WorldWideScience

Sample records for surface unit cell

  1. Frequency Selective Surfaces with Nanoparticles Unit Cell

    Directory of Open Access Journals (Sweden)

    Nga Hung Poon

    2015-09-01

    Full Text Available The frequency selective surface (FSS is a periodic structure with filtering performance for optical and microwave signals. The general periodic arrays made with patterned metallic elements can act as an aperture or patch on a substrate. In this work, two kinds of materials were used to produce unit cells with various patterns. Gold nanoparticles of 25 nm diameter were used to form periodic monolayer arrays by a confined photocatalytic oxidation-based surface modification method. As the other material, silver gel was used to create multiple layers of silver. Due to the ultra-thin nature of the self-assembled gold nanoparticle monolayer, it is very easy to penetrate the FSS with terahertz radiation. However, the isolated silver islands made from silver gel form thicker multiple layers and contribute to much higher reflectance. This work demonstrated that multiple silver layers are more suitable than gold nanoparticles for use in the fabrication of FSS structures.

  2. Fermi surface properties of paramagnetic NpCd{sub 11} with a large unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Yoshiya; Aoki, Dai; Shiokawa, Yoshinobu [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Yoshinori; Sakai, Hironori; Ikeda, Shugo; Yamamoto, Etsuji; Nakamura, Akio; Onuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Settai, Rikio [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Takeuchi, Tetsuya [Cryogenic Center, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamagami, Hiroshi, E-mail: yhomma@imr.tohoku.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan)

    2010-03-15

    We succeeded in growing a high-quality single crystal of NpCd{sub 11} with the cubic BaHg{sub 11}-type structure by the Cd-self flux method. The lattice parameter of a = 9.2968(2) A and crystallographic positions of the atoms were determined by x-ray single-crystal structure analysis. From the results of the magnetic susceptibility and specific heat experiments, this compound is found to be a 5f-localized paramagnet with the singlet ground state in the crystalline electric field (CEF) scheme. Fermi surface properties were measured using the de Haas-van Alphen (dHvA) technique. Long-period oscillations were observed in the dHvA frequency range of 9.1 x 10{sup 5} to 1.9 x 10{sup 7} Oe, indicating small cross-sectional areas of Fermi surfaces, which is consistent with a small Brillouin zone based on a large unit cell. From the results of dHvA and magnetoresistance experiments, the Fermi surface of NpCd{sub 11} is found to consist of many kinds of closed Fermi surfaces and a multiply-connected-like Fermi surface, although the result of energy band calculations based on the 5f-localized Np{sup 3+}(5f{sup 4}) configuration reveals the existence of only closed Fermi surfaces. The corresponding cyclotron effective mass is small, ranging from 0.1 to 0.7 m{sub 0}, which is consistent with a small electronic specific heat coefficient {gamma} {approx_equal} 10mJ/K{sup 2{center_dot}}mol, revealing no hybridization between the 5f electrons and conduction electrons.

  3. Surface and Interface Properties of 10–12 Unit Cells Thick Sputter Deposited Epitaxial CeO2 Films

    Directory of Open Access Journals (Sweden)

    L. V. Saraf

    2008-01-01

    Full Text Available Ultrathin and continuous epitaxial films with relaxed lattice strain can potentially maintain more of its bulk physical and chemical properties and are useful as buffer layers. We study surface, interface, and microstructural properties of ultrathin (∼10–12 unit cells thick epitaxial ceria films grown on single crystal YSZ substrates. The out-of -plane and in-plane lattice parameters indicate relaxation in the continuous film due to misfit dislocations seen by high-resolution transmission electron microscopy (HRTEM and substrate roughness of ∼1-2 unit cells, confirmed by atomic force microscopy and HRTEM. A combination of secondary sputtering, lattice mismatch, substrate roughness, and surface reduction creating secondary phase was likely the cause of surface roughness which should be reduced to a minimum level for effective use of it as buffer layers.

  4. Sea surface temperature 1871-2099 in 14 cells around the United Kingdom.

    Science.gov (United States)

    Sheppard, Charles

    2004-07-01

    Monthly sea surface temperature is provided for 14 locations around the UK for a 230 year period. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 climate model for predicted SST (1950-2099). Two adjustments of the forecast data sets are needed to produce confluent SST series: the 50 year overlap is used for a gross adjustment, and a statistical scaling on the forecast data ensures that annual variations in forecast data match those of historical data. These monthly SST series are available on request. The overall rise in SST over time is clear for all sites, commencing in the last quarter of the 20th century. Apart from expected trends of overall warmer mean SST with more southerly latitudes and overall cooler mean SST towards the East, more interesting statistically significant general trends include a greater decadal rate of rise from warmer starting conditions. Annual temperature variation is not affected by absolute temperature, but is markedly greater towards the East. There is no correlation of annual range of SST with latitude, or with present SST values.

  5. Bi-Cell Unit for Fuel Cell.

    Science.gov (United States)

    The patent concerns a bi-cell unit for a fuel cell . The bi-cell unit is comprised of two electrode packs. Each of the electrode packs includes an...invention relates in general to a bi-cell unit for a fuel cell and in particular, to a bi-cell unit for a hydrazine-air fuel cell .

  6. Inverse Gas Chromatography with Film Cell Unit: An Attractive Alternative Method to Characterize Surface Properties of Thin Films.

    Science.gov (United States)

    Klein, Géraldine L; Pierre, Guillaume; Bellon-Fontaine, Marie-Noëlle; Graber, Marianne

    2015-09-01

    Inverse gas chromatography (IGC) is widely used for the characterization of surfaces. The present work describes a novel IGC tool, the recently developed film cell module, which measures monolithic thin solid film surface properties, whereas only samples in powder or fiber state or polymer-coated supports can be studied by classic IGC. The surface energy of four different solid supports was measured using both classic IGC with columns packed with samples in the powder state, and IGC with the new film cell module or the sessile drop technique, using samples in the film state. The total surface energy and its dispersive and specific components were measured for glass, polyethylene, polyamide and polytetrafluoroethylene. Similar results were obtained for the four materials using the three different techniques. The main conclusion is that the new film cell module for IGC is an attractive alternative to the sessile drop technique as it gives very accurate and reproducible results for surface energy components, with significant savings in time and the possible control of sample humidity and temperature. This film cell module for IGC extends the application field of IGC to any thin solid film and can be used to study the effect of any surface treatment on surface energy.

  7. Sickle Cell Unit.

    Science.gov (United States)

    Canipe, Stephen L.

    Included in this high school biology unit on sickle cell anemia are the following materials: a synopsis of the history of the discovery and the genetic qualities of the disease; electrophoresis diagrams comparing normal, homozygous and heterozygous conditions of the disease; and biochemical characteristics and population genetics of the disease. A…

  8. Cell surface engineering of mesenchymal stem cells.

    Science.gov (United States)

    Sarkar, Debanjan; Zhao, Weian; Gupta, Ashish; Loh, Wei Li; Karnik, Rohit; Karp, Jeffrey M

    2011-01-01

    By leveraging the capacity to promote regeneration, stem cell therapies offer enormous hope for solving some of the most tragic illnesses, diseases, and tissue defects world-wide. However, a significant barrier to the effective implementation of cell therapies is the inability to target a large quantity of viable cells with high efficiency to tissues of interest. Systemic infusion is desired as it minimizes the invasiveness of cell therapy, and maximizes practical aspects of repeated doses. However, cell types such as mesenchymal stem cells exhibit a poor homing capability or lose their capacity to home following culture expansion (i.e. FASEB J 21:3197-3207, 2007; Circulation 108:863-868, 2003; Stroke: A Journal of Cerebral Circulation 32:1005-1011; Blood 104:3581-3587, 2004). To address this challenge, we have developed a simple platform technology to chemically attach cell adhesion molecules to the cell surface to improve the homing efficiency to specific tissues. This chemical approach involves a stepwise process including (1) treatment of cells with sulfonated biotinyl-N-hydroxy-succinimide to introduce biotin groups on the cell surface, (2) addition of streptavidin that binds to the biotin on the cell surface and presents unoccupied binding sites, and (3) attachment of biotinylated targeting ligands that promote adhesive interactions with vascular endothelium. Specifically, in our model system, a biotinylated cell rolling ligand, sialyl Lewisx (SLeX), found on the surface of leukocytes (i.e., the active site of the P-selectin glycoprotein ligand (PSGL-1)), is conjugated on MSC surface. The SLeX engineered MSCs exhibit a rolling response on a P-selectin coated substrate under shear stress conditions. This indicates that this approach can be used to potentially target P-selectin expressing endothelium in the more marrow or at sites of inflammation. Importantly, the surface modification has no adverse impact on MSCs' native phenotype including their multilineage

  9. Terrestrial Ecosystems - Land Surface Forms of the Conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS) has generated land surface form classes for the contiguous United States. These land surface form classes were created as part of...

  10. Unit: Cells, Inspection Set, National Trial Print.

    Science.gov (United States)

    Australian Science Education Project, Toorak, Victoria.

    This trial version of a unit is the series being produced by the Australian Science Education Project provides instructions for students to prepare a variety of cell types and examine them with microscopes. It also gives some information about the variety and function of cells. The core of the unit, which all students are expected to complete,…

  11. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  12. Classes of land-surface form in the United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset describes classes of land-surface form in the conterminous United States. The source of the data is the map of land-surface form in the 1970...

  13. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, I.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  14. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  15. Europa: Characterization and interpretation of global spectral surface units

    Science.gov (United States)

    Nelson, M.L.; McCord, T.B.; Clark, R.N.; Johnson, T.V.; Matson, D.L.; Mosher, J.A.; Soderblom, L.A.

    1986-01-01

    The Voyager global multispectral mosaic of the Galilean satellite Europa (T. V. Johnson, L. A. Soderblom, J. A. Mosher, G. E. Danielson, A. F. Cook, and P. Kupferman, 1983, J. Geophys. Res. 88, 5789-5805) was analyzed to map surface units with similar optical properties (T. B. McCord, M. L. Nelson, R. N. Clark, A. Meloy, W. Harrison, T. V. Johnson, D. L. Matson, J. A. Mosher, and L. Soderblom, 1982, Bull Amer. Astron. Soc. 14, 737). Color assignments in the unit map are indicative of the spectral nature of the unit. The unit maps make it possible to infer extensions of the geologic units mapped by B. K. Lucchitta and L. A. Soderblom (1982, in Satellites of Jupiter, pp. 521-555, Univ. of Arizona Press, Tucson) beyond the region covered in the high-resolution imagery. The most striking feature in the unit maps is a strong hemispheric asymmetry. It is seen most clearly in the ultraviolet/violet albedo ratio image, because the asymmetry becomes more intense as the wavelength decreases. It appears as if the surface has been darkened, most intensely in the center of the trailing hemisphere and decreasing gradually, essentially as the cosine of the angle from the antapex of motion, to a minimum in the center of the leading hemisphere. The cosine pattern suggests that the darkening is exogenic in origin and is interpreted as evidence of alteration of the surface by ion bombardment from the Jovian magnetosphere. ?? 1986.

  16. Reversible (unitized) PEM fuel cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

    1999-06-01

    Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are

  17. Polymer electrolyte fuel cell mini power unit for portable application

    Science.gov (United States)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E.; Zerbinati, O.

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H 2 supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm 2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.

  18. Polymer electrolyte fuel cell mini power unit for portable application

    Energy Technology Data Exchange (ETDEWEB)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E. [CNR-ITAE, via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina (Italy); Zerbinati, O. [Universita del Piemonte Orientale, Dip. di Scienze dell' Ambiente e della Vita, via Bellini 25/g, 15100 Alessandria (Italy)

    2007-06-20

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H{sub 2} supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm{sup 2} and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance. (author)

  19. Metastasis-associated cell surface oncoproteomics

    Directory of Open Access Journals (Sweden)

    Piia-Riitta eKarhemo

    2012-11-01

    Full Text Available Oncoproteomics aims to the discovery of molecular markers, drug targets and pathways by studying cancer specific protein expression, localization, modification and interaction. Cell surface proteins play a central role in several pathological conditions, including cancer and its metastatic spread. However, cell surface proteins are underrepresented in proteomics analyses performed from the whole cell extracts due to their hydrophobicity and low abundance. Different methods have been developed to enrich and isolate the cell surface proteins to reduce sample complexity. Despite the method selected, the primary difficulty encountered is the solubilization of the hydrophobic transmembrane proteins from the lipid bilayer. This review focuses on proteomic analyses of metastasis-associated proteins identified using the cell surface biotinylation method. Interestingly, also certain intracellular proteins were identified from the cell surface samples. The function of these proteins at the cell surface might well differ from their function inside the cell.

  20. SPE (tm) regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications

    Science.gov (United States)

    Mcelroy, J. F.

    1990-01-01

    Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.

  1. Microbial cell surfaces and secretion systems

    NARCIS (Netherlands)

    Tommassen, J.P.M.; Wosten, H.A.B.

    2015-01-01

    Microbial cell surfaces, surface-exposed organelles, and secreted proteins are important for the interaction with the environment, including adhesion to hosts, protection against host defense mechanisms, nutrient acquisition, and intermicrobial competition. Here, we describe the structures of the ce

  2. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  3. Cell-surface hydrophobicity of Staphylococcus saprophyticus.

    Science.gov (United States)

    Schneider, P. F.; Riley, T. V.

    1991-01-01

    The cell-surface hydrophobicity of 100 urinary isolates of Staphylococcus saprophyticus, cultured from symptomatic females in the general population, was assessed using a two-phase aqueous:hydrocarbon system. Relatively strong cell-surface hydrophobicity was exhibited by 79 isolates using the criteria employed, while only 2 of the remaining 21 isolates failed to demonstrate any detectable hydrophobicity. Cell-surface hydrophobicity may be a virulence factor of S. saprophyticus, important in adherence of the organism to uroepithelia. Additionally, the data support the concept that cell-surface hydrophobicity may be a useful predictor of clinical significance of coagulase-negative staphylococci isolated from clinical sources. PMID:1993454

  4. Cell attachment on ion implanted titanium surface

    Directory of Open Access Journals (Sweden)

    P.S. Sreejith

    2008-12-01

    Full Text Available Purpose: Of outmost importance for the successful use of an implant is a good adhesion of the surrounding tissue to the biomaterial. In addition to the surface composition of the implant, the surface topography also influences the properties of the adherent cells. In the present investigation, ion implanted and untreated surfaces were compared for cell adhesion and spreading.Design/methodology/approach: The surface topography of the surfaces were analyzed using AFM and the cell studies with SEM.Findings: The results of our present investigation is indicative of the fact that ion implanted titanium surface offer better cell binding affinity compared to untreated/polished surface.Practical implications: Success of non-biodegradable implants will first and foremost depend on biocompatibility, followed by the capacity of the surface topography of the implants to evince desired cell matrix, surface cell matrix interactions. In the present study, the cell growth on ion implanted Ti material is analyzed and discussed.Originality/value: In this paper, we have utilized ion implantation technique, which will produce nano-texturing of the surface without producing any detrimental effects to both the dimensions and properties of the implants.

  5. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S;

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface......-associated proteoglycans, including: regulation of cell-substrate adhesion; regulation of cell proliferation; participation in the binding and uptake of extracellular components; and participation in the regulation of extracellular matrix formation. Evidence is discussed suggesting that the cell-associated heparan...

  6. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  7. The cell surface of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    1984-01-01

    Full Text Available The cell surface of trypanosomatids is formed by the plasma membrane and a layer of sub-pellicular microtubules which are connected to the plasma membrane. The plasma membrane is composed by proteins, lipids and carbohydrates which form the glycocalix. In this paper we will review briefly aspects related to the organization of the cell surface of Trypanosoma cruzi.

  8. Cell-surface remodelling during mammalian erythropoiesis.

    Science.gov (United States)

    Wraith, D C; Chesterton, C J

    1982-10-15

    Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.

  9. Cell behaviour on chemically microstructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-03-03

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 {mu}m) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions.

  10. Lithium-Ion Cell Charge-Control Unit Developed

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel

    2005-01-01

    A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.

  11. Novel negative mass density resonant metamaterial unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Cselyuszka, Norbert, E-mail: cselyu@yahoo.com; Sečujski, Milan, E-mail: secujski@uns.ac.rs; Crnojević-Bengin, Vesna, E-mail: bengin@uns.ac.rs

    2015-01-02

    In this paper a novel resonant unit cell of one-dimensional acoustic metamaterials is presented, which exhibits negative effective mass density. We theoretically analyze the unit cell and develop a closed analytical formula for its effective mass density. Then we proceed to demonstrate left-handed propagation of acoustic waves using the proposed unit cell. Finally, we present its dual-band version, capable of operating at two independent frequencies. - Highlights: • A novel acoustic metamaterial unit cell provides Lorentz-type resonant effective mass density. • Analytical formula for effective mass density is derived. • Acoustic bandstop medium and left-handed metamaterial based on the novel unit cell are presented. • Modified version of the unit cell, operating at two independent frequencies, is proposed.

  12. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...

  13. Structure and functions of fungal cell surfaces

    Science.gov (United States)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  14. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  15. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  16. Porous silicon for micro-sized fuel cell reformer units

    Energy Technology Data Exchange (ETDEWEB)

    Presting, H.; Konle, J.; Starkov, V.; Vyatkin, A.; Koenig, U

    2004-04-25

    Randomly, self-organized and ordered anodically etched porous silicon with pore sizes down to hundred nanometers have been fabricated for a variety of automotive applications which range from carrier structures in fuel cell technology up to shower heads for fuel injection in combustion engines. The porous wafers are produced by deep anodic etching which is a very effective and cheap fabrication method compatible to standard Si CMOS fabrication technology. The density of nano- (and micro-) pores can be varied in a wide range by choice of substrate doping level and appropriate electrolyte solution. Surface enlargement up to a factor of 1000 can be achieved [J. Electrochem. Soc. 149 (1) (2002) G70]. After deposition of a catalyst on the inner surface of the pores these structures can be used as an effective catalytic reaction area for the injected hydrocarbons in a micro-steam reformer unit with a small reaction volume. In addition deep anodic etching (DAE) of a pinhole array with very high aspect ratios is demonstrated using a pre-patterned inverted pyramidal array which is produced by lithography and subsequent wet chemical potassium hydroxide (KOH) etch. The structures can also be used as carrier structures for the hydrogen separation membrane of the reforming gas in a reformer unit when a thin layer of palladium is evaporated prior to the anodic etching of the pores. The noble metal foil serves as anode contact during the etch as well as hydrogen separating membrane of the device.

  17. Surface Wave Amplitude Anomalies in the Western United States

    Science.gov (United States)

    Eddy, C.; Ekstrom, G.

    2011-12-01

    We determine maps of local surface wave amplitude factors across the Western United States for Rayleigh and Love waves at discrete periods between 25 and 125s. Measurements of raw amplitude anomalies are made from data recorded at 1161 USArray stations for minor arc arrivals of earthquakes with Mw>5.5 occurring between 2006 and 2010. We take the difference between high-quality amplitude anomaly measurements for events recorded on station pairs less than 2 degrees apart. The mean of these differences for each station pair is taken as the datum. Surface wave amplitudes are controlled by four separate mechanisms: focusing due to elastic structure, attenuation due to anelastic structure, source effects, and receiver effects. By taking the mean of the differences of amplitude anomalies for neighboring stations, we reduce the effects of focusing, attenuation, and the seismic source, thus isolating amplitude anomalies due to near-receiver amplitude effects. We determine local amplitude factors for each USArray station by standard linear inversion of the differential data set. The individual station amplitude factors explain the majority of the variance of the data. For example, derived station amplitude factors for 50s Rayleigh waves explain 92% of the variance of the data. We explore correlations between derived station amplitude factors and local amplitude factors predicted by crust and upper mantle models. Maps of local amplitude factors show spatial correlation with topography and geologic structures in the Western United States, particularly for maps derived from Rayleigh wave amplitude anomalies. A NW-SE trending high in amplitude factors in Eastern California is evident in the 50s map, corresponding to the location of the Sierra Nevada Mountains. High amplitude factors are observed in Colorado and New Mexico in the 50s-125s maps in the location of the highest peaks of the Rocky Mountains. High amplitude factors are also seen in Southern Idaho and Eastern Wyoming in

  18. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    Science.gov (United States)

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  19. Surface cell immobilization within perfluoroalkoxy microchannels

    Science.gov (United States)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  20. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  1. Cell surface engineering with edible protein nanoshells.

    Science.gov (United States)

    Drachuk, Irina; Shchepelina, Olga; Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Stone, Morley; Tsukruk, Vladimir V

    2013-09-23

    Natural protein (silk fibroin) nanoshells are assembled on the surface of Saccharomyces cerevisiae yeast cells without compromising their viability. The nanoshells facilitate initial protection of the cells and allow them to function in encapsulated state for some time period, afterwards being completely biodegraded and consumed by the cells. In contrast to a traditional methanol treatment, the gentle ionic treatment suggested here stabilizes the shell silk fibroin structure but does not compromise the viability of the cells, as indicated by the fast response of the encapsulated cells, with an immediate activation by the inducer molecules. Extremely high viability rates (up to 97%) and preserved activity of encapsulated cells are facilitated by cytocompatibility of the natural proteins and the formation of highly porous shells in contrast to traditional polyelectrolyte-based materials. Moreover, in a high contrast to traditional synthetic shells, the silk proteins are biodegradable and can be consumed by cells at a later stage of growth, thus releasing the cells from their temporary protective capsules. These on-demand encapsulated cells can be considered a valuable platform for biocompatible and biodegradable cell encapsulation, controlled cell protection in a synthetic environment, transfer to a device environment, and cell implantation followed by biodegradation and consumption of protective protein shells.

  2. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  3. The cell surface proteome of Entamoeba histolytica.

    Science.gov (United States)

    Biller, Laura; Matthiesen, Jenny; Kühne, Vera; Lotter, Hannelore; Handal, Ghassan; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Schümann, Michael; Roeder, Thomas; Tannich, Egbert; Krause, Eberhard; Bruchhaus, Iris

    2014-01-01

    Surface molecules are of major importance for host-parasite interactions. During Entamoeba histolytica infections, these interactions are predicted to be of prime importance for tissue invasion, induction of colitis and liver abscess formation. To date, however, little is known about the molecules involved in these processes, with only about 20 proteins or protein families found exposed on the E. histolytica surface. We have therefore analyzed the complete surface proteome of E. histolytica. Using cell surface biotinylation and mass spectrometry, 693 putative surface-associated proteins were identified. In silico analysis predicted that ∼26% of these proteins are membrane-associated, as they contain transmembrane domains and/or signal sequences, as well as sites of palmitoylation, myristoylation, or prenylation. An additional 25% of the identified proteins likely represent nonclassical secreted proteins. Surprisingly, no membrane-association sites could be predicted for the remaining 49% of the identified proteins. To verify surface localization, 23 proteins were randomly selected and analyzed by immunofluorescence microscopy. Of these 23 proteins, 20 (87%) showed definite surface localization. These findings indicate that a far greater number of E. histolytica proteins than previously supposed are surface-associated, a phenomenon that may be based on the high membrane turnover of E. histolytica.

  4. Femtosecond fabricated surfaces for cell biology

    Science.gov (United States)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  5. Phospholipid polymer-based antibody immobilization for cell rolling surfaces in stem cell purification system.

    Science.gov (United States)

    Mahara, Atsushi; Chen, Hao; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    We previously developed an antibody-conjugated cell rolling column that successfully separates stem cell subpopulations depending on the cell surface marker density, but a large amount of the injected cells were retained in the column because of non-specific interactions. In this study, an amphiphilic copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (nBMA)-co-N-vinyl formamide (NVf)], with phospholipid polar side groups was designed as a novel antibody-immobilizing modifier. The formamide groups in NVf units were converted to active maleimide groups. A plastic flow microfluidic chamber was coated with the copolymers, and a reduced anti-CD90 antibody was immobilized. The adipose tissue-derived stem cells isolated from the rat were injected into the flow chamber, and their rolling behavior was observed under a microscope with a high-speed camera. Non-specific cell adhesion was reduced strongly by means of this immobilization method because of the MPC unit, resulting in a high percentage of rolling cells. These results demonstrate that a surface coated with phospholipid polar groups can be used in an effective stem cell separation system based on the cell rolling process.

  6. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit.

    Science.gov (United States)

    Geun Jeong, Bong; Min Yoon, Seok; Ho Choi, Chang; Koang Kwon, Kil; Sik Hyun, Moon; Heui Yi, Dong; Soo Park, Hyung; Kim, Mia; Joo Kim, Hyung

    2007-12-01

    An electrochemical COD (chemical oxygen demand) sensor using an electrode-surface grinding unit was investigated. The electrolyzing (oxidizing) action of copper on an organic species was used as the basis of the COD measuring sensor. Using a simple three-electrode cell and a surface grinding unit, the organic species is activated by the catalytic action of copper and oxidized at a working electrode, poised at a positive potential. When synthetic wastewater was fed into the system, the measured Coulombic yields were found to be dependent on the COD of the synthetic wastewater. A linear correlation between the Coulombic yields and the COD of the synthetic wastewater was established (10-1000 mg L(-1)) when the electrode-surface grinding procedure was activated briefly at 8 h intervals. When various kinds of wastewater samples obtained from various sewage treatment plants were measured, linear correlations (r(2)> or = 0.92) between the measured EOD (electrochemical oxygen demand) value and COD of the samples were observed. At a practical wastewater treatment plant, the measurement system was successfully operated with high accuracy and good stability over 3 months. These experimental results show that the application of the measurement system would be a rapid and practical method for the determination of COD in water industries.

  7. Engineering novel cell surface chemistry for selective tumor cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, C.R. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  8. Bacterial cell surface structures in Yersinia enterocolitica.

    Science.gov (United States)

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  9. Distribution, Arrangement and Interconnectedness of Cell Surface Receptor sites in the body of an Organism

    Directory of Open Access Journals (Sweden)

    Utoh-Nedosa

    2011-01-01

    surface receptor channels joined up to form larger bundles that ran the whole length of the organism. In this way, the cell surface receptors in a locality were interconnect through bigger receptor channel highways to cell surface receptors in other remote parts of the body. This arrangement was illustrated by the sycamore fruit and the soursop fruit. The results of the study also showed that cell surface receptors have functional zonal units with other cell surface receptors which were delimited by cell surface receptor channels. The zoning system of cell surface receptors meant that an infection or a drug treatment of an infection would affect all the cell surface receptors of the same functional unit to the same degree. The cell surface receptor site was raised up when a disease infection at the site was being attacked by a body defence substance of an exogenous drug. Some cell surface receptors were damaged or obliterated or damaged by disease. Examination of different layers of the coconut fruit coverings showed that cell surface receptors traverse all external and internal coverings of an organ or organism no matter the hardness of the covering. They also showed that a disease infection at the outer covering of an organ passes through any number of coverings of that organ to infect the inside of that organ. Cell surface receptors can be destroyed by disease and infective agents still use cell surface receptors to destroy the remains of an organism after the organic death of the organism. Conclusion: From the findings of this study the researcher concludes that cell surface receptors are ubiquitous in living plants and animals; are arranged lineally in receptor channels; have anatomical and physiologic functional units; have a smaller and a bigger reactive head; are the receptors of the main endogenous mediator of an organism’s normal body functioning/body’s defence and are interconnected by a systematic network of receptor channels.

  10. Fabrication and characteristics of unit cell for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwi-Yeol; Eom, Seung-Wook; Moon, Seong-In [Korea Electrotechnology Research Institute, Kyongnam (Korea, Republic of)] [and others

    1996-12-31

    Research and development on solid oxide fuel cells in Korea have been mainly focused on unit cell and small stack. Fuel cell system is called clean generation system which not cause NOx or SOx. It is generation efficiency come to 50-60% in contrast to 40% of combustion generation system. Among the fuel cell system, solid oxide fuel cell is constructed of ceramics, so stack construction is simple, power density is very high, and there are no corrosion problems. The object of this study is to develop various composing material for SOFC generation system, and to test unit cell performance manufactured. So we try to present a guidance for developing mass power generation system. We concentrated on development of manufacturing process for cathode, anode and electrolyte.

  11. Functionalized titanium oxide surfaces with phosphated carboxymethyl cellulose: characterization and bonelike cell behavior.

    Science.gov (United States)

    Pasqui, Daniela; Rossi, Antonella; Di Cintio, Federica; Barbucci, Rolando

    2007-12-01

    The performance of dental or orthopedic implants is closely dependent on surface properties in terms of topography and chemistry. A phosphated carboxymethylcellulose containing one phosphate group for each disaccharide unit was synthesized and used to functionalize titanium oxide surfaces with the aim to improve osseointegration with the host tissue. The modified surfaces were chemically characterized by means of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The investigation of the surface topography was performed by atomic force microscopy measurements before and after the polysaccharide coating. In vitro biological tests using osteoblastlike cells demonstrated that functionalized TiO(2) surfaces modulated cell response, in terms of adhesion, proliferation,and morphology. Phosphated carboxymethylcellulose promoted better cell adhesion and significantly enhanced their proliferation. The morphology of cells was polygonal and more spread on this type of modified surface.These findings suggest that the presence of a phosphate polysaccharide coating promotes osteoblast growth on the surface potentially improving biomaterial osseointegration.

  12. Yeast cell surface display for lipase whole cell catalyst and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  13. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  14. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; van Apeldoorn, Aart A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  15. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R.L.; Blitterswijk, van C.A.; Karperien, H.B.J.; Apeldoorn, van A.A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  16. 100-Meter Resolution Impervious Surface of the Conterminous United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains impervious surface data for the conterminous United States, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The...

  17. Knowledge discovery of cell-cell and cell-surface interactions

    Science.gov (United States)

    Su, Jing

    High-throughput cell culture is an emerging technology that shows promise as a tool for research in tissue engineering, drug discovery, and medical diagnostics. An important, but overlooked, challenge is the integration of experimental methods with information processing suitable for handling large databases of cell-cell and cell-substrate interactions. In this work the traditional global descriptions of cell behaviors and surface characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-to-surface interactions. Traditional summary metrics cannot distinguish information of cell near neighborhood from the average, global features, thus often is not suitable for studying distance-sensitive cell behaviors. The problem of traditional summary metrics was addressed by introducing individual-cell based local metrics that emphasize cell local environment. An individual-cell based local data analysis method was established. Contact inhibition of cell proliferation was used as a benchmark for the effectiveness of the local metrics and the method. Where global, summary metrics were unsuccessful, the local metrics successfully and quantitatively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. In order to test the new metrics and analysis method in detail, a model of cell contact inhibition was proposed. Monte Carlo simulation was performed for validating the individual-cell based local data analysis method as well as the cell model itself. The simulation results well matched with the experimental observations. The parameters used in the cell model provided new descriptions of both cell behaviors and surface characteristics. Based on the viewpoint of individual cells, the local metrics and local data analysis method were extended to the investigation of cell-surface interactions, and a new high-throughput screening and knowledge discovery method on combinatorial libraries, local cell

  18. Learning about the Unit Cell and Crystal Lattice with Computerized Simulations and Games: A Pilot Study

    Science.gov (United States)

    Luealamai, Sutha; Panijpan, Bhinyo

    2012-01-01

    The authors have developed a computer-based learning module on the unit cell of various types of crystal. The module has two components: the virtual unit cell (VUC) part and the subsequent unit cell hunter part. The VUC is a virtual reality simulation for students to actively arrive at the unit cell from exploring, from a broad view, the crystal…

  19. Learning about the Unit Cell and Crystal Lattice with Computerized Simulations and Games: A Pilot Study

    Science.gov (United States)

    Luealamai, Sutha; Panijpan, Bhinyo

    2012-01-01

    The authors have developed a computer-based learning module on the unit cell of various types of crystal. The module has two components: the virtual unit cell (VUC) part and the subsequent unit cell hunter part. The VUC is a virtual reality simulation for students to actively arrive at the unit cell from exploring, from a broad view, the crystal…

  20. Chemistry and material science at the cell surface

    Directory of Open Access Journals (Sweden)

    Weian Zhao

    2010-04-01

    Full Text Available Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1 targeting cells to desirable sites in cell therapy, 2 programming assembly of cells for tissue engineering, 3 bioimaging and sensing, and ultimately 4 manipulating cell biology.

  1. Biology 23. Unit One -- The Cell: Structure and Physiology.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: Not given. SUBJECT MATTER: Biology, the structure and physiology of the cell. ORGANIZATION AND PHYSICAL APPEARANCE: There are four sections: a) objectives for the unit, b) bibliography, c) activities, and d) evaluation. The guide is directed to the student rather than the teacher. The guide is mimeographed and stapled, with no…

  2. Patterned hybrid nanohole array surfaces for cell adhesion and migration.

    Science.gov (United States)

    Westcott, Nathan P; Lou, Yi; Muth, John F; Yousaf, Muhammad N

    2009-10-06

    We report the fabrication of hybrid nanohole array surfaces to study the role of the surface nanoevironment on cell adhesion and cell migration. We use polystyrene beads and reactive ion etching to control the size and the spacing between nanoholes on a tailored self-assembled monolayer inert gold surface. The arrays were characterized by scanning electron microscopy and brightfield microscopy. For cell adhesion studies, cells were seeded to these substrates to study the effect of ligand spacing on cell spreading, stress fiber formation, and focal adhesion structure and size. Finally, comparative cell migration rates were examined on the various nanohole array surfaces using time-lapse microscopy.

  3. Efficiency of the unit cell in rectangular finned tube arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Buzzoni, Luca; Dall' Olio, Roberto; Spiga, Marco [Bologna Univ., DIENCA, Bologna (Italy)

    1999-11-01

    This paper is aimed at presenting an investigation concerning the efficiency of the single unit in finned air-cooled heat exchangers with staggered and in-line bundles of rectangular ducts, where a hot process fluid flows inside extended-surface tubes and atmospheric air is circulated outside, over the extended surface. The differential energy equation is numerically solved by a finite difference technique, in order to determine the spatial temperature profiles, then the fin efficiency and the augmentation factor are calculated by a simple numerical integration. The results show that the temperature distribution and the fin performance depend on four dimensionless parameters (m,{beta},p{sub x},p{sub y}), the first accounting for the heat transfer condition, the other ones accounting for the geometry of the extended surface (tube aspect ratio and pitches). Several tables are presented, allowing the efficiency of the extended surface to be deduced as a function of the thermal and geometric parameters. (Author)

  4. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko

    2013-01-01

    process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside...... of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass...... substrate. It is suggested that the interaction of the galactose units of the polymer brush with the asialoglycoprotein receptor (ASGPR) of HepG2 cells has resulted in the protein enrichment along the cell periphery....

  5. Examination of motor unit control properties in stroke survivors using surface EMG decomposition: a preliminary report.

    Science.gov (United States)

    Suresh, Nina; Li, Xiaoyan; Zhou, Ping; Rymer, William Zev

    2011-01-01

    The objective of this pilot study was to examine alterations in motor unit (MU) control properties, (i.e. MU recruitment and firing rate) after stroke utilizing a recently developed high-yield surface electromyogram (EMG) decomposition technique. Two stroke subjects participated in this study. A sensor array was used to record surface EMG signals from the first dorsal interosseous (FDI) muscle during voluntary isometric contraction at varying force levels. The recording was performed in both paretic and contralateral muscles using a matched force protocol. Single motor unit activity was extracted using the surface EMG decomposition software from Delsys Inc. The results from the two stroke subjects indicate a reduction in the mean motor unit firing rate and a compression of motor unit recruitment range in paretic muscle as compared with the contralateral muscles. These findings provide further evidence of spinal motoneuron involvement after a hemispheric brain lesion, and help us to understand the complex origins of stroke induced muscle weakness.

  6. Controlling cell-cell interactions using surface acoustic waves.

    Science.gov (United States)

    Guo, Feng; Li, Peng; French, Jarrod B; Mao, Zhangming; Zhao, Hong; Li, Sixing; Nama, Nitesh; Fick, James R; Benkovic, Stephen J; Huang, Tony Jun

    2015-01-06

    The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

  7. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    Science.gov (United States)

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  8. Condition of cleanliness of surfaces close to patients in an intensive care unit

    OpenAIRE

    Ferreira,Adriano Menis; Andrade,Denise de; Rigotti, Marcelo Alessandro; Ferreira, Maria Verônica Ferrareze

    2011-01-01

    ABSTRACT - Surface cleaning is a well-known control procedure against the dissemination of microorganisms in the hospital environment. This prospective study, carried out in an intensive care unit over the course of 14 days, describes the cleaning/disinfection conditions of four surfaces near patients. In total, 100 assessments of the surfaces were carried out after they were cleaned. Three methods were used to evaluate cleanliness: a visual inspection, an adenosine triphosphate (ATP) biolumi...

  9. Microbial fuel cells as pollutant treatment units: Research updates.

    Science.gov (United States)

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-10-01

    Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit.

  10. Engineered antifouling microtopographies: surface pattern effects on cell distribution.

    Science.gov (United States)

    Decker, Joseph T; Sheats, Julian T; Brennan, Anthony B

    2014-12-23

    Microtopography has been observed to lead to altered attachment behavior for marine fouling organisms; however, quantification of this phenomenon is lacking in the scientific literature. Here, we present quantitative measurement of the disruption of normal attachment behavior of the fouling algae Ulva linza by antifouling microtopographies. The distribution of the diatom Navicula incerta was shown to be unaffected by the presence of topography. The radial distribution function was calculated for both individual zoospores and cells as well as aggregates of zoospores from attachment data for a variety topographic configurations and at a number of different attachment densities. Additionally, the screening distance and maximum values were mapped according to the location of zoospore aggregates within a single unit cell. We found that engineered topographies decreased the distance between spore aggregates compared to that for a smooth control surface; however, the distributions for individual spores were unchanged. We also found that the local attachment site geometry affected the screening distance for aggregates of zoospores, with certain geometries decreasing screening distance and others having no measurable effect. The distribution mapping techniques developed and explored in this article have yielded important insight into the design parameters for antifouling microtopographies that can be implemented in the next generation of antifouling surfaces.

  11. Nanofabrication of Nonfouling Surfaces for Micropatterning of Cell and Microtissue

    Directory of Open Access Journals (Sweden)

    Hidenori Otsuka

    2010-08-01

    Full Text Available Surface engineering techniques for cellular micropatterning are emerging as important tools to clarify the effects of the microenvironment on cellular behavior, as cells usually integrate and respond the microscale environment, such as chemical and mechanical properties of the surrounding fluid and extracellular matrix, soluble protein factors, small signal molecules, and contacts with neighboring cells. Furthermore, recent progress in cellular micropatterning has contributed to the development of cell-based biosensors for the functional characterization and detection of drugs, pathogens, toxicants, and odorants. In this regards, the ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. To develop this kind of cellular microarray composed of a cell-resistant surface and cell attachment region, micropatterning a protein-repellent surface is important because cellular adhesion and proliferation are regulated by protein adsorption. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional surfaces with the aim to provide an introductory overview described in the literature. In particular, the importance of non-fouling surface chemistries is discussed.

  12. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  13. Zero loss magnetic metamaterials using powered active unit cells.

    Science.gov (United States)

    Yuan, Yu; Popa, Bogdan-Ioan; Cummer, Steven A

    2009-08-31

    We report the design and experimental measurement of a powered active magnetic metamaterial with tunable permeability. The unit cell is based on the combination of an embedded radiofrequency amplifier and a tunable phase shifter, which together control the response of the medium. The measurements show that a negative permeability metamaterial with zero loss or even gain can be achieved through an array of such metamaterial cells. This kind of active metamaterial can find use in applications that are performance limited due to material losses.

  14. A heated vapor cell unit for DAVLL in atomic rubidium

    OpenAIRE

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field...

  15. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  16. Solid Oxide Fuel Cells coupled with a biomass gasification unit

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available A possibility of fuelling a solid oxide fuel cell stack (SOFC with biomass fuels can be realized by coupling a SOFC system with a self-standing gasification unit. Such a solution enables multi-fuel operation, elasticity of the system as well as the increase of the efficiency of small-scale biomass-to-electricity conversion units. A system of this type, consisting of biomass gasification unit, gas purification unit, SOFC stack, anode off-gas afterburner and peripherals was constructed and operated successfully. During the process, biomass fuel (wood chips was gasified with air as gasification agent. The gasifier was capable of converting up to 30 kW of fuel to syngas with efficiencies up to 75%. Syngas leaving the gasification unit is delivered to a medium temperature adsorber for sulphur compounds removal. Steam is added to the purified fuel to maintain steam to carbon ratio higher than 2. The syngas then is passed to a SOFC stack through a fuel preheater. In such a configuration it was possible to operate a commercial 1.3 kW stack within its working regime. Conducted tests confirmed successful operation of a SOFC stack fuelled by biomass-sourced syngas.

  17. Calreticulin: Roles in Cell-Surface Protein Expression

    Directory of Open Access Journals (Sweden)

    Yue Jiang

    2014-09-01

    Full Text Available In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.

  18. Thermodynamics of Condensed Phases: Formula Unit Volume, "V[subscript m]", and the Determination of the Number of Formula Units, "Z", in a Crystallographic Unit Cell

    Science.gov (United States)

    Glasser, Leslie

    2011-01-01

    Formula unit (or molecular) volume, "V[subscript m]", is related to many thermodynamic and physical properties of materials, so that knowledge of "V[subscript m]" is useful in prediction of such properties for known and even hypothetical materials. The symbol "Z" represents the number of formula units in a crystallographic unit cell; "Z" thus…

  19. A mass spectrometric-derived cell surface protein atlas.

    Science.gov (United States)

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  20. A mass spectrometric-derived cell surface protein atlas.

    Directory of Open Access Journals (Sweden)

    Damaris Bausch-Fluck

    Full Text Available Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa. The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  1. Theory of back-surface-field solar cells

    Science.gov (United States)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  2. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit

    OpenAIRE

    Russotto, V; Cortegiani, A; Raineri, S.; Giarratano, A

    2015-01-01

    Intensive care unit (ICU)-acquired infections are a challenging health problem worldwide, especially when caused by multidrug-resistant (MDR) pathogens. In ICUs, inanimate surfaces and equipment (e.g., bedrails, stethoscopes, medical charts, ultrasound machine) may be contaminated by bacteria, including MDR isolates. Cross-transmission of microorganisms from inanimate surfaces may have a significant role for ICU-acquired colonization and infections. Contamination may result from healthcare wo...

  3. Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units

    Directory of Open Access Journals (Sweden)

    Zheng Ma

    2015-01-01

    Full Text Available Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens.

  4. Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units.

    Science.gov (United States)

    Ma, Zheng; Li, Yaoming; Xu, Lizhang

    2015-01-01

    Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens.

  5. Zeroing in on red blood cell unit expiry.

    Science.gov (United States)

    Ayyalil, Fathima; Irwin, Greg; Ross, Bryony; Manolis, Michael; Enjeti, Anoop K

    2017-09-20

    Expiry of red blood cell (RBC) units is a significant contributor to wastage of precious voluntary donations. Effective strategies aimed at optimal resource utilization are required to minimize wastage. This retrospective study analyzed the strategic measures implemented to reduce expiry of RBC units in an Australian tertiary regional hospital. The measures, which included inventory rearrangement, effective stock rotation, and the number of emergency courier services required during a 24-month period, were evaluated. There was no wastage of RBC units due to expiry over the 12 months after policy changes. Before these changes, approximately half of RBC wastage (261/511) was due to expiry. The total number of transfusions remained constant in this period and there was no increase in the use of emergency couriers. Policy changes implemented were decreasing the RBC inventory level by one-third and effective stock rotation and using a computerized system to link the transfusion services across the area. Effective stock rotation resulted in a reduction in older blood (>28 days) received in the main laboratory rotated from peripheral hospitals, down from 6%-41% to 0%-2.5%. Age-related expiry of blood products is preventable and can be significantly reduced by improving practices in the pathology service. This study provides proof of principle for "zero tolerance for RBC unit expiry" across a large networked blood banking service. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  6. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces.

    Science.gov (United States)

    Gooding, J Justin; Parker, Stephen G; Lu, Yong; Gaus, Katharina

    2014-04-01

    Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.

  7. Cell surface engineering of yeast for applications in white biotechnology.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  8. High performance internal reforming unit for high temperature fuel cells

    Science.gov (United States)

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  9. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...... or AGET SI ATRP and uses of said polymer coating....

  10. Cell Surface-based Sensing with Metallic Nanoparticles

    OpenAIRE

    Jiang, Ziwen; Le, Ngoc D. B.; Gupta, Akash; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed.

  11. Crystal fractionation in the SNC meteorites: Implications for surface units on Mars

    Science.gov (United States)

    Treiman, Allan H.

    1987-01-01

    Almost all rock types in the SNC meteorites are cumulates, products of magma differentiation by crystal fractionation (addition or removal of crystals). If the SNC meteorites are from the surface of Mars or near sub-surface, then most of the igneous units on Mars are differentiated. Basaltic units probably experienced minor to moderate differentiation, but ultrabasic units probably experienced extreme differentiation. Products of this differentiation may include Fe-rich gabbro, pyroxenite, peridotite (and thus serpentine), and possibly massive sulfides. The SNC meteorites include ten lithologies (three in EETA79001), eight of which are crystal cumulates. The other lithologies, EETA79001 A and B are subophitic basalts. The cumulate lithologies ALHA77005 and EETA79001 C were not fully described or discussed.

  12. Effect of inhomogeneity of light from light curing units on the surface hardness of composite resin.

    Science.gov (United States)

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Takahashi, Hideo; Ban, Seiji

    2008-01-01

    This study investigated the characteristics of output light from different types of light curing units, and their effects on polymerization of light-activated composite resin. Three quartz-tungsten-halogen lamps, one plasma arc lamp, and one LED light curing unit were used. Intensity distribution of light emitted from the light guide tip was measured at 1.0-mm intervals across the guide tip. Distribution of Knoop hardness number on the surface of resin irradiated with the light curing units was also measured. For all units, inhomogeneous distribution of light intensity across the guide tip was observed. Minimum light intensity values were 19-80% of the maximum values. In terms of surface hardness, inhomogeneous distribution was also observed for the materials irradiated with the tested units. Minimum values were 53-92% of the maximum values. Our results indicated that markedly inhomogeneous light emitted from light curing unit could result in inhomogeneous polymerization in some areas of the restoration below the light guide tip.

  13. [Cell surface RNA--a possible molecular receptor of adaptogens].

    Science.gov (United States)

    Malenkov, A G; Kolotygina, I M

    1984-01-01

    When RNA of the cell surface is destroyed with RNAase, the effect of adaptogenes is removed. Such effect is produced by introduction of actinomycin D 30 minutes before intake of adaptogene. Destruction of surface RNA stimulates protein synthesis. Comparison of these facts permits a hypothesis to be advanced saying that surface RNA is a receptor of adaptogenes obtained from plants of Aralia family.

  14. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  15. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    Science.gov (United States)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  16. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    Science.gov (United States)

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-09

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  17. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  18. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  19. Cell multiplication following partial enzymatic removal of surface coat.

    Science.gov (United States)

    Wyroba, E

    1978-08-01

    Treatment of Paramecium aurelia with trypsin or pronase (1 mg per 10(5) cells, at 0 to 4 degrees C) partially removes the surface coat and modifies significantly multiplication of cells. The division rate after 24 hours of cultivation is diminished approximately twice in the case of pronase-treated cells and 1.5 for tyrpsin-digested ciliates as compared with the control. On the second day the division rate increases rapidly and number of cell divisions exceeds the values observed in the control. After 72 hours of cultivation the division rate in both untreated and enzyme-treated cells is almost the same. It is concluded that the observed inhibition of cell fission results from the enzymatic removal of the surface coat--the integrity of this surface coat seems to be necessary in the process of cell division. The influence of environmental factors on the rate of growth is presented.

  20. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  1. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  2. Interaction of Epithelial Cells with Surfaces and Surfaces Decorated by Molecules

    CERN Document Server

    Martini, Daniele; Beil, Michael; Paust, T; Huang, C; Moosmann, M; Jin, J; Heiler, T; Gröger, R; Schimmel, Thomas; Walheim, Stefan

    2013-01-01

    A detailed understanding of the interface between living cells and substrate materials is of rising importance in many fields of medicine, biology and biotechnology. Cells at interfaces often form epithelia. The physical barrier that they form is one of their main functions. It is governed by the properties of the networks forming the cytoskeleton systems and by cell-to-cell contacts. Different substrates with varying surface properties modify the migration velocity of the cells. On the one hand one can change the materials composition. Organic and inorganic materials induce differing migration velocities in the same cell system. Within the same class of materials, a change of the surface stiffness or of the surface energy modifies the migration velocity, too. For our cell adhesion studies a variety of different, homogeneous substrates were used (polymers, bio-polymers, metals, oxides). In addition, an effective lithographic method, Polymer Blend Lithography (PBL), is reported, to produce patterned Self-Assem...

  3. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  4. Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.

    Science.gov (United States)

    da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi

    2011-01-01

    The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.

  5. High resolution imaging of surface patterns of single bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Dominik; Wesner, Daniel [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Regtmeier, Jan, E-mail: jan.regtmeier@physik.uni-bielefeld.de [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Anselmetti, Dario [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany)

    2010-09-15

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  6. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  7. Operable Unit 3-13, Group 3, Other Surface Soils (Phase I) Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    L. Davison

    2007-07-31

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 3, Other Surface Soils, Phase I sites at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The 10 sites addressed in this report were defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for these 10 sites have been accomplished and are hereafter considered No Action or No Further Action sites.

  8. Quantifying cell binding kinetics mediated by surface-bound blood type B antigen to immobilized antibodies

    Institute of Scientific and Technical Information of China (English)

    LI BaoXia; CHEN Juan; LONG Mian

    2008-01-01

    Cell adhesion is crucial to many biological processes, such as inflammatory responses, tumor metastasis and thrombosis formation. Recently a commercial surface plasmon resonance (SPR)-based BIAcore biosensor has been extended to determine cell binding mediated by surface-bound biomolecular interactions. How such cell binding is quantitatively governed by kinetic rates and regulating factors, however, has been poorly understood. Here we developed a novel assay to determine the binding kinetics of surface-bound biomolecular interactions using a commercial BIAcore 3000 biosensor. Human red blood cells (RBCs) presenting blood group B antigen and CM5 chip bearing immobilized anti-B monoclonal antibody (mAb) were used to obtain the time courses of response unit, or sensorgrams, when flowing RBCs over the chip surface. A cellular kinetic model was proposed to correlate the sensorgrams with kinetic rates. Impacts of regulating factors, such as cell concentration,flow duration and rate, antibody-presenting level, as well as Ph value and osmotic pressure of suspending medium were tested systematically, which imparted the confidence that the approach can be applied to kinetic measurements of cell adhesion mediated by surface-bound biomolecular interactions.These results provided a new insight into quantifying cell binding using a commercial SPR-based BIAcore biosensor.

  9. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  10. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.

    Science.gov (United States)

    Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-06-01

    Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd

  11. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  12. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    Science.gov (United States)

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  14. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  15. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  16. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    Science.gov (United States)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  17. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Surface characteristics and cell adhesion: a comparative study of four commercial dental implants.

    Science.gov (United States)

    Liu, Ruohong; Lei, Tianhua; Dusevich, Vladimir; Yao, Xiamei; Liu, Ying; Walker, Mary P; Wang, Yong; Ye, Ling

    2013-12-01

    The aims of this study were to compare surface properties of four commercial dental implants and to compare those implant systems' cell adhesion, which may be affected by the surface properties, and to provide scientific information on the selection of implants for clinicians. The surface properties of four commonly used dental implants (3i Nanotite™, Astra OsseoSpeed™, Nobel Biocare TiUnite®, and Straumann SLActive®) were studied using MicroSpy profiler, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and Raman microspectroscopy. Primary mouse alveolar bone cells were cultured on the surface of implants from the four companies. After 48-hour culture, SEM in combination with a quantitative analysis of SEM images was used to examine the cell adhesion. Cell adhesion rates (ratios of cell surface to implant surface) among different systems were compared. Distinct differences were found among these implants. Comparisons of roughness among three locations: flank, top, and valley within the same implant system, or in the same location among different implants were made. Generally Astra and Straumann systems showed the roughest surface, whereas 3i showed the smoothest surface. Multiple cracks were found on the surface of the Nobel Biocare system, which also had a dramatically lower level of titanium. In addition, rutile phase of titanium oxide was found in 3i, Astra, and Straumann systems, and anatase phase of titanium oxide was only detected in the Nobel Biocare system. After 48-hour culture, Astra and Straumann systems displayed the highest cell adhesion at the areas of flank, top, and valley of the implant surface. Primary cells also reached confluence on the valley, but significantly less in the 3i system. Nobel Biocare showed the least cell adhesion on the flank and valley. Implant systems have distinct differences in surface properties, leading to different cell adhesion results. Further in vivo study is needed to study the impact of

  19. Simulating Land Surface Hydrology at a 30-meter Spatial Resolution over the Contiguous United States

    Science.gov (United States)

    Wood, E. F.; Pan, M.; Cai, X.; Chaney, N.

    2016-12-01

    Big data, high performance computing, and recent advances in hydrologic similarity present a unique opportunity for macroscale hydrology: the land surface hydrology can be modeled at field scales over continental extents while ensuring computational efficiency to enable robust ensemble frameworks. In this presentation we will illustrate this potential breakthrough in macroscale hydrology by discussing results from a 30-meter simulation over the contiguous United States using the HydroBlocks land surface model. HydroBlocks is a novel land surface model that represents field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs) [Chaney et al., 2016]. The model is a coupling between the Noah-MP land surface model and the Dynamic TOPMODEL hydrologic model. The HRUs are defined by clustering proxies of the drivers of spatial heterogeneity using hyperresolution land data. For the simulations over CONUS, HydroBlocks is run at every HUC10 catchment using 100 HRUs per catchment between 2004 and 2014. The simulations are forced with the 4 km Stage IV radar rainfall product and a spatially downscaled version of NLDAS-2. We will show how this approach to macroscale hydrology ensures computational efficiency while providing field-scale hydrologic information over continental extents. We will illustrate how this approach provides a novel approach in both the application and validation of macroscale land surface and hydrologic models. Finally, using these results, we will discuss the important role that big data and high performance computing can play in providing solutions to longstanding challenges to not only flood and drought monitoring systems but also to numerical weather prediction, seasonal forecasting, and climate prediction. References Chaney, N., P. Metcalfe, and E. F. Wood (2016), HydroBlocks: A Field-scale Resolving Land Surface Model for Application Over Continental Extents, Hydrological Processes, (in press.)

  20. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  1. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  2. Membrane Tether Formation on a Cell Surface with Reservoir

    Institute of Scientific and Technical Information of China (English)

    JIANG Yu-Qiang; GUO Hong-Lian; LIU Chun-Xiang; LI Zhao-Lin; CHENG Bing-Ying; ZHANG Dao-Zhong; JIA Suo-Tang

    2004-01-01

    @@ We propose a mathematical model to analyse the membrane tether formation process on a cell surface with reservoir. Based on the experimental results, the membrane reservoir density of breast cancer cell was obtained,p = 8.02. The membrane surface viscosity between membrane and environment η is 0.021(pN.s/μm3), and the static force F0 = 5.71 pN.

  3. Microfabricated surface designs for cell culture and diagnosis.

    Science.gov (United States)

    Matsuda, T; Chung, D J

    1994-01-01

    Grooved and holed surfaces with a well fabricated design may serve as microsubstrates for cell culture and microreactors for diagnosis. In this study, the authors prepared chemically treated, micrometer scale grooved and holed glass surfaces by combined surface modification and ultraviolet (UV) excimer laser ablation techniques, as follows. 1) Microcell-culture substrate: Amino group attached glass surfaces, prepared by the treatment with an aminopropylsilane, were condensed with a carboxylated radical initiator. Subsequently, polyacrylamide was grafted by surface initiated radical polymerization to create a very hydrophilic surface layer. Ultraviolet excimer laser beams (KrF: 248 nm) were irradiated through a microscope onto surfaces to create grooves or holes that were 10 and 50 microns in width or diameter, respectively. The depth, depending on the irradiation light strength, ranged from a few to several tenths of a micrometer. On endothelial cell (EC) seeding, ECs adhered and grew on the bottoms of the grooved or holed surface where glass was exposed on ablation. Little cell adhesion was observed on non ablated, grafted surfaces. Endothelial cells aligned along the groove, resulting in very narrow tube like tissue formation, whereas ECs tended to form a multilayered spherical aggregate in a hole. A single cell resided in a 10 microns square hole. 2) Microreactor for diagnosis: The glass surface, treated with a fluorinated silane, was ablated to create round holes. On addition of a few microliters of water, water could be quantitatively transferred into a hole because of the water repellent characteristics of non ablated, fluorinated glass. As a model of a microreactor, enzyme reactions to affect different levels of glucose were carried out in tiny holed surfaces.

  4. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  5. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  6. Heterogeneity of CD4-Positive Human T-Cell Clones Which Recognize the Surface Protein Antigen of Rickettsia typhi

    Science.gov (United States)

    1989-04-01

    5055 " - PROGRAM PROJECT 1TASK IWORK UNIT ELEMENT NO. NO. / NO. IACC SSI II. TITLE (Incluae Security Clasification ) Heterogeneity o. CD4-Positive...Human T-Cell Clones Which Kecognize the Surface Protein Antigen of Rickettsia typhi 12. PERSONAL AOTU-OR(S) Carl M, Vaidya S, Robbins FM, Ching WM...Heterogeneity of CD4-Positive Human T-Cell Clones Which Recognize the Surface Protein Antigen of Rickettsia typhi MITCHELl CARL,* SUSMA VAIDYA,1 FU-MEEI

  7. Cell orientation on a stripe-micropatterned surface

    Institute of Scientific and Technical Information of China (English)

    SUN JianGuo; TANG Jian; DING JianDong

    2009-01-01

    Stripe-micropatterned surfaces have recently been a unique tool to study cell orientation. In this paper,we prepared,by the photolithography transfer technique,stable gold (Au) micropatterns on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) proparties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropatterns.With the increase of inter-stripe distance,the orientational order parameter,the ratio of long and short axes of a cell,and the occupation fraction of cells on stripes increased gradually,whereas the spreading area of a single cell decreased. The abrupt changes of these four parameters did not happen at the same inter-distance. The adhesion ratio of a cell on Au stripes over cell spreading area did not change monotonically as a function of inter-stripe distance. The combination of the 5 statistical parameters represented well the cell orientation behaviors semi-quantitatively.

  8. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  9. Sperm cell surface dynamics during activation and fertilization

    NARCIS (Netherlands)

    Boerke, A.

    2013-01-01

    Before the sperm cell can reach the oocyte it needs to be activated and to undergo a series of preparative steps. The sperm surface dynamics was studied in relation to this activation process and the modifications and removal of sperm surface components havebeen investigated. Bicarbonate-induced rad

  10. Fabrication of cell container arrays with overlaid surface topographies.

    NARCIS (Netherlands)

    Truckenmuller, R.; Giselbrecht, S.; Escalante-Marun, M.; Groenendijk, M.; Papenburg, B.; Rivron, N.; Unadkat, H.; Saile, V.; Subramaniam, V.; Berg, A. van den; Blitterswijk, C. Van; Wessling, M.; Boer, J. den; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  11. Fabrication of cell container arrays with overlaid surface topographies

    NARCIS (Netherlands)

    Truckenmüller, R.K.; Giselbrecht, S.; Escalante, M.; Groenendijk, M.N.W.; Papenburg, B.J.; Rivron, N.C.; Unadkat, H.V.; Saile, V.; Subramaniam, V.; Blitterswijk, van C.A.; Wessling, M.; Boer, de J.; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  12. Spherical TiO2 aggregates with different building units for dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Zhaohui; Su, Xunjia; Hou, Genliang; Bi, Song; Xiao, Zhou; Jia, Haipeng

    2013-09-07

    Tailoring the architectures of spherical TiO2 aggregates is crucial to obtain superior photovoltaic properties and promote their application in dye-sensitized solar cells (DSSCs). Herein, we synthesized spherical TiO2 aggregates using different building units, including nanocrystallites, nanorods, nanosheets, and nanotubes, via a hydrothermal method, and studied the effect of the building units on the performances of DSSCs. The aggregates assembled by uniform nanosheet and nanotube building units were synthesized with the use of spherical TiO2 nanorod aggregates as titanium sources in an alkaline hydrothermal reaction. Compared with TiO2 nanoparticles, the spherical TiO2 aggregates possess higher surface area, more efficient light scattering ability, and better electron transport properties. Among the four types of spherical TiO2 aggregates; the nanorod, nanotube, and nanosheet aggregates demonstrate better electron transport properties than the nanocrystallite aggregates; the nanotube and nanosheet aggregates exhibit more efficient light scattering than the nanocrystallite and nanorod aggregates; and the nanotube aggregates show the highest surface area. Thus the DSSC based on nanotube aggregates exhibited the highest energy conversion efficiency of 7.48%, which is 16.0%, 9.7%, and 19.5% higher than those of the DSSCs based on the nanosheet, nanorod, and nanocrystallite aggregates, respectively.

  13. Recharging Red Blood Cell Surface by Hemodialysis

    Directory of Open Access Journals (Sweden)

    Katrin Kliche

    2015-02-01

    Full Text Available Background: Similar as in vascular endothelium the negatively charged glycocalyx of erythrocytes selectively buffers sodium. Loss of glycocalyx (i.e. loss of negative charges leads to increased erythrocyte sodium sensitivity (ESS quantified by a recently developed salt-blood-test (SBT. The hypothesis was tested whether a regular 4-hour hemodialysis (4h-HD alters ESS. Methods: In 38 patients with end stage renal disease (ESRD ESS was measured before and after 4h-HD, together with standard laboratory and clinical parameters (electrolytes, acid-base status, urea, creatinine, hemoglobin, c-reactive protein and blood pressure. Results: Before 4h-HD, 20 patients (out of 38 were classified as “salt sensitive” by SBT. After 4h-HD, this number decreased to 11. Erythrocyte sodium buffering power remained virtually constant in patients with already low ESS before dialysis, whereas in patients with high ESS, 4h-HD improved the initially poor sodium buffering power by about 20%. No significant correlations could be detected between standard blood parameters and the respective ESS values except for plasma sodium concentration which was found increased by 3.1 mM in patients with high salt sensitivity. Conclusions: 4h-HD apparently recharges “run-down” erythrocytes and thus restores erythrocyte sodium buffering capacity. Besides the advantage of efficient sodium buffering in blood, erythrocytes with sufficient amounts of free negative charges at the erythrocyte surface will cause less (mechanical injury to the negatively charged endothelial surface due to efficient repulsive forces between blood and vessel wall. Hemodialysis improves erythrocyte surface properties and thus may prevent early vascular damage in patients suffering from ESRD.

  14. Expanding the diversity of unnatural cell surface sialic acids

    Energy Technology Data Exchange (ETDEWEB)

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  15. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  16. [Surface disinfection in the context of infection prevention in intensive care units].

    Science.gov (United States)

    Kossow, A; Schaber, S; Kipp, F

    2013-03-01

    The highest proportion of nosocomial infections occurs on intensive care units (ICU) and infections with multiresistant pathogens are an ever increasing problem. Preventative measures should consist of a bundle of different measures including measures that address a specific problem and standard hygiene measures that are relevant in all areas. Specific measures in ICUs primarily aim at the prevention of ventilator associated pneumonia, blood vessel catheter associated infections and nosocomial urinary tract infections. Surface disinfection belongs to the standard hygiene measures and plays an inferior role compared to hand hygiene; however, surfaces come into focus in outbreak situations. The Commission on Hospital Hygiene (KRINKO) at the Robert Koch Institute (the German health protection agency) published recommendations regarding the cleaning and disinfection of surfaces. The frequency with which cleaning and/or disinfection is required varies according to defined areas of risk. The frequency and the disinfection agents used are documented in the disinfection plan.

  17. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle

    -derived antigenic peptides, a function which is currently explored in immunotherapeutic approaches against cancer. Additionally, membrane-bound Hsp70 can stimulate antigen presenting cells to release proinflammatory cytokines and can provide a target structure for NK cell-mediated lysis. Human cancer cells...... frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 cell surface expression on cancer...... cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 cell surface expression was confined...

  18. Zinc uptake by brain cells: `surface' versus `bulk'

    Science.gov (United States)

    DeStasio, Gelsomina; Pochon, S.; Lorusso, G. F.; Tonner, B. P.; Mercanti, Delio; Ciotti, M. Teresa; Oddo, Nino; Galli, Paolo; Perfetti, P.; Margaritondo, G.

    1996-08-01

    The uptake of zinc by cerebellar rat cultures upon exposure to 0022-3727/29/8/023/img12 solutions was comparatively investigated using two well known condensed matter physics techniques: synchrotron photoelectron spectromicroscopy and inductively coupled plasma atomic emission spectroscopy. The objective was to apply a strategy - well known in surface physics - to distinguish between `surface' and `bulk' phenomena. The results clearly demonstrate that exposure significantly enhances the bulk (cell cytoplasm) Zn concentration with respect to the physiological level, whereas the effect on the surface (cell membrane) is negligible.

  19. Transforming ocular surface stem cell research into successful clinical practice

    Directory of Open Access Journals (Sweden)

    Virender S Sangwan

    2014-01-01

    Full Text Available It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed.

  20. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  1. Surface modified stainless steels for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  2. CD44 is the principal cell surface receptor for hyaluronate.

    Science.gov (United States)

    Aruffo, A; Stamenkovic, I; Melnick, M; Underhill, C B; Seed, B

    1990-06-29

    CD44 is a broadly distributed cell surface protein thought to mediate cell attachment to extracelular matrix components or specific cell surface ligands. We have created soluble CD44-immunoglobulin fusion proteins and characterized their reactivity with tissue sections and lymph node high endothelial cells in primary culture. The CD44 target on high endothelial cells is sensitive to enzymes that degrade hyaluronate, and binding of soluble CD44 is blocked by low concentrations of hyaluronate or high concentrations of chondroitin 4- and 6-sulfates. A mouse anti-hamster hyaluonate receptor antibody reacts with COS cells expressing hamster CD44 cDNA. In sections of all tissues examined, including lymph nodes and Peyer's patches, predigestion with hyaluronidase eliminated CD44 binding.

  3. Soluble and cell surface receptors for tumor necrosis factor

    DEFF Research Database (Denmark)

    Wallach, D; Engelmann, H; Nophar, Y

    1991-01-01

    Tumor necrosis factor (TNF) initiates its multiple effects on cell function by binding at a high affinity to specific cell surface receptors. Two different molecular species of these receptors, which are expressed differentially in different cells, have been identified. The cDNAs of both receptor...... have recently been cloned. Antibodies to one of these receptor species (the p55, type I receptor) can trigger a variety of TNF like effects by cross-linking of the receptor molecules. Thus, it is not TNF itself but its receptors that provide the signal for the response to this cytokine...... in certain pathological situations. Release of the soluble receptors from the cells seems to occur by proteolytic cleavage of the cell surface forms and appears to be a way of down-regulating the cell response to TNF. Because of their ability to bind TNF, the soluble receptors exert an inhibitory effect...

  4. Specific nature of Trichomonas vaginalis parasitism of host cell surfaces.

    Science.gov (United States)

    Alderete, J F; Garza, G E

    1985-01-01

    The adherence of Trichomonas vaginalis NYH 286 to host cells was evaluated by using monolayer cultures of HeLa and HEp-2 epithelial cells and human fibroblast cell lines. Saturation of sites on HeLa cells was achieved, yielding a maximal T. vaginalis NYH 286-to-cell ratio of two. The ability of radiolabeled NYH 286 to compete with unlabeled trichomonads for attachment and the time, temperature, and pH-dependent nature of host cell parasitism reinforced the idea of specific parasite-cell associations. Other trichomonal isolates (JH31A, RU375, and JHHR) were also found to adhere to cell monolayers, albeit to different degrees, and all isolates produced maximal contact-dependent HeLa cell cytotoxicity. The avirulent trichomonad, Trichomonas tenax, did not adhere to cell monolayers and did not cause host cell damage. Interestingly, parasite cytadherence was greater with HeLa and HEp-2 epithelial cells than with fibroblast cells. In addition, cytotoxicity with fibroblast cells never exceeded 20% of the level of cell killing observed for epithelial cells. Elucidation of properties of the pathogenic human trichomonads that allowed for host cell surface parasitism was also attempted. Treatment of motile T. vaginalis NYH 286 with trypsin diminished cell parasitism. Incubation of trypsinized organisms in growth medium allowed for regeneration of trichomonal adherence, and cycloheximide inhibited the regeneration of attachment. Organisms poisoned with metronidazole or iodoacetate failed to attach to host cells, and adherent trichomonads exposed to metronidazole or iodoacetate were readily released from parasitized cells. Coincubation experiments with polycationic proteins and sugars and pretreatment of parasites or cells with neuraminidase or periodate had no effect on host cell parasitism. Colchicine and cytochalasin B, however, did produce some inhibition of adherence to HeLa cells. The data suggest that metabolizing T. vaginalis adheres to host cells via parasite surface

  5. Antifouling property of highly oleophobic substrates for solar cell surfaces

    Science.gov (United States)

    Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei

    2014-03-01

    Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.

  6. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    The urokinase-type plasminogen activator (uPA) binds to a specific cell-surface receptor, uPAR. On several cell types uPAR is present both in the full-length form and a cleaved form, uPAR(2+3), which is devoid of binding activity. The formation of uPAR(2+3) on cultured U937 cells is either direct...

  7. Effect of hydroxyapatite surface morphology on cell adhesion.

    Science.gov (United States)

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties.

  8. Surface modification of closed plastic bags for adherent cell cultivation

    Science.gov (United States)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  9. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  10. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    , membrane-bound Hsp70 can stimulate antigen presenting cells (APCs) to release proinflammatory cytokines and can provide a target structure for NK cell-mediated lysis. Human cancer cells frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several...... clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 surface expression on cancer cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various...... hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 surface expression was confined to the apoptotic Annexin V positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis...

  11. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A;

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...

  12. Engineered microtopographies and surface chemistries direct cell attachment and function

    Science.gov (United States)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  13. The interaction between LYVE-1 with hyaluronan on the cell surface may play a role in the diversity of adhesion to cancer cells.

    Directory of Open Access Journals (Sweden)

    Yan Du

    Full Text Available Hyaluronan (HA, a simple disaccharide unit, can polymerize and is considered a primary component of the extracellular matrix, which has a wide range of biological functions. In recent years, HA was found on the surface of tumor cells. According to previous reports, differing HA content on the cell surface of tumor cells is closely related to lymph node metastases, but the mechanisms mediating this process remained unclear. This research intended to study the surface content of HA on tumor cells and analyze cell adhesive changes caused by the interaction between HA and its lymphatic endothelial receptor (LYVE-1. We screened and observed high HA content on HS-578T breast cells and low HA content on MCF-7 breast cells through particle exclusion, immunofluorescence and flow cytometry experiments. The expression of LYVE-1, the lymph-vessel specific HA receptor, was consistent with our previous report and enhanced the adhesion of HA(high-HS-578T cells to COS-7(LYVE-1(+ through HA in cell static adhesion and dynamic parallel plate flow chamber experiments. MCF-7 breast cells contain little HA on the surface; however, our results showed little adhesion difference between MCF-7 cells and COS-7(LYVE-1(+ and COS-7(LYVE-1(- cells. Similar results were observed concerning the adhesion of HS-578T cells or MCF-7 cells to SVEC4-10 cells. Furthermore, we observed for the first time that the cell surface HA content of high transfer tumor cells was rich, and we visualized the cross-linking of HA cable structures, which may activate LYVE-1 on lymphatic endothelial cells, promoting tumor adhesion. In summary, high-low cell surface HA content of tumor cells through the interaction with LYVE-1 leads to adhesion differences.

  14. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  15. Development of exosome surface display technology in living human cells.

    Science.gov (United States)

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  16. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    Science.gov (United States)

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  17. The contribution of motor unit pairs to the correlation functions computed from surface myoelectric signals.

    Science.gov (United States)

    González-Cueto, José A; Erim, Zeynep

    2005-11-01

    The contribution of motor unit action potential trains (MUAPT) of distinct motor units (MU) to the crosscorrelation function between myoelectric signals (MES) recorded at the skin surface is studied. In specific, the significance of the correlation between the firing activity of concurrently active MUs (which results in cross-terms in the overall correlation function) is compared to the representation obtained using the contributions of single MUs at each recording site (auto-terms). A model for the generation of surface MUAPs is combined with the generation of MU firing statistics in order to obtain surface MUAPTs. MU firing statistics are simulated to incorporate MU synchronization levels reported in the literature. Alternatively, experimental firing statistics are fed to the model generating the MUAPTs. The contribution of individual MU pairs to the global myoelectric signal correlation function is assessed. Results indicate that the cross-terms from different MUs decrease steadily contributing very little to the overall correlation for record lengths as short as 30 s. Thus, the error expected when computing the crosscorrelation function between two channels of MES as the superposition of the auto-terms contributed by single MUs (i.e., ignoring the cross-terms from different MUs) is shown to be very small.

  18. Conditions for use of APV automatic reclosing units in surface mine distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, V.O.; Polozkov, A.V.; Kotov, V.P.

    1986-08-01

    Assesses the potential for use of APV automatic reclosing units in 6-10 kV electrical networks for surface mining equipment, with particular reference to Kuzbass conditions (Kemerovougol'association). These units automatically restore power after single phase grounds caused by damage to cables, etc. There are two major problems with APV units: the need to check insulation before restoration of power so as to prevent more serious injury to electrocuted persons, and the danger of asynchronous start-up of synchronous electric motors in which rundown lasts several tens of seconds. The first of these problems can be overcome with the aid of KBU insulation monitoring units. Tests have been performed at VostNII to determine the optimum parameters, with measurements of actual cable insulation resistance at mines. The minimum insulation resistance may be set at about 100 kohm. The second problem requires a no current condition before the APV for as long as 60 s to ensure full rundown of motors. An equation for determining the duration of this condition is given. Field suppression devices should be fitted to synchronous motors.

  19. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit.

    Science.gov (United States)

    Russotto, Vincenzo; Cortegiani, Andrea; Raineri, Santi Maurizio; Giarratano, Antonino

    2015-01-01

    Intensive care unit (ICU)-acquired infections are a challenging health problem worldwide, especially when caused by multidrug-resistant (MDR) pathogens. In ICUs, inanimate surfaces and equipment (e.g., bedrails, stethoscopes, medical charts, ultrasound machine) may be contaminated by bacteria, including MDR isolates. Cross-transmission of microorganisms from inanimate surfaces may have a significant role for ICU-acquired colonization and infections. Contamination may result from healthcare workers' hands or by direct patient shedding of bacteria which are able to survive up to several months on dry surfaces. A higher environmental contamination has been reported around infected patients than around patients who are only colonized and, in this last group, a correlation has been observed between frequency of environmental contamination and culture-positive body sites. Healthcare workers not only contaminate their hands after direct patient contact but also after touching inanimate surfaces and equipment in the patient zone (the patient and his/her immediate surroundings). Inadequate hand hygiene before and after entering a patient zone may result in cross-transmission of pathogens and patient colonization or infection. A number of equipment items and commonly used objects in ICU carry bacteria which, in most cases, show the same antibiotic susceptibility profiles of those isolated from patients. The aim of this review is to provide an updated evidence about contamination of inanimate surfaces and equipment in ICU in light of the concept of patient zone and the possible implications for bacterial pathogen cross-transmission to critically ill patients.

  20. Cell patterning on polylactic acid through surface-tethered oligonucleotides.

    Science.gov (United States)

    Matsui, Toshiki; Arima, Yusuke; Takemoto, Naohiro; Iwata, Hiroo

    2015-02-01

    Polylactic acid (PLA) is a candidate material to prepare scaffolds for 3-D tissue regeneration. However, cells do not adhere or proliferate well on the surface of PLA because it is hydrophobic. We report a simple and rapid method for inducing cell adhesion to PLA through DNA hybridization. Single-stranded DNA (ssDNA) conjugated to poly(ethylene glycol) (PEG) and to a terminal phospholipid (ssDNA-PEG-lipid) was used for cell surface modification. Through DNA hybridization, modified cells were able to attach to PLA surfaces modified with complementary sequence (ssDNA'). Different cell types can be attached to PLA fibers and films in a spatially controlled manner by using ssDNAs with different sequences. In addition, they proliferate well in a culture medium supplemented with fetal bovine serum. The coexisting modes of cell adhesion through DNA hybridization and natural cytoskeletal adhesion machinery revealed no serious effects on cell growth. The combination of a 3-D scaffold made of PLA and cell immobilization on the PLA scaffold through DNA hybridization will be useful for the preparation of 3-D tissue and organs.

  1. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the thickness of the middle confining unit

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  2. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the thickness of the Bucatunna clay confining unit

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  3. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  4. Super Unit Cells in Aperture-Based Metamaterials

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2015-01-01

    Full Text Available An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses. Thus obtained “super unit cell” shows far richer behavior than the subobjects that comprise it. We show that nonlocalities introduced by overlapping simple subobjects can be used to produce large deviations of spectral dispersion even for small additive modifications of the basic geometry. Technologically, some super cells may be fabricated by simple spatial shifting of the existing photolithographic masks. In our investigation we applied analytical calculations and ab initio finite element modeling to prove the possibility to tailor the dispersion including resonances for plasmonic nanocomposites by adjusting the local geometry and exploiting localized interactions at a subwavelength level. Any desired form could be defined using simple primitive objects, making the situation a geometrical analog of the case of series expansion of a function. Thus an additional degree of tunability of metamaterials is obtained. The obtained designer structures can be applied in different fields like waveguiding and sensing.

  5. Effect of Yttria Content on the Zirconia Unit Cell Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Jessica A.; Lepple, Maren; Gao, Yan; Lipkin, Don M.; Levi, Carlos G. (UCSB); (GE Global)

    2012-02-06

    The relationship between yttria concentration and the unit cell parameters in partially and fully stabilized zirconia has been reassessed, motivated by the need to improve the accuracy of phase analysis upon decomposition of t{prime}-based thermal barrier coatings. Compositions ranging from 6 to 18 mol% YO{sub 1.5} were synthesized and examined by means of high-resolution X-ray diffraction. Lattice parameters were determined using the Rietveld refinement method, a whole-pattern fitting procedure. The revised empirical relationships fall within the range of those published previously. However, efforts to achieve superior homogeneity of the materials, as well as accuracy of the composition and lattice parameters, provide increased confidence in the reliability of these correlations for use in future studies. Additional insight into the potential sources for scatter previously reported for the transition region ({approx}12-14 mol% YO{sub 1.5}), where tetragonal and cubic phases have been observed to coexist, is also provided. Implications on the current understanding of stabilization mechanisms in zirconia are discussed.

  6. Development of exosome surface display technology in living human cells

    Energy Technology Data Exchange (ETDEWEB)

    Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu; Zhang, Zhiwen, E-mail: zzhang@scu.edu; Lu, Biao, E-mail: blu2@scu.edu

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  7. Phorbol-induced surface expression of NR2A subunit homologues in HEK293 cells

    Institute of Scientific and Technical Information of China (English)

    Chan-ying ZHENG; Xiu-juan YANG; Zhan-yan FU; Jian-hong LUO

    2006-01-01

    Aim: N-methyl-D-aspartate receptors (NMDAR) are heteromeric complexes primarily assembled from NR1 and NR2 subunits. In normal conditions, NR2 sub-units assemble into homodimers in the endoplasmic reticulum (ER). These homodimers remain in the ER until they coassemble with NR1 dimers and are trafficked to the cell surface. However, it still remains unclear whether functional homomeric NMDAR exist in physiological or pathological conditions. Methods: We transfected GFP-NR2A alone into HEK293 cells, treated the cells with PKC activator 12-myristate-13 acetate (PMA), and then detected surface NR2A sub-units with a live cell immunostaining method. We also used a series of NR2A mutants with a partial deletion of its C-terminus to identify the regions that are involved in the PMA-mediated surface expression of NR2A subunits. Results: NR2A subunits were expressed on the cell membrane after incubation with PMA (200 nmol/L,30 min), although no functional NMDA channels were detected after PMA-induced membrane trafficking. Immunostaining with an ER marker also revealed that NR2A subunits were exported from the ER after PMA treatment. Furthermore, the deletion of amino acids between 1149-1347 or 1354-1464 of NR2A inhibited PMA-induced surface expression of NR2A subunits. Conclusion: First, our data suggests that PMA treatment can induce the surface expression of homomeric NR2A subunits. Furthermore, this process is probably mediated by the NR2A C-terminal region between positions 1149 and 1464.

  8. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  9. Cell Churches and Stem Cell Marketing in South Korea and the United States.

    Science.gov (United States)

    Sipp, Douglas

    2016-05-23

    The commercial provision of putative stem cell-based medical interventions in the absence of conclusive evidence of safety and efficacy has formed the basis of an unregulated industry for more than a decade. Many clinics offering such supposed stem cell treatments include statements about the 'ethical' nature of somatic (often colloquially referred to as 'adult' stem cells) stem cells, in specific contrast to human embryonic stem cells (hESCs), which have been the subject of intensive political, legal, and religious controversy since their first derivation in 1998. Christian groups-both Roman Catholic and evangelical Protestant-in many countries have explicitly promoted the medical potential and current-day successes in the clinical application of somatic stem cells, lending indirect support to the activities of businesses marketing stem cells ahead of evidence. In this article, I make a preliminary examination of how the structures and belief systems of certain churches in South Korea and the United States, both of which are home to significant stem cell marketing industries, has complemented other factors, including national biomedical funding initiatives, international economic rivalries, permissive legal structures, which have lent impetus to a problematic and often exploitative sector of biomedical commerce.

  10. Single fibre and multifibre unit cell analysis of strength and cracking of unidirectional composites

    DEFF Research Database (Denmark)

    Wang, H.W.; Zhou, H.W.; Mishnaevsky, Leon

    2009-01-01

    Numerical simulations of damage evolution in composites reinforced with single and multifibre are presented. Several types of unit cell models are considered: single fibre unit cell, multiple fibre unit cell with one and several damageable sections per fibres, unit cells with homogeneous...... damageable parts in composites (matrix cracks, fibre/matrix interface damage and fibre fracture) was observed in the simulations. The strength of interface begins to influence the deformation behaviour of the cell only after the fibre is broken. In this case, the higher interface layer strength leads...... and inhomogeneous interfaces, etc. Two numerical damage models, cohesive elements, and damageable layers are employed for the simulation of the damage evolution in single fibre and multifibre unit cells. The two modelling approaches were compared and lead to the very close results. Competition among the different...

  11. Anti-wear properties on 20CrMnTi steel surfaces with biomimetic non-smooth units

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to gain a sufficient wear resistance for applications, the biomimetic non-smooth units in concave were fabricated on the surfaces of 20CrMnTi steel using a biomimetic laser remelting technology. The diameter and distribution of the concaves were optimized using orthogonal experiment. The microstructures of the biomimetic non-smooth units were examined. The anti-wear behaviors were investigated by the rolling wear test with lubricant. The results of wear tests indicated that the biomimetic surfaces exhibit a higher anti-wear ability than the smooth surfaces. The biomimetic surface with concaves of 250 μm in diameter and transverse distance of 270 μm and longitudinal distance of 400 μm exhibits the best anti-wear property. The enhancement of wear resistance can be mainly attributed to the action of biomimetic non-smooth units and the super fined microstructure and hardness in the biomimetic unit zones.

  12. USGS Small-scale Dataset - 100-Meter Resolution Impervious Surface of the Conterminous United States 201301 TIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains impervious surface data for the conterminous United States, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The...

  13. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Jimin Xiong

    2016-01-01

    Full Text Available The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.

  14. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    Science.gov (United States)

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  15. In vitro behaviour of endothelial cells on a titanium surface

    Directory of Open Access Journals (Sweden)

    Oliveira-Filho Ricardo

    2008-07-01

    Full Text Available Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs harvested on titanium (Ti, using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.

  16. Fabrication of cell container arrays with overlaid surface topographies.

    Science.gov (United States)

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  17. 3D surface topology guides stem cell adhesion and differentiation.

    Science.gov (United States)

    Viswanathan, Priyalakshmi; Ondeck, Matthew G; Chirasatitsin, Somyot; Ngamkham, Kamolchanok; Reilly, Gwendolen C; Engler, Adam J; Battaglia, Giuseppe

    2015-06-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilizers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors.

  18. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    2009-01-01

    We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V...... activity selectively induces surface expression of Hsp70 on hematopoietic cancer cells and that this may increase immunorecognition of these cells.......-positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis such as etoposide and camptothecin also led to a robust induction of Hsp70 surface expression. Hsp70 expression was, however, not caused by induction of apoptosis per se, as activated CD4 T cells remained Hsp70...

  19. Automated assembling of single fuel cell units for use in a fuel cell stack

    Science.gov (United States)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  20. Unit cell geometry of multiaxial preforms for structural composites

    Science.gov (United States)

    Ko, Frank; Lei, Charles; Rahman, Anisur; Du, G. W.; Cai, Yun-Jia

    1993-01-01

    The objective of this study is to investigate the yarn geometry of multiaxial preforms. The importance of multiaxial preforms for structural composites is well recognized by the industry but, to exploit their full potential, engineering design rules must be established. This study is a step in that direction. In this work the preform geometry for knitted and braided preforms was studied by making a range of well designed samples and studying them by photo microscopy. The structural geometry of the preforms is related to the processing parameters. Based on solid modeling and B-spline methodology a software package is developed. This computer code enables real time structural representations of complex fiber architecture based on the rule of preform manufacturing. The code has the capability of zooming and section plotting. These capabilities provide a powerful means to study the effect of processing variables on the preform geometry. the code also can be extended to an auto mesh generator for downstream structural analysis using finite element method. This report is organized into six sections. In the first section the scope and background of this work is elaborated. In section two the unit cell geometries of braided and multi-axial warp knitted preforms is discussed. The theoretical frame work of yarn path modeling and solid modeling is presented in section three. The thin section microscopy carried out to observe the structural geometry of the preforms is the subject in section four. The structural geometry is related to the processing parameters in section five. Section six documents the implementation of the modeling techniques into the computer code MP-CAD. A user manual for the software is also presented here. The source codes and published papers are listed in the Appendices.

  1. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture.

    Science.gov (United States)

    Trubetskaya, O V; Trubetskoy, V S; Domogatsky, S P; Rudin, A V; Popov, N V; Danilov, S M; Nikolayeva, M N; Klibanov, A L; Torchilin, V P

    1988-02-01

    A monoclonal antibody (mAb), E25, is described that binds to the surface of cultured human endothelial cells. Upon binding E25 is rapidly internalized and digested intracellularly. Selective liposome targeting to the surface of the cells is performed using a biotinylated E25 antibody and an avidin-biotin system. Up to 30% of the cell-adherent liposomal lipid is internalized.

  2. Surface-enhanced Raman spectroscopy of the endothelial cell membrane.

    Directory of Open Access Journals (Sweden)

    Simon W Fogarty

    Full Text Available We applied surface-enhanced Raman spectroscopy (SERS to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.

  3. Engineered Aptamers to Probe Molecular Interactions on the Cell Surface.

    Science.gov (United States)

    Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E; Mallikaratchy, Prabodhika

    2017-08-29

    Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics.

  4. Mapping extent and change in surface mines within the United States for 2001 to 2006

    Science.gov (United States)

    Soulard, Christopher E.; Acevedo, William; Stehman, Stephen V.; Parker, Owen P.

    2016-01-01

    A complete, spatially explicit dataset illustrating the 21st century mining footprint for the conterminous United States does not exist. To address this need, we developed a semi-automated procedure to map the country's mining footprint (30-m pixel) and establish a baseline to monitor changes in mine extent over time. The process uses mine seed points derived from the U.S. Energy Information Administration (EIA), U.S. Geological Survey (USGS) Mineral Resources Data System (MRDS), and USGS National Land Cover Dataset (NLCD) and recodes patches of barren land that meet a “distance to seed” requirement and a patch area requirement before mapping a pixel as mining. Seed points derived from EIA coal points, an edited MRDS point file, and 1992 NLCD mine points were used in three separate efforts using different distance and patch area parameters for each. The three products were then merged to create a 2001 map of moderate-to-large mines in the United States, which was subsequently manually edited to reduce omission and commission errors. This process was replicated using NLCD 2006 barren pixels as a base layer to create a 2006 mine map and a 2001–2006 mine change map focusing on areas with surface mine expansion. In 2001, 8,324 km2 of surface mines were mapped. The footprint increased to 9,181 km2 in 2006, representing a 10·3% increase over 5 years. These methods exhibit merit as a timely approach to generate wall-to-wall, spatially explicit maps representing the recent extent of a wide range of surface mining activities across the country. 

  5. Prevalence of hepatitis B surface antigen among refugees entering the United States between 2006 and 2008.

    Science.gov (United States)

    Rein, David B; Lesesne, Sarah B; O'Fallon, Ann; Weinbaum, Cindy M

    2010-02-01

    The Centers for Disease Control and Prevention recommends hepatitis B surface antigen (HBsAg) testing to identify chronic hepatitis B virus infection for foreign-born persons from countries or regions with HBsAg prevalence of >or=2%. However, limited data exist to indicate which countries meet this definition. To address this data gap, we estimated the HBsAg prevalence among refugees entering the United States between 2006 and 2008. We contacted state refugee health coordinators and asked them to report the number of refugees, country of origin, and HBsAg prevalence among refugees screened in their jurisdiction during the most recently available 12-month period prior to August 2008. We pooled data across jurisdictions and calculated the prevalence for any country with more than 30 refugees entering the United States, and where this level of data was not available by country, continents were considered. Of the 47 jurisdictions contacted, we received basic information from 31, with nine jurisdictions reporting HBsAg prevalence by country of origin applicable to 31,980 refugees (approximately 42% of refugees entering the United States during the observation period). We estimated an HBsAg prevalence of 2.8% (95% confidence interval 2.6%-3.0%) for refugees overall. Of the 37 countries with 30 or more refugees entering the United States, 25 had a prevalence of >or=2%. Prevalence was highest among refugees from Africa and Southeast Asia, and lowest among refugees from the Middle East and South/Central America. In the eight countries for which we had comparison data, six had lower HBsAg prevalence than in 1991.

  6. X-ray powder diffraction data and unit cells of ammonium paratungstate tetrahydrate

    NARCIS (Netherlands)

    Put, J.W. van; Verkroost, T.W.; Sonneveld, E.J.

    1990-01-01

    X-Ray powder diffraction data and unit cell parameters of industrially produced, as well as bench scale prepared, ammonium paratungstate tetrahydrate are reported and compared with current Powder Data file (PDF) (1989) patterns. A least-squares refinement resulted in two slightly different unit cell

  7. Cell surface activation of progelatinase A (proMMP—2) and cell migration

    Institute of Scientific and Technical Information of China (English)

    NAGASEHIDEAKI

    1998-01-01

    Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion.The proteinase is cerceted from the cell as an inactive zymogen.In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs).Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1-MMP by forming a ternary complex.Free MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface.MT1-MMP is found in cultured invasive cancer cells at the invadopodia.The MT-MMP/TIMP-2/MMP-2 system thus provides localized expression of proteolysis of the extracellular matrix required for cell migration.

  8. CAUSES: Clouds Above the United States and Errors at the Surface

    Science.gov (United States)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Morcrette, C. J.; Van Weverberg, K.; Zhang, Y.; Lo, M. H.

    2015-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  9. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    Science.gov (United States)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  10. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  11. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  12. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  13. Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography

    Science.gov (United States)

    Martinez‐Valdes, E.; Negro, F.; Laine, C. M.; Falla, D.; Mayer, F.

    2017-01-01

    Key points Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders.We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography.The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity.These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions.The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. Abstract A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be

  14. Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides.

    Science.gov (United States)

    Corvaglia, Valentina; Marega, Riccardo; De Leo, Federica; Michiels, Carine; Bonifazi, Davide

    2016-01-20

    Thiolated peptides bearing the Ile-Gly-Asp (IGD) motif, a highly conserved sequence of fibronectin, are used for the preparation of anisotropic self-assembled monolayers (SAM gradients) to study the whole-population migratory behavior of metastatic breast cancer cells (MDA-MB-231 cells). Ile-Gly-Asp-Gln-(IGDQ)-exposing SAMs sustain the adhesion of MDA-MB-231 cells by triggering focal adhesion kinase phosphorylation, similarly to the analogous Gly-Arg-Gly-Asp-(GRGD)-terminating surfaces. However, the biological responses of different cell lines interfaced with the SAM gradients show that only those exposing the IGDQ sequence induce significant migration of MDA-MB-231 cells. In particular, the observed migratory behavior suggests the presence of cell subpopulations associated with a "stationary" or a "migratory" phenotype, the latter determining a considerable cell migration at the sub-cm length scale. These findings are of great importance as they suggest for the first time an active role of biological surfaces exposing the IGD motif in the multicomponent orchestration of cellular signaling involved in the metastatic progression.

  15. Surface Compositional Units on Mercury from Spectral Reflectance at Ultraviolet to Near-infrared Wavelengths

    Science.gov (United States)

    Izenberg, N. R.; Holsclaw, G. M.; Domingue, D. L.; McClintock, W. E.; Klima, R. L.; Blewett, D. T.; Helbert, J.; Head, J. W.; Sprague, A. L.; Vilas, F.; Solomon, S. C.

    2012-12-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has been acquiring reflectance spectra of Mercury's surface for over 16 months. The Visible and Infrared Spectrograph (VIRS) component of MASCS has accumulated a global data set of more than 2 million spectra over the wavelength range 300-1450 nm. We have derived a set of VIRS spectral units (VSUs) from the following spectral parameters: visible brightness (R575: reflectance at 575 nm); visible/near-infrared reflectance ratio (VISr: reflectance at 415 nm to that at 750 nm); and ultraviolet reflectance ratio (UVr: reflectance at 310 nm to that at 390 nm). Five broad, slightly overlapping VSUs may be distinguished from these parameters. "Average VSU" areas have spectral parameters close to mean global values. "Dark blue VSU" areas have spectra with low R575 and high UVr. "Red VSU" areas have spectra with low UVr and higher VISr and R575 than average. "Intermediate VSU" areas have spectra with higher VISr than VSU red, generally higher R575, and a wide range of UVr. "Bright VSU" areas have high R575 and VISr and intermediate UVr. Several units defined by morphological or multispectral criteria correspond to specific VSUs, including low-reflectance material (dark blue VSU), pyroclastic deposits (red VSU), and hollows (intermediate VSU), but these VSUs generally include other types of areas as well. VSU definitions are complementary to those obtained by unsupervised clustering analysis. The global distribution of VIRS spectral units provides new information on Mercury's geological evolution. Much of Mercury's northern volcanic plains show spectral properties ranging from those of average VSU to those of red VSU, as does a large region in the southern hemisphere centered near 50°S, 245°E. Dark blue VSU material is widely distributed, with concentrations south of the northern plains, around the Rembrandt and

  16. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Reitsma, K.; Beugeling, T.; Bantjes, A.; Feijen, J.; Kirkpatrick, C.J.; Aken, van W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact an

  17. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  18. Cell adhesion on Ti surface with controlled roughness

    Energy Technology Data Exchange (ETDEWEB)

    Burgos-Asperilla, L.; Garcia-Alonso, M. C.; Escudero, M. L.; Alonso, C.

    2015-07-01

    In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10{sup -}3 min{sup -}1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days), due to the presence of amino acids and proteins from the culture medium that have been adsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti. (Author)

  19. "Race for the Surface": Eukaryotic Cells Can Win.

    Science.gov (United States)

    Pham, Vy T H; Truong, Vi Khanh; Orlowska, Anna; Ghanaati, Shahram; Barbeck, Mike; Booms, Patrick; Fulcher, Alex J; Bhadra, Chris M; Buividas, Ričardas; Baulin, Vladimir; Kirkpatrick, C James; Doran, Pauline; Mainwaring, David E; Juodkazis, Saulius; Crawford, Russell J; Ivanova, Elena P

    2016-08-31

    With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface are demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants.

  20. Surface manipulation of biomolecules for cell microarray applications.

    Science.gov (United States)

    Hook, Andrew L; Thissen, Helmut; Voelcker, Nicolas H

    2006-10-01

    Many biological events, such as cellular communication, antigen recognition, tissue repair and DNA linear transfer, are intimately associated with biomolecule interactions at the solid-liquid interface. To facilitate the study and use of these biological events for biodevice and biomaterial applications, a sound understanding of how biomolecules behave at interfaces and a concomitant ability to manipulate biomolecules spatially and temporally at surfaces is required. This is particularly true for cell microarray applications, where a range of biological processes must be duly controlled to maximize the efficiency and throughput of these devices. Of particular interest are transfected-cell microarrays (TCMs), which significantly widen the scope of microarray genomic analysis by enabling the high-throughput analysis of gene function within living cells. This article reviews this current research focus, discussing fundamental and applied research into the spatial and temporal surface manipulation of DNA, proteins and other biomolecules and the implications of this work for TCMs.

  1. Highly Efficient and Exceptionally Durable CO2 Photoreduction to Methanol over Freestanding Defective Single-Unit-Cell Bismuth Vanadate Layers.

    Science.gov (United States)

    Gao, Shan; Gu, Bingchuan; Jiao, Xingchen; Sun, Yongfu; Zu, Xiaolong; Yang, Fan; Zhu, Wenguang; Wang, Chengming; Feng, Zimou; Ye, Bangjiao; Xie, Yi

    2017-03-08

    Unearthing an ideal model for disclosing the role of defect sites in solar CO2 reduction remains a great challenge. Here, freestanding gram-scale single-unit-cell o-BiVO4 layers are successfully synthesized for the first time. Positron annihilation spectrometry and X-ray fluorescence unveil their distinct vanadium vacancy concentrations. Density functional calculations reveal that the introduction of vanadium vacancies brings a new defect level and higher hole concentration near Fermi level, resulting in increased photoabsorption and superior electronic conductivity. The higher surface photovoltage intensity of single-unit-cell o-BiVO4 layers with rich vanadium vacancies ensures their higher carriers separation efficiency, further confirmed by the increased carriers lifetime from 74.5 to 143.6 ns revealed by time-resolved fluorescence emission decay spectra. As a result, single-unit-cell o-BiVO4 layers with rich vanadium vacancies exhibit a high methanol formation rate up to 398.3 μmol g(-1) h(-1) and an apparent quantum efficiency of 5.96% at 350 nm, much larger than that of single-unit-cell o-BiVO4 layers with poor vanadium vacancies, and also the former's catalytic activity proceeds without deactivation even after 96 h. This highly efficient and spectrally stable CO2 photoconversion performances hold great promise for practical implementation of solar fuel production.

  2. Map service: United States Decadal Production History Cells

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map service displays present and past oil and gas production in the United States, as well as the location and intensity of exploratory drilling outside...

  3. Technical work plan for Surface Impoundments Operable Unit engineering support studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document provides a comprehensive work plan which, when utilized as a data collection guide for field activities, will provide the necessary information required to complete a report on geotechnical properties of the sediments contained in the Surface Impoundments Operable Unit at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Detailed guidance is provided for the following activities: collection of samples from the impoundments; compressive strength testing of the raw sediments; compressive strength testing of the structurally modified (lime and cement additives) sediments; testing for sediment physical properties and settling rates; testing for sediment dewatering characteristics; testing for radiation activity during the field work; testing for polymer additions that may enhance settling. The work plan additionally provides guidance and examples for the preparation of documents necessary to establish readiness for safe and satisfactory performance of the field activities. An outline for the format requested for a report of these data is also provided.

  4. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  5. Surface modification of substrates for bacteria and cell culture.

    Science.gov (United States)

    Baede, Tom; Sladek, Raymond; Stoffels, Eva

    2006-10-01

    The plasma needle is a medical device that consists of a tungsten wire placed in a tube through which helium flows. A RF voltage frequency of 13.05 MHz is applied to the wire to produce the plasma. The device has a non-thermal effect and is therefore suited for both organic and inorganic surfaces. It was designed to manipulate tissues, but can also be used to modify the bacterial adhesion properties of material surfaces. The surface modification has a number of applications, most notably cell culture and the preventive treatment of caries. The research consists of two sets of experiments. In the first experiments the effect of the plasma treatment on the wettability was studied by means of contact angle measurements. The wettability quantifies the hydrophilic behavior of a surface. Plasma treatment with the plasma needle significantly increased the wettability of the studied materials. The persistence of the wettability change was also examined. For some materials the effect was only temporary. Bacteria are very particular about the surfaces they adhere to and the wettability of the surface plays an important role in their preference. The next set of experiments dealt with the effect of plasma treatment on bacterial adhesion. This effect was measured by comparing the growth rates of E. coli and S. mutans bacteria that were cultured on both plasma and non-treated surfaces. The effect appears to be species specific.

  6. Benchmarking the performance of pairwise homogenization of surface temperatures in the United States

    Science.gov (United States)

    Menne, M. J.; Williams, C. N.; Thorne, P. W.

    2013-09-01

    Changes in the circumstances behind in situ temperature measurements often lead to shifts in individual station records that can lead to over or under-estimates of the local and regional temperature trends. Since these shifts are comparable in magnitude to climate change signals, homogeneity "corrections" are necessary to make the records suitable for climate analysis. To quantify the effectiveness of surface temperature homogenization in the United States, a randomized perturbed ensemble of the pairwise homogenization algorithm was run against a suite of benchmark analogs to real monthly temperature data from the United States Cooperative Observer Program, which includes the subset of stations known as the United States Historical Climatology Network (USHCN). Results indicate that all randomized versions of the algorithm consistently produce homogenized data closer to the true climate signal in the presence of widespread systematic shifts in the data. When applied to the real-world observations, the randomized ensemble reinforces previous understanding that the two dominant sources of shifts in the U.S. temperature records are caused by changes to time of observation (spurious cooling in minimum and maximum) and conversion to electronic resistance thermometers (spurious cooling in maximum and warming in minimum). Trend bounds defined by the ensemble output indicate that maximum temperature trends are positive for the past 30, 50 and 100 years, and that these maximums contain pervasive negative shifts that cause the unhomogenized (raw) trends to fall below the lowest of the ensemble of homogenized trends. Moreover, because the residual impact of undetected/uncorrected shifts in the homogenized analogs is one-tailed when the imposed shifts have a positive or negative sign preference, it is likely that maximum temperature trends have been underestimated in the real-world homogenized temperature data from the USHCN. Trends for minimum temperature are also positive

  7. Impaired motor unit control in paretic muscle post stroke assessed using surface electromyography: a preliminary report.

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K; Li, Xiaoyan; Rymer, William Zev; Suresh, Nina L

    2012-01-01

    The objective of this preliminary study was to examine the possible contribution of disordered control of motor unit (MU) recruitment and firing patterns in muscle weakness post-stroke. A novel surface EMG (sEMG) recording and decomposition system was used to record sEMG signals and extract single MU activities from the first dorsal interosseous muscle (FDI) of two hemiparetic stroke survivors. To characterize MU reorganization, an estimate of the motor unit action potential (MUAP) amplitude was derived using spike triggered averaging of the sEMG signal. The MUs suitable for further analysis were selected using a set of statistical tests that assessed the variability of the morphological characteristics of the MUAPs. Our preliminary results suggest a disrupted orderly recruitment based on MUAP size, a compressed recruitment range, and reduced firing rates evident in the paretic muscle compared with the contralateral muscle of one subject with moderate impairment. In contrast, the MU organization was largely similar bilaterally for the subject with minor impairment. The preliminary results suggest that MU organizational changes with respect to recruitment and rate modulation can contribute to muscle weakness post-stroke. The contrasting results of the two subjects indicate that the degree of MU reorganization may be associated with the degree of the functional impairment, which reveals the differential diagnostic capability of the sEMG decomposition system.

  8. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    Science.gov (United States)

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  9. Surface science studies of model fuel cell electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, N.M.; Ross, P.N. [Lawrence Berkeley National Laboratory, Materials Sciences Division, University of California, 94720 Berkeley, CA (United States)

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  10. Surface science studies of model fuel cell electrocatalysts

    Science.gov (United States)

    Marković, N. M.; Ross, P. N.

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  11. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins.

    Science.gov (United States)

    Freeman, A; Abramov, S; Georgiou, G

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins (e.g., enzymes, single-chain antibodies, on the surface of bacterial cells) (Georgiou et al., 1993). Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article we describe the adaptation of a simple two-stage chemical crosslinking procedure based on "bi-layer encagement" (Tor et al., 1989) for stabilizing Escherichia coli cells expressing an Lpp-OmpA (46-159)-beta-lactamase fusion that displays beta-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 degrees C of surface anchored beta-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 degrees C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  12. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    Science.gov (United States)

    Chang, Jiyoung; Yoon, Sang-Hee; Mofrad, Mohammad R. K.; Lin, Liwei

    2011-05-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm2 and the separation gaps of 2 µm between them. An electrical voltage of -1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions.

  13. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.

  14. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  15. Accelerator Analysis of Tributyltin Adsorbed onto the Surface of a Tributyltin Resistant Marine Pseudoalteromonas sp. Cell

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2008-10-01

    Full Text Available Tributyltin (TBT released into seawater from ship hulls is a stable marine pollutant and obviously remains in marine environments. We isolated a TBT resistant marine Pseudoalteromonas sp. TBT1 from sediment of a ship’s ballast water. The isolate (109.3 ± 0.2 colony-forming units mL-1 adsorbed TBT in proportion to the concentrations of TBTCl externally added up to 3 mM, where the number of TBT adsorbed by a single cell was estimated to be 108.2. The value was reduced to about one-fifth when the lysozyme-treated cells were used. The surface of ethanol treated cells became rough, but the capacity of TBT adsorption was the same as that for native cells. These results indicate that the function of the cell surface, rather than that structure, plays an important role to the adsorption of TBT. The adsorption state of TBT seems to be multi-layer when the number of more than 106.8 TBT molecules is adsorbed by a single cell.

  16. Stable isotope labeling of oligosaccharide cell surface antigens

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A. [and others

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  17. Surface proteome analysis and characterization of surface cell antigen (Sca or autotransporter family of Rickettsia typhi.

    Directory of Open Access Journals (Sweden)

    Khandra T Sears

    Full Text Available Surface proteins of the obligate intracellular bacterium Rickettsia typhi, the agent of murine or endemic typhus fever, comprise an important interface for host-pathogen interactions including adherence, invasion and survival in the host cytoplasm. In this report, we present analyses of the surface exposed proteins of R. typhi based on a suite of predictive algorithms complemented by experimental surface-labeling with thiol-cleavable sulfo-NHS-SS-biotin and identification of labeled peptides by LC MS/MS. Further, we focus on proteins belonging to the surface cell antigen (Sca autotransporter (AT family which are known to be involved in rickettsial infection of mammalian cells. Each species of Rickettsia has a different complement of sca genes in various states; R. typhi, has genes sca1 thru sca5. In silico analyses indicate divergence of the Sca paralogs across the four Rickettsia groups and concur with previous evidence of positive selection. Transcripts for each sca were detected during infection of L929 cells and four of the five Sca proteins were detected in the surface proteome analysis. We observed that each R. typhi Sca protein is expressed during in vitro infections and selected Sca proteins were expressed during in vivo infections. Using biotin-affinity pull down assays, negative staining electron microscopy, and flow cytometry, we demonstrate that the Sca proteins in R. typhi are localized to the surface of the bacteria. All Scas were detected during infection of L929 cells by immunogold electron microscopy. Immunofluorescence assays demonstrate that Scas 1-3 and 5 are expressed in the spleens of infected Sprague-Dawley rats and Scas 3, 4 and 5 are expressed in cat fleas (Ctenocephalides felis. Sca proteins may be crucial in the recognition and invasion of different host cell types. In short, continuous expression of all Scas may ensure that rickettsiae are primed i to infect mammalian cells should the flea bite a host, ii to remain

  18. Basic surface properties of Aedes albopictus cells: effect of Mayaro virus infection on electrostatic charge and surface tension.

    Science.gov (United States)

    Mezêncio, J M; Costa e Silva Filho, F; Rebello, M A

    1997-01-01

    Aedes albopictus cells possess a negative cell surface charge of -12.7 mV with an isoelectrophoretic point (IEP) located between pH 3.0 and 4.0. Infection with Mayaro virus rendered the surface of A. albopictus cells less negative reaching a zeta-potential value of -9.7 mV after 100 h of infection. Concomitantly, the IEP of the infected cells were also altered from 3.0-4.0 to 4.0-5.0. Furthermore, the contact angle measurements clearly showed qualitative alterations in the cell surface of infected cells.

  19. Distinguishing between whole cells and cell debris using surface plasmon coupled emission (Conference Presentation)

    Science.gov (United States)

    Talukder, Muhammad A.; Menyuk, Curtis R.; Kostov, Yordan

    2017-02-01

    Distinguishing between intact cells, dead but still whole cells, and cell debris is an important but difficult task in life sciences. The most common way to identify dead cells is using a cell-impermeant DNA binding dye, such as propidium iodide. A healthy living cell has an intact cell membrane and will act as a barrier to the dye so that it cannot enter the cell. A dead cell has a compromised cell membrane, and it will allow the dye into the cell to bind to the DNA and become fluorescent. The dead cells therefore will be positive and the live cells will be negative. The dead cells later deteriorate quickly into debris. Different pieces of debris from a single cell can be incorrectly identified as separate dead cells. Although a flow cytometer can quickly perform numerous quantitative, sensitive measurements on each individual cell to determine the viability of cells within a large, heterogeneous population, it is bulky, expensive, and only large hospitals and laboratories can afford them. In this work, we show that the distance-dependent coupling of fluorophore light to surface plasmon coupled emission (SPCE) from fluorescently-labeled cells can be used to distinguish whole cells from cell debris. Once the fluorescent labels are excited by a laser, the fluorescently-labeled whole cells create two distinct intensity rings in the far-field, in contrast to fluorescently-labeled cell debris, which only creates one ring. The distinct far-field patterns can be captured by camera and used to distinguish between whole cells and cell debris.

  20. Detailed mapping of surface units on Mars with HRSC color data

    Science.gov (United States)

    Combe, J.-Ph.; Wendt, L.; McCord, T. B.; Neukum, G.

    2008-09-01

    Introduction: Making use of HRSC color data Mapping outcrops of clays, sulfates and ferric oxides are basis information to derive the climatic, tectonic and volcanic evolution of Mars, especially the episodes related to the presence of liquid water. The challenge is to resolve spatially the outcrops and to distinguish these components from the globally-driven deposits like the iron oxide-rich bright red dust and the basaltic dark sands. The High Resolution Stereo Camera (HRSC) onboard Mars-Express has five color filters in the visible and near infrared that are designed for visual interpretation and mapping various surface units [1]. It provides also information on the topography at scale smaller than a pixel (roughness) thanks to the different geometry of observation for each color channel. The HRSC dataset is the only one that combines global coverage, 200 m/pixel spatial resolution or better and filtering colors of light. The present abstract is a work in progress (to be submitted to Planetary and Space Science) that shows the potential and limitations of HRSC color data as visual support and as multispectral images. Various methods are described from the most simple to more complex ones in order to demonstrate how to make use of the spectra, because of the specific steps of processing they require [2-4]. The objective is to broaden the popularity of HRSC color data, as they could be used more widely by the scientific community. Results prove that imaging spectrometry and HRSC color data complement each other for mapping outcrops types. Example regions of interest HRSC is theoretically sensitive to materials with absorption features in the visible and near-infrared up to 1 μm. Therefore, oxide-rich red dust and basalts (pyroxenes) can be mapped, as well as very bright components like water ice [5, 6]. Possible detection of other materials still has to be demonstrated. We first explore regions where unusual mineralogy appears clearly from spectral data. Hematite

  1. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  2. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    Science.gov (United States)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  3. Brown spider venom toxins interact with cell surface and are endocytosed by rabbit endothelial cells.

    Science.gov (United States)

    Nowatzki, Jenifer; de Sene, Reginaldo Vieira; Paludo, Katia Sabrina; Veiga, Silvio Sanches; Oliver, Constance; Jamur, Maria Célia; Nader, Helena Bonciani; Trindade, Edvaldo S; Franco, Célia Regina C

    2010-09-15

    Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations. Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom. After treating endothelial cells with venom toxins, we observed that the venom interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates. When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells. The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L. intermedia venom on endothelial cells is not mediated by venom internalization.

  4. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  5. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, Georgia, E-mail: g.kaklamani@bham.ac.uk [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, James; Mehrban, Nazia [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Dong, Hanshan [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Grover, Liam M. [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Stamboulis, Artemis [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-05-15

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N{sub 2}/H{sub 2} ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  6. Nematic twist cell: Strong chirality induced at the surfaces

    Science.gov (United States)

    Lin, Tzu-Chieh; Nemitz, Ian R.; Pendery, Joel S.; Schubert, Christopher P. J.; Lemieux, Robert P.; Rosenblatt, Charles

    2013-04-01

    A nematic twist cell having a thickness gradient was filled with a mixture containing a configurationally achiral liquid crystal (LC) and chiral dopant. A chiral-based linear electrooptic effect was observed on application of an ac electric field. This "electroclinic effect" varied monotonically with d, changing sign at d =d0 where the chiral dopant exactly compensated the imposed twist. The results indicate that a significant chiral electrooptic effect always exists near the surfaces of a twist cell containing molecules that can be conformationally deracemized. Additionally, this approach can be used to measure the helical twisting power (HTP) of a chiral dopant in a liquid crystal.

  7. Vaccines based on the cell surface carbohydrates of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Jones Christopher

    2005-01-01

    Full Text Available Glycoconjugate vaccines, in which a cell surface carbohydrate from a micro-organism is covalently attached to an appropriate carrier protein are proving to be the most effective means to generate protective immune responses to prevent a wide range of diseases. The technology appears to be generic and applicable to a wide range of pathogens, as long as antibodies against surface carbohydrates help protect against infection. Three such vaccines, against Haemophilus influenzae type b, Neisseria meningitidis Group C and seven serotypes of Streptococcus pneumoniae, have already been licensed and many others are in development. This article discusses the rationale for the development and use of glycoconjugate vaccines, the mechanisms by which they elicit T cell-dependent immune responses and the implications of this for vaccine development, the role of physicochemical methods in the characterisation and quality control of these vaccines, and the novel products which are under development.

  8. Surfaces of action: cells and membranes in electrochemistry and the life sciences.

    Science.gov (United States)

    Grote, Mathias

    2010-09-01

    The term 'cell', in addition to designating fundamental units of life, has also been applied since the nineteenth century to technical apparatuses such as fuel and galvanic cells. This paper shows that such technologies, based on the electrical effects of chemical reactions taking place in containers, had a far-reaching impact on the concept of the biological cell. My argument revolves around the controversy over oxidative phosphorylation in bioenergetics between 1961 and 1977. In this scientific conflict, a two-level mingling of technological culture, physical chemistry and biological research can be observed. First, Peter Mitchell explained the chemiosmotic hypothesis of energy generation by representing cellular membrane processes via an analogy to fuel cells. Second, in the associated experimental scrutiny of membranes, material cell models were devised that reassembled spatialized molecular processes in vitro. Cells were thus modelled both on paper and in the test tube not as morphological structures but as compartments able to perform physicochemical work. The story of cells and membranes in bioenergetics points out the role that theories and practices in physical chemistry had in the molecularization of life. These approaches model the cell as a 'topology of molecular action', as I will call it, and it involves concepts of spaces, surfaces and movements. They epitomize an engineer's vision of the organism that has influenced diverse fields in today's life sciences.

  9. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer

    DEFF Research Database (Denmark)

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D

    2016-01-01

    A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and re...... or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton....

  10. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer

    DEFF Research Database (Denmark)

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D

    2016-01-01

    behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole...... or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton....

  11. Live Cell Surface Labeling with Fluorescent Ag Nanocluster Conjugates†

    OpenAIRE

    Yu, Junhua; Choi, Sungmoon; Richards, Chris I.; Antoku, Yasuko; Dickson, Robert M

    2008-01-01

    DNA-encapsulated silver clusters are readily conjugated to proteins and serve as alternatives to organic dyes and semiconductor quantum dots. Stable and bright on the bulk and single molecule levels, Ag nanocluster fluorescence is readily observed when staining live cell surfaces. Being significantly brighter and more photostable than organics and much smaller than quantum dots with a single point of attachment, these nanomaterials offer promising new approaches for bulk and single molecule b...

  12. Characterization and use of crystalline bacterial cell surface layers

    Science.gov (United States)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  13. Surface recombination analysis in silicon-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, R.; Gandia, J.J.; Carabe, J.; Gonzalez, N.; Torres, I. [CIEMAT, Madrid (Spain); Munoz, D.; Voz, C. [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2010-02-15

    The origin of this work is the understanding of the correlation observed between efficiency and emitter-deposition temperature in single silicon-heterojunction solar cells prepared by depositing an n-doped hydrogenated-amorphous-silicon thin film onto a p-type crystalline-silicon wafer. In order to interpret these results, surface-recombination velocities have been determined by two methods, i.e. by fitting the current-voltage characteristics to a theoretical model and by means of the Quasi-Steady-State Photoconductance Technique (QSSPC). In addition, effective diffusion lengths have been estimated from internal quantum efficiencies. The analysis of these data has led to conclude that the performance of the cells studied is limited by back-surface recombination rather than by front-heterojunction quality. A 12%-efficient cell has been prepared by combining optimum emitter-deposition conditions with back-surface-field (BSF) formation by vacuum annealing of the back aluminium contact. This result has been achieved without using any transparent conductive oxide. (author)

  14. Structure of a bacterial cell surface decaheme electron conduit.

    Science.gov (United States)

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J

    2011-06-07

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  15. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  16. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    Science.gov (United States)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  17. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.

    Science.gov (United States)

    Fitter, Stephen; Gronthos, Stan; Ooi, Soo Siang; Zannettino, Andrew C W

    2016-12-27

    Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1(+) but not STRO-1(-) cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1(BRIGHT) /HSP70(-) fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2016.

  18. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy Nevada Operations Office

    1999-04-02

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  19. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  20. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Multhaupt, Hinke A. B.; Couchman, John R.

    2015-01-01

    phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. Conclusion: Cell surface proteoglycans, notably...

  1. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin;

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  2. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells.

    Science.gov (United States)

    Lin, Shaoqiang; Kemmner, Wolfgang; Grigull, Sabine; Schlag, Peter M

    2002-05-15

    Tumor-associated alterations of cell surface glycosylation play a crucial role in the adhesion and metastasis of carcinoma cells. The aim of this study was to examine the effect of alpha 2,6-sialylation on the adhesion properties of breast carcinoma cells. To this end mammary carcinoma cells, MDA-MB-435, were sense-transfected with sialyltransferase ST6Gal-I cDNA or antisense-transfected with a part of the ST6Gal-I sequence. Sense transfectants showed an enhanced ST6Gal-I mRNA expression and enzyme activity and an increased binding of the lectin Sambucus nigra agglutinin (SNA), specific for alpha 2,6-linked sialic acid. Transfection with ST6Gal-I in the antisense direction resulted in less enzyme activity and SNA reactivity. A sense-transfected clone carrying increased amounts of alpha 2,6-linked sialic acid adhered preferentially to collagen IV and showed reduced cell-cell adhesion and enhanced invasion capacity. In contrast, antisense transfection led to less collagen IV adhesion but enhanced homotypic cell-cell adhesion. In another approach, inhibition of ST6Gal-I enzyme activity by application of soluble antisense-oligodeoxynucleotides was studied. Antisense treatment resulted in reduced ST6 mRNA expression and cell surface 2,6-sialylation and significantly decreased collagen IV adhesion. Our results suggest that cell surface alpha 2,6-sialylation contributes to cell-cell and cell-extracellular matrix adhesion of tumor cells. Inhibition of sialytransferase ST6Gal-I by antisense-oligodeoxynucleotides might be a way to reduce the metastatic capacity of carcinoma cells.

  3. Predicting Summer Dryness Under a Warmer Climate: Modeling Land Surface Processes in the Midwestern United States

    Science.gov (United States)

    Winter, J. M.; Eltahir, E. A.

    2009-12-01

    One of the most significant impacts of climate change is the potential alteration of local hydrologic cycles over agriculturally productive areas. As the world’s food supply continues to be taxed by its burgeoning population, a greater percentage of arable land will need to be utilized and land currently producing food must become more efficient. This study seeks to quantify the effects of climate change on soil moisture in the American Midwest. A series of 24-year numerical experiments were conducted to assess the ability of Regional Climate Model Version 3 coupled to Integrated Biosphere Simulator (RegCM3-IBIS) and Biosphere-Atmosphere Transfer Scheme 1e (RegCM3-BATS1e) to simulate the observed hydroclimatology of the midwestern United States. Model results were evaluated using NASA Surface Radiation Budget, NASA Earth Radiation Budget Experiment, Illinois State Water Survey, Climate Research Unit Time Series 2.1, Global Soil Moisture Data Bank, and regional-scale estimations of evapotranspiration. The response of RegCM3-IBIS and RegCM3-BATS1e to a surrogate climate change scenario, a warming of 3oC at the boundaries and doubling of CO2, was explored. Precipitation increased significantly during the spring and summer in both RegCM3-IBIS and RegCM3-BATS1e, leading to additional runoff. In contrast, enhancement of evapotranspiration and shortwave radiation were modest. Soil moisture remained relatively unchanged in RegCM3-IBIS, while RegCM3-BATS1e exhibited some fall and winter wetting.

  4. The Manannan Impact Crater on Europa: Determination of Surface Compositions of Key Stratigraphic Units

    Science.gov (United States)

    Dalton, J. B.; Prockter, L. M.; Shirley, J. H.; Phillips, C. B.; Kamp, L.

    2011-12-01

    Mannanan is a 22-km-diameter impact crater located at 3 N, 240 W on Europa's orbital trailing side. Detailed high resolution geologic mapping by Moore et al. (2001) revealed the likely presence of extensive deposits of impact melt materials largely filling the crater floor, together with surrounding continuous ejecta deposits that may have been excavated from Europa's interior. Terrains surrounding Mannanàn include some of Europa's visibly darkest surfaces, with extensive areas of chaos, traversed by the prominent structure of Belus Linea. The Mannannàn impact crater and its surrounding areas were imaged during the C3 orbital encounter of the Galileo Mission by the orbiter's Near-Infrared Mapping Spectrometer (NIMS). This NIMS observation (C3ENLINEA01A) has not been subjected to a detailed investigation until now, possibly due to the presence of moderate levels of radiation noise. A "despiked" version of this observation has been produced using methods described in Shirley et al. (2010). In addition, new geologic mapping precisely registered to the NIMS coverage of Manannàn and its surroundings allows the extraction of high-quality near-infrared spectra that are specific to individual geologic units and morphological features. We will present linear mixture modeling solutions for the compositions of several of Manannàn's key stratigraphic units, including the crater floor deposits and the adjacent chaos and linea materials. We will interpret these results in the context of ongoing investigations of the interplay of exogenic and endogenic influences on the surface composition of Europa. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, Johns Hopkins University-Applied Physics Laboratory, and the SETI Institute under a contract with NASA. Support by NASA's Outer Planets Research program is gratefully acknowledged. Moore, J. M. and 25 others 2001. Impact Features on Europa: Results of the Galileo Europa Mission (GEM

  5. The response of surface ozone to climate change over the Eastern United States

    Directory of Open Access Journals (Sweden)

    P. N. Racherla

    2008-02-01

    Full Text Available We investigate the response of surface ozone (O3 to future climate change in the eastern United States by performing simulations corresponding to present (1990s and future (2050s climates using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols. A future climate has been imposed using ocean boundary conditions corresponding to the IPCC SRES A2 scenario for the 2050s decade. Present-day anthropogenic emissions and CO2/CH4 mixing ratios have been used in both simulations while climate-sensitive emissions were allowed to vary with the simulated climate. The severity and frequency of O3 episodes in the eastern U.S. increased due to future climate change, primarily as a result of increased O3 chemical production. The 95th percentile O3 mixing ratio increased by 5 ppbv and the largest frequency increase occured in the 80–90 ppbv range; the US EPA's current 8-h ozone primary standard is 80 ppbv. The increased O3 chemical production is due to increases in: 1 natural isoprene emissions; 2 hydroperoxy radical concentrations resulting from increased water vapor concentrations; and, 3 NOx concentrations resulting from reduced PAN. The most substantial and statistically significant (p<0.05 increases in episode frequency occurred over the southeast and midatlantic U.S., largely as a result of 20% higher annual-average natural isoprene emissions. These results suggest a lengthening of the O3 season over the eastern U.S. in a future climate to include late spring and early fall months. Increased chemical production and shorter average lifetime are two consistent features of the seasonal response of surface O3, with increased dry deposition loss rates contributing most to the reduced lifetime in all seasons except summer. Significant interannual variability is observed in the frequency of O3

  6. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Georgia Schäfer

    2015-05-01

    Full Text Available Currently, seven viruses, namely Epstein-Barr virus (EBV, Kaposi’s sarcoma-associated herpes virus (KSHV, high-risk human papillomaviruses (HPVs, Merkel cell polyomavirus (MCPyV, hepatitis B virus (HBV, hepatitis C virus (HCV and human T cell lymphotropic virus type 1 (HTLV-1, have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection.

  7. Advanced Composite Bipolar Plate for Unitized Regenerative Fuel Cell/Electrolyzer Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an advanced composite bipolar plate is proposed for a unitized regenerative fuel cell and electrolyzer system that operates on pure feed streams...

  8. Paired Expression Analysis of Tumor Cell Surface Antigens

    Directory of Open Access Journals (Sweden)

    Rimas J. Orentas

    2017-08-01

    Full Text Available Adoptive immunotherapy with antibody-based therapy or with T cells transduced to express chimeric antigen receptors (CARs is useful to the extent that the cell surface membrane protein being targeted is not expressed on normal tissues. The most successful CAR-based (anti-CD19 or antibody-based therapy (anti-CD20 in hematologic malignancies has the side effect of eliminating the normal B cell compartment. Targeting solid tumors may not provide a similar expendable marker. Beyond antibody to Her2/NEU and EGFR, very few antibody-based and no CAR-based therapies have seen broad clinical application for solid tumors. To expand the way in which the surfaceome of solid tumors can be analyzed, we created an algorithm that defines the pairwise relative overexpression of surface antigens. This enables the development of specific immunotherapies that require the expression of two discrete antigens on the surface of the tumor target. This dyad analysis was facilitated by employing the Hotelling’s T-squared test (Hotelling–Lawley multivariate analysis of variance for two independent variables in comparison to a third constant entity (i.e., gene expression levels in normal tissues. We also present a unique consensus scoring mechanism for identifying transcripts that encode cell surface proteins. The unique application of our bioinformatics processing pipeline and statistical tools allowed us to compare the expression of two membrane protein targets as a pair, and to propose a new strategy based on implementing immunotherapies that require both antigens to be expressed on the tumor cell surface to trigger therapeutic effector mechanisms. Specifically, we found that, for MYCN amplified neuroblastoma, pairwise expression of ACVR2B or anaplastic lymphoma kinase (ALK with GFRA3, GFRA2, Cadherin 24, or with one another provided the strongest hits. For MYCN, non-amplified stage 4 neuroblastoma, neurotrophic tyrosine kinase 1, or ALK paired with GFRA2, GFRA3, SSK

  9. Characteristic Changes in Cell Surface Glycosylation Accompany Intestinal Epithelial Cell (IEC) Differentiation: High Mannose Structures Dominate the Cell Surface Glycome of Undifferentiated Enterocytes.

    Science.gov (United States)

    Park, Dayoung; Brune, Kristin A; Mitra, Anupam; Marusina, Alina I; Maverakis, Emanual; Lebrilla, Carlito B

    2015-11-01

    Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. RPE cell surface proteins in normal and dystrophic rats

    Energy Technology Data Exchange (ETDEWEB)

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  11. Advances in the theory and application of BSF cells. [Back Surface Field solar cells

    Science.gov (United States)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    A study to determine the influence of fabrication processes and bulk material properties on the behavior of back surface field (BSF) cells is reported. It is concluded that a photovoltage is generated at the p(+), p back junction of the cell. The concept of majority carrier collection is proposed as a possible mechanism for this generation. Advantages accruing to the advent of BSF cells are outlined.

  12. Cell surface carbohydrates as prognostic markers in human carcinomas

    DEFF Research Database (Denmark)

    Dabelsteen, Erik

    1996-01-01

    Tumour development is usually associated with changes in cell surface carbohydrates. These are often divided into changes related to terminal carbohydrate structures, which include incomplete synthesis and modification of normally existing carbohydrates, and changes in the carbohydrate core...... structure. The latter includes chain elongation of both glycolipids and proteins, increased branching of carbohydrates in N-linked glycoproteins, and blocked synthesis of carbohydrates in O-linked mucin-like glycoproteins. In mature organisms, expression of distinct carbohydrates is restricted to specific...... cell types; within a given tissue, variation in expression may be related to cell maturation. Tumour-associated carbohydrate structures often reflect a certain stage of cellular development; most of these moieties are structures normally found in other adult or embryonic tissues. There is no unique...

  13. Super Unit Cells in Aperture-Based Metamaterials

    OpenAIRE

    Dragan Tanasković; Zoran Jakšić; Marko Obradov; Olga Jakšić

    2015-01-01

    An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses). Thus obtained “super unit cell” shows far richer behavior than the subobjects that compris...

  14. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  15. Overview of commercialization of stationary fuel cell power plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hooie, D.T.; Williams, M.C.

    1995-07-01

    In this paper, DOE`s efforts to assist private sector organizations to develop and commercialize stationary fuel cell power plants in the United States are discussed. The paper also provides a snapshot of the status of stationary power fuel cell development occurring in the US, addressing all fuel cell types. This paper discusses general characteristics, system configurations, and status of test units and demonstration projects. The US DOE, Morgantown Energy Technology Center is the lead center for implementing DOE`s program for fuel cells for stationary power.

  16. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    OpenAIRE

    Tianhuan Luo; Bo Li; Qian Zhao; Ji Zhou

    2015-01-01

    With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3) with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The ...

  17. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, A.; Abramov, S. [Tel-Aviv Univ. (Israel); Georgiou, G. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins. Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article the authors describe the adaptation of a simple two-stage chemical crosslinking procedure based on bi-layer encagement for stabilizing Escherichia coli cells expressing an Lpp-OmpA-{beta}-lactamase fusion that displays {beta}-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 C of surface anchored {beta}-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  18. Recent insights into the cell biology of thyroid angiofollicular units.

    OpenAIRE

    Colin, Ides M.; Denef, Jean-François; Lengelé, Benoît; Many, Marie-Christine; Gérard, Anne-Catherine

    2013-01-01

    In thyrocytes, cell polarity is of crucial importance for proper thyroid function. Many intrinsic mechanisms of self-regulation control how the key players involved in thyroid hormone (TH) biosynthesis interact in apical microvilli, so that hazardous biochemical processes may occur without detriment to the cell. In some pathological conditions, this enzymatic complex is disrupted, with some components abnormally activated into the cytoplasm, which can lead to further morphological and functio...

  19. Surface modification for interaction study with bacteria and preosteoblast cells

    Science.gov (United States)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  20. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.

    Science.gov (United States)

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  1. Treatments and outcomes of peritoneal surface tumors through a centralized national service (United kingdom).

    Science.gov (United States)

    Rout, S; Renehan, A G; Parkinson, M F; Saunders, M P; Fulford, P E; Wilson, M S; O'Dwyer, S T

    2009-10-01

    Treatment of peritoneal surface malignancies with combined cytoreductive surgery and heated intraperitoneal chemotherapy may improve oncologic outcome. To better define treatment pathways, five-year results in patients referred to one of two centralized national treatment centers in the United Kingdom were analyzed. A prospective database of patients referred to the Manchester Peritoneal Tumor Service, established in 2002, was analyzed. Outcomes were evaluated using Kaplan-Meier life tables and Cox models. Two hundred seventy-eight patients (median age, 56.9 (range, 16-86) years) were considered by a dedicated multidisciplinary team and tracked on seven clinical pathways. Among the 118 surgically treated, the most common diagnosis was pseudomyxoma peritonei (101 patients, 86%). Major complications occurred in 11 patients (9%); there was no 30-day mortality. Where complete cytoreduction was achieved, three-year and five-year tumor-related survival rates were 94% and 86%, respectively. In the Cox model, incompleteness of cytoreduction (P = 0.001) and high-grade tumor (P < 0.0001) were independent prognosticators of poor outcome. The establishment of a national treatment center has allowed refinement of techniques to achieve internationally recognized results. Having achieved low levels of morbidity and mortality in the treatment of mainly pseudomyxoma peritonei of appendiceal origin, the technique of cytoreductive surgery and heated intraperitoneal chemotherapy may be considered for peritoneal carcinomatosis of colorectal origin.

  2. Effects of muscle fibre shortening on the characteristics of surface motor unit potentials.

    Science.gov (United States)

    Rodriguez-Falces, Javier; Place, Nicolas

    2014-02-01

    Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.

  3. Short-period surface-wave phase velocities across the conterminous United States

    Science.gov (United States)

    Ekström, G.

    2017-09-01

    Surface-wave phase-velocity maps for the full footprint of the USArray Transportable Array (TA) across the conterminous United States are developed and tested. Three-component, long-period continuous seismograms recorded on more than 1800 seismometers, most of which were deployed for 18 months or longer, are processed using a noise cross-correlation technique to derive inter-station Love and Rayleigh dispersion curves at periods between 5 and 40 s. The phase-velocity measurements are quality controlled using an automated algorithm and then used in inversions for Love and Rayleigh phase-velocity models at discrete periods on a 0.25°-by-0.25° pixel grid. The robustness of the results is examined using comparisons of maps derived from subsets of the data. A winter-summer division of the cross-correlation data results in small model differences, indicating relatively minor sensitivity of the results to seasonal variations in the distribution of noise sources. Division of the dispersion data based on inter-station azimuth does not result in geographically coherent model differences, suggesting that azimuthal anisotropy at the regional scale is weak compared with variations in isotropic velocities and does not substantially influence the results for isotropic velocities. The phase-velocity maps and dispersion measurements are documented and made available as data products of the 10-year-long USArray TA deployment.

  4. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2015-12-01

    Objective. The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Approach. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Main results. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Significance. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.

  5. Dominant unit CD34+ cell dose predicts engraftment after double-unit cord blood transplantation and is influenced by bank practice.

    Science.gov (United States)

    Purtill, Duncan; Smith, Katherine; Devlin, Sean; Meagher, Richard; Tonon, Joann; Lubin, Marissa; Ponce, Doris M; Giralt, Sergio; Kernan, Nancy A; Scaradavou, Andromachi; Stevens, Cladd E; Barker, Juliet N

    2014-11-06

    We investigated the unit characteristics associated with engraftment after double-unit cord blood (CB) transplantation (dCBT) and whether these could be reliably identified during unit selection. Cumulative incidence of neutrophil engraftment in 129 myeloablative dCBT recipients was 95% (95% confidence interval: 90-98%). When precryopreservation characteristics were analyzed, the dominant unit CD34(+) cell dose was the only characteristic independently associated with engraftment (hazard ratio, 1.43; P = .002). When postthaw characteristics were also included, only dominant unit infused viable CD34(+) cell dose independently predicted engraftment (hazard ratio, 1.95; P banks were more likely to have low recovery (P banks and units with cryovolumes other than 24.5 to 26.0 mL were more likely to have poor postthaw viability. Precryopreservation CD34(+) cell dose and banking practices should be incorporated into CB unit selection.

  6. Surface Drainage, Field Ditches on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 607

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP607), Surface...

  7. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akiyoshi Uezumi

    2016-08-01

    Full Text Available Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases.

  8. Fuel cell repeater unit including frame and separator plate

    Energy Technology Data Exchange (ETDEWEB)

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  9. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    Science.gov (United States)

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  10. Evaluation of the pneumatic tube system for transportation of packed red cell units

    Directory of Open Access Journals (Sweden)

    Supriya Dhar

    2015-01-01

    Full Text Available Background: Pneumatic tube system (PTS is commonly used in hospital settings to transport blood samples to diagnostic laboratories. At our blood center, we receive blood requisitions via the PTS, but units are carried to the ward by human courier. Recently we considered using the PTS for transporting blood units. Since, there are reports of hemolysis in blood samples sent through the PTS, we evaluated this system for transporting red cell units. Aims: The aim was to assess the effect of PTS transport on the quality of packed red cell units. Materials and Methods: A total of 50 red blood cells units (RBC, (25 non-irradiated and 25 irradiated were subjected to transportation through the PTS. The control arm in the study was age-matched RBC units not subjected to PTS transport. Each RBC unit was evaluated for hemoglobin (Hb, lactate dehydrogenase, potassium and plasma hemoglobin (Hb. The paired t-test was used to compare these parameters, and the P value was calculated. Results and Conclusion: The percentage of hemolysis after transportation through PTS was below the recommended guidelines. Delivery of the blood unit to the wrong station, bags lying unattended at the destination were few of the problems that had to be addressed. To conclude, though the PTS is a safe means of transporting blood products with reduction in the turn-around-time, it must be validated before use.

  11. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    Science.gov (United States)

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  12. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  13. Control of an afterburner in a diesel fuel cell power unit under variable load

    Science.gov (United States)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Samsun, Remzi Can

    2017-01-01

    In this paper, the control system for a catalytic afterburner in a diesel fuel cell auxiliary power unit is presented. The catalytic afterburner is used to burn the non-utilised hydrogen and other possible combustible components of the fuel cell anode off-gas. To increase the energy efficiency of the auxiliary power unit, the thermal energy released in the catalytic afterburner is utilised to generate the steam for the fuel processor. For optimal operation of the power unit in all modes of operation including load change, stable steam generation is required and overall energy balance must be kept within design range. To achieve this, the reaction temperature of the catalytic afterburner must be stable in all modes of operation. Therefore, we propose the afterburner temperature control based on mass and thermal balances. Finally, we demonstrate the control system using the existing prototype of the diesel fuel cell auxiliary power unit.

  14. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2009-01-01

    The aim of this study was to investigate motor unit (MU) characteristics of the biceps brachii in post-stroke patients, using high-density surface electromyography (sEMG). Eighteen chronic hemiparetic stroke patients took part. The Fugl-Meyer score for the upper extremity was assessed. Subjects

  15. Evaluation of Relative Yeast Cell Surface Hydrophobicity Measured by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Lisa Colling

    2005-01-01

    Full Text Available Objective: To develop an efficient method for evaluating cell surface hydrophobicity and to apply the method to demonstrate the effects of fungal growth conditions on cell surface properties.

  16. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    Science.gov (United States)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  17. The properties of lectins and cells surface biopolymers of non-pathogenic corynebacteria

    Directory of Open Access Journals (Sweden)

    Sashschuk E. V.

    2011-02-01

    Full Text Available Aim. To study lectin properties of non-pathogenic corynebacteria cells and preparations of their surface biopolymers (SBP, extracted by SDS. Methods. SBP were extracted from intact cells by 0.15 M solution of NaCl contains 1 % SDS. Protein content was determined using Lowry method, carbohydrates – with anthrone method. Electrophoresis was performed in SDS-PAGE according to Lemmli. Hemagglutinating activity (HAA was studied using rabbit erythrocytes. The lectin carbohydrate specificity was determined by reaction of inhibition of hemagglutination. Results. Electrophoretic set of SBP preparations contained the proteins and carbohydrates biopolymers with molecular mass of 10.0–120.0 kDa which did not possess HAA. After extraction of SBP the corynebacteria cells remained viable and have HAA higher than intact cells (64–2048 units. The hemagglutinins of the majority of corynebacteria strains after treatment of cells with SDS exhibited the highest affinity to the bovine submandibular gland mucin and N-acetylneuraminic acid. Conclusions. The examined non-pathogenic strains of corynebacteria were found to contain the lectins, associated with internal layers of a cell wall, which showed a predominant specificity to sialic acids.

  18. Quantification of Cell-Free DNA in Red Blood Cell Units in Different Whole Blood Processing Methods

    Directory of Open Access Journals (Sweden)

    Andrew W. Shih

    2016-01-01

    Full Text Available Background. Whole blood donations in Canada are processed by either the red cell filtration (RCF or whole blood filtration (WBF methods, where leukoreduction is potentially delayed in WBF. Fresh WBF red blood cells (RBCs have been associated with increased in-hospital mortality after transfusion. Cell-free DNA (cfDNA is released by neutrophils prior to leukoreduction, degraded during RBC storage, and is associated with adverse patient outcomes. We explored cfDNA levels in RBCs prepared by RCF and WBF and different storage durations. Methods. Equal numbers of fresh (stored ≤14 days and older RBCs were sampled. cfDNA was quantified by spectrophotometry and PicoGreen. Separate regression models determined the association with processing method and storage duration and their interaction on cfDNA. Results. cfDNA in 120 RBC units (73 RCF, 47 WBF were measured. Using PicoGreen, WBF units overall had higher cfDNA than RCF units (p=0.0010; fresh WBF units had higher cfDNA than fresh RCF units (p=0.0093. Using spectrophotometry, fresh RBC units overall had higher cfDNA than older units (p=0.0031; fresh WBF RBCs had higher cfDNA than older RCF RBCs (p=0.024. Conclusion. Higher cfDNA in fresh WBF was observed compared to older RCF blood. Further study is required for association with patient outcomes.

  19. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-01-01

    Full Text Available A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR and capacitance-loaded strip (CLS unit cells is presented for Ultra wideband (UWB microwave imaging applications. Four left-handed (LH metamaterial (MTM unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR with a capacitance-loaded strip (CLS to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  20. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications.

    Science.gov (United States)

    Islam, Md Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais

    2015-01-23

    A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm³, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4-12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  1. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    Science.gov (United States)

    Islam, Md. Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais

    2015-01-01

    A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications. PMID:28787945

  2. Mechanotransduction Across the Cell Surface and Through the Cytoskeleton

    Science.gov (United States)

    Wang, Ning; Butler, James P.; Ingber, Donald E.

    1993-05-01

    Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin β_1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.

  3. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  4. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  5. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines.

    Science.gov (United States)

    Arndt, Nadia X; Tiralongo, Joe; Madge, Paul D; von Itzstein, Mark; Day, Christopher J

    2011-09-01

    Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.

  6. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Francisco J Barrantes

    2014-11-01

    Full Text Available Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: a clustering mediated by homotropic inter-molecular receptor-receptor associations; b heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional trapping, and c protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR. Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain 7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory and GABAergic (inhibitory synapses. An important function of the 7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.

  7. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  8. Diversity and antimicrobial resistance of Salmonella enterica isolates from surface water in Southeastern United States.

    Science.gov (United States)

    Li, Baoguang; Vellidis, George; Liu, Huanli; Jay-Russell, Michele; Zhao, Shaohua; Hu, Zonglin; Wright, Anita; Elkins, Christopher A

    2014-10-01

    A study of prevalence, diversity, and antimicrobial resistance of Salmonella enterica in surface water in the southeastern United States was conducted. A new scheme was developed for recovery of Salmonella from irrigation pond water and compared with the FDA's Bacteriological Analytical Manual (8th ed., 2014) (BAM) method. Fifty-one isolates were recovered from 10 irrigation ponds in produce farms over a 2-year period; nine Salmonella serovars were identified by pulsed-field gel electrophoresis analysis, and the major serovar was Salmonella enterica serovar Newport (S. Newport, n = 29), followed by S. enterica serovar Enteritidis (n = 6), S. enterica serovar Muenchen (n = 4), S. enterica serovar Javiana (n = 3), S. enterica serovar Thompson (n = 2), and other serovars. It is noteworthy that the PulseNet patterns of some of the isolates were identical to those of the strains that were associated with the S. Thompson outbreaks in 2010, 2012, and 2013, S. Enteritidis outbreaks in 2011 and 2013, and an S. Javiana outbreak in 2012. Antimicrobial susceptibility testing confirmed 16 S. Newport isolates of the multidrug resistant-AmpC (MDR-AmpC) phenotype, which exhibited resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT), and to the 1st, 2nd, and 3rd generations of cephalosporins (cephalothin, amoxicillin-clavulanic acid, and ceftriaxone). Moreover, the S. Newport MDR-AmpC isolates had a PFGE pattern indistinguishable from the patterns of the isolates from clinical settings. These findings suggest that the irrigation water may be a potential source of contamination of Salmonella in fresh produce. The new Salmonella isolation scheme significantly increased recovery efficiency from 21.2 (36/170) to 29.4% (50/170) (P = 0.0002) and streamlined the turnaround time from 5 to 9 days with the BAM method to 4 days and thus may facilitate microbiological analysis of environmental water. Copyright © 2014, American Society for

  9. Surface Properties of Cell-treated Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Bing Shi

    2006-01-01

    Full Text Available The materials used in artificial joints undergo degradation through fatigue and corrosive wear in human body. The lifetime for well-designed artificial joints like hip joints is at most 12 years and a patient will usually have two total joint replacements during his/her lifetime. Tissue engineering, an alternative to total joint implantation, is the replacement of damaged tissue with the tissue that is designed and constructed to meet the needs of the individual patient. In this study, polyethylene terephthalate (PET in the form of overhead transparency films were investigated on their cell interactions and the tribological properties as an alternative tissue-engineering matrix. The base material of the transparency films is PET. Cell culture methods as well as atomic force microscope (AFM, contact angle goniometer, confocal microscope and universal tribotester were used to study the properties of the substrate materials and the interactions between the surface and the substrate materials. Results showed that cells grew on the substrate of the base materials of the PET. The tribological properties of the slides have been changed after being cell-treated.

  10. Hodgkin's lymphoma: the role of cell surface receptors in regulation of tumor cell fate.

    Science.gov (United States)

    Yurchenko, M; Sidorenko, S P

    2010-12-01

    , it triggered activation of JNK signaling cascade. The review presents the current views on the role of cell surface receptors in maintenance of HL microenvironment favorable for HRS cells survival.

  11. The Daniell cell, Ohm's law, and the emergence of the International System of Units

    Science.gov (United States)

    Jayson, Joel S.

    2014-01-01

    Telegraphy originated in the 1830s and 40 s and flourished in the following decades but with a patchwork of electrical standards. Electromotive force was for the most part measured in units of the predominant Daniell cell, but each telegraphy company had their own resistance standard. In 1862, the British Association for the Advancement of Science formed a committee to address this situation. By 1873, they had given definition to the electromagnetic system of units (emu) and defined the practical units of the ohm as 109 emu units of resistance and the volt as 108 emu units of electromotive force. These recommendations were ratified and expanded upon in a series of international congresses held between 1881 and 1904. A proposal by Giovanni Giorgi in 1901 took advantage of a coincidence between the conversion of the units of energy in the emu system (the erg) and in the practical system (the Joule). As it was, the same conversion factor existed between the cgs based emu system and a theretofore undefined MKS system. By introducing another unit X (where X could be any of the practical electrical units), Giorgi demonstrated that a self-consistent MKSX system was tenable without the need for multiplying factors. Ultimately, the ampere was selected as the fourth unit. It took nearly 60 years, but in 1960, Giorgi's proposal was incorporated as the core of the newly inaugurated International System of Units (SI). This article surveys the physics, physicists, and events that contributed to those developments.

  12. Targeting pancreatic progenitor cells in human embryonic stem cell differentiation for the identification of novel cell surface markers.

    Science.gov (United States)

    Fishman, Bettina; Segev, Hanna; Kopper, Oded; Nissenbaum, Jonathan; Schulman, Margarita; Benvenisty, Nissim; Itskovitz-Eldor, Joseph; Kitsberg, Danny

    2012-09-01

    New sources of beta cells are needed in order to develop cell therapies for patients with diabetes. An alternative to forced expansion of post-mitotic beta cells is the induction of differentiation of stem-cell derived progenitor cells that have a natural self-expansion capacity into insulin-producing cells. In order to learn more about these progenitor cells at different stages along the differentiation process in which they become progressively more committed to the final beta cell fate, we took the approach of identifying, isolating and characterizing stage specific progenitor cells. We generated human embryonic stem cell (HESC) clones harboring BAC GFP reporter constructs of SOX17, a definitive endoderm marker, and PDX1, a pancreatic marker, and identified subpopulations of GFP expressing cells. Using this approach, we isolated a highly enriched population of pancreatic progenitor cells from hESCs and examined their gene expression with an emphasis on the expression of stage-specific cell surface markers. We were able to identify novel molecules that are involved in the pancreatic differentiation process, as well as stage-specific cell markers that may serve to define (alone or in combination with other markers) a specific pancreatic progenitor cell. These findings may help in optimizing conditions for ultimately generating and isolating beta cells for transplantation therapy.

  13. Comparison of Surface Hardness of Various Shades of Twinky Star Colored Compomer Light-cured with QTH and LED Units

    Science.gov (United States)

    Khodadadi, Effat; Khafri, Soraya; Aziznezhad, Mahdiyeh

    2016-01-01

    Introduction Colored compomers are a group of restorative materials that were introduced in 2002 to repair primary teeth, and they provide attractive color and ease of use in pediatric dentistry. The aim of this study was to evaluate the effect of QTH and LED light-curing units on the surface hardness of different colors of Twinky Star compomers. Methods In this experimental study, a composite resin (Z250, 3M, and USA), an ionosit compomer (DMG, Germany) with A3 shade and 8 different Twinky Star colored compomer (Voco, Germany) samples were used. In all, 100 samples were prepared with 10 samples in each group, i.e., 10 Z250 composite resin, 10 ionosit compomers, and 10 Twinky Star compomer samples of each color. The samples were prepared in a 4×4-mm Teflon mold. Half of the samples were light-cured with QTH and the other half with LED units. Then, the surface microhardness was measured by Vickers hardness test. The data were analyzed with IBM-SPSS version 22, using the t-test and ANOVA. Results Two-way ANOVA showed that the mean surface hardness of the compomer samples cured with the QTH unit was significantly higher than that cured with the LED unit (p < 0.001). In each curing unit, surface hardness of some materials exhibited significant differences with the highest hardness being observed in the Z250 composite resin (650.35 ± 56.320) and the lowest hardness being detected in the ionosit compomers (461.10 ± 96.170). One-way ANOVA also showed that, among the different colors of the Twinky Star compomer, the lowest hardness with both units (QTH and LED) was observed in the gold color (214.32 ± 22.026 and 175.116 ± 15.918, respectively). Conclusion The colored compomer and the type of light-curing unit affected the microhardnesses of the surfaces. Different colors of Twinky Star compomers exhibited different surface microhardnesses. PMID:27382444

  14. Distribution of Prestin on Outer Hair Cell Basolateral Surface

    Institute of Scientific and Technical Information of China (English)

    YU Ning; ZHAI Suo-qiang; YANG Shi-ming; HAN Dong-yi; ZHAO Hong-bo

    2008-01-01

    Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility and is expressed on the OHC surface. Previous studies revealed that OHC eleetromotility and its associated nonlinear capacitance were mainly located at the OHC lateral wall and absent at the apical cutieular plate and the basal nucleus region. Immunofluorescent staining for prestin also failed to demonstrate prestin expression at the OHC basal ends in whole-mount preparation of the organ of Corti. However, there lacks a definitive demonstration of the pattern of prestin distribution. The OHC lateral wall has a trilaminate organization and is composed of the plasma membrane, cortical lattice, and subsurface cisternae. In this study, the location of prestin proteins in dissociated OHCs was examined using immunofluorescent staining and confocal microscopy. We found that prestin was uniformly expressed on the basolateral surface, including the basal pole. No staining was seen on the cuticular plate and stereocilia. When co-stained with a membrane marker di-8-ANEPPS, prestin-labeling was found to be in the outer layer of the OHC lateral wall. After separating the plasma membrane from the underlying subsurface eisternae using a hypotonic extracellular solution, prestin-labeling was found to be in the plasma membrane, not the subsurface cisternae. The data show that prestin is expressed in the plasma membrane on the entire OHC basolateral surface.

  15. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    Science.gov (United States)

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  16. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    Science.gov (United States)

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR.

  17. [THE MODEL OF NEUROVASCULAR UNIT IN VITRO CONSISTING OF THREE CELLS TYPES].

    Science.gov (United States)

    Khilazheva, E D; Boytsova, E B; Pozhilenkova, E A; Solonchuk, Yu R; Salmina, A B

    2015-01-01

    There are many ways to model blood brain barrier and neurovascular unit in vitro. All existing models have their disadvantages, advantages and some peculiarities of preparation and usage. We obtained the three-cells neurovascular unit model in vitro using progenitor cells isolated from the rat embryos brain (Wistar, 14-16 d). After withdrawal of the progenitor cells the neurospheres were cultured with subsequent differentiation into astrocytes and neurons. Endothelial cells were isolated from embryonic brain too. During the differentiation of progenitor cells the astrocytes monolayer formation occurs after 7-9 d, neurons monolayer--after 10-14 d, endothelial cells monolayer--after 7 d. Our protocol for simultaneous isolation and cultivation of neurons, astrocytes and endothelial cells reduces the time needed to obtain neurovascular unit model in vitro, consisting of three cells types and reduce the number of animals used. It is also important to note the cerebral origin of all cell types, which is also an advantage of our model in vitro.

  18. Importance of unit cells in accurate evaluation of the characteristics of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sabzyan, Hassan; Sadeghpour, Narges [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2016-08-01

    Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker-Teter-Hutter (GTH) and Troullier-Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing n{sub c}=4-28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above n{sub c}=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.

  19. Reaggregation of human, chick, and human embryonic brain cells. Factors influencing the formation of a histiotypic unit.

    Science.gov (United States)

    Lodin, Z; Fleischmannová, V; Hájková, B; Faltin, J; Hartman, J

    1981-01-01

    1. Aggregation of embryo human, mouse, and chick brain cells was studied. The optimum age interval of donors from different species was determined. 2. The significance of different dissociation procedures (mild trypsinisation followed by sieving, trypsinisation + DNA digestion, mechanical dissociation in 1 or 2 steps, and Ca2+ chelation by EGTA) for the rate of aggregation was estimated. A significant reduction of aggregation was observed after one step mechanical dissociation. Nonspecific adhesion of cells on DNA molecules was found only during the first stages of aggregation. 3. The curve of aggregation kinetics follows the curve of floculation kinetics. 90% free cells disappear from the medium after 2 h of aggregation and a large number of microaggregates are formed which condense after 20 to 24 h into compact aggregates. The time course of aggregation was similar for all cells dissociated by different means. Small differences in the rate of aggregation, caused by dissociation procedures, were apparent only during the first stages of aggregation. 4. The histiotypic unit formed by aggregation of human, mouse, and chick embryo brain cells exhibits some common and some specific features. During aggregation a multiple structural reconstruction takes place and a limited number of cells are exchanged or sorted out from aggregates into the medium. 5. The structural organisation of aggregates from differently dissociated cells differs in several aspects. This indicates that membrane surface structures are influenced differently by dissociation and behave differently during distinct stages of aggregation.

  20. Substrate recognition by the cell surface palmitoyl transferase DHHC5.

    Science.gov (United States)

    Howie, Jacqueline; Reilly, Louise; Fraser, Niall J; Vlachaki Walker, Julia M; Wypijewski, Krzysztof J; Ashford, Michael L J; Calaghan, Sarah C; McClafferty, Heather; Tian, Lijun; Shipston, Michael J; Boguslavskyi, Andrii; Shattock, Michael J; Fuller, William

    2014-12-09

    The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼ 120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme-substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.

  1. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Directory of Open Access Journals (Sweden)

    Aravind L

    2010-01-01

    Full Text Available Abstract Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA. We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1 the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58, which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber

  2. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Science.gov (United States)

    2010-01-01

    Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber PMID:20056006

  3. Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers.

    Science.gov (United States)

    Eersels, Kasper; van Grinsven, Bart; Khorshid, Mehran; Somers, Veerle; Püttmann, Christiane; Stein, Christoph; Barth, Stefan; Diliën, Hanne; Bos, Gerard M J; Germeraad, Wilfred T V; Cleij, Thomas J; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2015-02-17

    Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.

  4. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    DEFF Research Database (Denmark)

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie;

    2004-01-01

    as a constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell...

  5. New photosensitizer with phenylenebisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikroyannidis, J.A., E-mail: mikroyan@chemistry.upatras.gr [Chemical Technology Laboratory, Department of Chemistry, University of Patras, GR-26500 Patras (Greece); Suresh, P. [Physics Department, Molecular Electronic and Optoelectronic Device Laboratory, JNV University, Jodhpur (Raj.) 342005 (India); Roy, M.S. [Defence Laboratory, Jodhpur (Raj.) 342011 (India); Sharma, G.D., E-mail: sharmagd_in@yahoo.com [Physics Department, Molecular Electronic and Optoelectronic Device Laboratory, JNV University, Jodhpur (Raj.) 342005 (India); R and D Centre for Engineering and Science, Jaipur Engineering College, Kukas, Jaipur (Raj.) (India)

    2011-06-30

    Graphical abstract: A novel dye D was synthesized and used as photosensitizer for quasi solid state dye-sensitized solar cells. A power conversion efficiency of 4.4% was obtained which was improved to 5.52% when diphenylphosphinic acid (DPPA) was added as coadsorbent. Display Omitted Highlights: > A new low band gap photosensitizer with cyanovinylene 4-nitrophenyl terminal units was synthesized. > A power conversion efficiency of 4.4% was obtained for the dye-sensitized solar cell based on this photosensitizer. > The power conversion efficiency of the dye-sensitized solar cell was further improved to 5.52% when diphenylphosphinic acid was added as coadsorbent. - Abstract: A new low band gap photosensitizer, D, which contains 2,2'-(1,4-phenylene) bisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units at both sides was synthesized. The two carboxyls attached to the 2,5-positions of the phenylene ring act as anchoring groups. Dye D was soluble in common organic solvents, showed long-wavelength absorption maximum at 620-636 nm and optical band gap of 1.72 eV. The electrochemical parameters, i.e. the highest occupied molecular orbital (HOMO) (-5.1 eV) and the lowest unoccupied molecular orbital (LUMO) (-3.3 eV) energy levels of D show that this dye is suitable as molecular sensitizer. The quasi solid state dye-sensitized solar cell (DSSC) based on D shows a short circuit current (J{sub sc}) of 9.95 mA/cm{sup 2}, an open circuit voltage (V{sub oc}) of 0.70 V, and a fill factor (FF) of 0.64 corresponding to an overall power conversion efficiency (PCE) of 4.40% under 100 mW/cm{sup 2} irradiation. The overall PCE has been further improved to 5.52% when diphenylphosphinic acid (DPPA) coadsorbent is incorporated into the D solution. This increased PCE has been attributed to the enhancement in the electron lifetime and reduced recombination of injected electrons with the iodide ions present in the electrolyte with the use of DPPA as coadsorbant. The

  6. Wolbachia surface protein induces innate immune responses in mosquito cells

    Directory of Open Access Journals (Sweden)

    Pinto Sofia B

    2012-01-01

    Full Text Available Abstract Background Wolbachia endosymbiotic bacteria are capable of inducing chronic upregulation of insect immune genes in some situations and this phenotype may influence the transmission of important insect-borne pathogens. However the molecules involved in these interactions have not been characterized. Results Here we show that recombinant Wolbachia Surface Protein (WSP stimulates increased transcription of immune genes in mosquito cells derived from the mosquito Anopheles gambiae, which is naturally uninfected with Wolbachia; at least two of the upregulated genes, TEP1 and APL1, are known to be important in Plasmodium killing in this species. When cells from Aedes albopictus, which is naturally Wolbachia-infected, were challenged with WSP lower levels of upregulation were observed than for the An. gambiae cells. Conclusions We have found that WSP is a strong immune elicitor in a naturally Wolbachia-uninfected mosquito species (Anopheles gambiae while a milder elicitor in a naturally-infected species (Aedes albopictus. Since the WSP of a mosquito non-native (nematode Wolbachia strain was used, these data suggest that there is a generalized tolerance to WSP in Ae. albopictus.

  7. Cell Surface and Membrane Engineering: Emerging Technologies and Applications.

    Science.gov (United States)

    Saeui, Christopher T; Mathew, Mohit P; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J

    2015-06-18

    Membranes constitute the interface between the basic unit of life-a single cell-and the outside environment and thus in many ways comprise the ultimate "functional biomaterial". To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  8. Unit cell sparger test program and analysis of test results

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Song, C. H.; Cho, S.; Yoon, Y. J

    2003-11-01

    This report presents the results of test data from CPT-3 test and the effect of important parameters on the IRWST load. The object of CPT-3 test is to determine the influence of air mass in the piping on the IRWST (In-containment Refueling Water Storage Tank) boundary during an operation of Safety Depressurization and Vent System (SDVS). The test was conducted from an initial system pressure of 15.2 MPa, a steam temperature of 343.3 .deg. C, and an air mass of 3.34 lb. Following valve actuation, the pressure within the discharge line underwent pressure transient due to high pressure steam from the pressurizer and the discharged high pressure air formed air bubbles, which expanded and compressed periodically in the simulated IRWST. Air bubble oscillation was terminated within 2 s into the test. The magnitude of the pressure wave during the air clearing period was inversely proportional to the distance and very abrupt pressure spikes were observed in case the distance from the sparger holes to the submerged structure was less than 0.9 m. After the isolation valves were closed, the water in the simulated IRWST was considered to rise up to the 2.4m from the water surface in the quench tank. The amount of air mass in the piping, water temperature in the simulated IRWST, air temperature in the piping had not significant effect on the pressure loading during an air clearing period. However, the opening time of the isolation valve, steam mass flow rate, and submergence of an sparger have been shown to have great effects on the pressure loading during an air clearing period. 2 % of sparger flow area seems to be sufficient for the vacuum breaker area to mitigate the water hammering caused by abrupt water level rising during valve closure.

  9. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    Science.gov (United States)

    Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.

    2016-02-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.

  10. Prediction of stress-strain behavior of ceramic matrix composites using unit cell model

    Directory of Open Access Journals (Sweden)

    Suzuki Takuya

    2015-01-01

    Full Text Available In this study, the elastic modulus and the stress-strain curve of ceramic matrix composites (CMCs were predicted by using the unit cell model that consists of fiber bundles and matrix. The unit cell model was developed based on the observation of cross sections of CMCs. The elastic modulus of CMCs was calculated from the results of finite element analysis using the developed model. The non-linear behavior of stress-strain curve of CMCs was also predicted by taking the degradation of the elastic modulus into consideration, where the degradation was related to the experimentally measured crack density in CMCs. The approach using the unit cell model was applied to two kinds of CMCs, and good agreement was obtained between the experimental and the calculated results.

  11. Reduction in potassium concentration of stored red blood cell units using a resin filter.

    Science.gov (United States)

    Yamada, Chisa; Heitmiller, Eugenie S; Ness, Paul M; King, Karen E

    2010-09-01

    Hyperkalemia is a serious complication of rapid and massive blood transfusion due to high plasma potassium (K) in stored red blood cell (RBC) units. A potassium adsorption filter (PAF) was developed in Japan to remove K by exchanging with sodium (Na). We performed an in vitro evaluation of its efficacy and feasibility of use. Three AS-3 RBC units were filtered by each PAF using gravity; 10 PAFs were tested. Blood group, age, flow rate, and irradiation status were recorded. Total volume, K, Na, Cl, Mg, total Ca (tCa), RBC count, hemoglobin (Hb), hematocrit (Hct), and plasma Hb were measured before and after filtering each unit. Ionized Ca (iCa), pH, and glucose were measured for some units. After filtration, the mean decrease in K was 97.5% in the first RBC unit, 91.2% in the second unit, and 64.4% in the third unit. The mean increases in Na, Mg, and tCa were 33.0, 151.4, and 116.1%, respectively. iCa and pH remained low; glucose was unchanged. RBC count, Hb, and Hct decreased slightly after filtration of first units; plasma Hb was unchanged. After filtration, there was no visual evidence of increased hemolysis or clot formation. The PAF decreased K concentration in stored AS-3 RBC units to minimal levels in the first and second RBC units. Optimally, one filter could be used for 2 RBC units. Although Na increased, the level may not be clinically significant. PAF may be useful for at-risk patients receiving older units or blood that has been stored after gamma irradiation. © 2010 American Association of Blood Banks.

  12. Back surface cell structures for reducing recombination in CZ silicon solar cells

    Science.gov (United States)

    King, R. R.; Mitchell, K. W.; Gee, J. M.

    1994-12-01

    Mass-produced terrestrial CZ silicon solar cells are currently entering the domain in which bulk diffusion length is comparable to the cell thickness, so that recombination at the back surface can have a significant effect on device performance. Three manufacturable processes that address the problem of back recombination are examined here: boron diffusion from a deposited doped SiO2, layer; Al-alloyed layers using screen-printed paste; and use of a collecting n* layer on the back interdigitated with the positive electrode. 104 sq cm cells fabricated at Siemens Solar Industries using these back surface structures are characterized by current-voltage, spectral response, photoconductivity decay, and SIMS measurements.

  13. Interaction of progenitor bone cells with different surface modifications of titanium implant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Ya-Shun [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Yi; Kuo, Tzu-Huang; Kuo, Hsien-Nan [Medical Device Development Division, Metal Industries Research and Development Centre, Kaohsiung 82151, Taiwan (China)

    2014-04-01

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  14. Dynamic interplay between adhesion surfaces in carcinomas:Cell-cell and cell-matrix crosstalk

    Institute of Scientific and Technical Information of China (English)

    Yvonne E Smith; Sri HariKrishna Vellanki; Ann M Hopkins

    2016-01-01

    Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology.

  15. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    Science.gov (United States)

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  16. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available BACKGROUND AND OBJECTIVE: Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC is high. It is well known that the epithelial mesenchymal transition (EMT and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. METHODOLOGY: HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. RESULTS: After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. CONCLUSIONS: The findings of this study systematically clarify the alterations of cell surface

  17. Cell adhesion behavior on the silicone rubber surface modified by using ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Tae; Jung, Chan Hee; Nh, Young Chang; Choi, Jae Hak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kuk, In Seol [Hanyang University, Seoul (Korea, Republic of); An, Mi Young [Chungnam National University, Daejeon (Korea, Republic of)

    2009-12-15

    In this study we studied cell adhesion and proliferation on the surface of a silicone rubber modified by ion beam irradiation. The surface property of the irradiated silicone rubber was characterized by water contact angle and FT-IR analyses. It was observed that human (HEK293) fibroblast cells exhibit strong adhesion to the irradiated silicone surface. This enhanced adhesion of mammalian cells can be attributed to the increase in the hydrophilicity of the silicone surface by ion beam irradiation.

  18. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine.

    Directory of Open Access Journals (Sweden)

    Takahiro Nagatake

    Full Text Available Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4, and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4+ epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga and other enteroendocrine cell-related genes (Ffar1, Ffar4, Gpr119, and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1. A Cld4+UEA-1- cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip, thus representing K cells, whereas a Cld4+UEA-1+ cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg, pancreatic polypeptide-like peptide with N-terminal tyrosine amide (Pyy, cholecystokinin (Cck, secretin (Sct, and tryptophan hydroxylase 1 (Tph1. In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4+ cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.

  19. High light-extraction-efficiency OLED based on photonic crystal slab structures with taper unit cells

    Institute of Scientific and Technical Information of China (English)

    YAN Rong-jin; WANG Qing-kang

    2006-01-01

    To improve the light-extraction-efficiency of OLED,we introduced PCS (Photonic Crystal Slab) structures into the interface of ITO layer and glass substrate.PCS structures with Taper unit cells are proved to be effective in reducing the energy of guided wave trapped in high refractive index material,and an increase of light-extraction-efficiency to 95.26% is gained.This enhancement is much greater than the traditional PCS with cylinder unit cells (60%-70%).Physical mechanisms of light-extraction-efficiency enhancement in these structures are further discussed.

  20. Graphene Oxide Modulates B Cell Surface Phenotype and Impairs Immunoglobulin Secretion in Plasma Cell.

    Science.gov (United States)

    Xu, Shaohai; Xu, Shengmin; Chen, Shaopeng; Fan, Huadong; Luo, Xun; Yang, Xiaoyao; Wang, Jun; Yuan, Hang; Xu, An; Wu, Lijun

    2016-04-01

    Since discovery, graphene oxide (GO) has been used in all aspects of human life and revealed promising applications in biomedicine. Nevertheless, the potential risks of GO were always being revealed. Although GO was found to induce immune cell death and innate immune response, little is known regarding its toxicity to the specific adaptive immune system that is crucial for protecting against exotic invasion. The B-cell mediated adaptive immune system, which composed of highly specialized cells (B and plasma cell) and specific immune response (antibody response) is the focus in our present study. Using diverse standard immunological techniques, we found that GO modulated B cell surface phenotype, both costimulatory molecules (CD80, CD86 and especially CD40) and antigen presenting molecules (both classical and nonclassical) under the condition without causing cell death. Meanwhile, the terminal differentiated immunoglobulin (Ig) secreting plasma cell was affected by GO, which displayed a less secretion of Ig and more severe ER stress caused by the retention of the secreted form of Ig in cell compartment. The combined data reveal that GO has a particular adverse effect to B cell and the humoral immunity, directly demonstrating the potential risk of GO to the specific adaptive immunity.

  1. A yeast surface display system for the discovery of ligands that trigger cell activation.

    Science.gov (United States)

    Cho, B K; Kieke, M C; Boder, E T; Wittrup, K D; Kranz, D M

    1998-11-01

    Opposing cells often communicate signalling events using multivalent interactions between receptors present on their cell surface. For example, T cells are typically activated when the T cell receptor (TCR) and its associated costimulatory molecules are multivalently engaged by the appropriate ligands present on an antigen presenting cell. In this report, yeast expressing high cell-surface levels of a TCR ligand (a recombinant antibody to the TCR Vbeta domain) were shown to act as 'pseudo' antigen presenting cells and induce T cell activation as monitored by increased levels of CD25 and CD69 and by downregulation of cell surface TCR. Similar levels of T cell activation could occur even when a 30-fold excess of irrelevant yeast was present, suggesting that such a yeast display system, by virtue of its ability to present ligands multivalently, may be used in highly sensitive procedures to identify novel polypeptides that interact multivalently with cell surface receptors and thereby trigger specific cellular responses.

  2. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Nishad, K.K.; Bhosle, N.B.

    The effect of 2, 4-dinitrophenol (DNP) on extracelluar polysaccharides (EPS), cell surface charge, and hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene...

  3. Investigation of IrO2/Pt Electrocatalysts in Unitized Regenerative Fuel Cells

    Directory of Open Access Journals (Sweden)

    V. Baglio

    2011-01-01

    Full Text Available IrO2/Pt catalysts (at different concentrations were synthesized by incipient wetness technique and characterized by XRD, XRF, and SEM. Water electrolysis/fuel cell performances were evaluated in a 5 cm2 single cell under Unitized Regenerative Fuel Cell (URFC configuration. The IrO2/Pt composition of 14/86 showed the highest performance for water electrolysis and the lowest one as fuel cell. It is derived that for fuel cell operation an excess of Pt favours the oxygen reduction process whereas IrO2 promotes oxygen evolution. From the present results, it appears that the diffusion characteristics and the reaction rate in fuel cell mode are significantly lower than in the electrolyser mode. This requires the enhancement of the gas diffusion properties of the electrodes and the catalytic properties for cathode operation in fuel cells.

  4. Staphylococcus aureus immunodominant surface antigen B is a cell-surface associated nucleic acid binding protein

    Directory of Open Access Journals (Sweden)

    Cerca Nuno

    2009-03-01

    Full Text Available Abstract Background Staphylococcus aureus immunodominant surface antigen B (IsaB elicits an immune response during septicemia and is generally classified as a virulence factor, but its biological function remains completely undefined. In an attempt to identify staphylococcal RNA-binding proteins, we designed an RNA Affinity Chromatography assay and subsequently isolated IsaB. Results Western analysis indicated that IsaB was both secreted and cell-surface associated. Gel Shift analysis confirmed the RNA binding activity but revealed that IsaB bound to any nucleic acid without sequence specificity. IsaB exhibited the highest affinity for double-stranded DNA followed by single-stranded DNA and RNA. Because extracellular DNA has been shown to play a role in biofilm formation, we investigated the biofilm-forming capacity of an isogenic isaB deletion mutant but we found that IsaB did not contribute to biofilm formation under any conditions tested. Conclusion IsaB is an extracellular nucleic acid binding protein, with little to no sequence specificity, but its role in virulence remains unclear.

  5. Micropatterned polysaccharide surfaces via laser ablation for cell guidance

    Energy Technology Data Exchange (ETDEWEB)

    Barbucci, Rolando; Lamponi, Stefania; Pasqui, Daniela; Rossi, Antonella; Weber, Elisabetta

    2003-03-03

    Micropatterned materials were obtained by a controlled laser ablation of a photoimmobilised homogeneous layer of hyaluronic acid (Hyal) and its sulphated derivative (HyalS). The photoimmobilisation was performed by coating the polysaccharide, adequately functionalised with a photoreactive group, on aminosilanised glass substrate and immobilising it on the surface under UV light. Hyal or HyalS photoimmobilised samples were then subjected to laser ablation with wavelengths in the UV regions in order to drill the pattern. Four different patterns with stripes of 100, 50, 25 and 10 {mu}m were generated. A chemical characterisation by attenuated total reflection/Fourier transform infrared (ATR/FT-IR) and time of flight-secondary ions mass spectrometry (TOF-SIMS) confirmed the success of the laser ablation procedure and the presence of alternating stripes of polysaccharide and native glass. The exact dimensions of the stripes were determined by atomic force microscopy. The analysis of cell behaviour in terms of adhesion, proliferation and movement using mouse fibroblasts (3T3 line) and bovine aortic endothelial cells (BAEC) was also performed.

  6. Water proton configurations in structures I, II, and H clathrate hydrate unit cells.

    Science.gov (United States)

    Takeuchi, Fumihito; Hiratsuka, Masaki; Ohmura, Ryo; Alavi, Saman; Sum, Amadeu K; Yasuoka, Kenji

    2013-03-28

    Position and orientation of water protons need to be specified when the molecular simulation studies are performed for clathrate hydrates. Positions of oxygen atoms in water are experimentally determined by X-ray diffraction analysis of clathrate hydrate structures, but positions of water hydrogen atoms in the lattice are disordered. This study reports a determination of the water proton coordinates in unit cell of structure I (sI), II (sII), and H (sH) clathrate hydrates that satisfy the ice rules, have the lowest potential energy configuration for the protons, and give a net zero dipole moment. Possible proton coordinates in the unit cell were chosen by analyzing the symmetry of protons on the hexagonal or pentagonal faces in the hydrate cages and generating all possible proton distributions which satisfy the ice rules. We found that in the sI and sII unit cells, proton distributions with small net dipole moments have fairly narrow potential energy spreads of about 1 kJ∕mol. The total Coulomb potential on a test unit charge placed in the cage center for the minimum energy∕minimum dipole unit cell configurations was calculated. In the sI small cages, the Coulomb potential energy spread in each class of cage is less than 0.1 kJ∕mol, while the potential energy spread increases to values up to 6 kJ∕mol in sH and 15 kJ∕mol in the sII cages. The guest environments inside the cages can therefore be substantially different in the sII case. Cartesian coordinates for oxygen and hydrogen atoms in the sI, sII, and sH unit cells are reported for reference.

  7. Culture of human cells in experimental units for spaceflight impacts on their behavior.

    Science.gov (United States)

    Cazzaniga, Alessandra; Moscheni, Claudia; Maier, Jeanette Am; Castiglioni, Sara

    2017-05-01

    Because space missions produce pathophysiological alterations such as cardiovascular disorders and bone demineralization which are very common on Earth, biomedical research in space is a frontier that holds important promises not only to counterbalance space-associated disorders in astronauts but also to ameliorate the health of Earth-bound population. Experiments in space are complex to design. Cells must be cultured in closed cell culture systems (from now defined experimental units (EUs)), which are biocompatible, functional, safe to minimize any potential hazard to the crew, and with a high degree of automation. Therefore, to perform experiments in orbit, it is relevant to know how closely culture in the EUs reflects cellular behavior under normal growth conditions. We compared the performances in these units of three different human cell types, which were recently space flown, i.e. bone mesenchymal stem cells, micro- and macrovascular endothelial cells. Endothelial cells are only slightly and transiently affected by culture in the EUs, whereas these devices accelerate mesenchymal stem cell reprogramming toward osteogenic differentiation, in part by increasing the amounts of reactive oxygen species. We conclude that cell culture conditions in the EUs do not exactly mimic what happens in a culture dish and that more efforts are necessary to optimize these devices for biomedical experiments in space. Impact statement Cell cultures represent valuable preclinical models to decipher pathogenic circuitries. This is true also for biomedical research in space. A lot has been learnt about cell adaptation and reaction from the experiments performed on many different cell types flown to space. Obviously, cell culture in space has to meet specific requirements for the safety of the crew and to comply with the unique environmental challenges. For these reasons, specific devices for cell culture in space have been developed. It is important to clarify whether these

  8. MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization

    Directory of Open Access Journals (Sweden)

    Tohru Hayakawa

    2012-01-01

    Full Text Available The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm and sandblasting (Ra: approximately 1.0 μm, and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells.

  9. Cell adhesion on Ti surface with controlled roughness

    Directory of Open Access Journals (Sweden)

    Burgos-Asperilla, Laura

    2015-06-01

    Full Text Available In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM and electrochemical impedance spectroscopy (EIS. The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10−3 min−1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days, due to the presence of amino acids and proteins from the culture medium that have been a dsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti.En este trabajo, se ha estudiado la interacción in situ entre células osteoblásticas Saos-2 y una superficie de Ti de rugosidad controlada a lo largo del tiempo. El estudio de la cinética y los mecanismos de proliferación celular de adhesión se ha realizado a través de la microbalanza de cristal de cuarzo (QCM y espectroscopía de impedancia electroquímica (EIS. La velocidad de adhesión de los osteoblastos sobre la superficie de Ti obtenida a través de medidas con la QCM, sigue una reacción de primer orden, con k=2×10−3 min−1. Los ensayos de impedancia indican que, en ausencia de las células, la resistencia del Ti disminuye con el tiempo (7 días, debido a la presencia de aminoácidos y proteínas del medio de cultivo que se han adsorbido, mientras que en presencia de células, esta disminución es mucho mayor debido a los productos metabólicos generados por las células que aceleran la disolución del Ti.

  10. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    Science.gov (United States)

    2013-07-01

    10-1-0422 TITLE: Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early PRINCIPAL...DATES COVERED 1 July 2010 - 30 June 2013 4. TITLE AND SUBTITLE Targeting Cell Surface Proteins in Molecular 5a. CONTRACT NUMBER Photoacoustic ...upon request). Aim 2) Prioritize ovarian cancer-associated surface proteins for their utility as molecular photoacoustic imaging targets and

  11. X-ray photoelectron spectroscopy for the study of microbial cell surfaces

    NARCIS (Netherlands)

    van der Mei, Henderina C; de Vries, Jacob; Busscher, Hendrik J

    2000-01-01

    X-ray photoelectron spectroscopy (XPS) is well known for the characterisation of material surfaces, but at first glance, is an unexpected technique to study the composition of microbial cell surfaces. Despite the fact that intimate contact between materials and microbial cell surfaces occurs in many

  12. X-ray photoelectron spectroscopy for the study of microbial cell surfaces

    NARCIS (Netherlands)

    van der Mei, Henderina C; de Vries, Jacob; Busscher, Hendrik J

    2000-01-01

    X-ray photoelectron spectroscopy (XPS) is well known for the characterisation of material surfaces, but at first glance, is an unexpected technique to study the composition of microbial cell surfaces. Despite the fact that intimate contact between materials and microbial cell surfaces occurs in many

  13. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.

    2017-02-17

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed to phytoplankton by exploiting their spectral characteristics. We discriminated between cells with PAHs from cells free of PAHs. Clear discrimination was observed with flow cytometer provided with 375 or 405nm lasers in addition to the standard 488nm laser necessary to identify phytoplankton. Using this method, we measured the relationship between the percentages of phytoplankton organisms with PAHs, with the decrease in the growth rate. Moreover, the development of this method could be extended to facilitate the study of PAHs impact on cell cultures from a large variety of organisms.

  14. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  15. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad;

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  16. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Christopher T. Saeui

    2015-06-01

    Full Text Available Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  17. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    Science.gov (United States)

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc.

  18. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko;

    2013-01-01

    of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass...

  19. Projections of Declining Surface-Water Availability for the Southwestern United States

    Science.gov (United States)

    Seager, Richard; Ting, Mingfang; Li, Cuihua; Naik, Naomi; Cook, Benjamin; Nakamura, Jennifer; Liu, Haibo

    2012-01-01

    16 of the CMIP5 models had all the data needed for this work for at least one simulation that was continuous from 1950 to 2040. Details of the models analyzed here are provided in Table S1. The model data analyzed here are available at http://strega.ldeo.columbia.edu:81/expert/home/.naomi/.AR5/.v2/.historical:rcp85/.mmm16/ a. Assessing the climatology of the models Despite increases in horizontal resolution of many models compared to their CMIP3 counterparts none of these models can adequately resolve the topography of the south west United States, such as the Sierra Nevada and Rocky Mountains and the associated orographic precipitation. This requires that caution be used when interpreting the results presented here. To assess the ability of the models to simulate the current hydroclimate, in Figure S1 we show the observed (from the Global Precipitation Climatology Centre gridded rain gauge data, (1)) monthly climatology of precipitation and the same for all the models and the multimodel mean for the California-Nevada, Colorado headwaters and Texas regions. The GPCC data uses rain gauges only and interpolates to regular grids of which we used the 1? by 1? one. Details of the data set can be found in (2). While the models apparently overestimate precipitation in California and Nevada the seasonal cycle with wet winters and dry summers is very well represented. It is also possible that the rain gauge observations are biased low by inadequately sampling the higher mountain regions. How ever the models might also be expected to underestimate orographic precipitation due to inadequate horizontal resolution. The 25 models are also too wet in the Colorado headwaters region but correctly represent the quite even distribution though the year. The bimodal distribution of precipitation in Texas, with peaks in May and September, and the absolute amounts, are well modeled but with the September peak too weak. The positive precipitation bias translates into a positive runoff

  20. Teaching Basic Science Environmentally, The Concept: The cell is basic unit of structure of most organisms.

    Science.gov (United States)

    Busch, Phyllis S.

    1985-01-01

    Suggests simple ways to introduce students to the concept that the cell is the basic unit of structure of most organisms. Mentions materials for microscope study that are readily available and easy to handle, e.g., membranes from between the scales of the onion bulb, thin-leaved plants, pond water, and pollen. (JHZ)

  1. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  2. Predication of Plastic Flow Characteristics in Ferrite/Pearlite Steel Using a Fern Unit Cell Method

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Jingtao Han; Jing Liu; Lv Zhang

    2004-01-01

    The flow stress of ferrite/pearlite steel under uni-axial tension was simulated with finite element method (FEM) by applying commercial software MARC/MENTAT. Flow stress curves of ferrite/pearlite steels were calculated based on unit cell model. The effects of volume fraction, distribution and the aspect ratio of pearlite on tensile properties have been investigated.

  3. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  4. Mitigation of Unwanted Forward Narrow-band Radiation from PCBs with a Metamaterial Unit Cell

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2013-01-01

    Mitigation of EMI from a PCB is obtained through the use of a metamaterial unit cell. The focus is on the reduction of narrow-band radiation in the forward hemisphere when the resonant element is etched on a layer located between the source of radiation and the ground plane. As opposed to previou...

  5. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Gail E. [Delphi Automotive Systems, LLC., Gillingham (United Kingdom)

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  6. Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells.

    Science.gov (United States)

    Lin, Chenxi; Martínez, Luis Javier; Povinelli, Michelle L

    2013-09-09

    We design silicon membranes with nanohole structures with optimized complex unit cells that maximize broadband absorption. We fabricate the optimized design and measure the optical absorption. We demonstrate an experimental broadband absorption about 3.5 times higher than an equally-thick thin film.

  7. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    Science.gov (United States)

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.

  8. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald Timothy [Los Alamos National Laboratory; Deo, Randhir P [ASU; Rittmann, Bruce E [ASU; Songkasiri, Warinthorn [UNAFFILIATED

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  9. Inulin isoforms differ by repeated additions of one crystal unit cell.

    Science.gov (United States)

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Gerson, Andrea R; Petrovsky, Nikolai

    2014-03-15

    Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the 'energetic unit' equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an 'energetic unit' equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain.

  10. Question 7: the first units of life were not simple cells.

    Science.gov (United States)

    Norris, Vic; Hunding, Axel; Kepes, Francois; Lancet, Doron; Minsky, Abraham; Raine, Derek; Root-Bernstein, Robert; Sriram, K

    2007-10-01

    Five common assumptions about the first cells are challenged by the pre-biotic ecology model and are replaced by the following propositions: firstly, early cells were more complex, more varied and had a greater diversity of constituents than modern cells; secondly, the complexity of a cell is not related to the number of genes it contains, indeed, modern bacteria are as complex as eukaryotes; thirdly, the unit of early life was an 'ecosystem' rather than a 'cell'; fourthly, the early cell needed no genes at all; fifthly, early life depended on non-covalent associations and on catalysts that were not confined to specific reactions. We present here the outlines of a theory that connects findings about modern bacteria with speculations about their origins.

  11. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  12. Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

    Directory of Open Access Journals (Sweden)

    Marius Ueffing

    2012-10-01

    Full Text Available The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS, and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP and retinal pigment epithelium-specific protein 65kDa (RPE65. Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.

  13. Single-unit-cell layer established Bi 2 WO 6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongwei; Cao, Ranran; Yu, Shixin; Xu, Kang; Hao, Weichang; Wang, Yonggang; Dong, Fan; Zhang, Tierui; Zhang, Yihe

    2017-12-01

    Single-layer catalysis sparks huge interests and gains widespread attention owing to its high activity. Simultaneously, three-dimensional (3D) hierarchical structure can afford large surface area and abundant reactive sites, contributing to high efficiency. Herein, we report an absorbing single-unit-cell layer established Bi2WO6 3D hierarchical architecture fabricated by a sodium dodecyl benzene sulfonate (SDBS)-assisted assembled strategy. The DBS- long chains can adsorb on the (Bi2O2)2+ layers and hence impede stacking of the layers, resulting in the single-unit-cell layer. We also uncovered that SDS with a shorter chain is less effective than SDBS. Due to the sufficient exposure of surface O atoms, single-unit-cell layer 3D Bi2WO6 shows strong selectivity for adsorption on multiform organic dyes with different charges. Remarkably, the single-unit-cell layer 3D Bi2WO6 casts profoundly enhanced photodegradation activity and especially a superior photocatalytic H2 evolution rate, which is 14-fold increase in contrast to the bulk Bi2WO6. Systematic photoelectrochemical characterizations disclose that the substantially elevated carrier density and charge separation efficiency take responsibility for the strengthened photocatalytic performance. Additionally, the possibility of single-unit-cell layer 3D Bi2WO6 as dye-sensitized solar cells (DSSC) has also been attempted and it was manifested to be a promising dye-sensitized photoanode for oxygen evolution reaction (ORR). Our work not only furnish an insight into designing single-layer assembled 3D hierarchical architecture, but also offer a multi-functional material for environmental and energy applications.

  14. Point source nutrient discharges to surface water in the United States Pacific Northwest for 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent the amount of total nitrogen and total phosphorus discharged to surface waters in...

  15. Effect of land cover change on snow free surface albedo across the continental United States

    Science.gov (United States)

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-&t...

  16. SURFACE AND LIGHTNING SOURCES OF NITROGEN OXIDES OVER THE UNITED STATES: MAGNITUDES, CHEMICAL EVOLUTION, AND OUTFLOW

    Science.gov (United States)

    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution...

  17. Motor unit properties in the biceps brachii of stroke patients assessed with surface array EMG

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2007-01-01

    As a consequence of a stroke, both motor control as well as motor unit (MU) characteristics may change, e.g. MU size has been reported to increase due to reinnervation. The aim of the present study was to investigate how differences between the affected and unaffected side of hemiparetic stroke

  18. SURFACE AND LIGHTNING SOURCES OF NITROGEN OXIDES OVER THE UNITED STATES: MAGNITUDES, CHEMICAL EVOLUTION, AND OUTFLOW

    Science.gov (United States)

    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution...

  19. Effect of land cover change on snow free surface albedo across the continental United States

    Science.gov (United States)

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-&t...

  20. A Study of Surface Motor Unit Action Potentials in First Dorsal Interosseus (FDI) Muscle

    Science.gov (United States)

    2007-11-02

    Lefever and Carlo J. Deluca, "A Procedure for Decomposing the Myoelectric Signal Into It’s Constituent Action Potentials---Part 1, Technique, Theory, and...of surface MUAP’s using wavelet matching technique. II. SURFACE MUAP’S AND WAVELETS EMG signals are composed of different MUAP’s. Each...displays an impulse property, which means that it changes in a rapid fashion. Due to this property, the EMG signal is well suited to wavelet analysis

  1. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous {beta}-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in {sup 35}SO{sub 4}-labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed.

  2. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Zangi, Sepideh [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Seyfi, Javad, E-mail: Jseyfi@gmail.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Ehsan [Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran (Iran, Islamic Republic of); Davachi, Seyed Mohammad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. - Highlights: • A novel method is presented for fabrication of superhydrophobic surfaces. • The presence of nanoparticles in non-solvent bath notably promoted phase separation. • Topography had a more notable impact on cell adhesion than superhydrophobicity. • Nano-scale topographical features highly impeded cell adhesion on polymer surfaces.

  3. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haiyan; Wang, Lan; Ruan, Yuanyuan; Zhou, Lei; Zhang, Dongmei [Department of Biochemistry and Molecular Biology, Shanghai Medical Collage, Fudan University, Shanghai 200032 (China); Min, Zhihui [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Xie, Jianhui [Department of Biochemistry and Molecular Biology, Shanghai Medical Collage, Fudan University, Shanghai 200032 (China); Yu, Min, E-mail: minyu@shmu.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical Collage, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical Collage, Fudan University, Shanghai 200032 (China)

    2011-01-21

    Research highlights: {yields} Hsp60 transported to cell surface through the classical secretory pathway was modified with N-glycosylation. {yields} HSAPB-N18 could efficiently deliver Hsp60 to the cell surface via the unconventional secretory pathway. {yields} Cell surface Hsp60 delivered by HASPB-N18 has a proper conformation. {yields} HASPB-N18 is an efficient delivery signal for other DAMP molecules such as Hsp70 and HMGB1. -- Abstract: Damage-associated molecular patterns (DAMPs) are signals released from dying cells evoking the immune system response in several inflammatory disorders. In normal situations, many of DAMPs are nuclear or cytosolic proteins with defined intracellular function, but they could be found on the cell surface following tissue injury. The biological function of the translocated DAMPs is still not well known and an efficient delivery of these molecules on the cell surface is required to clarify their biological effects. In this study, we demonstrated that an unclassical secretory signal peptide, N-terminal 18 amino acids of HASPB (HASPB-N18), could efficiently deliver Hsp60, Hsp70, and HMGB1 on the cell surface. Furthermore, the delivery of these molecules on the cell surface by HASPB-N18 is not limited to a special cell line because several cell lines could use this delivery signal to deliver these molecules on the cell surface. Moreover, we demonstrated that Hsp60 on the cell surface delivered by HASPB-N18 could be recognized by a soluble form of LOX-1, which implies that DAMPs on the cell surface delivered by HASPB-N18 have a proper conformation during transport. Therefore, delivery of DAMPs by HASPB-N18 is a reliable model to further understand the biological significance of DAMPs on the cell surface.

  4. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface.

    NARCIS (Netherlands)

    Tjalsma, H.; Pluk, W.J.G.; Heuvel, L.P.W.J. van den; Peters, W.H.M.; Roelofs, R.H.W.M.; Swinkels, D.W.

    2006-01-01

    Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets

  5. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface.

    NARCIS (Netherlands)

    Tjalsma, H.; Pluk, W.J.G.; Heuvel, L.P.W.J. van den; Peters, W.H.M.; Roelofs, R.H.W.M.; Swinkels, D.W.

    2006-01-01

    Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets

  6. Field Measurements of PCB emissions from Building Surfaces Using a New Portable Emission Test Cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Haven, Rune; Gunnarsen, Lars Bo

    2016-01-01

    The purpose of the study was to measure PCB-emission rates from indoor surfaces on-site in contaminated buildings using a newly developed portable emission test cell. Emission rates were measured from six different surfaces; three untreated surfaces and three remediated surfaces in a contaminated...... Danish elementary school. The emission test cell was capable of measuring widely varying specific emission rates of PCBtotal (8-3357 ng/(m2·h)). Remediated measures were found to reduce the emission rates by more than 96% compared with similar untreated surfaces. Emission rates may be affected...... by the conditions in the test cell (such as clean air and increased air velocity) and thereby potentially be different without the test cell attached to the surface. Still the measured emission rates obtained by using the test cell are valuable for determination of mitigation strategies. Additionally the test cell...

  7. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  8. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration.

    Directory of Open Access Journals (Sweden)

    Cristiana Barbati

    Full Text Available In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP, a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2 was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a

  9. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays.

    Science.gov (United States)

    Yang, Jing; Mei, Ying; Hook, Andrew L; Taylor, Michael; Urquhart, Andrew J; Bogatyrev, Said R; Langer, Robert; Anderson, Daniel G; Davies, Martyn C; Alexander, Morgan R

    2010-12-01

    High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterization (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embryoid body (hEB) cells to a large number (496) of different acrylate polymers synthesized in a microarray format is screened using a high throughput procedure. To determine the role of the polymer surface properties on hEB cell adhesion, detailed HT-SC of these acrylate polymers is carried out using time of flight secondary ion mass spectrometry (ToF SIMS), X-ray photoelectron spectroscopy (XPS), pico litre drop sessile water contact angle (WCA) measurement and atomic force microscopy (AFM). A structure-function relationship is identified between the ToF SIMS analysis of the surface chemistry after a fibronectin (Fn) pre-conditioning step and the cell adhesion to each spot using the multivariate analysis technique partial least squares (PLS) regression. Secondary ions indicative of the adsorbed Fn correlate with increased cell adhesion whereas glycol and other functionalities from the polymers are identified that reduce cell adhesion. Furthermore, a strong relationship between the ToF SIMS spectra of bare polymers and the cell adhesion to each spot is identified using PLS regression. This identifies a role for both the surface chemistry of the bare polymer and the pre-adsorbed Fn, as-represented in the ToF SIMS spectra, in controlling cellular adhesion. In contrast, no relationship is found between cell adhesion and wettability, surface roughness, elemental or functional surface composition. The correlation between ToF SIMS data of the surfaces and the cell adhesion demonstrates

  10. Isolation of cell surface proteins for mass spectrometry-based proteomics.

    Science.gov (United States)

    Elschenbroich, Sarah; Kim, Yunee; Medin, Jeffrey A; Kislinger, Thomas

    2010-02-01

    Defining the cell surface proteome has profound importance for understanding cell differentiation and cell-cell interactions, as well as numerous pathogenic abnormalities. Owing to their hydrophobic nature, plasma membrane proteins that reside on the cell surface pose analytical challenges and, despite efforts to overcome difficulties, remain under-represented in proteomic studies. Limitations in the classically employed ultracentrifugation-based approaches have led to the invention of more elaborate techniques for the purification of cell surface proteins. Three of these methods--cell surface coating with cationic colloidal silica beads, biotinylation and chemical capture of surface glycoproteins--allow for marked enrichment of this subcellular proteome, with each approach offering unique advantages and characteristics for different experiments. In this article, we introduce the principles of each purification method and discuss applications from the recent literature.

  11. Nanoindentation characterisation of human colorectal cancer cells considering cell geometry, surface roughness and hyperelastic constitutive behaviour

    Science.gov (United States)

    Boccaccio, Antonio; Uva, Antonio E.; Papi, Massimiliano; Fiorentino, Michele; De Spirito, Marco; Monno, Giuseppe

    2017-01-01

    Characterisation of the mechanical behaviour of cancer cells is an issue of crucial importance as specific cell mechanical properties have been measured and utilized as possible biomarkers of cancer progression. Atomic force microscopy certainly occupies a prominent place in the field of the mechanical characterisation devices. We developed a hybrid approach to characterise different cell lines (SW620 and SW480) of the human colon carcinoma submitted to nanoindentation measurements. An ad hoc algorithm was written that compares the force-indentation curves experimentally retrieved with those predicted by a finite element model that simulates the nanoindentation process and reproduces the cell geometry and the surface roughness. The algorithm perturbs iteratively the values of the cell mechanical properties implemented in the finite element model until the difference between the experimental and numerical force-indentation curves reaches the minimum value. The occurrence of this indicates that the implemented material properties are very close to the real ones. Different hyperelastic constitutive models, such as Arruda-Boyce, Mooney-Rivlin and Neo-Hookean were utilized to describe the structural behaviour of indented cells. The algorithm was capable of separating, for all the cell lines investigated, the mechanical properties of cell cortex and cytoskeleton. Material properties determined via the algorithm were different with respect to those obtained with the Hertzian contact theory. This demonstrates that factors such as: the cell geometry/anatomy and the hyperelastic constitutive behaviour, which are not contemplated in the Hertz’s theory hypotheses, do affect the nanoindentation measurements. The proposed approach represents a powerful tool that, only on the basis of nanoindentation measurements, is capable of characterising material at the subcellular level.

  12. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    Directory of Open Access Journals (Sweden)

    Tam Yew

    2012-10-01

    Full Text Available Abstract Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg from Pichia pastoris expression cells were optimized using response surface methodology (RSM based on the central composite design (CCD. The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing.

  13. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  14. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Flonia Levy-Adam

    Full Text Available Heparanase is a heparan sulfate (HS degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158-Asp(171, termed KKDC was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.

  15. Acid base properties of cyanobacterial surfaces I: Influences of growth phase and nitrogen metabolism on cell surface reactivity

    Science.gov (United States)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Significant efforts have been made to elucidate the chemical properties of bacterial surfaces for the purposes of refining surface complexation models that can account for their metal sorptive behavior under diverse conditions. However, the influence of culturing conditions on surface chemical parameters that are modeled from the potentiometric titration of bacterial surfaces has received little regard. While culture age and metabolic pathway have been considered as factors potentially influencing cell surface reactivity, statistical treatments have been incomplete and variability has remained unconfirmed. In this study, we employ potentiometric titrations to evaluate variations in bacterial surface ligand distributions using live cells of the sheathless cyanobacterium Anabaena sp. strain PCC 7120, grown under a variety of batch culture conditions. We evaluate the ability for a single set of modeled parameters, describing acid-base surface properties averaged over all culture conditions tested, to accurately account for the ligand distributions modeled for each individual culture condition. In addition to considering growth phase, we assess the role of the various assimilatory nitrogen metabolisms available to this organism as potential determinants of surface reactivity. We observe statistically significant variability in site distribution between the majority of conditions assessed. By employing post hoc Tukey-Kramer analysis for all possible pair-wise condition comparisons, we conclude that the average parameters are inadequate for the accurate chemical description of this cyanobacterial surface. It was determined that for this Gram-negative bacterium in batch culture, ligand distributions were influenced to a greater extent by nitrogen assimilation pathway than by growth phase.

  16. Interaction of progenitor bone cells with different surface modifications of titanium implant.

    Science.gov (United States)

    Chen, Wen-Cheng; Chen, Ya-Shun; Ko, Chia-Ling; Lin, Yi; Kuo, Tzu-Huang; Kuo, Hsien-Nan

    2014-04-01

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra=1.26μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. ProtEx: a novel technology to display exogenous proteins on the cell surface for immunomodulation.

    Science.gov (United States)

    Singh, Narendra P; Yolcu, Esma S; Askenasy, Nadir; Shirwan, Haval

    2005-11-01

    Gene therapy as an immunomodulatory approach has the potential to treat various inherited and acquired immune-based human diseases. However, its clinical application has several challenges, varying from the efficiency of gene transfer, control of gene expression, cell and tissue targeting, and safety concerns associated with the introduction of exogenous DNA into cells/tissues. Gene therapy is also a time- and labor-intensive procedure. As an alternative, we recently developed a novel technology, ProtEx, that allows for rapid, efficient, and durable display of exogenous proteins on the surface of cells, tissues, and organs without detectable toxicity. This technology exploits the strong binding affinity (Kd = 10(-15) M) of streptavidin with biotin and involves generation of chimeric molecules composed of the extracellular portions of immunological proteins of interest and a modified form of streptavidin, biotinylation of biological surfaces, and decoration of the modified surface with chimeric proteins. Biotin persists on the cell surface for weeks both in vitro and in vivo, thereby providing a platform to display exogenous proteins with extended cell surface kinetics. Two chimeric proteins, rat FasL (SA-FasL) and human CD80 (CD80-SA), were generated and tested for cell surface display and immunomodulatory functions. SA-FasL and CD80-SA molecules persisted on the surface of various cell types for extended periods, varying from days to weeks in vitro and in vivo. The cell surface kinetics, however, were protein and cell type dependent. SA-FasL showed potent apoptotic activity against Fas+ cells as a soluble protein or displayed on the cell surface and effectively blocked alloreactive responses. The display of CD80-SA on the surface of tumor cells, however, converted them into antigen-presenting cells for effective stimulation of autologous and allogeneic T-cell responses. ProtEx technology, therefore, represents a practical and effective alternative to DNA

  18. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells.

    Science.gov (United States)

    Nystedt, Johanna; Anderson, Heidi; Tikkanen, Jonne; Pietilä, Mika; Hirvonen, Tia; Takalo, Reijo; Heiskanen, Annamari; Satomaa, Tero; Natunen, Suvi; Lehtonen, Siri; Hakkarainen, Tanja; Korhonen, Matti; Laitinen, Saara; Valmu, Leena; Lehenkari, Petri

    2013-02-01

    The promising clinical effects of mesenchymal stromal/stem cells (MSCs) rely especially on paracrine and nonimmunogenic mechanisms. Delivery routes are essential for the efficacy of cell therapy and systemic delivery by infusion is the obvious goal for many forms of MSC therapy. Lung adhesion of MSCs might, however, be a major obstacle yet to overcome. Current knowledge does not allow us to make sound conclusions whether MSC lung entrapment is harmful or beneficial, and thus we wanted to explore MSC lung adhesion in greater detail. We found a striking difference in the lung clearance rate of systemically infused MSCs derived from two different clinical sources, namely bone marrow (BM-MSCs) and umbilical cord blood (UCB-MSCs). The BM-MSCs and UCB-MSCs used in this study differed in cell size, but our results also indicated other mechanisms behind the lung adherence. A detailed analysis of the cell surface profiles revealed differences in the expression of relevant adhesion molecules. The UCB-MSCs had higher expression levels of α4 integrin (CD49d, VLA-4), α6 integrin (CD49f, VLA-6), and the hepatocyte growth factor receptor (c-Met) and a higher general fucosylation level. Strikingly, the level of CD49d and CD49f expression could be functionally linked with the lung clearance rate. Additionally, we saw a possible link between MSC lung adherence and higher fibronectin expression and we show that the expression of fibronectin increases with MSC culture confluence. Future studies should aim at developing methods of transiently modifying the cell surface structures in order to improve the delivery of therapeutic cells.

  19. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions of the upper confining unit of the Floridan aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  20. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Geologic units forming the base of the Floridan aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  1. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Geologic units forming the top of the Floridan aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  2. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions depicting the low-permeability units that overlie the Lower Floridan aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  3. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Contours for top of the middle confining unit of the Floridan aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  4. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Points for the thickness of the regional middle confining unit

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  5. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Points depicting the thickness of the upper confining unit or limestone residuum

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  6. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Points for the thickness of the Bucatunna clay confining unit

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  7. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Area where upper confining unit is thin or absent beneath the surficial aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  8. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygons representing thickness of the upper confining unit of the Floridan aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  9. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions of low-permeability units forming the MAPCU

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  10. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    Directory of Open Access Journals (Sweden)

    Kaoshan Dai

    2015-09-01

    Full Text Available The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  11. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    Science.gov (United States)

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  12. Nucleolin on the cell surface as a new molecular target for gastric cancer treatment.

    Science.gov (United States)

    Watanabe, Tatsuro; Hirano, Kazuya; Takahashi, Atsushi; Yamaguchi, Kensei; Beppu, Masatoshi; Fujiki, Hirota; Suganuma, Masami

    2010-01-01

    Nucleolin is an abundant non-ribosomal protein found in nucleolus and a major component of silver-stained nucleolar organizer region (AgNOR), a histopathological marker of cancer which is highly elevated in cancer cells. We recently reported that nucleolin on the cell surface of mouse gastric cancer cells acts as a receptor for tumor necrosis factor-alpha-inducing protein (Tipalpha), a new carcinogenic factor of Helicobacter pylori. In this study, we first examined the localization of nucleolin on cell surface of five gastric cancer cell lines by cell fractionation and flow cytometry: We found that large amounts of nucleolin were present on surface of MKN-45, KATOIII, MKN-74, and AGS cells, with smaller amounts on surface of MKN-1 cells. The membrane fraction of normal epithelial cells of mouse glandular stomach did not contain much nucleolin, suggesting that translocation of nucleolin to the cell surface occurs during carcinogenesis, making for easier binding with Tipalpha. AS1411, a nucleolin targeted DNA aptamer, inhibited growth of gastric cancer cell lines in this order of potency: MKN-45>KATOIII>AGS>MKN-74=MKN-1, associated with induction of S-phase cell cycle arrest. Fluorescein isothiocyanate (FITC)-AS1411 was more rapidly incorporated into MKN-45 and AGS than into MKN-1 cells, based on varying amounts of cell surface nucleolin. We think that AS1411 first binds to nucleolin on the cell surface and that the binding complex is then incorporated into the cells. All results indicate that nucleolin on the cell surface is a new and promising therapeutic target for treatment of gastric cancer.

  13. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate.

    Science.gov (United States)

    Chuah, Yon Jin; Kuddannaya, Shreyas; Lee, Min Hui Adeline; Zhang, Yilei; Kang, Yuejun

    2015-02-01

    In recent years, poly(dimethylsiloxane) (PDMS)-based microfluidic devices have become very popular for on-chip cell investigation. Maintenance of mammalian cell adhesion on the substrate surface is crucial in determining the cell viability, proliferation and differentiation. However, the inherent hydrophobicity of PDMS is unfavourable for cell culture, causing cells to eventually dislodge from the surface. Although physically adsorbed matrix proteins can promote initial cell adhesion, this effect is usually short-lived. To address this critical issue, in this study, we employed (3-aminopropyl) triethoxy silane (APTES) and cross-linker glutaraldehyde (GA) chemistry to immobilize collagen type 1 (Col1) on PDMS. These modified surfaces are highly efficient to support the adhesion of mesenchymal stem cells (MSCs) with no deterioration of their potency. Significant changes of the native PDMS surface properties were observed with the proposed surface functionalization, and MSC adhesion was improved on PDMS surfaces modified with APTES + GA + Protein. Therefore, this covalent surface modification could generate a more biocompatible platform for stabilized cell adhesion. Furthermore, this modification method facilitated long-term cell attachment, which is favourable for successful induction of osteogenesis and cell sheet formation with an increased expression of osteogenic biomarkers and comparable extracellular matrix (ECM) constituent biomarkers, respectively. The surface silanization can be applied to PDMS-based microfluidic systems for long-term study of cellular development. Similar strategies could also be applied to several other substrate materials by appropriate combinations of self-assembled monolayers (SAMs) and ECM proteins.

  14. A switchable pH-differential unitized regenerative fuel cell with high performance

    Science.gov (United States)

    Lu, Xu; Xuan, Jin; Leung, Dennis Y. C.; Zou, Haiyang; Li, Jiantao; Wang, Hailiang; Wang, Huizhi

    2016-05-01

    Regenerative fuel cells are a potential candidate for future energy storage, but their applications are limited by the high cost and poor round-trip efficiency. Here we present a switchable pH-differential unitized regenerative fuel cell capable of addressing both the obstacles. Relying on a membraneless laminar flow-based design, pH environments in the cell are optimized independently for different electrode reactions and are switchable together with the cell process to ensure always favorable thermodynamics for each electrode reaction. Benefiting from the thermodynamic advantages of the switchable pH-differential arrangement, the cell allows water electrolysis at a voltage of 0.57 V, and a fuel cell open circuit voltage of 1.89 V, rendering round-trip efficiencies up to 74%. Under room conditions, operating the cell in fuel cell mode yields a power density of 1.3 W cm-2, which is the highest performance to date for laminar flow-based cells and is comparable to state-of-the-art polymer electrolyte membrane fuel cells.

  15. A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit

    Science.gov (United States)

    Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose

    1989-01-01

    An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.

  16. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Olga V. [Creatv MicroTech, Inc., 2242 West Harrison St., Chicago 60612, IL (United States); Adams, Daniel L., E-mail: dan@creatvmicrotech.com [Creatv MicroTech, Inc., 1 Deer Park Drive, Monmouth Junction, NJ 08852 (United States); Divan, Ralu; Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Ave., Argonne 60439, IL (United States); Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei [Creatv MicroTech, Inc., 11609 Lake Potomac Drive, Potomac 20854, MD (United States)

    2016-09-01

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. - Highlights: • Surface topographical effects the growth patterns and cell function of cancer cells • Nanoscale surface topography on polymer filters for circulating tumor cell culture • Membrane fabricated directly on polymer surfaces utilized for polymer etching • Nanotopography alters cell shape, phenotype and growth patterns of cancer cells • Nanoscale surface topography dictates monolayering or 3D structured cell culture.

  17. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization

    DEFF Research Database (Denmark)

    Henry, M D; Satz, J S; Brakebusch, C

    2001-01-01

    Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface....... Here we show that DG-mediated laminin clustering on mouse embryonic stem (ES) cells is a dynamic process in which clusters are consolidated over time into increasingly more complex structures. Utilizing various null-mutant ES cell lines, we define roles for other molecules in this process. In beta1...... integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that beta1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells...

  18. Single-unit transfusions and hemoglobin trigger: relative impact on red cell utilization.

    Science.gov (United States)

    Yang, William W; Thakkar, Rajiv N; Gehrie, Eric A; Chen, Weiyun; Frank, Steven M

    2017-05-01

    Patient blood management (PBM) programs can reduce unnecessary transfusions, but the optimal methods used to achieve this effect are unclear. We tested the hypothesis that encouraging single-unit red blood cell (RBC) transfusions in stable patients would have a greater impact on blood use than compliance with a specific hemoglobin (Hb) transfusion trigger alone. We analyzed blood utilization data at three community hospitals without previous PBM efforts before and after implementing a PBM program. Data were analyzed at monthly intervals to determine the relative impact of a "Why give 2 when 1 will do?" campaign promoting single-unit RBC transfusions and simultaneous efforts to promote evidence-based Hb triggers of 7 or 8 g/dL. Univariate and multivariate analyses were used to identify independent effects of these two interventions on overall RBC utilization. Univariate analysis revealed that both the increase in single-unit transfusions (from 38.0% to 70.9%; p utilization. Multivariate analysis showed that the increase in single-unit transfusions was an independent predictor of decreased RBC utilization, but the Hb triggers of both 7 and 8 g/dL were not. Overall, our PBM efforts decreased RBC utilization from 0.254 to 0.185 units/patient (27.2%) across all three hospitals (p = 0.0009). A campaign promoting single-unit RBC transfusions had a greater impact on RBC utilization than did encouraging a restrictive transfusion trigger. © 2016 AABB.

  19. The Daniell Cell, Ohm's Law and the Emergence of the International System of Units

    CERN Document Server

    Jayson, Joel S

    2015-01-01

    Telegraphy originated in the 1830s and 40s and flourished in the following decades, but with a patchwork of electrical standards. Electromotive force was for the most part measured in units of the predominant Daniell cell. Each company had their own resistance standard. In 1862 the British Association for the Advancement of Science formed a committee to address this situation. By 1873 they had given definition to the electromagnetic system of units (emu) and defined the practical units of the ohm as ${10}^9$ emu units of resistance and the volt as ${10}^8$ emu units of electromotive force. These recommendations were ratified and expanded upon in a series of international congresses held between 1881 and 1904. A proposal by Giovanni Giorgi in 1901 took advantage of a coincidence between the conversion of the units of energy in the emu system (the erg) and in the practical system (the joule) in that the same conversion factor existed between the cgs based emu system and a theretofore undefined MKS system. By in...

  20. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian;

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...... the number of polyclonal and monoclonal antibodies directed against the cell-binding domain (CB-domain) on the fibronectin (Fn) is significantly larger on the (HA) surfaces. Moreover, a higher number of antibodies bound to the fibronectin coatings formed from the highest bulk fibronection concentration....... In subsequent cell studies with hMSC's we studied the cell spreading, cytoskeletal organization and cell morphology on the respective surfaces. When the cells were adsorbed on the uncoated substrates, a diffuse cell actin cytoskeleton was revealed, and the cells had a highly elongated shape. On the fibronectin...

  1. Scanning the cell surface proteome of cancer cells and identification of metastasis-associated proteins using a subtractive immunization strategy

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Ditzel, Henrik J

    2009-01-01

    capabilities. Our results yielded a large panel of monoclonal antibodies (mAbs) that recognized cell surface markers preferentially or exclusively expressed on metastatic vs nonmetastatic cancer cells. Four mAbs and their corresponding antigens were further characterized. Importantly, analysis on an extended......Identification of the cell surface proteome and comparison of their expression between cells with different phenotypic characteristics is crucial to the discovery of novel cancer drug targets as well as elucidating the basic biologic processes of cancer. However, cell surface proteomics are complex...... characterization of the identified proteins. The strategy is based on subtractive immunization of mice, and we used the two isogenic cell lines, NM-2C5 and M-4A4, derived from the MDA-MB-435 cancer cell line, as a model system. Although the two cell lines are equally tumorigenic, only M-4A4 has metastatic...

  2. Suppression of cell-spreading and phagocytic activity on nano-pillared surface: in vitro experiment using hemocytes of the colonial ascidian Botryllus schlosseri

    Directory of Open Access Journals (Sweden)

    L Ballarin

    2015-02-01

    Full Text Available Nano-scale nipple array on the body surface has been described from various invertebrates including endoparasitic and mesoparasitic copepods, but the functions of the nipple array is not well understood. Using the hydrophilized nanopillar sheets made of polystyrene as a mimetic material of the nipple arrays on the parasites’ body surface, we assayed the cell spreading and phagocytosis of the hemocytes of the colonial ascidian Botryllus schlosseri. On the pillared surface, the number of spreading amebocytes and the number of phagocytizing hemocytes per unit area were always smaller than those on the flat surface (Mann-Whitney test, p < 0.05 - 0.001, probably because the effective area for the cell attachment on the pillared surface is much smaller than the area on the flat sheet. The present results supports the idea that the nipple array on the parasites' body surface reduces the innate immune reaction from the host hemocytes.

  3. Regional-scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: insights into highland crustal evolution and alteration history

    Science.gov (United States)

    Rogers, A. Deanne; Fergason, Robin L.

    2011-01-01

    The compositional, thermophysical and geologic characteristics of surface units in Iapygia and Tyrrhena Terra (60°E-100°E, 0°-30°S) provide new insights into the compositional stratigraphy of the region. Intercrater plains are dominated by two surface units. The older unit (unit 1) is deficient in olivine and more degraded and likely consists of a mixture of impact, volcanic and sedimentary materials. The younger unit (unit 2) is enriched in olivine, exhibits a resistant morphology and higher thermal inertia, and likely represents volcanic infilling of plains. Units 1 and 2 bear a strong resemblance to those previously mapped in Mare Serpentis, a section of highlands crust located northwest of Hellas Basin. Thus, the two major intercrater plains units are even more widespread than previously thought and therefore likely constitute important components of Mars' highland stratigraphy. Many craters in the region contain high thermal inertia deposits (unit 3) that are compositionally identical to unit 2. These may have formed via volcanic infilling or may represent sedimentary materials that have been eroded from crater walls and lithified. Less common units include olivine and/or pyroxene-rich massifs and crater central peaks. These are primarily found within Hellas Basin rim units and may represent mantle materials brought toward the surface during the Hellas impact. Putative chloride deposits are primarily associated with olivine-deficient surfaces (unit 1) that may be heavily degraded occurrences of unit 2. The observations raise a variety of questions related to Martian crustal evolution and alteration that may have more widespread implications outside the study region.

  4. Regional-scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: Insights into highland crustal evolution and alteration history

    Science.gov (United States)

    Rogers, A. Deanne; Fergason, Robin L.

    2011-08-01

    The compositional, thermophysical and geologic characteristics of surface units in Iapygia and Tyrrhena Terra (60°E-100°E, 0°-30°S) provide new insights into the compositional stratigraphy of the region. Intercrater plains are dominated by two surface units. The older unit (unit 1) is deficient in olivine and more degraded and likely consists of a mixture of impact, volcanic and sedimentary materials. The younger unit (unit 2) is enriched in olivine, exhibits a resistant morphology and higher thermal inertia, and likely represents volcanic infilling of plains. Units 1 and 2 bear a strong resemblance to those previously mapped in Mare Serpentis, a section of highlands crust located northwest of Hellas Basin. Thus, the two major intercrater plains units are even more widespread than previously thought and therefore likely constitute important components of Mars' highland stratigraphy. Many craters in the region contain high thermal inertia deposits (unit 3) that are compositionally identical to unit 2. These may have formed via volcanic infilling or may represent sedimentary materials that have been eroded from crater walls and lithified. Less common units include olivine and/or pyroxene-rich massifs and crater central peaks. These are primarily found within Hellas Basin rim units and may represent mantle materials brought toward the surface during the Hellas impact. Putative chloride deposits are primarily associated with olivine-deficient surfaces (unit 1) that may be heavily degraded occurrences of unit 2. The observations raise a variety of questions related to Martian crustal evolution and alteration that may have more widespread implications outside the study region.

  5. Construction of 3D micropatterned surfaces with wormlike and superhydrophilic PEG brushes to detect dysfunctional cells.

    Science.gov (United States)

    Hou, Jianwen; Shi, Qiang; Ye, Wei; Fan, Qunfu; Shi, Hengchong; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2014-12-10

    Detection of dysfunctional and apoptotic cells plays an important role in clinical diagnosis and therapy. To develop a portable and user-friendly platform for dysfunctional and aging cell detection, we present a facile method to construct 3D patterns on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene glycol) brushes. Normal red blood cells (RBCs) and lysed RBCs (dysfunctional cells) are used as model cells. The strategy is based on the fact that poly(ethylene glycol) brushes tend to interact with phosphatidylserine, which is in the inner leaflet of normal cell membranes but becomes exposed in abnormal or apoptotic cell membranes. We demonstrate that varied patterned surfaces can be obtained by selectively patterning atom transfer radical polymerization (ATRP) initiators on the SEBS surface via an aqueous-based method and growing PEG brushes through surface-initiated atom transfer radical polymerization. The relatively high initiator density and polymerization temperature facilitate formation of PEG brushes in high density, which gives brushes worm-like morphology and superhydrophilic property; the tendency of dysfunctional cells adhered on the patterned surfaces is completely different from well-defined arrays of normal cells on the patterned surfaces, providing a facile method to detect dysfunctional cells effectively. The PEG-patterned surfaces are also applicable to detect apoptotic HeLa cells. The simplicity and easy handling of the described technique shows the potential application in microdiagnostic devices.

  6. Surface Ozone Background in the United States: Canadian and Mexican Pollution Influences

    Science.gov (United States)

    We use a global chemical transport model (GEOS-Chem) with 1° x 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-h average ozone concentrations in U.S.surface air.

  7. Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus.

    OpenAIRE

    Shabtai, Y; Gutnick, D L

    1985-01-01

    An esterase activity has been found, both in the cell-free growth medium and on the cell surface of the hydrocarbon-degrading Acinetobacter calcoaceticus RAG-1. The enzyme catalyzed the hydrolysis of acetyl and other acyl groups from triglycerides and aryl and alkyl esters. Emulsan, the extracellular heteropolysaccharide bioemulsifier produced by strain RAG-1, was also a substrate for the enzyme. Gel filtration showed that the cell-free enzyme was released from the cell surface either emulsan...

  8. Influence of charge densities of randomly sulfonated polystyrene surfaces on cell attachment and proliferation.

    Science.gov (United States)

    Khatua, Dibyendu; Kwak, Byeongdo; Shin, Kwanwoo; Song, Ju-Myung; Kim, Joon-Seop; Choi, Jai-Hak

    2011-05-01

    Attachment and proliferation of NIH-3T3 fibroblast cells on random polymer surfaces, polystyrene sulfonated acid (PSSAx) with five different degrees of sulfonation (x = 0%, 5%, 10%, 15% and 33%) and on a tissue culture polystyrene (TCPS) surface were studied. The surface properties, wettability and roughness were measured by water-contact angle and atomic force microscopy measurement. The wettability and surface roughness increased with increasing the content of sulfonic acid groups on the surfaces. The number of cells attached on the surface after seeding increased with increasing x and reached to the maximum value on PSSA15. The cell proliferation also increased with increasing x. However, cell proliferation was slow down on PSSA33 in comparison to PSSA10 and PSSA15 surfaces after 48 h culture.

  9. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    Science.gov (United States)

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces.

  10. Vibrational spectra study of phosphorus dendrimer containing azobenzene units on the surface

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2013-08-01

    The FTIR and FT Raman spectra of the first generation dendrimers, possessing oxybenzaldehyde (G1) or oxyphenylazobenzaldehyde (G2) terminal groups and sodium 4-[4-oxyphenyl)azo]-benzaldehyde (SOAB) were studied. The structural optimization and normal mode analysis were performed for dendrimer G2 on the basis of the density functional theory (DFT). These calculations gave the frequencies of vibrations, infrared intensities and Raman scattering activities for the E- and Z-forms of azobenzene unit. The energy differences between the E- and Z-forms are 12.62 and 25.16 kcal/mol for SOAB and G2. The calculated in gas phase dipole moments for the E- and Z-forms are equal to 20.86, 18.28 D (SOAB) and 7.56, 8.88 D (G2). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendrimer G2 molecule has a concave lens structure with planar sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)Pdbnd S and sbnd Osbnd C6H4sbnd Ndbnd Nsbnd C6H4sbnd CHdbnd O fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of dendrimer G2 were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The strong band 1598 cm-1 in the IR spectra show marked changes of the optical density in dependence of substituents in the aromatic ring. The differences in the IR and Raman spectra of SOAB and G2 for the E- and Z-forms of azobenzene units were cleared up. During structural isomerization of azobenzene units, redistribution of band intensities appears to a much higher extent than frequency shifts.

  11. Cell-material interactions revealed via material techniques of surface patterning.

    Science.gov (United States)

    Yao, Xiang; Peng, Rong; Ding, Jiandong

    2013-10-04

    Cell-material interactions constitute a key fundamental topic in biomaterials study. Various cell cues and matrix cues as well as soluble factors regulate cell behaviors on materials. These factors are coupled with each other as usual, and thus it is very difficult to unambiguously elucidate the role of each regulator. The recently developed material techniques of surface patterning afford unique ways to reveal the underlying science. This paper reviews the pertinent material techniques to fabricate patterns of microscale and nanoscale resolutions, and corresponding cell studies. Some issues are emphasized, such as cell localization on patterned surfaces of chemical contrast, and effects of cell shape, cell size, cell-cell contact, and seeding density on differentiation of stem cells. Material cues to regulate cell adhesion, cell differentiation and other cell events are further summed up. Effects of some physical properties, such as surface topography and matrix stiffness, on cell behaviors are also discussed; nanoscaled features of substrate surfaces to regulate cell fate are summarized as well. The pertinent work sheds new insight into the cell-material interactions, and is stimulating for biomaterial design in regenerative medicine, tissue engineering, and high-throughput detection, diagnosis, and drug screening. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Regulations in the United States for cell transplantation clinical trials in neurological diseases

    Institute of Scientific and Technical Information of China (English)

    He Zhu; Yuanqing Tan; Qi Gu; Weifang Han; Zhongwen Li; Jason S Meyer; Baoyang Hu

    2015-01-01

    Objective: This study aimed to use a systematic approach to evaluate the current utilization, safety, and effectiveness of cell therapies for neurological diseases in human. And review the present regulations, considering United States (US) as a representative country, for cell transplantation in neurological disease and discuss the challenges facing the field of neurology in the coming decades. Methods:A detailed search was performed in systematic literature reviews of cellular‐based therapies in neurological diseases, using PubMed, web of science, and clinical trials. Regulations of cell therapy products used for clinical trials were searched from the Food and Drug Administration (FDA) and the National Institutes of Health (NIH). Results: Seven most common types of cell therapies for neurological diseases have been reported to be relatively safe with varying degrees of neurological recovery. And a series of regulations in US for cellular therapy was summarized including preclinical evaluations, sourcing material, stem cell manufacturing and characterization, cell therapy product, and clinical trials. Conclusions:Stem cell‐based therapy holds great promise for a cure of such diseases and will value a growing population of patients. However, regulatory permitting activity of the US in the sphere of stem cells, technologies of regenerative medicine and substitutive cell therapy are selective, theoretical and does not fit the existing norm and rules. Compiled well‐defined regulations to guide the application of stem cell products for clinical trials should be formulated.

  13. Why do models overestimate surface ozone in the Southeast United States?

    Science.gov (United States)

    Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; Thompson, Anne M.; Wennberg, Paul O.; Crounse, John D.; St. Clair, Jason M.; Cohen, Ronald C.; Laughner, Joshua L.; Dibb, Jack E.; Hall, Samuel R.; Ullmann, Kirk; Wolfe, Glenn M.; Pollack, Illana B.; Peischl, Jeff; Neuman, Jonathan A.; Zhou, Xianliang

    2016-11-01

    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone

  14. Treatment of peri-implantitis around TiUnite-surface implants using Er:YAG laser microexplosions.

    Science.gov (United States)

    Yamamoto, Atsuhikp; Tanabe, Toshiichiro

    2013-01-01

    Implant therapy can lead to peri-implantitis, and none of the methods used to treat this inflammatory response have been predictably effective. It is nearly impossible to treat infected surfaces such as TiUnite (a titanium oxide layer) that promote osteoinduction, but finding an effective way to do so is essential. Experiments were conducted to determine the optimum irradiation power for stripping away the contaminated titanium oxide layer with Er:YAG laser irradiation, the degree of implant heating as a result of Er:YAG laser irradiation, and whether osseointegration was possible after Er:YAG laser microexplosions were used to strip a layer from the surface of implants placed in beagle dogs. The Er:YAG laser was effective at removing an even layer of titanium oxide, and the use of water spray limited heating of the irradiated implant, thus protecting the surrounding bone tissue from heat damage.

  15. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    Science.gov (United States)

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  16. Tracking Traction Force Changes of Single Cells on the Liquid Crystal Surface

    Directory of Open Access Journals (Sweden)

    Chin Fhong Soon

    2015-01-01

    Full Text Available Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT system can be used in conjunction with a bespoke cell traction force mapping (CTFM software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.

  17. Tracking traction force changes of single cells on the liquid crystal surface.

    Science.gov (United States)

    Soon, Chin Fhong; Tee, Kian Sek; Youseffi, Mansour; Denyer, Morgan C T

    2015-01-05

    Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT) system can be used in conjunction with a bespoke cell traction force mapping (CTFM) software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.

  18. Effects of surface molecular chirality on adhesion and differentiation of stem cells.

    Science.gov (United States)

    Yao, Xiang; Hu, Yiwen; Cao, Bin; Peng, Rong; Ding, Jiandong

    2013-12-01

    Chirality is one of the most fascinating and ubiquitous cues in nature, especially in life. The effects of chiral surfaces on stem cells have, however, not yet been revealed. Herein we examined the molecular chirality effect on stem cell behaviors. Self assembly monolayers of L- or D-cysteine (Cys) were formed on a glass surface coated with gold. Mesenchymal stem cells (MSCs) derived from bone marrow of rats exhibited more adhering preference and thus less cell spreading on the L surface than on the d one at the confluent condition. More protein adsorption was observed on the L surface after immersed in cell culture medium with fetal bovine serum. After osteogenic and adipogenic co-induction at the confluent condition, a larger proportion of cells became osteoblasts on the d surface, while the adipogenic fraction on the L surface was found to be higher than on the D surface. In order to interpret how this chirality effect worked, we fabricated Cys microislands of two sizes on the non-fouling poly(ethylene glycol) hydrogel to pre-define the spreading areas of single cells. Then the differentiation extents did not exhibit a significant difference between L and D surfaces under a given area of microislands, yet very significant differences of osteogenesis and adipogenesis were found between different areas. So, the molecular chirality influenced stem cells, probably via favored adsorption of natural proteins on the L surface, which led to more cell adhesion; and the larger cell spreading area with higher cell tension in turn favored osteogenesis rather than adipogenesis. As a result, this study reveals the molecular chirality on material surfaces as an indirect regulator of stem cells.

  19. Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States

    Science.gov (United States)

    Fiore, Arlene M.; Horowitz, Larry W.; Purves, Drew W.; Levy, Hiram; Evans, Mathew J.; Wang, Yuxuan; Li, Qinbin; Yantosca, Robert M.

    2005-06-01

    Reducing surface ozone (O3) to concentrations in compliance with the national air quality standard has proven to be challenging, despite tighter controls on O3 precursor emissions over the past few decades. New evidence indicates that isoprene emissions changed considerably from the mid-1980s to the mid-1990s owing to land-use changes in the eastern United States (Purves et al., 2004). Over this period, U.S. anthropogenic VOC (AVOC) emissions decreased substantially. Here we apply two chemical transport models (GEOS-CHEM and MOZART-2) to test the hypothesis, put forth by Purves et al. (2004), that the absence of decreasing O3 trends over much of the eastern United States may reflect a balance between increases in isoprene emissions and decreases in AVOC emissions. We find little evidence for this hypothesis; over most of the domain, mean July afternoon (1300-1700 local time) surface O3 is more responsive (ranging from -9 to +7 ppbv) to the reported changes in anthropogenic NOx emissions than to the concurrent isoprene (-2 to +2 ppbv) or AVOC (-2 to 0 ppbv) emission changes. The estimated magnitude of the O3 response to anthropogenic NOx emission changes, however, depends on the base isoprene emission inventory used in the model. The combined effect of the reported changes in eastern U.S. anthropogenic plus biogenic emissions is insufficient to explain observed changes in mean July afternoon surface O3 concentrations, suggesting a possible role for decadal changes in meteorology, hemispheric background O3, or subgrid-scale chemistry. We demonstrate that two major uncertainties, the base isoprene emission inventory and the fate of isoprene nitrates (which influence surface O3 in the model by -15 to +4 and +4 to +12 ppbv, respectively), preclude a well-constrained quantification of the present-day contribution of biogenic or anthropogenic emissions to surface O3 concentrations, particularly in the high-isoprene-emitting southeastern United States. Better constraints

  20. Laser Molecular Beam Epitaxy Growth of BaTiO3 in Seven Thousands of Unit-Cell Layers

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-Hong; YANG Guo-Zhen; HE Meng; ZHAO Kun; TIAN Huan-Fang; L(U) Hui-Bin; JIN Kui-Juan; CHEN Zheng-Hao; ZHOU Yue-Liang; LI Jian-Qi

    2005-01-01

    @@ BaTiO3 thin films in seven thousands of unit-cell layers have been successfully fabricated on SrTiO3 (001)substrates by laser molecular beam epitaxy. The fine streak pattern and the undamping intensity oscillation of reflection high-energy electron diffraction indicate that the BaTiO3 film was layer-by-layer epitaxial growth. The measurements of scanning electron microscopy and atomic force microscopy show that surfaces of the BaTiO3thin film are atomically smooth. The measurements of x-ray diffraction and transmission electron microscopy,as well as selected-area electron diffraction revealthat the BaTiO3 thin film is a c-oriented epitaxial crystalline structure.

  1. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2000-08-22

    Novel chemical reactivity can be engendered on cell surfaces by the metabolic incorporation of unnatural sugars into cell surface glycoconjuagtes. 2-N-Acetamido sugars such as GalNAc and GlcNAc are abundant components of cell surface glycoconjugates, and hence attractive targets for metabolic cell surface engineering. Here we report (1) the synthesis of isosteric analogs bearing a ketone group in place of the N-acetamido group, and (2) evaluation of their metabolic incorporation into mammalian cell surface glycans. A ketone isostere of GalNAc was metabolized by CHO cells through the salvage pathway and delivered to O-linked glycoproteins on the cell surface. Its residence at the core position of O-linked glycans is suggested by studies with a-benzyl GalNAc, an inhibitor of O-linked oligosaccharide extension. A mutant CHO cell line lacking endogenous UDP-GalNAc demonstrated enhanced metabolism of the GalNAc analog, suggesting that competition with native intermediates might limits enzymatic transformation in mammalian cells. A ketone isostere of GlcNAc could not be detected on CHO or human cell surfaces after incubation. Thus, the enzymes in the GlcNAc salvage pathway might be less permissive of unnatural substrates than those comprising the GalNAc salvage pathway. Alternatively, high levels of endogenous GlcNAc derivatives might compete with the ketone isostere and prevent its incorporation into oligosaccharides.

  2. Near-surface neotectonic deformation associated with seismicity in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Gold, D.P.; Gardner, T.W.; Slingerland, R.L.; Thornton, C.P. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Geosciences)

    1989-10-01

    For the Lancaster, PA seismic zone a multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and 10--20 km in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evidenced by elevations of stream terraces along the Susquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred active fault zone. In the Moodus seismic zone the frequency of tectonically-controlled lineaments was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum horizontal stress direction (N80-85E) recently determined from in-situ stress measurements in a 1.5 km-deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. 284 refs., 33 figs.

  3. High-resolution Continental Scale Land Surface Model incorporating Land-water Management in United States

    Science.gov (United States)

    Shin, S.; Pokhrel, Y. N.

    2016-12-01

    Land surface models have been used to assess water resources sustainability under changing Earth environment and increasing human water needs. Overwhelming observational records indicate that human activities have ubiquitous and pertinent effects on the hydrologic cycle; however, they have been crudely represented in large scale land surface models. In this study, we enhance an integrated continental-scale land hydrology model named Leaf-Hydro-Flood to better represent land-water management. The model is implemented at high resolution (5km grids) over the continental US. Surface water and groundwater are withdrawn based on actual practices. Newly added irrigation, water diversion, and dam operation schemes allow better simulations of stream flows, evapotranspiration, and infiltration. Results of various hydrologic fluxes and stores from two sets of simulation (one with and the other without human activities) are compared over a range of river basin and aquifer scales. The improved simulations of land hydrology have potential to build consistent modeling framework for human-water-climate interactions.

  4. Fuel cell collaboration in the United States. Follow up report to the Danish Partnership for Hydrogen and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Fuel cell technology continues to grow in the United States, with strong sales in stationary applications and early markets such as data centers, materials handling equipment, and telecommunications sites. New fuel cell customers include Fortune 500 companies Apple, eBay, Coca-Cola, and Walmart, who will use fuel cells to provide reliable power to data centers, stores, and facilities. Some are purchasing multi-megawatt (MW) systems, including three of the largest non-utility purchases of stationary fuel cells in the world by AT and T, Apple and eBay - 17 MW, 10 MW and 6 MW respectively. Others are replacing fleets of battery forklifts with fuel cells. Sysco, the food distributor, has more than 700 fuel cell-powered forklifts operating at seven facilities, with more on order. Mega-retailer Walmart now operates more than 500 fuel cell forklifts at three warehouses, including a freezer facility. Although federal government budget reduction efforts are impacting a wide range of departments and programs, fuel cell and hydrogen technology continues to be funded, albeit at a lower level than in past years. The Department of Energy (DOE) is currently funding fuel cell and hydrogen R and D and has nearly 300 ongoing projects at companies, national labs, and universities/institutes universities. The American Recovery and Reinvestment Act (ARRA) of 2009 and DOE's Market Transformation efforts have acted as a government ''catalyst'' for market success of emerging technologies. Early market deployments of about 1,400 fuel cells under the ARRA have led to more than 5,000 additional fuel cell purchases by industry with no DOE funding. In addition, interest in Congress remains high. Senators Richard Blumenthal (D-CT), Chris Coons (D-DE), Lindsey Graham (R-SC) and John Hoeven (R-ND) re-launched the bipartisan Senate Fuel Cell and Hydrogen Caucus in August 2012 to promote the continued development and commercialization of hydrogen and fuel cell technologies

  5. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Directory of Open Access Journals (Sweden)

    Luciano Antonio Reolon

    Full Text Available The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae, the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  6. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    Science.gov (United States)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how

  7. Surface design of antibody-immobilized thermoresponsive cell culture dishes for recovering intact cells by low-temperature treatment.

    Science.gov (United States)

    Kobayashi, Jun; Hayashi, Masaki; Ohno, Takahiro; Nishi, Masanori; Arisaka, Yoshinori; Matsubara, Yoshinori; Kakidachi, Hiroshi; Akiyama, Yoshikatsu; Yamato, Masayuki; Horii, Akihiro; Okano, Teruo

    2014-11-01

    Antibody-immobilized thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) [poly(IPAAm-co-CIPAAm)]-grafted cell culture surfaces were designed to enhance both the initial adhesion of weakly adhering cells and the ability of cells to detach in response to low temperature through the regulation of affinity binding between immobilized antibodies and antigens on the cellular surface. Ty-82 cells and neonatal normal human dermal fibroblasts (NHDFs), which express CD90 on the cell surface, adhered to anti-CD90 antibody-immobilized thermoresponsive surfaces at 37°C, a condition at which the grafted thermoresponsive polymer chains shrank. Adherent Ty-82 cells were detached from the surfaces by lowering the temperature to 20°C and applying external forces, such as pipetting, whereas cultured NHDF sheets spontaneously detached themselves from the surface in response to reduced temperature alone. When the temperature was decreased to 20°C, the swelling of grafted thermoresponsive polymer chains weakened the affinity binding between immobilized antibody and antigen on the cells due to the increasing steric hindrance of the polymer chains around the antigen-recognition site of the immobilized antibodies. No contamination was detected on cells harvested from covalently immobilized antibodies on the culture surfaces by low-temperature treatment, whereas a carryover of the antibody and avidin from the avidin-biotin binding surface was observed. Furthermore, the initial adhesion of adipose tissue-derived cells, which adhere weakly to PIPAAm-grafted surfaces, was enhanced on the antibody-immobilized thermoresponsive surfaces.

  8. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  9. Study on Unit Cell Models and the Effective Thermal Conductivities of Silica Aerogel.

    Science.gov (United States)

    Liu, He; Li, Zeng-Yao; Zhao, Xin-Peng; Tao, Wen-Quan

    2015-04-01

    In this paper, two modified unit cell models, truncated octahedron and cubic array of intersecting square rods with 45-degree rotation, are developed in consideration of the tortuous path of heat conduction in solid skeleton of silica aerogel. The heat conduction is analyzed for each model and the expressions of effective thermal conductivity of the modified unit cell models are derived. Considering the random microstructure of silica aerogel, the probability model is presented. We also discuss the effect of the thermal conductivity of aerogel backbone. The effective thermal conductivities calculated by the proposed probability model are in good agreement with available experimental data when the density of the aerogel is 110 kg/m3.

  10. Cell detachment and label-free cell sorting using modulated surface acoustic waves (SAW) in droplet-based microfluidics

    CERN Document Server

    Bussonnière, Adrien; Baudoin, Michael; Bou-Matar, Olivier; Grandbois, Michel; Charette, Paul; Renaudin, Alan

    2014-01-01

    We present a droplet-based surface acoustic wave (SAW) system designed to viably detach biological cells from a surface and sort cell types based on differences in adhesion strength (adhesion contrast), without the need to label cells with molecular markers. The system uses modulated SAW to generate pulsatile flows in the droplets and efficiently detach the cells, thereby minimizing SAW excitation power and exposure time. As a proof-of-principle, the system is shown to efficiently sort HEK 293 from A7r5 cells based on adhesion contrast. Results are obtained in minutes with sorting purity and efficiency reaching 97 % and 95 %, respectively.

  11. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.

    Science.gov (United States)

    Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng

    2013-02-01

    Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.

  12. Photo-cross-linkable thermoresponsive star polymers designed for control of cell-surface interactions.

    Science.gov (United States)

    Park, Sangwoo; Cho, Hong Yul; Yoon, Jeong Ae; Kwak, Yungwan; Srinivasan, Abiraman; Hollinger, Jeffrey O; Paik, Hyun-jong; Matyjaszewski, Krzysztof

    2010-10-11

    Star polymers with thermoresponsive arms, consisting of 2-(2-methoxyethoxy)ethyl methacrylate (MEO₂MA) and oligo(ethylene glycol) methacrylate with ~4 ethylene oxide units (OEOMA₃₀₀, M(n) = 300), were synthesized via atom transfer radical polymerization (ATRP). 25% of the arms contained benzophenone chain-end functionality at the star periphery. A mixture of linear poly(MEO₂MA-co-OEOMA₃₀₀)-Br macroinitiators without and with benzophenone end-group macroinitiators were (MI and Bzp-MI, respectively) cross-linked with ethylene glycol dimethacrylate to form star polymers. Formation of star polymers was monitored by GPC, and the presence of benzophenone functionality in the stars was confirmed by ¹H NMR. The UV-vis spectroscopy revealed that the star polymers exhibit the low critical solution temperature (LCST) at 27 °C, slightly lower than LCST of either MI or Bzp-MI. Commercially available tissue culture grade polystyrene surface was modified by depositing a thin film of functionalized stars and UV cross-linking (λ = 365 nm). The star polymers covalently attached onto surfaces allowed a control of cell shrinkage and attachment in response to temperature changes.

  13. On the Performance of Hybrid PV/Unitized Regenerative Fuel Cell System in the Tropics

    Directory of Open Access Journals (Sweden)

    Salwan Dihrab

    2012-01-01

    Full Text Available Solar hydrogen system is a unique power system that can meet the power requirements for future energy demands. Such a system uses the hydrogen as the energy carrier, which produces energy through the electrolyzer with assistance of the power from the PV during the sunny hours, and then uses stored hydrogen to produce energy through the fuel cell after sunset or on cloudy days. The current study has used premanufactured unitized regenerative fuel cells in which the electrolyzer and the fuel cell function within one cell at different modes. The system components were modeled and the one-day real operational and simulated data has been presented and compared. The measured results showed the ability of the system to meet the proposed load, and the total efficiency was about 4.5%.

  14. Effects of Polymer Surfaces on Proliferation and Differentiation of Embryonic Stem Cells and Bone Marrow Stem Cells

    Science.gov (United States)

    Qin, Sisi; Liao, Wenbin; Ma, Yupo; Simon, Marcia; Rafailovich, Miriam; Stony Brook Medical Center Collaboration; Stony Brook Dental Schoo Collaboration

    2013-03-01

    Currently, proliferation and differentiation of stem cell is usually accomplished either in vivo, or on chemical coated tissue culture petri dish with the presence of feeder cells. Here we investigated whether they can be directly cultured on polymeric substrates, in the absence of additional factors. We found that mouse embryonic stem cells did not require gelatin and could remain in the undifferentiated state without feeder cells at least for four passages on partially sulfonated polystyrene. The modulii of cells was measured and found to be higher for cells plated directly on the polymer surface than for those on the same surface covered with gelatin and feeder cells. When plated with feeder cells, the modulii was not sensitive to gelatin. Whereas the differentiation properties of human bone marrow stem cells, which are not adherent, are less dependent on either chemical or mechanical properties of the substrate. However, they behave differently on different toughness hydrogels as oppose to on polymer coated thin films.

  15. The surface charge of a cell lipid membrane

    CERN Document Server

    Pekker, M

    2014-01-01

    In this paper the problem of surface charge of the lipid membrane is considered. It is shown that the membrane surface is negatively charged. Negative ions are in potential wells formed by the dipole heads of membrane phospholipids. The binding energy of the ion with the membrane surface is much greater than its thermal energy. A self-consistent model of the potential in solution is developed, and a stationary charge density on the membrane surface is found. The estimates given in the paper show that the potential difference across the membrane of the unexcited axon (resting potential) can be explained by the difference in surface densities of the bound charges on the inner and outer surfaces of the membrane.

  16. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  17. BioDiff - a neutron diffractometer optimized for crystals with large unit cell dimensions

    OpenAIRE

    Schrader, Tobias Erich; Ostermann, Andreas; Monkenbusch, Michael; Laatsch, Bernhard; Jüttner, Philipp; Petry, Winfried; Richter, Dieter

    2014-01-01

    The research reactor Heinz Maier-Leibnitz (FRM II) is a modern high flux neutron source which feeds some 30 state of the art neutron beam instruments. Currently 24 are operational, others in commissioning or under construction. The newly built neutron single crystal diffractometer BIODIFF is especially designed to collect data from crystals with large unit cells. The main field of application is the structural analysis of proteins, especially the determination of hydrogen atom positions. BIOD...

  18. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Science.gov (United States)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  19. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Key well sites

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  20. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  1. Major Surface-Water Sampling Sites in the National Water-Quality Assessment (NAWQA) Program: 1991 and 1994 Study-Unit Starts - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set shows the 1991 and 1994 National Water-Quality Assessment (NAWQA) study units' major surface-water sampling sites. These sites are in NAWQA's fixed...

  2. Alterations in cell surface area and deformability of individual human red blood cells in stored blood

    CERN Document Server

    Park, HyunJoo; Lee, SangYun; Kim, Kyoohyun; Sohn, Yong-Hak; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusion. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called CPDA-1. With 3-D quantitative phase imaging techniques, the optical measurements of the 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and their progressive alterations in stored RBCs. Our results show that the stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within 2 weeks which was accompanied with significant ...

  3. A reference guide to microbial cell surface hydrophobicity based on contact angles

    NARCIS (Netherlands)

    van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1998-01-01

    Acid-base interactions form the origin of the hydrophobicity of microbial cell-surfaces and can be quantitated from contact angle measurements on microbial lawns with water, formamide, methyleneiodide and/or alpha-bromonaphthalene. This review provides a reference guide to microbial cell surface hyd

  4. Adhesion and growth of dental pulp stem cells on enamel-like fluorapatite surfaces.

    Science.gov (United States)

    Liu, J; Jin, T C; Chang, S; Czajka-Jakubowska, A; Clarkson, B H

    2011-03-01

    To study how apatite crystal alignment of an enamel-like substrate affects DPSC cellular adhesion and growth as a precursor to produce an in vitro enamel/dentin superstructure for future studies. The cells were subcultured in 10% FBS DMEM up to seven weeks on the two surfaces. Specimens were observed under SEM, counted, and analyzed using the human pathway-focused matrix and adhesion PCR array. After three days, the cell number on ordered FA surface was significantly higher than on the disordered surface. Of the 84 focused pathway genes, a total of 20 genes were either up or down regulated in the cells on ordered FA surface compared to the disordered surface. More interestingly, of the cell-matrix adhesion molecules, integrin alpha 7 and 8 (ITGA 7 and 8), integrin beta 3 and 4 (ITGB3 and 4), and the vitronectin receptor-integrin alpha V (ITGAV) and the key adhesion protein-fibronectin1 (FN1) were up-regulated. In SEM, both surfaces showed good biocompatibility and supported long term growth of DPSC cells but with functional cell-matrix interaction on the ordered FA surfaces. The enhanced cellular response of DPSC cell to the ordered FA crystal surface involves a set of delicately regulated matrix and adhesion molecules which could be manipulated by treating the cells with a dentin extract, to produce a dentin/enamel superstructure. Copyright © 2010 Wiley Periodicals, Inc.

  5. MICROBIAL CELL-SURFACE HYDROPHOBICITY - THE INVOLVEMENT OF ELECTROSTATIC INTERACTIONS IN MICROBIAL ADHESION TO HYDROCARBONS (MATH)

    NARCIS (Netherlands)

    GEERTSEMADOORNBUSCH, GI; VANDERMEI, HC; BUSSCHER, HJ

    Microbial adhesion to hydrocarbons (MATH) is the most commonly used method to determine microbial cell surface hydrophobicity. Since, however, the assay is based on adhesion, it is questionable whether the results reflect only the cell surface hydrophobicity or an interplay of hydrophobicity and

  6. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces

    DEFF Research Database (Denmark)

    Justesen, Jørn; Lorentzen, M.; Andersen, L. K.

    2009-01-01

    It has been widely reported that surface morphology on the micrometer scale affects cell function as well as cell shape. In this study, we have systematically compared the influence of 13 topographically micropatterned tantalum surfaces on the temporal development of morphology, including spreadi...

  7. Surface position, not signaling from surrounding maternal tissues, specifies aleurone epidermal cell fate in maize.

    Science.gov (United States)

    Gruis, Darren Fred; Guo, Hena; Selinger, David; Tian, Qing; Olsen, Odd-Arne

    2006-07-01

    Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surrounding maternal tissues. Using cell type-specific fluorescence markers, we show that aleurone cell fate specification occurs exclusively in response to surface position and does not require specific, continued maternal signal input. The starchy endosperm and aleurone cell fates are freely interchangeable throughout the lifespan of the endosperm, with internalized aleurone cells converting to starchy endosperm cells and with starchy endosperm cells that become positioned at the surface converting to aleurone cells. In contrast to aleurone and starchy endosperm cells, transfer cells fail to develop in in vitro-grown endosperm, supporting earlier indications that maternal tissue interaction is required to fully differentiate this cell type. Several parameters confirm that the maize endosperm organ cultures described herein retain the main developmental features of in planta endosperm, including fidelity of aleurone mutant phenotypes, temporal and spatial control of cell type-specific fluorescent markers, specificity of cell type transcripts, and control of mitotic cell divisions.

  8. Cells cultured on microgrooves with or without surface coating: Correlation between cell alignment, spreading and local membrane deformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiongtu [Ecole Normale Superieure, CNRS-ENS-UPMC UMR 8640, 24 rue Lhomond, 75231 Paris (France); College of physics and information engineering, Fuzhou University, 350002 Fuzhou (China); Shi, Jian; Hu, Jie [Ecole Normale Superieure, CNRS-ENS-UPMC UMR 8640, 24 rue Lhomond, 75231 Paris (France); Chen, Yong, E-mail: yong.chen@ens.fr [Ecole Normale Superieure, CNRS-ENS-UPMC UMR 8640, 24 rue Lhomond, 75231 Paris (France); Institute for Integrated Cell-Material Science, Kyoto University, Kyoto 606-8507 (Japan)

    2013-03-01

    The behaviors of cells cultured on patterned substrates vary with the material stiffness, the geometry and the biochemical properties of the pattern. By using a reversed cell imprinting (RCI) technique, together with phase contrast microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM), we have exploited reversed side cellular morphology on patterned microgrooves of different geometries with or without surface coating of adhesion molecules. We have shown a close correlation between the effect of contact guidance and penetration of cellular membrane. Without surface coating, roughly 80% of HeLa cells were aligned along the groove direction regardless of the groove spacing. When the microgrooves were coated with fibronectin, the area of cell spreading was increased but the percentage of aligned cells was significantly decreased. In both cases, the deformation of cell membrane at the cell-pattern interfaces could be measured. We found that the local penetration of the cellular membrane into the grooves was correlated to the cellular alignment for both HeLa and NIH 3T3 cells, and that such a correlation was cell-type dependent. - Highlights: Black-Right-Pointing-Pointer Quantitatively assessment of cell deformation was obtained using RCI technique. Black-Right-Pointing-Pointer Cell alignment is correlated to the cell penetration into microgrooves. Black-Right-Pointing-Pointer Cell spreading is also correlated to the cell penetration into microgrooves. Black-Right-Pointing-Pointer The cell penetration and the cell alignment are cell-type dependent.

  9. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions

    Science.gov (United States)

    Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong

    2015-03-01

    To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.

  10. Trace metal concentrations and lead isotopic composition in surface waters of the Northeast Pacific along the United States - Mexico boundary

    Energy Technology Data Exchange (ETDEWEB)

    Sanudo-Wilhelmy, S. (Inst. of Marine Science, Santa Cruz, CA (United States))

    1990-01-09

    To evaluate the magnitude of heavy metal contamination along the United States - Mexico boundary, trace metal concentrations (Pb, Cd, Mn, Fe, and Zn) and lead isotopic composition ([sup 204]Pb, [sup 206]Pb, [sup 207]Pb, and [sup 208]Pb) were measured along four surface water transects across the continental shelf off the Baja California Coast. The stations were located between 2 to 45 km offshore, including both coastal and open ocean locations. All the metal distributions along the transects were characterized by offshore concentration gradients. The highest trace metal concentrations occurred in coastal waters in association with high salinities and nutrient concentrations. There was also a longshore gradient in trace metal concentrations. Trace element concentrations were lower in the southern locations than along the United States - Mexico boundary, and were comparable to typical open ocean values. The relative enrichment of metals in surface waters off the northern part of Baja California was primarily associated with advection/upwelling processes, not with anthropogenic inputs. Mass balance calculations indicated that about 1% of Cd and 13% of Zn were from urban discharges. The low metal levels measured in coastal waters off the central part of Baja California were attributed to the intrusion of open ocean waters, based on hydrographic data, satellite images and lead isotopic compositions.

  11. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  12. Understanding and exploiting nanoscale surface heterogeneity for particle and cell manipulation

    Science.gov (United States)

    Kalasin, Surachate

    surface region sufficiently attractive for capture. Though neglecting hydrodynamics, the resulting (kappa-1a)1/2 power law scaling for the density of patches at the adhesion threshold roughly captures the general shape of the data. The study also reveals that at high ionic strength, particle-surface interactions are most influenced by the patchy surface heterogeneity; however, at low ionic strengths, the system becomes most sensitive to the average system properties. Thus for heterogeneous interfaces, the extent to which heterogeneity is influential depends on other factors (particle size, ionic strength). While this comprises a crossover from heterogeneity-dominated to mean field behavior, it is worth noting that even in the mean field regime, the spacing between patches always exceeds the Debye length, making the regions of different surface charge always distinct. Comparison with the simulations of Duffadar and Davis reveals that the criterion for particle capture is a nearly constant number of cationic patches per unit area of contact between a particle and a heterogeneous collector. The heterogeneous surface model displays a shear crossover seen with bacteria and other complex systems: At low shear, particle capture is enhanced, while at higher shears it is reduced. This behavior, sometimes rationalized in terms of the complex energy landscapes of biological bonds, is clearly explained in the heterogeneity model. For weakly adhesive systems engaging only a few adhesive elements or receptors, shear compromises the ability of a few bonds to capture particles. For more strongly adhesive systems, shear increases particle transport. The convolution of this competition leads to the non-monotonic effect of shear seen in biology. The complex variety of particle behaviors combined with the large number of independently variable parameters, each with different scaling of interfacial forces, necessitates a state-space approach to mapping regimes interactions and motion

  13. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    Science.gov (United States)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  14. Pancreatic hormones are expressed on the surfaces of human and rat islet cells through exocytotic sites

    DEFF Research Database (Denmark)

    Larsson, L I; Hutton, J C; Madsen, O D

    1989-01-01

    . Electron microscopy reveals the labeling to occur at sites of exocytotic granule release, involving the surfaces of extruded granule cores. The surfaces of islet cells were labeled both by polyclonal and monoclonal antibodies, excluding that receptor-interacting, anti-idiotypic hormone antibodies were...... responsible for the staining. Human insulin cells were surface-labeled by monoclonal antibodies recognizing the mature secretory products, insulin and C-peptide but not with monoclonal antibodies specific for proinsulin. Thus, routing of unprocessed preproinsulin to the cell surface may not account...... for these results. It is concluded that the staining reflects interactions between the appropriate antibodies and exocytotic sites of hormone release....

  15. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Kado, T.; Hidaka, T. [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Aita, H. [Division of Occlusion and Removable Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Endo, K. [Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Furuichi, Y., E-mail: furuichi@hoku-iryo-u.ac.jp [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Cell-adhesive molecules were covalently immobilized on a Ti surface. Black-Right-Pointing-Pointer Immobilized cell-adhesive molecules maintained native function on the Ti surface. Black-Right-Pointing-Pointer Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully

  16. Multidimensional profiling of cell surface proteins and nuclear markers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  17. Cytokine-Induced Cell Surface Expression of Adhesion Molecules in Vascular Endothelial Cells In vitro

    Institute of Scientific and Technical Information of China (English)

    陈红辉; 刘昌勤; 孙圣刚; 梅元武; 童萼塘

    2001-01-01

    Regulation of the adhesion molecules expression by cytokine in vascular endothelial cells was investigated. Human umbilical vein endothelial cells (HUVEC) were stimulated with cytokines, TNF-α (1-250 U/ml) or IL-1β (0.1-50 U/ml) for 24 h. HUVEC were also cultured with cytokines, TNF-α (100 U/ml) or IL-1β (10 U/ml), for 4-72 h, cell surface expression of adhesion molecules (ICAM-1 and VCAM-1) were detected and quantitated by immunocytochemical methods and computerized imaging analysis technique. Adhesion molecules expression were up-regulated by TNF-α, IL-1β in a concentration- and time-dependent manner. Some significant differences were observed between the effects of cytokines on the ICAM-1 and on VCAM-1 expression. Cytokines might directly induce the expression of ICAM-1 and VCAM-1 in vascular endothelial cells. Our observations indicate differential functions of the two adhesion molecules during the evolution of inflammatory responses in stroke.

  18. Cell Surface Enzymatic Engineering-Based Approaches to Improve Cellular Therapies

    KAUST Repository

    AbuElela, Ayman

    2014-06-06

    The cell surface represents the interface between the cell and its environment. As such, the cell surface controls cell–cell interactions and functions such as adhesion and migration, and will transfer external cues to regulate processes such as survival, death, and differentiation. Redefining the cell surface by temporarily (or permanently) modifying the molecular landscape of the plasma membrane affects the way in which the cell interacts with its environment and influences the information that is relayed into the cell along downstream signaling pathways. This chapter outlines the role of key enzymes, the glycosyltransferases, in posttranslationally modifying proteins and lipids to fine-tune cells, ability to migrate. These enzymes are critical in controlling the formation of a platform structure, sialyl Lewis x (sLex), on circulating cells that plays a central role in the recognition and recruitment by selectin counter receptors on endothelial cells that line blood vessels of tissues throughout the body. By developing methods to manipulate the activity of these enzymes and hence the cell surface structures that result, treatments can be envisioned that direct the migration of therapeutic cells to specific locations throughout the body and also to inhibit metastasis of detrimental cells such as circulating tumor cells.

  19. Cell surface expression of glycosylated, nonglycosylated, and truncated forms of a cytoplasmic protein pyruvate kinase.

    Science.gov (United States)

    Hiebert, S W; Lamb, R A

    1988-09-01

    The soluble cytoplasmic protein pyruvate kinase (PK) has been expressed at the cell surface in a membrane-anchored form (APK). The hybrid protein contains the NH2-terminal signal/anchor domain of a class II integral membrane protein (hemagglutinin/neuraminidase, of the paramyxovirus SV5) fused to the PK NH2 terminus. APK contains a cryptic site that is used for N-linked glycosylation but elimination of this site by site-specific mutagenesis does not prevent cell surface localization. Truncated forms of the APK molecule, with up to 80% of the PK region of APK removed, can also be expressed at the cell surface. These data suggest that neither the complete PK molecule nor its glycosylation are necessary for intracellular transport of PK to the cell surface, and it is possible that specific signals may not be needed in the ectodomain of this hybrid protein to specify cell surface localization.

  20. The intensity dependence of surface recombination in high concentration solar cells with charge induced passivation

    Science.gov (United States)

    Gray, J. L.; Schwartz, R. J.; Lundstrom, M. S.; Nasby, R. D.

    High intensity solar cells which are designed to minimize series resistance and shadowing losses, frequently employ an illuminated surface which is relatively far removed from the collecting junctions. This requires that the surface be well passivated to minimize surface recombination. One technique frequently employed to minimize surface recombination is to incorporate a fixed charge in the passivating oxide. This work shows that at sufficiently high intensities the surface recombination can increase dramatically. This results in a reduction in the high intensity collection efficiency. A comparison of the collection efficiency of interdigitated back contact cells and etched multiple vertical junction cells is given which shows that EMVJ cells are less sensitive to this effect than IBC cells.

  1. CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope.

    Science.gov (United States)

    Mak, Anthony B; Blakely, Kim M; Williams, Rashida A; Penttilä, Pier-Andrée; Shukalyuk, Andrey I; Osman, Khan T; Kasimer, Dahlia; Ketela, Troy; Moffat, Jason

    2011-11-25

    The AC133 epitope expressed on the CD133 glycoprotein has been widely used as a cell surface marker of numerous stem cell and cancer stem cell types. It has been recently proposed that posttranslational modification and regulation of CD133 may govern cell surface AC133 recognition. Therefore, we performed a large scale pooled RNA interference (RNAi) screen to identify genes involved in cell surface AC133 expression. Gene hits could be validated at a rate of 70.5% in a secondary assay using an orthogonal RNAi system, demonstrating that our primary RNAi screen served as a powerful genetic screening approach. Within the list of hits from the primary screen, genes involved in N-glycan biosynthesis were significantly enriched as determined by Ingenuity Canonical Pathway analyses. Indeed, inhibiting biosynthesis of the N-glycan precursor using the small molecule tunicamycin or inhibiting its transfer to CD133 by generating N-glycan-deficient CD133 mutants resulted in undetectable cell surface AC133. Among the screen hits involved in N-glycosylation were genes involved in complex N-glycan processing, including the poorly characterized MGAT4C, which we demonstrate to be a positive regulator of cell surface AC133 expression. Our study identifies a set of genes involved in CD133 N-glycosylation as a direct contributing factor to cell surface AC133 recognition and provides biochemical evidence for the function and structure of CD133 N-glycans.

  2. Analysis of selected herbicide metabolites in surface and ground water of the United States

    Science.gov (United States)

    Scribner, E.A.; Thurman, E.M.; Zimmerman, L.R.

    2000-01-01

    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides - triazine, chloroacetanilide and phenyl-urea - have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides - ethane sulfonic acid and oxanilic acid - are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination. Copyright (C) 2000 Elsevier Science B.V.

  3. Covalent and stable CuAAC modification of silicon surfaces for control of cell adhesion

    DEFF Research Database (Denmark)

    Vutti, Surendra; Buch-Månson, Nina; Schoffelen, Sanne

    2015-01-01

    Stable primary functionalization of metal surfaces plays a significant role in reliable secondary attachment of complex functional molecules used for the interfacing of metal objects and nanomaterials with biological systems. In principle, this can be achieved through chemical reactions either......-transfer reaction. Subsequently, D-amino acid adhesion peptides could be immobilized on the surface by use of Cu(I)-catalyzed click chemistry. This enabled the study of cell adhesion to the metal surface. In contrast to unmodified surfaces, the peptide-modified surfaces were able to maintain cell adhesion during...

  4. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants.

    Science.gov (United States)

    Das, Kakoli; Bose, Susmita; Bandyopadhyay, Amit; Karandikar, Balu; Gibbins, Bruce L

    2008-11-01

    Ti surface was modified to simultaneously improve bone cell materials and antimicrobial activities. Titanium surface was first anodized in sodium fluoride and sulfuric acid electrolytic solution to form titania nanotube on the surface to improve the biocompatibility of the surface. Silver was electrodeposited on the titania nanotube surface at 5 V. Silver added titania nanotube surface was tested for compatibility with bone-cell materials interactions using human osteoblast bone cells. The antibacterial effect was studied using Pseudomonas aeruginosa. Our results show that silver-treated titania nanotube surface may provide antibacterial properties to prevent implants against postoperative infections without interference to the attachment and proliferation of bone tissue on titanium, which is commonly used in dental and orthopedic surgical procedures.

  5. Effects of Colistin on Surface Ultrastructure and Nanomechanics of Pseudomonas aeruginosa Cells

    DEFF Research Database (Denmark)

    Mortensen, Ninell Pollas; Fowlkes, Jason D.; Sullivan, Claretta J.

    2009-01-01

    in the process of division changed from 1.9 to 0.4 and the length of the cells decreased significantly. Morphologically, it was observed that the bacterial surface changed from a smooth to a wrinkled phenotype after 3 h exposure to colistin. Nanomechanically, in untreated bacteria, the cantilever indented...... proliferation by repressing cell division. We also found that treatment with colistin caused an increase in the rigidity of the bacterial cell wall while morphologically the cell surface changed from smooth to wrinkled, perhaps due to loss of lipopolysaccharides (LPS) or surface proteins....

  6. Enterococcus faecalis strains show culture heterogeneity in cell surface charge

    NARCIS (Netherlands)

    van Merode, Annet; van der Mei, HC; Busscher, HJ; Waar, K; Krom, BP

    2006-01-01

    Adhesion of micro-organisms to biotic and abiotic surfaces is an important virulence factor and involves different types of interactions. Enterococcus faecalis, a human commensal and an important opportunistic pathogen, has the ability to adhere to surfaces. Biliary stents frequently become clogged

  7. Beauty is Skin Deep: A Surface Monolayer Perspective on Nanoparticle Interactions with Cells and Biomacromolecules**

    OpenAIRE

    Saha, Krishnendu; Bajaj, Avinash; Duncan, Bradley; Rotello, Vincent M.

    2011-01-01

    Surface recognition of biosystems is a critical component in the development of novel biosensors, delivery vehicles and for the therapeutic regulation of biological processes. Monolayer-protected nanoparticles present a highly versatile scaffold for selective interaction with biomacromolecules and cells. Through engineering of the monolayer surface, nanoparticles can be tailored for surface recognition of biomolecules and cells. This review highlights recent progress in nanoparticle-biomacrom...

  8. Cell surface characteristics enable encrustation-free survival of neutrophilic iron-oxidizing bacteria

    Science.gov (United States)

    Saini, G.; Chan, C. S.

    2011-12-01

    Microbial growth in mineralizing environments depends on the cells' ability to evade surface precipitation. Cell-mineral interactions may be required for metabolism, but if unmoderated, cells could become encrusted, which would limit diffusion of nutrients and waste across cell walls. A combination of cell surface charge and hydrophobicity could enable the survival of microbes in such environments by inhibiting mineral attachment. To investigate this mechanism, we characterized the surfaces of two neutrophilic iron-oxidizing bacteria (FeOB): Mariprofundus ferrooxydans, a Zetaproteobacterium from Fe(II)-rich submarine hydrothermal vents and a Betaproteobacterium Gallionellales strain R-1, recently isolated from a ferrous groundwater seep. Both bacteria produce iron oxyhydroxides, yet successfully escape surface encrustation while inhabiting milieu where iron minerals are also produced by abiotic processes. SEM-EDX and TEM-EELS analyses of cultured bacteria revealed no iron on the cell surfaces. Zeta potential measurements showed that these bacteria have very small negative surface charge (0 to -4 mV) over a pH range of 4-9, indicating near-neutrally charged surfaces. Water contact angle measurements and thermodynamic calculations demonstrate that both bacteria and abiotically-formed Fe oxhydroxides are hydrophilic. Extended-DLVO calculations showed that hydrophilic repulsion between cells and minerals dominates over electrostatic and Lifshitz-van der Waals interactions. This leads to overall repulsion between microbes and minerals, thus preventing surface encrustation. Low surface charge and hydrophilicity (determined by microbial adhesion to hydrocarbon assay) were common features for both live and azide-inhibited cells, which shows that surface characteristics do not depend on active metabolism. It is remarkable that these two phylogenetically-distant bacteria from different environments employ similar adaptations to prevent surface mineralization. Our results

  9. Corona field effect surface passivation of n-type IBC cells

    OpenAIRE

    Bonilla, RS; Wilshaw, PR; Reichel, C; Hermle, M.

    2016-01-01

    Passivation of silicon surfaces is an important requirement in achieving high energy conversion efficiencies in interdigitated back contact cells. Surface passivation, commonly achieved by dielectric coatings, can be greatly improved by extrinsic addition of chemical and field effect components. In particular, cell performance is strongly dependent on front surface passivation. In this work device modelling is used to show that 200% relatively better performance can be achieved using charge e...

  10. Effect of Direct Electric Current on the Cell Surface Properties of Phenol-Degrading Bacteria

    OpenAIRE

    Luo, Qishi; Wang, Hui; Zhang, Xihui; Qian, Yi

    2005-01-01

    The change in cell surface properties in the presence of electric currents is of critical concern when the potential to manipulate bacterial movement with electric fields is evaluated. In this study, the effects of different direct electric currents on the cell surface properties involved in bacterial adhesion were investigated by using a mixed phenol-degrading bacterial culture in the exponential growth phase. The traits investigated were surface hydrophobicity (measured by adherence to n-oc...

  11. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface for transmissivity of the Upper Floridan aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  12. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface generated for the "freshwater" thickness of the Floridan aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  13. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the base of the Floridan aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  14. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the top of the APPZ

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  15. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the top of the MAPCU

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  16. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the thickness of the MAPCU

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  17. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the thickness of the Floridan aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  18. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Thickness raster surface for surficial deposits, clipped

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  19. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the thickness of residuum in southwestern Georgia and southeastern Alabama

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  20. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting top of the Lower Floridan aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  1. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    Science.gov (United States)

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry.

  2. JAM-C is an apical surface marker for neural stem cells.

    Science.gov (United States)

    Stelzer, Sandra; Worlitzer, Maik M A; Bahnassawy, Lamia'a; Hemmer, Kathrin; Rugani, Kirité; Werthschulte, Inga; Schön, Anna-Lena; Brinkmann, Benjamin F; Bunk, Eva C; Palm, Thomas; Ebnet, Klaus; Schwamborn, Jens C

    2012-03-20

    Junctional adhesion molecule-C (JAM-C) is an adhesive cell surface protein expressed in various cell types. JAM-C localizes to the apically localized tight junctions (TJs) between contacting endothelial and epithelial cells, where it contributes to cell-cell adhesions. Just as those epithelial cells, also neural stem cells are highly polarized along their apical-basal axis. The defining feature of all stem cells, including neural stem cells (NSCs) is their ability to self renew. This self-renewal depends on the tight control of symmetric and asymmetric cell divisions. In NSCs, the decision whether a division is symmetric or asymmetric largely depends on the distribution of the apical membrane and cell fate determinants on the basal pole of the cell. In this study we demonstrate that JAM-C is expressed on neural progenitor cells and neural stem cells in the embryonic as well as the adult mouse brain. Furthermore, we demonstrate that in vivo JAM-C shows enrichment at the apical surface and therefore is asymmetrically distributed during cell divisions. These results define JAM-C as a novel surface marker for neural stem cells.

  3. Quantifying Organic Matter in Surface Waters of the United States and Delivery to the Coastal Zone

    Science.gov (United States)

    Boyer, E. W.; Alexander, R. B.; Smith, R. A.; Shih, J.

    2012-12-01

    Organic carbon (OC) is a critical water quality characteristic in surface waters. It is an important component of the energy balance and food chains in freshwater and estuarine aquatic ecosystems, is significant in the mobilization and transport of contaminants along flow paths, and is associated with the formation of known carcinogens in drinking water supplies. The importance of OC dynamics on water quality has been recognized, but challenges remain in quantitatively addressing processes controlling OC fluxes over broad spatial scales in a hydrological context, and considering upstream-downstream linkages along flow paths. Here, we: 1) quantified lateral OC fluxes in rivers, streams, and reservoirs across the nation from headwaters to the coasts; 2) partitioned how much organic carbon that is stored in lakes, rivers and streams comes from allochthonous sources (produced in the terrestrial landscape) versus autochthonous sources (produced in-stream by primary production); 3) estimated the delivery of dissolved and total forms of organic carbon to coastal estuaries and embayments; and 4) considered seasonal factors affecting the temporal variation in OC responses. To accomplish this, we developed national-scale models of organic carbon in U.S. surface waters using the spatially referenced regression on watersheds (SPARROW) technique. The modeling approach uses mechanistic formulations, imposes mass balance constraints, and provides a formal parameter estimation structure to statistically estimate sources and fate of OC in terrestrial and aquatic ecosystems. We calibrated and evaluated the model with statistical estimates of OC loads that were observed at a network of monitoring stations across the nation, and further explored factors controlling seasonal dynamics of OC based on these long term monitoring data. Our results illustrate spatial patterns and magnitudes OC loadings in rivers, highlighting hot spots and suggesting origins of the OC to each location

  4. Evaluation of Surface Hydrological Connectivity Between a Forested Coastal Wetland and Regulated Waters of the United States

    Science.gov (United States)

    Dean, D. D.; Wilcox, B. P.; Jacob, J. S.; Sipocz, A.; Munster, C.

    2008-12-01

    Rapid urbanization, industry, and agriculture have put enormous developmental pressure on coastal forested wetlands along the Texas coast. At least 97,000 acres of freshwater forested wetlands on the Texas coast have been lost since 1955, amid much larger losses of other coastal wetland types (TPWD-Texas Wetlands Conservation Plan, 1996). Some coastal wetlands are protected by federal regulations under the Clean Water Act in an effort to maintain wetland hydrological and ecological services, such as water quality improvement and flood control. However, federal protection of many important coastal wetlands is dependent upon documented proof of a hydrologic connection to federally protected Waters of the United States and reasonable influence on the quality of those waters. This study focuses on a 13 acre catchment of coastal flatwoods wetland with an ambiguous legal status because of a possible , but undocumented, hydrologic connection to regulated Waters of the United States. Documentation of the hydrologic connectivity of this type of wetland is critical because of the geographic extent of similar wetlands and their contributions to water quality. The objective of the study was to determine if a hydrologic connection exists, and if so, to quantify the strength of the connection. A surface connection was established based on runoff and rainfall data collected since April of 2005, with the wetland discharging surface water directly into an adjacent protected wetland. The connection was weak during dry years, but in years with average rainfall, surface runoff accounted for a much more significant portion of the water budget. These results suggest that runoff water from similar wetlands contributes directly to protected wetland waters, and may influence water quality downstream.

  5. Creating potentiometric surfaces from combined water well and oil well data in the midcontinent of the United States

    Science.gov (United States)

    Gianoutsos, Nicholas J.; Nelson, Philip H.

    2013-01-01

    ) the land surface elevation of the region. Examples from the midcontinent of the United States, specifically Kansas, Oklahoma, and parts of adjacent states illustrate the process.

  6. Effect of Q-switched Laser Surface Texturing of Titanium on Osteoblast Cell Response

    Science.gov (United States)

    Voisey, K. T.; Scotchford, C. A.; Martin, L.; Gill, H. S.

    Titanium and its alloys are important biomedical materials. It is known that the surface texture of implanted medical devices affects cell response. Control of cell response has the potential to enhance fixation of implants into bone and, in other applications, to prevent undesired cell adhesion. The potential use of a 100W Q-switched YAG laser miller (DMG Lasertec 60 HSC) for texturing titanium is investigated. A series of regular features with dimensions of the order of tens of micrometers are generated in the surface of titanium samples and the cell response to these features is determined. Characterisation of the laser milled features reveals features with a lengthscale of a few microns superposed on the larger scale structures, this is attributed to resolidification of molten droplets generated and propelled over the surface by individual laser pulses. The laser textured samples are exposed to osteoblast cells and it is seen that cells do respond to the features in the laser textured surfaces.

  7. Interaction of Biofunctionalized Nanoparticles with Receptors on Cell Surfaces: MC Simulations

    Science.gov (United States)

    Dormidontova, Elena; Wang, Shihu

    2015-03-01

    One of the areas of active development of modern nanomedicine is drug/gene delivery and imaging application of nanoparticles functionalized by ligands, aptamers or antibodies capable of specific interactions with cell surface receptors. Being a complex multifunctional system different structural aspects of nanoparticles affect their interactions with cell surfaces and the surface properties of cells can be different (e.g. density, distribution and mobility of receptors). Computer simulations allow a systematic investigation of the influence of multiple factors and provide a unified platform for the comparison. Using Monte Carlo simulations we investigate the influence of the nanoparticle properties (nanoparticle size, polymer tether length, polydispersity, density, ligand energy, valence and density) on nanoparticle-cell surface interactions and make predictions regarding favorable nanoparticle design for achieving multiple ligand-receptor binding. We will also discuss the implications of nanoparticle design on the selectivity of attachment to cells with high receptor density while ``ignoring'' cells with a low density of receptors.

  8. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization

    Science.gov (United States)

    Niu, Jia; Lunn, David J.; Pusuluri, Anusha; Yoo, Justin I.; O'Malley, Michelle A.; Mitragotri, Samir; Soh, H. Tom; Hawker, Craig J.

    2017-06-01

    The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.

  9. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity.

    Science.gov (United States)

    Zhong, Hua; Zeng, Guang Ming; Yuan, Xing Zhong; Fu, Hai Yan; Huang, Guo He; Ren, Fang Yi

    2007-11-01

    In this study, adsorption of dirhamnolipid biosurfactant on a Gram-negative Pseudomonas aeruginosa, two Gram-positive Bacillus subtilis, and a yeast, Candida lipolytica, was investigated, and the causality between the adsorption and change of cell surface hydrophobicity was discussed. The adsorption was not only specific to the microorganisms but also depended on the physiological status of the cells. Components of the biosurfactant with different rhamnosyl number or aliphatic chain length also exhibited slight difference in adsorption manner. The adsorption indeed caused the cell surface hydrophobicity to change regularly; however, the changes depended on both the concentrations of rhamnolipid solutions applied and the adsorbent physiological conditions. Orientation of rhamnolipid monomers on cell surface and micelle deposition are supposed to be the basic means of adsorption to change cell hydrophobicity at low and high rhamnolipid concentrations, respectively. This study proposed the possibility to modify cell surface hydrophobicity with biosurfactant of low concentrations, which may be of importance in in situ soil remediation.

  10. Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    We studied the expression of different classes of surface molecules (CD13, CD29, CD40, CD44, CD54, CD71, CD73, CD80, CD86, CD90, CD105, CD106, CD146, HLA-I, and HLA-DR) in mesenchymal stromal cells from human umbilical cord and bone marrow during co-culturing with nucleated umbilical cord blood cells. Expression of the majority of surface markers in both types of mesenchymal stromal cells was stable and did not depend on the presence of the blood cells. Significant differences were found only for cell adhesion molecules CD54 (ICAM-1) and CD106 (VCAM-1) responsible for direct cell-cell contacts with leukocytes and only for bone marrow derived cells.

  11. Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading.

    Science.gov (United States)

    Wittenburg, Gretel; Lauer, Günter; Oswald, Steffen; Labudde, Dirk; Franz, Clemens M

    2014-08-01

    Producing sterile glass surfaces is of great importance for a wide range of laboratory and medical applications, including in vitro cell culture and tissue engineering. However, sterilization may change the surface properties of glass and thereby affect its use for medical applications, for instance as a substrate for culturing cells. To investigate potential effects of sterilization on glass surface topography, borosilicate glass coverslips were left untreated or subjected to several common sterilization procedures, including low-temperature plasma gas, gamma irradiation and steam. Imaging by atomic force microscopy demonstrated that the surface of untreated borosilicate coverslips features a complex landscape of microislands ranging from 1000 to 3000 nm in diameter and 1 to 3 nm in height. Steam treatment completely removes these microislands, producing a nanosmooth glass surface. In contrast, plasma treatment partially degrades the microisland structure, while gamma irradiation has no effect on microisland topography. To test for possible effects of the nanotopographic structures on cell adhesion, human gingival fibroblasts were seeded on untreated or sterilized glass surfaces. Analyzing fibroblast adhesion 3, 6, and 24 h after cell seeding revealed significant differences in cell attachment and spreading depending on the sterilization method applied. Furthermore, single-cell force spectroscopy revealed a connection between the nanotopographic landscape of glass and the formation of cellular adhesion forces, indicating that fibroblasts generally adhere weakly to nanosmooth but strongly to nanorough glass surfaces. Nanotopographic changes induced by different sterilization methods may therefore need to be considered when preparing sterile glass surfaces for cell culture or biomedical applications.