluxes allows assessing the net CO2 contribution of identified areas to measured concentrations along the profiles above a reference or background concentration. Furthermore, it allows the quantification of the percentage of each component flux (biospheric, anthropogenic and oceanic) to each vertical layer. At LMU, biospheric fluxes account ~70% of total CO2 advection; fossil fuel ~25%; and ~5% is attributed to the oceanic ones. By far, late spring and summer profiles are largely influence by the biospheric component (~90%). Finally, the CO2 concentration above the background value of profiles measured on 22nd February, 13th October and 30th November 2006 are well explained by the advection of upstream surface fluxes. In other profiles examined, the variation of CO2 along the profile is partially explained by the advection of CO2 outbound fluxes.

  17. Photoluminescence of hexagonal boron nitride: effect of surface oxidation under UV-laser irradiation

    CERN Document Server

    Museur, Luc; Petitet, Jean-Pierre; Michel, Jean Pierre; Kanaev, Andrei V

    2008-01-01

    We report on the UV laser induced fluorescence of hexagonal boron nitride (h-BN) following nanosecond laser irradiation of the surface under vacuum and in different environments of nitrogen gas and ambient air. The observed fluorescence bands are tentatively ascribed to impurity and mono (VN), or multiple (m-VN with m = 2 or 3) nitrogen vacancies. A structured fluorescence band between 300 nm and 350 nm is assigned to impurity-band transition and its complex lineshape is attributed to phonon replicas. An additional band at 340 nm, assigned to VN vacancies on surface, is observed under vacuum and quenched by adsorbed molecular oxygen. UV-irradiation of h-BN under vacuum results in a broad asymmetric fluorescence at ~400 nm assigned to m-VN vacancies; further irradiation breaks more B-N bonds enriching the surface with elemental boron. However, no boron deposit appears under irradiation of samples in ambient atmosphere. This effect is explained by oxygen healing of radiation-induced surface defects. Formation o...

  18. "UV-olution, a photochemistry experiment in Low Earth Orbit": investigation of the photostability of carboxylic acids exposed to Mars surface UV radiation conditions

    Science.gov (United States)

    Stalport, Fabien; Guan, Yuan Yong; Noblet, Audrey; Coll, Patrice; Szopa, Cyril; Macari, Frederique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    The detection and identification of organics at Mars are necessary to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. Excepted methane, no organic matter was detected. The harsh environmental conditions on the surface could explain this non detection but only rare studies tested this hypothesis. To investigate the nature, abundance, and stability of organics that could survive under such conditions, we exposed in low Earth orbit organic molecules with martian astrobiological relevance to solar UV radiation ¿ 200 nm during 12 days, during the UVolution experiment, onboard the BIOPAN ESA module which was set outside a Russian Foton capsule. We also studied the photostability of these molecules in laboratory. Indeed we developed a laboratory experiment, MOMIE (Martian Organic Material Irradiation and Evolution) in order to investigate the behaviour of material related to Mars under UV radiation. The targeted molecules (AIB, mellitic, phthalic and trimesic acids) have been exposed with and without an analogous martian soil. Here, we present results with regard to the impact of solar UV radiation on the targeted molecules. Our results show that no sample seems to resist to UVs if directly exposed to them. Moreover, the presence of a mineral matrix seems to increases the photodestruction rate. These molecules should then not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected at the top of the surface.

  19. The Surface Energy Balance System (SEBS for estimation of turbulent heat fluxes

    Directory of Open Access Journals (Sweden)

    Z. Su

    2002-01-01

    Full Text Available A Surface Energy Balance System (SEBS is proposed for the estimation of atmospheric turbulent fluxes and evaporative fraction using satellite earth observation data, in combination with meteorological information at proper scales. SEBS consists of: a set of tools for the determination of the land surface physical parameters, such as albedo, emissivity, temperature, vegetation coverage etc., from spectral reflectance and radiance measurements; a model for the determination of the roughness length for heat transfer; and a new formulation for the determination of the evaporative fraction on the basis of energy balance at limiting cases. Four experimental data sets are used to assess the reliabilities of SEBS. Based on these case studies, SEBS has proven to be capable to estimate turbulent heat fluxes and evaporative fraction at various scales with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties. Keywords: Surface energy balance, turbulent heat flux, evaporation, remote sensing

  20. Explanation of how to run the global local optimization code (GLO) to find surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S; Sahai, V; Stein, W

    1999-03-01

    From the evaluation[1] of the inverse techniques available, it was determined that the Global Local Optimization Code[2] can determine the surface heat flux using known experimental data at various points in the geometry. This code uses a whole domain approach in which an analysis code (such as TOPAZ2D or ABAQUS) can be run to get the appropriate data needed to minimize the heat flux function. This document is a compilation of our notes on how to run this code to find the surface heat flux. First, the code is described and the overall set-up procedure is reviewed. Then, creation of the configuration file is described. A specific configuration file is given with appropriate explanation. Using this information, the reader should be able to run GLO to find the surface heat flux.

  1. Soil heat flux and day time surface energy balance closure at astronomical observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka

    2014-06-01

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, pre-monsoon, SW monsoon and NE monsoon seasons. The diurnal variation is characterized by a cross-over from negative to positive values at 0700 h, occurrence of maximum around noon and return to negative values in the late evening. The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat flux * is estimated in all seasons. Daytime surface energy balance at the surface on wet and dry seasons is investigated. The average Bowen’s ratio during the wet and dry seasons were 0.541 and 0.515, respectively indicating that considerable evaporation takes place at the surface. The separate energy balance components were examined and the mean surface energy balance closure was found to be 0.742 and 0.795 for wet and dry seasons, respectively. When a new method that accounts for both soil thermal conduction and soil thermal convection was adopted to calculate the surface heat flux, the energy balance closure was found to be improved. Thus on the land surface under study, the soil vertical water movement is significant.

  2. Application of UV-LED surface light source in PCB solder mask exposure%UV-LED面光源在PCB阻焊曝光中的应用

    Institute of Scientific and Technical Information of China (English)

    闵秀红

    2013-01-01

    In recent years, the development of the UV-LED, bring revolutionary changes in the field of PCB exposure. It is energy efficient and has constant light intensity, good temperature control, and almost zero maintenance cost. It promotes UV-LED surface light source replacing the traditional exposure lamp and becomes a trend.In accordance with the characteristics of the ultraviolet light source for PCB solder mask exposure process, this paper discusses not only the related technologies to overcome the difficulties in the promotion and application, but also provided solutions through experimental data, analysis of the factors of impact on the uniformity, the time and the resolution of UV-LED surface light source exposure. Using scanning mixed-wavelength UV-LED surface light source exposure mode, the practice shows that it is energy efficient, and the light intensity distribution is uniform and stable, is able to fully meet the requirements of the indicators of the anti-welds exposure process, and the maneuverability is strong, and it will play a catalytic role in the PCB exposure process for quality improvement and energy conservation.%  近年来随着UV-LED的问世,为印制电路板曝光领域带来革命性的变化。其高效节能、恒定的光照强度、优秀的温度控制、几乎为零的维护成本。促使UV-LED面光源替代传统曝光灯成为发展趋势。文章针对印制电路板阻焊曝光工艺紫外光源的特点,论述了推广应用中需要克服的相关技术及解决方法;并通过实验数据,分析出影响UV-LED面光源曝光均匀性、时间、解析度的因素。实践表明,采用扫描式、混合波长的UV-LED面光源曝光方式,高效节能、光强分布均匀稳定、能够完全满足阻焊曝光过程对光源的指标要求,可操作性强,对印制电路板曝光工艺的品质提升与节能降耗将起到推动作用。

  3. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta, E-mail: l.buzi@fz-juelich.de [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Temmerman, Greg De [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Oost, Guido Van [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Möller, Sören [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany)

    2014-12-15

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10{sup 23} D{sup +}/m{sup 2} s and low: 9 · 10{sup 21} D{sup +}/m{sup 2} s). Particle fluence and ion energy, respectively 10{sup 26} D{sup +}/m{sup 2} and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion.

  4. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  5. Photochemical behavior of benzo[a]pyrene on soil surfaces under UV light irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-hong; LI Pei-jun; GONG Zong-qiang; Oni Adeola A.

    2006-01-01

    The rates of photodegradation and photocatalysis of benzo [a]pyrene (BaP) on soil surfaces under UV light have been studied. Different parameters such as temperature, soil particle sizes, and soil depth responsible for photodegradation, catalyst loads and wavelength of UV irradiation blamed for photocatalysis have been monitored. The results obtained indicated that BaP photodegradation follows pseudo-first-order kinetics. BaP photodegradation was the fastest at 30℃. The rates of BaP photodegradation at different soil particle size followed the order: less than 1 mm>less than 0.45 mm>less than 0.25 mm. When the soil depth increased from 1 mm to 4 mm, the half-life increased from 13.23 d to 17.73 d. The additions of TiO2 or Fe2O3 accelerated the photodegradation of BaP, and the photocatalysis of BaP follows pseudo-first-order kinetics. Changes in catalyst loads of TiO2 (0.5%,1%, 2%, and 3% (wt)) or Fe2O3 (2%, 5%, 7%, and 10% (wt)) did not significantly affect the degradation rates. Both BaP photocatalysis in the presence of TiO2 and Fe2O3 were the fastest at 254 nm UV irradiation.

  6. Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Menezes Atayde, Cleuson de; Doi, Ioshiaki [Center for Semiconductor Components, University of Campinas - UNICAMP, Campinas, SP (Brazil); School of Electrical and Computer Engineering, University of Campinas - UNICAMP, Campinas, SP (Brazil)

    2010-02-15

    Surface modification of polydimethylsiloxane (PDMS, Sylgard 184) was carried out by O{sub 2} plasma and UV in broadband mode/O{sub 2} plasma treatments with different exposure times, and studied in terms of hydrophilic stability. Water contact angle measurements, Fourier Transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the analysis of the modified surface and hydrophilic stability of the PDMS films. The results show reasonably good hydrophilic stability in the range of a week with a contact angle of around 70 for O{sub 2} plasma treated samples, whereas a more high hydrophilic stability, with a low contact angle of 65 up to 15 days, was observed for UV/O{sub 2} plasma treated PDMS. FTIR analysis of the samples reveals significant oxidation noted by large presence of Si-O-Si, and Si-OH bonds on the PDMS surface, which improves the affinity with water molecules and increases the hydrophilicy. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Visualization of particle flux in the human body on the surface of Mars

    Science.gov (United States)

    Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter

    2002-01-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  8. Surface coverage enhancement of a mixed halide perovskite film by using an UV-ozone treatment

    Science.gov (United States)

    Lee, Hyunho; Rhee, Seunghyun; Kim, Jaeyoul; Lee, Changhee; Kim, Hyeok

    2016-08-01

    Recently, a significant breakthrough in emerging photovoltaics occurred. Now, perovskite solar cells, hybrid types of organic and inorganic solar cells, are considered as reliable next-generation solar cells due to their outstanding photovoltaic performance. Records of the National Renewable Energy Laboratory (NREL) on cell efficiency research indicates a prominent growth in the power conversion efficiency (PCE) of a perovskite solar cells which is now approaching 20.1%. Perovskite solar cells are, in general, classified into three types based on their structures; the mesoporous type with TiO2 nanoparticles, the meso-superstructure type with Al2O3 and the planar hetero-junction type. Among them, planar-structured perovskite solar cells have strong advantages due to their easy processibility and flexibility. We can replace the materials in the electron transport layer (ETL) and the hole transport layer (HTL) with common materials that are available in organic solar cells. However, a great challenge is to fabricate a high-quality perovskite film because the perovskite morphology is highly sensitive to its fabrication conditions. For control of the film's morphology, some experiments, such as changing the annealing temperature or time and adding some additives, have been done to increase the surface coverage of perovskite films. In this work, we introduce normal, planar, perovskite solar cells with a hetero-junction structure based on compact TiO2 and a mixed halide perovskite (CH3NH3PbI3- x Cl x ). To enlarge the surface coverage of perovskite film, we used an UV-ozone treatment on top of the compact TiO2, which made the surface of TiO2 hydrophilic. Because a perovskite precursor is hydrophilic, an UV-ozone treatment is expected to improve the wettability between the compact TiO2 and the perovskite film. Here, we present the photovoltaic performance, along with the surface coverage difference, for various UV-ozone treatment time. In addition, the effect of the UV

  9. A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces.

    Science.gov (United States)

    Comelli, Daniela; Valentini, Gianluca; Nevin, Austin; Farina, Andrea; Toniolo, Lucia; Cubeddu, Rinaldo

    2008-08-01

    A portable fluorescence multispectral imaging system was developed and has been used for the analysis of artistic surfaces. The imaging apparatus exploits two UV lamps for fluorescence excitation and a liquid crystal tunable filter coupled to a low-noise charge coupled device as the image detector. The main features of the system are critically presented, outlining the assets, drawbacks, and practical considerations of portability. A multivariate statistical treatment of spectral data is further considered. Finally, the in situ analysis with the new apparatus of recently restored Renaissance wall paintings is presented.

  10. Shuttling of the autoantigen La between nucleus and cell surface after uv irradiation of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, M.; Chang, S.; Slor, H.; Kukulies, J.; Mueller, W.E. (Universitaet, Mainz (Germany, F.R.))

    1990-12-01

    During the past years we have established that the nuclear autoantigen La shuttles between the nucleus and the cytoplasm in tumor cells after inhibition of transcription or virus infection. We reinvestigated this shuttling using primary human keratinocytes from both healthy donors and patients with xeroderma pigmentosum. Ultraviolet irradiation resulted in both an inhibition of transcription and a translocation of La protein from the nucleus to the cytoplasm. After a prolonged inhibition of transcription La protein relocated into the nucleus and assembled with nuclear storage regions. The uv-induced shuttling included a translocation to the cell surface, where La protein colocalized with epidermal growth factor receptors.

  11. Climatological evaluation of some fluxes of the surface energy and soil water balances over France

    Directory of Open Access Journals (Sweden)

    E. M. Choisnel

    Full Text Available This paper presents some statistical evaluations of the surface energy and soil water balance fluxes, for a prairie-type canopy, using the Earth model with a double-reservoir system for the management of the soil water reserve and the regulation of actual evapotranspiration. The mean values of these fluxes are estimated from energy and water balance simulations done on a 30-year climatic reference period (1951–1980. From values of these fluxes calculated for each meteorological synoptic station, mappings of net radiation, actual evapotranspiration, drainage and conduction fluxes have been made over French territory. Lastly, a few conclusions pertaining to the spatial variability of fluxes and to the partition of rainfall between run-off and drainage on the one hand and replenishment of the soil water reserve on the other hand are drawn from these preliminary results.

  12. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  13. Surface modifications induced by high fluxes of low energy helium ions.

    Science.gov (United States)

    Tanyeli, İrem; Marot, Laurent; Mathys, Daniel; van de Sanden, Mauritius C M; De Temmerman, Gregory

    2015-04-28

    Several metal surfaces, such as titanium, aluminum and copper, were exposed to high fluxes (in the range of 10(23) m(-2) s(-1)) of low energy (pillars, are observed on these metals. The differences and similarities in the development of surface morphologies are discussed in terms of the material properties and compared with the results of similar experimental studies. The results show that He ions induced void growth and physical sputtering play a significant role in surface modification using high fluxes of low energy He ions.

  14. A comparison of surface fluxes at the HAPEX-Sahel fallow bush sites.

    NARCIS (Netherlands)

    Lloyd, C.R.; Bessemoulin, P.; Cropley, F.D.; Culf, A.D.; Dolman, A.J.; Elbers, J.; Moncrieff, J.; Monteny, B.; Verhoef, A.

    1997-01-01

    The variability between surface flux measurements at the fallow sites of the three HAPEX-Sahel supersites is examined over periods of three or four consecutive days. A roving eddy correlation instrument provided a common base for comparison at each supersite. The inhomogeneity of the surface and the

  15. Diurnal variability of surface fluxes at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Rao, D.P.

    Diurnal variability of the surface fluxes and ocean heat content was studied using the time-series data on marine surface meteorological parameters and upper ocean temperature collected at an oceanic station in the Bay of Bengal during 1st to 8th...

  16. Surface morphology and deuterium retention in tungsten exposed to high flux D plasma at high temperatures

    NARCIS (Netherlands)

    Jia, Y. Z.; De Temmerman, G.; Luo, G. N.; Xu, H.Y.; Li, C.; Fu, B. Q.; Liu, W.

    2015-01-01

    Surface modifications and deuterium retention induced in tungsten by high fluxes (1024 m−2 s−1) low energy (38 eV) deuterium ions were studied as a function of surface temperature. Blister formation was studied by scanning electron microscopy and electron backscatter diffraction, while deuterium ret

  17. Surface morphology and deuterium retention of tungsten after low- and high-flux deuterium plasma exposure

    NARCIS (Netherlands)

    Hoen, M. H. J. 't; Balden, M.; Manhard, A.; Mayer, M.; Elgeti, S.; Kleyn, A. W.; van Emmichoven, P. A. Zeijlma

    2014-01-01

    The surface morphology and deuterium retention were investigated of polycrystalline tungsten targets that were exposed to deuterium plasmas at widely varying conditions. By changing only one parameter at a time, the isolated effects of flux, time and pre-damaging on surface modifications and deuteri

  18. Can We Estimate Surface Carbon Fluxes With a 6-hour Data Assimilation System?

    Science.gov (United States)

    Kalnay, E.; Kang, J.; Liu, J.; Fung, I.

    2011-12-01

    The estimation of surface carbon fluxes from atmospheric measurements of CO2 is an ill-posed problem (Enting, 2002). In the real atmosphere emissions are transported and mixed, losing information; measuring atmospheric concentrations introduces further errors; and the calculation of transports with imperfect models amplifies the errors in estimating surface sources and sinks. Because of this ill-posedness, prior information on carbon surface fluxes is essential for inverse estimations (e.g., Gurney et al., 2004, Baker et al., 2006, Roedenbeck et al., 2003). Peters et al. (2007) have used instead an Ensemble Kalman Filter (EnKF) data assimilation approach where the winds are given (e.g., from ECMWF). They use a Kalman smoother with a 5-week smoother, producing the operational "Carbon Tracker" estimation of surface fluxes at NOAA. We address the ill-posedness by assimilating simultaneously every 6 hours both carbon concentrations and meteorological variables, since within this time scale changes in atmospheric CO2 concentrations should be dominated by surface fluxes rather than transport and mixing. A simulation system using the Local Ensemble Transform Kalman Filter (LETKF) to assimilate CO2 from a realistic observing system including GOSAT, AIRS and surface observations, and is able to estimate in detail the seasonal evolution of "true" surface fluxes (including fossil fuel emissions) even in the absence of prior information. These promising results (albeit simulated) suggest that with more advanced models and accurate column observations such as those expected from OCO-2 it may be possible to estimate surface carbon fluxes if the LETKF is optimized (Kang et al., 2011).

  19. Nanoengineered Surfaces for High Flux Thin Film Evaporation

    Science.gov (United States)

    2013-07-15

    omniphobicity. Nature, 2011. 477(7365): p. 443-447. 50. Anand, S., et al., Enhanced Condensation on Lubricant Impregnated Nanotextured Surfaces. Acs Nano ...time, (c) corresponding droplet volume as a function of time. To explain the observations, we developed a simple quasi-steady 1-D lubrication ...consistent with experimental observations. A typical experimental data and the model prediction are shown in Fig. 11. The simple 1-D lubrication

  20. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  1. Determining the required accuracy of LST products for estimating surface energy fluxes

    Science.gov (United States)

    Pinheiro, A. C.; Reichle, R.; Sujay, K.; Arsenault, K.; Privette, J. L.; Yu, Y.

    2006-12-01

    Land Surface Temperature (LST) is an important parameter to assess the energy state of a surface. Synoptic satellite observations of LST must be used when attempting to estimate fluxes over large spatial scales. Due to the close coupling between LST, root level water availability, and mass and energy fluxes at the surface, LST is particularly useful over agricultural areas to help determine crop water demands and facilitate water management decisions (e.g., irrigation). Further, LST can be assimilated into land surface models to help improve estimates of latent and sensible heat fluxes. However, the accuracy of LST products and its impact on surface flux estimation is not well known. In this study, we quantify the uncertainty limits in LST products for accurately estimating latent heat fluxes over agricultural fields in the Rio Grande River basin of central New Mexico. We use the Community Land Model (CLM) within the Land Information Systems (LIS), and adopt an Ensemble Kalman Filter approach to assimilate the LST fields into the model. We evaluate the LST and assimilation performance against field measurements of evapotranspiration collected at two eddy-covariance towers in semi-arid cropland areas. Our results will help clarify sensor and LST product requirements for future remote sensing systems.

  2. Inhomogeneity of the Land Surface and Problems in theParameterization of Surface Fluxes in Natural Conditions

    Science.gov (United States)

    Panin, G. N.; Tetzlaff, G.; Raabe, A.

    Eddy correlation techniques to determine the turbulent fluxes of heat, moisture and momentum in the near-surface atmospheric layer rely on the Monin-Obukhov similarity theory, which requires stationarity and horizontal homogeneity. Experiments at specially selected sites over land and particularly over sea are used to develop this concept. Recent experiments, deliberately conducted in non-ideal conditions, show an underestimation of turbulent fluxes. Results from the field experiments FIFE, KUREX, TARTEX and SADE, point to a relationship between the underestimation of turbulent fluxes and terrain inhomogeneity. In order to systematically correct for this effect a scheme is suggested which uses fetch lengths of different types of surface in the sites surrounding the environment. In addition, horizontal differences in atmospheric stability above different surfaces are included in the correction scheme. This scheme might be useful for the design of validation experiments in non-homogeneous terrain.

  3. Formation of quasi-periodic nano- and microstructures on silicon surface under IR and UV femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ionin, Andrei A; Golosov, E V; Kolobov, Yu R; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Novoselov, Yurii N; Seleznev, L V; Sinitsyn, D V

    2011-09-30

    Quasi-periodic nano- and microstructures have been formed on silicon surface using IR ( {lambda} Almost-Equal-To 744 nm) and UV ( {lambda} Almost-Equal-To 248 nm) femtosecond laser pulses. The influence of the incident energy density and the number of pulses on the structured surface topology has been investigated. The silicon nanostructurisation thresholds have been determined for the above-mentioned wavelengths. Modulation of the surface relief at the doubled spatial frequency is revealed and explained qualitatively. The periods of the nanostructures formed on the silicon surface under IR and UV femtosecond laser pulses are comparatively analysed and discussed.

  4. Interaction of NO2 with TiO2 surface under UV irradiation: measurements of the uptake coefficient

    Directory of Open Access Journals (Sweden)

    Y. Bedjanian

    2012-01-01

    Full Text Available The interaction of NO2 with TiO2 solid films was studied under UV irradiation using a low pressure flow reactor (1–10 Torr combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The NO2 to TiO2 reactive uptake coefficient was measured from the kinetics of NO2 loss on TiO2 coated Pyrex rods as a function of NO2 concentration, irradiance intensity (JNO2 = 0.002–0.012 s−1, relative humidity (RH = 0.06–69 %, temperature (T = 275–320 K and partial pressure of oxygen (0.001–3 Torr. TiO2 surface deactivation upon exposure to NO2 was observed. The initial uptake coefficient of NO2 on illuminated TiO2 surface (with 90 ppb of NO2 and JNO2≅0.006 s−1 was found to be γ0 = (1.2±0.4 ×10−4 (calculated using BET surface area under dry conditions at T = 300 K. The steady state uptake, γ, was several tens of times lower than the initial one, independent of relative humidity, and was found to decrease in the presence of molecular oxygen. In addition, it was shown that γ is not linearly dependent on the photon flux and seems to level off under atmospheric conditions. Finally, the following expression for γ was derived, γ = 2.3×10−3 exp(−1910/T/(1 + P0.36 (where P is O2 pressure in Torr, and recommended for atmospheric applications (for any RH, near 90 ppb of NO2 and JNO2 = 0.006 s−1.

  5. MMA/DVB emulsion surface graft polymerization initiated by UV light.

    Science.gov (United States)

    Wang, Yongxin; Yang, Wantai

    2004-07-20

    Methyl methacrylate/1,2-divinylbenzene (MMA/DVB) in an opaque emulsion were successfully grafted onto the surface of polymeric substrate under the irradiation of UV light with benzophenone (BP) as a photoinitiator that was previously coated on the substrate surface. Monomer conversion, grafting efficiency, and grafting yields were determined by the gravimetric method. ATR-IR, AFM, and TEM were used to characterize the surface composition, to observe the topography of the grafted substrates, and to view inter-film colloid particles formed by cross-linking. The results reveal that, with the opaque MMA/DVB emulsion system and CPP film as substrate, the monomer conversion is in the range of 15-55%, the grafting efficiency is about 80%, the grafting yield reaches 5%, and the thickness of the graft layer can be controlled in the range 0.09-1.5 microm. Images of AFM show that the graft layer is piled up by nanoparticles (about 30-50 nm in diameter), which are linked together and tied to the substrate surface with covalent bonds. A possible model of surface graft polymerization including surface initiating, nucleation, and shish kebab growing is put forward to interpreting the above results.

  6. Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals

    Science.gov (United States)

    Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto

    2014-08-01

    Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.

  7. Modified surface morphology in surface ablation of cobalt-cemented tungsten carbide with pulsed UV laser radiation

    Science.gov (United States)

    Li, Tiejun; Lou, Qihong; Dong, Jingxing; Wei, Yunrong; Liu, Jingru

    2001-03-01

    Surface ablation of cobalt-cemented tungsten carbide hardmetal has been carried out in this work using a 308 nm, 20 ns XeCl excimer laser. The influence of ablation rate, surface roughness, surface micromorphology as well as surface phase structure on laser conditions including laser irradiance and pulse number have been investigated. The experimental results showed that the ablation rate and surface roughness were controlled by varying the number of pulses and laser irradiance. The microstructure and crystalline structure of irradiated surface layer varied greatly with different laser conditions. After 300 shots of laser irradiation at irradiance of 125 MW/cm 2, the surface micromorphology characterizing a uniform framework pattern of "hill-valleys". With the increment of laser shots at laser irradiance of 125 MW/cm 2, the microstructure of cemented tungsten carbide transformed from original polygon grains with the size of 3 μm to interlaced large and long grains after 300 shots of laser irradiation, and finally to gross grains with the size of 10 μm with clear grain boundaries after 700 shots. The crystalline structure of irradiated area has partly transformed from original WC to β-WC 1- x, then to α-W 2C and CW 3, and finally to W crystal. At proper laser irradiance and pulse number, cobalt binder has been selectively removed from the surface layer of hardmetal. It has been demonstrated that surface ablation with pulsed UV laser should be a feasible way to selectively remove cobalt binder from surface layer of cemented tungsten carbide hardmetal.

  8. Nanostructures and pinholes on W surfaces exposed to high flux D plasma at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.Z., E-mail: jaja880816@aliyun.com [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, B. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, C.; Fu, B.Q. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); De Temmerman, G. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); ITER Organization, Route de Vinon-Sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-08-15

    Nanostructures and pinholes formed on tungsten surface exposed to high fluxes (10{sup 24} m{sup −2} s{sup −1}) deuterium ions at 943 K and 1073 K were studied by scanning electron microscopy and electron backscatter diffraction. Nanostructure formation is observed at 943 K and 1073 K, and exhibits a strong dependence on the surface orientation. With increasing fluence, pinholes appear on the surface and are mainly observed on grains with surface normal near [1 1 1]. The pinholes are speculated to be caused by the rupture of bubbles formed near the surface. The formation of pinholes has no obvious relationship with the surface nanostructures.

  9. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  10. Heat Flux at the Surface of Metal Foil Heater under Evaporating Sessile Droplets

    Directory of Open Access Journals (Sweden)

    Igor Marchuk

    2015-01-01

    Full Text Available Evaporating water drops on a horizontal heated substrate were investigated experimentally. The heater was made of a constantan foil with the thickness of 25 μm and size of 42 × 35 mm2. The temperature of the bottom foil surface was measured by the infrared (IR camera. To determine the heat flux density during evaporation of liquid near the contact line, the Cauchy problem for the heat equation was solved using the temperature data. The maximum heat flux density is obtained in the contact line region and exceeds the average heat flux density from the entire foil surface by the factor of 5–7. The average heat flux density in the region wetted by the drop exceeds the average heat flux density from the entire foil surface by the factor of 3–5. This fact is explained by the heat influx from the foil periphery to the drop due to the relatively high heat conductivity coefficient of the foil material and high evaporation rate in the contact line region. Heat flux density profiles for pairs of sessile droplets are also investigated.

  11. Sensible and latent heat flux from radiometric surface temperatures at the regional scale: methodology and validation

    Directory of Open Access Journals (Sweden)

    F. Miglietta

    2009-02-01

    Full Text Available The CarboEurope Regional Experiment Strategy (CERES was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes on the basis of net radiation, surface radiometric temperature measurements and information obtained from available products derived from the Meteosat Second Generation (MSG geostationary meteorological satellite, weather stations and ground-based eddy covariance towers. It is based on a simplified bulk formulation of sensible heat flux that considers the degree of coupling between the vegetation and the atmosphere and estimates latent heat as the residual term of net radiation. Estimates of regional energy fluxes obtained in this way are validated at the regional scale by means of a comparison with direct flux measurements made by airborne eddy-covariance. The results show an overall good matching between airborne fluxes and estimates of sensible and latent heat flux obtained from radiometric surface temperatures that holds for different weather conditions and different land use types. The overall applicability of the proposed methodology to regional studies is discussed.

  12. Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and μPlasma printing

    Science.gov (United States)

    Verkuijlen, R. O. F.; van Dongen, M. H. A.; Stevens, A. A. E.; van Geldrop, J.; Bernards, J. P. C.

    2014-01-01

    In this study, we investigated the effect of UV-ozone and μPlasma printing on surface modification of polycarbonate (PC) and polyethylene naphthalate (PEN). The effects on the wetting behaviour was studied, in terms of surface energy and chemical modification of the treated substrate, by analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Both UV-ozone and μPlasma printing are effective ways to modify the wettability of both polymer substrates, substantially increasing the wetting envelope after a short treatment period. This increase is primarily due to an increase of the polar part of the surface energy. This is confirmed by ATR-FTIR and XPS, which show the formation of oxygen containing groups as well as a decrease in the aromatic Csbnd C bonds on the surface of the substrate due to the treatment. For both types of surface treatment, prolonged exposure showed no further increase in wettability, although continuous change in chemical composition of the surface was measured. This effect is more evident for UV-ozone treatment, as a larger increase in O/C ratio of the surface was measured as compared to μPlasma printing. It can be concluded that μPlasma printing results in a more chemically selective modification as compared to UV-ozone. In the case that chemical selectivity and treatment time are considered important, μPlasma printing is favourable over UV-ozone.

  13. Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and μPlasma printing

    Energy Technology Data Exchange (ETDEWEB)

    Verkuijlen, R.O.F. [Expertise Centre Thin Films and Functional Materials, Fontys University of Applied Sciences, 5600 AH Eindhoven (Netherlands); Dongen, M.H.A. van, E-mail: mha.vandongen@fontys.nl [Expertise Centre Thin Films and Functional Materials, Fontys University of Applied Sciences, 5600 AH Eindhoven (Netherlands); Stevens, A.A.E. [InnoPhysicsB.V., 5627 JM Eindhoven (Netherlands); Geldrop, J. van; Bernards, J.P.C. [Expertise Centre Thin Films and Functional Materials, Fontys University of Applied Sciences, 5600 AH Eindhoven (Netherlands)

    2014-01-30

    In this study, we investigated the effect of UV-ozone and μPlasma printing on surface modification of polycarbonate (PC) and polyethylene naphthalate (PEN). The effects on the wetting behaviour was studied, in terms of surface energy and chemical modification of the treated substrate, by analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Both UV-ozone and μPlasma printing are effective ways to modify the wettability of both polymer substrates, substantially increasing the wetting envelope after a short treatment period. This increase is primarily due to an increase of the polar part of the surface energy. This is confirmed by ATR-FTIR and XPS, which show the formation of oxygen containing groups as well as a decrease in the aromatic C-C bonds on the surface of the substrate due to the treatment. For both types of surface treatment, prolonged exposure showed no further increase in wettability, although continuous change in chemical composition of the surface was measured. This effect is more evident for UV-ozone treatment, as a larger increase in O/C ratio of the surface was measured as compared to μPlasma printing. It can be concluded that μPlasma printing results in a more chemically selective modification as compared to UV-ozone. In the case that chemical selectivity and treatment time are considered important, μPlasma printing is favourable over UV-ozone.

  14. High Gas Surface Densities yet Low UV Attenuation in z $\\sim$ 1 Disc Galaxies

    CERN Document Server

    Nordon, Raanan

    2016-01-01

    The gas in galaxies is both the fuel for star formation and a medium that attenuates the light of the young stars. We study the relations between UV attenuation, spectral slope, star formation rates, and molecular gas surface densities in a sample of 28 z$\\sim$1 and a reference sample of 32 z$\\sim$0 galaxies that are detected in CO, far-infrared, and rest frame UV. The samples are dominated by disc-like galaxies close to the main SFR--mass relation. We find that the location of the z$\\sim$1 galaxies on the IRX-$\\beta$ plane is correlated with their gas-depletion time-scale $\\tau_{dep}$ and can predict $\\tau_{dep}$ with a standard deviation of 0.16 dex. We use IRX-$\\beta$ to estimate the mean total gas column densities at the locations of star formation in the galaxies, and compare them to the mean molecular gas surface densities as measured from CO. We confirm previous results regarding high $N_H/A_V$ in z$\\sim$1 galaxies. We estimate an increase in the gas filling factor by a factor of 4--6 from z$\\sim$0 to ...

  15. Mapping the low surface brightness Universe in the UV band with Lya emission from IGM filaments

    CERN Document Server

    Silva, Marta B; Zaroubi, Saleem

    2016-01-01

    A large fraction of the baryonic matter in the Universe is located in filaments in the intergalactic medium. However, the low surface brightness of these filaments has not yet allowed their direct detection except in very special regions in the circum-galactic medium (CGM). Here we simulate the intensity and spatial fluctuations in Lyman Alpha ${\\rm (Ly\\alpha)}$ emission from filaments in the intergalactic medium (IGM) and discuss the prospects for the next generation of space based instruments to detect the low surface brightness universe at UV wavelengths. Starting with a high resolution N-body simulation we obtain the dark matter density fluctuations and associate baryons with the dark matter particles assuming that they follow the same spatial distribution. The IGM thermal and ionization state is set by a model of the UV background and by the relevant cooling processes for a hydrogen and helium gas. The ${\\rm Ly\\alpha}$ emissivity is then estimated, taking into account recombination and collisional excita...

  16. Study of micro and nano surface structures from UV irradiated urethane/urea elastomers.

    Science.gov (United States)

    Godinho, M H; Trindade, A C; Figueirinhas, J L; Melo, L V; Brogueira, P

    2007-02-01

    In this work we address new results obtained with a thin free standing flexible film (approximately 120 microm) of a urethane/urea copolymer related to the formation of micro and nano size structures [M.H. Godinho, A.C. Trindade, J.L. Figueirinhas, L.V. Melo, P. Brogueira, Synthetic Metals, 147(1-3), 209 (2004); M.H. Godinho, A.C. Trindade, J.L. Figueirinhas, L.V. Melo, P. Brogueira, Molecular Crystals and Liquid Crystals (2005)]. The copolymer was synthesized from a polypropylene oxide-based prepolymer with three isocyanate terminal groups (PU) and polybutadienediol (PBDO) with PBDO content of 40% wt. After casting and curing the film was cut into different samples and each exposed to UV radiation for different periods of time; 23, 25, 26, 31 and 49 h (lambda=254 nm) and later extracted with toluene and dried. The dried films were then studied by polarising optical microscopy (POM), small angle light scattering (SALS) and the surfaces exposed to UV radiation analyzed by means of atomic force microscopy (AFM). Before extraction with toluene a nanometer-flat surface, characterized by a mean roughness value Ra=0.59 nm, was obtained. Depending on exposure time to UV radiation and after extraction with toluene a corrugated surface, with features mum-sized in all axes, resulting in an increase of the overall mean roughness value to Ra=50.7 nm, starts to develop after 25 h of exposure time. This work gives evidence of the non-monotonous time behavior of the wrinkled surface growth that develops under the action of ultraviolet radiation. As the exposure time increases the free-standing films directly exposed surfaces show a decreasing density of the structures observed and an increasing characteristic peak-to-valley height. The peak-to-valley height measured for samples exposed for 23, 25, 26, 31 and 49 h, respectively 193, 383, 381, 1550 and 2039 nm and the corresponding mean roughness values are Ra=50.7 nm, 105.4, 116.8, 438.3 and 515.4 nm, respectively. Between 26 and

  17. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  18. Impact of currents on surface fluxes computation and their feedback on coastal dynamics

    Directory of Open Access Journals (Sweden)

    A. Olita

    2015-01-01

    Full Text Available A twin numerical experiment was conducted in the seas of Sardinia (Western Mediterranean to assess the impact, at coastal scales, of the use of relative winds (i.e. taking into account ocean surface currents in the computation of heat and momentum fluxes through bulk formulas. The model, the Regional Ocean Modeling System (ROMS, was implemented at 2 km of resolution in order to well resolve (sub-mesoscale dynamics. Small changes (1–2% in terms of spatially-averaged fluxes correspond to quite large spatial differences of such quantities (up to 15–20% and to comparably significant differences in terms of mean velocities of the surface currents. Wind power input of the wind stress to the ocean surface P results also reduced by a 15%, especially where surface currents are stronger. Quantitative validation with satellite SST suggests that such a modification on the fluxes improves the model solution especially in areas of cyclonic circulation, where the heat fluxes correction is predominant in respect to the dynamical correction. Surface currents changes above all in their fluctuating part, while the stable part of the flow show changes mainly in magnitude and less in its path. Both total and eddy kinetic energies of the surface current field results reduced in the experiment where fluxes took into account for surface currents. Dynamically, the largest correction is observed in the SW area where anticyclonic eddies approach the continental slope. This reduction also impacts the vertical dynamics and specifically the local upwelling that results diminished both in spatial extension as well in magnitude. Simulations suggest that, even at local scales and in temperate regions, it is preferable to take into account for such a component in fluxes computation. Results also confirm the tight relationship between local coastal upwelling and eddy-slope interactions in the area.

  19. Impact of currents on surface flux computations and their feedback on dynamics at regional scales

    Science.gov (United States)

    Olita, A.; Iermano, I.; Fazioli, L.; Ribotti, A.; Tedesco, C.; Pessini, F.; Sorgente, R.

    2015-08-01

    A twin numerical experiment was conducted in the seas around the island of Sardinia (Western Mediterranean) to assess the impact, at regional and coastal scales, of the use of relative winds (i.e., taking into account ocean surface currents) in the computation of heat and momentum fluxes through standard (Fairall et al., 2003) bulk formulas. The Regional Ocean Modelling System (ROMS) was implemented at 3 km resolution in order to well resolve mesoscale processes, which are known to have a large influence in the dynamics of the area. Small changes (few percent points) in terms of spatially averaged fluxes correspond to quite large differences of such quantities (about 15 %) in spatial terms and in terms of kinetics (more than 20 %). As a consequence, wind power input P is also reduced by ~ 14 % on average. Quantitative validation with satellite SST suggests that such a modification of the fluxes improves the model solution especially in the western side of the domain, where mesoscale activity (as suggested by eddy kinetic energy) is stronger. Surface currents change both in their stable and fluctuating part. In particular, the path and intensity of the Algerian Current and of the Western Sardinia Current (WSC) are impacted by the modification in fluxes. Both total and eddy kinetic energies of the surface current field are reduced in the experiment where fluxes took into account the surface currents. The main dynamical correction is observed in the SW area, where the different location and strength of the eddies influence the path and intensity of the WSC. Our results suggest that, even at local scales and in temperate regions, it would be preferable to take into account such a contribution in flux computations. The modification of the original code, substantially cost-less in terms of numerical computation, improves the model response in terms of surface fluxes (SST validated) and it also likely improves the dynamics as suggested by qualitative comparison with

  20. Structural origin of surface transformations in arsenic sulfide thin films upon UV-irradiation

    Science.gov (United States)

    Kovalskiy, Andriy; Vlcek, Miroslav; Palka, Karel; Buzek, Jan; York-Winegar, James; Oelgoetz, Justin; Golovchak, Roman; Shpotyuk, Oleh; Jain, Himanshu

    2017-02-01

    Photostructural transformations within AsxS100-x (x = 30, 33, 35, 40) thin films upon exposure to LED light of different wavelengths, in both air and argon environments have been studied by high resolution XPS, Raman spectroscopy and LEIS methods. These complementary results show that light of energies close to the band gap does not modify chemical composition of the surface, but induces simple photopolymerization reactions. Superbandgap UV light, however, significantly increases S/As ratio on the surface due to formation of S-rich layer under both environmental conditions. It is proposed that photovaporization of both oxide and non-oxide cage-like molecules is responsible for the observed effect.

  1. Analysis of the sensible heat flux from the exterior surface of buildings using time sequential thermography

    Science.gov (United States)

    Hoyano, Akira; Asano, Kohichi; Kanamaru, Takehisa

    In this study, the distribution of surface temperature on the surface of two buildings having different characteristics was measured using a thermal infrared camera. Measurements were made in the summer, the period in Japan during which heat flux from buildings is of major interest, and again in the winter for comparison purposes. The heat characteristics of each building were obtained throughout the day by time-sequential thermography (TST), and the surface temperature of each physical element was classified according to temperature, shape, material and position. When the temperature of a surface could not be determined by an infrared camera mounted on the top of a building or a pole, temperature measurements were made using a hand-held IR camera. In addition, the sensible heat flux from each surface was calculated using TST and the surface area of each element as calculated from blueprints of the buildings.

  2. High-resolution hot-film measurement of surface heat flux to an impinging jet

    Science.gov (United States)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  3. Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds

    Science.gov (United States)

    McDavid, R. M.; Thomas, B. G.

    1996-08-01

    Steady-state finite-element models have been formulated to investigate the coupled fluid flow and thermal behavior of the top-surface flux layers in continuous casting of steel slabs. The three-dimensional (3-D) FIDAP model includes the shear stresses imposed on the flux/steel interface by flow velocities calculated in the molten steel pool. It also includes different temperature-dependent powder properties for solidification and melting. Good agreement between the 3-D model and experimental measurements was obtained. The shear forces, imposed by the steel surface motion toward the submerged entry nozzle (SEN), create a large recirculation zone in the liquid flux pool. Its depth increases with increasing casting speed, increasing liquid flux conductivity, and decreasing flux viscosity. For typical conditions, this zone contains almost 4 kg of flux, which contributes to an average residence time of about 2 minutes. Additionally, because the shear forces produced by the narrowface consumption and the steel flow oppose each other, the flow in the liquid flux layer separates at a location centered 200 mm from the narrowface wall. This flow separation depletes the liquid flux pool at this location and may contribute to generically poor feeding of the mold-strand gap there. As a further consequence, a relatively cold spot develops at the wideface mold wall near the separation point. This nonuniformity in the temperature distribution may result in nonuniform heat removal, and possibly nonuniform initial shell growth in the meniscus region along the wideface off-corner region. In this way, potential steel quality problems may be linked to flow in the liquid flux pool.

  4. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Directory of Open Access Journals (Sweden)

    J. Vilà-Guerau de Arellano

    2009-06-01

    Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.

  5. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Directory of Open Access Journals (Sweden)

    J. Vilà-Guerau de Arellano

    2009-02-01

    Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.

  6. Intraurban Differences of Surface Energy Fluxes in a Central European City

    Science.gov (United States)

    Offerle, B.; Grimmond, C. S. B.; Fortuniak, K.; Pawlak, W.

    2006-01-01

    Surface properties, such as roughness and vegetation, which vary both within and between urban areas, play a dominant role in determining surface atmosphere energy exchanges. The turbulent heat flux partitioning is examined within a single urban area through measurements at four locations in Łódź, Poland, during August 2002. The dominant surface cover (land use) at the sites was grass (airport), 1 3-story detached houses with trees (residential), large 2 4-story buildings (industrial), and 3 6-story buildings (downtown). However, vegetation, buildings, and other “impervious” surface coverage vary within some of these sites on the scale of the turbulent flux measurements. Vegetation and building cover for Łódź were determined from remotely sensed data and an existing database. A source-area model was then used to develop a lookup table to estimate surface cover fractions more accurately for individual measurements. Bowen ratios show an inverse relation with increasing vegetation cover both for a site and, more significant, between sites, as expected. Latent heat fluxes at the residential site were less dependent on short-term rainfall than at the grass site. Sensible heat fluxes were positively correlated with impervious surface cover and building intensity. These results are consistent with previous findings (focused mainly on differences between cities) and highlight the value of simple measures of land cover as predictors of spatial variations of urban climates both within and between urban areas.

  7. ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic

    Science.gov (United States)

    Chatterjee, S.; Nuncio, M.; Satheesan, K.

    2017-07-01

    The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.

  8. Incorporation of water vapor transfer in the JULES land surface model: Implications for key soil variables and land surface fluxes

    Science.gov (United States)

    Garcia Gonzalez, Raquel; Verhoef, Anne; Luigi Vidale, Pier; Braud, Isabelle

    2012-05-01

    This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapor transfer. The model was tested for three sites representative of semiarid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia), and Audubon site (Arizona, USA). Water vapor flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapor diffusion; thermal vapor flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapor flux had an effect on the diurnal evolution of evaporation, soil moisture content, and surface temperature. The incorporation of additional processes, such as water vapor flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

  9. Space weathering of asteroidal surfaces. Influence on the UV-Vis spectra

    Science.gov (United States)

    Kaňuchová, Z.; Baratta, G. A.; Garozzo, M.; Strazzulla, G.

    2010-07-01

    Context. The surfaces of airless bodies in the Solar System are continuously altered by the bombardment of micrometeoroids and irradiation by solar wind, flares, and cosmic particles. Major effects of this process - space weathering - are darkening and “reddening” of the spectra of surface materials, as well as a “degrading” of absorption features. Aims: We studied the changes induced by energetic ion irradiation in the ultraviolet-visual-near-infrared (UV-Vis-NIR) (0.2-0.98 μm) reflectance spectra of targets selected to mimic the surfaces of airless bodies in the inner Solar System. Our chosen targets are olivine pellets, pure or covered by an organic polymer (polystyrene), which is transparent before irradiation. Polystyrene is used as a template for organic matter of low volatility that can be present on asteroidal surfaces. Moreover we measured the changes induced by ion irradiation in the absorption coefficient of the polymer. The purpose was to have a tool to better compare laboratory with observed spectra and distinguish between planetary objects with pure silicate surfaces and those whose surface is covered by organic matter exposed to cosmic ion bombardment. Methods: The samples were irradiated in vacuum, at room temperature, with 200 keV protons or 200-400 keV argon ions. Before, during, and after irradiation diffuse reflectance spectra were acquired. Polystyrene films were also deposited on quartz substrates and irradiated while transmittance spectra were recorded. Results: We measured the variations of the absorption coefficient of polystyrene as a function of ion fluence. We showed that after ion irradiation the diffuse reflectance spectra of the samples covered by organics exhibit a much more significant variation than those of pure silicates. The spectra of targets made of olivine plus polystyrene can be fitted by using the measured absorption coefficient of polystyrene. Conclusions: The results obtained for pure olivine extend to the UV the

  10. Estimating the amount and distribution of radon flux density from the soil surface in China.

    Science.gov (United States)

    Zhuo, Weihai; Guo, Qiuju; Chen, Bo; Cheng, Guan

    2008-07-01

    Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.

  11. Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models

    Science.gov (United States)

    Randall, D. A.; Cess, R. D.; Blanchet, J. P.; Boer, G. J.; Dazlich, D. A.; Del Genio, A. D.; Deque, M.; Dymnikov, V.; Galin, V.; Ghan, S. J.

    1992-01-01

    Responses of the surface energy budgets and hydrologic cycles of 19 atmospheric general circulation models to an imposed, globally uniform sea surface temperature perturbation of 4 K were analyzed. The responses of the simulated surface energy budgets are extremely diverse and are closely linked to the responses of the simulated hydrologic cycles. The response of the net surface energy flux is not controlled by cloud effects; instead, it is determined primarily by the response of the latent heat flux. The prescribed warming of the oceans leads to major increases in the atmospheric water vapor content and the rates of evaporation and precipitation. The increased water vapor amount drastically increases the downwelling IR radiation at the earth's surface, but the amount of the change varies dramatically from one model to another.

  12. Use of barium-strontium carbonatite for flux welding and surfacing of mining machines

    Science.gov (United States)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.

    2017-09-01

    The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.

  13. Tracking of magnetic flux concentrations over a five-day observation, and an insight into surface magnetic flux transport

    Directory of Open Access Journals (Sweden)

    Iida Yusuke

    2016-01-01

    Full Text Available The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squared displacement of magnetic flux concentrations on the elapsed time is investigated in this paper via a feature-recognition technique and a continual five-day magnetogram. This represents the longest time scale over which a satellite observation has ever been performed for this problem. The dependence is found to follow a power law and differ significantly from that of diffusion transport. Furthermore, there is a change in the behavior at a spatial scale of 103.8 km. A super-diffusion behavior with an index of 1.4 is found at smaller scales, while changing to a sub-diffusion behavior with an index of 0.6 on larger ones. We interpret this difference in the transport regime as coming from the network-flow pattern.

  14. Tracking of magnetic flux concentrations over a five-day observation and an insight into surface magnetic flux transport

    CERN Document Server

    Iida, Y

    2016-01-01

    The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squared displacement of magnetic flux concentrations upon the elapsed time is investigated in this paper via a feature-recognition technique and a continual five-day magnetogram. This represents the longest time scale over which a satellite observation has ever been performed for this problem. The dependence is found to follow a power-law and differ significantly from that of diffusion transport. Furthermore there is a change in the behavior at a spatial scale of 10^{3.8} km. A super-diffusion behavior with an index of 1.4 is found on smaller scales, while changing to a sub-diffusion behavior with an index of 0.6 on larger ones. I interpret this difference in the transport regime as coming from the network-flow pattern.

  15. Dynamics of magnetic flux tubes in close binary stars II. Nonlinear evolution and surface distributions

    CERN Document Server

    Holzwarth, V R

    2003-01-01

    Observations of magnetically active close binaries with orbital periods of a few days reveal the existence of starspots at preferred longitudes (with respect to the direction of the companion star). We numerically investigate the non-linear dynamics and evolution of magnetic flux tubes in the convection zoneof a fast-rotating component of a close binary system and explore whether the tidal effects are able to generate non-uniformities in the surface distribution of erupting flux tubes. Assuming a synchronised system with a rotation period of two days and consisting of two solar-type components, both the tidal force and the deviation of the stellar structure from spherical shape are considered in lowest-order perturbation theory. The magnetic field is initially stored in the form of toroidal magnetic flux rings within the stably stratified overshoot region beneath the convection zone. Once the field has grown sufficiently strong, instabilities initiate the formation of rising flux loops, which rise through the...

  16. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lianhong [ORNL; Meyers, T. P. [NOAA ATDD; Pallardy, Stephen G. [University of Missouri; Hanson, Paul J [ORNL; Yang, Bai [ORNL; Heuer, Mark [ATDD, NOAA; Hosman, K. P. [University of Missouri; Liu, Qing [ORNL; Riggs, Jeffery S [ORNL; Sluss, Daniel Wayne [ORNL; Wullschleger, Stan D [ORNL

    2007-01-01

    We conducted observations and modeling at a forest site to assess importance of biomass heat and biochemical energy storages for land-atmosphere interactions. We used the terrestrial ecosystem Fluxes And Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the calculated biomass energy storages. Effects of energy storages on flux exchanges and variations of radiative temperature were investigated by contrasting FAPIS simulations with and without the storages. We found that with the storages, FAPIS predictions agreed with measurements well; without them, FAPIS performance deteriorated for all surface energy fluxes. The biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 Wm-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Without-storage simulations produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with with-storage simulations. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the biomass energy storages act to dampen diurnal temperature range. Therefore, biomass heat and biochemical energy storages are an integral and substantial part of the surface energy budget and play a role in modulating land surface temperatures and must be considered in studies of land - atmosphere interactions and climate modeling.

  17. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    NARCIS (Netherlands)

    Oláh, Attila; Hillborg, Henrik; Vancso, G. Julius

    2005-01-01

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization te

  18. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector;

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from...... and parallel; as well as the iterative algorithm included in the TSM to disaggregate the soil-surface composite temperature into its separate components. Continuous field measurements of composite soil-vegetation surface temperature (T) and bare soil temperature (T) from thermal infrared sensors were used...... T and the simplified version that uses separate inputs of T and T' were minor. This demonstrates the robustness of the iterative procedure to disaggregate a composite soil-vegetation temperature into separate soil and vegetation components in semiarid environments with good prospects for image...

  19. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface.

    Science.gov (United States)

    Shih, Tzu-Ching; Yuan, Ping; Lin, Win-Li; Kou, Hong-Sen

    2007-11-01

    This study focuses on the effect of the temperature response of a semi-infinite biological tissue due to a sinusoidal heat flux at the skin. The Pennes bioheat transfer equation such as rho(t)c(t)( partial differentialT/ partial differentialt)+W(b)c(b)(T-T(a))=k partial differential(2)T/ partial differentialx(2) with the oscillatory heat flux boundary condition such as q(0,t)=q(0)e(iomegat) was investigated. By using the Laplace transform, the analytical solution of the Pennes bioheat transfer equation with surface sinusoidal heating condition is found. This analytical expression is suitable for describing the transient temperature response of tissue for the whole time domain from the starting periodic oscillation to the final steady periodic oscillation. The results show that the temperature oscillation due to the sinusoidal heating on the skin surface is unstable in the initial period. Further, it is unavailable to predict the blood perfusion rate via the phase shifting between the surface heat flux and the surface temperature. Moreover, the lower frequency of sinusoidal heat flux on the skin surface induces a more sensitive phase shift response to the blood perfusion rate change, but extends the beginning time of sampling because of the avoidance of the unavailable first cyclic oscillation.

  20. Estimation of surface heat flux for ablation and charring of thermal protection material

    Science.gov (United States)

    Qian, Wei-qi; He, Kai-feng; Zhou, Yu

    2016-07-01

    Ablation of the thermal protection material of the reentry hypersonic flight vehicle is a complex physical and chemical process. To estimate the surface heat flux from internal temperature measurement is much more complex than the conventional inverse heat conduction problem case. In the paper, by utilizing a two-layer pyrogeneration-plane ablation model to model the ablation and charring of the material, modifying the finite control volume method to suit for the numerical simulation of the heat conduction equation with variable-geometry, the CGM along with the associated adjoint problem is developed to estimate the surface heat flux. This estimation method is verified with a numerical example at first, the results show that the estimation method is feasible and robust. The larger is the measurement noise, the greater is the deviation of the estimated result from the exact value, and the measurement noise of ablated surface position has a significant and more direct influence on the estimated result of surface heat flux. Furthermore, the estimation method is used to analyze the experimental data of ablation of blunt Carbon-phenolic material Narmco4028 in an arc-heater. It is shown that the estimated surface heat flux agrees with the heating power value of the arc-heater, and the estimation method is basically effective and potential to treat the engineering heat conduction problem with ablation.

  1. Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue (Conference Presentation)

    Science.gov (United States)

    Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad

    2016-03-01

    Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.

  2. Diverse policy implications for future ozone and surface UV in a changing climate

    Science.gov (United States)

    Butler, A. H.; Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.; Young, P. J.; Fahey, D. W.; Rosenlof, K. H.

    2016-06-01

    Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.

  3. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  4. UV surface modification of a new nanocomposite polymer to improve cytocompatibility.

    Science.gov (United States)

    Olbrich, Michael; Punshon, Geoffrey; Frischauf, Irene; Salacinski, Henryk J; Rebollar, Esther; Romanin, Christoph; Seifalian, Alexander M; Heitz, Johannes

    2007-01-01

    A novel modified nanocomposite was studied for the adhesion and proliferation of the human umbilical vein endothelial cell (HUVEC) line EA.hy926. The nanocomposite under investigation was poly(carbonate-urea)urethane with silsesquioxane nano-cages, here in the form of a mixture of two polyhedral oligomeric silsesquioxanes. The nanocomposite surfaces were exposed to ultraviolet (UV) light of a Xe(*)(2)-excimer lamp at a wavelength of 172 nm in an ammonia atmosphere. The effects of the irradiation were characterized by atomic force and scanning electron microscopy (AFM, SEM), X-ray photo-electron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR) using an attenuated total reflection (ATR) device and measurements of advancing water contact angle (CA). The irradiation resulted in the introduction of new hydrophilic N- and O-containing groups into the surface, which was initially amphiphilic, while surface morphology remained mainly unchanged. Slight chemical changes were also observed for the silsesquioxane nano-cages at the surface. Onto the untreated and irradiated samples HUVECs were seeded and grown for various durations in culture. Standard tissue-culture polystyrene (PS) was employed as a positive control to check the efficiency of the cell-culture methods. Viability and proliferation of the cells were then assessed using a non-radioactive assay. Compared to the untreated nanocomposite polymer, irradiation times of at least 5 min resulted in a significantly increased cell proliferation between 3 and 8 days after seeding with the HUVEC line EA.hy926.

  5. Continuous wavelet transform and discrete multi-resolution analysis of surface fluxes and atmospheric stability

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Variations of land surface fluxes of sensible heat (H), latent heat ( LE ), and CO2(F-CO2) obtained from the eddy-covariance measurements above a winter wheat field from March 30 to April 24, 2001 have been studied at scales ranging from 10 minutes to days. Wavelet transform is used in the analysis of land surface fluxes and atmospheric stability (ζ) calculated from the measurements to reveal the changes in land surface fluxes in hours to days scales. The main results are: (1) Concise and compact information about the fluxes, net radiation (Rn), temperature (T) and ζ in the scale-time domain are extracted from the data by continuous wavelet analysis,and 1 day, 0.5 day and short-period (shorter than 0.5 day) components are revealed. Continuous wavelet coefficients can be used to characterize periodic components of changes in fluxes and ζ. (2) Discrete-time multi-resolution analysis can be used to concentrate total energy variance of time series of the measurements to a small number of coefficients, plotting the relative energy distribution to get several meaningful characteristics of the data. (3) Under neutral atmospheric conditions, the relative energy distributions of the Haar multi-resolution analysis of the three non-dimensional coefficients (T/T* , q/q * and c/c * ) display clear similarities.

  6. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Keppel-Aleks, G [California Institute of Technology, Pasadena; Wennberg, PO [California Institute of Technology, Pasadena; Washenfelder, RA [National Oceanic and Atmospheric Admin; Wunch, D [California Institute of Technology, Pasadena; Schneider, T [California Institute of Technology, Pasadena; Toon, GC [Jet Propulsion Laboratory, Pasadena, CA; Andres, Robert Joseph [ORNL; Blavier, J-F [Jet Propulsion Laboratory, Pasadena, CA; Connor, B [BC Consulting; Davis, K. J. [Pennsylvania State University; Desai, Desai Ankur R. [University of Wisconsin, Madison; Messerschmidt, J [University of Bremen, Bremen, Germany; Notholt, J [University of Bremen, Bremen, Germany; Roehl, CM [California Institute of Technology, Pasadena; Sherlock, V [National Institue of Water and Atmospheric Research, New Zealand; Stephens, BB [National Center for Atmospheric Research (NCAR); Vay, SA [NASA Langley Research Center; Wofsy, Steve [Harvard University

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  7. Measurements of energy and water vapor fluxes over different surfaces in the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    S. Liu

    2010-11-01

    Full Text Available We analyzed the seasonal variations of energy and water vapor fluxes over three different surfaces: irrigated cropland (Yingke, YK, alpine meadow (A'rou, AR, and spruce forest (Guantan, GT. The energy and water vapor fluxes were measured using eddy covariance systems (EC and a large aperture scintillometer (LAS in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site, and discussed the differences between the sensible heat fluxes measured by EC and LAS. The results show that the main EC source areas were within a radius of 250 m at all sites. The main source area for the LAS (with a path length of 2390 m stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed according to season and site, and there were characteristic seasonal variations in the energy and water vapor fluxes at all sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The evapotranspiration (ET at YK was larger than those at the other two sites. The monthly ET reached its peak in July at YK and in June at GT in both 2008 and 2009, while it reached its peak in August at AR in 2008 and in June in 2009. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the energy imbalance of EC, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.

  8. Preservation of Biomarkers from Cyanobacteria Mixed with Mars-Like Regolith Under Simulated Martian Atmosphere and UV Flux.

    Science.gov (United States)

    Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela

    2016-06-01

    The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m(2) of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our

  9. Preservation of Biomarkers from Cyanobacteria Mixed with Mars­Like Regolith Under Simulated Martian Atmosphere and UV Flux

    Science.gov (United States)

    Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela

    2016-06-01

    The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m2 of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our

  10. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  11. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  12. Roles of spatially varying vegetation on surface fluxes within a small mountainous catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-01-01

    Full Text Available Understanding the role of ecosystems in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. This study compares and contrasts the seasonal surface fluxes of sensible heat, latent heat and carbon fluxes measured over different vegetation in a rangeland mountainous environment within the Reynolds Creek Experimental Watershed. Eddy covariance systems were used to measure surface fluxes over low sagebrush (Artemesia arbuscula, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Estimated cumulative evapotranspiratation from the sagebrush, aspen understory, and aspen trees were 399 mm, 205 mm and 318 mm. A simple water balance of the catchment indicated that of the 700 mm of areal average precipitation, 442 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 7 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher above the aspen canopy than from the other sites. While growing season carbon fluxes were very similar for the sagebrush and aspen understory, latent heat fluxes for the sagebrush were consistently higher. Higher evapotranspiration from the sagebrush was likely because it is more exposed to the wind. Sensible heat flux from the aspen tended to be slightly less than the sagebrush site during the growing season when the leaves were actively transpiring, but exceeded that from the sagebrush in May, September and October when the net radiation was offset by

  13. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  14. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes

    Directory of Open Access Journals (Sweden)

    A. Klonecki

    2010-08-01

    Full Text Available In the context of raising greenhouse gas concentrations, and the potential feedbacks between climate and the carbon cycle, there is an urgent need to monitor the exchanges of carbon between the atmosphere and both the ocean and the land surfaces. In the so-called top-down approach, the surface fluxes of CO2 are inverted from the observed spatial and temporal concentration gradients. The concentrations of CO2 are measured in-situ at a number of surface stations unevenly distributed over the Earth while several satellite missions may be used to provide a dense and better-distributed set of observations to complement this network. In this paper, we compare the ability of different CO2 concentration observing systems to constrain surface fluxes. The various systems are based on realistic scenarios of sampling and precision for satellite and in-situ measurements. It is shown that satellite measurements based on the differential absorption technique (such as those of SCIAMACHY, GOSAT or OCO provide more information than the thermal infrared observations (such as those of AIRS or IASI. The OCO observations will provide significantly better information than those of GOSAT. A CO2 monitoring mission based on an active (lidar technique could potentially provide an even better constraint. This constraint can also be realized with the very dense surface network that could be built with the same funding as that of the active satellite mission. Despite the large uncertainty reductions on the surface fluxes that may be expected from these various observing systems, these reductions are still insufficient to reach the highly demanding requirements for the monitoring of anthropogenic emissions of CO2 or the oceanic fluxes at a spatial scale smaller than that of oceanic basins. The scientific objective of these observing system should therefore focus on the fluxes linked to vegetation and land ecosystem dynamics.

  15. Mapping regional distribution of land surface heat fluxes on the southern side of the central Himalayas using TESEBS

    Science.gov (United States)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2016-05-01

    Recent scientific studies based on large-scale climate model have highlighted the importance of the heat release from the southern side of the Himalayas for the development of South Asian Summer Monsoon. However, studies related to land surface heat fluxes are nonexistent on the southern side. In this study, we test the feasibility of deriving land surface heat fluxes on the central Himalayan region using Topographically Enhanced Surface Energy Balance System (TESEBS), which is forced by MODIS land surface products and Global Land Data Assimilation System (GLDAS) meteorological data. The model results were validated using the first eddy covariance measurement system established in the southern side of the central Himalayas. The derived land surface heat fluxes were close to the field measurements with mean bias of 15.97, -19.89, 8.79, and -20.39 W m-2 for net radiation flux, ground heat flux, sensible heat flux, and latent heat flux respectively. Land surface heat fluxes show strong contrast in pre monsoon, summer monsoon, post monsoon, and winter seasons and different land surface states among the different physiographic regions. In the central Himalayas, the latent heat flux is the dominant consumer of available energy for all physiographic regions except for the High Himalaya where the sensible heat flux is high.

  16. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  17. The practical application of scintillometers in determining the surface fluxes of heat, moisture and momentum

    NARCIS (Netherlands)

    Green, A.E.

    2001-01-01

    This thesis has collated one review chapter and five experiments concerned with addressing the question, 'how successful is the scintillometer method in determining the surface fluxes of heat, moisture and momentum and under what circumstances does it appear to fail?' Answering this question is impo

  18. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy imba

  19. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy imba

  20. Multi-sensor remote sensing parameterization of heat fluxes over heterogeneous land surfaces

    NARCIS (Netherlands)

    Faivre, R.D.

    2014-01-01

    The parameterization of heat transfer by remote sensing, and based on SEBS scheme for turbulent heat fluxes retrieval, already proved to be very convenient for estimating evapotranspiration (ET) over homogeneous land surfaces. However, the use of such a method over heterogeneous landscapes (e.g. sem

  1. The practical application of scintillometers in determining the surface fluxes of heat, moisture and momentum

    NARCIS (Netherlands)

    Green, A.E.

    2001-01-01

    This thesis has collated one review chapter and five experiments concerned with addressing the question, 'how successful is the scintillometer method in determining the surface fluxes of heat, moisture and momentum and under what circumstances does it appear to fail?'

  2. Sensible and latent heat flux from radiometric surface temperatures at the regional scale: methodology and validation

    NARCIS (Netherlands)

    Miglietta, F.; Gioli, B.; Brunet, Y.; Hutjes, R.W.A.; Matese, A.; Sarrat, C.; Zaldei, A.

    2009-01-01

    The CarboEurope Regional Experiment Strategy (CERES) was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes

  3. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Dries, van den K.; Pino, D.

    2009-01-01

    We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL). A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of i

  4. INVESTIGATION OF SOLAR ABSORPTANCE OF BUILDING EXTERNAL SURFACES FROM HEAT FLUX POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    Meral ÖZEL

    2006-02-01

    Full Text Available In this study, solar absorptance of external surfaces of buildings has been numerically investigated from the heat gain and losses point of view. For this purpose, external surface solar absorptance was icreased from 0 to 1with an ratio of 0.1 and, for the summer and winter conditions, heat fluxs was calculated by considering orientations of the wall and its roof for brick and concrete structure materials. Besides, external surface absorptance was assumed as 0.2, 0.5 and 0.9, respectively. Than, heat gain and losses were calculated to insulation thickness increasing on the outdoor surface of wall. Results obtained were presented as graphics

  5. Estimating Turbulent Surface Fluxes from Small Unmanned Aircraft: Evaluation of Current Abilities

    Science.gov (United States)

    de Boer, G.; Lawrence, D.; Elston, J.; Cassano, J. J.; Mack, J.; Wildmann, N.; Nigro, M. A.; Ivey, M.; Wolfe, D. E.; Muschinski, A.

    2014-12-01

    Heat transfer between the atmosphere and Earth's surface represents a key component to understanding Earth energy balance, making it important in understanding and simulating climate. Arguably, the oceanic air-sea interface and Polar sea-ice-air interface are amongst the most challenging in which to measure these fluxes. This difficulty results partially from challenges associated with infrastructure deployment on these surfaces and partially from an inability to obtain spatially representative values over a potentially inhomogeneous surface. Traditionally sensible (temperature) and latent (moisture) fluxes are estimated using one of several techniques. A preferred method involves eddy-correlation where cross-correlation between anomalies in vertical motion (w) and temperature (T) or moisture (q) is used to estimate heat transfer. High-frequency measurements of these quantities can be derived using tower-mounted instrumentation. Such systems have historically been deployed over land surfaces or on ships and buoys to calculate fluxes at the air-land or air-sea interface, but such deployments are expensive and challenging to execute, resulting in a lack of spatially diverse measurements. A second ("bulk") technique involves the observation of horizontal windspeed, temperature and moisture at a given altitude over an extended time period in order to estimate the surface fluxes. Small Unmanned Aircraft Systems (sUAS) represent a unique platform from which to derive these fluxes. These sUAS can be small ( 1 m), lightweight ( 700 g), low cost ( $2000) and relatively easy to deploy to remote locations and over inhomogeneous surfaces. We will give an overview of the ability of sUAS to provide measurements necessary for estimating surface turbulent fluxes. This discussion is based on flights in the vicinity of the 1000 ft. Boulder Atmospheric Observatory (BAO) tower, and over the US Department of Energy facility at Oliktok Point, Alaska. We will present initial comparisons

  6. Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope

    Science.gov (United States)

    Makrushin, Andrey; Scheidat, Tobias; Vielhauer, Claus

    2015-03-01

    In digital crime scene forensics, contactless non-destructive detection and acquisition of latent fingerprints by means of optical devices such as a high-resolution digital camera, confocal microscope, or chromatic white-light sensor is the initial step prior to destructive chemical development. The applicability of an optical sensor to digitalize latent fingerprints primarily depends on reflection properties of a substrate. Metallic painted surfaces, for instance, pose a problem for conventional sensors which make use of visible light. Since metallic paint is a semi-transparent layer on top of the surface, visible light penetrates it and is reflected off of the metallic flakes randomly disposed in the paint. Fingerprint residues do not impede light beams making ridges invisible. Latent fingerprints can be revealed, however, using ultraviolet light which does not penetrate the paint. We apply a UV-VIS spectroscope that is capable of capturing images within the range from 163 to 844 nm using 2048 discrete levels. We empirically show that latent fingerprints left behind on metallic painted surfaces become clearly visible within the range from 205 to 385 nm. Our proposed streakiness score feature determining the proportion of a ridge-valley pattern in an image is applied for automatic assessment of a fingerprint's visibility and distinguishing between fingerprint and empty regions. The experiments are carried out with 100 fingerprint and 100 non-fingerprint samples.

  7. Definition of Total Energy budget equation in terms of moist-air Enthalpy surface flux

    CERN Document Server

    Marquet, Pascal

    2015-01-01

    Uncertainty exists concerning the proper formulation of surface heat fluxes, namely the sum of "sensible" and "latent" heat fluxes, and in fact concerning these two fluxes if they are considered as separate fluxes. In fact, eddy flux of moist-air energy must be defined as the eddy transfer of moist-air specific enthalpy ($\\overline{w' h'}$), where the specific enthalpy ($h$) is equal to the internal energy of moist air plus the pressure divided by the density (namely $h = e_{\\rm int} + p/\\rho$). The fundamental issue is to compute this local (specific) moist-air enthalpy ($h$), and in particular to determine absolute reference value of enthalpies for dry air and water vapour $(h_d)_{\\rm ref}$ and $(h_v)_{\\rm ref}$. New results shown in Marquet (QJRMS 2015, arXiv:1401.3125) are based on the Third-law of Thermodynamics and can allow these computations. In this note, this approach is taken to show that Third-law based values of moist-air enthalpy fluxes is the sum of two terms. These two terms are similar to wha...

  8. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  9. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  10. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  11. VARIABILITY OF ATMOSPHERIC CO2 OVER INDIA AND SURROUNDING OCEANS AND CONTROL BY SURFACE FLUXES

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2012-08-01

    Full Text Available In the present study, seasonal and inter-annual variability of atmospheric CO2 concentration over India and surrounding oceans during 2002–2010 derived from Atmospheric InfrarRed Sounder observation and their relation with the natural flux exchanges over terrestrial Indian and surrounding oceans were analyzed. The natural fluxes over the terrestrial Indian in the form of net primary productivity (NPP were simulated based on a terrestrial biosphere model governed by time varying climate parameters (solar radiation, air temperature, precipitation etc and satellite greenness index together with the land use land cover and soil attribute maps. The flux exchanges over the oceans around India (Tropical Indian Ocean: TIO were calculated based on a empirical model of CO2 gas dissolution in the oceanic water governed by time varying upper ocean parameters such as gradient of partial pressure of CO2 between ocean and atmosphere, winds, sea surface temperature and salinity. Comparison between the variability of atmospheric CO2 anomaly with the anomaly of surface fluxes over India and surrounding oceans suggests that biosphere uptake over India and oceanic uptake over the south Indian Ocean could play positive role on the control of seasonal variability of atmospheric carbon dioxide growth rate. On inter-annual scale, flux exchanges over the tropical north Indian Ocean could play positive role on the control of atmospheric carbon dioxide growth rate.

  12. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model

    Directory of Open Access Journals (Sweden)

    M. Gehlen

    2006-01-01

    Full Text Available This study focuses on an improved representation of the biological soft tissue pump in the global three-dimensional biogeochemical ocean model PISCES. We compare three parameterizations of particle dynamics: (1 the model standard version including two particle size classes, aggregation-disaggregation and prescribed sinking speed; (2 an aggregation-disaggregation model with a particle size spectrum and prognostic sinking speed; (3 a mineral ballast parameterization with no size classes, but prognostic sinking speed. In addition, the model includes a description of surface sediments and organic carbon early diagenesis. Model output is compared to data or data based estimates of ocean productivity, pe-ratios, particle fluxes, surface sediment bulk composition and benthic O2 fluxes. Model results suggest that different processes control POC fluxes at different depths. In the wind mixed layer turbulent particle coagulation appears as key process in controlling pe-ratios. Parameterization (2 yields simulated pe-ratios that compare well to observations. Below the wind mixed layer, POC fluxes are most sensitive to the intensity of zooplankton flux feeding, indicating the importance of zooplankton community composition. All model parameters being kept constant, the capability of the model to reproduce yearly mean POC fluxes below 2000 m and benthic oxygen demand does at first order not dependent on the resolution of the particle size spectrum. Aggregate formation appears essential to initiate an intense biological pump. At great depth the reported close to constant particle fluxes are most likely the result of the combined effect of aggregate formation and mineral ballasting.

  13. Effect of Vacuum on the Occurrence of UV-Induced Surface Photoluminescence, Transmission Loss, and Catastrophic Surface Damage

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; Runkel, M; Demos, S G; Kozlowski, M R; Wegner, P J

    2000-07-20

    Vacuum degrades the transmittance and catastrophic damage performance of fused-silica surfaces, both bare and silica-sol anti-reflective coated. These effects may be important in certain space application of photonics devices. When exposed to hundreds of 355-rim, 10-ns laser pulses with fluences in the 2-15 J/cm{sup 2} range, transmittance loss is due to both increased reflectance and absorption at the surface. Spectroscopic measurements show that the absorbed light induces broadband fluorescence from the visible to infrared and that the peak photoluminescence wavelength depends cumulative fluence. The effect appears to be consistent with the formation of surface SiO{sub x} (x<2) with progressively lower x as cumulative fluence increases. Conversely, low fluence CW UV irradiation of fluorescent sites in air reduces the fluorescence signal, which suggests a photochemical oxidation reaction back to Si0{sub 2}. The occurrence of catastrophic damage (craters that grow on each subsequent pulse) also increases in a vacuum relative to air for both coated and uncoated samples. In both cases, the 50% damage probability for 100 one-mm sites decreases from about 45 to 35 J/cm{sup 2} for superpolished fused silica at pressures in the 10{sup -6} Torr range. The damage probability distribution in 10 Torr of air is close to that at one atmosphere of air. The damage morphology of the crater formed in vacuum differs substantially from that in air and has a more melted appearance and does not show cracking and flaking. These differences are possibly due to more coupling of the plasma shock wave into the surface with air present but slower heat dissipation in a vacuum. While it is attractive to propose that formation of sub-stoichiometric silica on the surface in a vacuum environment enhances the probability of catastrophic damage, initial experiments have not yet been able to establish a mechanistic link between the two phenomena.

  14. Formation of extreme surface turbulent heat fluxes from the ocean to the atmosphere in the North Atlantic

    Science.gov (United States)

    Tilinina, N. D.; Gulev, S. K.; Gavrikov, A. V.

    2016-01-01

    The role of extreme surface turbulent fluxes in total oceanic heat loss in the North Atlantic is studied. The atmospheric circulation patterns enhancing ocean-atmosphere heat flux in regions with significant contributions of the extreme heat fluxes (up to 60% of the net heat loss) are analyzed. It is shown that extreme heat fluxes in the Gulf Stream and the Greenland and Labrador Seas occur in zones with maximal air pressure gradients, i.e., in cyclone-anticyclone interaction zones.

  15. Ship-based Surface Flux Observations Under Atmospheric Rivers During the CALWATER 2015 Field Campaign

    Science.gov (United States)

    Blomquist, B.; Fairall, C. W.; Intrieri, J. M.; Wolfe, D. E.; Pezoa, S.

    2015-12-01

    The NOAA Physical Sciences Division portable flux system was deployed on the R/V Ron Brown as part of the surface observational strategy for the CALWATER 2015 field investigation. Measurements included turbulent fluxes of temperature, water vapor and wind stress. A refined 'best' set of bulk meteorological measurements for the duration of the cruise was produced from combined NOAA, DOE ARM-AMF2 and shipboard sensors. Direct eddy correlation and bulk model estimates of sensible and latent heat are broadly consistent (RMSE transport budget.

  16. Analysis of Contact Melting Driven by Surface Heat Flux Around a Cylinder

    Institute of Scientific and Technical Information of China (English)

    Y.S. Zhao; W.Z. Chen; F.R. Sun; Z.Y. Chen

    2008-01-01

    The contact melting of phase change material around a moving horizontal cylindrical heat source, which descended under its own weight, is investigated in this article. A melting model under constant surface heat flux is established. The analytical results for thickness and pressure distributions inside melt layer and steady melting velocity are obtained by using contact melting theory. The melting law is discussed, and compared with that of contact melting driven by temperature difference. It is found that quasi-steady melting velocity is determined by heat flux of heat source, and the variation of heat source density has less effect on melting velocity.

  17. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  18. Surface morphology and deuterium retention in tungsten exposed to high flux D plasma at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.Z. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); De Temmerman, G. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); ITER Organization, Route de Vinon-sur-Verdon-CS90046, 13067 St Paul Lez Durance Cedex (France); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, H.Y. [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621907 (China); Li, C.; Fu, B.Q. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    Surface modifications and deuterium retention induced in tungsten by high fluxes (10{sup 24} m{sup −2} s{sup −1}) low energy (38 eV) deuterium ions were studied as a function of surface temperature. Blister formation was studied by scanning electron microscopy and electron backscatter diffraction, while deuterium retention was measured by thermal desorption spectroscopy. Blisters are observed on the surface exposed at different temperatures, ranging from 493 K to 1273 K. The blister density and D retention decrease with the increasing exposure temperature. The formation of blisters at high temperatures is attributed to the high flux of D plasma. At 943 K, with the increasing fluence, there is trend to the saturation of D retention and blister density. The defects caused by plasma exposure have an important effect on the D trapping and blistering behavior. The formation of blisters has a strong relationship with slipping system of tungsten.

  19. Comparison of TOMS retrievals and UVMRP measurements of surface spectral UV radiation in the United States

    Directory of Open Access Journals (Sweden)

    M. Xu

    2010-09-01

    Full Text Available Surface noontime spectral ultraviolet (UV irradiances during May-September of 2000–2004 from the total ozone mapping spectrometer (TOMS satellite retrievals are systematically compared with the ground measurements at 27 climatological sites maintained by the USDA UV-B Monitoring and Research Program. The TOMS retrievals are evaluated by two cloud screening methods and local air quality conditions to determine their bias dependencies on spectral bands, cloudiness, aerosol loadings, and air pollution. Under clear-sky conditions, TOMS retrieval biases vary from −3.4% (underestimation to 23.6% (overestimation. Averaged over all sites, the relative mean biases for 305, 311, 325, and 368 nm are respectively 15.4, 7.9, 7.6, and 7.0% (overestimation. The bias enhancement for 305 nm by approximately twice that of other bands likely results from absorption by gaseous pollutants (SO2, O3, and aerosols that are not included in the TOMS algorithm. For all bands, strong positive correlations of the TOMS biases are identified with aerosol optical depth, which explains nearly 50% of the variances of TOMS biases. The more restrictive in-situ cloud screening method reduces the biases by 3.4–3.9% averaged over all sites. This suggests that the TOMS biases from the in-situ cloud contamination may account for approximately 25% for 305 nm and 50% for other bands of the total bias. The correlation coefficients between total-sky and clear-sky biases across 27 sites are 0.92, 0.89, 0.83, and 0.78 for 305, 311, 325, and 368 nm, respectively. The results show that the spatial characteristics of the TOMS retrieval biases are systematic, representative of both clear and total-sky conditions.

  20. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces

    Science.gov (United States)

    Fornaro, Teresa; Brucato, John Robert; Pace, Emanuele; Guidi, Mariangela Cestelli; Branciamore, Sergio; Pucci, Amaranta

    2013-09-01

    The interaction between electromagnetic radiation and bio-molecules in heterogeneous environments is a prebiotically relevant process. Minerals may have a pivotal role in the prebiotic evolution of complex chemical systems, mediating the effects of electromagnetic radiation, influencing the photostability of bio-molecules, catalyzing important chemical reactions and/or protecting molecules against degradation. In particular, nucleobases are relevant bio-molecules to investigate both in the prebiotic context, because they are coding components of nucleic acids, and from the standpoint of the survival of biological systems in space conditions. Several studies on the photodynamics of nucleobases suggest that their structure could have been naturally selected for the ability to dissipate electronic energy through ultrafast photophysical decay. Considering the putative involvement of minerals in the prebiotic chemistry, it is necessary to study the photostability of nucleobases under space conditions in the presence of mineral matrices, to investigate both the prebiotic processes that might have had a role in the development of the first living entities on Earth and the physical and chemical processes occurring in extraterrestrial environments. We focused our study on the characterization of the nature of the interaction between nucleobases and the surface of the minerals magnesium oxide and forsterite by infrared vibrational spectroscopy. We observed that most of the characteristic bands of pure nucleobases vanished when adsorbed on magnesium oxide. On the contrary, in the case of adenine and uracil adsorbed on forsterite, very intense nucleobase absorption peaks appeared. This phenomenon pertains to the surface selection rules changes related to molecular orientation. Moreover, based on the vibrational shifts, we deduced the molecular interaction sites with the mineral surfaces. Furthermore, we investigated the photostability of nucleobases adsorbed on such minerals

  1. Surface flux patterns on planets in circumbinary systems and potential for photosynthesis

    Science.gov (United States)

    Forgan, Duncan H.; Mead, Alexander; Cockell, Charles S.; Raven, John A.

    2015-07-01

    Recently, the Kepler Space Telescope has detected several planets in orbit around a close binary star system. These so-called circumbinary planets will experience non-trivial spatial and temporal distributions of radiative flux on their surfaces, with features not seen in their single-star orbiting counterparts. Earth-like circumbinary planets inhabited by photosynthetic organisms will be forced to adapt to these unusual flux patterns. We map the flux received by putative Earth-like planets (as a function of surface latitude/longitude and time) orbiting the binary star systems Kepler-16 and Kepler-47, two star systems which already boast circumbinary exoplanet detections. The longitudinal and latitudinal distribution of flux is sensitive to the centre-of-mass motion of the binary, and the relative orbital phases of the binary and planet. Total eclipses of the secondary by the primary, as well as partial eclipses of the primary by the secondary add an extra forcing term to the system. We also find that the patterns of darkness on the surface are equally unique. Beyond the planet's polar circles, the surface spends a significantly longer time in darkness than latitudes around the equator, due to the stars' motions delaying the first sunrise of spring (or hastening the last sunset of autumn). In the case of Kepler-47, we also find a weak longitudinal dependence for darkness, but this effect tends to average out if considered over many orbits. In the light of these flux and darkness patterns, we consider and discuss the prospects and challenges for photosynthetic organisms, using terrestrial analogues as a guide.

  2. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  3. Towards scale-independent land-surface flux estimates in Noah-MP

    Science.gov (United States)

    Thober, Stephan; Mizukami, Naoki; Samaniego, Luis; Attinger, Sabine; Clark, Martyn; Cuntz, Matthias

    2017-04-01

    Land-surface models use a variety of process representations to calculate terrestrial energy, water and biogeochemical fluxes. These process descriptions are usually derived from point measurements which are, in turn, scaled to much larger resolutions ranging from 1 km in catchment hydrology to 100 km in climate modelling. Both, hydrologic and climate models are nowadays run on different spatial resolutions, using the exactly same land surface representations. A fundamental criterion for the physical consistency of land-surface simulations across scales is that a flux estimated over a given area is independent of the spatial model resolution (i.e., the flux-matching criterion). The Noah-MP land surface model considers only one soil and land cover type per model grid cell without any representation of their subgrid variability, implying a weak flux-matching. A fractional approach simulates the subgrid variability but it requires a higher computational demand than using effective parameters and it is used only for land cover in current land surface schemes. A promising approach to derive scale-independent parameters is the Multiscale Parameter Regionalization (MPR) technique, which consists of two steps: first, it applies transfer functions directly to high-resolution data (such as 100 m soil maps) to derive high-resolution model parameter fields, acknowledging the full subgrid variability. Second, it upscales these high-resolution parameter fields to the model resolution by using appropriate upscaling operators. MPR has shown to improve substantially the scalability of the mesoscale Hydrologic Models mHM (Samaniego et al., 2010 WRR). Here, we apply the MPR technique to the Noah-MP land-surface model for a large sample of basins distributed across the contiguous USA. Specifically, we evaluate the flux-matching criterion for several hydrologic fluxes such as evapotranspiration and drainage at scales ranging from 3 km to 48 km. We investigate the impact of different

  4. Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    Juan WU; Jian ZHANG; Wenlin JIA; Huijun XIE; Bo ZHANG

    2009-01-01

    The effects of chemical oxygen demand (COD) concentration in the influent on nitrous oxide (N2O) emissions, together with the relationships between N2O and water quality parameters in free water surface constructed wetlands, were investigated with laboratoryscale systems. N20 emission and purification performance of wastewater were very strongly dependent on COD concentration in the influent, and the total N2O emission in the system with middle COD influent concentration was the least. The relationships between N2O and the chemical and physical water quality variables were studied by using principal component scores in multiple linear regression analysis to predict N2O flux. The multiple linear regression model against principal components indicated that different water parameters affected N2O flux with different COD concentrations in the influent, but nitrate nitrogen affected N2O flux in all systems.

  5. UV light impact on ellagitannins and wood surface colour of European oak ( Quercus petraea and Quercus robur)

    Science.gov (United States)

    Zahri, S.; Belloncle, C.; Charrier, F.; Pardon, P.; Quideau, S.; Charrier, B.

    2007-03-01

    Two European oak species ( Q. petraea and Q. robur) have a high content of phenols which may participate in the alteration of colour upon UV irradiation. To study the photodegradation process of oak surfaces, the two oak species extractives, vescalagin, castalagin, ellagic acid and gallic acid were analysed quantitatively by HPLC before and after UV irradiation. Irradiation time was altered between 3, 24, 72, 96, 120, 144, 192 and 216 h. In parallel, any colour changes of Oak wood surface was followed after 120 h of UV-irradiation by measuring CIELAB parameters (DL*, Da*, Db* and DE*). We observed that 60% of total phenol content of extractives decreased after the maximal exposure time. Our findings also showed that castalagin and gallic acid were destroyed after 216 h and vescalagin and ellagic acid after 72 h. This study proves the photosenibility of oakwood extractives which, supplementary to lignin degradation, would strongly result in the discolouration of oak heartwood.

  6. VizieR Online Data Catalog: UV to IR fluxes of 221 early-type galaxies (Amblard+, 2014)

    Science.gov (United States)

    Amblard, A.; Riguccini, L.; Temi, P.; Im, S.; Fanelli, M.; Serra, P.

    2016-06-01

    We base our work on a sample of 225 early-type galaxies from Temi et al. 2009 (cat. J/ApJ/707/890). We present a large fraction of their SED from the ultraviolet to the far-infrared (Tables 1-4). We concentrate primarily on six instruments which span these wavelengths and have extensive sky coverage: Galaxy Evolution Explorer (GALEX; see Bianchi et al. 2001, cat. II/312) for the UV part, SDSS (see SDSS-DR9 in cat. V/139) for the optical, Two Micron All Sky Survey (2MASS; Cutri et al. 2003, cat. II/246) and IRAC-Spitzer for the NIR and MIR, and MIPS-Spitzer and IRAS for the mid and FIR. We also use public data from Herschel-SPIRE when available (see Table4). (5 data files).

  7. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    Science.gov (United States)

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  8. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    Science.gov (United States)

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-05-01

    Evapotranspiration (ET) is an important component of the water cycle - ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001-2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within the

  9. A new method for estimating aerosol mass flux in the urban surface layer using LAS technology

    Science.gov (United States)

    Yuan, Renmin; Luo, Tao; Sun, Jianning; Liu, Hao; Fu, Yunfei; Wang, Zhien

    2016-04-01

    Atmospheric aerosol greatly influences human health and the natural environment, as well as the weather and climate system. Therefore, atmospheric aerosol has attracted significant attention from society. Despite consistent research efforts, there are still uncertainties in understanding its effects due to poor knowledge about aerosol vertical transport caused by the limited measurement capabilities of aerosol mass vertical transport flux. In this paper, a new method for measuring atmospheric aerosol vertical transport flux is developed based on the similarity theory of surface layer, the theory of light propagation in a turbulent atmosphere, and the observations and studies of the atmospheric equivalent refractive index (AERI). The results show that aerosol mass flux can be linked to the real and imaginary parts of the atmospheric equivalent refractive index structure parameter (AERISP) and the ratio of aerosol mass concentration to the imaginary part of the AERI. The real and imaginary parts of the AERISP can be measured based on the light-propagation theory. The ratio of the aerosol mass concentration to the imaginary part of the AERI can be measured based on the measurements of aerosol mass concentration and visibility. The observational results show that aerosol vertical transport flux varies diurnally and is related to the aerosol spatial distribution. The maximum aerosol flux during the experimental period in Hefei City was 0.017 mg m-2 s-1, and the mean value was 0.004 mg m-2 s-1. The new method offers an effective way to study aerosol vertical transport in complex environments.

  10. Remote Sensing Parameterization of Land Surface Heat Fluxes over Arid and Semi-arid Areas

    Institute of Scientific and Technical Information of China (English)

    马耀明; 王介民; 黄荣辉; 卫国安; MassimoMENENTI; 苏中波; 胡泽勇; 高峰; 文军

    2003-01-01

    Dealing with the regional land surfaces heat fluxes over inhomogeneous land surfaces in arid and semi-arid areas is an important but not an easy issue. In this study, one parameterization method based on satellite remote sensing and field observations is proposed and tested for deriving the regional land surface heat fluxes over inhomogeneous landscapes. As a case study, the method is applied to the Dunhuang experimental area and the HEIFE (Heihe River Field Experiment, 1988-1994) area. The Dunhuang area is selected as a basic experimental area for the Chinese National Key Programme for Developing Basic Sciences: Research on the Formation Mecbanism and Prediction Theory of Severe Climate Disaster in China (G1998040900, 1999-2003). The four scenes of Landsat TM data used in this study are 3 June 2000,22 August 2000, and 29 January 2001 for the Dunhuang area and 9 July 1991 for the HEIFE area. The regional distributions of land surface variables, vegetation variables, and heat fluxes over inhomogeneous landscapes in arid and semi-arid areas are obtained in this study.

  11. Advantages of analytically computing the ground heat flux in land surface models

    Science.gov (United States)

    Pauwels, Valentijn R. N.; Daly, Edoardo

    2016-11-01

    It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In land surface models, the ground heat flux is typically estimated through a numerical solution of the heat conduction equation. Recent research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we calibrate a land surface model using a numerical solution of the heat conduction equation with four different vertical spatial resolutions. It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly, the thermal conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this value irrelevant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical solutions are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical of land surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly calculated without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is thus no longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the case. The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained. The main conclusion of this study is that care must be taken when interpreting land surface model results that have been obtained using numerical ground heat flux estimates. The use of exact analytical solutions, when available, is recommended.

  12. Numerical study of the effects of surface roughness on water disinfection UV reactor.

    Science.gov (United States)

    Sultan, Tipu; Ahmad, Sarfraz; Cho, Jinsoo

    2016-04-01

    UV reactors are an emerging choice as a big barrier against the pathogens present in drinking water. However, the precise role of reactor's wall roughness for cross flow ultraviolet (CF-UV) and axial flow ultraviolet (AF-UV) water disinfection reactors are unknown. In this paper, the influences of reactor's wall roughness were investigated with a view to identify their role on the performance factors namely dose distribution and reduction equivalent dose (RED). Herein, the relative effects of reactor's wall roughness on the performance of CF-UV and AF-UV reactors were also highlighted. This numerical study is a first step towards the comprehensive analysis of the effects of reactor's wall roughness for UV reactor. A numerical analysis was performed using ANSYS Fluent 15 academic version. The reactor's wall roughness has a significant effect on the RED. We found that the increase in RED is Reynolds number dependent (at lower value of turbulent Reynolds number the effects are remarkable). The effects of reactor's roughness were more pronounced for AF-UV reactor. The simulation results suggest that the study of reactor's wall roughness provides valuable insight to fully understand the effects of reactor's wall roughness and its impact on the flow behavior and other features of CF-UV and AF-UV water disinfection reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A method for obtaining distributed surface flux measurements in complex terrain

    Science.gov (United States)

    Daniels, M. H.; Pardyjak, E.; Nadeau, D. F.; Barrenetxea, G.; Brutsaert, W. H.; Parlange, M. B.

    2011-12-01

    Sonic anemometers and gas analyzers can be used to measure fluxes of momentum, heat, and moisture over flat terrain, and with the proper corrections, over sloping terrain as well. While this method of obtaining fluxes is currently the most accurate available, the instruments themselves are costly, making installation of many stations impossible for most campaign budgets. Small, commercial automatic weather stations (Sensorscope) are available at a fraction of the cost of sonic anemometers or gas analyzers. Sensorscope stations use slow-response instruments to measure standard meteorological variables, including wind speed and direction, air temperature, humidity, surface skin temperature, and incoming solar radiation. The method presented here makes use of one sonic anemometer and one gas analyzer along with a dozen Sensorscope stations installed throughout the Val Ferret catchment in southern Switzerland in the summers of 2009, 2010 and 2011. Daytime fluxes are calculated using Monin-Obukhov similarity theory in conjunction with the surface energy balance at each Sensorscope station as well as at the location of the sonic anemometer and gas analyzer, where a suite of additional slow-response instruments were co-located. Corrections related to slope angle were made for wind speeds and incoming shortwave radiation measured by the horizontally-mounted cup anemometers and incoming solar radiation sensors respectively. A temperature correction was also applied to account for daytime heating inside the radiation shield on the slow-response temperature/humidity sensors. With these corrections, we find a correlation coefficient of 0.77 between u* derived using Monin-Obukhov similarity theory and that of the sonic anemometer. Calculated versus measured heat fluxes also compare well and local patterns of latent heat flux and measured surface soil moisture are correlated.

  14. Effect of surface plasmon resonance on the photocatalytic activity of Au/TiO2 under UV/visible illumination.

    Science.gov (United States)

    Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei

    2012-01-01

    In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.

  15. Surface Flux Patterns on Planets in Circumbinary Systems, and Potential for Photosynthesis

    CERN Document Server

    Forgan, Duncan H; Cockell, Charles S; Raven, John A

    2014-01-01

    Recently, the Kepler Space Telescope has detected several planets in orbit around a close binary star system. These so-called circumbinary planets will experience non-trivial spatial and temporal distributions of radiative flux on their surfaces, with features not seen in their single-star orbiting counterparts. Earthlike circumbinary planets inhabited by photosynthetic organisms will be forced to adapt to these unusual flux patterns. We map the flux received by putative Earthlike planets (as a function of surface latitude/longitude and time) orbiting the binary star systems Kepler-16 and Kepler-47, two star systems which already boast circumbinary exoplanet detections. The longitudinal and latitudinal distribution of flux is sensitive to the centre of mass motion of the binary, and the relative orbital phases of the binary and planet. Total eclipses of the secondary by the primary, as well as partial eclipses of the primary by the secondary add an extra forcing term to the system. We also find that the patte...

  16. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    Science.gov (United States)

    McGloin, Ryan; McGowan, Hamish; McJannet, David; Cook, Freeman; Sogachev, Andrey; Burn, Stewart

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy covariance and scintillometry measurements from a reservoir in southeast Queensland, Australia. The work presented expands on a short study presented by McJannet et al. (2011) to include comparisons of eddy covariance measurements and scintillometer-derived predictions of surface energy fluxes under a wide range of seasonal weather conditions. In this study, analysis was undertaken to ascertain whether important theoretical assumptions required for both techniques are valid in the complex environment of a small reservoir. Statistical comparison, energy balance closure, and the relationship between evaporation measurements and key environmental controls were used to compare the results of the two techniques. Reasonable agreement was shown between the sensible heat flux measurements from eddy covariance and scintillometry, while scintillometer-derived estimates of latent heat flux were approximately 21% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry.

  17. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    Science.gov (United States)

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature.

  18. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data.

    Science.gov (United States)

    Chakraborty, Surya Deb; Kant, Yogesh; Mitra, Debashis

    2015-01-15

    Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of ±2 °C than MODIS with an error of ±3 °C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 °C & for MODIS data is 3.7 °C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect.

  19. Modeling spatial surface energy fluxes of agricultural and riparian vegetation using remote sensing

    Science.gov (United States)

    Geli, Hatim Mohammed Eisa

    Modeling of surface energy fluxes and evapotranspiration (ET ) requires the understanding of the interaction between land and atmosphere as well as the appropriate representation of the associated spatial and temporal variability and heterogeneity. This dissertation provides new methodology showing how to rationally and properly incorporate surface features characteristics/properties, including the leaf area index, fraction of cover, vegetation height, and temperature, using different representations as well as identify the related effects on energy balance flux estimates including ET. The main research objectives were addressed in Chapters 2 through 4 with each presented in a separate paper format with Chapter 1 presenting an introduction and Chapter 5 providing summary and recommendations. Chapter 2 discusses a new approach of incorporating temporal and spatial variability of surface features. We coupled a remote sensing-based energy balance model with a traditional water balance method to provide improved estimates of ET. This approach was tested over rainfed agricultural fields ˜ 10 km by 30 km in Ames, Iowa. Before coupling, we modified the water balance method by incorporating a remote sensing-based estimate for one of its parameters to ameliorate its performance on a spatial basis. Promising results were obtained with indications of improved estimates of ET and soil moisture in the root zone. The effects of surface features heterogeneity on measurements of turbulence were investigated in Chapter 3. Scintillometer-based measurements/estimates of sensible heat flux (H) were obtained over the riparian zone of the Cibola National Wildlife Refuge (CNWR), California. Surface roughness including canopy height (hc), roughness length, and zero-plane displacement height were incorporated in different ways, to improve estimates of H. High resolution, 1-m maps of ground surface digital elevation model and canopy height, hc, were derived from airborne LiDAR sensor data

  20. Corrections for Convective Heat Flux Gauges Subjected to a Surface Temperature Discontinuity

    Science.gov (United States)

    Kandula, M.; Reinarts, T.; Voska, N. (Technical Monitor)

    2002-01-01

    A two-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been carried out in an effort to determine the convective heat transfer corrections for circular heat flux gauges subjected to a surface temperature discontinuity. Solutions were obtained at a Reynolds number Of 1 x 10(exp 6) and a Mach number of 4. The CFD results are compared with the existing correlations for the correction factors. In general, the CFD corrections exceed those provided by the correlations. The discrepancy increases with increasing upstream surface temperature, thus indicating the role of property variations, which are not accounted for in the correlations. A quasi-two-dimensional analysis is also performed to treat the cylindrical geometry of the heat flux gauges by area-averaging the computed two-dimensional results from CFD.

  1. A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO 2 loaded polymer nanofiber membranes

    KAUST Repository

    Dilpazir, S.

    2016-01-29

    Homogeneously dispersed titanium dioxide loaded polyacrylonitrile nanofiber membranes with increased active mass loading, Ti3+ surface defects and hydrophilicity were fabricated by combining electrospinning and UV-ozone surface treatment. The photocatalytic activity improved by a factor of ∼2 and the kinetics of photodegradation switched from pseudo-first order to pseudo-second order with increasing TiO2 content with a maximum rate constant of 20.7 h-1. © The Royal Society of Chemistry 2016.

  2. Study of cloud enhanced surface UV radiation at the atmospheric observatory of Southern Patagonia, Río Gallegos, Argentina

    Science.gov (United States)

    Wolfram, Elian A.; Salvador, Jacobo; Orte, Facundo; Bulnes, Daniela; D'Elia, Raul; Antón, Manuel; Alados-Arboledas, Lucas; Quel, Eduardo

    2013-05-01

    Ozone and ultraviolet (UV) radiation are two important issues in the study of Earth's atmosphere. The anthropogenic perturbation of the ozone layer has induced change in the amount of UV radiation that reaches the Earth's surface, mainly through the Antarctic ozone hole. Also clouds have been identified as the main modulator of UV amount over short time scales. While clouds can decrease direct radiation, they can produce an increase in the diffuse component, and as a consequence the surface UV radiation may be higher than during an equivalent clear sky scenario. In particular this situation can be important when a low ozone column and partially cloud coverered skies occur simultaneously. These situations happen frequently in southern Patagonia, where the CEILAP Lidar Division has established the Atmospheric Observatory of Southern Patagonia, an atmospheric remote sensing site near the city of Río Gallegos (51°55'S, 69°14'W). In this paper, the impact of clouds on UV radiation is investigated by the use of ground based measurements from the passive remote sensing instruments operating at this site, mainly broad and moderate narrow band filter radiometers. Cloud modification factors (CMF, ratio between the measured UV radiation in a cloudy sky and the simulated radiation under cloud-free conditions) are evaluated for the study site. CMFs higher than 1 are found during spring and summer time, when lower total ozone columns, higher solar elevations and high cloud cover occur simultaneously, producing extreme erythemal irradiance at the ground surface. Enhancements as high as 25% were registered. The maximum duration of the enhancement was around 30 minutes. This produces dangerous sunbathing conditions for the Río Gallegos citizen.

  3. Estimating cloud optical thickness and associated surface UV irradiance from SEVIRI by implementing a semi-analytical cloud retrieval algorithm

    Directory of Open Access Journals (Sweden)

    P. Pandey

    2012-01-01

    Full Text Available In this paper, we describe the implementation of the Semi-Analytical Cloud Retrieval Algorithm (SACURA, to obtain scaled cloud optical thickness (SCOT from satellite imagery acquired with the SEVIRI instrument and surface UV irradiance levels. In estimation of SCOT particular care is given to the proper specification of the background (i.e., cloud-free spectral albedo and the retrieval of the cloud water phase from reflectance ratios in SEVIRI's 0.6 μm and 1.6 μm spectral bands. The SACURA scheme is then applied to daytime SEVIRI imagery over Europe, for the month of June 2006, at 15-min time increments. The resulting SCOT fields are compared with values obtained by the CloudSat experimental satellite mission, yielding a negligible bias, correlation coefficients ranging from 0.51 to 0.78, and a root mean square difference of 1 to 2 SCOT increments. These findings compare favourably to results from similar intercomparison exercises reported in the literature. Based on the retrieved SCOT from SEVIRI and radiative transfer modelling approach, simple parameterisations are proposed to estimate the surface UV-A and UV-B irradiance. The validation of the modelled UV-A and UV-B irradiance against the measurements over two Belgian stations, Redu and Ostend, indicate good agreement with the high correlation, index of agreement and low bias. The SCOT fields estimated by implementing SACURA on imagery from geostationary satellite are reliable and its impact on surface UV irradiance levels is well produced.

  4. Average surface albedo measurements in the UV, IR, and TSR on the Holy Mosque and places in Makkah, Saudi Arabia

    Science.gov (United States)

    Seroji, Abdulaziz R.

    2005-08-01

    Average albedo values were measured at three broad wavebands; UV region (295 - 385 nm), Total Solar Radiation, TSR, (305 - 2800 nm), and IR region (3500 - 50000 nm), over different surfaces in the Holy Mosque and Places in Makkah (21°.25 N, 39°.49 E). The Eppley Laboratory Radiometers of TUVR and PIR were used for UV and IR measurements respectively, while Kipp & Zonen Pyranometer of CM3 was adopted for the TSR observations. Measurements were performed during two different periods (summer 28/7-10/8/2004 at Holy Mosque and winter 18-30/1/2005 at Holy Places). Summer measurements showed that the average surface albedos of the Holy Mosque white marbles were 0.45, 0.70 and 1.14 at UV, TSR and IR regions respectively. These values have decreased to 0.12 and 0.18 at UV and TSR regions respectively over the Holy Mosque brown marbles. However, the average albedo value has increased to 1.38 at IR region due to the large Longwave radiation emission from the brown marble surfaces. The albedo values of the Holy Mosque red carpets were determined. The average albedo values were also measured over the Holy Places surfaces (18 m) of pilgrimage, (Muna and Arafat sites) during winter 2005. The observed average surface albedo values over Arafat selected area were 0.00, 0.22 and 1.18 at UV, TSR and IR regions respectively. The average albedo values over Muna selected area and Muna tents were also presented. The effect of clouds and solar zenith angle (SZA) on the measured albedo were investigated in this study.

  5. Surface CO2 fluxes implied by a full year of OCO-2 column CO2 measurements

    Science.gov (United States)

    Baker, D. F.

    2015-12-01

    Over one year of full-column CO2 concentration data is now available from the Orbiting Carbon Observatory (OCO-2) satellite, with retrieval biases corrected using upward-looking solar spectrometer data from the TCCON network as well with internal consistency checks. We use this OCO-2 data to estimate weekly surface CO2 flux corrections at 6.7ºx6.7º resolution with a variational data assimilation technique built around the off-line PCTM atmospheric transport model driven with MERRA 1ºx1.25° winds and mixing parameters. Since such flux estimates can depend strongly on the prior fluxes assumed (which may remain unchanged in regions of sparse sampling), the initial 3-D concentrations assumed (especially in the upper part of the atmosphere), vertical transport/mixing errors in the model, and un-corrected biases in the satellite data, we invert the OCO-2 data in multiple inversions in which different prior fluxes are used (e.g. SiB4 vs. CASA land bio, Takahashi vs. Doney ocean, FFDAS vs. CDIAC fossil fuel), in which ACOS GOSAT data and NOAA surface in situ and aircraft profile data are used (or not) to correct the prior fluxes and concentration fields, and in which the vertical mixing in the transport model is artificially increased/decreased by a factor of 3, to assess the sensitivity of the OCO-2 flux corrections. These inversions are done in the context of a longer span (2009-2015) to allow the impact of the fluxes and other data sources to fully impact the upper layers of the model. The bias between the OCO-2 data and the prior forward CO2 fields is also calculated before doing the inversions, and compared to similar retrieval biases solved for the ACOS GOSAT data (B3.5). The impact of these bias corrections, as well as the standard ones provided by the OCO-2 team, is assessed by comparing the fit of the a posteriori CO2 fields to independent data (including surface in situ and NOAA aircraft).

  6. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  7. Spatial heterogeneity of satellite derived land surface parameters and energy flux densities for LITFASS-area

    Directory of Open Access Journals (Sweden)

    A. Tittebrand

    2009-03-01

    Full Text Available Based on satellite data in different temporal and spatial resolution, the current use of frequency distribution functions (PDF for surface parameters and energy fluxes is one of the most promising ways to describe subgrid heterogeneity of a landscape. Objective of this study is to find typical distribution patterns of parameters (albedo, NDVI for the determination of the actual latent heat flux (L.E determined from highly resolved satellite data within pixel on coarser scale.

    Landsat ETM+, Terra MODIS and NOAA-AVHRR surface temperature and spectral reflectance were used to infer further surface parameters and radiant- and energy flux densities for LITFASS-area, a 20×20 km2 heterogeneous area in Eastern Germany, mainly characterised by the land use types forest, crop, grass and water. Based on the Penman-Monteith-approach L.E, as key quantity of the hydrological cycle, is determined for each sensor in the accordant spatial resolution with an improved parametrisation. However, using three sensors, significant discrepancies between the inferred parameters can cause flux distinctions resultant from differences of the sensor filter response functions or atmospheric correction methods. The approximation of MODIS- and AVHRR- derived surface parameters to the reference parameters of ETM (via regression lines and histogram stretching, respectively, further the use of accurate land use classifications (CORINE and a new Landsat-classification, and a consistent parametrisation for the three sensors were realized to obtain a uniform base for investigations of the spatial variability.

    The analyses for 4 scenes in 2002 and 2003 showed that for forest clear distribution-patterns for NDVI and albedo are found. Grass and crop distributions show higher variability and differ significantly to each other in NDVI but only marginal in albedo. Regarding NDVI-distribution functions NDVI was found to be the key variable for L.E-determination.

  8. Tailoring the charged particle fluxes across the target surface of Magnum-PSI

    Science.gov (United States)

    Costin, C.; Anita, V.; Popa, G.; Scholten, J.; De Temmerman, G.

    2016-04-01

    Linear plasma generators are plasma devices designed to study fusion-relevant plasma-surface interactions. The first requirement for such devices is to operate with adjustable and well characterized plasma parameters. In the linear plasma device Magnum-PSI, the distribution of the charged particle flux across the target surface can be tailored by the target bias. The process is based on the radial inhomogeneity of the plasma column and it is evidenced by electrical measurements via a 2D multi-probe system installed as target. Typical results are reported for a hydrogen discharge operated at 125 A and confined by a magnetic field strength of 0.95 T in the middle of the coils. The probes were biased in the range of  -80 to  -25 V, while the floating potential of the target was about  -35 V. The results were obtained in steady-state regime of Magnum-PSI, being time-averaged over any type of fluctuations. Depending on the relative value of the target bias voltage with respect to the local floating potential in the plasma column, the entire target surface can be exposed to ion or electron dominated flux, respectively, or it can be divided into two adjacent zones: one exposed to electron flux and the other to ion flux. As a consequence of this effect, a floating conductive surface that interacts with an inhomogeneous plasma is exposed to non-zero local currents despite its overall null current and it is subjected to internal current flows.

  9. Reduced Heat Flux Through Preferential Surface Reactions Leading to Vibrationally and Electronically Excited Product States

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0124 Reduced Heat Flux Through Preferential Surface Reactions Leading to Vibrationally and Electronically Excited Product...Reactions Leading to Vibrationally and Electronically Excited Product States 5a. CONTRACT NUMBER FA9550-12-1-0486 5b. GRANT NUMBER 5c. PROGRAM... Leading to Vibrationally and Electronically Excited Product States FINAL TECHNICAL REPORT: Grant #FA9550-12-1-0486 2013 Basic Research Initiative (BRI

  10. Relevance of decadal variations in surface radiative fluxes for climate change

    Science.gov (United States)

    Wild, Martin

    2013-05-01

    Recent evidence suggests that radiative fluxes incident at Earth's surface are not stable over time but undergo significant changes on decadal timescales. This is not only found in the thermal spectral range, where an increase in the downwelling flux is expected due to the increasing greenhouse effect, but also in the solar spectral range. Observations suggest that surface solar radiation, after a period of decline from the 1950s to the 1980s ("global dimming"), reversed into a "brightening" since the mid-1980s at widespread locations, often in line with changes in anthropogenic air pollution. These decadal variations observed in both solar and thermal surface radiative fluxes have the potential to affect various aspects of climate change. Discussed here are specifically the evidence for potential effects on global warming, as seen in asymmetries in hemispheric warming rates as well as in differences in the decadal warming rates over land and oceans. These variations in observed warming rates fit well to our conceptual understanding of how aerosol and greenhouse gas-induced changes in the surface radiative fluxes should affect global warming. Specifically, on the Northern Hemisphere, the suppression of warming from the 1950s to the 1980s fits to the concurrent dimming and increasing air pollution, while the accelerated warming from the 1980s to 2000 matches with the brightening and associated reduction in pollution levels. The suppression of warming from the 1950s to the 1980s is even somewhat stronger over oceans than over land, in line with the conceptual idea that aerosol-induced dimming and brightening tendencies may be enhanced through cloud aerosol interactions particularly over the pristine ocean areas. On the Southern Hemisphere, the absence of significant pollution levels as well as trend reversals therein, fit to the observed stable warming rates over the entire 1950 to 2000 period.

  11. First measurements of error fields on W7-X using flux surface mapping

    Science.gov (United States)

    Lazerson, Samuel A.; Otte, Matthias; Bozhenkov, Sergey; Biedermann, Christoph; Pedersen, Thomas Sunn; the W7-X Team

    2016-10-01

    Error fields have been detected and quantified using the flux surface mapping diagnostic system on Wendelstein 7-X (W7-X). A low-field ‘{\\rlap- \\iota} =1/2 ’ magnetic configuration ({\\rlap- \\iota} =\\iota /2π ), sensitive to error fields, was developed in order to detect their presence using the flux surface mapping diagnostic. In this configuration, a vacuum flux surface with rotational transform of n/m  =  1/2 is created at the mid-radius of the vacuum flux surfaces. If no error fields are present a vanishingly small n/m  =  5/10 island chain should be present. Modeling indicates that if an n  =  1 perturbing field is applied by the trim coils, a large n/m  =  1/2 island chain will be opened. This island chain is used to create a perturbation large enough to be imaged by the diagnostic. Phase and amplitude scans of the applied field allow the measurement of a small ∼ 0.04 m intrinsic island chain with a {{130}\\circ} phase relative to the first module of the W7-X experiment. These error fields are determined to be small and easily correctable by the trim coil system. Notice: This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  12. Reactive uptake of ozone at simulated leaf surfaces: Implications for 'non-stomatal' ozone flux

    Science.gov (United States)

    Cape, J. Neil; Hamilton, Richard; Heal, Mathew R.

    The reaction of ozone (O 3) with α-pinene has been studied as a function of temperature and relative humidity and in the presence of wax surfaces that simulate a leaf surface. The objective was to determine whether the presence of a wax surface, in which α-pinene could dissolve and form a high surface concentration, would lead to enhanced reaction with O 3. The reaction of O 3 itself with the empty stainless steel reactor and with aluminium and wax surfaces demonstrated an apparent activation energy of around 30 kJ mol -1 for all the surfaces, similar to that observed in long-term field measurements of O 3 fluxes to vegetation. However, the absolute reaction rate was 14 times greater for aluminium foil and saturated hydrocarbon wax surfaces than for stainless steel, and a further 5 times greater for beeswax than hydrocarbon wax. There was no systematic dependence on either relative or absolute humidity for these surface reactions over the range studied (20-100% RH). Reaction of O 3 with α-pinene occurred at rates close to those predicted for the homogeneous gas-phase reaction, and was similar for both the empty reactor and in the presence of wax surfaces. The hypothesis of enhanced reaction at leaf surfaces caused by enhanced surface concentrations of α-pinene was therefore rejected. Comparison of surface decomposition reactions on different surfaces as reported in the literature with the results obtained here demonstrates that the loss of ozone at the earth's surface by decomposition to molecular oxygen (i.e. without oxidative reaction with a substrate) can account for measured 'non-stomatal' deposition velocities of a few mm s -1. In order to quantify such removal, the effective molecular surface area of the vegetation/soil canopy must be known. Such knowledge, combined with the observed temperature-dependence, provides necessary input to global-scale models of O 3 removal from the troposphere at the earth's surface.

  13. Measurements and predictions of surface gas fluxes and actual evaporation on mine waste rock dump

    Energy Technology Data Exchange (ETDEWEB)

    Kabwe, L.K.; Wilson, G.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mining and Mineral Process Engineering

    2006-07-01

    Long-term closure issues with respect to the mining industry and acid rock drainage (ARD) management require accurate measurements, predictions and monitoring of surface gas fluxes and actual evaporation on mine waste-rock dumps. This study uses a technique, called the dynamic closed chamber system (DCC) that measures the oxygen flux into mine waste dumps. The technique was used with an oxygen gas analyzer to directly measure the change in the oxygen concentration in the headspace of the chamber installed at the surface of the waste dumps. A SoilCover model was also used to predict evaporation fluxes on a waste-rock pile after heavy rainfall events. Measurement of actual evaporation across the surfaces of waste dumps is important in the design of soil covers. The paper discussed the site locations including the Key Lake uranium mine located at the southern rim of the Athabasca Basin in north central Saskatchewan as well as the Syncrude Canada Ltd. mine, located 30 km north of Fort McMurray, Alberta. Materials and methods used in the study as well as results and subsequent discussion were also presented. The effect of relative humidity and the effect of soil cover system on oxygen diffusion was reviewed. It was concluded that the SoilCover numerical model can be a useful tool for prediction of actual evaporation on mine waste dumps. 21 refs., 4 figs.

  14. Effect of UV-ozone treatment on poly(dimethylsiloxane) membranes: surface characterization and gas separation performance.

    Science.gov (United States)

    Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih

    2010-03-16

    A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.

  15. Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide

    Science.gov (United States)

    Berkelhammer, M.; Asaf, D.; Still, C.; Montzka, S.; Noone, D.; Gupta, M.; Provencal, R.; Chen, H.; Yakir, D.

    2014-02-01

    Understanding the processes that control the terrestrial exchange of carbon is critical for assessing atmospheric CO2 budgets. Carbonyl sulfide (COS) is taken up by vegetation during photosynthesis following a pathway that mirrors CO2 but has a small or nonexistent emission component, providing a possible tracer for gross primary production. Field measurements of COS and CO2 mixing ratios were made in forest, senescent grassland, and riparian ecosystems using a laser absorption spectrometer installed in a mobile trailer. Measurements of leaf fluxes with a branch-bag gas-exchange system were made across species from 10 genera of trees, and soil fluxes were measured with a flow-through chamber. These data show (1) the existence of a narrow normalized daytime uptake ratio of COS to CO2 across vascular plant species of 1.7, providing critical information for the application of COS to estimate photosynthetic CO2 fluxes and (2) a temperature-dependent normalized uptake ratio of COS to CO2 from soils. Significant nighttime uptake of COS was observed in broad-leafed species and revealed active stomatal opening prior to sunrise. Continuous high-resolution joint measurements of COS and CO2 concentrations in the boundary layer are used here alongside the flux measurements to partition the influence that leaf and soil fluxes and entrainment of air from above have on the surface carbon budget. The results provide a number of critical constraints on the processes that control surface COS exchange, which can be used to diagnose the robustness of global models that are beginning to use COS to constrain terrestrial carbon exchange.

  16. Moist formulations of the EP flux and their connection to surface westerlies in current and warmer climates

    Science.gov (United States)

    Dwyer, J. G.; O'Gorman, P. A.

    2015-12-01

    The Eliassen-Palm (EP) flux is an important diagnostic for wave propagation and wave-mean flow interaction in the atmosphere. Here we compare two moist formulations of the EP flux with the traditional dry EP flux and analyze their link to the position and strength of the surface westerlies using reanalysis data and both fully-coupled and idealized climate models. The first moist formulation of the EP flux modifies only the static stability to account for latent heat release by eddies, while the second moist formulation simply replaces all potential temperatures with equivalent potential temperatures. When moisture is taken into account, the latitude of maximum upward EP flux and maximum EP flux convergence shift equatorward and the strengths of both the flux and convergence increase, with larger changes for the second moist formulation. In simulations with a coupled atmosphere-ocean climate model, both the peak surface winds and peak upward EP flux in the lower troposphere tend to be co-located throughout the seasonal cycle (especially in the moist formulations) and shift poleward by similar amounts in response to greenhouse warming. In simulations over a wider range of climates with an idealized atmospheric climate model we find that in cold climates the position of the surface westerlies coincides with the position of the maximum vertical EP flux and shifts poleward with warming, while in warm climates the surface westerlies coincide with an anomalous region of EP flux divergence near the subtropical jet. An isentropic potential enstrophy budget analysis reveals that in this model the anomalous EP flux divergence is balanced by vertical eddy PV fluxes associated with diabatic heating from large-scale condensation and radiation. The anomalous divergence is weaker when using moist EP fluxes, indicating that the moist formulations are partly capturing this effect.

  17. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  18. Quality Evaluation and Its Application to Surface Water Ecosystem Based on Maximum Flux Principle

    Institute of Scientific and Technical Information of China (English)

    刘年磊; 毛国柱; 赵林

    2010-01-01

    Based on the maximum flux principle(MFP),a water quality evaluation model for surface water ecosystem is presented by using self-organization map(SOM) neural network simulation algorithm from the aspect of systematic structural evolution.This evaluation model is applied to the case of surface water ecosystem in Xindu District of Chengdu City in China.The values reflecting the water quality of five cross-sections of the system at different developing stages are obtained,with stable values of 1.438,2.952,1.86...

  19. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium

    Directory of Open Access Journals (Sweden)

    Iwasa F

    2011-06-01

    Full Text Available Fuminori Iwasa1, Naoki Tsukimura1, Yoshihiko Sugita1, Rajita Kodali Kanuru1, Katsutoshi Kubo1, Hafiz Hasnain1, Wael Att1,2, Takahiro Ogawa11Laboratory of Bone and Implant Sciences (LBIS, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Prosthodontics, Dental School, Albert-Ludwigs University, Freiburg, GermanyAbstract: Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment, 3-day-old disks (disks stored for 3 days after UV treatment, and 7-day-old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano-hybrid surfaces became hydrorepellent

  20. Potential of Ozone Formation by the Smog Mechanism to shield the surface of the Early Earth from UV radiation?

    CERN Document Server

    Grenfell, J L; Patzer, B; Titz, R; Rauer, H; Grenfell, John Lee; Stracke, Barbara; Patzer, Beate; Titz, Ruth; Rauer, Heike

    2006-01-01

    We propose that the photochemical smog mechanism produced substantial ozone (O3) in the troposphere during the Proterozoic, which contributed to ultraviolet (UV) radiation shielding hence favoured the establishment of life. The smog mechanism is well-established and is associated with pollution hazes which sometimes cover modern cities. The mechanism proceeds via the oxidation of volatile organic compounds (VOCs) such as methane (CH4) in the presence of UV radiation and nitrogen oxides (NOx). It would have been particularly favoured during the Proterozoic given the high levels of CH4 (up to 1000 ppm) recently suggested. Proterozoic UV levels on the surface of the Earth were generally higher compared with today, which would also have favoured the mechanism. On the other hand, Proterozoic O2 required in the final step of the smog mechanism to form O3 was less abundant compared with present times. Further, results are sensitive to Proterozoic NOx concentrations, which are challenging to predict, since they depen...

  1. Comparison of mercury emission flux from the land surface to the atmosphere via water column, vegetative, and sediment column pathways

    Science.gov (United States)

    Peters, S. C.; Wollenberg, J.; Bubb, M. L.

    2009-12-01

    The emission of mercury from the land surface can follow three pathways: 1) emission from the water column, 2) emission from exposed wetland sediments, and 3) transpiration through plants. In this poster, we present a comparison of all three emission pathways in Berry’s Creek, a tidal tributary to the Hackensack River, NJ USA. The Berry’s Creek watershed was historically subjected to discharges of mercury from a number of industrial facilities. Emission of mercury from the water column measured using a dynamic flux chamber ranged from -0.64 to 34 ng/m2-h a result of complex biogeochemical reactions between photoreactive dissolved organic carbon, ultraviolet light, and dissolved aqueous mercury. Solar radiation and DOC spectral slope appear to exert the strongest control on mercury emission, with solar radiation alone accounting for up to 98% of the diel changes in mercury emission. Emission of mercury from the common reed Phragmites australis measured using a whole-leaf, low dead-volume chamber ranged from -0.64 to 0.17 ng/m2-h. Solar radiation drives photosynthesis, transpiration, and mercury emission, though decreases in emission late in the day may reflect a more complex process. Mercury emission from mudflat sediments ranged from -0.37 to 11.3 ng/m2-h. Experiments blocking UV wavelengths indicate PAR wavelengths may play a significant role in promoting emission. Disturbance of sediment surface decreased emission, suggesting that the emission pathway is dependent on biological activity at the sediment surface or a chemical gradient established in the upper portion of the sediment column. Annual and diel cycles are considered in an estimation of the magnitude of total mercury emitted through each pathway over the duration of 1 year.

  2. Co-evolution of cyanophage and cyanobacteria in Antarctic lakes: adaptive responses to high UV flux and global warming

    Science.gov (United States)

    Storrie-Lombardi, Michael C.; Pinkart, Holly C.

    2007-09-01

    Rapid adaptation to acute environmental change demands co-evolution of indigenous viral populations and their hosts. Horizontal gene transfer (HGT) is a highly efficient adaptive mechanism, but a difficult phenomena to dectect. The mosaic nature of bacteriophage genomes resulting from HGT has generally been explored using phylogenetic analysis of coding regions. Focusing on the proteome certainly provides one window into the origin and evolution of genome information storage. However, the original fitness function for a nucleotide polymer would arise from a more primal survival imperative predating the appearance of a coding function. Multivariate analysis of a genome information storage metric (lossless compression), nucleotide distributions, and distributions of the three major physiochemical characteristics of the polymer (triple:double bonding [G+C], purine:pyrimidine [G+A], and keto:amine [G+T] fractions) produces a metric to detect and characterize mosaicism in both coding and non-coding regions of a genome. We discuss possibilities and limitations of using these techniques to investigate HGT and the origins and evolution of genome complexity. Analysis of available virus (n= 2374) and bacteriophage genomes (n=417) indicates these probes can perform whole-genome taxonomy tasks or sliding window searches for evidence of HGT in a single genome. HGT responses may serve as a canary or bell-weather for global environmental change. We discuss one area of application of considerable interest to our institute: the response of cyanophage and their cyanobacteria hosts to variations in ultraviolet solar flux in geographically isolated Antarctic lakes.

  3. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Directory of Open Access Journals (Sweden)

    Y. Sun

    2013-04-01

    Full Text Available This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4. Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent – as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty

  4. 222Rn-calibrated mercury fluxes from terrestrial surface of southern Africa

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2013-07-01

    Full Text Available Gaseous elemental mercury (GEM and 222Rn, a radioactive gas of primarily terrestrial origin with a half-life of 3.8 days, have been measured simultaneously at Cape Point, South Africa, since March 2007. Between March 2007 and December 2011, altogether 191 events with high 222Rn concentrations were identified. GEM correlated with 222Rn in 94 of the events and was constant during almost all the remaining events without significant correlation. The average GEM / 222Rn flux ratio of all events including the non-significant ones was −0.0001 with a standard error of ±0.0030 pg mBq−1. Weighted with the event duration, the average GEM / 222Rn flux ratio was −0.0048 ± 0.0011 pg mBq−1. With an emission rate of 1.1 222Rn atoms cm−2 s−1 and a correction for the transport time, this flux ratio corresponds to a radon-calibrated flux of about −0.54 ng GEM m−2 h−1 with a standard error of ±0.13 ng GEM m−2 h−1 (n = 191. With wet deposition, which is not included in this estimate, the terrestrial surface of southern Africa seems to be a net mercury sink of about −1.55 ng m−2 h−1. The additional contribution of an unknown but presumably significant deposition of reactive gaseous mercury would further increase this sink.

  5. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    Science.gov (United States)

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  6. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  7. Flux of benzo(a)pyrene to the ground surface and its distribution in the ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Milukaite, A. [Institute of Physics, Vilnius (Lithuania)

    1998-07-01

    Benzo(a)pyrene (BP) has been investigated in bulk atmospheric deposition, moss, needles of pine and some species of vascular plants. At two remote Lithuanian sites, for 1990-1995 the flux of benzo(a)pyrene from the atmosphere to the ground surface varied between 0.3 to 4.8 {mu}g{sup -2} mo{sup -1}. Consequently the territory of Lithuania (65,000 km{sup 2}) yearly was exposed to 624-2574 kg of carcinogen. The distribution of BP in soil and various vascular plant tissues (trifolium tepens, Elitrygea repens, Thymus serpyllum) indicates that benzo(a)pyrene is assimilated by flora. The concentration of BP is different in various organs of vascular plants and mostly depends on the degree of soil pollution. More than 300 samples of moss, mostly Hylocomium spendens and Pleurozium schreberi were analysed for BP. From 3.1 to 896.0 {mu}g kg{sup -1} of BP were measured in the moss samples. The flux of BP to the ground surface correlates well with its concentration in moss. A map of BP flux across Lithuania was created. 20 refs., 3 figs., 3 tabs.

  8. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data

    Science.gov (United States)

    Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

    2014-02-01

    Seepage flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

  9. Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces

    Science.gov (United States)

    Haghighi, Erfan; Or, Dani

    2015-11-01

    Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.

  10. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin

    KAUST Repository

    Mok, Jungbin

    2016-11-11

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  11. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    Directory of Open Access Journals (Sweden)

    Bertrand Faure, German Salazar-Alvarez, Anwar Ahniyaz, Irune Villaluenga, Gemma Berriozabal, Yolanda R De Miguel and Lennart Bergström

    2013-01-01

    Full Text Available This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.

  12. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin

    Science.gov (United States)

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhanqing; Dickerson, Russell R.; Stenchikov, Georgiy L.; Osipov, Sergey; Ren, Xinrong

    2016-11-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  13. Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2.

    Science.gov (United States)

    Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E

    2011-01-01

    The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.

  14. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    Science.gov (United States)

    Oláh, Attila; Hillborg, Henrik; Vancso, G. Julius

    2005-01-01

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus of this study was to apply the Johnson-Kendall-Roberts (JKR) contact mechanics approach to investigate PDMS samples prior to and following UV/ozone surface treatment. A gradual formation of a hydrophilic, silica-like surface layer with increasing modulus was observed with increasing UV/ozone exposure. A subsequent hydrophobic recovery after UV/ozone exposure was observed, as indicated by increasing contact angles. This supports the hypothesis that the hydrophobic recovery is mainly caused by the gradual coverage of a permanent silica-like structure with free siloxanes and/or reorientation of polar groups. PDMS containing a homogenously dispersed filler (Sylgard 184), exhibited a decreasing surface roughness (by AFM) when the oxidized surface region "collapsed" into a smooth SiO x layer (final surface roughness Sylgard 170), exhibited an increasing surface roughness with treatment dose, which was attributed to the "collapse" of the oxidized surface region thus exposing the contours of the underlying filler aggregates (final surface roughness ˜140 nm). A dedicated device was designed and built to study the contact mechanics behavior of PDMS prior to, and following surface treatment. The value of the combined elastic modulus obtained for PDMS lens and semi-infinite flat surface system showed an increase in full agreement with the formation of a silica-like layer exhibiting a high elastic modulus (compared with untreated PDMS). The work of adhesion observed in JKR experiments exhibited an increasing trend as a function of treatment done in agreement with

  15. Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010

    Directory of Open Access Journals (Sweden)

    L. Järvi

    2012-03-01

    Full Text Available Five years of carbon dioxide exchange measured with the eddy covariance technique at the world's northernmost urban flux station SMEAR III located in Helsinki, Finland, were analyzed. The long-term measurements and high-latitude location enabled us to examine the seasonal and annual variations of CO2 exchange, and to identify different factors controlling the measured exchange. Furthermore, the advantage of the station is that the complex surrounding area enables us to distinguish three different surface cover areas than can be evaluated separately. We also tested different methods (artificial neural networks and median diurnal cycles to fill gaps in CO2 flux time series and examined their effect on annual emission estimates.

    The measured fluxes were highly dependent on the prevailing wind direction with the highest fluxes downwind from a large road and lowest downwind from the area of high fraction of vegetation cover. On an annual level, the difference in CO2 emission of the two areas was 75% showing the impact of complex measurement surroundings in the flux measurements. Seasonal differences in the CO2 exchange downwind from the road were mainly caused by reduced traffic rates in summer, whereas in other directions seasonality was more determined by vegetation activity. Differences between the gap filling methods were small, but slightly better (0.6 μmol m−2 s−1 smaller RMSE results were obtained when the artificial neural network with traffic counts was used instead of the without traffic network and method based on median diurnal cycles. The measurement site was a net carbon source with an average annual emission of 1760 g C m−2, with a biased error of 6.1 g C m−2 caused by the gap filling. The annual value varied 16% between the different years.

  16. Dissociation and dissociative ionization of H2+ using the time-dependent surface flux method

    CERN Document Server

    Yue, Lun

    2014-01-01

    The time-dependent surface flux method developed for the description of electronic spectra [L. Tao and A. Scrinzi, New J. Phys. 14, 013021 (2012); A. Scrinzi, New J. Phys. 14, 085008 (2012)] is extended to treat dissociation and dissociative ionization processes of H2+ interacting with strong laser pulses. By dividing the simulation volume into proper spatial regions associated with the individual reaction channels and monitoring the probability flux, the joint energy spectrum for the dissociative ionization process and the energy spectrum for dissociation is obtained. The methodology is illustrated by solving the time-dependent Schr\\"{o}dinger equation (TDSE) for a collinear one-dimensional model of H2+ with electronic and nuclear motions treated exactly and validated by comparison with published results for dissociative ionization. The results for dissociation are qualitatively explained by analysis based on dressed diabatic Floquet potential energy curves, and the method is used to investigate the breakdow...

  17. Dielectric surface loss in superconducting resonators with flux-trapping holes

    Science.gov (United States)

    Chiaro, B.; Megrant, A.; Dunsworth, A.; Chen, Z.; Barends, R.; Campbell, B.; Chen, Y.; Fowler, A.; Hoi, I. C.; Jeffrey, E.; Kelly, J.; Mutus, J.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Martinis, John M.

    2016-10-01

    Surface distributions of two level system (TLS) defects and magnetic vortices are limiting dissipation sources in superconducting quantum circuits. Arrays of flux-trapping holes are commonly used to eliminate loss due to magnetic vortices, but may increase dielectric TLS loss. We find that dielectric TLS loss increases by approximately 25% for resonators with a hole array beginning 2 μ {{m}} from the resonator edge, while the dielectric loss added by holes further away was below measurement sensitivity. Other forms of loss were not affected by the holes. Additionally, we estimate the loss due to residual magnetic effects to be 9× {10}-10 {μ {{T}}}-1 for resonators patterned with flux-traps and operated in magnetic fields up to 5 μ {{T}}. This is orders of magnitude below the total loss of the best superconducting coplanar waveguide resonators.

  18. Can Surface Flux Transport Account for the Weak Polar Field in Cycle 23?

    Science.gov (United States)

    Jiang, Jie; Cameron, Robert H.; Schmitt, Dieter; Schüssler, Manfred

    2013-06-01

    To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.

  19. Can surface flux transport account for the weak polar field in cycle 23?

    CERN Document Server

    Jiang, Jie; Schmitt, Dieter; Schuessler, Manfred

    2011-01-01

    To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.

  20. Thermal neutrons' flux near the Earth's surface as an evidence of the crustal stress

    Science.gov (United States)

    Sigaeva, Ekaterina; Nechayev, Oleg; Volodichev, Nikolay; Antonova, Valentina; Kryukov, Sergey; Chubenko, Alexander; Shchepetov, Alexander

    There are some ideas about the Earth’s global seismic activity appearance due to tidal forces. At the same time, the correlations between the big series of the earthquakes and the New and Full Moons and between the New and Full Moons and the increasings of the thermal neutrons’ flux from the Earth’s crust were observed. It is as though there are internal links between these three natural phenomena and the physical reasons for their appearance are the same. The paper presents the results of the ground-based thermal neutrons observations during different time periods characterized with phenomena in the near-Earth space (for instance, the New and Full Moon). Basing on the up-to-date conception of the tidal waves influence on the Earth's crust the authors confirm the role of the Moon in the production of the neutron flux near the Earth's surface.

  1. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    Science.gov (United States)

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  2. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    Science.gov (United States)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  3. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  4. Utilization of the UV laser with picosecond pulses for the formation of surface microstructures on elastomeric plastics

    Science.gov (United States)

    Antoszewski, B.; Tofil, S.; Scendo, M.; Tarelnik, W.

    2017-08-01

    Elastomeric plastics belong to a wide range of polymeric materials with special properties. They are used as construction material for seals and other components in many branches of industry and, in particular, in the biomedical industry, mechatronics, electronics and chemical equipment. The micromachining of surfaces of these materials can be used to build micro-flow, insulating, dispensing systems and chemical and biological reactors. The paper presents results of research on the effects of micro-machining of selected elastomeric plastics using a UV laser emitting picosecond pulses. The authors see the prospective application of the developed technology in the sealing technique in particular to shaping the sealing pieces co-operating with the surface of the element. The result of the study is meant to show parameters of the UV laser’s performance when producing typical components such as grooves, recesses for optimum ablation in terms of quality and productivity.

  5. An intercomparison between the surface heat flux feedback in five coupled models, COADS and the NCEP reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Frankignoul, C.; Kestenare, E. [Universite Pierre et Marie Curie, Institute Pierre-Simon Laplace, Laboratoire d' Oceanographie Dynamique et de Climatologie, 4 place Jussieu, 75252 Paris Cedex 05 (France); Botzet, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Carril, A.F. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Drange, H. [Nansen Environmental and Remote Sensing Center, Bergen (Norway); Pardaens, A. [Hadley Centre for Climate Prediction and Research, Met Office (United Kingdom); Terray, L.; Sutton, R. [Department of Meteorology, University of Reading (United Kingdom)

    2004-04-01

    The surface heat flux feedback is estimated in the Atlantic and the extra-tropical Indo-Pacific, using monthly heat flux and sea surface temperature anomaly data from control simulations with five global climate models, and it is compared to estimates derived from COADS and the NCEP reanalysis. In all data sets, the heat flux feedback is negative nearly everywhere and damps the sea surface temperature anomalies. At extra-tropical latitudes, it is strongly dominated by the turbulent fluxes. The radiative feedback can be positive or negative, depending on location and season, but it remains small, except in some models in the tropical Atlantic. The negative heat flux feedback is strong in the mid-latitude storm tracks, exceeding 40 W m{sup -2} K{sup -1} at place, but in the Northern Hemisphere it is substantially underestimated in several models. The negative feedback weakens at high latitudes, although the models do not reproduce the weak positive feedback found in NCEP in the northern North Atlantic. The main differences are found in the tropical Atlantic where the heat flux feedback is weakly negative in some models, as in the observations, and strongly negative in others where it can exceed 30 W m{sup -2} K{sup -1} at large scales, in part because of a strong contribution of the radiative fluxes, in particular during spring. A comparison between models with similar atmospheric or oceanic components suggests that the atmospheric model is primarily responsible for the heat flux feedback differences at extra-tropical latitudes. In the tropical Atlantic, the ocean behavior plays an equal role. The differences in heat flux feedback in the tropical Atlantic are reflected in the sea surface temperature anomaly persistence, which is too small in models where the heat flux damping is large. A good representation of the heat flux feedback is thus required to simulate climate variability realistically. (orig.)

  6. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva;

    2014-01-01

    of four state equations. Taking advantage of the psychrometric relationship between temperature and vapor pressure, the present method also estimates the near surface moisture availability (M) from TS, air temperature (TA) and relative humidity (RH), thereby being capable of decomposing λ...

  7. Non-UV based germicidal activity of metal-doped TiO2 coating on solid surfaces

    Institute of Scientific and Technical Information of China (English)

    LIU Li-fen; John Barford; YEUNG King Lun; SI Grace

    2007-01-01

    A stain-based screening method was developed to screen different catalyst coatings for their germicidal activity. A Baclight dead/live bacteria viability kit (invitrogen, molecular probes) was used for staining the cell. The screening was carried out following a standard procedure. This included loading cell suspension to solid surface and maintaining contact for 30 min, then staining with a mixture containing dyes. The stained cells were observed using an epifluorescent microscope and photographed using a CCD camera under UV. Metal-doped TiO2 coatings on Al plates were prepared and tested for non-UV germicidal activity without using UV. It was tested using model microorganisms such as Bakers Yeast (Saccharomyces cerevisiae), Bacillus subtilis, Pseudomonas putida, and Escherichia coli. On the basis of the germicidal activity of catalyst and the degree of damage caused to the cells, the stained cells may appear green (viable), green with red or yellow nuclei and yellow (compromised) or red (nonviable). According to their stained color, cells were counted to calculate the percentage of dead, live, and compromised cells. Compromised cells are cells that grow very slowly after reculturing indicating a degree of reversible cell damage. Screening the germicidal activity using this staining method is accurate and efficient, and requires less time than the culture-based method. A modification to the procedure for measuring germicidal activity of rough surfaces or fibrous coatings was developed. Both TiO2 and metal-doped TiO2 (Ag, Pt, Au, Cu) possess non-UV based germicidal activity. The germicidal activity of TiO2 was found to be related with its wetting property and can be improved by UV irradiation before testing. It is not greatly affected by contact time, indicating a fast acting germicidal activity.

  8. Global database of surface ocean particulate organic carbon export fluxes diagnosed from the 234Th technique

    Directory of Open Access Journals (Sweden)

    F. A. C. Le Moigne

    2013-05-01

    Full Text Available The oceanic biological carbon pump is an important factor in the global carbon cycle. Organic carbon is exported from the surface ocean mainly in the form of settling particles derived from plankton production in the upper layers of the ocean. The large variability in current estimates of the global strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains poorly constrained. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. The dataset is archived on the data repository PANGEA® (www.pangea.de under doi:10.1594/PANGAEA.809717. Data were collected from tables in papers published between 1985 and early 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220 m. Globally the fluxes ranged from 0 to 1500 mg of C m−2 d−1.

  9. Surface Turbulent Fluxes, 1x1 deg Monthly Grid, Set1 and Interpolated Data V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  10. A Double-Ring Algorithm for Modeling Solar Active Regions: Unifying Kinematic Dynamo Models and Surface Flux-Transport Simulations

    CERN Document Server

    Muñoz-Jaramillo, Andrés; Martens, Petrus C H; Yeates, Anthony R

    2010-01-01

    The emergence of tilted bipolar active regions and the dispersal of their flux, mediated via processes such as diffusion, differential rotation and meridional circulation is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed $\\alpha$-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on active region eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations we first show that an axisymmetric formulation -- which is usually invoked in kinematic dynamo models -- can reasonably approximate the surface flux dy...

  11. Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2012-03-01

    Full Text Available The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.

  12. Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment

    Science.gov (United States)

    Zhang, Tingting; Liu, Yupeng; Liang, Jun; Wang, Daoai

    2017-02-01

    A simple and efficient surface treatment method toward practical applications to enhance photo response of TiO2 nanotube arrays (NTs) photoelectrode was reported. TiO2 NTs were prepared by two-step electrochemical anodization methods, following by surface ultra violet light (UV) illumination treatment, which can produce amounts of hydroxyl groups on the surface of TiO2 NTs photoelectrode. The photoelectrochemical measurements demonstrate that the photocurrent density of the UV treated TiO2 NTs photoelectrode enhances by 50% than that of the pristine TiO2 NTs photoelectrode. More interestingly, the decayed photocurrent density of TiO2 NTs can recover the high value by illumination treatment again after using/storing for several days. Additionally, open circuit potential, tafel curves and electrochemical impedance spectroscopy measurements exhibit that the UV illumination treatment for TiO2 NTs photoelectrode is an easy and effective strategy to protect 304 stainless steel from corrosion by photogenerated cathode protection.

  13. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  14. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux

    Institute of Scientific and Technical Information of China (English)

    Anuar Ishak; Roslinda Nazar; Ioan Pop

    2009-01-01

    The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing flow.

  15. Determination of regional surface heat fluxes over heterogeneous landscapes by integrating satellite remote sensing with boundary layer observations

    NARCIS (Netherlands)

    Ma, Y.M.

    2006-01-01

    Keywords: satellite remote sensing, surface layer observations, atmospheric boundary layer observations, land surface variables, vegetation variables, land surface heat fluxes, validation, heterogeneous landscape, GAME/Tibet

  16. Effects of continuous casting mould fluxes on reducing longitudinal and star cracks on a slab surface

    Institute of Scientific and Technical Information of China (English)

    WANG Qian; WANG Yu; CHI Jinghao; XIE Bing; HE Yuming; ZHU Bing; CHEN Wenman

    2004-01-01

    In the continuous casting production of medium carbon steel (whose mass fraction of carbon is 0.09 % to 0.16 %)and high strength Iow alloy steel (whose mass fraction of Mn is 0.90 % to 1.40 %), flecks occurring the most often are usually longitudinal and star cracks. In additional to the employment of a galvanized plate mould, two kinds; of fluxes with special properties were studied and used to harmonize the conflicts between the function of heat transfer and lubrication. An industrial application revealed that the crystallizing temperature (To) and crystal ratio (R) of fluxes have a crucible effect on impeding the occurrence of above defects on a slab surface. In the case of slab section (180 to 240) mm×(1000 to 1400) mm and casting speed Vc of (0.7 to 1.2) m/min, the optimized parameters of fluxes are Tc of (1170 to 1190) ℃, R of 80 % to 95 % for medium carbon steel, and Tc of (1100 to 1150) ℃, plus R of 40 % to 60 % for high strength Iow alloy steel.

  17. Surface heat fluxes and ecosystem function in the Cretan Sea (eastern Mediterranean: a modelling study

    Directory of Open Access Journals (Sweden)

    J. R. Siddorn

    Full Text Available As a component of the Mediterranean Forecast System Pilot Project, a data buoy was deployed in the Cretan Sea. A 1-D ecosystem model of the site has been used to investigate the role of surface heat fluxes in determining modelled ecosystem behaviour. The method of calculation of these fluxes, the quality of the data used, and the temporal resolution of the data all had an impact upon the modelled ecosystem function. The effects of the changes in heat flux formulation were substantial, with both annually averaged properties of the system and the seasonal evolution of the biology being affected. It was also found that the ecosystem model was extremely sensitive to the accuracy of the meteorological forcing data used, with substantial changes in biology found when offsets in the forcing data were imposed. The frequency of forcing data was relatively unimportant in determining the biological function, although lower frequency forcing damped high frequency variability in the biology. During periods of mixing the biology showed an amplified response to changes in physical dynamics, but during periods of stratification the variations in the physics were found to be less important. Zooplankton showed more sensitivity to physical variability than either phytoplankton or bacteria. The consequences for ecosystem modelling are discussed.

    Key words. Oceanography: physical (air-sea interactions; turbulence, diffusion, and mixing processes – Oceanography: biological and chemical (plankton

  18. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    Science.gov (United States)

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Surface Evolution of the Sun's Magnetic Field: A Historical Review of the Flux-Transport Mechanism

    Directory of Open Access Journals (Sweden)

    Sheeley Jr. Neil R.

    2005-10-01

    Full Text Available This paper reviews our attempts to understand the transport of magnetic flux on the Sun from the Babcock and Leighton models to the recent revisions that are being used to simulate the field over many sunspot cycles. In these models, the flux originates in sunspot groups and spreads outward on the surface via supergranular diffusion; the expanding patterns become sheared by differential rotation, and the remnants are carried poleward by meridional flow. The net result of all of the flux eruptions during a sunspot cycle is to replace the initial polar fields with new fields of opposite polarity. A central issue in this process is the role of meridional flow, whose relatively low speed is near the limit of detection with Doppler techniques. A compelling feature of Leighton’s original model was that it reversed the polar fields without the need for meridional flow. Now, we think that meridional flow is central to the reversal and to the dynamo itself.

  20. Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

    2016-01-01

    During the past few decades it has been documented that the ultra-violet (UV) component of natural sunlight alone or in combination with visible light can instantaneously stimulate aerobic plant production of a range of important trace gases: CH4, CO2, CO, short-chain hydrocarbons/ non...... for CH4 production, but underlying mechanisms are not fully known. For other gases such generating processes have not been established yet and mechanisms remain hypothetical. Field measurements of UV-induced emissions of the gases under natural light conditions are scarce. Therefore, realistic upscaling...... to the ecosystem level is uncertain for all gases. Nevertheless, based on empirical response curves, we propose the first global upscaling of UV-induced N2O and CO to illustrate emission ranges from a global perspective and as a contribution to an ongoing quantification process. When scaled to the global level...

  1. Effects of heat flux on dropwise condensation on a superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung Won; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of); Kim, Dong Hyun [KAERI, Daejeon (Korea, Republic of); Jo, Hang Jin [University of Wisconsin-Madison, Wisconsin (United States); Kim, Moo Hwan [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The condensation heat transfer efficiencies of superhydrophobic surfaces that have ∼160.deg. contact angle under atmospheric conditions were investigated experimentally. The departing diameter and the contact angle hysteresis of droplets were measured by capturing front and tilted side views of condensation phenomena with a high speed camera and an endoscope, respectively. Condensation behaviors on the surface were observed at the micro-scale using an Environmental scanning electron microscope (ESEM). Apparently-spherical droplets formed at very low heat flux q' ∼20 kW/m{sup 2} but hemispherical droplets formed at high q' ∼ 440 kW/m{sup 2} . At high q', heat transfer coefficients were lower on the superhydrophobic surface than on a hydrophobic surface although the superhydrophobic surface is water repellent so droplets roll off. The results of contact angle hysteresis and ESEM image revealed that the reduced heat transfer of the surface can be attributed to the large size of departing droplets caused by adhesive condensed droplets at nucleation sites. The results suggest that the effect of q' or degree of sub-cooling of a condensation wall determine the droplet shape, which is closely related to removal rates of condensates and finally to the heat transfer coefficient.

  2. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  3. Investigation of the impact of anthropogenic heat flux within an urban land surface model and PILPS-urban

    Science.gov (United States)

    Best, M. J.; Grimmond, C. S. B.

    2016-10-01

    Results from the first international urban model comparison experiment (PILPS-Urban) suggested that models which neglected the anthropogenic heat flux within the surface energy balance performed at least as well as models that include the source term, but this could not be explained. The analyses undertaken show that the results from PILPS-Urban were masked by the signal from including vegetation, which was identified in PILPS-Urban as being important. Including the anthropogenic heat flux does give improved performance, but the benefit is small for the site studied given the relatively small magnitude of this flux relative to other terms in the surface energy balance. However, there is no further benefit from including temporal variations in the flux at this site. The importance is expected to increase at sites with a larger anthropogenic heat flux and greater temporal variations.

  4. A method of laser micro-polishing for metallic surface using UV nano-second pulse and CW lasers

    CERN Document Server

    Jang, Pong-Ryol; Ji, Kum-Hyok; Kim, Nam-Chol

    2014-01-01

    During laser micro-polishing, the constant control of laser energy density is a key technology to improve the surface roughness. In this paper, a method which controls the energy density of UV(ultraviolet) pulse laser in real time with the control of CW(continuous wave) laser spot size in laser micro-polishing for metallic surface was presented. The experimental and analytical considerations of several influence factors such as laser spot size, fusion zone and focal offset were investigated. In addition, using a laser micro-polishing system manufactured with this method, the laser micro-polishing experiments on the two different surface shapes of stainless steel 316L were conducted. For the inclined or curved surface, the surface roughness improvements of up to 56.4% and 57.3% were respectively obtained, and the analysis of the results were discussed.

  5. Investigation of γ-(2,3-Epoxypropoxypropyltrimethoxy Silane Surface Modified Layered Double Hydroxides Improving UV Ageing Resistance of Asphalt

    Directory of Open Access Journals (Sweden)

    Canlin Zhang

    2017-01-01

    Full Text Available γ-(2,3-Epoxypropoxypropyltrimethoxy silane surface modified layered double hydroxides (KH560-LDHs were prepared and used to improve the ultraviolet ageing resistance of asphalt. The results of X-ray photoelectron spectrometry (XPS indicated that KH560 has been successfully grafted onto the surface of LDHs. The agglomeration of LDHs particles notably reduced after KH560 surface modification according to scanning electron microscopy (SEM, which implied that the KH560 surface modification was helpful to promote the dispersibility of LDHs in asphalt. Then, the influence of KH560-LDHs and LDHs on the physical and rheological properties of asphalt before and after UV ageing was thoroughly investigated. The storage stability test showed that the difference in softening point (ΔS of LDHs modified asphalt decreased from 0.6 °C to 0.2 °C at an LDHs content of 1% after KH560 surface modification, and the tendency became more pronounced with the increase of LDH content, indicating that KH560 surface modification could improve the stability of LDHs in asphalt. After UV ageing, the viscous modulus (G’’ of asphalt significantly reduced, and correspondingly, the elastic modulus (G’ and rutting factor (G*/sin δ rapidly increased. Moreover, the asphaltene increased and the amount of “bee-like” structures of the asphalt decreased. Compared with LDHs, KH560-LDHs obviously restrained performance deterioration of the asphalt, and helped to relieve the variation of the chemical compositions and morphology of asphalt, which suggested that the improvement of KH560-LDHs on UV ageing resistance of asphalt was superior to LDHs.

  6. UV Habitable Zones Further Constrain Possible Life

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    tenth of solar metallicity, and a hundredth of solar metallicity.They calculate the location of the inner and outer UV habitable zone boundaries for each star at the beginning and end of its main-sequence life. They then determine the region for which the UV habitable zone and the traditional habitable zone overlap which maximizes the potential to support persistent life.The Field NarrowsRelationship between the stellar mass and location of the boundaries of the traditional and UV habitable zones for a star of one hundredth solar metallicity. The traditional and UV habitable zones do not overlap for stars of any mass. [Adapted from Oishi and Kamaya 2016]Oishi and Kamaya find that taking the UV habitable zone into account unsurprisingly decreases the places where persistent life might be found. For solar-metallicity stars, for instance, only those stars between 1.01.5 solar masses even have overlapping traditional and UV habitable zones.As metallicity of the host star decreases, the overlapping regions decrease as well: at a metallicity of one hundredth that of the Sun (Z=0.0002), the UV and traditional habitable zones do not overlap for any mass star.The authors point out that this does not necessarily mean that such stars cant support life. Stellar activity such as flares and coronal mass ejections can temporarily increase UV flux, possibly providing enough to make up for low steady-state flux. And oceans on planetary surfaces could shield potential life from UV flux that is too high.Nonetheless, the estimates of the UV habitable zone in this study help us to narrow down the most probableplaces for findinglife in the universe.CitationMidori Oishi and Hideyuki Kamaya 2016 ApJ 833 293. doi:10.3847/1538-4357/833/2/293

  7. Nanofluidic Transport over a Curved Surface with Viscous Dissipation and Convective Mass Flux

    Science.gov (United States)

    Mehmood, Zaffar; Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.

    2017-03-01

    This article is a numerical investigation of boundary layer flow of nanofluid over a bended stretching surface. The study is carried out by considering convective mass flux condition. Contribution of viscous dissipation is taken into the account along with thermal radiation. Suitable similarity transformations are employed to simplify the system of nonlinear partial differential equations into a system of nonlinear ordinary differential equations. Computational results are extracted by means of a shooting method embedded with a Runge-Kutta Fehlberg technique. Key findings include that velocity is a decreasing function of curvature parameter K. Moreover, Nusselt number decreases with increase in curvature of the stretching surface while skin friction and Sherwood number enhance with increase in K.

  8. Nanofluidic transport over a curved surface with viscous dissipation and convective mass flux

    Energy Technology Data Exchange (ETDEWEB)

    Mehmood, Zaffar; Iqbal, Z.; Azhar, Ehtsham; Maraj, E.N. [HITEC Univ., Taxila (Pakistan). Dept. of Mathematics

    2017-06-01

    This article is a numerical investigation of boundary layer flow of nanofluid over a bended stretching surface. The study is carried out by considering convective mass flux condition. Contribution of viscous dissipation is taken into the account along with thermal radiation. Suitable similarity transformations are employed to simplify the system of nonlinear partial differential equations into a system of nonlinear ordinary differential equations. Computational results are extracted by means of a shooting method embedded with a Runge-Kutta Fehlberg technique. Key findings include that velocity is a decreasing function of curvature parameter K. Moreover, Nusselt number decreases with increase in curvature of the stretching surface while skin friction and Sherwood number enhance with increase in K.

  9. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  10. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    Science.gov (United States)

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate.

  11. Improving iterative surface energy balance convergence for remote sensing based flux calculation

    Science.gov (United States)

    Dhungel, Ramesh; Allen, Richard G.; Trezza, Ricardo

    2016-04-01

    A modification of the iterative procedure of the surface energy balance was purposed to expedite the convergence of Monin-Obukhov stability correction utilized by the remote sensing based flux calculation. This was demonstrated using ground-based weather stations as well as the gridded weather data (North American Regional Reanalysis) and remote sensing based (Landsat 5, 7) images. The study was conducted for different land-use classes in southern Idaho and northern California for multiple satellite overpasses. The convergence behavior of a selected Landsat pixel as well as all of the Landsat pixels within the area of interest was analyzed. Modified version needed multiple times less iteration compared to the current iterative technique. At the time of low wind speed (˜1.3 m/s), the current iterative technique was not able to find a solution of surface energy balance for all of the Landsat pixels, while the modified version was able to achieve it in a few iterations. The study will facilitate many operational evapotranspiration models to avoid the nonconvergence in low wind speeds, which helps to increase the accuracy of flux calculations.

  12. Estimates of heat flux to material surfaces in Proto-MPEX with IR imaging

    Science.gov (United States)

    Showers, M.; Biewer, T. M.; Bigelow, T. S.; Caughman, J. B. O.; Donovan, D.; Goulding, R. H.; Gray, T. K.; Rapp, J.; Youchison, D. L.; Nygren, R. E.

    2015-11-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a linear plasma device with the primary purpose of developing the plasma source concept for the Material Plasma Exposure eXperiment (MPEX), which will address the plasma material interactions (PMI) science for future fusion reactors. New diagnostics for Proto-MPEX include an infrared (IR) camera, in-vessel thermocouples and ex-vessel fluoroptic probes. The IR camera and other diagnostics provide surface temperature measurements of Proto-MPEX's dump and target plates, located on either end of the machine, which are being exposed to plasma. The change in surface temperature is measured over the duration of the plasma shot to determine the heat flux hitting the plates. The IR camera additionally provides 2-D thermal load distribution images of these plates, highlighting Proto-MPEX plasma behaviors, such as hot spots. The plasma diameter on the dump plate is on the order of 15 cm. The combination of measured heat flux and the thermal load distribution gives information on the efficiency of Proto-MPEX as a plasma generating device. Machine operating parameters that will improve Proto-MPEX's performance may be identified, increasing its PMI research capabilities.

  13. Molecular Imprinted Membrane with High Flux by Surface Photo-grafting Copolymerization

    Institute of Scientific and Technical Information of China (English)

    李爽; 张凤宝; 张国亮; 王燕

    2005-01-01

    Molecular imprinted polymer membranes (MIM) combine the merits of molecular imprint and membrane technology. In this work, a very thin of imprinted polymer that can specifically and selectively absorb the basic template (adenine) was grafted on the surface of polyvinylidene fluoride membrane by photo-grafting copolymerization. Because the molecular imprinted polymer is grafted on the surface of the matrix membrane without blocking the membrane pores, the resultant MIMs have high flux as microfiltration membrane (0.26 mol·m-2·h-1 of template and flux for distilled water was 3.6 ml·mim-1·cm-2 at 0.8 MPa). Moreover, the MIMs can absorb/desorb template molecules rapidly. Usually, it only takes several minutes for MIMs to absorb more than 75% of the template (adenine) in aqueous solution. And the influences of the type and amount of the functional monomers, the amount of the cross-linker on the absorption capability are discussed to determine the optimal preparation conditions。

  14. Sequential cryogen spraying for heat flux control at the skin surface

    Science.gov (United States)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  15. Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers

    Science.gov (United States)

    Tetreault-Friend, Melanie; Azizian, Reza; Bucci, Matteo; McKrell, Thomas; Buongiorno, Jacopo; Rubner, Michael; Cohen, Robert

    2016-06-01

    Porous hydrophilic surfaces have been shown to enhance the critical heat flux (CHF) in boiling heat transfer. In this work, the separate effects of pore size and porous layer thickness on the CHF of saturated water at atmospheric pressure were experimentally investigated using carefully engineered surfaces. It was shown that, for a fixed pore diameter (˜20 nm), there is an optimum layer thickness (˜2 μm), for which the CHF value is maximum, corresponding to ˜115% enhancement over the value for uncoated surfaces. Similarly, a maximum CHF value (˜100% above the uncoated surface CHF) was observed while changing the pore size at a constant layer thickness (˜1 μm). To explain these CHF maxima, we propose a mechanistic model that can capture the effect of pore size and pore thickness on CHF. The good agreement found between the model and experimental data supports the hypothesis that CHF is governed by the competition between capillary wicking, viscous pressure drop and evaporation, as well as conduction heat transfer within the porous layer. The model can be used to guide the development of engineered surfaces with superior boiling performance.

  16. Validation of an HPLC–UV method for the determination of digoxin residues on the surface of manufacturing equipment

    Directory of Open Access Journals (Sweden)

    ZORAN B. TODOROVIĆ

    2009-09-01

    Full Text Available In the pharmaceutical industry, an important step consists in the removal of possible drug residues from the involved equipments and areas. The cleaning procedures must be validated and methods to determine trace amounts of drugs have, therefore, to be considered with special attention. An HPLC–UV method for the determination of digoxin residues on stainless steel surfaces was developed and validated in order to control a cleaning procedure. Cotton swabs, moistened with methanol were used to remove any residues of drugs from stainless steel surfaces, and give recoveries of 85.9, 85.2 and 78.7 % for three concentration levels. The precision of the results, reported as the relative standard deviation (RSD, were below 6.3 %. The method was validated over a concentration range of 0.05–12.5 µg mL-1. Low quantities of drug residues were determined by HPLC–UV using a Symmetry C18 column (150´4.6 mm, 5 µm at 20 °C with an acetonitrile–water (28:72, v/v mobile phase at a flow rate of 1.1 mL min-1, an injection volume of 100 µL and were detected at 220 nm. A simple, selective and sensitive HPLC–UV assay for the determination of digoxin residues on stainless steel was developed, validated and applied.

  17. Effects of surface roughness on magnetic flux leakage testing of micro-cracks

    Science.gov (United States)

    Deng, Zhiyang; Sun, Yanhua; Yang, Yun; Kang, Yihua

    2017-04-01

    Magnetic flux leakage (MFL) testing owns the advantages of high inspection sensitivity and stability, but its testing results are always affected by surface roughness. The relationship between the surface roughness ({{R}a} ) and detection signals for surface-breaking cracks is mainly discussed. The existence of roughness magnetic compression effect (RMCE) in present MFL testing is specially pointed out and its relevant theory is also analyzed, which manifest themselves in the compression of MFL signal in its peak value and the baseline drifts mixed with noise. An experimental investigation on surface comparators with different arithmetic average height ({{R}a} ) and artificial notch size, is performed to analyze the effects of surface roughness on detection signals of cracks. The detection limit (DL) of micro-crack is analyzed by comparing the {{B}y} noise-signal ratio ({{S}y} ) and peak-peak signals of the cracks. Meanwhile, {{S}y} increases with the {{R}a} and R{{S}m} , in this case, relatively shallow defects cannot be clearly distinguished at determined rough surface. Afterwards, a series of simulations are designed and performed to verify the effects of surface roughness on characteristic {{B}y} of the electromagnetic field, and a theoretical DL of micro-crack is presented as: DL=2.88{{R}a}+7.00 . Furthermore, the optimal lift-off value is selected for the micro-cracks’ detection to weaken the negative magnetic compression effect. MFL signals cannot reflect the accurate sizes of the cracks on rough surface due to the RMCE and its relevant phenomenon. The discovery and results will benefit the quantitative evaluation of the MFL testing.

  18. Influence of UV-B radiation on developmental changes, ethylene, CO[sub 2] flux and polyamines in cv. Doyenne d'Hiver pear shoots grown in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Predieri, S. (Consiglio Nazionale delle Ricerche, Centro Studi di Technica Frutticola, Bologna (Italy)); Krizek, D.T. (Climate Stress Laboratory, USDA, Beltsville, MD (United States)); Chien, Y. Wang (Horticultural Crops quality Laboratory, USDA, Beltsville, MD (United States)); Mirecki, R.M. (Climate Stress Laboratory, USDA, Beltsville, MD (United States)); Zimmerman, R.H. (Fruit Laboratory, USDA, Beltsville, MD (United States))

    1993-01-01

    In vitro shoots of cv. Doyenne d'Hiver pear (Pyrus communis L.) were irradiated under controlled environments for 6 h per day at 5 different levels of biologically effective UV-B radiation (UV-B[sub BE]). UV-B exposure caused a progressive increase in apical necrosis above background levels and stimulated leaf abscission. Shoots grown for 2 weeks at 7.8 mol m[sup -2] day[sup -1] of photosynthetic photon flux (PPF) and treated with 8.4 or 12.0 kJ m[sup -1] day[sup -1] UV-B[sub BE] produced up to 4 times more ethylene than those given 2.2 or 5.1 kJ m[sup -2] day[sup -1] UV-B[sub BE] or untreated controls. Exposure of shoots to 12 kJ m[sup -2] day[sup -1] of UV-B[sub BE] caused an increase in free putrescine content after 4 to 14 days of irradiation. Shoots showed a decrease in CO[sub 2] uptake after 3 days of UV-B; thereafter, they appeared to recover their photosynthetic capacity. Under typical PPF conditions used in micropropagation (90 [mu]mol m[sup -2] s[sup -1]), 8.4 kJ m[sup -2] day[sup -1] of UV-B radiation was injurious to relatively tender tissues of in vitro pear shoots; increasing the level of UV-B[sub BE] to 12 kJ m[sup -2] day[sup -1] produced even more adverse effects. (au).

  19. Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model

    Directory of Open Access Journals (Sweden)

    S. Watanabe

    2012-06-01

    Full Text Available The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280–315 nm radiation through 1850–2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N–60° N and 120° E–150° E, where the effect of aerosols (ca. 70% dominates the total UV-B change.

  20. Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model

    Directory of Open Access Journals (Sweden)

    T. Yokohata

    2012-02-01

    Full Text Available The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280–315 nm radiation through 1850–2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N–60° N and 120° E–150° E, where the effect of aerosols (ca. 70% dominates the total UV-B change.

  1. How common problems with estimating surface radiative fluxes impact snow simulations

    Science.gov (United States)

    Lapo, K. E.; Lundquist, J. D.; Hinkelman, L. M.

    2012-12-01

    Net radiation provides most of the melt energy for seasonal snow, a critical water resource for many parts of the world. In many cases shortwave radiation is the dominant flux, but when it is reduced by factors such as high albedo, cloud cover, and topographic shading, longwave radiation can also contribute substantially to the surface energy balance. Methods for determining these surface fluxes include: numerical weather models, reanalysis, direct observations, satellite measurements, and empirical algorithms based on proxy data. Long- and shortwave irradiances are rarely measured in mountainous environments. Those measurements that are made in these locations are subject to difficult conditions, which often result in snow-covered instruments and tilted instrumentation or sloped installation surface. To avoid these problems, measurements may be taken from a more protected valley location, but this may lead to a mismatch between measurement and study site conditions, such as a fog covered valley observation used to force a simulation at a higher, fog-free elevation. Satellites are useful tools for observing surface fluxes over large areas. However, satellite data products can have problems with mixed pixels of clouds and no clouds. Finally, algorithms based on proxy data have known biases and errors, can lack cloud and topographic corrections, and may not represent the diurnal cycle or cloud cover variability. In this study, we explored four scenarios for estimating long- and shortwave surface irradiances that have known errors and assessed the impact of these errors on simulations of SWE. The four scenarios were: 1) improper instrument siting such as a tilted sensor or improper projection of observations onto sloped terrain, 2) biases and errors in surface irradiances characteristic of algorithms based on proxy data, 3) mixed pixels of cloudy and non-cloudy conditions resulting from a coarse spatial resolution in a satellite or reanalysis product, and 4) lack of

  2. GALEX observations of the UV surface brightness and color profiles of the Local Group elliptical galaxy M32 (NGC221)

    CERN Document Server

    De Paz, A G; Sohn, Y J; Lee, Y W; Seibert, M; Rich, R M; Bianchi, L; Barlow, T A; Byun, Y I; Donas, J; Forster, K; Friedman, P G; Heckman, T M; Jelinsky, P N; Malina, R F; Martin, D C; Milliard, B; Morrissey, P F; Neff, S G; Schiminovich, D; Siegmund, O H W; Small, T; Szalay, A S; Welsh, B Y; Wyder, T K

    2004-01-01

    M32, the compact elliptical-galaxy companion to the Andromeda spiral galaxy has been imaged by the Galaxy Evolution Explorer (GALEX) in two ultraviolet bands, centered at ~1500 (FUV) and 2300 Angstroms (NUV). The imaging data have been carefully decomposed so as to properly account for the complicated background contamination from the disk of M31. We have derived the surface brightness and color profiles finding a slightly positive color gradient of Delta(FUV-B)/Delta log(r)=+0.15+/-0.03 within one effective radius. Earlier data from the Ultraviolet Imaging Telescope suggested that M32 had an extremely large (negative) FUV-optical color gradient (Delta(FUV-B)/Delta log(r)<-2), inverted with respect to the majority of gradients seen in giant elliptical galaxies. Our new results show that, despite of its very low UV-upturn, M32 has similar UV properties to those observed in luminous elliptical galaxies.

  3. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, L., E-mail: l.buzi@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster (Netherlands); Gent University, Sint-Pietersnieuwstraat 41, B-9000 Gent (Belgium); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); De Temmerman, G. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster (Netherlands); Unterberg, B.; Reinhart, M.; Dittmar, T.; Matveev, D.; Linsmeier, Ch. [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Breuer, U. [Central Institute of Engineering, Electronics and Analytics, ZEA-3 Analytics, Research Centre Jülich GmbH, 52425 Jülich (Germany); Kreter, A. [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Van Oost, G. [Gent University, Sint-Pietersnieuwstraat 41, B-9000 Gent (Belgium)

    2015-08-15

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (10{sup 26} m{sup −2}) and incident ion energy (40 eV) to two different ion fluxes (low flux: 10{sup 22} m{sup −2} s{sup −1}, high flux: 10{sup 24} m{sup −2} s{sup −1}). The maximum of deuterium retention was observed at ∼630 K for low flux density and at ∼870 K for high flux density, as indicated from the thermal desorption spectroscopy data (TDS). Scanning electron microscopy observations revealed the presence of blisters with a diameter of up to 1 μm which were formed at high flux density and high temperature (1170 K) contrasting with previously reported surface modification results at such exposure conditions.

  4. Mapping the low-surface brightness Universe in the UV band with Lyα emission from IGM filaments

    Science.gov (United States)

    Silva, Marta B.; Kooistra, Robin; Zaroubi, Saleem

    2016-10-01

    A large fraction of the baryonic matter in the Universe is located in filaments in the intergalactic medium (IGM). However, the low surface brightness of these filaments has not yet allowed their direct detection except in very special regions in the circum-galactic medium. Here we simulate the intensity and spatial fluctuations in Lyman alpha (Lyα) emission from filaments in the IGM and discuss the prospects for the next generation of space-based instruments to detect the low-surface brightness Universe at ultraviolet (UV) wavelengths. Starting with a high-resolution N-body simulation, we obtain the dark matter density fluctuations and associate baryons with the dark matter particles assuming that they follow the same spatial distribution. The IGM thermal and ionization state is set by a model of the UV background and by the relevant cooling processes for a hydrogen and helium gas. The Lyα emissivity is then estimated, taking into account recombination and collisional excitation processes. We find that the detection of these filaments through their Lyα emission is well in the reach of the next generation of UV space-based instruments and so it should be achieved in the next decade. The density field is populated with halos and galaxies and their Lyα emission is estimated. Galaxies are treated as foregrounds and so we discuss methods to reduce their contamination from observational maps. Finally, we estimate the UV continuum background as a function of the redshift of the Lyα emission line and discuss how this continuum can affect observations.

  5. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Science.gov (United States)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  6. Significant Enhancement of the Adhesion between Metal Films and Polymer Substrates by UV-Ozone Surface Modification in Nanoscale.

    Science.gov (United States)

    Liu, Junshan; He, Licheng; Wang, Liang; Man, Yuncheng; Huang, Luyi; Xu, Zheng; Ge, Dan; Li, Jingmin; Liu, Chong; Wang, Liding

    2016-11-09

    Polymer metallization is extensively used in a variety of micro- and nanosystem technologies. However, the deposited metal film exhibits poor adhesion to polymer substrates, which may cause difficulties in many applications. In this work, ultraviolet (UV)-ozone surface modification is for the first time put forward to enhance the adhesion between metal films and polymer substrates. The adhesion of sputtered Cu films on UV-ozone modified poly(methyl methacrylate) (PMMA) substrates is enhanced by a factor of 6, and that of Au films is improved by a factor of 10. Moreover, metal films on the modified PMMA substrates can withstand a long-time liquid immersion. To understand the mechanism for the adhesion enhancement, the surface modification is studied with contact angle measurements, attenuated total reflection Fourier-transform infrared spectrometry (ATR-FTIR) and atomic force microscopy (AFM). Detailed characterization results indicate that the significant adhesion enhancement is attributed to the increases of both the surface wettability by generating some polar functional groups and the roughness of the surface in nanoscale. To demonstrate this novel polymer metallization method, a 6-in. PMMA chip with arrays of three-electrode electrochemical microsensors is designed and fabricated, and the microsensor exhibits excellent reproducibility, uniformity, and long-term stability.

  7. Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends

    Science.gov (United States)

    Kowalonek, Jolanta; Kaczmarek, Halina; Dąbrowska, Aldona

    2010-10-01

    Poly(vinyl alcohol), pectin and their blends with different components ratio were exposed to low-temperature air plasma or high energy UV-irradiation ( λ = 254 nm) for the purpose of surface modification. The physico-chemical changes in surface properties have been studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. Surface free energy of polymeric films, its polar and dispersive components have been calculated by Owens-Wendt method. Moreover, the work of adhesion was estimated and the recovery of hydrophobic properties of modified films after storage have been also studied. The few seconds air-plasma treatment caused more effective surface modification than 5-6 h UV-irradiation. The observed changes were partially reversible, contrary to these caused by photo-modification. It was found that pectin/PVA (50:50) blend was characterised by larger susceptibility to plasma modification compared to pure pectin and pure PVA, whereas the photosensitivity to radiation of 254 nm wavelength was the lowest for this specimen in comparison to other studied samples.

  8. Surface thermocouples for measurement of pulsed heat flux in the divertor of the Alcator C-Mod tokamak.

    Science.gov (United States)

    Brunner, D; LaBombard, B

    2012-03-01

    A novel set of thermocouple sensors has been developed to measure heat fluxes arriving at divertor surfaces in the Alcator C-Mod tokamak, a magnetic confinement fusion experiment. These sensors operate in direct contact with the divertor plasma, which deposits heat fluxes in excess of ~10 MW/m(2) over an ~1 s pulse. Thermoelectric EMF signals are produced across a non-standard bimetallic junction: a 50 μm thick 74% tungsten-26% rhenium ribbon embedded in a 6.35 mm diameter molybdenum cylinder. The unique coaxial geometry of the sensor combined with its single-point electrical ground contact minimizes interference from the plasma/magnetic environment. Incident heat fluxes are inferred from surface temperature evolution via a 1D thermal heat transport model. For an incident heat flux of 10 MW/m(2), surface temperatures rise ~1000 °C/s, corresponding to a heat flux flowing along the local magnetic field of ~200 MW/m(2). Separate calorimeter sensors are used to independently confirm the derived heat fluxes by comparing total energies deposited during a plasma pulse. Langmuir probes in close proximity to the surface thermocouples are used to test plasma-sheath heat transmission theory and to identify potential sources of discrepancies among physical models.

  9. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  10. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    Science.gov (United States)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8

  11. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and i

  12. Observations of orientation dependence of surface morphology in tungsten implanted by low energy and high flux D plasma

    NARCIS (Netherlands)

    Xu, H.Y.; Zhang, Y. B.; Yuan, Y.; Fu, B. Q.; Godfrey, A.; De Temmerman, G.; Liu, W.; Huang, X.

    2013-01-01

    Surface modification by formation of blistering and nanostructures with pronounced orientation dependence has been observed on surfaces of rolled tungsten and recrystallized tungsten after exposure to a low energy (38 eV) deuterium (D) plasma with a high flux of 1024 m-2 s -1. The correlation betwee

  13. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

    Directory of Open Access Journals (Sweden)

    A. Babenhauserheide

    2015-03-01

    Full Text Available Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on assimilation of more than one year of atmospheric in-situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar, for CO2 flux estimation. CarbonTracker uses an Ensemble Kalman Filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude/latitude grid. Harmonizing the input data allows analyzing the strengths and weaknesses of the two approaches by direct comparison of the modelled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as temporal and spatial correlation lengths. Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the far-away surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.

  14. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Science.gov (United States)

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  15. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

    Directory of Open Access Journals (Sweden)

    A. Babenhauserheide

    2015-09-01

    Full Text Available Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on the assimilation of more than 1 year of atmospheric in situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar (Transport Model 5 – Four-Dimensional Variational model, for CO2 flux estimation. CarbonTracker uses an ensemble Kalman filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude–latitude grid. Harmonizing the input data allows for analyzing the strengths and weaknesses of the two approaches by direct comparison of the modeled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as the length of the assimilation time window. Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the distant surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of the measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.

  16. Comparison of Sensible Heat Flux from Eddy Covariance and Scintillometer over different land surface conditions

    Science.gov (United States)

    Zeweldi, D. A.; Gebremichael, M.; Summis, T.; Wang, J.; Miller, D.

    2008-12-01

    The large source of uncertainty in satellite-based evapotranspiration algorithm results from the estimation of sensible heat flux H. Traditionally eddy covariance sensors, and recently large-aperture scintillometers, have been used as ground truth to evaluate satellite-based H estimates. The two methods rely on different physical measurement principles, and represent different foot print sizes. In New Mexico, we conducted a field campaign during summer 2008 to compare H estimates obtained from the eddy covariance and scintillometer methods. During this field campaign, we installed sonic anemometers; one propeller eddy covariance (OPEC) equipped with net radiometer and soil heat flux sensors; large aperture scintillometer (LAS); and weather station consisting of wind speed, direction and radiation sensors over three different experimental areas consisting of different roughness conditions (desert, irrigated area and lake). Our results show the similarities and differences in H estimates obtained from these various methods over the different land surface conditions. Further, our results show that the H estimates obtained from the LAS agree with those obtained from the eddy covariance method when high frequency thermocouple temperature, instead of the typical weather station temperature measurements, is used in the LAS analysis.

  17. Frequency characteristic of response of surface air pressure to changes in flux of cosmic rays

    Science.gov (United States)

    Bogdanov, M. B.

    2014-11-01

    We compare the series of daily-average values of the surface air pressure for De Bilt and Lugano meteorological stations with subtracted linear trends and seasonal harmonics, as well as the series of the flux of galactic cosmic rays (GCRs) at Jungfraujoch station with subtracted moving average over 200 days. Using the method of superposed epochs, we show that the Forbush decreases at both stations are accompanied by increased pressure. Spectral analysis allows us to conclude that the analyzed series are characterized by nonzero coherence in almost the entire frequency range: from 0.02 day-1 day up to the Nyquist frequency of 0.5 day-1. Using changes in the GCR flux as a probing signal, we obtain amplitude-frequency characteristics of the pressure reaction. For both stations, these characteristics are in qualitative agreement with each other and indicate that the atmospheric response can be described by a second-order linear dynamic system that has wide resonance with a maximum at a frequency of 0.15 day-1.

  18. Surface Flux Transport and the Evolution of the Sun's Polar Fields

    Science.gov (United States)

    Wang, Y.-M.

    2017-09-01

    The evolution of the polar fields occupies a central place in flux transport (Babcock-Leighton) models of the solar cycle. We discuss the relationship between surface flux transport and polar field evolution, focusing on two main issues: the latitudinal profile of the meridional flow and the axial tilts of active regions. Recent helioseismic observations indicate that the poleward flow speed peaks at much lower latitudes than inferred from magnetic feature tracking, which includes the effect of supergranular diffusion and thus does not represent the actual bulk flow. Employing idealized simulations, we demonstrate that flow profiles that peak at mid latitudes give rise to overly strong and concentrated polar fields. We discuss the differences between magnetic and white-light measurements of tilt angles, noting the large uncertainties inherent in the sunspot group measurements and their tendency to underestimate the actual tilts. We find no clear evidence for systematic cycle-to-cycle variations in Joy's law during cycles 21-23. Finally, based on the observed evolution of the Sun's axial dipole component and polar fields up to the end of 2015, we predict that cycle 25 will be similar in amplitude to cycle 24.

  19. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate.

  20. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  1. Measurement of surface emission flux rates for volatile organic compounds at Technical Area 54

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, V.; Morgenstern, M.; Krier, D. [Los Alamos National Lab., NM (United States); Gilkeson, R. [Weirich and Associates, Albuquerque, NM (United States)

    1998-06-01

    The survey described in this report was conducted to estimate the mass of volatile organic compounds venting to the atmosphere from active and inactive waste disposal sites at Technical Area 54. A large number of nonintrusive passive sample collection devices were placed on the ground surface for 72 hours to characterize an area of approximately 150 acres. Results provided an indication of the boundary location of the known volatile organic plume, plume constituents, and isolated high concentration areas. The data from this survey enhanced existing data from a limited number of monitor wells currently used for plume surveillance. Results indicate that the estimated mass emission to the atmosphere is orders of magnitude lower than what is considered a small flux rate at a spill site or a Resource Conservation and Recovery Act landfill and is far below the threshold limit established by the State of New Mexico as an air quality concern.

  2. Stagnation-Point Flow toward a Vertical, Nonlinearly Stretching Sheet with Prescribed Surface Heat Flux

    Directory of Open Access Journals (Sweden)

    Sin Wei Wong

    2013-01-01

    Full Text Available An analysis is carried out to study the steady two-dimensional stagnation-point flow of an incompressible viscous fluid towards a stretching vertical sheet. It is assumed that the sheet is stretched nonlinearly, with prescribed surface heat flux. This problem is governed by three parameters: buoyancy, velocity exponent, and velocity ratio. Both assisting and opposing buoyant flows are considered. The governing partial differential equations are transformed into a system of ordinary differential equations and solved numerically by finite difference Keller-box method. The flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Dual solutions are found in the opposing buoyant flows, while the solution is unique for the assisting buoyant flows.

  3. Numerical methods for 3D tokamak simulations using a flux-surface independent grid

    Energy Technology Data Exchange (ETDEWEB)

    Stegmeir, A.; Coster, D.; Maj, O.; Lackner, K. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany)

    2014-06-15

    A numerical approach for 3D Tokamak simulations using a flux surface independent grid is presented. The grid consists of few poloidal planes with a Cartesian isotropic grid within each poloidal plane. Perpendicular operators can be discretised within a poloidal plane using standard second order finite difference methods. The discretisation of parallel operators is achieved with a field line following map and an interpolation. The application of the support operator method to the parallel diffusion operator conserves the self-adjointness of the operator on the discrete level and keeps the numerical decay rate at a low level. The developed numerical methods can be applied to geometries where an X-point is present. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Electrostatic potential variation on the flux surface and its impact on impurity transport

    CERN Document Server

    García-Regaña, J M; Turkin, Y; Kleiber, R; Helander, P; Maaßberg, H; Alonso, J A; Velasco, J L

    2015-01-01

    The particle transport of impurities in magnetically confined plasmas under some conditions does not find, neither quantitatively nor qualitatively, a satisfactory theory-based explanation. This compromise the successful realization of thermo-nuclear fusion for energy production since its accumulation is known to be one of the causes that leads to the plasma breakdown. In standard reactor-relevant conditions this accumulation is in most stellarators intrinsic to the lack of toroidal symmetry, that leads to the neoclassical electric field to point radially inwards. This statement, that the standard theory allows to formulate, has been contradicted by some experiments that showed weaker or no accumulation under such conditions \\cite{Ida_pop_16_056111_2009, Yoshinuma_nf_49_062002_2009}. The charge state of the impurities makes its transport more sensitive to the electric fields. Thus, the short length scale turbulent electrostatic potential or its long wave-length variation on the flux surface $\\Phi_{1}$ -- that...

  5. Impact of structural design criteria on first wall surface heat flux limit

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States)

    1998-09-01

    The irradiation environment experienced by the in-vessel components of fusion reactors presents structural design challenges not envisioned in the development of existing structural design criteria such as the ASME Code or RCC-MR. From the standpoint of design criteria, the most significant issues stem from the irradiation-induced changes in material properties, specifically the reduction of ductility, strain hardening capability, and fracture toughness with neutron irradiation. Recently, Draft 7 of the ITER structural design criteria (ISDC), which provide new rules for guarding against such problems, was released for trial use by the ITER designers. The new rules, which were derived from a simple model based on the concept of elastic follow up factor, provide primary and secondary stress limits as functions of uniform elongation and ductility. The implication of these rules on the allowable surface heat flux on typical first walls made of type 316 stainless steel and vanadium alloys are discussed.

  6. Synthesis of Perfluorinated Oxetane and Surface Properties of Its Cationic UV Cured Coating as a Reactive Additive

    Institute of Scientific and Technical Information of China (English)

    ZHAN Fu; ZHANG Yong; SHI Wen-fang

    2012-01-01

    Perfluorinated oxetane(F-OXE) was synthesized via the ring-opening reaction of epoxy-functionalized oxetane with 2-(perfluorooctyl)ethanol under base-catalysis,and characterized by FTIR and 1H NMR spectroscopy.The synthesized F-OXE was mixed with a commercial cationic UV curable resin,UVR6110,as a reactive additive at different mass fractions,and UV-irradiation cured in the presence of triphenylsulphonium hexafluoroantimonate as a cationic photoinitiator.The surface property study of cured films indicated that both hydrophobicity and oleophobicity were effectively enhanced by the addition of a small amount of F-OXE.The contact angles of water and 1-bromonaphthalene on the surface of the cured film with 1.0%(mass fraction) F-OXE loading increased from 72° to 106° and from 0° to 76°,respectively,compared with those on the surface of the film without F-OXE addition.The surface tension of UVR6110-F-OXE cured film decreased greatly from 55.6 mN/m of referenced film to 22.9 mN/m.The results from X-ray photoelectron spectroscopy analysis confirm the migration and aggregation effect of perfluoroalkyl group to the surface of cured film.For 1%(mass fraction) addition of F-OXE,the relative content of fluorine greatly increased from 0.70%(mass fraction) in the interior of the cured film to 36.73°%(mass fraction) at the surface of the cured film,whereas those of carbon and oxygen decreased from 73.29% to 40.96% and from 26.00% to22.30%,respectively.

  7. Electrospun TiO₂ nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering.

    Science.gov (United States)

    Zhao, Yong; Sun, Lei; Xi, Min; Feng, Quan; Jiang, Chaoyang; Fong, Hao

    2014-04-23

    In this study, the free-standing electrospun nanofibrous mat (i.e., nanofelt) consisting of anatase-phase TiO2 nanofibers with diameters of ∼200 nm was prepared, and the nanofelt was subsequently surface-decorated with Ag nanoparticles via an electroless plating method. The sensitivity toward surface enhanced Raman scattering (SERS) and UV-cleanable property of electrospun TiO2/Ag nanofelt were then investigated. In the SERS tests, the target analyte (i.e., 4-mercaptobenzoic acid, Rhodamine 6G, and 4-aminothiophenol) was first adsorbed onto the TiO2/Ag nanofelt as the probe analyte; this was followed by the measurements of Raman intensity and SERS maps. Thereafter, the nanofelt adsorbed with target analyte was cleaned and regenerated/recovered upon UV irradiation in O2-saturated water, and the removal of target analyte was attributed to photodegradation property of anatase-phase TiO2. This study suggested that the electrospun TiO2/Ag nanofelt would be promising as SERS-active substrate with UV-cleanable property for cost-effective and reproducible SERS applications.

  8. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  9. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2016-10-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  10. Progress in remote sensing of global land surface heat fluxes and evaporations with a turbulent heat exchange parameterization method

    Science.gov (United States)

    Chen, Xuelong; Su, Bob

    2017-04-01

    Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.

  11. Continental-scale water fluxes from continuous GPS observations of Earth surface loading

    Science.gov (United States)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2015-12-01

    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  12. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    Science.gov (United States)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  13. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling

    Science.gov (United States)

    Menut, Laurent; PéRez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, StéPhane

    2013-06-01

    Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

  14. Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin

    Science.gov (United States)

    Yilmaz, M. Tugrul; Anderson, Martha C.; Zaitchik, Ben; Hain, Chris R.; Crow, Wade T.; Ozdogan, Mutlu; Chun, Jong Ahn; Evans, Jason

    2014-01-01

    Regional evapotranspiration (ET) can be estimated using diagnostic remote sensing models, generally based on principles of energy balance closure, or with spatially distributed prognostic models that simultaneously balance both energy and water budgets over landscapes using predictive equations for land surface temperature and moisture states. Each modeling approach has complementary advantages and disadvantages, and in combination they can be used to obtain more accurate ET estimates over a variety of land and climate conditions, particularly for areas with limited ground truth data. In this study, energy and water flux estimates from diagnostic Atmosphere-Land Exchange (ALEXI) and prognostic Noah land surface models are compared over the Nile River basin between 2007 and 2011. A second remote sensing data set, generated with Penman-Monteith approach as implemented in the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 ET product, is also included as a comparative technique. In general, spatial and temporal distributions of flux estimates from ALEXI and Noah are similar in regions where the climate is temperate and local rainfall is the primary source of water available for ET. However, the diagnostic ALEXI model is better able to retrieve ET signals not directly coupled with the local precipitation rates, for example, over irrigated agricultural areas or regions influenced by shallow water tables. These hydrologic features are not well represented by either Noah or MOD16. Evaluation of consistency between diagnostic and prognostic model estimates can provide useful information about relative product skill, particularly over regions where ground data are limited or nonexistent as in the Nile basin.

  15. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    Science.gov (United States)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  16. Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective”

    DEFF Research Database (Denmark)

    Kustas, William P.; Nieto, Hector; Morillas, Laura

    2016-01-01

    The recent paper by Morillas et al. [Morillas, L. et al. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, 2013] evaluates the two-source model (TSM) of Norman et al. (1995) with re...

  17. Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux

    Science.gov (United States)

    Shustov, M. V.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.

    2017-04-01

    Results are presented of an investigation into water boiling in a single microchannel 0.2 mm high, 3 mm wide, and 13.7 mm long with a smooth heating surface or with a coating from aluminum oxide nanoparticles. The experimental procedure and the test setup are described. The top wall of the microchannel is made of glass so that video recording in the reflected light of the process can be made. A coating of Al2O3 particles is applied onto the heating surface before the experiments using a method developed by the authors of the paper. The experiments yielded data on heat transfer and void fraction and its fluctuations for the bubble and transient boiling in the microchannel. The dependence was established of the heat flux on the temperature of the microchannel wall with a smooth surface or a surface with Al2O3 nanoparticle coating for various mass flows in the microchannel. The boiling crisis has been found to occur in the microchannel with a nanoparticle coating at a considerably higher heat flux than that in the channel without coating. The experimental data also suggest that the nanoparticle coating improves heat transfer in the transition boiling region. Processing of the data obtained using a high-speed video revealed void fraction fluctuations enabling us to describe two-phase flow regimes with the flow boiling in a microchannel. It has been found that a return flow occurs in the microchannel under certain conditions. A hypothesis for its causes is proposed. The dependence of the void fraction on the steam quality in the microchannel with or without a nanoparticle coating was determined from the video records. The experimental data on void fraction for boiling in the microchannel without coating are approximated by an empirical correlation. The experiments demonstrate that the void fraction during boiling in the microchannel with a nanoparticle coating is higher than during boiling in the channel without coating (where φ and x are the void fraction and the

  18. Superhydrophilic surface modification of fabric via coating with nano-TiO{sub 2} by UV and alkaline treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingyu [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Deng, Tingting [College of Textile and Garment, Southwest University, Chongqing 400715 (China); Liu, Shuxian [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Fengxiu, E-mail: zhangfx656472@sina.com.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com.cn [College of Textile and Garment, Southwest University, Chongqing 400715 (China)

    2014-04-01

    Graphical abstract: - Highlights: • We reported a rapid, environmentally friendly, and highly efficient method for PET fabric surface modification. • The modified PET fabric became superhydrophilic and the water contact angles were decreased to 0° via coating with nano-TiO{sub 2} by UV and alkaline treatment. • The excellent mechanical and physical properties of modified PET fabric were retained. - Abstract: Increasing the hydrophilicity of poly(ethylene terephthalate) (PET) fabric has been an ongoing research goal. In this study, a rapid, environmentally friendly, and highly efficient method for modifying the surface of PET fabric is presented. In a solution of 30 g/L nano-TiO{sub 2}, 50 g/L H{sub 2}O{sub 2}, and 30 g/L NaOH, PET fabric was modified to become superhydrophilic by ultraviolet (UV) irradiation (1000 W) for only 30–40 min. The water contact angle of the modified PET fabric was decreased to 0°, and the water absorption rate of the modified PET fabric was increased from 85% to 104%. The capillary rise height increased from 0.2 cm to 6.2 cm, and the spraying rating decreased from 4 to 1. The crease recovery angles of modified PET fabrics were reduced by only 1.2–8.8%. The mechanical and physical properties of the modified PET fabric remained good. Compared to the surface of unmodified PET fabric, scanning electron microscopy showed that the surface of the modified PET fiber was rough and covered by a layer of other materials. Fourier transform infrared spectroscopy showed the materials on the surface of modified PET fibers likely included -COOH and -OH groups. X-ray diffraction demonstrated the formation of crystalline material. Finally, differential scanning calorimetry thermograms showed that the modification process slightly improved the thermostability of PET fibers.

  19. Three-dimensional flow of an Oldroyd-B fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux

    Directory of Open Access Journals (Sweden)

    Hayat Tasawar

    2014-06-01

    Full Text Available This paper concentrates on the mathematical modelling for three-dimensional flow of an incompressible Oldroyd- B fluid over a bidirectional stretching surface. Mathematical formulation incorporates the effect of internal heat source/sink. Two cases of heat transfer namely the prescribed surface temperature (PST and prescribed surface heat flux (PHF are considered. Computations for the governing nonlinear flow are presented using homotopy analysis method. Comparison of the present analysis is shown with the previous limiting result. The obtained results are discussed by plots of interesting parameters for both PST and PHF cases. We examine that an increase in Prandtl number leads to a reduction in PST and PHF. It is noted that both PST and PHF are increased with an increase in source parameter. Further we have seen that the temperature is an increasing function of ratio parameter

  20. Daily carbon surface fluxes in the West Ebre (Ebro) watershed from aircraft profiling on late June 2007

    Science.gov (United States)

    Font, A.; Morguí, J.-A.; Curcoll, R.; Pouchet, I.; Casals, I.; Rodó, X.

    2010-11-01

    ABSTRACT An intensive aircraft campaign measuring atmospheric CO2 mixing ratios was carried out in the central part of the Ebre watershed on late June 2007 to characterize the CO2 dynamics in the Ebre basin and to calculate the regional cumulative carbon surface flux. CO2 concentrations were obtained from vertical profiles over La Muela (LMU; 41.60°N, 1.1°W) from 900 to 4000 m above the sea level (masl), horizontal transects at ~2000 m 100 km west from LMU, and continuous measurements at ~650 masl. Different estimates of surface flux from changes in the convective boundary layer (CBL) CO2 concentration were obtained following the Integral CBL budgeting equation (ICBL) and the carbon content integration (CCI) method. Values of the mean surface flux calculated from the different approaches range from -2.4 to -7.9 μmolCO2/m2s. Regional surface flux calculated from vertical profiling appears to be consistent in a distance of 70 km away from the measurement site. The ICBL method is very sensitive to the accurate determination of the concentration in the entrainment zone. The overall uncertainty from fluxes calculated from the ICBL method rises to a value of 70%, whereas the uncertainty linked to the CCI method is 55%.

  1. Individual IOL Surface Topography Analysis by the WaveMaster Reflex UV

    Directory of Open Access Journals (Sweden)

    Marc Kannengießer

    2013-01-01

    Full Text Available Purpose. In order to establish inspection routines for individual intraocular lenses (IOLs, their surfaces have to be measured separately. Currently available measurement devices lack this functionality. The purpose of this study is to evaluate a new topography measurement device based on wavefront analysis for measuring individual regular and freeform IOL surfaces, the “WaveMaster Reflex UV” (Trioptics, Wedel, Germany. Methods. Measurements were performed on IOLs with increasingly complex surface geometries: spherical surfaces, surfaces modelled by higher-order Zernike terms, and freeform surfaces from biometrical patient data. Two independent parameters were measured: the sample’s radius of curvature (ROC and its residual (difference of sample topography and its best-fit sphere. We used a quantitative analysis method by calculating the residuals’ root-mean-square (RMS and peak-to-Valley (P2V values. Results. The sample’s best-fit ROC differences increased with the sample’s complexity. The sample’s differences of RMS values were 80 nm for spherical surfaces, 97 nm for higher-order samples, and 21 nm for freeform surfaces. Graphical representations of both measurement and design topographies were recorded and compared. Conclusion. The measurements of spherical surfaces expectedly resulted in better values than those of freeform surfaces. Overall, the wavefront analysing method proves to be an effective method for evaluating individual IOL surfaces.

  2. Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan Plateau

    Science.gov (United States)

    Li, H.; Xiao, Z.; Wei, J.

    2016-12-01

    Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan PlateauHongyi Li 1, Ziniu Xiao 2 and Junhong Wei31 China Meteorological Administration Training Centre, Beijing, China2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 3Theory of Atmospheric Dynamics and Climate, Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, Campus Riedberg, GermanyAbstract:Based on the field observation data over the grasslands in the southeastern Tibetan Plateau and the observational datasets in Nyingchi weather station for the period from May 20 to July 9, 2013, the variation characteristics of the basic meteorological elements in Nyingchi weather station, the surface turbulent fluxes and the components of radiation balance over the grasslands, as well as their relationships, are analyzed in this paper. The results show that in Nyingchi weather station, the daily variations of relative humidity and average total cloud cover are consistent with that of precipitation, but that those of daily average air temperature, daily average ground temperature, daily average wind speed and daily sunshine duration have an opposite change to that of precipitation. During the observation period, latent heat exchange is greater than sensible heat exchange, and latent heat flux is significantly higher when there is rainfall, but sensible heat flux and soil heat flux are lower. The daily variation of the total solar radiation (DR) is synchronous with that of sensible heat flux, and the daily variations of reflective solar radiation (UR), long wave radiation by earth (ULR), net radiation (Rn) and surface albedo are consistent with DR, but that of the long wave radiation by atmosphere (DLR) has an opposite change. The diurnal variations of sensible heat flux, latent

  3. What is the Role of the Sensible Heat Flux on the Surface Heat Budget of Multi-year Sea Ice?

    OpenAIRE

    Guest, Peter S.; Persson, Ola G.; ANDREAS, EDGAR L.; Fairall, Christopher W.

    2001-01-01

    J1.4 The authors carried out a comprehensive measurement program to determine the surface energy budget at the SHEBA site. This paper will focus on the characteristics of the air-ice sensible heat flux and its role in the surface energy budget. The results discussed here are based on covariance measurements at the main tower site. We continuously sampled the sensible heat flux for almost an entire year at nominal levels of 2 m, 3 m, 5 m, 8 m and 18 m. The N...

  4. Global climate impacts of bioenergy from forests: implications from biogenic CO2 fluxes and surface albedo

    Science.gov (United States)

    Cherubini, Francesco; Bright, Ryan; Strømman, Anders

    2013-04-01

    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, is given to the assessment of direct land surface-atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. In this work, we assess bioenergy systems representative of various biomass species (spruce, pine, aspen, etc.) and climatic regions (US, Canada, Norway, etc.), for both stationary and vehicle applications. In addition to conventional greenhouse gas (GHG) emissions through life cycle activities (harvest, transport, processing, etc.), we evaluate the contributions to global warming of temporary effects resulting from the perturbation in atmospheric carbon dioxide (CO2) concentration caused by the timing of biogenic CO2 fluxes and in surface reflectivity (albedo). Biogenic CO2 fluxes on site after harvest are directly measured through Net Ecosystem Productivity (NEP) chronosequences from flux towers established at the interface between the forest canopy and the atmosphere and are inclusive of all CO2 exchanges occurring in the forest (e.g., sequestration of CO2 in growing trees, emissions from soil respiration and decomposition of dead organic materials). These primary data based on empirical measurements provide an accurate representation of the forest carbon sink behavior over time, and they are used in the elaboration of high-resolution IRFs for biogenic CO2 emissions. Chronosequence of albedo values from clear-cut to pre-harvest levels are gathered from satellite data (MODIS black-sky shortwave broadband, Collection 5, MCD43A). Following the cause-effect chain from emissions to damages, through radiative forcing and changes

  5. Temporal changes in semivariogram of ocean surface latent heat flux under linear trend

    Science.gov (United States)

    Singh, M. K.; Venkatachalam, P.

    2014-11-01

    One of the ways to study spatio-temporal variability of a process is to consider it as a temporal variation of a spatial process. Semivariogram is a measure of spatial variation in a process. If a process is undergoing a linear trend, then semivariogram parameters such as range, sill and nugget are bound to change. In this paper, a mathematical closed form of range, sill, and nugget and in turn semivariogram were expressed for a process under linear trend. The derived semivariogram was used to study the latent heat flux (LHF) over the Indian Ocean. LHF values depend on sea surface temperature (SST) and wind speed (WS) over ocean surface. Universal kriging (UK) was used to estimate the LHF with WS and SST as covariables. UK coefficients corresponding to covariables were found out for the years 2010, 2020, 2030, 2040 and 2050. In similar line, study has been attempted to see how empirical orthogonal function modes of a spatio-temporal process change with time under linear trend.

  6. Surface latent heat flux anomalies prior to the Indonesia Mw9.0 earthquake of 2004

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The temporal and spatial variations of surface latent heat flux (SLHF) before and after the Mw9.0 earthquake that occurred on the west coast of Sumatra, Indonesia on 26 December 2004 are summarized. It is found that before the earthquake significant SLHF anomalies occurred at the epicentral area and its vicinity. The largest SLHF anomaly occurred on the subduction zone in the middle part of Burma micro-plate, where the middle part of the rupture zone is located and the aftershocks are concentrated. The developments of the anomaly involved growing of the anomaly from small to large and spreading of the anomaly from disordered to concentrated. The anomaly began to occur on the east extensional boundary of the Burma micro-plate and its adjacent oceanic basin, and then propagated to the west compressive boundary, where the subduction zone exists. Finally, the anomaly disappeared after the main shock. The seismic source is considered to be a dissipation system. The increase of stress prior to an earthquake may enhance the exchange of energy and material between the seismic source system and the outer system, resulting in the increase of the rate of energy exchange between sea surface and atmosphere, which is believed to be the main reason of the generation of SLHF anomaly.

  7. Deuterium retention and surface modifications of nanocrystalline tungsten films exposed to high-flux plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, M.H.J. ' t [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands); Dellasega, D.; Pezzoli, A.; Passoni, M. [Politecnico di Milano, EURATOM-ENEA-CNR Association, Milano (Italy); Kleyn, A.W., E-mail: A.W.Kleijn@uva.nl [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands); University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Center of Interface Dynamics for Sustainability, CDCST, CAEP, Chengdu, Sichuan 610207 (China); Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands)

    2015-08-15

    Highlights: • The films withstand the intense plasma exposure maintaining overall integrity. • An increase of deuterium retention was observed with decreasing tungsten density. • Formation of micrometer-sized blisters as well as structures on the nanometer scale depending on the layer type. - Abstract: Deuterium retention studies are presented for nanostructured tungsten films exposed to high-flux deuterium plasmas. Thin tungsten films of ∼1 μm thickness were deposited with pulsed laser deposition (PLD) on bulk tungsten. Surface modifications were studied with scanning electron microscopy and deuterium retention with thermal desorption spectroscopy. Three types of PLD films with different densities and crystallinity were studied after exposure to deuterium plasmas. The surface temperature ranged from about 460 K at the periphery to about 520 K in the centre of the targets. The films withstand the intense plasma exposure well and maintain their overall integrity. An increase of deuterium retention is observed with decreasing tungsten density and crystallite size. We found that the filling of these thin films with deuterium is significantly faster than for pre-damaged polycrystalline tungsten. We observed formation of micrometer-sized blisters as well as structures on the nanometer scale, both depending on the layer type.

  8. Growth of a mat-forming photograph in the presence of UV radiation

    Science.gov (United States)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  9. Dominance of ENSO-Like Variability in Controlling Tropical Ocean Surface Energy Fluxes in the Satellite Era

    Science.gov (United States)

    Robertson, F. R.; Miller, T. L.; Bosilovich, M. G.

    2008-01-01

    Ocean surface turbulent and radiative fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Moreover, interannual to decadal climate variability depends crucially on the nature of these exchange processes. For example, addressing the question of the degree to which the global hydrologic cycle is changing depends on our ability to observe and model these fluxes accurately. In this work we investigate the interannual to decadal variation of fluxes over the global tropics, especially the tropical oceans. Recent versions of satellite-derived fresh water flux estimates as well as some reanalyses (e.g. products from Remote Sensing Systems, the Woods Hole Oceanographic Institute, and Global Precipitation Climatology Project) suggest that increases in evaporation and precipitation over the past 20 years exceed those expected on the basis of climate model projected responses to greenhouse gas forcing. At the same time, it is well known that E1 Nino / Southern Oscillation behavior in the Pacific exhibits significant variability at scales longer than interannual. We examine here the degree to which surface fluxes attending these interannual to decadal fluctuations are related to ENSO. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations.

  10. A soil diffusion-reaction model for surface COS flux: COSSM v1

    Directory of Open Access Journals (Sweden)

    W. Sun

    2015-07-01

    Full Text Available Soil exchange of carbonyl sulfide (COS is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments, but not explicitly resolved diffusion in the soil column. We developed a 1-D diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP, OK, USA and an oak woodland (Stunt Ranch Reserve, CA, USA. The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled, and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  11. Grazing effects on surface energy fluxes in a desert steppe on the Mongolian Plateau.

    Science.gov (United States)

    Shao, Changliang; Chen, Jiquan; Li, Linghao; Dong, Gang; Han, Juanjuan; Abraha, Michael; John, Ranjeet

    2017-03-01

    Quantifying the surface energy fluxes of grazed and ungrazed steppes is essential to understand the roles of grasslands in local and global climate and in land use change. We used paired eddy-covariance towers to investigate the effects of grazing on energy balance (EB) components: net radiation (Rn ), latent heat (LE), sensible heat (H), and soil heat (G) fluxes on adjacent grazed and ungrazed areas in a desert steppe of the Mongolian Plateau for a two-year period (2010-2012). Near 95% of Rn was partitioned as LE and H, whereas the contributions of G and other components of the EB were 5% at an annual scale. H dominated the energy partitioning and shared ~50% of Rn . When comparing the grazed and the ungrazed desert steppe, there was remarkably lower Rn and a lower H, but higher G at the grazed site than at the ungrazed site. Both reduced available energy (Rn - G) and H indicated a "cooling effect" feedback onto the local climate through grazing. Grazing reduced the dry year LE but enhanced the wet year LE. Energy partitioning of LE/Rn was positively correlated with the canopy conductivity, leaf area index, and soil moisture. H/Rn was positively correlated with the vapor pressure deficit but negatively correlated with the soil moisture. Boosted regression tree results showed that LE/Rn was dominated by soil moisture in both years and at both sites, while grazing shifted the H/Rn domination from temperature to soil moisture in the wet year. Grazing not only caused an LE shift between the dry and the wet year, but also triggered a decrease in the H/Rn because of changes in vegetation and soil properties, indicating that the ungrazed area had a greater resistance while the grazed area had a greater sensitivity of EB components to the changing climate.

  12. A soil diffusion-reaction model for surface COS flux: COSSM v1

    Science.gov (United States)

    Sun, W.; Maseyk, K.; Lett, C.; Seibt, U.

    2015-10-01

    Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments but not explicitly resolved diffusion in the soil column. We developed a mechanistic diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP), OK, USA) and an oak woodland (Stunt Ranch Reserve, CA, USA). The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  13. Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings

    DEFF Research Database (Denmark)

    Vertchenko, Larissa; Shkondin, Evgeniy; Malureanu, Radu

    2017-01-01

    layerdepositions and dry etch techniques. We exploit the phenomenon of formbirefringence to give rise to the spin-to-orbital angular momentum conversion.We demonstrate that these plates can generate beams with high quality for theUV and IR range, allowing them to interact with high power laser sources orinside......The angular momentum of light can be described by the states of spin angularmomentum, associated with polarization, and orbital angular momentum, relatedto the helical structure of the wave front. Laguerre-Gaussian beams carryorbital angular momentum and their generation can be done by using...... an opticaldevice known as q-plate. However, due to the usage of liquid crystals, thesecomponents may be restricted to operate in specific wavelengths and low powersources. Here we present the fabrication and characterization of q-plates madewithout liquid crystals, using processes of e-beam lithography, atomic...

  14. Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings

    CERN Document Server

    Vertchenko, Larissa; Malureanu, Radu; Monken, Carlos H

    2016-01-01

    The angular momentum of light can be described by the states of spin angular momentum, associated with polarization, and orbital angular momentum, related to the helical structure of the wave front. Laguerre-Gaussian beams carry orbital angular momentum and their generation can be done by using an optical device known as q-plate. However, due to the usage of liquid crystals, these components may be restricted to operate in specific wavelengths and low power sources. Here we present the fabrication and characterization of q-plates made without liquid crystals, using processes of e-beam lithography, atomic layer depositions and dry etch techniques. We exploit the phenomenon of form birefringence to give rise to the spin-to-orbital angular momentum conversion. We demonstrate that these plates can generate beams with high quality for the UV and IR range, allowing them to interact with high power laser sources or inside laser cavities.

  15. Seasonal Variability of the Yellow Sea/East China Sea Surface Fluxes and Thermohaline Structure

    Institute of Scientific and Technical Information of China (English)

    Peter CHU; CHEN Yuchun; Akira KUNINAKA

    2005-01-01

    We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) for the Yellow Sea/East China Sea (YES) to investigate the climatological water mass features and the seasonal and non-seasonal variabilities of the thermohaline structure, and use the Comprehensive Ocean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes (momentum, heat, and moisture) across the air-ocean interface and the formation of the water mass features. After examining the major current systems and considering the local bathymetry and water mass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin, Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KG) region. The long term mean surface heat balance corresponds to a heat loss of 30 W m-2 in the ESC and CB regions, a heat loss of 65 W m-2 in the KG and TWC regions, and a heat gain of 15 W m-2 in the YS region. The surface freshwater balance is defined by precipitation minus evaporation. The annual water loss from the surface for the five subareas ranges from 1.8 to 4 cm month-1. The fresh water loss from the surface should be compensated for from the river run-off. The entire water column of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle with maximum values of temperature during summer and maximum mixed layer depths during winter. However, only the surface waters of the TWC and KG regions exhibit a seasonal thermal cycle.We also found two different relations between surface salinity and the Yangtze River run-off, namely, out-of-phase in the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study that the summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinity plume-like structure extending offshore on average towards the northeast.

  16. Similarities in the Spatial Pattern of the Surface Flux Response to Present-Day Greenhouse Gases and Aerosols

    Science.gov (United States)

    Persad, G.; Ming, Y.; Ramaswamy, V.

    2014-12-01

    Recent studies suggest that present-day greenhouse gases (GHGs) and aerosols can produce remarkably similar patterns of climate response in fully coupled general circulation model (GCM) simulations, despite having significantly different spatial patterns of top-of-atmosphere (TOA) forcing. However, there is little understanding of the mechanisms of ocean-atmosphere interaction that could lead to the response pattern formation. Surface flux perturbations are a crucial pathway by which TOA forcing is communicated to the ocean, and may be a vital link in explaining the spatial similarities in the fully coupled responses to disparate TOA forcing patterns—a phenomenon with implications for detection and attribution, as well as the climate sensitivity to different forcers. We analyze the surface energy budget response to present-day aerosols versus GHGs in single forcing, fixed SST, atmospheric GCM experiments to identify mechanisms for response pattern formation via surface flux perturbations. We find that, although the TOA forcing spatial patterns of GHGs and aerosols are largely uncorrelated, their surface radiative and heat flux patterns are significantly anti-correlated. Furthermore, this anti-correlation is largely explained by similar (but sign-reversed) spatial patterns of surface latent and sensible heat flux response to the two forcers, particularly over the winter-hemisphere extratropical oceans. These are, in turn, driven by spatially similar perturbations in surface winds from changes in mean tropical and midlatitude circulation. These results suggest that the mean atmospheric circulation, which has many anti-symmetric responses to GHG and aerosol forcings, is an efficient homogenizer of spatial patterns in the surface heat flux response to heterogeneous TOA forcings, creating an atmosphere-only pathway for similarities in the fully coupled response.

  17. Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion

    Science.gov (United States)

    Pfleging, Wilhelm; Torge, Maika; Bruns, Michael; Trouillet, Vanessa; Welle, Alexander; Wilson, Sandra

    2009-03-01

    An appropriate choice of laser and process parameters enables new approaches for the fabrication of polymeric lab-on-chip devices with integrated functionalities. We will present our current research results in laser-assisted modification of polystyrene (PS) with respect to the fabrication of polymer devices for cell culture applications. For this purpose laser micro-patterning of PS and subsequent surface functionalization was investigated as function of laser and process parameters. A high power ArF-excimer laser radiation source with a pulse length of 19 ns as well as a high repetition ArF-excimer laser source with a pulse length of 5 ns were used in order to study the influence of laser pulse length on laser-induced surface oxidation. The change in surface chemistry was characterized by X-ray photoelectron spectroscopy and contact angle measurements. The difference between laser-assisted modification versus UV-lamp assisted modification was investigated. A photolytic activation of specific areas of the polymer surface and subsequent oxidization in oxygen or ambient air leads to a chemically modified polymer surface bearing carboxylic acid groups well-suited for controlled competitive protein adsorption or protein immobilization. Finally, distinct areas for cell growth and adhesion are obtained.

  18. Peat surface GHG fluxes related to peat hydrology in various tropical peat land uses

    Science.gov (United States)

    Jauhiainen, Jyrki; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2010-05-01

    It is generally accepted that the gradual increase in the mean temperature of the Earth's surface is primarily due to rising concentrations of greenhouse gases (GHG), especially carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the atmosphere. Tropical peatlands are an important component of the global peatland resource, contributing to terrestrial carbon storage in both their above-ground biomass (peat swamp forest) and underlying thick deposits of peat, which both participate soil-atmosphere carbon exchange processes. In their natural state, these forests have the ability to sequester carbon from the atmosphere during photosynthesis, retain this in plant biomass and store part of it in the peat. This process occurs mainly because of the frequent waterlogged condition of the peat, which reduces organic matter decomposition significantly and this causes the rate of organic matter production to exceed its breakdown. Peatland development, however, requires drainage, brings about changes in the vegetation type C-sequestration capacity and leads to changes in peat organic matter dynamics. Drainage promotes the depth of oxic conditions deeper in peat profile and thus speeds up peat stored organic matter mineralization. Aerobic conditions and high redox potentials created by drainage are known to favour microbial activity, which can enhance C and N losses by peat mineralization. Large areas of tropical peat have been drained, resulting in an abrupt and permanent shift in the ecosystem carbon balance from sink to source. Discussion of the current role of tropical peatlands in regional and global climate change processes is based mostly on circumstantial and secondary evidence, largely because total ecosystem carbon balance studies are very few and unsatisfactory. Peat surface GHG flux data are spatially very fragmented and have not usually been collected over entire diurnal or seasonal cycles. Interpretation of the impact of biophysical factors of tropical

  19. Microscopie interférentielle X-UV : un outil pour l'étude des endommagements des surfaces optiques

    Science.gov (United States)

    Jamelot, G.; Ros, D.; Cassou, K.; Kazamias, S.; Klisnick, A.; Kozlová, M.; Mocek, T.; Homer, P.; Polan, J.; Stupka, M.

    2006-12-01

    Nous présentons des résultats récents concernant des premières investigations de microscopie interférentielle par laser X-UV d'endommagement optique. Le laser X-UV utilisé est un laser collisionnel en régime quasi-stationnaire émettant à 21.2 nm, développé au Prague Asterix Laser System (PALS, Prague, République Tchèque). Des échantillons de silice fondue de haute qualité, avec ou sans rayure, étaient irradiées en face avant par un laser bleu, correspondant au 3selectfontfontsize{7{9}{textrm{ème}}} harmonique du laser à iode du PALS (1.315 μ m), servant également à réaliser le laser X-UV à 21.2 nm. Celui-ci était utilisé, 5 ns après l'irradiation pour réaliser une imagerie microscopique et interférentielle de la face arrière de l'échantillon. Les résultats font apparaître des déformations locales transitoires. Des premières analyses mettent en évidence une probable variation de la rugosité de la surface. Cette démonstration expérimentale encourageante ouvre la voie à de futures investigations, notamment sur notre prochaine installation laser : LASERIX.

  20. Polymer surface modification using UV treatment for attachment of natamycin and the potential applications for conventional food cling wrap (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Joongmin, E-mail: shinj@uwstout.edu [Engineering and Technology, University of Wisconsin-Stout, Menomonie, WI, 54751 (United States); Liu, Xiaojing [Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan (China); Chikthimmah, Naveen [Food Science and Technology, University of Wisconsin-Stout, Menomonie, WI, 54751 (United States); Lee, Youn Suk [Department of Packaging, Yonsei University, Gangwon 220-710 (Korea, Republic of)

    2016-11-15

    Highlights: • The study suggests an optimized method for UV-induced antimicrobial agents grafting on LDPE. • The study evaluated the effective of various solvents for acrylic acid and natamycin grafting on LDPE. • The study investigated chemical and mechanical property changes by various times of UV light treatments. • Natamycin grafted film demonstrated antifungal function against mold and yeast. - Abstract: The purpose of this study was to develop an active non-migratory antifungal Low Density Polyethylene (LDPE) polymer for use in food packaged applications. The functional acrylic acid monomer was grafted on the LDPE film surface by photo-initiated graft polymerization using Ultra Violet light irradiation (from 0 to 5 min). Natamycin, an antifungal agent, was applied to the treated film to bind with the pendent functional groups and were evaluated its performance against mold and yeast. The grafted amounts were determined by gravimetric measurement and dye absorbance. Attenuated Total Reflectance/Fourier Transfer Infrared Spectroscopy, scanning electron microscopy, mechanical strength test was used to characterize film properties. The antifungal efficacy of the film was evaluated with Saccharomyces cerevisiae and Penicillium chrysogenum on growth media and fresh cut cantaloupe. The amounts of the grafted group were increased with the longer ultraviolet exposure time. The amount of the grafted natamycin on the treated film was up to 49.87 μg/cm{sup 2}, and the film inhibited mycelium formation of P. chrysogenum spores by over 60%. Due to the thickness of the film (less than 12.25 μm), long time UV exposure decrease the film’s mechanical strength. The application of such non-migratory active packaging film represents a promising approach to maintaining food quality with reduced additive.

  1. Covalently attached organic monolayers on SiC and SixN4 surfaces: Formation using UV light at room temperature

    NARCIS (Netherlands)

    Rosso, M.; Giesbers, M.; Arafat, A.; Schroën, C.G.P.H.; Zuilhof, H.

    2009-01-01

    We describe the formation of alkyl monolayers on silicon carbide (SiC) and silicon-rich silicon nitride (SixN4) surfaces, using UV irradiation in the presence of alkenes. Both the surface preparation and the monolayer attachment were carried out under ambient conditions. The stable coatings obtained

  2. UV Direct Laser Interference Patterning of polyurethane substrates as tool for tuning its surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Estevam-Alves, Regina [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Günther, Denise; Dani, Sophie; Eckhardt, Sebastian; Roch, Teja [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany); Mendonca, Cleber R., E-mail: crmendon@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Cestari, Ismar N. [Heart Institute (InCOr), University of São Paulo Medical School, São Paulo 05403-000 (Brazil); Lasagni, Andrés F., E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany)

    2016-06-30

    Highlights: • First reported experiments on Direct Laser Interference Patterning of polyurethane. • First reported sub-micrometer structures (feature size ∼250 nm) fabricated in polyurethane materials using laser processing technologies. • Anisotropic wetting behavior of structured surfaces and possibility to tune the contact angle as function of surface structure parameters. - Abstract: Direct Laser Interference Patterning (DLIP) is a versatile tool for the fabrication of micro and sub-micropatterns on different materials. In this work, DLIP was used to produce periodic surface structures on polyurethane (PU) substrates with spatial periods ranging from 0.5 to 5.0 μm. The influence of the laser energy density on the quality and topographical characteristics of the produced micropatterns was investigated. To characterize the surface topography of the produced structures, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Confocal Microscopy (CFM) were utilized. It was found that high quality and defect free periodic line-like patterns with spatial periods down to 500 nm could be fabricated, with structure depths between 0.88 up to 1.25 μm for spatial periods larger than 2.0 μm and up to 270 nm for spatial periods between 500 nm and 1.0 μm. Measurements of the contact angle of water on the treated surface allowed to identify an anisotropic wetting behavior depending mainly on the spatial period and filling factor of the structured surfaces.

  3. Compositional and surface characterization of HULIS by UV-Vis, FTIR, NMR and XPS: Wintertime study in Northern India

    Science.gov (United States)

    Kumar, Varun; Goel, Anubha; Rajput, Prashant

    2017-09-01

    This study (first attempt) characterizes HULIS (Humic Like Substances) in wintertime aerosols (n = 12 during day and nighttime each) from Indo-Gangetic Plain (IGP, at Kanpur) by using various state-of-the art techniques such as UV-VIS, FTIR, 1H NMR and XPS. Based on UV-Vis analysis the absorption coefficient at 365 nm (babs-365) of HULIS was found to average at 13.6 and 28.8 Mm-1 during day and nighttime, respectively. Relatively high babs-365 of HULIS during the nighttime is attributed to influence of fog-processing. However, the power fit of UV-Vis spectrum provided near similar AAE (absorption Angstrom exponent) value of HULIS centering at 4.9 ± 1.4 and 5.1 ± 1.3 during daytime and nighttime, respectively. FTIR spectra and its double derivative revealed the presence of various functional groups viz. alcohols, ketones aldehydes, carboxylic acids as well as unsaturated and saturated carbon bonds. 1H NMR spectroscopy was applied to quantify relative percentage of various types of hydrogen atoms contained in HULIS, whereas XPS technique provided information on surface composition and oxidation states of various elements present. A significantly high abundance of H‒C‒O group has been observed in HULIS (based on 1H NMR); 41.4± 2.7% and 30.9± 2.4% in day and nighttime, respectively. However, aromatic protons (Ar-H) were higher in nighttime samples (19.3± 1.8%) as compared to that in daytime samples (7.5 ± 1.9). XPS studies revealed presence of various species on the surface of HULIS samples. Carbon existed in 7 different chemical states while total nitrogen and sulfur exhibited 3 and 2 different oxidation states (respectively) on the surface of HULIS. This study reports structural information and absorption properties of HULIS which has implications to their role as cloud condensation nuclei and atmospheric direct radiative forcing.