WorldWideScience

Sample records for surface treatment technique

  1. New surface treatment techniques against ice formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Megateli, R. [TechnoCentre eolien Gaspesie-les Iles, Murdochville, PQ (Canada). Centre CORUS

    2007-07-01

    The average wind speed in Murdochville, Quebec is 9 m/s, making it one of Canada's richest wind resource regions. As such, it is the site of a natural laboratory for the CORUS Center to study the North American climate and wind energy extraction. This presentation outlined research initiatives at CORUS, with particular reference to innovative treatments against ice accretion on wind turbine blades. Ice changes the aerodynamic profile of turbine blades, overloads the structure, increases vibrations and causes component wear. This results in loss of energy production, frequent failures, reduced service life and increased operating and maintenance costs. CORUS has been working on reducing ice accretion on blade surfaces without affecting the manufacturing process using ion implantation and UV rays irradiation. The ions used in the process are hydrogen, fluorine and argon. The technique modifies the surface chemical properties at the nano-scale depth level. This presentation provided details of the ion implantation procedure and the UV rays exposure procedure. An evaluation of wetting and water contact angles on blade samples was provided. Preliminary results showed that the high hysteresis of the non-treated samples had favourable conditions to ice adhesion. Argon implantation reduced the water contact angles and particularly hysteresis. Hydrogen implantation slightly increased the water contact angles and reduced the hysteresis. The process was beneficial in terms of service life. UV irradiation increased the hysteresis. figs.

  2. THE EFFECT OF DIFFERENT SURFACE TREATMENT TECHNIQUES ON THE SURFACE ROUGHNESS OF FELDSPATHIC PORCELAIN

    Directory of Open Access Journals (Sweden)

    Fidan ALAKUŞ-SABUNCUOĞLU

    2016-10-01

    Full Text Available Purpose: This in vitro study compared the effect of five different techniques on the surface roughness of feldspathic porcelain. Materials and Methods: 100 feldspathic porcelain disk samples mounted in acrylic resin blocks were divided into five groups (n=20 according to type of surface treatment: I, hydrofluoric acid (HFA; II, Deglazed surface porcelain treated with Neodymium:yttrium- aluminum-garnet (Nd:YAG laser; III, Deglazed porcelain surface treated with Erbium:yttrium-aluminum-garnet (Er:YAG laser; IV, Glazed porcelain surface treated with Neodymium:yttrium-aluminum-garnet (Nd:YAG laser, V; Glazed porcelain surface treated with Erbium:yttrium-aluminum-garnet (Er:YAG laser. The surface roughness of porcelain was measured with a noncontact optical profilometer. For each porcelain sample, two readings were taken across the sample, before porcelain surface treatment (T1 and after porcelain surface treatment (T2. The roughness parameter analyzed was the average roughness (Ra. Statistical analysis was performed using Kolmogorov–Smirnov and Wilcoxon signed rank test. Results: Mean Ra values for each group were as follows: I, 12.64±073; II, 11.91±0.74; III, 11.76±0.59; IV, 3.82 ±0.65; V, 2.77±0.57. For all porcelain groups, the lowest Ra values were observed in Group V. The highest Ra values were observed for Group I, with a significant difference with the other groups. Kolmogorov–Smirnov showed significant differences among groups (p<0.001. Conclusion: Surface treatment of porcelain with HFA resulted in significantly higher Ra than laser groups. Both Er:YAG laser or Nd:YAG laser on the deglaze porcelain surface can be recommended as viable treatment alternatives to acid etching.

  3. Different imaging techniques for investigation of treatment effects on various substrate surfaces

    OpenAIRE

    Chmela, O.

    2015-01-01

    The different imaging techniques were used for measurement of the properties changes on substrate surfaces. In this paper we report about testing various treatment on different substrates following investigation and characterization of the advantages/disadvantages of these methods for future applications. We usually used flexible materials such as polyethylene terephthalate (PET) and poly-carbonate (PC) for treatment. We also used glass substrate and aluminum oxide (Al2O3) to determine the ...

  4. Surface science techniques

    CERN Document Server

    Bracco, Gianangelo

    2013-01-01

    The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.

  5. Surface modified Ti based metallic glasses for bioactivation by electrochemical treatment technique

    Energy Technology Data Exchange (ETDEWEB)

    Oak, Jeong-Jung, E-mail: ojj69@pusan.ac.kr [GCRC-SOP, Pusan Nat’l University, Busan (Korea, Republic of); Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai (Japan); Rao, K. Venkat [Division of Engineering Materials Physics, KTH, Stockholm (Sweden); Chun, Ho-Hwan [Dept. of Naval Architecture and Ocean Engineering, Pusan Nat’l University, Busan (Korea, Republic of); Park, Yong Ho [Dept. of Materials Science and Engineering, Pusan Nat’l University, Busan (Korea, Republic of)

    2014-12-05

    The aim of this study is surface modification of Ni-free type Ti based metallic glass (Ti{sub 42}Hf{sub 11}Cu{sub 11}Pd{sub 36} at.%) for increasing calcification by electrochemical treatment. Ni-free type Ti based metallic glass has excellent mechanical and chemical properties which are comparable with those of Ti based alloys. Surface of Ti based metallic glasses was prepared as follows; one is anodically-oxidized porous layer by potentiostatic control in 5 M NaOH solution at 25 °C for 2 h, and the other is simple hydrothermal treated poros layer by immersion in 5 M NaOH solution at 60 °C for 24 h. The synthesized surface structures were characterized by X-ray diffraction (XRD) identification, SEM observation, energy dispersive X-ray spectroscopy (EDS) analysis and Auger electron spectroscopy (AES) analysis. These surfaces on the modified specimens have nano-mesh laminated structures and are consist of sodium titanate and titanium oxide. In addition, the above two types surfaces with nano-mesh laminated layer were immersed in Hank’s balance salt solution (HBSS) at 37 °C for 21 days for evaluation of calcification. The apatite-forming ability on these surfaces is observed by SEM observation and EDS analysis. As stated above surface modifications are also discussed about calcification effect by different surface treatment and different formability of porosity in this study. - Highlights: • Electrochemical treatment synthesizes nano-mesh laminated structures. • Large reticular area and fine nanopores are synthesized in alkali-solution at 25 °C. • Low crystal growth of sodium titanate densifies nano-mesh laminated structures. • The modified surface increases calcification in simulated body fluid.

  6. Surface science techniques

    CERN Document Server

    Walls, JM

    2013-01-01

    This volume provides a comprehensive and up to the minute review of the techniques used to determine the nature and composition of surfaces. Originally published as a special issue of the Pergamon journal Vacuum, it comprises a carefully edited collection of chapters written by specialists in each of the techniques and includes coverage of the electron and ion spectroscopies, as well as the atom-imaging methods such as the atom probe field ion microscope and the scanning tunnelling microscope. Surface science is an important area of study since the outermost surface layers play a crucial role

  7. Returning to the same area of hair surfaces before and after treatment: a longitudinal AFM technique.

    Science.gov (United States)

    Breakspear, S; Smith, J R

    2004-07-01

    We report the use of longitudinal (aspect ratio > 1 : 1) scanning atomic force microscopy as an aid in returning to the same area of hair fibres after bleaching, treatment with a commercial shampoo or the application of a 'leave-on' conditioner product. The bleaching treatment used in this study was not found to affect the cuticular architecture and lateral force microscopy (LFM) also showed little difference after treatment, reflecting the homogeneity of the newly revealed surfaces. After treatment with a commercial shampoo, the hair sample again showed very little difference in topography or lateral force characteristics. Hair treated with the leave-on conditioner product also showed no major topographical changes. LFM traces, however, showed regions between the ghost edge, marking the original position of the scale edge before cuticular erosion, and the existing scale edge, to have higher frictional properties than distal regions of the cuticle. A thin film of the leave-on product thus seems to form in this region and extends from the foot of the scale edge.

  8. Prebond Inspection Techniques to Improve the Quality of Adhesive Bonding Surface Treatments

    Science.gov (United States)

    2006-09-01

    when the measurement height was greater than 0.3 mm. Measurements of the surface cleanliness of the aluminium surface after abrasion, grit- blasting...Measurements to assess the homogeneity of the surface cleanliness were performed with a specially designed X-Y scanning unit and associated control...tape removed + + A. B. C. D. Grit-blasted plate DSTO-TR-1919 6 2.2 Surface Quality Measurements The surface cleanliness of the

  9. A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gierga, David P., E-mail: dgierga@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Turcotte, Julie C. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Sharp, Gregory C. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Sedlacek, Daniel E.; Cotter, Christopher R. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Taghian, Alphonse G. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States)

    2012-12-01

    Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference was greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.

  10. SU-E-T-348: Effect of Treatment Table and Immobilization Devices On Surface Dose When Using a GRID Technique

    Energy Technology Data Exchange (ETDEWEB)

    Gajdos, S; Donaghue, J [Akron General Medical Center, Akron, OH (United States)

    2015-06-15

    Purpose: To determine the increase of surface dose of MLC-designed GRID therapy in the presence of immobilization devices and treatment table. Methods: To create a GRID field, our facility utilizes an MLC consisting of four millimeter wide leaves. The field is designed to have aperture sizes of 0.8 cm X 0.8 cm with inter-aperture distance of 3.2 cm. Gafchromic EBT3 film was placed between the surface of a solid water phantom and the immobilization device. The treatment table was also present within the beam path. The devices consist of carbon fiber exterior shell. A piece of film was also placed at maximal depth for the photon energy of 10 MV. Image files were converted to dose per a calibration curve based on the selected red channel. The surface dose to maximum dose was established by comparing the ratio of seven centrally located aperture regions-of-interest and four adjacent inter-aperture regions-of-interest were measured with the available software tools. Results: With no devices present in beam path, the ratio of surface dose to maximum dose was 11.5% ± 0.3% for aperture region and 7.0% ± 0.1% for inter-aperture region. When devices are present, the ratio of surface dose to maximum dose was 45.2% ± 0.5% and 33.8% ± 1.1%, respectively. Due to the presence of devices, the surface dose increases in aperture region by 3.8 times or in the inter-aperture region by 4.7 times. Conclusion: The purpose of using GRID technique is to deliver a single fractional dose in range of 15–20 Gy to a bulky lesion while also preserving skin tolerance. The increase of surface dose due to devices placed in beam path may increase the chance of skin toxicity in GRID therapy. Care should be used to determine best manageable patient immobilization while considering skin dose especially for posteriorly located lesions.

  11. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients.

    Science.gov (United States)

    Ahn, Tae-Ho; Kim, Hong-Gi; Ryou, Jae-Suk

    2016-08-04

    This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A₇), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.

  12. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients

    Directory of Open Access Journals (Sweden)

    Tae-Ho Ahn

    2016-08-01

    Full Text Available This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A7, a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.

  13. Modern techniques of surface science

    CERN Document Server

    Woodruff, D Phil

    2016-01-01

    This fully revised, updated and reorganised third edition provides a thorough introduction to the characterisation techniques used in surface science and nanoscience today. Each chapter brings together and compares the different techniques used to address a particular research question, including how to determine the surface composition, surface structure, surface electronic structure, surface microstructure at different length scales (down to sub-molecular), and the molecular character of adsorbates and their adsorption or reaction properties. Readers will easily understand the relative strengths and limitations of the techniques available to them and, ultimately, will be able to select the most suitable techniques for their own particular research purposes. This is an essential resource for researchers and practitioners performing materials analysis, and for senior undergraduate students looking to gain a clear understanding of the underlying principles and applications of the different characterisation tec...

  14. Surface analysis the principal techniques

    CERN Document Server

    Vickerman, John C

    2009-01-01

    This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c

  15. Biocompatible implant surface treatments.

    Science.gov (United States)

    Pattanaik, Bikash; Pawar, Sudhir; Pattanaik, Seema

    2012-01-01

    Surface plays a crucial role in biological interactions. Surface treatments have been applied to metallic biomaterials in order to improve their wear properties, corrosion resistance, and biocompatibility. A systematic review was performed on studies investigating the effects of implant surface treatments on biocompatibility. We searched the literature using PubMed, electronic databases from 1990 to 2009. Key words such as implant surface topography, surface roughness, surface treatment, surface characteristics, and surface coatings were used. The search was restricted to English language articles published from 1990 to December 2009. Additionally, a manual search in the major dental implant journals was performed. When considering studies, clinical studies were preferred followed by histological human studies, animal studies, and in vitro studies. A total of 115 articles were selected after elimination: clinical studies, 24; human histomorphometric studies, 11; animal histomorphometric studies, 46; in vitro studies, 34. The following observations were made in this review: · The focus has shifted from surface roughness to surface chemistry and a combination of chemical manipulations on the porous structure. More investigations are done regarding surface coatings. · Bone response to almost all the surface treatments was favorable. · Future trend is focused on the development of osteogenic implant surfaces. Limitation of this study is that we tried to give a broader overview related to implant surface treatments. It does not give any conclusion regarding the best biocompatible implant surface treatment investigated till date. Unfortunately, the eventually selected studies were too heterogeneous for inference of data.

  16. Microhardness of glass ionomer cements indicated for the ART technique according to surface protection treatment and storage time

    Directory of Open Access Journals (Sweden)

    Luciana Keiko Shintome

    2009-12-01

    Full Text Available The aim of this study was to assess the microhardness of 5 glass ionomer cements (GIC - Vidrion R (V, SS White, Fuji IX (F, GC Corp., Magic Glass ART (MG, Vigodent, Maxxion R (MR, FGM and ChemFlex (CF, Dentsply - in the presence or absence of a surface protection treatment, and after different storage periods. For each GIC, 36 test specimens were made, divided into 3 groups according to the surface protection treatment applied - no protection, varnish or nail varnish. The specimens were stored in distilled water for 24 h, 7 and 30 days and the microhardness tests were performed at these times. The data obtained were submitted to the ANOVA for repeated measures and Tukey tests (α = 5%. The results revealed that the mean microhardness values of the GICs were, in decreasing order, as follows: F > CF = MR > MG > V; that surface protection was significant for MR, at 24 h, without protection (64.2 ± 3.6a, protected with GIC varnish (59.6 ± 3.4b and protected with nail varnish (62.7 ± 2.8ab; for F, at 7 days, without protection (97.8 ± 3.7ab, protected with varnish (95.9 ± 3.2b and protected with nail varnish (100.8 ± 3.4a; and at 30 days, for F, without protection (98.8 ± 2.6b, protected with varnish (103.3 ± 4.4a and protected with nail varnish (101 ± 4.1ab and, for V, without protection (46 ± 1.3b, protected with varnish (49.6 ± 1.7ab and protected with nail varnish (51.1 ± 2.6a. The increase in storage time produced an increase in microhardness. It was concluded that the different GICs, surface protection treatments and storage times could alter the microhardness values.

  17. Microhardness of glass ionomer cements indicated for the ART technique according to surface protection treatment and storage time.

    Science.gov (United States)

    Shintome, Luciana Keiko; Nagayassu, Marcos Paulo; Di Nicoló, Rebeca; Myaki, Silvio Issáo

    2009-01-01

    The aim of this study was to assess the microhardness of 5 glass ionomer cements (GIC) - Vidrion R (V, SS White), Fuji IX (F, GC Corp.), Magic Glass ART (MG, Vigodent), Maxxion R (MR, FGM) and ChemFlex (CF, Dentsply) - in the presence or absence of a surface protection treatment, and after different storage periods. For each GIC, 36 test specimens were made, divided into 3 groups according to the surface protection treatment applied - no protection, varnish or nail varnish. The specimens were stored in distilled water for 24 h, 7 and 30 days and the microhardness tests were performed at these times. The data obtained were submitted to the ANOVA for repeated measures and Tukey tests (alpha = 5%). The results revealed that the mean microhardness values of the GICs were, in decreasing order, as follows: F > CF = MR > MG > V; that surface protection was significant for MR, at 24 h, without protection (64.2 + or - 3.6a), protected with GIC varnish (59.6 + or - 3.4b) and protected with nail varnish (62.7 + or - 2.8ab); for F, at 7 days, without protection (97.8 + or - 3.7ab), protected with varnish (95.9 + or - 3.2b) and protected with nail varnish (100.8 + or - 3.4a); and at 30 days, for F, without protection (98.8 + or - 2.6b), protected with varnish (103.3 + or - 4.4a) and protected with nail varnish (101 + or - 4.1ab) and, for V, without protection (46 + or - 1.3b), protected with varnish (49.6 + or - 1.7ab) and protected with nail varnish (51.1 + or - 2.6a). The increase in storage time produced an increase in microhardness. It was concluded that the different GICs, surface protection treatments and storage times could alter the microhardness values.

  18. Adsorption characteristics of uranyl ions onto micelle surface for treatment of radioactive liquid wastes by micelle enhanced ultrafiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Choi, W. K.; Jeong, K. H.; Lee, D. K.; Jeong, K. J. [KAERI, Taejon (Korea, Republic of)

    2001-10-01

    The objective of this investigation is to establish the rejection behavior of uranium bearing waste water by micelle enhanced ultrafiltration technique. An extensive experimental investigation was conducted with uranium only and uranium in the presence of electrolyte, utilizing ultrasfiltration stirred cell. The effects of experimental parameters such as solution pH and concentration of uranium on rejection were examined from the change of micelle concentration. The rejection dependence of the uranium was found to be a function of pH and uranium to surfactant concentration ratio. Over 95% removal was observed at pH 3 {approx} 5 and SDS concentration of 40 mM. In the presence of electrolytes, the rejection of uranium was observed to decrease significantly, the addition of cobalt ion showed more reduction than that obtained by presence of sodium and cesium ions on rejection of uranium. The rejection behavior was explained in terms of apparent distribution constants. The rejection efficiencies of uranyl ions was significantly affected by the chemical species of the given system. For all cases, the rejection was highly dependent on uranium complex species.

  19. Application of the thermal plasma technique in the treatment of stone surfaces; Aplicacion de la tecnica de plasmas termicos en el tratamiento de superficies petreas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, Z.I

    2000-07-01

    The stone materials which form part of the cultural heritage of Mexico, are degraded under the united action of water, atmospheric gases, air pollution, temperature changes and the microorganisms action; provoking on the stone: fissures, crevices, scalings, fragmentations, pulverizations, etc. Therefore, the purpose of this work is to study the possibilities to apply a protective coating on the stone surfaces, previously clean and consolidated, through the thermal plasma technique. The purpose is to analyse the physical and chemical properties of three types of stone materials: quarry, tezontle and chiluca, usually used in constructions of cultural interest such as: historical monuments, churches, sculptures, etc., before and after to be submitted to the action of thermal plasma in order to examine the feasibility in the use of this coating technique in this type of applications. The application of conventional techniques to determine: porosity, density, absorption, low pressure water absorption and crystallization by total immersion of nuclear techniques such as: neutron activation analysis, x-ray diffraction and scanning electron microscopy as well as of instrumental techniques: optical microscopy, mechanical assays of compression, flexure and surface area calculations, allowed to know the chemical and physical properties of the stone material before and after to be treated through the thermal plasma technique, projecting quartz on the stones surface at different distances and current intensity and showing the effect caused by the modifications or surface alterations present by cause of the application of that coating. the obtained results provide a general panorama of the application of this technique as an alternative to the maintenance of the architectural inheritance built in stone. (Author)

  20. PHOTOGRAMMETRIC TECHNIQUES FOR ROAD SURFACE ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. A. Knyaz

    2016-06-01

    Full Text Available The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  1. Photogrammetric Techniques for Road Surface Analysis

    Science.gov (United States)

    Knyaz, V. A.; Chibunichev, A. G.

    2016-06-01

    The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  2. Wettability Switching Techniques on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Verplanck Nicolas

    2007-01-01

    Full Text Available Abstract The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  3. Quality assurance of a conformal treatment technique

    Energy Technology Data Exchange (ETDEWEB)

    Kroes, A.P.G.; Bruinvis, I.A.D.; Lanson, J.H.; Uiterwaal, G.J. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands)

    1995-12-01

    For a parotid gland irradiation technique with a pair of oblique wedged photon beams the target coverage near the surface was investigated. The planning target volume extends to 5 millimetres under the skin; a minimum target dose of 95% is required when the dose at the centre is set to 100%. The treatment technique was simulated on a water phantom with a beam of 45 degree gantry angle, 55 degree wedge, 8 x 10 cm{sup 2} field size and the isocentre at 2 cm depth. Beam energies of 4, 6 and 8 MV were used. The dose distributions were measured in two orthogonal planes through the isocentre perpendicular to the water surface with p-type silicon diodes along lines through the isocentre every 45 degrees. Dose distributions were calculated in these planes with our 3-D planning system (U-Mplan, University of Michigan planning system), with model parameters are fitted to depth dose curves and profiles of open and wedged normally incident beams. The location of the 95% isodose was determined in five points near the surface. For 4, 6 and 8 MV the depths of the 95% isodose were 6.0, 10.3 and 11.0 mm, respectively. The depths of the 95% points of single normally incident open fields were 6.0, 9.0 and 11.5 mm, respectively. The treatment planning system (TPS) calculated the 95% isodose for the parotid technique at 5.5, 7.3 and 11.5 mm depths, for 4, 6 and 8 MV, respectively. Thus for 6 MV the 95% was 3 mm deeper than calculated by the TPS; 2 mm were caused by the inaccuracy of the open field depth dose curve fit in the build-up region. The depth near the surface of the 95% isodose for this treatment technique can be estimated from single open field depth dose curves with acceptable accuracy. This result is not obvious because the effects of the wedge and oblique incidence on the dose distribution are also involved. The TPS performed well for the 4 and 8 MV beams, but for treatments with 6 MV target under dosage could have remained undetected. (Abstract Truncated)

  4. Rhinoplasty: surface aesthetics and surgical techniques.

    Science.gov (United States)

    Çakir, Bariş; Doğan, Teoman; Öreroğlu, Ali Riza; Daniel, Rollin K

    2013-03-01

    Surface aesthetics of the attractive nose are created by certain lines, shadows, and highlights, with specific proportions and breakpoints. Our evaluation of the nasal surface aesthetics is achieved using the concept of geometric polygons as aesthetic subunits, both to define the existing deformity and the aesthetic goals. Surgical techniques have been developed and modified to achieve the desired surface appearance, and those are detailed in this article. The principles of geometric polygons allow the surgeon to analyze the deformities of the nose, to define an operative plan to achieve specific goals, and to select the appropriate operative technique. These aesthetic concepts and surgical techniques were used in 257 consecutive rhinoplasties performed in the past 3 years by the principal author (B.Ç.).

  5. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......, but they do not provide quantitative information about surface roughness. Laser profilometry and AFM on the other hand provide quantitative roughness data from two different scales, laser profilometer from 1 mm and atomic force microscope from 90 microm scale. AFM is a powerful technique but other imaging...

  6. A TECHNIQUE OF DIGITAL SURFACE MODEL GENERATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is usually a time-consuming process to real-time set up 3D digital surface mo del(DSM) of an object with complex sur face.On the basis of the architectural survey proje ct of“Chilin Nunnery Reconstruction",this paper investigates an easy and feasi ble way,that is,on project site,applying digital close range photogrammetry an d CAD technique to establish the DSM for simulating ancient architectures with c omplex surface.The method has been proved very effective in practice.

  7. Surface Wear Measurement Using Optical Correlation Technique

    Science.gov (United States)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  8. Surface diffusion studies by optical diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect.

  9. A biological treatment technique for wool textile

    Directory of Open Access Journals (Sweden)

    Yu Xiao-Wei

    2005-09-01

    Full Text Available A biological treatment technique for wool textile was carried out by enzymes degradation coupled with H2O2 oxidation. The results demonstrated that the technique had ideal effects on wool textile such as better softness, plump and less loss of bursting stress. Because of mild reaction conditions, less textile damage and less environmental pollution, this technique for wool textile treatment could have promising prospect.

  10. Extraction treatment using Invisalign Technique.

    Science.gov (United States)

    Giancotti, Aldo; Greco, Mario; Mampieri, Gianluca

    2006-01-01

    The Invisalign method is gaining an increasing interest as an alternative treatment option in adult patients and in difficult orthodontic cases. The aim of this work is to show a class II malocclusion with severe crowding in the upper and lower arches treated with the extraction of the upper first premolars performed by means of Invisalign. The alignment phase was successfully completed but the space closure achieved with crown tipping and without correct root inclination making a further fixed appliance phase necessary.

  11. Surface Treatments of Nb by Buffered Electropolishing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Andy T. [JLAB; Rimmer, Robert A. [JLAB; Ciovati, Gianluigi [JLAB; Manus, Robert L. [JLAb; Reece, Charles E. [JLAB; Williams, J. S. [JLAB; Eozénou, F. [CEA, Gif-sur-Yvette; Jin, S. [PKU/IHIP, Beijing; Lin, L. [PKU/IHIP, Beijing; Lu, X.Y. [PKU/IHIP, Beijing; Mammosser, John D. [JLAB; Wang, E. [BNL

    2009-11-01

    Buffered electropolishing (BEP) is a Nb surface treatment technique developed at Jefferson Lab1. Experimental results obtained from flat Nb samples show2-4 that BEP can produce a surface finish much smoother than that produced by the conventional electropolishing (EP), while Nb removal rate can be as high as 4.67 μm/min. This new technique has been applied to the treatments of Nb SRF single cell cavity employing a vertical polishing system5 constructed at JLab as well as a horizontal polishing system at CEA Saclay. Preliminary results show that the accelerating gradient can reach 32 MV/m for a large grain cavity and 26.7 MV/m for a regular grain cavity. In this presentation, the latest progresses from the international collaboration between Peking University, CEA Saclay, and JLab on BEP will be summarized.

  12. Open palm technique in Dupuytren's disease treatment

    Directory of Open Access Journals (Sweden)

    Marcio Carpi Malta

    2013-06-01

    Full Text Available OBJECTIVE: To evaluate the results of the open palm technique for the treatment of Dupuytren's disease. METHOD: The authors used the technique described by McCash. Twelve patients (13 hands were surgically treated, between october 2002 and september 2011. RESULTS: The wounds healed in a medium of 25 days (variation of 17 to 30 days. There were no complications, such as infection, haematoma formation, skin necrosis, residual edema. CONCLUSION: The open palm technique remains a safe alternative for the treatment of Dupuytren's disease, with satisfactory results and low risk of complications.

  13. Study of engineering surfaces using laser-scattering techniques

    Indian Academy of Sciences (India)

    C Babu Rao; Baldev Raj

    2003-06-01

    Surface roughness parameters are described. Various surface characterization techniques are reviewed briefly. Interaction of light with the surface is discussed. Laser-scattering methods to characterise the surface are detailed. Practical cases, where laser-scattering methods have provided useful information about surface characteristics, are illustrated.

  14. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  15. Adaptive Response Surface Techniques in Reliability Estimation

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Faber, M. H.; Sørensen, John Dalsgaard

    1993-01-01

    Problems in connection with estimation of the reliability of a component modelled by a limit state function including noise or first order discontinuitics are considered. A gradient free adaptive response surface algorithm is developed. The algorithm applies second order polynomial surfaces deter...

  16. Surface Optimization Techniques for Deployable Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this and several other programs, CTD has developed TEMBOREG deployable solid-surface reflectors (TEMBOREG Reflectors) to provide future NASA and Air Force...

  17. Characterization techniques for surface-micromachined devices

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.P.; Smith, N.F.; Irwin, L.; Tanner, D.M.

    1998-08-01

    Using a microengine as the primary test vehicle, the authors have examined several aspects of characterization. Parametric measurements provide fabrication process information. Drive signal optimization is necessary for increased microengine performance. Finally, electrical characterization of resonant frequency and quality factor can be more accurate than visual techniques.

  18. Surface modification: advantages, techniques, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    2000-03-01

    Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliability of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.

  19. Surface treatments of nonwoven materials

    OpenAIRE

    Saaristo, Saana-Maija

    2016-01-01

    The purpose of this thesis was to test an aerosol coating technique for nonwoven wet laid filter media. This thesis was done for Ahlstrom Tampere Corporation. Co-operating with Beneq Corporation the trials were set to test the nFOG™- equipment, the aerosol thin film coating equipment. Ahlstrom Tampere Corporation wants to explore new techniques for chemical bonding and therefore in the theory part of this thesis the main focus is on alternative coating techniques. Special methods such as ...

  20. The Progress on Laser Surface Modification Techniques of Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    LIANG Cheng; PAN Lin; Al Ding-fei; TAO Xi-qi; XIA Chun-huai; SONG Yan

    2004-01-01

    Titanium alloy is widely used in aviation, national defence, automobile, medicine and other fields because of their advantages in lower density, corrosion resistance, and fatigue resistance etc. As titanium alloy is higher friction coefficients, weak wear resistance, bad high temperature oxidation resistance and lower biocompatibility, its applications are restricted. Using laser surface modification techniques can significantly improve the surface properties of titanium alloy. a review is given for progress on laser surface modification techniques of titanium alloy in this paper.

  1. Durable, Low-Surface-Energy Treatments

    Science.gov (United States)

    Willis, Paul B.; Mcelroy, Paul M.; Hickey, Gregory S.

    1992-01-01

    Chemical treatment for creation of durable, low-surface-energy coatings for glass, ceramics and other protonated surfaces easily applied, and creates very thin semipermanent film with extremely low surface tension. Exhibits excellent stability; surfaces retreated if coating becomes damaged or eroded. Uses include water-repellent surfaces, oil-repellent surfaces, antimigration barriers, corrosion barriers, mold-release agents, and self-cleaning surfaces. Film resists wetting by water, alcohols, hydrocarbon solvents, and silicone oil. Has moderate resistance to abrasion, such as rubbing with cloths, and compression molding to polymers and composite materials.

  2. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    surfaces. A gap was observed between the polymer surface and the luminous region of the plasma column, indicating the existence of a gas boundary layer. The thickness of the gas boundary layer is smaller at higher gas flow-rates or with ultrasonic irradiation to the AC gliding arc and the polymer surface....... Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  3. A new technique in the surgical treatment of Hangman′s fractures: Neurospinal Academy (NSA technique

    Directory of Open Access Journals (Sweden)

    Sedat Dalbayrak

    2013-01-01

    Full Text Available Context: Treatment of Hangman′s fractures is still controversial. Hangman′s fractures Type II and IIA are usually treated with surgical procedures. Aim: This study aims at describing the Neurospinal Academy (NSA technique as an attempt to achieve an approximation of the fracture line to the axis body, which may be used for Type II and IIA patients with severe displacement and angulation. Settings and Design: NSA technique both pars or pedicle screws are placed bicortically to ensure that anterior surface of C2 vertebral body will be crossed 1-2 mm. A rod is prepared in suitable length and curve to connect the two screws. For placing the rod, sufficient amount of bone is resected from the C2 spinous process. C2 vertebral body is pulled back by means of the screws that crossed the anterior surface of C2 vertebral body. Materials and Methods: Hangman II and IIA patient are treated with NSA technique. Result: Angulated and tilted C2 vertebral body was pulled back and approximated to posterior elements. Conclusions: In Hangman′s fractures Type II and IIA with severe vertebral body and pedicle displacement, NSA technique is an effective and reliable treatment alternative for the approximation of posterior elements to the C2 vertebral body, which is tilted, angulated, and dislocated.

  4. Tracer injection techniques in flowing surface water

    Science.gov (United States)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  5. Miniaturized Temperature-Controlled Planar Chromatography (Micro-TLC) as a Versatile Technique for Fast Screening of Micropollutants and Biomarkers Derived from Surface Water Ecosystems and During Technological Processes of Wastewater Treatment.

    Science.gov (United States)

    Ślączka-Wilk, Magdalena M; Włodarczyk, Elżbieta; Kaleniecka, Aleksandra; Zarzycki, Paweł K

    2017-07-01

    There is increasing interest in the development of simple analytical systems enabling the fast screening of target components in complex samples. A number of newly invented protocols are based on quasi separation techniques involving microfluidic paper-based analytical devices and/or micro total analysis systems. Under such conditions, the quantification of target components can be performed mainly due to selective detection. The main goal of this paper is to demonstrate that miniaturized planar chromatography has the capability to work as an efficient separation and quantification tool for the analysis of multiple targets within complex environmental samples isolated and concentrated using an optimized SPE method. In particular, we analyzed various samples collected from surface water ecosystems (lakes, rivers, and the Baltic Sea of Middle Pomerania in the northern part of Poland) in different seasons, as well as samples collected during key wastewater technological processes (originating from the "Jamno" wastewater treatment plant in Koszalin, Poland). We documented that the multiple detection of chromatographic spots on RP-18W microplates-under visible light, fluorescence, and fluorescence quenching conditions, and using the visualization reagent phosphomolybdic acid-enables fast and robust sample classification. The presented data reveal that the proposed micro-TLC system is useful, inexpensive, and can be considered as a complementary method for the fast control of treated sewage water discharged by a municipal wastewater treatment plant, particularly for the detection of low-molecular mass micropollutants with polarity ranging from estetrol to progesterone, as well as chlorophyll-related dyes. Due to the low consumption of mobile phases composed of water-alcohol binary mixtures (less than 1 mL/run for the simultaneous separation of up to nine samples), this method can be considered an environmentally friendly and green chemistry analytical tool. The described

  6. EFFECT OF SURFACE TREATMENT ON ENAMEL SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Şeyda Erşahan

    2016-01-01

    Full Text Available Purpose: To compare the effects of different methods of surface treatment on enamel roughness. Materials and Methods: Ninety human maxillary first premolars were randomly divided into three groups (n=30 according to type of enamel surface treatment: I, acid etching; II, Er:YAG laser; III, Nd:YAG laser. The surface roughness of enamel was measured with a noncontact optical profilometer. For each enamel sample, two readings were taken across the sample—before enamel surface treatment (T1 and after enamel surface treatment (T2. The roughness parameter analyzed was the average roughness (Ra. Statistical analysis was performed using a Paired sample t test and the post-hoc Mann- Whitney U test, with the significance level set at 0.05. Results: The highest Ra (average roughness values were observed for Group II, with a significant difference with Groups I and III (P<0.001. Ra values for the acid etching group (Group I were significantly lower than other groups (P<0.001. Conclusion: Surface treatment of enamel with Er:YAG laser and Nd:YAG laser results in significantly higher Ra than acid-etching. Both Er:YAG laser or Nd:YAG laser can be recommended as viable treatment alternatives to acid etching.

  7. Techniques of endoscopic airway tumor treatment.

    Science.gov (United States)

    Guibert, Nicolas; Mhanna, Laurent; Droneau, Sylvain; Plat, Gavin; Didier, Alain; Mazieres, Julien; Hermant, Christophe

    2016-11-01

    Interventional bronchoscopy has a predominant role in the management of both early and advanced-stage airway tumors. Given the very poor prognosis of lung cancer, there is a need for new tools to improve early detection and bronchoscopic treatment of endo-bronchial precancerous lesions. In more advanced stages, interventional bronchoscopy plays an important role, as nearly a third of lung cancers lead to proximal airway obstruction. This will cause great discomfort or even life-threatening symptoms related to local extension, such as dyspnea, post-obstructive pneumonia, and hemoptysis. Surgery for very locally advanced disease is only effective for a limited number of patients and the effects of conventional antitumor therapies, like radiation therapy or chemotherapy, are inconstant and are too delayed in a palliative context. In this review, we aim to provide pulmonologists with an exhaustive technical overview of (I) the bronchoscopic management of benign endobronchial lesions; (II) the bronchoscopic management of malignant tumors, including the curative treatment of localized lesions and palliative management of malignant proximal airway stenosis; and (III) descriptions of the emerging endoscopic techniques used to treat peripheral lung tumors.

  8. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  9. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  10. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    S K Rajappa; T V Venkatesha; B M Praveen

    2008-02-01

    The surface treatment of zinc and its corrosion inhibition was studied using a product (BTSC) formed in the reaction between benzaldehyde and thiosemicarbozide. The corrosion behaviour of chemically treated zinc surface was investigated in aqueous chloride–sulphate medium using galvanostatic polarization technique. Zinc samples treated in BTSC solution exhibited good corrosion resistance. The measured electrochemical data indicated a basic modification of the cathode reaction during corrosion of treated zinc. The corrosion protection may be explained on the basis of adsorption and formation of BTSC film on zinc surface. The film was binding strongly to the metal surface through nitrogen and sulphur atoms of the product. The formation of film on the zinc surface was established by surface analysis techniques such as scanning electron microscopy (SEM–EDS) and Fourier transform infrared spectroscopy (FTIR).

  11. Surface dielectric relaxation: probing technique and its application to thermal activation dynamics of polymer surface.

    Science.gov (United States)

    Ishii, Masashi

    2010-09-01

    For dynamic analyses of a polymer surface, a dielectric relaxation measurement technique with parallel electrodes placed away from the surface was developed. In this technique, a liquid heating medium was filled in the space between the polymer surface and the electrodes. The construction that maintains the surface can clarify the physical interactions between the liquid and the bare surface and controlling the temperature of the liquid reveals the thermal activation property of the surface. The dielectric relaxation spectrum of the surface convoluted into the bulk and liquid spectra can be obtained by a reactance analysis and the surface spectrum is expressed with an equivalent resistance-capacitance parallel circuit. On the basis of the electromechanical analogy, the electric elements can be converted into mechanical elements that indicate the viscoelasticity of the polymer surface. Using these measurement and analysis techniques, the electric and mechanical properties of the surface of a gelatinized chloroprene rubber sample were analyzed.

  12. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  13. Functionalization of ceramic tile surface by sol-gel technique.

    Science.gov (United States)

    Bondioli, F; Taurino, R; Ferrari, A M

    2009-06-15

    The aim of this investigation was the surface functionalization of industrial ceramic tiles by sol-gel technique to improve at the same time the cleanability of unglazed surfaces. This objective was pursued through the design and preparation of nanostructured coating that was deposited on polished unglazed tiles by air-brushing. In particular TiO(2)-SiO(2) binary film with 1, 2 or 5wt% of titania were prepared by using tetraethoxysilane and titania nanoparticles as precursors. The obtained films were characterized by scratch tests to verify the adhesion of the coatings to the polished tiles. To mainly evaluate the effect of the thermal treatment (temperature range 100-600 degrees C) on the photocatalicity of the coatings, the films were studied under UV exposure by contact angle measurements and cleanability test. Particular attention has been paid to preserve the aesthetical aspect of the final product and the obtained hue variation was evaluated by means of UV-visible spectroscopy and colorimetric analysis.

  14. Study on Superinsulating Surface by Heavy Ion Tracks Techniques

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A common problem in high voltage technique is the breakdown of insulator due to surfacecontamination with conducting material. For example, the metal ion is transported to the insulator surfaceby sparking of vapor metal. Usually, the conventional way to solve this problem is to produce anundulating shape of the insulation surface. However,the way to enlarge the insulation surface is not

  15. A Novel Surface Treatment for Titanium Alloys

    Science.gov (United States)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  16. A novel surface-repairing technique for gun bore

    Institute of Scientific and Technical Information of China (English)

    SU Bing; YU Xu-dong; WU Bin; WANG Cheng-tao

    2005-01-01

    A novel surface-repairing technique for gun bore was investigated, which was combined with the merits such as anti-erosion wear, damage-repairing, and etc. It was accomplished by adhering a special rare earth nanocom posite evenly to the micro-surface of gun bore. The effectiveness of this technique was approved by the target-firing using a domestic automatic rifle with chromium-coated bore. Its characteristics were discussed based on the surface analyses of the rifle bore by secondary ion mass spectrometry(SIMS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis.

  17. Modelling and control of laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus Benardus Engelina

    1999-01-01

    The results of laser surface treatment may vary significantly during laser surface processing. These variations arise from the sensitivity of the process to disturbances, such as varying absorptivity and the small dimensions of the work piece. To increase the reproducibility of the process, a real-t

  18. Modelling and control of laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina

    1999-01-01

    The results of laser surface treatment may vary significantly during laser surface processing. These variations arise from the sensitivity of the process to disturbances, such as varying absorptivity and the small dimensions of the work piece. To increase the reproducibility of the process, a

  19. Improved LWR Cladding Performance by EPD Surface Modification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  20. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  1. A novel in-situ measuring technique for aspheric surface

    Science.gov (United States)

    Zhang, Chuan; Wang, Ping; Chen, Yaolong

    2011-11-01

    In this paper, a novel in-situ surface measuring technique for optical elements with aspheric surface is presented. It is a contact type probe, and can be used for measuring ground surfaces. The theory of this technique develops from coordinate measuring machine (CMM), and the measurement accuracy of this technique is depended on the accuracy of computer numerical controlled (CNC). By installing a special equipment with high accuracy measuring head in main spindle of CNC machine, and moving the probe along the path which is described by a mathematical aspheric expression precisely, we could get relative errors of sag height of any position in this path. With this technique, the repeat positioning error caused by traditional off-line measurement will be avoided. The author also has finished a special software with VC++ 6.0. With this software, the form error of ground work piece could be corrected rapidly. This software can calculate and handle the arrangement automatically with all parameters which are required to input in operation interface. In the correction stage, the software can analyze and process error data and generate a new NC program with corrected data for next grinding stage. After 2 or 3 times measuring and correction, the surface shape error of the aspheric optical element will be less than 1μm. The finished work piece has a very good surface finish and can be polished with high quality.

  2. On-line monitoring of poly dimethylsiloxane surface modification using the photothermal deflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Najmoddin, Najmeh, E-mail: najmoddin@iust.ac.ir; Khosroshahi, Mohammad E.

    2015-02-21

    Over the last decade, there has been particular interest in surface modification of biomaterials with regard to understanding the importance of surface characterization. This paper reports the use of photothermal deflection (PTD) technique to monitor modifications in poly dimethylsiloxane (PDMS) surface induced following laser treatments. The FTIR results are in agreement with PTD results, indicating that no structural changes occurred using Argon laser up to 180 s and 200 mW at 454, 488 and 514 nm wavelengths. However, with CO{sub 2} laser some physical and chemical changes occurred which are monitored by PTD technique and proved by SEM images.

  3. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleema, N., E-mail: saleema.noormohammed@imi.cnrc-nrc.gc.ca [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), University of Quebec at Chicoutimi (UQAC), 555 Boulevard University East, Saguenay, Quebec G7H 2B1 (Canada); Paynter, R.W. [Institut National de la Recherche Scientifique Energie Materiaux Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Gallant, D.; Eskandarian, M. [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. Black-Right-Pointing-Pointer Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. Black-Right-Pointing-Pointer Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. Black-Right-Pointing-Pointer Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure

  4. Applications of surface analytical techniques in Earth Sciences

    Science.gov (United States)

    Qian, Gujie; Li, Yubiao; Gerson, Andrea R.

    2015-03-01

    This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several μm, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences

  5. Surface Plasmon Resonance Spectroscopy: A Versatile Technique in a

    Science.gov (United States)

    Bakhtiar, Ray

    2013-01-01

    Surface plasmon resonance (SPR) spectroscopy is a powerful, label-free technique to monitor noncovalent molecular interactions in real time and in a noninvasive fashion. As a label-free assay, SPR does not require tags, dyes, or specialized reagents (e.g., enzymes-substrate complexes) to elicit a visible or a fluorescence signal. During the last…

  6. DICOR surface treatments for enhanced bonding.

    Science.gov (United States)

    Bailey, L F; Bennett, R J

    1988-06-01

    Treatments for preparing castable ceramic surfaces for enhanced bonding to specially formulated resin-based cements were examined. An ammonium bifluoride etch combined with gamma-methacryloxypropyl-trimethoxysilane produced shear bond strengths higher than when an ammonium bifluoride treatment was used alone. The method of curing the silane was highly significant in the contribution to the cement/substrate bond strength, with the heat-cure producing the highest values. Long-term water storage tests indicated that the cement bond with etch plus silane-treated castable ceramic surfaces (whether heat or chemically cured silane was used) demonstrated no significant decrease in strength after a one-year period.

  7. Transplant related ocular surface disorders: Advanced techniques for ocular surface rehabilitation after ocular complications secondary to hematopoietic stem cell transplantation.

    Science.gov (United States)

    Stahl, Erin D; Mahomed, Faheem; Hans, Amneet K; Dalal, Jignesh D

    2016-05-01

    HSCT has been linked to the development of an assortment of ocular surface complications with the potential to lead to permanent visual impairment if left untreated or if not treated early in the course of disease. Strategies for therapy include maintenance of lubrication and tear preservation, prevention of evaporation, decreasing inflammation, and providing epithelial support. The ultimate aim of treatment is to prevent permanent ocular sequelae through prompt ophthalmology consultation and the use of advanced techniques for ocular surface rehabilitation. We describe several rehabilitation options of ocular surface complications occurring secondarily during the post-HSCT course.

  8. Reviewing efficacy of alternative water treatment techniques.

    Science.gov (United States)

    Hambidge, A

    2001-06-01

    synergistic effect in the inactivation of coliphage MS-2 and poliovirus. Other techniques: There are a number of other techniques. We have conducted trials of most of these in the control of Legionella sp., but these fall out of the scope of this article, and as such less emphasis has been placed on them here. Ozonation: Ozone [O3] is an oxidising gas, generated electrically from oxygen [O2]. L. pneumophila can be killed at ozone [Edelstien et al 1982]. Muraca et al [1987] found that 1-2 mg/L of continuous ozone over a six hour contact time, produced a 5 logarithm decrease of L. pneumophila. The effectiveness of ozone treatment against a range of bacteria and coliphages has been studied Botzenhart et al [1993]. E. coli was least resistant to ozone, followed by MS 2-coliphage and PhiX 174-coliphage, with L. pneumophila and Bacillus subtilis spores being the most resistant. (ABSTRACT TRUNCATED)

  9. The influence of surface treatment on the implant roughness pattern

    Directory of Open Access Journals (Sweden)

    Marcio Borges Rosa

    2012-10-01

    Full Text Available An important parameter for the clinical success of dental implants is the formation of direct contact between the implant and surrounding bone, whose quality is directly influenced by the implant surface roughness. A screw-shaped design and a surface with an average roughness of Sa of 1-2 µm showed a better result. The combination of blasting and etching has been a commonly used surface treatment technique. The versatility of this type of treatment allows for a wide variation in the procedures in order to obtain the desired roughness. OBJECTIVES: To compare the roughness values and morphological characteristics of 04 brands of implants, using the same type of surface treatment. In addition, to compare the results among brands, in order to assess whether the type of treatment determines the values and the characteristics of implant surface roughness. MATERIAL AND METHODS: Three implants were purchased directly from each selected company in the market, i.e., 03 Brazilian companies (Biomet 3i of Brazil, Neodent and Titaniumfix and 01 Korean company (Oneplant. The quantitative or numerical characterization of the roughness was performed using an interferometer. The qualitative analysis of the surface topography obtained with the treatment was analyzed using scanning electron microscopy images. RESULTS: The evaluated implants showed a significant variation in roughness values: Sa for Oneplant was 1.01 µm; Titaniumfix reached 0.90 µm; implants from Neodent 0.67 µm, and Biomet 3i of Brazil 0.53 µm. Moreover, the SEM images showed very different patterns for the surfaces examined. CONCCLUSIONS: The surface treatment alone is not able to determine the roughness values and characteristics.

  10. Method of surface treatment on sapphire substrate

    Institute of Scientific and Technical Information of China (English)

    NIU Xin-huan; LIU Yu-ling; TAN Bai-mei; HAN Li-ying; ZHANG Jian-xin

    2006-01-01

    Sapphire single crystals are widely used in many areas because of the special physic properties and important application value. As an important substrate material,stringent surface quality requirements,i.e. surface finish and flatness,are required. The use of CMP technique can produce high quality surface finishes at low cost and with fast material removal rates. The sapphire substrate surface is treated by using CMP method. According to sapphire substrate and its product properties,SiO2 sol is chosen as abrasive. The particle size is 15-25 nm and the concentration is 40%. According to the experiment results,pH value is 10.5-11.5. After polishing and cleaning the sapphire surface,the surface roughness was measured by using AFM method and the lowest value of Ra 0.1 nm was obtained. From the results,it can be seen that using such method,the optimal sapphire surface can be gotten,which is advantageous for epitaxial growth and device making-up.

  11. The photoload sampling technique: estimating surface fuel loadings from downward-looking photographs of synthetic fuelbeds

    Science.gov (United States)

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...

  12. Surface composites fabricated by vacuum infiltration casting technique

    Institute of Scientific and Technical Information of China (English)

    Guirong Yang; Yuan Hao; Wenming Song; Jinjun Lü; Ying Ma

    2005-01-01

    Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration casting technique: no infiltration, partial infiltration and full infiltration (the thickness of preforms do not exceed 3.5 mm). The reason of no infiltration is that the vacuum degree is not enough so that the force acting on the liquid metal is lower than the resistance due to the surface tension. Partial infiltration is because of somewhat lower vacuum degree and pouring temperature. Full desired infiltration is on account of suitable infiltration casting conditions, such as vacuum degree, pouring temperature, grain size and preheating temperature of the preform. The most important factor of affecting formation of surface composites is the vacuum degree, then pouring temperature and particle size.The infiltration mechanism was discussed on the bases of different processing conditions. The surface composite up to 3.5 mm in thickness with uniformly distributed Al2O3 particles could be fabricated via the vacuum infiltration casting technique.

  13. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    KAUST Repository

    Accardo, Angelo

    2014-06-10

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. 2014 International Union of Crystallography.

  14. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials.

    Science.gov (United States)

    Swart, Hendrik C

    2017-08-04

    The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES), X-ray photo electron spectroscopy (XPS), time of flight scanning ion mass spectrometry (TOF-SIMS) and High resolution transmission electron microscopy (HRTEM) for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and also to determine the elemental composition of the surfaces of the materials, while XPS and TOF-SIMS are used for determining the surface chemical composition and valence state of the dopants. The role of XPS to determine the presence of defects in the phosphor matrix is also stated with the different examples. The role of HRTEM in combination with Energy dispersive spectroscopy (EDS) for nanoparticle characterization is also pointed out.

  15. 40 CFR 142.46 - Alternative treatment techniques.

    Science.gov (United States)

    2010-07-01

    ... grant a variance from any treatment technique requirement of a national primary drinking water... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Alternative treatment techniques. 142... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Variances Issued by the...

  16. The Surface Laplacian Technique in EEG: Theory and Methods

    CERN Document Server

    Carvalhaes, Claudio

    2014-01-01

    In this paper we review major theoretical and computational aspects of the surface Laplacian technique. Here we focus our attention on a few topics that are fundamental for a physical understanding of this technique and its efficient computational implementation. We highlight several issues that in our view deserve further research exploration, some of which we have attempted to address to the extent possible. We also included a set of approximations for the Laplacian on the border of a discrete grid and the description of an algorithm that accounts for the finite size of the measuring electrodes.

  17. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    Science.gov (United States)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  18. Development of Radiation Technique for Environmental Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myun Joo; Kuk, Il Hiun; Jin, Joon Ha (and others)

    2007-02-15

    The purpose of this research is to development of technologies for 1) the removal of toxic organic chemicals in sewage sludges and the volume reduction of the sewage sludge 2) the recycling/reuse of sewage sludge 3) the reconvey of resource from fishery waste by using radiation technologies. This research project focused on the study of treatment, disposal, and recycling/reuse of sewage sludge by radiation technology, and recovery of highly value-added resources from the wastes. As basic studies with a radiation technology, an enhancement of dewaterbilities of sewage sludge, development of dewatering conditioner, reduction of trace toxic organic chemicals, and the toxicities of the byproducts were studied. Based on the basic experimental results, we developed the pilot-scale system with the continuous e-beam and dewatering unit and the advanced treatment system with the use of carbon source recovered from sewage sludge.

  19. Unconventional nuclear magnetic resonance techniques using nanostructured diamond surfaces

    Science.gov (United States)

    Acosta, Victor; Jarmola, Andrey; Budker, Dmitry; Santori, Charles; Huang, Zhihong; Beausoleil, Raymond

    2014-03-01

    Nuclear magnetic resonance (NMR) technologies rely on obtaining high nuclear magnetization, motivating low operating temperatures and high magnetic fields. Dynamic nuclear polarization (DNP) techniques traditionally require another superconducting magnet and THz optics. We seek to use chip-scale devices to polarize nuclei in liquids at room temperature. The technique relies on optical pumping of nitrogen-vacancy (NV) centers and subsequent transfer of polarization to nuclei via hyperfine interaction, spin diffusion, and heteronuclear polarization transfer. We expect efficient polarization transfer will be realized by maximizing the diamond surface area. We have fabricated densely-packed (50 % packing fraction), high-aspect-ratio (10+) nanopillars over mm2 regions of the diamond surface. Pillars designed to have a few-hundred-nanometer diameter act as optical antennas, reducing saturation intensity. We also report progress in using nanopillar arrays as sensitive optical detectors of nano-scale NMR by measuring NV center Zeeman shifts produced by nearby external nuclei. The enhanced surface area increases the effective density of NV centers which couple to external nuclei. Combining these techniques may enable, e.g., identification of trace analytes and molecular imaging.

  20. Adapted Cuing Technique for Use in Treatment of Dyspraxia.

    Science.gov (United States)

    Klick, Susan L.

    1985-01-01

    The Adapted Cuing Technique (ACT) was created to accompany oral stimulus presentation in treatment of dyspraxia. ACT is consistent with current treatment theory, emphasizing patterns of articulatory movement, manner of production, and multimodality facilitation. A case study describes the use of ACT in the treatment of a five-year-old child.…

  1. Comparison of two tooth-saving preparation techniques for one-surface cavities.

    Science.gov (United States)

    Rahimtoola, Salim; van Amerongen, Evert

    2002-01-01

    The atraumatic restorative treatment technique (ART) is based on removing infected tooth material using only hand instruments and filling the subsequently cleaned cavity with adhesive material such as glass ionomer. As its name suggests, the ART technique should be atraumatic during treatment, as well as for the tooth itself as for the patient. It was primarily developed for treating people living in underserved areas of the world where resources and facilities such as electricity and trained manpower are limited. Many studies have evaluated the ART technique and the results have supported its application. However, a very limited number of studies have compared ART with more conventional techniques. For that reason, a study was conducted in Pakistan, to compare the ART technique with another more conventional treatment technique. The results of this study show that the preparations with hand instruments resulted in smaller sized cavities and therefore may be less traumatic to the tooth. It was also associated with less pain reactions compared to the more conventional technique. Although preparations with hand instruments required more time, this did not seem to affect the survival of restorations. The survival of glass ionomer cement restorations made with hand instruments was comparable with single surface amalgam restorations made with a more conventional technique. Recurrent caries was not associated with any glass ionomer cement restorations made with hand instruments. The retention rate of glass ionomer sealants was low, however one dentist had a sealant retention rate of 81.5 percent that suggests that this procedure can be performed satisfactorily in conjunction with a glass ionomer cement restoration. Operator variances did seem to affect the restorations. Survival of glass ionomer restorations made with both hand and rotary instruments varied for different operators. Similarly, the retention of fissure sealant also varied amongst operators. Operator

  2. Antibacterial Surface Treatment for Orthopaedic Implants

    Directory of Open Access Journals (Sweden)

    Jiri Gallo

    2014-08-01

    Full Text Available It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be “smart” and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.

  3. Antibacterial surface treatment for orthopaedic implants.

    Science.gov (United States)

    Gallo, Jiri; Holinka, Martin; Moucha, Calin S

    2014-08-11

    It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be "smart" and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.

  4. An effective noise-suppression technique for surface microseismic data

    Science.gov (United States)

    Forghani-Arani, Farnoush; Willis, Mark; Haines, Seth S.; Batzle, Mike; Behura, Jyoti; Davidson, Michael

    2013-01-01

    The presence of strong surface-wave noise in surface microseismic data may decrease the utility of these data. We implement a technique, based on the distinct characteristics that microseismic signal and noise show in the τ‐p domain, to suppress surface-wave noise in microseismic data. Because most microseismic source mechanisms are deviatoric, preprocessing is necessary to correct for the nonuniform radiation pattern prior to transforming the data to the τ‐p domain. We employ a scanning approach, similar to semblance analysis, to test all possible double-couple orientations to determine an estimated orientation that best accounts for the polarity pattern of any microseismic events. We then correct the polarity of the data traces according to this pattern, prior to conducting signal-noise separation in the τ‐p domain. We apply our noise-suppression technique to two surface passive-seismic data sets from different acquisition surveys. The first data set includes a synthetic microseismic event added to field passive noise recorded by an areal receiver array distributed over a Barnett Formation reservoir undergoing hydraulic fracturing. The second data set is field microseismic data recorded by receivers arranged in a star-shaped array, over a Bakken Shale reservoir during a hydraulic-fracturing process. Our technique significantly improves the signal-to-noise ratios of the microseismic events and preserves the waveforms at the individual traces. We illustrate that the enhancement in signal-to-noise ratio also results in improved imaging of the microseismic hypocenter.

  5. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, Angelo [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); Di Fabrizio, Enzo [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); BIONEM Lab at University Magna Graecia, Campus Salvatore Venuta, Viale Europa 88100, Germaneto-Catanzaro (Italy); Limongi, Tania [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); Marinaro, Giovanni [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Riekel, Christian, E-mail: riekel@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

    2014-06-10

    A comprehensive review about the use of micro- and nanostructured superhydrophobic surfaces as a tool for in situ X-ray scattering investigations of soft matter and biological materials. Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

  6. Testing a luminescence surface-exposure dating technique

    Science.gov (United States)

    Gliganic, Luke A.; Meyer, Michael; Gehring, Sebastian

    2016-04-01

    Recent work has shown that the relationship between the luminescence signal (optically stimulated [OSL] and infra-red stimulated [IRSL]) and depth into a rock surface can be used to estimate the length of time since that rock surface has been exposed to sunlight (Sohbati et al., 2012), thus serving as a means for surface-exposure dating. Despite the potential of this new dating tool, few published studies have tested or used this technique. Here, we present the results of two tests of the method. First, we perform laboratory bleaching experiments using two unexposed bedrock samples of different lithologies (granite and quartzite). Sub-samples were bleached for various durations (0 to 100,000 s) in a solar simulator, and IRSL/OSL-depth profiles were measured and fitted using the model of Sohbati et al. (2012). Results of fitting for each sub-sample were then compared. Second, we used a granite boulder from a known age moraine (1850 CE) to test the reproducibility of bleaching depth curves. Multiple cores were collected from the same ~5 cm2 surface area of the boulder, and IRSL-depth profiles were measured and modelled. While our systematic tests confirm the general physical basis of luminescence surface-exposure dating method, we found unexpected scatter in both adjacent bleaching depth curves and the fitting parameters of isochronous rock surfaces for some of our samples. Potential sources of error, including small-scale lithological variabilities and implications for accuracy and precision of the method are discussed. Sohbati, R., Murray, A.S., Chapot, M.S., Jain, M., Pederson, J. (2012) Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating. Journal of Geophysical Research 117 (B9), B09202. doi.org/10.1029/2012JB009383.

  7. A surface-matching technique for robot-assisted registration.

    Science.gov (United States)

    Glozman, D; Shoham, M; Fischer, A

    2001-01-01

    Successful implementation of robot-assisted surgery (RAS) requires coherent integration of spatial image data with sensing and actuating devices, each having its own coordinate system. Hence, accurate estimation of the geometric relationships between relevant reference frames, known as registration, is a crucial procedure in all RAS applications. The purpose of this paper is to present a new registration scheme, along with the results of an experimental evaluation of a robot-assisted registration method for RAS applications in orthopedics. The accuracy of the proposed registration is appropriate for specified orthopedic surgical applications such as Total Knee Replacement. The registration method is based on a surface-matching algorithm that does not require marker implants, thereby reducing surgical invasiveness. Points on the bone surface are sampled by the robot, which in turn directs the surgical tool. This technique eliminates additional coordinate transformations to an external device (such as a digitizer), resulting in increased surgical accuracy. The registration technique was tested on an RSPR six-degrees-of-freedom parallel robot specifically designed for medical applications. A six-axis force sensor attached to the robot's moving platform enables fast and accurate acquisition of positions and surface normal directions at sampled points. Sampling with a robot probe was shown to be accurate, fast, and easy to perform. The whole procedure takes about 2 min, with the robot performing most of the registration procedures, leaving the surgeon's hands free. Robotic registration was shown to provide a flawless link between preoperative planning and robotic assistance during surgery.

  8. Preliminary Investigation of Surface Treatments to Enhance the Wear Resistance of 60-Nitinol

    Science.gov (United States)

    Stanford, Malcolm K.

    2016-01-01

    The use of protective surface treatments on 60-Nitinol (60wt%Ni-40wt%Ti) was studied. Various nitriding techniques as well as a (Ti, Al)N coating were evaluated visually, microscopically, and by hardness and scratch testing. The chemical composition of the surface treatments was investigated by x-ray techniques. The results indicate that very hard (greater than 1,000 HK) and adherent surface layers can be produced on 60-Nitinol. Further work is needed to determine the tribological properties of these surface treatments in relevant operating environments.

  9. Streptococcus mutans biofilm adhesion on composite resin surfaces after different finishing and polishing techniques.

    Science.gov (United States)

    Pereira, C A; Eskelson, E; Cavalli, V; Liporoni, P C S; Jorge, A O C; do Rego, M A

    2011-01-01

    This study evaluated Streptococcus mutans biofilm adhesion on the surface of three composite resins (nanofilled, Filtek Z350, 3M ESPE, Salt Lake City, UT, USA; nanohybrid, Vit-1-escence, Ultradent Products, South Jordan, UT, USA; and microhybrid, Esthet X, Dentsply, Milford, DE, USA) following different finishing and polishing techniques. Sixty standardized samples (6 × 3 mm) of each composite were produced and randomly divided into three finishing and polishing treatments (n=20): 1) control group: composite resin surface in contact with Mylar matrix strips with no finishing or polishing performed, 2) Sof-Lex aluminum oxide disc technique (3M ESPE, and 3) carbide bur finishing and Astrobrush polishing technique (Ultradent). Half the samples of each group were incubated in human saliva for 1 hour, and all the samples were subjected to S mutans (ATCC 35688) biofilm development. The mean log of CFU/mL present in the S mutans biofilm was calculated, and data were statistically analyzed by three-way analysis of variance and the Tukey test (pcomposites' surfaces, regardless of the polishing treatment performed (pcomposite (Filtek Z350) had the lowest bacterial adherence with each of the finishing and polishing techniques despite the presence or absence of human saliva (padhesion on the surface of the microhybrid and nanofilled composites in the absence of human saliva.

  10. Vaporization Studies from Slag Surfaces Using a Thin Film Technique

    Science.gov (United States)

    Seetharaman, Seshadri; Shyrokykh, Tetiana; Schröder, Christina; Scheller, Piotr R.

    2013-08-01

    The investigations of vanadium vaporization from CaO-SiO2-FeO-V2O5 thin film slags were conducted using the single hot thermocouple technique (SHTT) with air as the oxidizing atmosphere. The slag samples were analyzed after the experiments by SEM/EDX. The vanadium content was found to decrease as a function of time. The loss of vanadium from the slag film after 30 minutes of oxidation was approximately 18 pct and after 50 minutes, it was nearly 56 pct. The possible mechanism of vanadium loss would be the surface oxidation of vanadium oxide in the slag, VO x to V5+, followed by surface evaporation of V2O5, which has a high vapor pressure at the experimental temperature.

  11. Surgical Treatment of Epiphrenic Diverticulum: Technique and Controversies.

    Science.gov (United States)

    Andolfi, Ciro; Wiesel, Ory; Fisichella, P Marco

    2016-11-01

    The goal of this article is to illustrate the current minimal invasive approaches to patients with epiphrenic diverticulum in terms of preoperative evaluation, surgical technique, and outcomes. Two techniques will be presented: a laparoscopic and a video-assisted thoracic repair. Indications for each technique will be discussed as well as proper patient selection and management. Current controversies in the treatment of patients with this rare disease will be addressed.

  12. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  13. Method for treatment of a surface area of steel

    NARCIS (Netherlands)

    Bhowmik, S.; Aaldert, P.J.

    2009-01-01

    The invention relates to a method for treatment of a surface area of steel by polishing said surface area and performing a plasma treatment of said surface area wherein the plasma treatment is performed at at least atmospheric conditions and wherein the plasma treatment is carried out at a power of

  14. Rotary bending fatigue properties of Inconel 718 alloys by ultrasonic nanocrystal surface modification technique

    Directory of Open Access Journals (Sweden)

    Jun-Hyong Kim

    2015-08-01

    Full Text Available This study investigates the influence of ultrasonic nanocrystal surface modification (UNSM technique on fatigue properties of SAE AMS 5662 (solution treatment of Inconel 718 alloys. The fatigue properties of the specimens were investigated using a rotary bending fatigue tester. Results revealed that the UNSM-treated specimens showed longer fatigue life in comparison with those of the untreated specimens. The improvement in fatigue life of the UNSM-treated specimens is attributed mainly to the induced compressive residual stress, increased hardness, reduced roughness and refined grains at the top surface. Fractured surfaces were analysed using a scanning electron microscopy (SEM in order to give insight into the effectiveness of UNSM technique on fracture mechanisms and fatigue life.

  15. Plastic deformation to enhance plasma-assisted nitriding: On surface contamination induced by Surface Mechanical Attrition Treatment

    Science.gov (United States)

    Samih, Youssef; Novelli, Marc; Thiriet, Tony; Bolle, Bernard; Allain, Nathalie; Fundenberger, Jean-Jacques; Marcos, Grégory; Czerwiec, Thierry; Grosdidier, Thierry

    2014-08-01

    The Surface Mechanical Attrition Treatment is a recent technique leading to the formation of nanostructured layers by the repeated action of impacting balls. While several communications have revealed possible contamination of the SMATed surfaces, the nature of this surface contamination was analyzed in the present contribution for the treatment of an AISI 316L stainless steel. It is shown, by a combination of Transmission Electron Microscopy and Glow Discharge - Optical Emission Spectrometry, that the surface was alloyed with Ti, Al and V coming from the sonotrode that is used to move the balls as well as Zr coming from the zirshot® balls themselves.

  16. Effect of mixing technique on surface characteristics of impression materials.

    Science.gov (United States)

    Lepe, X; Johnson, G H; Berg, J C; Aw, T C

    1998-05-01

    Previous studies have shown a relationship between the disinfection process, wettability, and mass change of impression materials. Hand-mixed high viscosity impression materials usually result in a material with numerous voids, which contribute to surface roughness and affect the surface characteristics of the material. This study evaluated the effect of mixing technique on advancing contact angle, receding contact angle, imbibition, and mass loss of various high and low viscosity polyether and polyvinyl siloxane materials. The null hypothesis tested was no differences exist between the different mixing systems. The Wilhelmy technique was used for deriving wetting properties of the materials used (Impregum F and Penta, Permadyne Syringe, Garant and Penta, Dimension Penta and Garant L, Aquasil). Conditions included no disinfection (0 hours) and 1, 5, and 18 hours of immersion disinfection in a full-strength solution of 2% acid glutaraldehyde disinfectant (Banicide). Weight changes before and after disinfection were measured to detect weight loss or mass increase over time. Weight loss in air was also measured to detect mass loss. Data were analyzed with a one-way analysis of variance at alpha = 0.05. All materials displayed some degree of imbibition of the disinfectant and experienced mass loss with polymerization, except the light viscosity polyvinyl that gained 0.18% at 5 hours. No significant differences were found in wettability among the polyether materials after 1 hour of disinfection. Less imbibition was observed for high viscosity mechanically mixed materials compared with the hand-mixed materials for both polyether and polyvinyl siloxane at 1-hour disinfection time. Polyether materials were more wettable than polyvinyl. Imbibition of high viscosity polyether and polyvinyl materials after 1 and 18 hours of disinfection were affected by the mixing system used.

  17. Entrance surface dose measurements in mammography using thermoluminescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada Unidad Legaria del IPM Av. Legaria 694, 11500 Mexico D.F. (Mexico); Vega C, H.R.; Manzanares A, E [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas (Mexico); Azorin, J. [Universidad Autonoma Metropolitana-lztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico); Gonzalez, P.R. [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico Toluca, 52045 Salazar Estado de Mexico (Mexico)

    2007-07-01

    Full text: Of the various techniques that can be used for personnel dosimetry, thermoluminescence dosimetry (TLD) has emerged as a superior technique due to its manifold advantages over other methods of dose estimation. Various phosphors have been therefore investigated regarding their suitability for dosimetry. In this paper, a dosimetry system based on thermally stimulated luminescence (TSL) from zirconium oxide phosphors embedded in polytetrafluorethylene (ZrO{sub 2}+PTFE) was developed for entrance surface doses (ES) measurements in mammography. Small ZrO{sub 2} pellets of 5 mm in diameter and 0.8 mm in thickness were used. The reproducibility of measurements and linearity of ZrO{sub 2} were also studied. The results were compared with those obtained from LiF:Mg,Cu,P usually used for the determination of absorbed dose in mammography. Measurements both per unit air kerma and In vivo were performed using a mammography unit model DMR (General Electric). The results showed that ZrO{sub 2} TLDs can be used for the same X-ray dosimetry applications as LiF:Mg,Cu,P, with each type having the disadvantage of a response dependent on energy, particularly at low energies. These results indicate a considerable potential for use in routine control and In vivo ES measurements in mammography. (Author)

  18. Aluminium surface treatment with ceramic phases using diode laser

    Science.gov (United States)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  19. The surface Laplacian technique in EEG: Theory and methods.

    Science.gov (United States)

    Carvalhaes, Claudio; de Barros, J Acacio

    2015-09-01

    This paper reviews the method of surface Laplacian differentiation to study EEG. We focus on topics that are helpful for a clear understanding of the underlying concepts and its efficient implementation, which is especially important for EEG researchers unfamiliar with the technique. The popular methods of finite difference and splines are reviewed in detail. The former has the advantage of simplicity and low computational cost, but its estimates are prone to a variety of errors due to discretization. The latter eliminates all issues related to discretization and incorporates a regularization mechanism to reduce spatial noise, but at the cost of increasing mathematical and computational complexity. These and several other issues deserving further development are highlighted, some of which we address to the extent possible. Here we develop a set of discrete approximations for Laplacian estimates at peripheral electrodes. We also provide the mathematical details of finite difference approximations that are missing in the literature, and discuss the problem of computational performance, which is particularly important in the context of EEG splines where data sets can be very large. Along this line, the matrix representation of the surface Laplacian operator is carefully discussed and some figures are given illustrating the advantages of this approach. In the final remarks, we briefly sketch a possible way to incorporate finite-size electrodes into Laplacian estimates that could guide further developments.

  20. Near surface geophysical techniques on subsoil contamination: laboratory experiments

    Science.gov (United States)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo

    2016-04-01

    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of

  1. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bulutsuz, A. G., E-mail: asligunaya@gmail.com [Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, İstanbul (Turkey); Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr [Adnan Menderes University, Faculty of Engineering, Department of Mechanical Engineering, Aytepe, 09010, Aydin (Turkey); Durakbasa, M. N., E-mail: durakbasa@gmx.at [Department of Interchangeable Manufacturing and Industrial Metrology, Institute for Production Engineering and Laser Technology, Vienna University of Technology, Karlsplatz 13/3113 A-1040 Wien (Austria); Katiboglu, A. B., E-mail: abkatiboglu@hotmail.com [Istanbul University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Istanbul (Turkey)

    2015-03-30

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in

  2. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    Science.gov (United States)

    Bulutsuz, A. G.; Demircioglu, P.; Bogrekci, I.; Durakbasa, M. N.; Katiboglu, A. B.

    2015-03-01

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface

  3. Endovascular treatment of traumatic carotid cavernous fistula with trapping technique

    Directory of Open Access Journals (Sweden)

    Benny Young

    2013-08-01

    Full Text Available Conventional endovascular treatment for carotid cavernous fistula (CCF involves a direct delivery of either coils, detachable balloon or both to the fistula with end point of CCF resolution and carotid artery preservation. But in few cases with severe laceration of carotid artery, the feasible endovascular technique applicable is by blocking the filling of fistula from cerebral circulation. This method known as trapping technique which implicates carotid artery occlusion, was performed in our present case with good result. (Med J Indones. 2013;22:178-82. doi: 10.13181/mji.v22i3.588Keywords: Carotid cavernous fistula (CCF, carotid occlusion, trapping technique

  4. A new technique in the surgical treatment of Hangman's fractures: Neurospinal Academy (NSA) technique

    OpenAIRE

    Sedat Dalbayrak; Onur Yaman; Mesut Yilmaz

    2013-01-01

    Context: Treatment of Hangman′s fractures is still controversial. Hangman′s fractures Type II and IIA are usually treated with surgical procedures. Aim: This study aims at describing the Neurospinal Academy (NSA) technique as an attempt to achieve an approximation of the fracture line to the axis body, which may be used for Type II and IIA patients with severe displacement and angulation. Settings and Design: NSA technique both pars or pedicle screws are placed bicortically to ensure that ant...

  5. Treatment of petroleum-contaminated water resources: modern techniques

    Science.gov (United States)

    Pogharnitskaya, O. V.; Konovalov, V. V.; Dmitrieva, N. V.; Belozerova, D. S.; Strelnikova, A. B.

    2016-09-01

    The article deals with the issue of petroleum-contaminated water resources. The authors have analyzed the dynamics of oil spills, including the world's largest ones, and claimed the issue to be global. The modern methods of mitigating oil spill effects have been studied, as well as the modern techniques of water resource treatment. The particular attention is paid to peat sorbent production, which is considered a promising trend of petroleum- contaminated water treatment.

  6. Treatment of petroleum-contaminated water resources: modern techniques

    OpenAIRE

    Pozharnitskaya, Olga Vyacheslavovna; Konovalov, Vyacheslav Vasilievich; N. V. Dmitrieva; Belozerova, D. S.; Strelnikova, A. B.

    2016-01-01

    The article deals with the issue of petroleum-contaminated water resources. The authors have analyzed the dynamics of oil spills, including the world's largest ones, and claimed the issue to be global. The modern methods of mitigating oil spill effects have been studied, as well as the modern techniques of water resource treatment. The particular attention is paid to peat sorbent production, which is considered a promising trend of petroleum- contaminated water treatment.

  7. The Modern Applications of Surface Duplex Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    JerzySmolik; JanWalkowicz; AdamMazurkiewicz; JerzyTomaszewski

    2004-01-01

    The paper presents results of the research carried out by the authors in different fields of plasma surface technologies applications. Three groups of different surface engineering technologies are shown in the paper. The first one concerns the possibility of using the duplex treatment technology for creation of biocompatible diamond-like a-C:H films. The paper presents research results concerning influence of the process parameters of the a-C:H coatings creation by means of the RFPACVD method in the pure methane amlosphere on their phase structure and mechanical properties. In the second case authors present the concept of a new special multilayer thermal barrier coatings with the PAPVD diffusion barrier layers based on aluminium oxide. As the last one the special application of plasma techniques for creation of composite materials characterized by the muffling of mechanical vibration was presented.

  8. The Modern Applications of Surface Duplex Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    Jerzy Smolik; Jan Walkowicz; Adam Mazurkiewicz; Jerzy Tomaszewski

    2004-01-01

    The paper presents results of the research carried out by the authors in different fields of plasma surface technologies applications. Three groups of different surface engineering technologies are shown in the paper. The first one concerns the possibility of using the duplex treatment technology for creation of biocompatible diamond-like a-C:H films.The paper presents research results concerning influence of the process parameters of the a-C:H coatings creation by means of the RF PACVD method in the pure methane atmosphere on their phase structure and mechanical properties. In the second case authors present the concept of a new special multilayer thermal barrier coatings with the PAPVD diffusion barrier layers based on aluminium oxide. As the last one the special application of plasma techniques for creation of composite materials characterized by the muffling of mechanical vibration was presented.

  9. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  10. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  11. Treatment of 58 Cases of Tonsillitis by Pricking Technique

    Institute of Scientific and Technical Information of China (English)

    SUN Yu; ZHANG Zhi-gang; MIAO Hong; LI Wei; HUANG Guo-qi

    2003-01-01

    Ashi point (tonsil) in combination of the pricking and bleeding technique on Shaoshang (LU 11 )and Shangyang (LI 1) were used to treat 58 outpatients of acute tonsillitis. The results showed cure in 38 cases,remarkable effect in 17 cases and failure in 3 cases by one treatment, and the total effective rate in 95%.

  12. The innovative application of surface geophysical techniques for remedial investigations

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.R. [OYO Geospace, Fort Myers, FL (United States); Smith, S. [ICF Kaiser Engineers, Boston, MA (United States); Gilmore, P. [Fishbeck, Thomson, Carr and Huber, Aida, MI (United States); Cox, S. [Blasland, Bouck, and Lee, Edison, NJ (United States)

    1993-03-01

    When researchers are investigating potential subsurface contamination at hazardous waste landfills, the surface geophysical techniques they may use are often limited. Many geophysical surveys are concerned with areas next to and not directly within the landfill units. The highly variable properties of the materials within the landfill may result in geophysical data that are either difficult or impossible to interpret. Therefore, contamination at these sites may not be detected until substantial lateral migration away from the unit has occurred. In addition, because of the poor resolution of some techniques, the landfill as a whole must be considered as a source, where discrete disposal areas within landfill units may be the actual point sources of contaminants. In theory, if specific sources within the landfill are identified and isolated, then reduced time, effort, and expenditures will be required for remediation activities. In the summer of 1989, the Idaho National Engineering Laboratory (INEL) investigated a small potentially hazardous waste landfill to determine if contaminant hot spots could be identified within the landfill and to determine if significant vertical and lateral migration of contaminants was occurring away from these locations. Based on the present hydrogeologic conditions, researchers anticipated that subsurface flow would be primarily vertical, with the zone of saturation at a depth greater than 150 meters. This necessitated that the survey be performed, for the most part, directly on the capped portion of the landfill. Focused geophysical surveys conducted off the landfill would not have provided useful information concerning conditions directly beneath the landfill. This paper discusses the planning, application, and analysis of four combined sensing methods: two methods of electromagnetic induction [low induction (Em) and time domain (TEM)], ground penetrating radar (GPR), and soil gas.

  13. Enhancement of surface properties on commercial polymer packaging films using various surface treatment processes (fluorination and plasma)

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, Jérémy, E-mail: jeremy.peyroux@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Dubois, Marc, E-mail: marc.dubois@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Tomasella, Eric, E-mail: eric.tomasella@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Petit, Elodie, E-mail: elodie.petit@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Flahaut, Delphine, E-mail: delphine.flahaut@univ-pau.fr [Université de Pau et des Pays de l’Adour, IPREM/ECP (UMR 5254), Hélioparc, 2 av. Pierre Angot, 64053 Pau cedex 9 (France)

    2014-10-01

    Graphical abstract: - Highlights: • Two different surface treatment processes were investigated in this work. • Both processes drastically change the composition induced on the surfaces. • Direct fluorination is identified as an efficient way to adjust surface properties. • Plasma processes result in a specific enhancement of the surface properties. • The pristine polymer surface has been successfully improved. - Abstract: Before considering their combination on commercial packaging films, two surface treatments processes were investigated. Indeed, direct fluorination and plasma processes are currently recognized as effective processes to improve polymer surface properties. The aim of this first work is to elucidate mechanisms that occur on the treated surface. The modifications of the surface layer were characterized using various complementary spectroscopy techniques such as Fourier Transform Infrared (FTIR) spectroscopy, high resolution solid state Nuclear Magnetic Resonance (NMR) with {sup 19}F nucleus which are suitable to determine the nature of bonding and specific groups formed during the process. X-ray Photoelectron Spectroscopy (XPS) was also achieved to extract the surface chemical compositions. In addition, surface properties of the treated films were studied by specific measurements of surface energy in order to reveal surface parameters such as rugosity and chemical composition which could be adjusted. All these results underline that the layer induced regardless of the two processes plays a key role in the enhancement of the surface properties.

  14. Microelectrode-guided Technique for Treatment of Parkinson's Diseases

    Institute of Scientific and Technical Information of China (English)

    陈坚; 杨正明; 郭东生; 牛洪泉

    2002-01-01

    From May, 2000 to June, 2001, 27 patients with Parkinson disease (PD), including 10cases of rigidity, 13 cases of tremor, 4 cases of rigidity and tremor, were treated by microelectrodeguided technique. Among them, phlebotomy was carried out in 17 cases and thalamotomy in 10 cases. All the targets of lesion were anatomically located by using MR and neurophysiological signals on microelectrode. Our results showed that the efficiency of microelectrode-guided technique for treatment of PD was 98 %. The postoperative unified parkinson disease rating scale were 12.3+ 9.1 and 13. 2± 8. 9 respectively, which significantly improved as compared with those before operation. It was concluded that by recognizing special electrical signals in neurons microelectrode-guided neuropsychological techniques can locate target at cellular level, which overcomes the individual difference in anatomy and function, and allow more accuracy, safety and efficiency of operation. This is especially true of PD patients who fail to respond to medical treatment.

  15. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    Science.gov (United States)

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  16. Treatment of MSW fly ashes using the electrodialytic remediation technique

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2004-01-01

    In the present work the electrodialytic remediation technique is applied for the treatment of fly ash, a hazardous by-product resulting from the incineration of municipal solid waste. Results are presented for an experiment conducted for 40 days at 38 mA, with a continuously stirred cell...... extraction tests and during the electrodialytic treatment. This substance was found to perform well for pH below 6 and above 9, although extractions are better in the acidic region. Other relevant observations include the retention of significant amounts of heavy metals on the cation-exchange membrane...... separating chambers III and IV and the dissolution of a large percentage of sample during the treatment. 39% of zinc, 14% of lead, 18% of copper and 60% of cadmium were removed from fly ash using the electrodialytic technique and these results are compared with previously reported experiments on similar...

  17. Effects of three surface conditioning techniques on repair bond strength of nanohybrid and nanofilled composites

    Directory of Open Access Journals (Sweden)

    Negin Nassoohi

    2015-01-01

    Full Text Available Background: Repair bond strength of different composite resins has been assessed in few studies. In addition, reports on the efficacy of surface treatments are debated. Therefore, this in vitro study was conducted to evaluate the effect of three surface treatments on two nanocomposites versus a microhybrid composite. Materials and Methods: In this experimental study, 135 composite blocks (45 specimens per composite of microhybrid (Filtek Supreme Z250, 3M ESPE, USA, nanohybrid (Filtek Supreme XT, 3M ESPE, and nanofilled (Filtek Supreme Z350, 3M ESPE were thermocycled (5000 rounds and then surface roughened (except in a control group of 9 specimens of three composite types. Each composite type was divided into three subgroups of surface treatments: (1 Bur abrading and phosphoric acid (PA etching, (2 sandblasting and PA etching, and (3 hydrofluoric etching and silane application (n = 15 × 9, complying with ISO TR11405. Composite blocks were repaired with the same composite type but of a different color. Microtensile bond strength and modes of failure were analyzed statistically using two-way analyses of variance, Tukey and Chi-square tests (α = 0.05. Results: There were significant differences between three composite resins (P < 0.0001 and treatment techniques (P < 0.0001. Their interaction was nonsignificant (P = 0.228. The difference between nanofilled and nanohybrid was not significant. However, the microhybrid composite showed a significantly higher bond strength (Tukey P < 0.05. Sandblasting was significantly superior to the other two methods, which were not different from each other. Conclusion: Within the limitations of this in vitro study, it seems that microhybrid composite might have higher repair strengths than two evaluated nanocomposites. Among the assessed preparation techniques, sandblasting followed by PA etching might produce the highest bond strength.

  18. Effects of three surface conditioning techniques on repair bond strength of nanohybrid and nanofilled composites

    Science.gov (United States)

    Nassoohi, Negin; Kazemi, Haleh; Sadaghiani, Morad; Mansouri, Mona; Rakhshan, Vahid

    2015-01-01

    Background: Repair bond strength of different composite resins has been assessed in few studies. In addition, reports on the efficacy of surface treatments are debated. Therefore, this in vitro study was conducted to evaluate the effect of three surface treatments on two nanocomposites versus a microhybrid composite. Materials and Methods: In this experimental study, 135 composite blocks (45 specimens per composite) of microhybrid (Filtek Supreme Z250, 3M ESPE, USA), nanohybrid (Filtek Supreme XT, 3M ESPE), and nanofilled (Filtek Supreme Z350, 3M ESPE) were thermocycled (5000 rounds) and then surface roughened (except in a control group of 9 specimens of three composite types). Each composite type was divided into three subgroups of surface treatments: (1) Bur abrading and phosphoric acid (PA) etching, (2) sandblasting and PA etching, and (3) hydrofluoric etching and silane application (n = 15 × 9, complying with ISO TR11405). Composite blocks were repaired with the same composite type but of a different color. Microtensile bond strength and modes of failure were analyzed statistically using two-way analyses of variance, Tukey and Chi-square tests (α = 0.05). Results: There were significant differences between three composite resins (P < 0.0001) and treatment techniques (P < 0.0001). Their interaction was nonsignificant (P = 0.228). The difference between nanofilled and nanohybrid was not significant. However, the microhybrid composite showed a significantly higher bond strength (Tukey P < 0.05). Sandblasting was significantly superior to the other two methods, which were not different from each other. Conclusion: Within the limitations of this in vitro study, it seems that microhybrid composite might have higher repair strengths than two evaluated nanocomposites. Among the assessed preparation techniques, sandblasting followed by PA etching might produce the highest bond strength. PMID:26759592

  19. Development of Layered Treatment Technique for Multiple Heavy Oil Reservoirs

    Institute of Scientific and Technical Information of China (English)

    Hu Zhimian; Wu Dehua

    1995-01-01

    @@ In order to solve the problems that there is steam absorbing inhomogeneity in various layers of well in heavy oil reservoirs during steam injection, and upperlayers and high permeability layers repeat steam absorption, as well as middle or low permeability layers absorb little steam or no steam, we have studied and developed seperate-layer treatment techniques for huff and puff wells in recent years. By test and application,these techniques have been proved successful in increasing steam stimulated effect and recovery efficiency in the period of cyclic steam stimulations of oil wells in multilayer heavy oil reservoirs.

  20. Persistent type I endoleak after endovascular treatment with Chimney technique

    Directory of Open Access Journals (Sweden)

    Ana Isabel Azevedo

    2016-09-01

    Full Text Available Thoracic endovascular aortic repair (TEVAR is increasingly used in the treatment of acute type B aortic dissection. Type Ia endoleaks are a common complication of the procedure, but its clinical significance as well as the best treatment strategy remain poorly defined. We present a case of a type Ia endoleak following TEVAR in the treatment of acute type B aortic dissection. Chimney technique approach was used in an attempt to seal the endoleak. Although technical success was suboptimal, the patient remained clinically stable and event free. Data regarding the natural course and management of type Ia endoleaks following TEVAR for aortic dissection are sparse. Future research is required to establish the clinical and technical determinants of the need to treat these endoleaks as well as the best treatment strategy.

  1. Evaluation of the topographical surface changes and roughness of zirconia after different surface treatments.

    Science.gov (United States)

    Subaşı, Meryem Gülce; İnan, Özgür

    2012-07-01

    The purpose of this study was to investigate the surface morphology and roughness of zirconia after different surface treatments. Eighty sintered zirconia specimens were divided into four groups (n = 20) according to the surface treatments received: no treatment, erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation (400 mJ, 10 Hz, 4 W, 100 MPS, distance: 1 mm), tribochemical silica coating with 30 μm aluminum oxide (Al(2)O(3)) modified by silica, and air abrasion with 110 μm Al(2)O(3) particles. After the surface treatments, the surface roughness (Ra in μm) of the specimens was evaluated using a surface texture measuring instrument. Surface morphology of a specimen from each group was evaluated with atomic force microscope (AFM) and scanning electron microscope (SEM) analyses. The surface roughness values were statistically analyzed by the Kruskal-Wallis and Mann-Whitney U tests (p = 0.05). All of the surface treatments produced rougher surfaces than the control group (p roughness of laser and silica groups (p > 0.05). SEM and AFM analyses revealed changes in surface topography after surface treatments, especially in the laser group with the formation of rare pits and in the silica and air abrasion groups with the formation of microretentive grooves. According to the results of the statistical and microscopic analyses, all of the surface treatments can be used for roughening zirconia prior to cementation; however, air abrasion is the most effective surface treatment to obtain micromechanical retention.

  2. [Non-fusion techniques for treatment of pediatric scoliosis].

    Science.gov (United States)

    Ridderbusch, K; Rupprecht, M; Kunkel, P; Stücker, R

    2013-12-01

    The primary goal of treatment in children with early onset scoliosis (EOS) is to control the deformity and to allow spinal and chest wall growth to continue and improve pulmonary function. In skeletally immature children spondylodesis leads to fusion of the instrumented segments with associated nonsymmetrical growth and pulmonary insufficiency. Non-fusion, techniques such as growing rods, vertical expandable prosthetic titanium rib® (VEPTR) and staples have evolved over the past years. Each technique has its different spectrum of indications which the surgeon has to follow accurately to prevent the patient from developing complications. A new trend started by using magnetically controlled growing rods to avoid the need for anesthesia and open surgery during adaptive growth. The intention of this article is to give the reader a synopsis about the three most important non-fusion techniques based on own experience and the current literature.

  3. Chronic Generalized Parodontitis. Part II. Modern Treatment and Prevention Techniques

    OpenAIRE

    Lukinykh L.M.; Kruglova N.V.

    2011-01-01

    To optimize a therapeutic process due to technological development in dentistry there have appeared new progressive technologies that allow improving life quality of patients with periodontal inflammatory diseases. Modern techniques of a complex etiopathogenic treatment of periodontal inflammatory diseases including conservative, orthopedic, orthodontic and surgical measures have been presented. There has been proved the use of preparations of systemic and local effect to treat chronic ge...

  4. Combined treatment of conventional techniques and acupressure in laryngectomized patients

    Directory of Open Access Journals (Sweden)

    Leonor Mora Yero

    2015-07-01

    Full Text Available Background: the use of traditional medicine techniques, specifically acupressure, along with established techniques, is widely used in developed countries for the rehabilitation of the laryngectomized patients.Objective: to describe the effectiveness of the combination of conventional techniques and those using acupressure in laryngectomized patients seen at the department of speech and phoniatrics of Ernesto Guevara Hospital from January, 2013 to December, 2014.Methods: a quasi-experimental study was carried out on a sample of 24 patients who had undergone laryngectomy and presented voluntarily or were referred for voice rehabilitation in the period and place herein mentioned. The sample was divided into two groups of 12 each. The first group was treated by the conventional method and the second group was treated with a combination of the traditional method and acupressure.Results: in the group of patients that received a conventional treatment a 50 % achieved rehabilitation. In the group where conventional techniques were combined with acupressure, rehabilitation of a 91,6 % was achieved. No adverse effects were manifested.Conclusions: the unit of the conventional technique with acupressure reduced the time for the rehabilitation of patients and increased the number of patients rehabilitated.

  5. Surface osteosarcomas: Diagnosis, treatment and outcome

    Directory of Open Access Journals (Sweden)

    Venkatesan Sampath Kumar

    2014-01-01

    Full Text Available Surface osteosarcomas are a rare form of osteosarcomas accounting for around 3-6% of all osteosarcomas. Three major groups of surface osteosarcomas are parosteal, periosteal and the high grade surface osteosarcomas. Of these, the parosteal osteosarcoma is the most common. Parosteal and periosteal osteosarcomas are distinct clinical entities and it is important to identify the clinicoradiological differences between the two types. Surface osteosarcomas occur at a later age as compared to conventional osteosarcomas. The classical site is the lower end of the femur followed by the upper end of the tibia and upper end of humerus, in that order. The periosteal variant affects the tibia more commonly than the parosteal variety. Neo-adjuvant chemotherapy is the standard of care for high grade surface osteosarcomas. Parosteal osteosarcomas, being low grade lesions, can be treated by upfront wide excision without adjuvant systemic therapy. Controversy prevails over the need for chemotherapy in periosteal osteosarcomas, which are intermediate grade lesions.

  6. Surface treatment by propane operated static jet engine

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-03-01

    Based on the principle of the jet engine, by projecting abrasive materials in hot gas at supersonic speed, 'thermo-blasting' is an industrial solution for surface treatment which combines propane, innovation and environmental protection. From the very outset, these three reasons incited Primagaz to take part in the perfection and development of the system designed by Thermo-Blast International SA. This young company from Pau (Southern France) which also validated its design with Turbomeca and the ENSAM in Paris, is currently enjoying a growing reputation at international level. In order to remain the world leader in its field and retain its technological advance, Thermo-Blast continues to refine its process with the support of Primagaz and D.B. Consultants with regard to optimising gas combustion techniques. (author)

  7. Surgical technique for treatment of recalcitrant adductor longus tendinopathy.

    Science.gov (United States)

    Gill, Thomas J; Carroll, Kaitlin M; Makani, Amun; Wall, Andrew J; Dumont, Guillaume D; Cohn, Randy M

    2014-04-01

    Chronic groin pain in the athlete can be a difficult problem to manage. Adductor dysfunction is the most common cause of groin pain in athletes, with the adductor longus being the tendon most commonly involved. The most reproducible finding for adductor longus tendinopathy is tenderness along the tendon with passive abduction and resisted hip adduction in extension. Magnetic resonance imaging and injection of a corticosteroid and anesthetic into the proximal muscle-tendon junction are both helpful in confirming the diagnosis. Nonoperative treatment may consist of protected weight bearing, ice application, ultrasonography, electrical stimulation, and gentle stretching with progressive strengthening. However, nonoperative management is not always successful. In these instances, surgical treatment can be quite effective. We present the indications, surgical technique, and rehabilitation protocol of adductor tenotomy for chronic tendinopathy. This can prove a useful tool for the treatment of recalcitrant groin pain attributable to the adductor longus.

  8. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling

    2010-01-01

    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...

  9. SRF Cavity Surface Topography Characterization Using Replica Techniques

    Energy Technology Data Exchange (ETDEWEB)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  10. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique

    DEFF Research Database (Denmark)

    Brodin, N. Patrik; af Rosenschold, Per Munck; Blomstrand, Malin

    2014-01-01

    BackgroundWe investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy.MethodsWe included 17 pediatric medulloblastoma...... boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques.ResultsMean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment...

  11. Effect of treatment time on characterization and properties of nanocrystalline surface layer in copper induced by surface mechanical attrition treatment

    Indian Academy of Sciences (India)

    Farzad Kargar; M Laleh; T Shahrabi; A Sabour Rouhaghdam

    2014-08-01

    Nanocrystalline surface layers were synthesized on pure copper by means of surface mechanical attrition treatment (SMAT) at various treatment times. The microstructural features of the surface layers produced by SMAT were systematically characterized by optical microscopy (OM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Hardness and surface roughness measurements were also carried out. It is found that the thickness of the deformed layer increased from 50 to 500 m with increasing treatment time from 10 to 300 min, while the average grain size of the top surface layer decreased from 20 to 7 nm. Hardness of the all SMATed samples decreased with depth. Furthermore, the hardness of the top surface layer of the SMATed samples was at least two times higher than that of the un-treated counterpart. Surface roughness results showed different trend with treatment time. Amounts of PV and a values first sharply increased and then decreased.

  12. Chemical reactions on solid surfaces using molecular beam techniques

    Science.gov (United States)

    Palmer, R. L.

    1980-07-01

    Thermal energy molecular beams have been used to study chemical interactions with metal surfaces. Chemisorption of simple molecules such as H2, O2, CH4, C2Hx and CO was investigated on single and polycrystalline surfaces of Pt, Ni, Co, and Ag. Kinetic parameters and reaction mechanisms were determined for model catalytic reactions including CO and C2Hx oxidation and methanation from H2/CO mixtures. Chemical reactions of NOx with CO and D2 on Pt(111) and other surfaces have been surveyed and the kinetics of NO and O2 chemisorption have been measured. The theory of adsorption/desorption kinetics is reviewed and certain deficiencies identified.

  13. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  14. Comparative study of novel endovascular treatment techniques for intracranial aneurysms

    Science.gov (United States)

    Cantón, Gádor; Lasheras, Juan C.; Levy, David I.; Sparks, Steven R.

    2002-11-01

    Intracranial aneurysms are life-threatening vascular lesions, which are potentially treatable to avoid the consequences of their rupture. Current treatments, either surgical or endovascular, are all guided to reduce the hemodynamic forces acting on the aneurysm wall in an effort to minimize the risk of rupture. Surgical clipping is still the most used technique to treat this type of aneurysm but there is a continued demand for less invasive approaches. This has led to the development of several endovascular techniques. We report here a comparative study of the reduction in the hemodynamic stresses and the modification of the flow in the parent vessel resulting from the use of three different techniques. The first one consists of endosaccular packing with platinum coils (GDC, Target Therapeutics), which is already widely used but its long-term efficacy has not yet been determined. The second one consists of the embolization of the aneurismal sac with Onyx, a polymer which hardens when in contact with the blood (being developed by Micro Therapeutics, Inc.). The third one involves the packing of the sac with hydrocoils, platinum wires coated with a gel which quickly hydrates when in contact with blood (developed by MicroVention). A Digital Particle Image Velocimetry (DPIV) system is used to measure in vitro the velocity field inside a model of an ACOM aneurysm (an aneurysm forming in the anterior communicating artery). Physiological accurate pulsatile flow conditions are input to the arterial model through a programmable pump. The measurements show that although all treatment techniques lead to a reduction in both normal and tangential shear stresses on the aneurismal sac, each one of them also leads to different modifications of the flow in the parent vessel which may have consequences related to potential for clotting. Comparison of the untreated aneurysm with the above three treated cases also showed that the characteristics of the wall shear stresses on the parent

  15. Endoscopic treatment of calcaneal spur syndrome: A comprehensive technique.

    Science.gov (United States)

    Blanco, C E; Leon, H O; Guthrie, T B

    2001-05-01

    We describe a comprehensive approach to the endoscopic treatment of calcaneal spur syndrome developed by the Arthroscopic Group of the Orthopedic Service of Hospital Hermanos Ameijeiras in Havana, Cuba. The surgical technique involves treatment of the heel spur and plantar fasciitis commonly found in calcaneal spur syndrome, but it also addresses adjacent calcaneal periostitis and allows decompression of the nerve to the abductor digiti quinti. Medial endoscopy and lateral instrumentation are used in a sequential approach with exposure and debridement of the posterior roof of the calcaneal arch, followed by removal of the calcaneal spur, lateral to medial release of the medial 75% of the plantar fascia, and if necessary, debridement of the calcaneal tuberosity periosteum. This technique was used in a prospective case series from June 1997 to May 1998 to treat a select group of 38 feet in 30 patients who reported unacceptable levels of pain despite 5 months of conservative treatment, which included an aggressive 8-week physical therapy program prescribed by the treating physician. Good to excellent results were obtained at 3 months postoperatively in all patients with regard to pain relief and return to normal activity, although 5 patients required a short course of physical therapy to resolve symptoms brought on by sports, trauma, or impact loading before 1-year follow-up, at which time all patients reported good to excellent results. Complications included 3 superficial wound infections cured by oral antibiotics and 2 transient lateral paresthesias that resolved with rest and nonsteroidal inflammatory medications. The described technique may provide a useful method for treating refractory heel spur syndrome and warrants further study.

  16. Excimer surface treatment to enhance bonding in coated steels

    Science.gov (United States)

    Mueller, Robert E.; Olfert, M.; Duley, Walter W.; North, T.; Hood, J.; Sakai, D.

    1996-04-01

    Zinc coated sheet steel in the form of temper rolled galvanize and galvanneal are used extensively in the automotive industry. Through a process of excimer laser surface treatment, we have succeeded in significantly enhancing the adhesion characteristics of these coated steels. The laser treatment is performed by scanning focused excimer laser radiation in a raster pattern over the surface to be bonded. Adhesion tests have been carried out in the form of T peel tests, using either a hot melt nylon resin or an epoxy as the adhesive. An increase in bond strength was observed over a substantial range of surface treatment conditions. The largest improvement observed was more than a factor of three greater than for untreated surfaces. With the improved surface condition, the bond strength became limited by the cohesive strength of the adhesive. The physical structure and chemical composition of the parent and excimer treated surfaces have been examined using scanning electron microscopy and X-ray photoelectron spectroscopy to determine the nature and extent of the changes caused by the surface treatment. The effects of the observed changes on the bonding performance will be discussed. Surfaces have been processed under an inert atmosphere to isolate the effects of physical surface modification and surface oxidation. An attempt will be made to correlate the surface changes with the bonding characteristics and thereby indicate which changes are most beneficial. The ultimate goal is to optimize the surface condition for bonding and maximize the process rate.

  17. Co-GISAXS technique for investigating surface growth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rainville, Meliha G.; Hoskin, Christa; Ulbrandt, Jeffrey G.; Narayanan, Suresh; Sandy, Alec R.; Zhou, Hua; Headrick, Randall L.; Ludwig, Jr., Karl F.

    2015-12-08

    Detailed quantitative measurement of surface dynamics during thin film growth is a major experimental challenge. Here X-ray Photon Correlation Spectroscopy with coherent hard X-rays is used in a Grazing-Incidence Small-Angle X-ray Scattering (i.e. Co-GISAXS) geometry as a new tool to investigate nanoscale surface dynamics during sputter deposition of a-Si and a-WSi2 thin films. For both films, kinetic roughening during surface growth reaches a dynamic steady state at late times in which the intensity autocorrelation function g2(q,t) becomes stationary. The g2(q,t) functions exhibit compressed exponential behavior at all wavenumbers studied. The overall dynamics are complex, but the most surface sensitive sections of the structure factor and correlation time exhibit power law behaviors consistent with dynamical scaling.

  18. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  19. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  20. Surgical treatment of scoliosis: a review of techniques currently applied

    Directory of Open Access Journals (Sweden)

    Maruyama Toru

    2008-04-01

    Full Text Available Abstract In this review, basic knowledge and recent innovation of surgical treatment for scoliosis will be described. Surgical treatment for scoliosis is indicated, in general, for the curve exceeding 45 or 50 degrees by the Cobb's method on the ground that: 1 Curves larger than 50 degrees progress even after skeletal maturity. 2 Curves of greater magnitude cause loss of pulmonary function, and much larger curves cause respiratory failure. 3 Larger the curve progress, more difficult to treat with surgery. Posterior fusion with instrumentation has been a standard of the surgical treatment for scoliosis. In modern instrumentation systems, more anchors are used to connect the rod and the spine, resulting in better correction and less frequent implant failures. Segmental pedicle screw constructs or hybrid constructs using pedicle screws, hooks, and wires are the trend of today. Anterior instrumentation surgery had been a choice of treatment for the thoracolumbar and lumbar scoliosis because better correction can be obtained with shorter fusion levels. Recently, superiority of anterior surgery for the thoracolumbar and lumbar scoliosis has been lost. Initial enthusiasm for anterior instrumentation for the thoracic curve using video assisted thoracoscopic surgery technique has faded out. Various attempts are being made with use of fusionless surgery. To control growth, epiphysiodesis on the convex side of the deformity with or without instrumentation is a technique to provide gradual progressive correction and to arrest the deterioration of the curves. To avoid fusion for skeletally immature children with spinal cord injury or myelodysplasia, vertebral wedge ostetomies are performed for the treatment of progressive paralytic scoliosis. For right thoracic curve with idiopathic scoliosis, multiple vertebral wedge osteotomies without fusion are performed. To provide correction and maintain it during the growing years while allowing spinal growth for

  1. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Science.gov (United States)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  2. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  3. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R

    2004-06-30

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 {mu}m, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 {mu}m. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  4. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  5. Surface properties of hard protective coatings studied by optical techniques

    Science.gov (United States)

    Jaglarz, Janusz; Wolska, N.; Mitura, K.; Duraj, R.; Marszalek, K. W.; El Kouari, Y.

    2016-06-01

    The paper describes optical study of SiC, C and NiC layers deposited on Si substrates by double beam ion sputtering (DBIS) method. The following optical methods: ellipsometry, bidirectional reflection distribution function (BRDF) and total integrated scattering (TIS) studies have been applied. The obtained results allowed us to determine the refractive indices, extinction coefficients and the roughness parameters of DBIS films. Also surface profiles of optical constants determined from scanning ellipsometric measurements have been presented. The power spectral density functions (PSD) of surface roughness for studied samples have been determined. The influence of the deposition technology on film topography has been discussed.

  6. [Orthotopic liver transplant in rats. Surgical technique, complications and treatment].

    Science.gov (United States)

    Lausada, Natalia R; Gondolesi, G E; Ortiz, E; Dreizzen, E; Raimondi, J C

    2002-01-01

    The orthotopic rat liver transplant model is a widely used technique in transplantation research. It has many advantages over other animal transplant models because of its availability and low cost. However, it must be emphasized that success with the rat model requires thorough training. The aim of this paper is to describe the microsurgical technique involved in 60 rat liver transplants and to discuss the complications and their treatments. Forty-nine liver transplants were performed at the Experimental Laboratory of the University Hospital, Ontario, Canada (ELUH) and 11 were performed at the Laboratorio de Trasplante de Organos de la Facultad de Ciencias Médicas de La Plata, Buenos Aires. Argentina (LTO). Among the transplants performed at the ELUH, the observed complications were haemorrhage (n = 4), pneumothorax (n = 1), anastomotic failure (n = 15), bile leak (n = 3), and bile duct necrosis (n = 9). The remaining 17 rats at the ELUH were healthy at day 7 after surgery. Animal survival immediately postop, at 24 hours postop and at 7 days postop was achieved with the 9th, 20th and 21st transplants respectively. At the LTO, 3 rats died as a result of anaesthetic complications. Seven-day animal survival was achieved with the 11th transplant. We beleive that the description of the orthotopic rat liver transplantation technique, as well as the discussion regarding complications and their management, can be useful for researchers interested in performing liver transplantation in rats.

  7. Luster Polish Strengthening Treatment for Raceway Surface of Aeroengine Bearings

    Institute of Scientific and Technical Information of China (English)

    DENG Si-er; TENG Hong-fei; MA Fu-jian; HAO Jian-jun; CHEN Tao

    2007-01-01

    A new surface strengthening technology, luster polish strengthening treatnent, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably.Theoretical calculation result agrees with that obtained by experiment.

  8. Effects of surface performance on bamboo by microwave plasma treatment

    Institute of Scientific and Technical Information of China (English)

    Guanben DU; Zhaobin SUN; Linrong HUANG

    2008-01-01

    Surface treatment of bamboo was carried out by microwave plasma (MWP), surface contact angle of the sample was measured using glycerin and urea-form-aldehyde resin (UFR) liquid, and the effects on the surface performance of the bamboo sample was evaluated. The results show that the surface contact angle of the sample presented a generally decreasing trend when prolonging the MWP treatment time and shortening the distance between the sample and the resonance cavity. The surface contact angle of the sample decreased by 49%-59% under the following conditions: MWP treatment for 30 s, the distance between the sample and resonance cavity at 40 mm, and measurement at 15 s after dripping with gly-cerin. The surface contact angle of the sample measured with the glycerin was lower than that with UFR. No mat-ter whether we used glycerin or UFR, the contact angle of the sample at 15 s after dripping was lower than that at 5 s after dripping. The grinding treatment had little effect on the surface contact angle of the sample after MWP treat-ment, and the modification effect of MWP treatment after grinding was better than that of sole MWP treatment.

  9. Effect of Surface Treatment with Carbon Dioxide (CO2) Laser on Bond Strength between Cement Resin and Zirconia

    OpenAIRE

    Kasraei, Shahin; Atefat, Mohammad; Beheshti, Maryam; Safavi, Nassimeh; Mojtahedi, Maryam; Rezaei-Soufi, Loghman

    2014-01-01

    Introduction: Since it is not possible to form an adequate micromechanical bond between resin cement and zirconia ceramics using common surface treatment techniques, laser pretreatment has been suggested for zirconia ceramic surfaces. The aim of this study was to evaluate the effect of Carbon Dioxide (CO2) Laser treatment on shear bond strength (SBS) of resin cement to zirconia ceramic.

  10. Surface grain refinement mechanism of SMA490BW steel cross joints by ultrasonic impact treatment

    Institute of Scientific and Technical Information of China (English)

    Bo-lin He; Lei Xiong; Ming-ming Jiang; Ying-xia Yu; Li Li

    2017-01-01

    Ultrasonic impact treatment (UIT) is a postweld technique for improving the fatigue strength of welded joints. This technique makes use of ultrasonic vibration to impact and plastically deform a weld toe and can achieve surface grain refinement of the weld toe, which is considered as the main reason for the improvement of fatigue strength. In this paper, the microstructure of the surface of a treated weld toe was observed by metallographic microscopy and transmission electron microscopy (TEM). The results show that UIT could produce severe plastic deformation on the surface layer of the weld toe and the maximum depth of plastic deformation extended to approximately 260 μm beneath the treated surface. Repeated processing could exacerbate the plastic deformation on the surface layer, resulting in finer grains. We can conclude that the surface grain refinement mechanism of SMA490BW welded joints is related to the high density of dislocation tangles and dislocation walls.

  11. Validation of a new photogrammetric technique to monitor the treatment effect of Botulinum toxin in synkinesis.

    Science.gov (United States)

    Mabvuure, N T; Hallam, M-J; Venables, V; Nduka, C

    2013-07-01

    To validate a new photogrammetric technique for quantifying eye surface area and using this to quantify the degree of improvement in symmetry in patients with oral-ocular synkinesis following Botulinum toxin injection. Feasibility study and retrospective outcomes analysis Ten patients' photographs were chosen from a photographic database. Their eye surface areas were measured independently by two raters using a graphics tablet. One rater repeated the procedure after 15 days. Bland-Altman plots were computed, ascertaining inter-rater and intra-rater variability. The eye surface areas of 19 patients were then derived from photographs taken before and after Botulinum toxin injections. Paired t-tests were used to analyse the significance of the difference in pre- and post-treatment symmetry. Ninety per cent of eye surface areas derived from the two raters were within a coefficient of variation of 0.1 (95% CI: 0.05-0.15). Similarly, 90% of eye surface areas derived from one rater had a coefficient of variation of 0.08 (95% CI: 0.04-0.12). Botulinum toxin significantly reduced synkinesis resulting from lip puckering, Mona Lisa smiling and Hollywood smiling (P<0.05). We have proposed a clinically valid tool for quantifying the effects of Botulinum toxin treatment for oral-ocular synkinesis. We recommend this method be used to monitor the response of such patients when receiving Botulinum toxin treatment.

  12. Research for Surface Insulating Treatment Technique in High Vacuum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Many insulation components are installed in the main vacuum chamber (5×10-6 Pa) of the 100 MeV compact cyclotron under development. The material of these components should be of low outgas rate,

  13. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting

    Science.gov (United States)

    Vorobyev, A. Y.; Guo, Chunlei

    2013-12-01

    It is known that good wettability of enamel and dentin surfaces is a key factor in enhancing adhesion of restorative materials in dentistry. Here, we report on a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this new approach produces engineered surface structures. The surface structure engineered and tested here is an array of femtosecond laser-produced parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  14. Bioinspired Surface Treatments for Improved Decontamination: Silicate-Based Slippery Liquid-Infused Porous Surfaces (SLIPS)

    Science.gov (United States)

    2017-07-20

    environment including contamination avoidance, individual protection, collective protection, and decontamination. In January 2015, the Center for Bio...methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a soapy water solution...and diisopropyl fluorophosphate following treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on

  15. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  16. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Tiffany M. Mott

    2013-05-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

  17. Micro reflectance difference techniques: Optical probes for surface exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martinez, L.F.; Del Pozo-Zamudio, O.; Herrera-Jasso, R.; Ulloa-Castillo, N.A.; Balderas-Navarro, R.E.; Ortega-Gallegos, J.; Lastras-Martinez, A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)

    2012-06-15

    Micro reflectance difference spectroscopy ({mu}-RDS) is a promising tool for the in-situ and ex-situ characterization of semiconductors surfaces and interfaces. We discuss and compare two different approaches used to measure {mu}-RD spectra. One is based on a charge-coupled device (CCD) camera, while the other uses a laser and a XY translation stage. To show the performance of these systems, we have measured surface optical anisotropies of GaSb(001) sample on which anisotropic strains have been generated by preferential mechanical polishing along [110] and [1 anti 10] directions. The spectrometers are complementary and the selection of one of them depends on the sample to be investigated and on experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Comparative evaluation of surface and downhole steam-generation techniques

    Science.gov (United States)

    Hart, C.

    The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.

  19. A surface wave elastography technique for measuring tissue viscoelastic properties.

    Science.gov (United States)

    Zhang, Xiaoming

    2017-04-01

    A surface wave elastography method is proposed to study the viscoelastic properties of skin by measuring the surface wave speed and attenuation on the skin. Experiments were carried out on porcine skin tissues. The surface wave speed is measured by the change of phase with distance. The wave attenuation is measured by the decay of wave amplitude with distance. The change of viscoelastic properties with temperature was studied at room and body temperatures. The wave speed was 1.83m/s at 22°C but reduced to 1.52m/s at 33°C. The viscoelastic ratio was almost constant from 22°C to 33°C. Fresh and decayed tissues were studied. The wave speed of the decayed tissue increased from 1.83m/s of fresh state to 2.73m/s. The viscoelastic ratio was 0.412/mm at the decayed state compared to 0.215/mm at the fresh state. More tissue samples are needed to study these viscoelastic parameters according to specific applications.

  20. Endoscopic treatment for vesicoureteral reflux: how important is technique?

    Science.gov (United States)

    Watters, Sean T; Sung, Jennifer; Skoog, Steven J

    2013-12-01

    Endoscopic dextranomer/hyaluronic acid (Dx/HA) injection by subureteric transurethral injection (STING) or hydrodistention implantation technique (HIT) for treatment of vesicoureteral reflux (VUR) has variable results with HIT reporting better outcomes. We determined outcomes with each technique comparing reflux resolution rates and evaluating predictors of treatment success and failure. Univariate and multivariate analysis compared 163 patients (246 ureters) who underwent a single endoscopic Dx/HA injection from December 2001 to April 2010. Data on pre, peri, and post-operative variables were prospectively collected. Resolution was defined as no reflux on voiding cystourethrogram (VCUG) at 3 month follow up. Calculated ellipsoid volume (CEV) of Dx/HA mounds was defined as (4/3π(height/2) × (length/2) × (width/2)) based on post-operative ultrasound dimensions. Ureter resolution was 79.75% and 80.84% for STING and HIT, respectively (p = 0.86). Patient resolution was 70.0% and 74.3% for STING and HIT, respectively (p = 0.57). Multivariate ureter analysis revealed lower pre-operative grade (p = 0.004) and injected Dx/HA volume 0.80-1.00 mL (p = 0.039) as predictors of success. CEV <0.20 mL (p = 0.002) and CEV/injected-volume <25% (p = 0.006) were predictors of failure. Volcano morphology (p = 0.004) and lower pre-op grade (p = 0.015) were predictors of success for STING and HIT, respectively. We found no differences in ureter or patient resolution between endoscopic Dx/HA injection techniques STING or HIT. Lower pre-operative grade and moderated Dx/HA volume were predictors of success regardless of technique. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  1. Surface reactivity of minerals illustrated by observations from surface analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Stipp, S.L.S. [Copenhagen Univ., Copenhagen (Denmark). Interface Geochemistry, Geological Institute

    2000-07-01

    Over the decades that geochemists have been studying solution/solid interactions, the traditional geochemical and mineralogical methods have taught everyone a great deal about reactions that take place at mineral surfaces. Whether Earth Scientists are interested in the accumulation of precious elements to form an ore deposit or a hydrocarbon reservoir, or in the wide dispersal of contaminants throughout environmental systems, the chemical processes that control uptake and release of trace components during fluid transport are the same. Data describing bulk solid and solution composition have allowed to make conceptual models of molecular processes and to produce computer models where behaviour in reactive systems can be simulated. However, with traditional techniques alone, it can be difficult to unambiguously select a single model to fit a set of data because several individual processes may be masked by the averaging that is inherent in the macroscopic approach. The traditional bulk analytical methods, such as X-ray diffraction (XRD), Microprobe, Scanning electron microscopy (SEM), Atomic absorption spectroscopy (AAS), potentiometry, chromatography and other wet chemistry methods give information about the identity and structure of minerals and the composition of solutions.

  2. Surface Treatment for New Engineered Aerospace Systems

    OpenAIRE

    2012-01-01

    During this EngD project, two pigmented, anti-corrosion polymer/sol-gel hybrid coatings were developed with the aim of producing an eco-friendly alternative to conventional, toxic hexavalent chromate conversion and anodized anti-corrosion alloy treatments for the aircraft manufacturer; Airbus S.A.S. The polymer/sol-gel hybrid coatings were then tested and validated as anti-corrosion coatings on the AA2024-T3 aluminium aerospace alloy and in certain cases, their performance was compared agains...

  3. Surface modification and preparation techniques for textile materials

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-01-01

    Full Text Available such as softness, adhesion and wettability. Functional properties can also be imparted to textile fibres. Textiles find use in a variety of applications, the most common of which are clothing, carpeting and furnishing. Textiles used for industrial purposes... treatments did not affect mechanical integrity. An antimicrobial agent (benzoic acid), an odour-producing compound (vanillin), and an insect repellent pesticide (N, n-diethyl-meta-toluamide (DEET)) were some of the chemicals investigated for inclusion...

  4. Effects of different polishing techniques on the surface roughness of dental porcelains

    Directory of Open Access Journals (Sweden)

    Işil Sarikaya

    2010-02-01

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate the effects of different polishing techniques on the surface roughness of dental porcelains. MATERIAL AND METHODS: Fifty-five cylindirical specimens (15x2 mm were prepared for each feldspathic (Vita VMK 95, Ceramco III and low-fusing dental porcelain (Matchmaker. Fifty-five specimens of machinable feldspathic porcelain blocks (Vitablocs Mark II, (12x14x18 mm were cut into 2-mm-thick slices (12x14 mm with low speed saw. The prepared specimens were divided into 11 groups (n=5 representing different polishing techniques including control ((C no surface treatment, glaze (G and other 9 groups that were finished and polished with polishing discs (Sof-Lex (Sl, two porcelain polishing kits (NTI (Pk, Dialite II (Di, a diamond polishing paste (Sparkle (Sp, a zirconium silicate based cleaning and polishing prophy paste (Zircate (Zr, an aluminum oxide polishing paste (Prisma Gloss (Pg, and combinations of them. The surface roughness of all groups was measured with a profilometer. The data were analyzed with a 2-way analysis of variance, and the mean values were compared by the Tukey Honestly Significant Difference test (a=0.05. RESULTS: For all porcelain material groups, the lowest Ra values were observed in Group Gl, Group Sl, Group Pk, and Group Di, which were not significantly different from each other (p>0.05.When comparing the 4 different porcelain materials, the machinable feldspathic porcelain block group (Mark II demonstrated statistically significantly less Ra values than the other porcelain materials tested (p<0.05. No significant difference was observed between the VMK 95 and Ceramco III porcelain groups (p=0.919, also these groups demonstrated the highest Ra values. CONCLUSION: Subjected to surface roughness, the surfaces obtained with polishing and/or cleaning-prophy paste materials used alone were rougher compared to the surfaces finished using Sof-lex, Dialite, and NTI polishing kit

  5. Congenital vertical talus: Treatment by reverse ponseti technique

    Directory of Open Access Journals (Sweden)

    Bhaskar Atul

    2008-01-01

    Full Text Available Background: The surgery for idiopathic congenital vertical talus (CVT can lead to stiffness, wound complications and under or over correction. There are sporadic literature on costing with mixed results. We describe our early experience of reverse ponseti technique. Materials and methods: Four cases (four feet of idiopathic congenital vertical talus (CVT which presented one month after birth were treated by serial manipulation and casting, tendoachilles tenotomy and percutaneous pinning of talonavicular joint. An average of 5.2 (range - four to six plaster cast applications were required to correct the forefoot deformity. Once the talus and navicular were aligned based on the radiographic talus-first metatarsal axis, percutaneous fixation of the talo-navicular joint with a Kirschner wire, and percutaneous tendoachilles tenotomy under anesthesia was performed following which a cast was applied with the foot in slight dorsiflexion. Results: The mean follow-up period for the four cases was 8.5 months (6-12 months. At the end of the treatment all feet were supple and plantigrade but still using ankle foot orthosis (AFO. The mean talocalcaneal angle was 70 degrees before treatment and this reduced to 31 degrees after casting. The mean talar axis first metatasal base angle (TAMBA angle was 60° before casting and this improved to 10.5°. Conclusion: Although our follow-up period is small, we would recommend early casting for idiopathic CVT along the same lines as the Ponseti technique for clubfoot except that the forces applied are in reverse direction. This early casting method can prevent extensive surgery in the future, however, a close vigil is required to detect any early relapse.

  6. Dosimetric trade-offs in breast treatment with VMAT technique.

    Science.gov (United States)

    Fogliata, Antonella; Seppälä, Jan; Reggiori, Giacomo; Lobefalo, Francesca; Palumbo, Valentina; De Rose, Fiorenza; Franceschini, Davide; Scorsetti, Marta; Cozzi, Luca

    2017-02-01

    Breast planning with volumetric modulated arc therapy (VMAT) has been explored, especially for left-sided breast treatments, with the primary intent of lowering the heart dose and improving target dose homogeneity. As a trade-off, larger healthy tissue volumes would receive low dose levels, with the potential risk of increasing late toxicities and secondary cancer induction, although no clinical data are available today to confirm the risk level. The scope of this work is to explore the dosimetric trade-offs using two different VMAT plans. Two planning strategies for dual-partial-arc VMAT, RA_avoid and RA_full, with and without avoidance sectors, were explored in a cohort of 20 patients, for whole left breast irradiation for 40.05 Gy to the mean target dose in 15 fractions. Common dose objectives included a stringent dose homogeneity, mean dose to the heart <5 Gy, ipsilateral lung (Ilung) <8 Gy, contralateral lung (Clung) <2 Gy and contralateral breast (Cbreast) <3 Gy. RA_full showed a better dose conformity, lower high-dose spillage in the healthy tissue and lower skin dose. RA_avoid presented a reduction of the mean doses for all critical structures: 51% to the heart, 12% to the Ilung, 81% to the Clung and 73% to the Cbreast. All differences were significant with p < 0.0001. The adaptation of VMAT options to planning objectives reduced significantly the healthy tissue dose levels at the price of some high-dose spillage. Evaluation of the trade-offs for application to the different critical structures should drive in improving the usage of the VMAT technique for breast cancer treatment. Advances in knowledge: Different planning strategies in the same VMAT technique could give significant variations in dose distributions. The choice of the trade-offs would affect the possible future late toxicity and secondary cancer induction risk.

  7. An indirect veneer technique for simple and esthetic treatment of anterior hypoplastic teeth

    Directory of Open Access Journals (Sweden)

    Amit Khatri

    2010-01-01

    Full Text Available This study describes a technique for treating anterior hypoplastic teeth using indirect nanocomposite veneer restoration. The prime advantage of an indirect veneer technique is that it provides an esthetic and conservative result. One of the most frequent reasons that patients seek dental care is discolored anterior teeth. Although treatment options such as removal of surface stains, bleaching, microabrasion or macroabrasion, veneering, and placement of porcelain crowns are available, conservative approach such as veneer preserves the natural tooth as much as possible. Full veneers are recommended for the restoration of localized defects or areas of intrinsic discoloration, which are caused by deeper internal stains or enamel defects. Indirectly fabricated veneers are much less sensitive compared to a operator′s technique and if multiple teeth are to be veneered, indirect veneers can be usually placed much more expeditiously. Indirect veneers last much longer than the direct veneers. Therefore, indirectly fabricated veneers are more advantageous than directly fabricated veneers in many cases.

  8. Optimized evaporation technique for leachate treatment: Small scale implementation.

    Science.gov (United States)

    Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz

    2016-04-01

    This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature. Copyright © 2016. Published by Elsevier Ltd.

  9. Surface tracking in polymers: a pattern discrimination technique using fractals

    Energy Technology Data Exchange (ETDEWEB)

    Rajini, V; Kumar, K Udaya [Department of High Voltage Engineering, College of Engineering Guindy, Anna University, Chennai-600025 (India)

    2006-08-21

    The geometrical patterns of dielectric breakdown like electrical trees, surface discharges and lightning are known to be fractal in nature. These fractal patterns can be analysed numerically using fractal dimensions and lacunarity. Surface tracking occurring in high voltage insulation systems is a very complex phenomenon and more so the shapes of tracking patterns. It has been fairly well established that the shapes and the underlying parameters causing tracking have a one-to-one correspondence and therefore methods to describe and quantify these patterns must be explored. This contribution reports preliminary results of such a study wherein two-dimensional (2D) tracking patterns of gamma irradiated ethylene propylene diene monomer (EPDM) were analysed and found to possess fairly reasonable pattern discriminating abilities. This approach appears promising and further research is essential before any long-term predictions can be made. It is also interesting to note that the ac tracking resistance of EPDM decreases with an increase in the radiation dose. The erosion depth affected by radiation was also studied.

  10. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  11. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon

    2012-08-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  12. Experimental Study on Plasma Surface Treatment of Capacitors Film

    Science.gov (United States)

    Ling, Dai; Ting, Yin; Fuchang, Lin; Fei, Yan

    Plasma surface treatment is an optional way to change the electrical performance of the film capacitors used widely in pulse power application. This paper presents the experimental study of glow discharge plasma treatment to polyphenylene sulfide (PPS) film. By using infrared spectra and scanning electron microscope (SEM), the chemical component and microstructure of material surface has detected to be changed with different treatment strength and various discharge gas. After treatment, the film surface tends to be rougher and some sorts of polar radicals or groups found to be introduced. But there is no obvious change of the electrical strength of the film. At last, theoretical analysis has been carried out with polypropylene film experimental treatment results in author's former work.

  13. Cyclodialysis Cleft Treatment Using a Minimally Invasive Technique

    Directory of Open Access Journals (Sweden)

    João Pinheiro-Costa

    2015-02-01

    Full Text Available Purpose: To report a case of a cyclodialysis cleft that was successfully managed with gas endotamponade and cyclocryotherapy. Methods: A 37-year-old male victim of a severe blunt ocular trauma was referred to our service for evaluation and treatment of a left eye hypotony. Clinical examination revealed an intraocular pressure of 2 mm Hg, a cyclodialysis cleft extending from the 11 to 1 o'clock positions and a hypotonic maculopathy. Left eye best corrected visual acuity (BCVA was 3/10. The patient failed to respond to conservative treatment with atropine 1%, so a single bubble of 16% C2F6 was injected into the vitreous cavity, followed by superior quadrant transconjunctival cyclocryotherapy. Results: After gas absorption, the intraocular pressure increased to 11 mm Hg and became steady during the 24 months of follow-up. His hypotonic maculopathy resolved, and the BCVA improved to 9/10. Complete closure of the cyclodialysis cleft was documented with ultrasound biomicroscopy. Conclusion: Cryotherapy associated with gas endotamponade is a minimally invasive technique that could be considered for patients with cyclodialysis clefts that fail to respond to medical therapy.

  14. Satellite techniques for determining the geopotential of sea surface elevations

    Science.gov (United States)

    Pisacane, V. L.

    1986-01-01

    Spaceborne altimetry with measurement accuracies of a few centimeters which has the potential to determine sea surface elevations necessary to compute accurate three-dimensional geostrophic currents from traditional hydrographic observation is discussed. The limitation in this approach is the uncertainties in knowledge of the global and ocean geopotentials which produce satellite and height uncertainties about an order of magnitude larger than the goal of about 10 cm. The quantitative effects of geopotential uncertainties on processing altimetry data are described. Potential near term improvements, not requiring additional spacecraft, are discussed. Even though there is substantial improvements at the longer wavelengths, the oceanographic goal will be achieved. The geopotential research mission (GRM) is described which should produce geopotential models that are capable of defining the ocean geoid to 10 cm and near-earth satellite position. The state of the art and the potential of spaceborne gravimetry is described as an alternative approach to improve our knowledge of the geopotential.

  15. Bonding to zirconia using a new surface treatment

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.

    2010-01-01

    Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed tec

  16. Bonding to zirconia using a new surface treatment

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.

    2010-01-01

    Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed

  17. SURFACE TREATMENT OF POLY(ETHYLENE TEREPHTHALATE) FABRIC WITH POLYETHYLENEIMINE

    Institute of Scientific and Technical Information of China (English)

    O.J. ATEIZA; I. HOLME; J.E. McINTYRE

    1997-01-01

    A branched polyethyleneimine (BPEI) was applied to poly(ethylene terephthalate)(PET) fabric to improve its surface moisture absorption so that the fabric becomes less liable to retention of electrostatic charge. The durability of this treatment was assessed by washing and followed by measurement of charge development on the fabric. The treated samples showed improved surface wetting compared to the untreated. The results are consistent with attachment of the BPEI to the PET surface by a cross-linking mechanism.

  18. Surface modification by cold-plasma technique for dental implants—Bio-functionalization with binding pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Masao Yoshinari

    2011-08-01

    At the bone tissue/implant interface, a thin calcium phosphate coating and rapid heating with infrared radiation were effective in controlling the dissolution without cracking the coating. These thin calcium phosphate coatings may directly promote osteogenisis, but also enable immobilization and subsequent drug delivery system (DDS of bisphosphonates. Simvastatin is also an effective candidate that is reported to increase the expression of BMP-2. The thin-film of hexamethyldisiloxane (HMDSO was plasma-polymerized onto titanium, and then HMDSO surface was activated by O2-plasma treatment. A quartz crystal microbalance (QCM-D technique demonstrated that simvastatin was immobilized on the plasma-treated surfaces due to introduction of O2-functional groups. At the soft tissue/implant interface, multi-grooved surface topographies and utilizing the adhesive proteins such as fibronectin or laminin-5 may help in providing a biological seal around the implant. At the oral fluid/implant interface, an alumina coating, F+-implantation and immobilization of anti-microbial peptides were responsible for inhibiting the biofilm accumulation.

  19. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, K.D.

    1999-10-01

    The effect of anodic surface treatment of activated carbon on adsorption and ion exchange characteristics was investigated in the condition of 35 wt% NaOH electrolyte for 60 s. The acid and base values were determined by a titration technique, and surface and pore structures were studied in terms of BET volumetric measurement with N{sub 2} adsorption. The ion exchange capacity of the anodized activated carbons was characterized by a dry weight capacity technique. It was observed that an increase in current intensity leads to an increase in the surface functional groups of activated carbons, resulting in increasing pH, acid-base values, and anion-cation exchange capacities, without significant change of surface and pore structures (i.e., specific surface area, total pore volume, micropore volume, and average pore diameter). Also, anodically treated activated carbons are more effectively evaluated on the base value or cation exchange capacity than on the oppose properties in this electrolytic system.

  20. Economics of wastewater treatment in GTL plant using spray technique

    Directory of Open Access Journals (Sweden)

    G.C. Enyi, G.G. Nasr, M. Burby

    2013-01-01

    Full Text Available In a Gas-to-liquid (GTL plant, significant quantities of CO2 and reaction water are produced and various chemicals are used as intermediate treatment chemicals. The reaction water is contaminated by these chemicals which impair the pH and the related properties of the water. The pH has to be controlled in the effluent treatment unit before the water is re-used or released to the environment. The overall aim of this investigation is to create a novel technique to address the problem of waste water treatment in GTL plants which will assist in the reduction of greenhouse gas (CO2 emissions into the atmosphere. A laboratory-scale effluent neutralisation unit for pH control utilising gas injectors was designed and built. The unit used the CO2 produced as a by-product of GTL process as wastewater treatment chemical instead of the conventional Sulphuric acid. The quality of wastewater after treatment with CO2 met the standards set by the state regulatory agency. The economics of the new process shows a better payout period of 3.6 years for capital investment of $1,645 Million compared to 4.7 years for an existing plant layout with capital investment of $1,900 Million. The effects of increase in plant capacity showed a lower payback back of 2.8 years for plant capacity of 140,000 barrels/day (22258 m3/day, 3.6 years for 34,000 barrels/day and 6.0 years for 12,500 barrels/day (1987 m3/day plant capacity. The sensitivity analysis using crystal ball simulator with ‘Microsoft Excel’ shows that the annual revenue has the greatest effects on the NPV of the plant than the CAPEX and inflation rate. Apart from the environmental benefits the process generates by reducing CO2 emissions into the atmosphere, the study also concludes that the replacement of conventional Sulphuric acid (H2SO4 unit with CO2 improves the economics of the plant.

  1. Economics of wastewater treatment in GTL plant using spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Enyi, G.C.; Nasr, G.G.; Burby, M. [University of Salford, Manchester, M5 4WT (United Kingdom)

    2013-07-01

    In a Gas-to-liquid (GTL) plant, significant quantities of CO2 and reaction water are produced and various chemicals are used as intermediate treatment chemicals. The reaction water is contaminated by these chemicals which impair the pH and the related properties of the water. The pH has to be controlled in the effluent treatment unit before the water is re-used or released to the environment. The overall aim of this investigation is to create a novel technique to address the problem of waste water treatment in GTL plants which will assist in the reduction of greenhouse gas (CO2) emissions into the atmosphere. A laboratory-scale effluent neutralisation unit for pH control utilising gas injectors was designed and built. The unit used the CO2 produced as a by-product of GTL process as wastewater treatment chemical instead of the conventional Sulphuric acid. The quality of wastewater after treatment with CO2 met the standards set by the state regulatory agency. The economics of the new process shows a better payout period of 3.6 years for capital investment of $1,645 Million compared to 4.7 years for an existing plant layout with capital investment of $1,900 Million. The effects of increase in plant capacity showed a lower payback back of 2.8 years for plant capacity of 140,000 barrels/day (22258 m3/day), 3.6 years for 34,000 barrels/day and 6.0 years for 12,500 barrels/day (1987 m3/day) plant capacity. The sensitivity analysis using crystal ball simulator with 'Microsoft Excel' shows that the annual revenue has the greatest effects on the NPV of the plant than the CAPEX and inflation rate. Apart from the environmental benefits the process generates by reducing CO2 emissions into the atmosphere, the study also concludes that the replacement of conventional Sulphuric acid (H2SO4) unit with CO2 improves the economics of the plant.

  2. Sediment remediation treatment techniques for the Venice industrial canals

    Energy Technology Data Exchange (ETDEWEB)

    Pippa, R.; Scanferla, P.; Cammarata, F.; Zampieri, L.; Carlon, C. [Consorzio Venezia Ricerche (Italy); Pavoni, B. [Ca' Foscari University of Venice (Italy). Dept. of Environmental Sciences; Pannocchia, G. [Venezia Technologie SpA, Venice (Italy); Hreglich, S. [Stazione Sperimentale del Vetro, Venice (Italy); Avezzu, F. [Depuracque Impianti srl, Venice (Italy)

    2003-07-01

    The main objective of SeRTech project (Sediment Remediation Technologies) is to develop an integrated cost-effective treatment system to address heterogeneous contamination and matrixes, such as those of Venice lagoon dredged materials. Seven treatment techniques, selected over a large array, have been tested: Thermal Desorption. A preliminary set of isothermal treatments at different temperatures was performed to evaluated the losses of organic and the most volatile metals (such as Pb and As). An almost full volatilisation of organic compounds was observed at temperatures ranging between 200 and 300 C. Chemical stabilization-solidification. Depuracque Impianti srl process uses innovative patented additives (polimers and superplasticizers) to immobilize heavy metals into cement pellets. Solvent extraction. Organic contaminants such as PAHs and PCBs were extracted from sediments by using ethyl acetate. The results showed that solvent extraction obtained high efficiency in removal of PAHs and other organic contaminants. Immobilization of heavy metals employing sulfate-reducing bacteria. High Gradient Magnetic Separation (HGMS). Sulfate reducing bacteria (SBR) produce an iron sulfide containing biomass with a high capability to adsorbe hevy metals and some organic compounds. This biomass can be separated through a high gradient magnetic field removing a substantial fraction of contaminants. Vitrification. Sediment was mixed with other inorganic wastes (glass cullet, feldsphatic tailings) and low amounts of row material to obtain an inert glass, which in turn can be recycled into other useful products, for example glass fibres, foam glass and glass ceramics. Phytoremediation. Phragmites australis (Cav.), Trin; Juncus Iacustrus, Arthrocnmemum fruticosum, Spartina maritima, Helianthus annuus L., Zea mais L., Brassica napus L., Brassica juncea L. have been selected to verify limit and efficiency of phytoextraction for heavy metals (Zn, Pb, Hg, Cd, As, Ni). Not only

  3. Interaction between mesenchymal stem cells and Ti-30Ta alloy after surface treatment.

    Science.gov (United States)

    Capellato, Patricia; Escada, Ana L A; Popat, Ketul C; Claro, Ana P R Alves

    2014-07-01

    In this study, in vitro cytocompatibility was investigated in the Ti-30Ta alloy after two kinds of surfaces treatments: alkaline and biomimetic treatment. Each condition was evaluated by scanning electron microscopy/energy-dispersive X-ray spectroscopy. Cellular adhesion, viability, protein expression, morphology, and differentiation were evaluated with Bone marrow stromal cells (MSCs) to investigate the short and long-term cellular response by fluorescence microscope imaging and colorimetric assays techniques. Two treatments exhibited similar results with respect to total protein content and enzyme activity as compared with alloy without treatment. However, it was observed improved of the biomineralization, bone matrix formation, enzyme activity, and MSCs functionality after biomimetic treatment. These results indicate that the biomimetic surface treatment has a high potential for enhanced osseointegration.

  4. Nanostructure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    Directory of Open Access Journals (Sweden)

    K. M. Zhang

    2013-01-01

    Full Text Available The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nanostructure formations of steels by using a low energy high pulsed electron beam (LEHCPEB treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels.

  5. Autonomous selection of PDE inpainting techniques vs. exemplar inpainting techniques for void fill of high resolution digital surface models

    Science.gov (United States)

    Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick

    2007-04-01

    High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.

  6. Surface implantation treatments to prevent infection complications in short term devices.

    Science.gov (United States)

    Davenas, J; Thévenard, P; Philippe, F; Arnaud, M N

    2002-08-01

    Surface treatments of short term devices are actually evaluated to reduce the risk of infections, which in particular are one of the main causes of complications following catheter insertion. We have investigated the efficacy of ion beam techniques to reduce bacterial adhesion-or to induce bactericidal activity of different polymer materials: PVC, silicone rubber, poly(urethane) and poly(ethylene). Two routes have been evaluated, based on the production of non fouling surfaces, through the production of diamond-like surfaces upon irradiation with rare gases, or the implantation of silver, known for its bactericidal action. In this contribution we discuss more specifically the treatment of poly(ethylene), where a broad range of surface characterisation techniques could show that the biological activity resulted from the formation of metallic colloidal silver near the surface of the polymer, associated to the formation of a dense surface acting as a diffusion barrier. Reduction of the implantation energy to 10 keV, led to activity enhancement resulting from the easier accessibility of surface colloids evidenced by AFM microscopy. This study emphasises the specific processes induced by the formation of silver nano-particles at low energy implantation, which differs basically from Ion Beam Assisted Deposition (IBAD technique) leading to the formation of a continuous silver coating (Artif. Organs 18 (1994) 266; International Patent (PCT) WO 95/18637 (1995)).

  7. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  8. Priority of surgical treatment techniques of full cartilage defects of knee joint

    Directory of Open Access Journals (Sweden)

    Андрій Вікторович Літовченко

    2015-10-01

    Full Text Available Aim. Surgical treatment of chondromalacia of knee joint cartilage is an actual problem of the modern orthopedics because the means of conservative therapy can be realized at an initial stage only and almost exhausted at the further ones. Imperfections of palliative surgical techniques are the short-term clinical effect and pathogenetic baselessness because surgical procedure is not directed on reparation of cartilaginous tissue. For today there are a lot of transplantation techniques that are used for biological renewal of articular surface with formation of hyaline or at least hyaline-like cartilage. The deep forage of cartilage defect bottom to the medullary canal is a perspective and priority technique.Methods. The results of treatment of 61 patients with chondromalacia of knee joint of 3-4 degree according to R. Outerbridge are the base of the work. 20 patients of every group underwent microfracturization of cartilage defect bottom and subchondral forage of defect zone. 21 patients underwent the deep forage of defect zone of knee joint according to an offered technique.Result. The results of treatment with microfracturization, subchondral forage and deep forage of defect zone indicate the more strong clinical effect especially in the last clinical group where good and satisfactory results ratios in the term of observation 18 and 24 month remain stable.Conclusions. Deep forage of cartilage defects zone is the most adequate reparative technique of the surgical treatment of local knee joint cartilage defects. Owing to this procedure the number of cells of reparative chondrogenesis predecessors is realized

  9. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Directory of Open Access Journals (Sweden)

    Willy Zorzi

    2012-08-01

    Full Text Available This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions.

  10. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong; Zhang, Shenglan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, –PO{sub 4}H{sub 2}, –COOH and –OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. - Highlights: • –PO{sub 4}H{sub 2}, –COOH and –OH groups were successfully introduced onto PEEK surface via tailored silanization layer technique. • Bone-like apatite formed uniformly on surface-functionalized PEEK after immersion in SBF, and tightly adhered to the PEEK. • SEM, EDS, FTIR, XPS and XRD results showed that apatite layer is composed of low-crystalline bone-like apatite. • Bone-like apatite coating

  11. Surface treatment and corrosion behaviour of austenitic stainless steel biomaterial

    Science.gov (United States)

    Oravcová, M.; Palček, P.; Zatkalíková, V.; Tański, T.; Król, M.

    2017-02-01

    In this article results from corrosion behaviour of austenitic stainless steel AISI 316L after different surface treatments are published. “As received” surface and surface after grinding resulted in lower resistance to pitting corrosion in physiological solution than electrochemically polished in H3PO4+H2SO4+H2O. Electropolishing also improved the surface roughness in comparison with the “as received” surface. Deposition of Al2O3 nanometric ALD coating improves the corrosion resistance of stainless steel in chloride-containing environment by shifting the breakdown potential toward more positive values. This oxide coating not only improves the corrosion resistance but it also affects the wettability of the surface, resulting in hydrophobic surface.

  12. Creation of surface defects on carbon nanofibers by steam treatment

    Institute of Scientific and Technical Information of China (English)

    Zhengfeng; Shao; Min; Pang; Wei; Xia; Martin; Muhler; Changhai; Liang

    2013-01-01

    A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.

  13. Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Moon; Bang, Dong Wan; Bae, Yong Ki; Lee, Jeong Woo [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of); Kim, You Hyun [Dept. of Radiological Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2008-12-15

    The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0 cm (epidermis) and 0.5 cm bolus (dermis), and spacing toward 2 cm, 4 cm, 6 cm, 8 cm, 10 cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25 cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of 19.6-36.9, 33.2-138.2 for MW, 1.0-7.9, 1.6-37.4 for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of 11.1-71, 22.9-161 for MW, 4.1-15.5, 8.2-37.9 for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  14. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Science.gov (United States)

    Amanov, Auezhan; Cho, In-Sik; Pyun, Young-Sik

    2016-12-01

    A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  15. Surface Evaluation of Polishing Techniques for New Resilient CAD/CAM Restorative Materials.

    Science.gov (United States)

    Fasbinder, Dennis J; Neiva, Gisele F

    2016-01-01

    The purpose of this study was to measure the surface roughness of milled chairside computer-assisted design/computer assisted machining (CAD/CAM) restorations using several contouring/polishing systems as to their effectiveness for creating a clinically acceptable surface. One hundred onlays were milled from monolithic CAD/CAM blocks with an MCXL milling chamber (Sirona Dental) as follows: 30 resin nano-ceramic (Lava Ultimate, 3M ESPE), 30 hybrid ceramic (Enamic, Vita) and 40 leucite-reinforced ceramic (EmpressCAD, Ivoclar). A single group of EmpressCAD onlays was glazed-fired in a porcelain oven (Programat CS2, Ivoclar). Finishing and polishing systems consisted of either an abrasive-polish technique or a brush-polish technique. Roughness values were measured using a three-dimensional measuring laser microscope (OLS4000 LEXT by Olympus). There was a significant difference in the baseline surface roughness of the CAD/CAM materials (p ≤ 0.05), with the resin nano-ceramic (Lava Ultimate) being smoother than the hybrid ceramic (Enamic), and both being smoother than the leucite-reinforced ceramic (EmpressCAD). All polishing techniques resulted in a smoother surface compared with the baseline surface for the leucite-reinforced ceramic (p ≤ 0.05), with both techniques resulting in a significantly smoother surface than glazing in a porcelain oven (p ≤ 0.05). Both polishing techniques resulted in a smoother surface compared with the baseline surface for both the nano-ceramic and hybrid ceramic materials (p ≤ 0.05). It is possible to create an equally smooth surface for chairside CAD/CAM resilient materials compared with milled ceramics using several finishing and polishing techniques. In general, the polished ceramic surfaces were smoother than the glazed ceramic surfaces. The results of the study indicate that it is possible to create an equally smooth surface for chairside CAD/CAM resilient materials compared with milled ceramics using several

  16. 1983-2004 Heat Treatment Embraces Surface Engineering

    Institute of Scientific and Technical Information of China (English)

    Tom Bell

    2004-01-01

    The origins of surface engineering lie in antiquity, with the practices in ancient Greece and China of hardening,tempering and crude form of case hardening using solid organic materials. The formation of the International Federation for Heat Treatment in 1971 later to include Surface Engineering has been pre-eminent in the globalisation of the rapidly developing discipline of surface engineering. The dominant effect of environmental aspects of surface engineering are discussed regarding the impact for change to light weight materials and the adoption of environmentally friendly plasma technologies.

  17. Surface modification of multiwall carbon nanotubes by sulfonitric treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Sofía, E-mail: sofiagomez@cetmic.unlp.edu.ar [Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, C.C.49, M.B. Gonnet B1897ZCA (Argentina); Rendtorff, Nicolás M., E-mail: rendtorff@cetmic.unlp.edu.ar [Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, C.C.49, M.B. Gonnet B1897ZCA (Argentina); Departamento de Química, Facultad de Ciencias Exactas—UNLP, Calle 115 y 47, La Plata 1900 (Argentina); Aglietti, Esteban F., E-mail: eaglietti@cetmic.unlp.edu.ar [Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, C.C.49, M.B. Gonnet B1897ZCA (Argentina); Departamento de Química, Facultad de Ciencias Exactas—UNLP, Calle 115 y 47, La Plata 1900 (Argentina); Sakka, Yoshio, E-mail: SAKKA.Yoshio@nims.go.jp [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Suárez, Gustavo, E-mail: gsuarez@cetmic.unlp.edu.ar [Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, C.C.49, M.B. Gonnet B1897ZCA (Argentina); Departamento de Química, Facultad de Ciencias Exactas—UNLP, Calle 115 y 47, La Plata 1900 (Argentina)

    2016-08-30

    Highlights: • After the acid treatment highly increase the amount carbonyl and carboxylic groups. • The oxidation of MWCNT generates a high negative charge of it in all the pH range. • It could achieve a good dispersion of the MWCNT in water-based suspension. • There is morphological damage on the surfaces of MWCNT after the acid treatment. • Some surface defects but no shortening were observed by TEM images. - Abstract: Carbon nanotubes are widely used for electronic, mechanical, and optical devices due to their unique structural and quantum characteristics. The species generated by oxidation on the surface of these materials permit binding new reaction chains, which improves the dispersibility, processing and compatibility with other materials. Even though different acid treatments and applications of these CNT have been reported, relatively few research studies have focused on the relationship between the acid treatment and the formation of nanodefects, specific oxidized species or CNT surface defects. In this work, multiwall carbon nanotube (MWCNT) oxidation at 90 °C was characterized in order to determine the acid treatment effect on the surface. It was found that oxidized species are already present in MWCNT without an acid treatment, but there are not enough to cause water-based dispersion. The species were identified and quantified by infrared spectroscopy and X-ray photoelectron spectroscopy. Also, transmission electron microscopy observations showed not only modifications of the oxidized species, but also morphological damage on the surfaces of MWCNT after being subjected to the acid treatment. This effect was also confirmed by Raman spectroscopy. The acid treatment generates higher oxidized species, decreasing the zeta potential in the whole pH range.

  18. Entire papilla preservation technique in the regenerative treatment of deep intrabony defects: 1-Year results.

    Science.gov (United States)

    Aslan, Serhat; Buduneli, Nurcan; Cortellini, Pierpaolo

    2017-09-01

    This study evaluates the clinical outcomes of a novel tunnel-like surgical technique in the treatment of isolated deep intrabony defects. Twelve patients presenting with at least one isolated deep intrabony defect received regenerative periodontal treatment with "entire papilla preservation (EPP)" technique. Access to the intrabony defect for debridement was provided by a bevelled vertical releasing incision positioned in the buccal gingiva of the neighbouring inter-dental space. Following the elevation of a buccal flap, an inter-dental tunnel was prepared undermining the defect-associated papilla. Granulation tissue was removed, root surfaces were carefully debrided and bone substitutes and enamel matrix derivative were applied. Microsurgical suturing technique was used for optimal wound closure. Early healing was uneventful in all cases, and 100% wound closure was maintained during the entire healing period. At 1-year, there was significant attachment gain of 6.83±2.51 mm (p<0.001). The 7±2.8 mm reduction in probing depth was also significant (p<0.001), which was associated with minimal increase in gingival recession (0.16±0.38 mm, p=0.166). Tunnel-like "EPP" technique may limit the risk of wound failure particularly in the early healing phase, thereby preventing exposure of regenerative biomaterials, possibly enhancing stabilization of blood clot in deep intrabony defects and leading to optimal clinical outcomes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Development of a technique for environmental treatment by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myun Joo; Jin, J. H.; Jung, Y. D. and others

    2000-04-01

    This study was carried out for the development of pilot plant which can produce industrial water from effluent of sewage treatment plant by irradiation. As a basic study, the characteristics on decomposition of organic compounds, decoloration and sterilization of bacteria were evaluated. An additive mainly composed by sponge type of TiO{sub 2} was developed for reduction of irradiation dose and enhancement of removal efficiency of organic compounds. The optimum pilot plant was composed of sysem with gamma irradiation/ozone/additive/ion exchange. The effluent with BOD 20 ppm, COD 25 ppm and color 25 ADMI could be treated to less than 5 ppm and 5 ADMI under the irradiation of 5 kGy. The disinfection of microorganism also could be done perfectively under the same irradiation. A small amount of heavy metal ions and inorganic ions, nitrogen, contained in effluent were removed by ion exchanger. From the operation of pilot plant it could be concluded that irradiation technique can be a good method for the produce of industrial water from effluent.

  20. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Science.gov (United States)

    Lai, Jiangnan; Sunderland, Bob; Xue, Jianming; Yan, Sha; Zhao, Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang, Yugang

    2006-03-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C dbnd O bond is the key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  1. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lai Jiangnan [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Sunderland, Bob [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Xue Jianming [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Yan, Sha [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Zhao Weijiang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Folkard, Melvyn [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Michael, Barry D. [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Wang Yugang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China)]. E-mail: ygwang@pku.edu.cn

    2006-03-15

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  2. Capturing the surface texture and shape of pollen: a comparison of microscopy techniques.

    Directory of Open Access Journals (Sweden)

    Mayandi Sivaguru

    Full Text Available Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques, and brightfield and differential interference contrast microscopy (DIC (transmitted light techniques. We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae, Mabea occidentalis (Euphorbiaceae and Agropyron repens (Poaceae. No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (~250 nm; NDL presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical

  3. Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques using RDX and C-4

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Miller; T.S. Yoder

    2010-06-01

    The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, and fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.

  4. Laser surface treatment of materials with presence of carbides at the surface.

    OpenAIRE

    Jabbar, Abdul Aleeem B

    2012-01-01

    Some of the studies associated with laser assisted processing including machining, surface treatment applications, and electrochemical response of the selective surfaces were carried out prior to the thesis work by the thesis author. In the light of the previous studies, additional study on laser controlled melting of surfaces is carried out for pre-prepared Haynes 188 and Inconel 718 alloys, and high speed steel workpieces. Metallurgical and morphological changes in the laser treated layer a...

  5. Laser surface treatment of materials with presence of carbides at the surface.

    OpenAIRE

    Jabbar, Abdul Aleeem B

    2012-01-01

    Some of the studies associated with laser assisted processing including machining, surface treatment applications, and electrochemical response of the selective surfaces were carried out prior to the thesis work by the thesis author. In the light of the previous studies, additional study on laser controlled melting of surfaces is carried out for pre-prepared Haynes 188 and Inconel 718 alloys, and high speed steel workpieces. Metallurgical and morphological changes in the laser treated layer a...

  6. Surface modification of multiwall carbon nanotubes by sulfonitric treatment

    Science.gov (United States)

    Gómez, Sofía; Rendtorff, Nicolás M.; Aglietti, Esteban F.; Sakka, Yoshio; Suárez, Gustavo

    2016-08-01

    Carbon nanotubes are widely used for electronic, mechanical, and optical devices due to their unique structural and quantum characteristics. The species generated by oxidation on the surface of these materials permit binding new reaction chains, which improves the dispersibility, processing and compatibility with other materials. Even though different acid treatments and applications of these CNT have been reported, relatively few research studies have focused on the relationship between the acid treatment and the formation of nanodefects, specific oxidized species or CNT surface defects. In this work, multiwall carbon nanotube (MWCNT) oxidation at 90 °C was characterized in order to determine the acid treatment effect on the surface. It was found that oxidized species are already present in MWCNT without an acid treatment, but there are not enough to cause water-based dispersion. The species were identified and quantified by infrared spectroscopy and X-ray photoelectron spectroscopy. Also, transmission electron microscopy observations showed not only modifications of the oxidized species, but also morphological damage on the surfaces of MWCNT after being subjected to the acid treatment. This effect was also confirmed by Raman spectroscopy. The acid treatment generates higher oxidized species, decreasing the zeta potential in the whole pH range.

  7. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2010-01-01

    . Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach.......We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D...

  8. CONTEMPORARY PRINCIPLES FOR CHOLECYSTITIS TREATMENT WITH LAPAROSCOPIC TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Slobodan Aranđelović

    2016-03-01

    Full Text Available The first laparoscopic cholecystectomy (LC was performed in France in 1987 by a French surgeon (P. Mouret, and it rapidly became accepted until the end of the nineties in Europe and America as a "gold standard" in the treatment of the gallbladder. "There are just a few examples in the history of surgery, where the advantage of some surgical techniques is so quickly imposed, as it is in the case of laparoscopic cholecystectomy" (Cusshieri. Assuming the present of a surgical skill and experience, welltrained team and the specific technical equipment, the main advantages of this surgical method are less operative trauma and postoperative pain, faster recovery and a shorter hospital stay. The percentage of conversion to open cholecystectomy is 2%-20% and it is caused by certain conditions, such as older age, morbid obesity, and expressed inflammation of gallbladder and biliary anatomical anomalies. Male gender, anatomical variations, previous abdominal operations and technical problems, were rarer causes of conversion. Non-compliance and non-recognition of these risk factors can lead to complications, most notably the common bile duct injuries. At the Surgical Clinic in Nis, in the period of 3 years (January 2010 to November 2013 1.389 patients with symptomatic cholelithiasis underwent surgery, 626 (45,1% using standard techniques of laparoscopic method. Most patients, 60,10%, were female and 39,90% were male. Chronic calculous cholecystitis was an indication of the 86,20%, 8,50% in the acute, gallbladder polyp 5,30%. Conversion was forced out in 28 patients (4.47%. There have been no lethal operative outcomes in observed period, intraoperative lesions of vascular structures were not notified, total specific morbidity was about 2,07%. The technical aspect is still dominant at laparoscopic cholecystectomy (LC. Outstanding results at our clinic and in the world, impose the need for further development of this method, education of surgeons and staff

  9. Influence of water/O₂ plasma treatment on cellular responses of PCL and PET surfaces.

    Science.gov (United States)

    Türkoğlu Şaşmazel, Hilal; Aday, Sezin; Manolache, Sorin; Gümüşderelioğlu, Menemşe

    2011-01-01

    In this study, low pressure water/O₂ plasma treatment was performed in order to obtain COOH functionalities on the surface of poly-ε-caprolactone (PCL) membranes as well as non-woven polyester fabric (NWPF) discs. The plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor and then following steps were performed: in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into -COCl groups; and hydrolysis under open laboratory conditions using air moisture for final-COOH functionalities. COOH and OH functionalities on modified surfaces were detected quantitatively by using fluorescent labeling technique and an UVX 300G sensor. Electron spectroscopy for chemical analysis (ESCA) was used to evaluate the relative surface atomic compositions and the carbon and oxygen linkages located in non-equivalent atomic positions of untreated and modified surfaces. Atomic force microscope (AFM) analysis showed that nanoscale features of the PCL surfaces are dramatically changed during the surface treatments. Scanning electron microscopy (SEM) results indicated the changes in the relatively smooth appearance of the untreated NWPF discs after the plasma treatment. Periodontal ligament (PDL) fibroblasts were used in cell culture studies. Cell culture results showed that plasma treated PCL membranes and NWPF discs were favorable for the PDL cell spreading, growth and viability due to the presence of functional groups and/or nanotopographies on their surfaces.

  10. Treatment of multiple gingival recessions adopting modified tunnel subepithelial connective tissue graft technique

    Directory of Open Access Journals (Sweden)

    Jagmohan Singh

    2014-01-01

    Full Text Available Gingival recession related to periodontal disease or developmental problems can result in root sensitivity, root caries, and esthetically unacceptable root exposures. In the past, multiple surgical procedures have been proposed to obtain root coverage on exposed buccal root surfaces. There has been great interest in the treatment of gingival recession defects, especially with subepithelial connective-tissue grafting (SCTG. Recent advances have focused on SCTG by the tunnel technique. This article highlights the esthetic results obtained by adopting a modification of the tunnel technique using a single vertical incision along with autologous SCTG in the management of multiple adjacent Miller Class-II gingival recessions. A single vertical incision was used along with tunnel preparation for the facile placement of SCTG into the prepared tunnel. After 6 months of follow-up, the clinical condition was stable with satisfactory root coverage outcome. An excellent esthetical outcome was achieved and the patient was satisfied with the result.

  11. Mathematical Optimization Techniques for Multi-Phase Radiation Treatment Design

    OpenAIRE

    Sonderman, David

    1983-01-01

    A mathematical model for optimal external beam radiotherapy treatment design over multiple treatment phases is presented. The solution procedure is discussed and illustrated on a case of boost treatment for lung cancer. The models are integrated with current radiobiological software to produce an optimal design over both phases of treatment displayed by means of computer graphics.

  12. Laser surface treatment of magnesium alloys with aluminium oxide powder

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-11-01

    Full Text Available Purpose: The aim of this paper was to improve the magnesium cast alloys surface layer by laser surface treatment and to determine the laser treatment parameters.Design/methodology/approach: The laser treatment of magnesium alloys with alloying Al2O3 powder of the particle about 80μm was carried out using a high power diode laser (HPDL. The resulting microstructure in the modified surface layer was examined using scanning electron microscopy. Phase composition was determined by the X-ray diffraction method using the XPert device. The measurements of microhardness of the modified surface layer were also studied.Findings: The alloyed region has a fine microstructure with hard carbide particles. Microhardness of laser surface alloyed layer was significantly improved as compared to an alloy without laser treatment.Research limitations/implications: The investigations were conducted for cast magnesium alloys MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 and Al2O3 powder of the particle size about 80 μm. One has used laser power in the range from 1.2to 2.0 kW.Practical implications: The results obtained in this investigation were promising comparing with the other conventional processes. High Power Diode Laser can be used as an economical substitute of Nd: YAG and CO2 to improve the surface magnesium alloy by feeding the carbide particles.Originality/value: The value of this paper is to define the influence of laser treatment parameters on quality, microstructure and microhardness of magnesium cast alloys surface layer.

  13. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    Science.gov (United States)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  14. Techniques of surface optical breakdown prevention for low-depths femtosecond waveguides writing

    Science.gov (United States)

    Bukharin, M. A.; Skryabin, N. N.; Ganin, D. V.; Khudyakov, D. V.; Vartapetov, S. K.

    2016-08-01

    We demonstrated technique of direct femtosecond waveguide writing at record low depth (2-15 μm) under surface of lithium niobate, that play a key role in design of electrooptical modulators with low operating voltage. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light and non-thermal regime of inscription in contrast to widespread femtosecond writing technique at depths of tens micrometers or higher. Surface optical breakdown threshold was measured for both x- and z- cut crystals. Inscribed waveguides were examined for intrinsic microstructure. It also reported sharp narrowing of operating pulses energy range with writing depth under the surface of crystal, that should be taken in account when near-surface waveguides design. Novelty of the results consists in reduction of inscription depth under the surface of crystals that broadens applications of direct femtosecond writing technique to full formation of near-surface waveguides and postproduction precise geometry correction of near-surfaces optical integrated circuits produced with proton-exchanged technique.

  15. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    Science.gov (United States)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the

  16. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    N L Singh; S M Pelagade; R S Rane; S Mukherjee; U P Deshpande; V Ganeshan; T Shripathi

    2013-01-01

    Polyethersulphone (PES) was modified to improve the hydrophilicity of its surface, which in turn helps in improving its adhesive property. The modified PES surface was characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Vicker’s microhardness measurement. The contact angles of the modified PES reduces from 49° to 10° for water. The surface free energy (SFE) calculated from measured contact angles increases from 66.3 to 79.5 mJ/m2 with the increase in plasma treatment time. The increase in SFE after plasma treatment is attributed to the functionalization of the polymer surface with hydrophilic groups. The XPS analysis shows that the ratio of O/C increases from 0.177 to 0.277 for modified PES polymer. AFM shows that the average surface roughness increases from 6.9 nm to 23.7 nm due to the increase in plasma treatment time. The microhardness of the film also increases with plasma treatment.

  17. Plasma Surface Treatment of Powder Materials — Process and Application

    Directory of Open Access Journals (Sweden)

    Monika Pavlatová

    2012-01-01

    Full Text Available Polyolefin particles are hydrophobic, and this prevents their use for various applications. Plasma treatment is an environment-friendly polyolefin hydrophilisation method. We developed an industrial-scale plant for plasma treatment of particles as small as micrometers in diameter. Materials such as PE waxes, UHMWPE and powders for rotomolding production were tested to verify their new surface properties. We achieved significantly increased wettability of the particles, so that they are very easily dispersive in water without agglomeration, and their higher surface energy is retained even after sintering in the case of rotomolding powders.

  18. Mechanical assessment of grit blasting surface treatments of dental implants.

    Science.gov (United States)

    Shemtov-Yona, K; Rittel, D; Dorogoy, A

    2014-11-01

    This paper investigates the influence of surface preparation treatments of dental implants on their potential (mechanical) fatigue failure, with emphasis on grit-blasting. The investigation includes limited fatigue testing of implants, showing the relationship between fatigue life and surface damage condition. Those observations are corroborated by a detailed failure analysis of retrieved fracture dental implants. In both cases, the negative effect of embedded alumina particles related to the grit-blasting process is identified. The study also comprises a numerical simulation part of the grit blasting process that reveals, for a given implant material and particle size, the existence of a velocity threshold, below which the rough surface is obtained without damage, and beyond which the creation of significant surface damage will severely reduce the fatigue life, thus increasing fracture probability. The main outcome of this work is that the overall performance of dental implants comprises, in addition to the biological considerations, mechanical reliability aspects. Fatigue fracture is a central issue, and this study shows that uncontrolled surface roughening grit-blasting treatments can induce significant surface damage which accelerate fatigue fracture under certain conditions, even if those treatments are beneficial to the osseointegration process.

  19. Study of Titanizing the Surface of Copper Substrates by the Double Glow Discharge Plasma Surface Alloying Technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Yuefei; Chen Fei; Lü Junxia; Su Yongan; Xu Zhong

    2005-01-01

    This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the micro-hardness and the distribution of Ti concentration of alloying layer were investigated in detail by XRD, SEM and so on. The effect of process parameters on the alloying layer was studied. The experimental results show that a Ti solid solution with the precipitation Cu4Ti alloying layer has been formed on the copper surface. The thickness of the alloying layer is about 120μm and the surface titanium concentration gradually decreases from w (Ti) = 87% to w (Ti) = 4%. The micro-hardness of the alloying layer is between 300 HV ~ 800 HV. Source sputtering, surface absorption, ion bombarding and high temperature diffusion are the major factors that affect the alloying layer.

  20. Surface oxide formation during corona discharge treatment of AA 1050 aluminium surfaces

    DEFF Research Database (Denmark)

    Minzari, Daniel; Møller, Per; Kingshott, Peter

    2008-01-01

    Atmospheric plasmas have traditionally been used as a non-chemical etching process for polymers, but the characteristics of these plasmas could very well be exploited for metals for purposes more than surface cleaning that is presently employed. This paper focuses on how the corona discharge...... process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide...... and hydroxide. The thickness of the oxide layer extends to 150–300 nm after prolonged treatment. Potentiodynamic polarization experiments show that the corona treatment reduces anodic reactivity of the surface significantly and a moderate reduction of the cathodic reactivity....

  1. Effect of microwave plasma treatment on surface wettability of common teak wood

    Institute of Scientific and Technical Information of China (English)

    Zhaobin SUN; Guanben DU; Linrong HUANG

    2009-01-01

    The improvement of wood surface wettability can clearly improve bonding properties, as well as enhance physical and mechanical properties of wood composites. In our investigation, the microwave plasma (MWP) technique was adopted to treat the surface of common teak. The treatment effect was evaluated by measuring the contact angles of liquids and calculating the free surface energy. The results show that the modification effect improved when the sample was located 120 mm from the resonance cavity, rather than at 80 mm. A MWP treatment over a short span of time is useful to lower the contact angles and improve the surface wettability considerably. The range of decreasing contact angles,tested by water, could reach 74% at a distance of 120 mm.

  2. A quartz-crystal-microbalance technique to investigate ion-induced erosion of fusion relevant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Golczewski, A. [Institut fuer Allgemeine Physik, TU Wien, Wiedner Hauptstr. 8-10/E134, Association EURATOM-OAW, A-1040 Vienna (Austria)], E-mail: golczewski@iap.tuwien.ac.at; Dobes, K.; Wachter, G.; Schmid, M. [Institut fuer Allgemeine Physik, TU Wien, Wiedner Hauptstr. 8-10/E134, Association EURATOM-OAW, A-1040 Vienna (Austria); Aumayr, F. [Institut fuer Allgemeine Physik, TU Wien, Wiedner Hauptstr. 8-10/E134, Association EURATOM-OAW, A-1040 Vienna (Austria)], E-mail: aumayr@iap.tuwien.ac.at

    2009-02-15

    We describe a highly sensitive quartz-crystal-microbalance technique capable of determining erosion as well as implantation and retention rates for fusion relevant surfaces under ion bombardment. Total sputtering yields obtained with this technique for Ar ion impact on polycrystalline gold and tungsten surfaces are presented. The results compare well with existing experimental data as well as theoretical predictions and thus demonstrate the feasibility of the developed technique. Our setup is capable of detecting mass-changes as small as 10{sup -5} {mu}g/s, which corresponds to a removal of only 10{sup -4} W monolayers/s.

  3. Surface Modification of Medical Polyurethane by Plasma Treatment

    Science.gov (United States)

    Li, Dejun; Zhao, Jie; Gu, Hanqing; Lu, Mozhu; Ding, Fuqing; Hu, Jianfang

    1992-02-01

    The wettability and surface structure of plasma treatment on medical polyurethane were studied. Two kinds of gas, N2, Ar, were used to create the low-temperature plasma under low pressure. The wettability was investigated by means of the sessile drop method using water, the results show that the contact angle of water decreases from 78.8° to 61.9° as the treatment time increases. The results of electron spectroscopy for chemical analysis indicate that original chemical bonds were broken up after plasma treatment, which was the main reason for the surface modification. At same time, the results of electron spinning resonance show that the amounts of radicals did not increase significantly after treatment, which is advantageous to clinical practice of polyurethane.

  4. An Extrapolation Method of Vector Magnetic Field via Surface Integral Technique

    Institute of Scientific and Technical Information of China (English)

    YAN Hui; XIAO Chang-han; ZHOU Guo-hua

    2009-01-01

    According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources, a technique for the extrapolation of vector magnetic field of a ferromagnetic object is given without computing scalar potential and its gradient. The vector magnetic flux density on a remote spatial point can be extrapolated by surface integral from the vector values over a closed measureed surface around the ferromagnetic object. The correctness of the technique testified by a special example and simulation. The experimented result shows that its accuracy is satisfying and the execution time is less than 1 second.

  5. Bacterial Adhesion and Surface Roughness for Different Clinical Techniques for Acrylic Polymethyl Methacrylate

    OpenAIRE

    2016-01-01

    This study sought to assess the effect of different surface finishing and polishing protocols on the surface roughness and bacterial adhesion (S. sanguinis) to polymethyl methacrylates (PMMA). Fifty specimens were divided into 5 groups (n = 10) according to their fabrication method and surface finishing protocol: LP (3 : 1 ratio and laboratory polishing), NF (Nealon technique and finishing), NP (Nealon technique and manual polishing), MF (3 : 1 ratio and manual finishing), and MP (3 : 1 ratio...

  6. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  7. Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

    Science.gov (United States)

    Zhao, W.; Yang, Zh.; Chen, Zh.; Liu, J.; Wang, W. Ch.; Zheng, W. Yu.

    2016-05-01

    This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370-1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15-55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.

  8. Retention of features on a mapped Drosophila brain surface using a Bézier-tube-based surface model averaging technique.

    Science.gov (United States)

    Chen, Guan-Yu; Wu, Cheng-Chi; Shao, Hao-Chiang; Chang, Hsiu-Ming; Chiang, Ann-Shyn; Chen, Yung-Chang

    2012-12-01

    Model averaging is a widely used technique in biomedical applications. Two established model averaging methods, iterative shape averaging (ISA) method and virtual insect brain (VIB) method, have been applied to several organisms to generate average representations of their brain surfaces. However, without sufficient samples, some features of the average Drosophila brain surface obtained using the above methods may disappear or become distorted. To overcome this problem, we propose a Bézier-tube-based surface model averaging strategy. The proposed method first compensates for disparities in position, orientation, and dimension of input surfaces, and then evaluates the average surface by performing shape-based interpolation. Structural features with larger individual disparities are simplified with half-ellipse-shaped Bézier tubes, and are unified according to these tubes to avoid distortion during the averaging process. Experimental results show that the average model yielded by our method could preserve fine features and avoid structural distortions even if only a limit amount of input samples are used. Finally, we qualitatively compare our results with those obtained by ISA and VIB methods by measuring the surface-to-surface distances between input surfaces and the averaged ones. The comparisons show that the proposed method could generate a more representative average surface than both ISA and VIB methods.

  9. Surface treatment of CFRP composites using femtosecond laser radiation

    Science.gov (United States)

    Oliveira, V.; Sharma, S. P.; de Moura, M. F. S. F.; Moreira, R. D. F.; Vilar, R.

    2017-07-01

    In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1-0.5 mJ and 0.1-5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.

  10. Collagen immobilization on polyethylene terephthalate surface after helium plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena, E-mail: maflori@icmpp.ro [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Drobota, Mioara [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Dimitriu, Dan Gh. [Faculty of Physics, “Alexandru Ioan Cuza” University, 20A Bulevardul Carol I, 700505 Iasi (Romania); Stoica, Iuliana [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 71141 Bucharest (Romania); Harabagiu, Valeria [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    An attractive alternative to add new functionalities such as biocompatibility due to the micro- and nano-scaled modification of polymer surfaces is offered by plasma processing. Many vital processes of tissue repair and growth following injuries depend on the rate of adsorption and self-assembling of the collagen molecules at the interfaces. Consequently, besides the amount of protein, it is necessary to investigate the form in which the collagen molecules are organizing on the polymer surface. In this study, direct current (DC) helium plasma treatment was used in order to obtain poly(ethylene terephthalate) (PET) films with different amounts of collagen and different shapes of aggregates formed from the collagen molecules. The immobilization of collagen on PET surface was confirmed by XPS measurements, an increase of the nitrogen content by increasing the plasma exposure time being recorded. The SEM and AFM measurements revealed the presence of grains and dendrites of collagen formed on the polymer surface. At 15 min plasma treatment time, the polymer surface after collagen immobilization has a homogenous topography. Usually, one can find fibrils, coil or dendrimers of collagen formed in buffer solutions and immobilized on different polymer surfaces. On the other hand, in this particular configuration, the combination of DC plasma and helium gas as a PET functionalization tool is an original one. As the collagen is not covalently immobilized on the surfaces, it may interact with the cell culture medium proteins, part of the collagen might being replaced by other serum proteins.

  11. Digital particle velocimetry technique for free-surface boundary layer measurements: Application to vortex pair interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hirsa, A.H.; Vogel, M.J.; Gayton, J.D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering

    2001-08-01

    A variation of the digital particle image velocimetry (DPIV) technique was developed for the measurement of velocity at a free surface for low Froude number flows. The two-step process involves first determining the location of the free surface in the digital images of the seeded flow using the fast Fourier transform-based method of surface elevation mapping (SEM), which takes advantage of total internal reflection at the interface. The boundary-fitted DPIV code positions the interrogation windows below the computed location of the interface to allow for extrapolation of interfacial velocities. This technique was designed specifically to handle large surface-parallel vorticity which can occur when the Reynolds number is large and surface-active materials are present. The SEM technique was verified on capillary-gravity waves and the full boundary-fitted DPIV technique was applied to the interaction of vortex pairs with a free surface covered by an insoluble monolayer. The local rise and fall of the free surface as well as the passage and return of a contamination front was clearly observed in the DPIV data. (orig.)

  12. Surface functionalization of macroporous polymeric materials by treatment with air low temperature plasma.

    Science.gov (United States)

    Molina, R; Sole, I; Vílchez, A; Bertran, E; Solans, C; Esquena, J

    2013-04-01

    Polystyrene/divinylbenzene (PS-DVB) macroporous monoliths obtained using highly concentrated emulsions as templates show a superhydrophobic behaviour, restricting their potential technological applications, especially those related to adhesion and wetting. Air plasma treatments were carried out in order to modulate wetting properties, modifying the surface chemical composition of macroporous polystyrene/divinylbenzene materials. The superhydrophobic behaviour was rapidly suppressed by air plasma treatment, greatly reducing the water contact angle, from approximately 150 degrees to approximately 90 degrees, in only 10 seconds of treatment. The new surface chemical groups, promoted by plasma active species, were characterized by surface analysis techniques with different depth penetration specificity (contact angle, XPS, FTIR and SEM). Results demonstrated that very short treatment times produced different chemical functionalities, mainly C-O, C=O, O-C=O and C-N, which provide the materials with predominantly acidic surface properties. However, plasma active species did not penetrate deeply through the interconnected pores of the material. FTIR analysis evidenced that the new hydrophilic surface groups promoted by plasma active species are in a negligibly concentration compared to bulk chemical groups, and are located in a very thin surface region on the PS-DVB monolith surface (significantly below 2 microm). XPS analysis of treated monoliths revealed a progressive increase of oxygen and nitrogen content as a function of plasma treatment time. However, oxidation of the PS-DVB monoliths surface prevails over the incorporation of nitrogen atoms. Finally, SEM studies indicated that the morphology of the plasma treated PS-DVB does not significantly change even for the longest air plasma treatment time studied (120 s).

  13. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    Energy Technology Data Exchange (ETDEWEB)

    Alfeld, Matthias, E-mail: matthias.alfeld@desy.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany); University of Antwerp, Department of Chemistry, Groenenbrogerlaan 171, B-2020 Antwerp (Belgium); Broekaert, José A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany)

    2013-10-01

    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings.

  14. Modification of SrTiO3 single-crystalline surface after plasma flow treatment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A.; Weissbach, Torsten; Leisegang, Tilmann; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Kulagin, Nikolay A. [Kharkiv National University for Radioelectronics, av. Shakespeare 6-48, 61045 Kharkiv (Ukraine); Langer, Enrico [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-07-01

    Surface of pure and transition metal-doped SrTiO3(STO) single crystals before and after hydrogen plasma-flow treatment (energy of 5..20 J/cm2) is investigated by wide-angle X-ray diffraction (WAXRD), fluorescence X-ray absorption near edge structure (XANES) and scanning electron microscopy (SEM) techniques. Plasma treatment results in the formation of a textured polycrystalline layer at the surface of the single-crystalline samples with different orientation. The formation of the quasi-ordered structures consisting of nanoscale-sized pyramids is observed by SEM. XANES evidences the change of the valency of the part of Ti4+ to Ti3+ due to the plasma treatment. The data obtained together with results of X-ray spectroscopy measurements gives evidences of the change of stoichiometry of the STO samples resulting in a change of their physical properties after plasma treatment.

  15. The Effect of CFRP Surface Treatment on the Splat Morphology and Coating Adhesion Strength

    Science.gov (United States)

    Ganesan, Amirthan; Yamada, Motohiro; Fukumoto, Masahiro

    2014-01-01

    Metallization of Carbon Fiber-Reinforced Polymer (CFRP) composites aggrandized their application to aircraft, automobile, and wind power industries. Recently, the metallization of CFRP surface using thermal spray technique, especially the cold spray, a solid state deposition technique, is a topic of research. However, a direct cold spray deposition on the CFRP substrate often imposes severe erosion on the surface owing to the high-impact energy of the sprayed particles. This urges the requirement of an interlayer on the CFRP surface. In the present study, the effect of surface treatment on the interlayer adhesion strength is evaluated. The CFRP samples were initially treated mechanically, chemically, and thermally and then an interlayer was developed by atmospheric plasma spray system. The quality of the coating is highly dependent on the splat taxonomy; therefore the present work also devoted to study the splat formation behavior using the splat-collection experiments, where the molten Cu particles impinged on the treated CFRP substrates. These results were correlated with the coating adhesion strength. The coating adhesion strength was measured by pull-out test. The results showed that the surface treatment, particularly the chemical treatment, was fairly successful in improving the adhesion strength.

  16. 40 CFR 268.4 - Treatment surface impoundment exemption.

    Science.gov (United States)

    2010-07-01

    ... residues may not be placed in any other surface impoundment for subsequent management. (iv) Recordkeeping... exemption. 268.4 Section 268.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...), the residues from treatment are analyzed, as specified in § 268.7 or § 268.32, to determine if they...

  17. Inverse Calculation of Power Density for Laser Surface Treatment

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be ca

  18. Inverse calculation of power density for laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be

  19. Inverse calculation of power density for laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be ca

  20. Study of surface modification of uranium and UFe{sub 2} by various surface analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, O.; Dugne, O.; Merlet, C. E-mail: merlet@dstu.univ-montp2.fr; Gat, E.; Holliger, Ph.; Lahaye, M

    2001-04-01

    The surface modification of U, UFe{sub 2} by exposition in air at room temperature and at 63 deg. C was studied by secondary ion mass spectroscopy (SIMS), time of flight-secondary ion mass spectroscopy (ToF-SIMS), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) with variable detection angle. For the two systems, a first layer of carbon contamination, followed by complex oxide layer constitutes the surface. For U, the oxide layer is composed of a mixture of UO{sub 2} and UO{sub 2+x} with x maximal at the surface. In UFe{sub 2}, the oxide layer is composed of a mixture of UO{sub 2} and UO{sub 2+x}, oxidised iron in Fe2+ and Fe3+ chemical states (more probably FeO), a few percent of a ternary oxide UFeO{sub 4}, and less than 1% of uranium carbide. A surface segregation of uranium is shown in UFe{sub 2}.

  1. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L. E-mail: lutz.lilje@desy.de; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmueser, P.; Trines, D.; Visentin, B.; Wenninger, H

    2004-01-11

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  2. Improved surface treatment of the superconducting TESLA cavities

    Science.gov (United States)

    Lilje, L.; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmüser, P.; Trines, D.; Visentin, B.; Wenninger, H.

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  3. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L.; Matheisen, A.; Proch, D.; Reschke, D.; Trines, D.; Antoine, C.; Charrier, J.P.; Safa, H.; Visentin, B. [CEA Saclay, DAPHNIA, Gif-sur-Yvette (France); Benvenuti, C.; Bloess, D.; Chiaveri, E.; Ferreira, L.; Losito, R.; Preis, H.; Wenninger, H. [CERN, Geneva (Switzerland); Schmueser, P. [Hamburg Univ. (Germany)

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a center-of-mass energy of 500 GeV an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity. (orig.)

  4. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  5. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaorong [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Bincheng [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China)

    2015-02-15

    Surface thermal lens is a highly sensitive photothermal technique to measure low absorption losses of various solid materials. In such applications, the sensitivity of surface thermal lens is a key parameter for measuring extremely low absorption. In this paper, we experimentally investigated the influence of probe beam wavelength on the sensitivity of surface thermal lens for measuring the low absorptance of optical laser components. Three probe lasers with wavelength 375 nm, 633 nm, and 1570 nm were used, respectively, to detect the surface thermal lens amplitude of a highly reflective coating sample excited by a cw modulated Gaussian beam at 1064 nm. The experimental results showed that the maximum amplitude of surface thermal lens signal obtained at corresponding optimized detection distance was inversely proportional to the wavelength of the probe beam, as predicted by previous theoretical model. The sensitivity of surface thermal lens could, therefore, be improved by detecting surface thermal lens signal with a short-wavelength probe beam.

  6. Application of plasma surface modification techniques to improve hemocompatibility of vascular grafts: A review.

    Science.gov (United States)

    Solouk, Atefeh; Cousins, Brian G; Mirzadeh, Hamid; Seifalian, Alexander M

    2011-01-01

    Surface modification using plasma processing can significantly change the chemical and physical characteristics of biomaterial surfaces. When used in combination with additional modification techniques such as direct chemical or biochemical methods, it can produce novel biomaterial surfaces, which are anticoagulant, bioactive, and biomimetic in nature. This article reviews recent advances in improving hemocompatibility of biomaterials by plasma surface modification (PSM). The focus of this review is on PSM of the most commonly used polymers for vascular prostheses such as expanded polytetrafluoroethylene (PTFE), polyethylene terephthalate (Dacron(®) ), and next generation of biomaterials, including polyhedral oligomeric silsesquioxane nanocomposite.

  7. Surface Treatment of PET Nonwovens with Atmospheric Plasma

    Science.gov (United States)

    Li, Shufang

    2013-01-01

    In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.

  8. Vestibuloplasty by modified Kazanjian technique in treatment with dental implants.

    Science.gov (United States)

    Ponzoni, Daniela; Jardim, Ellen Cristina Gaetti; de Carvalho, Paulo Sérgio Perri

    2013-07-01

    Dentists are often faced with extensively resorbed mandibular ridges with shallow buccal vestibule and high insertion of the mentalis muscle in relation to the crest of the ridge, causing the displacement of the prosthesis. Vestibuloplasty techniques aim at eliminating the muscle insertions, reposition the mucosa, and increase the area chapeável, giving more stability to the prosthesis. Among the techniques to deepen the vestibule are submucosal vestibuloplasties by secondary epithelialization and with mucosal and skin grafts. We will discuss vestibuloplasty by secondary epithelialization with emphasis on the so-called modified Kazanjian technique. This technique provides an appropriate result and does not require hospitalization, additional surgery at the donor, or prolonged periods without the use of prosthesis.

  9. Effect of Surface Treatment on the Enzymatic Treatment of Cellulosic Fiber

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Jiang, S. Q.

    Fiber modifications by environmentally friendly processing are essential in order to simplify the preparation and finishing processes, in addition to minimizing the chemical waste and associated disposal problem. In this regard, enzymes have been used extensively because it can remove the small fiber ends from yarn surface to create a smooth fabric surface appearance and introduce a degree of softness without using traditional chemical treatment. However, a significant strength reduction and slow reaction rate of the enzymatic reaction limit its industrial application. In this paper, the potential of using low-temperature plasma (LTP) as a surface pre-treatment prior to enzyme treatment on flax fiber has been studied. By means of the LTP pre-treatment, the effectiveness of enzyme treatment can be enhanced.

  10. An alternative treatment of occlusal wear: Cast metal occlusal surface

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2012-01-01

    Full Text Available Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal surfaces, however, these methods are time-consuming, expensive and requires many cumbersome steps. These methods also requires the patient to be without the prosthesis for the time during which the laboratory procedures are performed. This article presents a quick, simple and relatively inexpensive procedure for construction of metal occlusal surfaces on complete dentures.

  11. A new on-board imaging treatment technique for palliative and emergency treatments in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Mareike

    2016-03-23

    and reconstruction corrections. Consequently, multiple image value-to-density calibration curves are necessary for accurate dose calculation. UCSF has implemented the new technique clinically for emergency treatments on their patients who stand to benefit from the fast simulation to treatment time frame that is achieved through this on-board imaging workflow.

  12. Comparison of surgical techniques in the treatment of laryngeal polypoid degeneration.

    Science.gov (United States)

    Lumpkin, S M; Bishop, S G; Bennett, S

    1987-01-01

    Surgical excision has been the accepted treatment of laryngeal polypoid degeneration, or chronic polypoid corditis. We report on 29 women with polypoid degeneration who received one of three surgical treatments: vocal fold stripping, carbon dioxide laser obliteration, or the Hirano technique. The duration of postoperative dysphonia was longest with the laser removal and shortest with the Hirano technique. A combination of vocal hygiene management and the Hirano technique of removal provided the most efficacious treatment.

  13. Surface Cleaning or Activation?Control of Surface Condition Prior to Thermo-Chemical Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Brigitte Haase; Juan Dong; Jens Heinlein

    2004-01-01

    Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts' surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part's surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface's activity or passivity can be detected electrochemically, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.

  14. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  15. Treatment of non-sparse cratering in planetary surface dating

    Science.gov (United States)

    Kneissl, T.; Michael, G. G.; Schmedemann, N.

    2016-10-01

    We here propose a new technique to derive crater size-frequency distributions (CSFDs) from non-sparsely cratered surfaces, by accounting for the loss of craters due to subsequent crater/ejecta coverage. This approach, which we refer to as the buffered non-sparseness correction (BNSC), relates each crater to a measurement area found by excluding regions in the study area that have been resurfaced by larger craters and their ejecta blankets. The approach includes the well-known buffered crater counting (BCC) technique in order to consider the potential identification of craters whose centers are located outside the counting area. We demonstrate the new approach at two test sites on the Moon, one on the ancient lunar highlands outside the South Pole Aitken basin and the other on the much younger surface of lunar Mare Serenitatis. As expected, the correction has a much stronger effect on ancient, densely cratered surfaces than on younger, sparsely cratered surfaces. Furthermore, these first results indicate that the shapes of CSFDs on ancient terrains are actually very similar to the shapes of CSFDs on younger terrains.

  16. Specifics of surface runoff contents and treatment in large cities

    Directory of Open Access Journals (Sweden)

    V.N. Chechevichkin

    2014-10-01

    Full Text Available The degree of surface runoff pollution in large cities has been assessed in modern conditions in the case study of production sites of St. Petersburg. Increased content of petroleum derivatives and heavy metal ions both in rainwater runoff and especially in snowmelt runoff has been revealed. It has been established that the composition of infiltration runoff from the newly built-up sites within the city limits commonly depends on their background, especially in the places of former unauthorized dumps, which are usually buried under the building sites. The content of petroleum derivatives in such surface runoff can exceed significantly their content in the runoff of landfills. Most petroleum derivatives appear in the surface runoff as emulsified and associated with suspended matters forms, which are a source of secondary pollution of waste water as it is accumulated in settlers and traps of local waste water treatment plants. Filtrational-sorptive technologies of surface runoff treatment are the most effective and simple in terms of both treatment and waste disposal.

  17. Comparison of two different gingivectomy techniques for gingival cleft treatment.

    Science.gov (United States)

    Malkoc, Siddik; Buyukyilmaz, Tamer; Gelgor, Ibrahim; Gursel, Mihtikar

    2004-06-01

    Interdental clefts or invaginations contribute to orthodontic relapse and poor periodontal health in extraction cases. These clefts or invaginations can be removed both by electrosurgical or conventional surgical gingivectomy techniques. This study investigates and compares the efficacy of two different techniques to remove gingival clefts with respect to periodontal health and patient tolerance. Twenty-two patients (mean age, 15.7 years) with bilateral gingival clefts participated in this study. In each patient, the gingival invaginations were removed by gingivectomy using electrosurgery on one side and conventional surgery on the contralateral side. The length and depth of the invaginations, the gingival index of the adjacent teeth, and the changes in visual analogue scale scores were recorded before and after the operation for both groups. Mann-Whitney U-test and Wilcoxon tests were used to analyze the data statistically. The results showed significant improvement in invagination depth and length and gingival index scores for both techniques. There were no statistical differences between the two gingivectomy techniques with respect to gingival health and patient tolerance. Both techniques can be used to remove the gingival invaginations efficiently.

  18. ELECTROLYTIC-PLASMA TREATMENT OF INNER SURFACE OF TUBULAR PRODUCTS

    Directory of Open Access Journals (Sweden)

    Yu. G. Alekseev

    2016-01-01

    Full Text Available While manufacturing a number of important tubular products stringent requirements have been imposed on quality of their inner surfaces. The well-known methods for inner surface treatment of pipes include sandblasting, chemical cleaning with acid reagents (oxalic, formic, sulfamic, orthophosphoric acids and electrochemical polishing. Disadvantages of the chemical method are cleaning-up irregularities, high metal removal, limited number of reagent application, complicated selection of reagent chemical composition and concentration, complicated and environmentally harmful recycling of waste chemicals, high cost of reagents. Low productivity at a high cost, as well as hazardous impact on personnel due to high dispersion of abrasive dust are considered as disadvantages of sandblasting. Electrochemical polishing is characterized by the following disadvantages: low processing productivity because supply of high currents is rather difficult due to electrolyte scattering capacity away from the main electrode action zone, limited length of the cavity to be treated due to heating of flexible current leads at operating current densities, application of expensive aggressive electrolytes and high costs of their recycling. A new method for polishing and cleaning of inner surfaces of tubular products based on electrolyte-plasma treatment has been developed. In comparison with the existing methods the proposed methods ensures quality processing with high intensity while applying non-toxic, environmentally friendly and cheap electrolytes. The paper presents results of investigations on technological specific features of electrolyte-plasma treatment for inner surfaces of tubular products: influence of slotted nozzle width, electrolyte flow and rate on stability of gas-vapor blanket, current density and productivity. Results of the research have made it possible to determine modes that provide stability and high productivity in the process of electrolyte

  19. Single-step spatial rotation error separation technique for the ultraprecision measurement of surface profiles.

    Science.gov (United States)

    Hou, Maosheng; Qiu, Lirong; Zhao, Weiqian; Wang, Fan; Liu, Entao; Ji, Lin

    2014-01-20

    To improve the measurement accuracy of the profilometer for large optical surfaces, a new single-step spatial rotation error separation technique (SSEST) is proposed to separate the surface profile error and spindle spatial rotation error, and a novel SSEST-based system for surface profile measurement is developed. In the process of separation, two sets of measured results at the ith measurement circle are obtained before and after the rotation of error separation table, the surface profile error and spatial rotation error of spindle can be determined using discrete Fourier-transform and harmonic analysis. Theoretical analyses and experimental results indicate that SSEST can accurately separate spatial rotation error of spindle from the measured surface profile results within the range of 1-100 upr and improve the accuracy of surface profile measurements.

  20. Atmospheric Pressure non-thermal plasmas for surface treatment of polymer films

    Science.gov (United States)

    Huang, Hsiao-Feng; Wen, Chun-Hsiang; Wei, Hsiao-Kuan; Kou, Chwung-Shan

    2006-10-01

    Interest has grown over the past few years in applying atmospheric pressure non-thermal plasmas to surface treatment. In this work, we used an asymmetric glow dielectric-barrier discharge (GDBD), at atmospheric pressure in nitrogen, to improve the surface hydrophilicity of three kinds of polymer films, biaxially oriented polypropylene (BOPP), polyimide (PI), and triacetyl cellulose (TAC). This set-up consists of two asymmetric electrodes covered by dielectrics. And to prevent the filamentary discharge occur, the frequency, gas flow rate and uniformity of gas flow distribution should be carefully controlled. The discharge performance is monitored through an oscilloscope, which is connected to a high voltage probe and a current monitor. The physical and chemical properties of polymer surfaces before and after GDBD treatment were analyzed via water contact angle (CA) measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques.

  1. Effect of Surface Treatments on Leakage of Zirconium Oxide Ceramics

    OpenAIRE

    Göknil Alkan Demetoğlu; Mustafa Zortuk

    2016-01-01

    Objective: The aim of this pilot study was to compare the effects of pretreatments on leakage of zirconia ceramics. Materials and Methods: The speciments divided into 6 groups that were subsequently treated as follows: group 1, no treatment (control); group 2, the ceramic surfaces were airborne-particle abraded with 110 μm aluminum-oxide (Al2O3) particles; group 3, after abrasion of the surfaces with 110 μm Al2O3 particles, silica coating using 30 μm (Al2O3) particles modified by silica (r...

  2. Treatment of 320 Cases of Infantile Diarrhea by Needling Technique of Setting Fire on Mountains

    Institute of Scientific and Technical Information of China (English)

    BO Li-ya; ZHANG Hui-ling; WU Chun-sheng; HUANG Guo-qi

    2003-01-01

    In the treatment of 320 cases of infantile diarrhea by the needling technique of setting fire on mountains, with Zusanli (ST 36) and Changqiang (GV 1)as the main acupoints, all cases were cured after 1-3 treatments.

  3. Effect of aqueous and dye treatments on the wool fibre surface

    Energy Technology Data Exchange (ETDEWEB)

    Brack, N.; Lamb, R. [The University of New South Wales, Sydney, NSW (Australia). School of Chemistry, Surface Science and Technology; Pham, D.; Phillips, T.; Turner, P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Belmont, VIC (Australia). Wool Technology

    1999-12-01

    Full text: Aqueous treatments are used in many stages of wool processing, such as scouring, shrink-resist treatments, finishing and dyeing. There is incomplete understanding of the full effects of aqueous treatments on the fibre surface. A thorough understanding of such effects is critical for further optimisation of present technology and development of future processing technologies. This paper investigates changes to the fibre surface as a result of exposure to water in terms of the current model of the fibre surface and relates such changes to the effectiveness of further processing stages. The surface chemistry of solvent cleaned, unprocessed fibres which have been exposed to water at elevated temperatures (50-100 deg C) is investigated by a combination of techniques including X-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and field emission scanning electron microscopy (FESEM). This study is extended to investigate the area of dyeing. During the dyeing process, fibres are exposed to elevated temperatures (> 70 deg C) for typically 1 hour. The initial adsorption of dye molecules and subsequent diffusion process and the effect the chemical nature of the fibre surface has on these processes is discussed. Chemical changes to the fibre surface is monitored by XPS, while the physical location of the dye is determined by fluorescence microscopy. Copyright (1999) Australian X-ray Analytical Association Inc.

  4. Laser Heat Treatment on Gear Surface and Its Practical Application

    Institute of Scientific and Technical Information of China (English)

    MA Chun-yin; DAI Zhong-sen; SU Bao-rong

    2004-01-01

    Making gears with hardened tooth flank is one of the important developments in gear manufacturing. However, the conventional heat treating methods have a common shortcoming--producing big deformation. In this work, we demonstrate, by study, experiment and practical use, that not only has the laser heat treatment solved the difficult problems in conventional technique, but also it has great superiority. The use cases proved that the laser-treated gears are able to substitute for all the gears including gears with complicated shape, high precision and high performance imported gears and all those gears that cannot be manufactured by conventional methods. Moreover, our laser-treated gears have won quite good economic benefit.Obviously, the laser heat treatment for gears is a highly competitive technique having good prospects.

  5. Some Aspects of Surface Water Treatment Technology in Tirana Drinking Water Treatment Plant

    OpenAIRE

    , Tania Floqi; , Aleksandër Trajçe; , Daut Vezi

    2009-01-01

    Tirana’s Bovilla treatment plant was the Şrst of its kind for Albania, which treats surface water. The input water comes from the Bovilla artiŞcial lake, around which, the presence of villages induces pollution in the surface water and therefore affects the efŞciency of treatment plant and consequently the quality of drinking water. The treatment plant is a simple conventional system and includes pre-oxidation, coagulation, şocculation & sedimentation, fast Şltration, post-oxidation. ...

  6. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    OpenAIRE

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M. -A.; Hexemer, A.; Hibberd, A. M.; Kimball, D. F. Jackson; C. Jaye; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stu...

  7. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    OpenAIRE

    Seltzer, S. J.

    2011-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stud...

  8. A simplified technique for fabricating esthetic cast metal occlusal surfaces for dentures.

    Science.gov (United States)

    Krantz, W A; Ivanhoe, J R; Adrian, E D

    1990-06-01

    This article describes a simplified method for making esthetic cast metal occlusal surfaces. Monoplane posterior acrylic resin block teeth, cast in a nickel-chrome alloy, are coated with silane and an esthetic composite resin veneer is applied to the buccal surface. These veneered posterior metal teeth are incorporated in the wax setup and the dentures are processed and finished. The dentist's routine technique for delivering dentures to the patient can be followed.

  9. A Multi-Channel Salience Based Detail Exaggeration Technique for 3D Relief Surfaces

    Institute of Scientific and Technical Information of China (English)

    Yong-Wei Miao; Jie-Qing Feng; Jin-Rong Wang; Renato Pajarola

    2012-01-01

    Visual saliency can always persuade the viewer's visual attention to fine-scale mesostructure of 3D complex shapes.Owing to the multi-channel salience measure and salience-domain shape modeling technique,a novel visual saliency based shape depiction scheme is presented to exaggerate salient geometric details of the underlying relief surface.Our multi-channel salience measure is calculated by combining three feature maps,i.e.,the O-order feature map of local height distribution,the 1-order feature map of normal difference,and the 2-order feature map of mean curvature variation.The original relief surface is firstly manipulated by a salience-domain enhancement function,and the detail exaggeration surface can then be obtained by adjusting the surface normals of the original surface as the corresponding final normals of the manipulated surface.The advantage of our detail exaggeration technique is that it can adaptively alter the shading of the original shape to reveal visually salient features whilst keeping the desired appearance unimpaired.The experimental results demonstrate that our non-photorealistic shading scheme can enhance the surface mesostructure effectively and thus improving the shape depiction of the relief surfaces.

  10. A noncontacting scanning photoelectron emission technique for bonding surface cleanliness inspection

    Science.gov (United States)

    Gause, Raymond L.

    1989-01-01

    Molecular contamination of bonding surfaces can drastically affect the bond strength that can be achieved and therefore the structural integrity and reliability of the bonded part. The presence of thin contaminant films on bonding surfaces can result from inadequate or incomplete cleaning methods, from oxide growth during the time between cleaning (such as grit blasting) and bonding, or from failure to properly protect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition of facility airborne molecules generated by adjacent manufacturing or processing operations. Required cleanliness levels for desired bond performance can be determined by testing to correlate bond strength with contaminant type and quantity, thereby establishing the degree of contamination that can be tolerated based on the strength that is needed. Once the maximum acceptable contaminant level is defined, a method is needed to quantitatively measure the contaminant level on the bonding surface prior to bonding to verify that the surface meets the established cleanliness requirement. A photoelectron emission technique for the nondestructive inspection of various bonding surfaces, both metallic and nonmetallic, to provide quantitative data on residual contaminant levels is described. The technique can be used to scan surfaces at speeds of at least 30 ft/min using a servo system to maintain required sensor to surface spacing. The fundamental operation of the photoelectron emission sensor system is explained and the automated scanning system and computer data acquisition hardware and software are described.

  11. Advanced modeling techniques in application to plasma pulse treatment

    Science.gov (United States)

    Pashchenko, A. F.; Pashchenko, F. F.

    2016-06-01

    Different approaches considered for simulation of plasma pulse treatment process. The assumption of a significant non-linearity of processes in the treatment of oil wells has been confirmed. Method of functional transformations and fuzzy logic methods suggested for construction of a mathematical model. It is shown, that models, based on fuzzy logic are able to provide a satisfactory accuracy of simulation and prediction of non-linear processes observed.

  12. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    Directory of Open Access Journals (Sweden)

    Marzieh Alikhasi

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials.Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE and 10 regular-body polyvinyl siloxane (PVS impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM. Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM. These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05.Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001. Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05(.Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction.Keywords: Dental Implants; Dental Impression Materials, Dental Impression Technique

  13. Fabrication technique for the production of on- and off-axis conic surfaces of revolution (WAGNER)

    Science.gov (United States)

    Faehnle, Oliver W.; van Brug, Hedser H.; Frankena, Hans J.

    1997-11-01

    A new fabrication technique, derived from an earlier development to produce on- and off-axis optical surfaces of revolution is presented. Although based on a shape copying method, it is possible to generate different types of surfaces with the same machine tool. Load controlled point- contact machining is applied using a small tool which is guided along a pre-determined tool-path, not requiring an in-process tool-path control. This fabrication technique employs a self-correcting process and is characterized by an advantageous error propagation between tool and workpiece. The characteristics of this fabrication technique are discussed together with its application for the generation of on- and off-axis surfaces with conic sections as generators. The design of a first set-up for production of conic surfaces is presented with which it is possible to generate all kinds of conic surfaces on the same machine, featuring a pantograph enabling the production of different scales of the surfaces, together with the discussion of fist experimental data.

  14. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short ra...... surface energies in close agreement with values derived from surface tensions of the liquid metals, and work functions that deviate less than 10% from the experimental values.......We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  15. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  16. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  17. Comparison of hybrid volumetric modulated arc therapy (VMAT technique and double arc VMAT technique in the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Amaloo Christopher

    2015-09-01

    Full Text Available Background. Volumetric modulated arc therapy (VMAT has quickly become accepted as standard of care for the treatment of prostate cancer based on studies showing it is able to provide faster delivery with adequate target coverage and reduced monitor units while maintaining organ at risk (OAR sparing. This study aims to demonstrate the potential to increase dose conformality with increased planner control and OAR sparing using a hybrid treatment technique compared to VMAT.

  18. Microstructural changes of Zr702 induced by pulsed laser surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Linjiang, E-mail: chailinjiang@cqut.edu.cn [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Key Laboratory of Advanced Manufacturing Technology for Automobile Parts of Ministry of Education, Chongqing University of Technology, Chongqing 400054 (China); Chen, Baofeng; Wang, Shuyan [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Guo, Ning [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Huang, Can [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Zhou, Zhiming; Huang, Weijiu [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Key Laboratory of Advanced Manufacturing Technology for Automobile Parts of Ministry of Education, Chongqing University of Technology, Chongqing 400054 (China)

    2016-02-28

    Graphical abstract: - Highlights: • Microstructural characteristics of a laser surface-treated Zr702 are investigated. • Three microstructurally distinct zones are presented from the surface to the substrate. • Fine α plates with inner nanoscale twins yield remarkable hardening effect in zone I. • Insufficiently recrystallized structures in zone II lead to decreased hardness. - Abstract: In this work, the surface of a fully recrystallized Zr702 is treated by pulsed laser following which microstructural changes are investigated by use of electron backscatter diffraction and electron channeling contrast imaging techniques. The pulsed laser treatment results in three distinctly different microstructural features from the surface to the substrate: fine α plates with a few hundred nanometers in width (zone I), irregular-shaped grains with varied sizes (zone II), and essentially unchanged equiaxed grains (zone III). The α plates result from rapid phase transformation due to easy heat extraction of the pulsed laser with dense nanoscale twins inside those plates closer to the surface. The origin of the irregular-shaped grains is found to be related to insufficient recrystallization of antecedently formed α plates near the substrate. Hardness tests reveal highest value (∼356.7 HV) near the surface in zone I and the lowest value (∼165.2 HV) in zone II. Reasons accounting for the difference are discussed in terms of various microstructural characteristics induced by the pulsed laser surface treatment.

  19. Comparing Limberg Flap Technique and Phenol Treatment Methods in Treatment of Pilonidal Disease

    Directory of Open Access Journals (Sweden)

    Ulas Urganci

    2016-01-01

    Full Text Available Aim: Although pilonidal disease is experienced commonly, there is no definitive algorithm. Our purpose is to contribute in determining treatment algorithm by comparing the conservative phenol treatment (PT method with limberg flap technique (LFT used frequently for pilonidal disease surgery.Material and Method: Patients diagnosed with pilonidal sinus and treated with PT and LFT between February 2011 and September 2014 in Buca Seyfi Demirsoy State Hospital General Surgery service are retrospectively enrolled in the study. Patients are contacted with the help of their files and included in the study. Patients are compared in terms of age, gender, pain-free walking and start date for going back to work, complications, success and relapse ratios. Results: 73 (81.1% of the cases were male, 17 (18.9% were female and their average age was 24±8.4(14-55. No statistically significant difference was detected between patients who have undergone LFT and PT in terms of success and relapse (p>0,05. Hospitalization period was average 1.55±0.9 days for patients who have undergone LFT. FT was applied as outpatient treatment for all patients. A statistically significant difference was determined in favor of PT as a result of comparing postoperative complications, pain-free walking and start date for going back to work (p=0,00. Discussion: In our study, we have proven that LFT, which is a method used frequently with recognized success is not superior to PT in terms of success and relapse ratios (p>0.05. On the contrary, when compared in terms of postoperative complication, pain-free walking time and start date for going back to work, we observed that PT is more advantageous than LFT (p=0,00. We consider that PT can be prefered treatment method due to its acceptable relapse ratio, low postoperative complication ratio, good postoperative patient comfort, capability of performing repeated applications and constant availability of operation option.

  20. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2010-01-01

    We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D-galactose us......We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D......-galactose using a standardized method. A near-linear increase was obtained in the thickness of the enzyme coat as the treatment proceeded. Interestingly, lactose, which is a substrate for beta-galactosidase, did not undergo enzymatic degradation during processing and remained unchanged for at least 1 month....... Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach....

  1. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    Science.gov (United States)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  2. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  3. A 3D edge detection technique for surface extraction in computed tomography for dimensional metrology applications

    DEFF Research Database (Denmark)

    Yagüe-Fabra, J.A.; Ontiveros, S.; Jiménez, R.

    2013-01-01

    Many factors influence the measurement uncertainty when using computed tomography for dimensional metrology applications. One of the most critical steps is the surface extraction phase. An incorrect determination of the surface may significantly increase the measurement uncertainty. This paper...... presents an edge detection method for the surface extraction based on a 3D Canny algorithm with sub-voxel resolution. The advantages of this method are shown in comparison with the most commonly used technique nowadays, i.e. the local threshold definition. Both methods are applied to reference standards...

  4. Electrochemical surface modification technique to impede mild steel corrosion using perfluorooctanoic acid

    Directory of Open Access Journals (Sweden)

    Shubha H Natarj

    2016-02-01

    Full Text Available The present work demonstrated that corrosion inhibition efficiency of electrochemically generated organic coat is remarkably effective than self-assembled monolayer (SAM generated by dip coating technique. Perfluorooctanoic Acid (PFOA is used to modify mild steel surface for effective protection. Infrared reflection absorption spectroscopy and contact angle measurements substantiate the modification of mild steel surface and its effect on surface hydrophobicity. A comparison between electrochemical properties of PFOA SAM generated by dip coat method (DC-PFOA and PFOA coat generated by electrochemical method (EC-PFOA is presented. Electrochemical measurements reveal that the corrosion protection efficiency of EC-PFOA (91% is much superior to DC-PFOA (28%.

  5. Application of the Zisman Critical Surface Tension Technique to Textile Materials Using Contact Angle Measurements

    Institute of Scientific and Technical Information of China (English)

    江红; 迟克栋; 吴慧莉

    2001-01-01

    This is the first one that applies the Zisman critical surface tension technique successfully to textile materials. It was accomplished by carefully determination of the contact angle of fabric. The deviation caused by the porous structure of the fabric will be taken into account. To do so, a Jens equation is applied, and the measured contact angles can be corrected. The surface porosity was determined by measurement and approximate calculation, and the chemical composition of the surface was characterized by means of attenuated total reflection Fourier-transform infrared(FTIR/ATR).

  6. Review of the mathematical foundations of data fusion techniques in surface metrology

    Science.gov (United States)

    Wang, Jian; Leach, Richard K.; Jiang, X.

    2015-06-01

    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed.

  7. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  8. Surface treatments of metal supports for photocatalysis applications

    Science.gov (United States)

    Montecchio, Francesco; Chinungi, Don; Lanza, Roberto; Engvall, Klas

    2017-04-01

    One of the most important challenges, for scaling up a photocatalytic system for VOCs abatement to full-scale, is the design of a suitable photocatalyst support. The support has to firmly immobilize the photocatalyst, without using an organic adhesive, and should also withstand relatively high mechanical stresses. Metals may be effectively implemented as a support material, after a corrugation of the surface with electrochemical treatments. In the present work, we treated stainless steel and aluminum supports, evaluating the surface modifications due to the electrochemical treatments, with scanning electron microscopy (SEM) and confocal microscopy. Five samples showing the highest degree of restructuring were selected and spray coated with P25, a TiO2 photocatalyst, evaluating the mechanical stability of the coating with a standard tape test method. One particular stainless steel sample presented a superior surface restructuring and coating stability. The photocatalytic activity of this sample, evaluated measuring the complete oxidation of acetaldehyde, was tested for 15 h, and compared with sample of TiO2-P25 on a ceramic support. The stainless steel exhibited a constant performance after an initial stabilization period. The stainless steel sample showed a slightly higher activity, due to the surface restructuring, increasing the irradiated area available for the coated photocatalyst.

  9. 4D photogrammetric technique to study free surface water in open channels

    Science.gov (United States)

    Aubé, Damien; Berkaoui, Amine; Vinatier, Fabrice; Bailly, Jean-Stéphane; Belaud, Gilles

    2015-04-01

    Characteristics of three-dimensional surface water are considered as the most valuable information to understand hydrodynamic phenomena in open channel flow. An accurate and coherent description of the free water surface morphology improves the accuracy of hydraulic models which study river processes. However, amongst existing techniques to measure three-dimensional surface, stereo-photogrammetry is clearly the most effective technique to obtain an instantaneous and high accurate 3D free water surface and it's suitable to both flume and field condition. Our study aims at developing this technique in two controlled channels, one in interior with glass borders (length: 6 m, width: 0.3 m and depth: 0.5 m) and one outside with cement borders (length: 13 m, width: 0.7 m and depth: 0.4 m). A system consisting in three NIKON-D3200 cameras, mounted to an adjustable tripod head, which is fixed to an inverted aluminium T-bar with the center camera higher than the two side cameras. Each camera is fitted with a 28 mm lens and cameras are synchronized using a Phottix(R) system. The system was mounted at a downstream position from the channel with an oblique configuration. A series of pictures taken at a 3 s interval during the water weight bearing were reported and analyzed using the Photoscan Pro(R) software for image matching. Validation procedure of the technique was realized using an orthophotography of the lateral border of the interior channel to delimit the line of water surface, and using a video capture of a slide fixed inside the outside channel. A high resolution and dynamic elevation map of the surface water was constructed. Our study give encouraging results, with a good capture of water surface morphology and a limited occlusion issues. The confrontation of the results with the validation dataset highlight limitations that need to be discussed with the audience.

  10. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2010-06-01

    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  11. Technique of Arthroscopic Treatment of Impingement After Total Ankle Arthroplasty.

    Science.gov (United States)

    Gross, Christopher E; Neumann, Julie A; Godin, Jonathan A; DeOrio, James K

    2016-04-01

    Rates of medial and/or lateral gutter impingement after total ankle replacement are not insignificant. If impingement should occur, it typically arises an average of 17 months after total ankle replacement. Our patient underwent treatment for right ankle medial gutter bony impingement with arthroscopic debridement 5 years after her initial total ankle replacement. Standard anteromedial and anterolateral portals and a 30° 2.7-mm-diameter arthroscope were used. An aggressive soft-tissue and bony resection was performed using a combination of curettes, a 3.5-mm shaver, a 5.5-mm unsheathed burr, a drill, and a radiofrequency ablator. This case shows that arthroscopic treatment is an effective and potentially advantageous alternative to open treatment of impingement after total ankle replacement. In addition, symptoms of impingement often improve in a short amount of time after arthroscopic debridement of the medial and/or lateral gutter.

  12. Preliminary Assessment of the Nutrient Film Technique for Wastewater Treatment

    Science.gov (United States)

    1982-03-01

    of an experiment conducted at CRREL to de- tween an NFT system and a hydroponic plant system termine the feasibility of using the nutrient film tech...umre) Hydroponics Thin films Wastes (Sanitary engineering) \\Waslewater \\I MArWIASSACr a m evemww sb N nem y., d idenif, by block nm,6...) An experiment...was conducted to determine the feasibility of using a solar powered, self-regenerating plant growth system, called the nutrient film technique ( NFT

  13. Detecting cells on the surface of a silver electrode quartz crystal microbalance using plasma treatment and graft polymerization.

    Science.gov (United States)

    Chou, Hung-Che; Yan, Tsong-Rong; Chen, Ko-Shao

    2009-10-15

    This paper utilizes a silver electrode quartz crystal microbalance (QCM) mass sensor to detect the physiology of cells. This study also investigates the plasma surface modification of silver electrode QCMs through deposition of hexamethyldisilazane (HMDSZ) films as a protection film. To improve the cell growth, this paper also performs post-treatments by surface-grafting acrylic acid (AAc), acrylamide (AAm), and oxygen plasma treatment onto the QCM electrodes. Experimental results indicate that plasma deposition is a useful technique to protect the surface of silver electrodes. This technique extends the unpeeling time of silver electrodes from 1 to 7 days. The hydrophilic silver electrode QCM surface modified by AAm exhibited a better storage time effect than other post-treatments.

  14. Diffuse coplanar surface barrier discharge -- basic properties and its application in surface treatment of nonwovens

    Science.gov (United States)

    Kovacik, Dusan; Rahel, Jozef; Kubincova, Jana; Zahoranova, Anna; Cernak, Mirko

    2009-10-01

    In recent years, low temperature atmospheric pressure plasma surface treatments have become a hot topic because of the potential of fast and efficient in-line processing fabrication without expensive vacuum equipment. A major problem of atmospheric pressure treatment in air is insufficient treatment uniformity because, particularly at the higher plasma power densities, the air plasma has the tendency of filamentation and transition into an arc discharge. Diffuse coplanar surface barrier discharge (DCSBD) plasma source has been developed to overcome these problems. This type of discharge enables to generate macroscopically homogeneous thin (˜ 0.3 mm) plasma layer with power density of some 100 W/cm^3 practically in any gas without admixture of He. It was found that the ambient air plasma of DCSBD is capable to make lightweight polypropylene nonwoven fabrics permanently hydrophilic, without any pinholing and with low power consumption of some 1 kWh/kg.

  15. A new curvature technique calculation for surface tension contribution in PLIC-VOF method

    Science.gov (United States)

    Martinez, J.-M.; Chesneau, X.; Zeghmati, B.

    2006-01-01

    The volume of fluid (VOF) methods have been used for numerous numerical simulations. Among these techniques used to define the moving interface, the piecewise linear interface reconstruction (PLIC-VOF) is one of the most accurate. A study of the superficial tension impact on two-phase flow with free surface is presented. A new method based on direct staggered grid is developped to include surface tension in PLIC-VOF. The new numerical curvature calculation method doesn't need smoothed colour function and leads to less “spurious current”. This technique is applied to the calculus of surface tension force in the case of the rise of air bubble in viscous liquid and the fall of liquid drop in the same liquid on free surface. Droplets, thin layer and capillarity waves are observed after the free surface rupture for different Bond number. The influence of surface tension calculus is then obvioused and when the drop hit the free surface, wavelets propagate toward the virtual boundaries imposed.

  16. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    Science.gov (United States)

    Alikhasi, Marzieh; Siadat, Hakimeh; Kharazifard, Mohammad Javad

    2015-01-01

    Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials. Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM). Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM). These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05. Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (Ptray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05). Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction. PMID:27252761

  17. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nan

  18. Critique of Sikkink and Keane's comparison of surface fuel sampling techniques

    Science.gov (United States)

    Clinton S. Wright; Roger D. Ottmar; Robert E. Vihnanek

    2010-01-01

    The 2008 paper of Sikkink and Keane compared several methods to estimate surface fuel loading in western Montana: two widely used inventory techniques (planar intersect and fixed-area plot) and three methods that employ photographs as visual guides (photo load, photoload macroplot and photo series). We feel, however, that their study design was inadequate to evaluate...

  19. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; Meer, van der T.H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nan

  20. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ....403 Treatment technique requirements for ground water systems. (a) Ground water systems with significant deficiencies or source water fecal contamination. (1) The treatment technique requirements of this... requirements of this section. (3) When a significant deficiency is identified at a Subpart H public...

  1. 40 CFR 141.111 - Treatment techniques for acrylamide and epichlorohydrin.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment techniques for acrylamide....111 Treatment techniques for acrylamide and epichlorohydrin. Each public water system must certify annually in writing to the State (using third party or manufacturer's certification) that when acrylamide...

  2. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for...

  3. Comparison of optimization techniques for MRR and surface roughness in wire EDM process for gear cutting

    Directory of Open Access Journals (Sweden)

    K.D. Mohapatra

    2016-11-01

    Full Text Available The objective of the present work is to use a suitable method that can optimize the process parameters like pulse on time (TON, pulse off time (TOFF, wire feed rate (WF, wire tension (WT and servo voltage (SV to attain the maximum value of MRR and minimum value of surface roughness during the production of a fine pitch spur gear made of copper. The spur gear has a pressure angle of 20⁰ and pitch circle diameter of 70 mm. The wire has a diameter of 0.25 mm and is made of brass. Experiments were conducted according to Taguchi’s orthogonal array concept with five factors and two levels. Thus, Taguchi quality loss design technique is used to optimize the output responses carried out from the experiments. Another optimization technique i.e. desirability with grey Taguchi technique has been used to optimize the process parameters. Both the optimized results are compared to find out the best combination of MRR and surface roughness. A confirmation test was carried out to identify the significant improvement in the machining performance in case of Taguchi quality loss. Finally, it was concluded that desirability with grey Taguchi technique produced a better result than the Taguchi quality loss technique in case of MRR and Taguchi quality loss gives a better result in case of surface roughness. The quality of the wire after the cutting operation has been presented in the scanning electron microscopy (SEM figure.

  4. Modern techniques in treatment of chest and extremity polytraumas

    Directory of Open Access Journals (Sweden)

    Khmara Т.G.

    2012-12-01

    Full Text Available The article presents a review of Russian and foreign literature on polytrauma. It touches upon the following points: statistic data of the pathology occurrence, mortality and disability from injuries, classification and methods of diagnostics and treatment of multiple traumas and polytraumas.

  5. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  6. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  7. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants.

    Science.gov (United States)

    Elias, Carlos Nelson; Rocha, Felipe Assis; Nascimento, Ana Lucia; Coelho, Paulo Guilherme

    2012-12-01

    The primary stability of dental implants has been investigated before, but a study of the influence of implant shape, size and surface morphology (machined, acid etched or anodized), surgical technique (press-fit or undersized) and substrate (natural or simulated bone) on the primary stability of dental implants has not been reported. The present work intends to fill this gap. In this work, six different dental implants were inserted into and removed from synthetic and natural bone while measuring the torque. A total of 255 dental implants with three shapes, four sizes and three surface topographies were inserted into pig rib, PTFE and polyurethane. The implant sites were prepared using straight and tapered drills. The primary stability was estimated from the maximum insertion torque. Comparisons between samples were based on the maximum insertion torque (MIT), the maximum removal torque (MRT) and the torque ratio (TR=MRT/MIT). The insertion torque into pig ribs showed larger dispersion. All parameters (shape, size and surface morphology of the implant, surgical technique and substrate type) were found to have a significant influence on primary stability. The insertion of a tapered implant requires a higher torque than the insertion of a straight implant. Surface treatments improve the primary stability. The influence of the surgical technique is smaller than that of implant size and shape. The highest insertion torque was that of anodized tapered implants inserted into undersized sites. Finally, the primary stability of dental implants is highly dependent on implant design, surgical technique and substrate type. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Determination of geohydrologic framework and extent of d- water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey

    Science.gov (United States)

    Lacombe, Pierre

    1986-01-01

    Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)

  9. [Effect of infiltration technique and polishing on the roughness of artificial carious enamel surfaces].

    Science.gov (United States)

    Yuan, Chang-qing; Dou, Guo-wen; Deng, Jing; Geng, Guo-liang; Sun, Pei; Cao, Ying-xiu

    2013-08-01

    To study the surface roughness of early carious lesions which were treated with resin infiltration and polished with different materials, and to provide reference for selection of appropriate polishing system. Fifty-four labial surface specimens of mandibular incisors were created out of bovine teeth. They were randomly divided into 6 groups. One group was sound enamel group. Another group was early enamel carious group. Other specimens were treated with a partially saturated acidic buffer solution for preparation of initial artificial enamel caries. These initial artificial enamel caries were treated with resin infiltration. Then they were randomly divided into 4 groups according to polishing or not and type of polishing tool (rubber cups, polishing discs, HiLuster polishers). The surface roughness of specimens in all groups were measured with Form Talysurf PGI 800. Arithmetical mean deviation of the assessed profile (Ra) and the maximum height of the profile(Rz) were used as measurement parameter. SPSS 17.0 software package was used for data analysis. Comparison of sound enamel surfaces and early carious surfaces revealed no significant difference in surface roughness(P>0.05), but the mean value of the latter one was higher. After infiltration, the roughness of surfaces without polishing was significantly higher than that of early carious surfaces(P0.05). The roughness of polishing groups after infiltration was significantly smaller than that of group without polished after infiltration (Pcarious surfaces revealed no significant difference in surface roughness (P>0.05). After early caries being treated with infiltration technique, the roughness of teeth surfaces increases significantly. Those surfaces should be polished. Rubber cup and polishing discs with smaller granularity are more effective and reasonable as the surface polishing materials.

  10. Hydrophobic recovery of VUV/NH3 modified polyolefin surfaces: Comparison with plasma treatments in nitrogen

    Science.gov (United States)

    Truica-Marasescu, F.; Guimond, S.; Jedrzejowski, P.; Wertheimer, M. R.

    2005-07-01

    Film samples of two very pure polyolefins (low density polyethylene, LDPE and biaxially oriented polypropylene, BOPP) were surface-modified by two different methods, namely vacuum ultraviolet (VUV) irradiation with a Kr resonant lamp in low-pressure NH3 gas, and atmospheric pressure glow discharge (APGD) plasma treatment in pure N2 gas. Samples were then stored in air and the time-dependence of surface properties (the surface energy and chemical composition) was monitored using several complementary surface-sensitive techniques: contact angle goniometry (CAG), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the main mechanism responsible for hydrophobic recovery is the motion of polymer chains and chain segments, which governs an apparent "loss" of functional groups, within the first monolayers of the surface (∼1 nm). Finally, comparing BOPP samples modified by both techniques, we show that aging can be reduced by crosslinking near the surface, as illustrated by depth-sensing nano-indentation measurements.

  11. Management of Ocular Surface Tumors: Excision vs. Topical Treatment

    Directory of Open Access Journals (Sweden)

    Sotiria Palioura

    2014-10-01

    Full Text Available Ocular surface squamous neoplasia (OSSN encompasses a range of corneal and conjunctival lesions from intraepithelial dysplasia to invasive squamous cell carcinoma. The mainstay of treatment for OSSN has traditionally been surgical excision with wide margins and cryotherapy. Increasing evidence on the efficacy and safety of medical therapy and the avoidance of surgical complications has made topical chemotherapy increasingly popular among corneal specialists. The most common topical agents used for the treatment of OSSN include mitomycin C, 5-fluorouracil, and interferon a 2b. Herein, we review recent advances in the surgical and medical management of OSSN and discuss advantages and disadvantages of each approach. The role of ultra highresolution optical coherence tomography in the diagnosis and treatment of primary and recurrent OSSN lesions is also discussed.

  12. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    Science.gov (United States)

    Taha, T. J.; Thakur, D. B.; Van der Meer, T. H.

    2012-11-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nano structures is achieved using thermal catalytic chemical vapor deposition process (TCCVD) on a 50 μm pure nickel (Ni270) wire. The micro wire samples covered with CNF layers were subjected to a uniform flow from a nozzle. Heat transfer measurement was achieved by a controlled heat dissipation through the micro wire to attain a constant temperature during the flow. This measurement technique is adopted from hot wire anemometry calibration method. Synthesis of carbon nano structures, heat transfer surface characterization and measurement technique are evaluated. Preliminary results indicate that an average enhancement in Nusselt Number of 17% is achieved.

  13. Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques Using RDX and C-4

    Science.gov (United States)

    Miller, C. J.; Yoder, T. S.

    2010-06-01

    Explosive trace detection equipment has been deployed to airports for more than a decade. During this time, the need for standardized procedures and calibrated trace amounts for ensuring that the systems are operating properly and detecting the correct explosive has been apparent but a standard representative of a fingerprint has been elusive. Standards are also necessary to evaluate instrumentation in the laboratories during development and prior to deployment to determine sample throughput, probability of detection, false positive/negative rates, ease of use by operator, mechanical and/or software problems that may be encountered, and other pertinent parameters that would result in the equipment being unusable during field operations. Since many laboratories do not have access to nor are allowed to handle explosives, the equipment is tested using techniques aimed at simulating the actual explosives fingerprint. This laboratory study focused on examining the similarities and differences in three different surface contamination techniques that are used to performance test explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples and to offer scenarios where each contamination technique is applicable. The three techniques used were dry transfer deposition of standard solutions using the Transportation Security Laboratory’s (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards onto substrates, and fingerprinting of actual explosives onto substrates. RDX was deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each substrate type using each contamination technique. The substrate types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that

  14. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  15. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    Science.gov (United States)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  16. Surgical treatment of idiopathic syringomyelia: Silastic wedge syringosubarachnoid shunting technique

    Directory of Open Access Journals (Sweden)

    Teck M Soo

    2014-01-01

    Conclusions: Shunting procedures for the syringomyelia disease spectrum have been criticized due to the inconsistent long-term outcomes. This surgical technique used to treat symptomatic idiopathic syringomyelia has been devised based on our intraoperative experience, surgical outcomes, and evaluation of the literature. The purpose of the wedges is to preserve patency of the communication between the syrinx cavity and the expanded subarachnoid space by preventing healing of the myelotomy edges and by maintaining an artificial conduit between the syrinx cavity and the subarachnoid space. Although short-term results are promising, continued long-term follow up is needed to determine the ultimate success of the silastic wedge shunting procedure.

  17. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood.

    Science.gov (United States)

    Korkut, Derya Sevim; Guller, Bilgin

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and durations. The physical properties of heat-treated samples were compared against controls in order to determine their; oven-dry density, air-dry density, and swelling properties. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Three main roughness parameters; mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) obtained from the surface of wood, were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant differences were determined (p>0.05) between surface roughness parameters (Ra, Rz, Rmax) at three different temperatures and three periods of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Red-bud maple wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  18. The Effects of Heat Treatment on the Physical Properties and Surface Roughness of Turkish Hazel (Corylus colurna L. Wood

    Directory of Open Access Journals (Sweden)

    Nevzat Çakıcıer

    2008-09-01

    Full Text Available Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L. wood were examined. Samples obtained from Kastamonu Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for different durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, wereb made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra, mean peak-to-valley height (Rz, root mean square roughness (Rq, and maximum roughness (Ry obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p = 0.05 between physical properties and surface roughness parameters (Ra,Rz, Ry, Rq for three temperatures and three durations of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Turkish Hazel wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  19. The effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L.) wood.

    Science.gov (United States)

    Korkut, Derya Sevim; Korkut, Süleyman; Bekar, Ilter; Budakçi, Mehmet; Dilik, Tuncer; Cakicier, Nevzat

    2008-09-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L.) wood were examined. Samples obtained from Kastamonu Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for different durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p = 0.05) between physical properties and surface roughness parameters (Ra,Rz, Ry, Rq) for three temperatures and three durations of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Turkish Hazel wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  20. The very surface states on GaAs(001) surface by means of electronic and optical techniques

    Science.gov (United States)

    Placidi, Ernesto

    2004-03-01

    Until now, Reflectance-Anisotropy Spectroscopy (RAS) in the visible has been the most used technique to quantify the anisotropy of these surfaces [1]. Low-energy electrons are believed to perturb more than photons and have not been employed to this purpose, despite their shorter penetration depth. In our presentation we show experimental results of High-Resolution Electron-Energy-Loss Spectroscopy (HREELS) applied to investigate the anisotropy of the GaAs(001)-c(4x4) and beta2(2x4) surfaces. We demonstrate the higher surface sensitivity of HREELS compared to RAS. Measurements are performed on high-quality samples grown in situ by Molecular Beam Epitaxy (MBE). The loss spectra taken in the two orthogonal surface directions have different intensities, particularly close to the fundamental gap, where surface like resonances, involving dimers, are observed. We discuss our HREELS and RAS data to identify the source of the anisotropy close to the critical point transitions where surface and bulk like excitations coexist. Our data are in very good agreement with DFT-LDA calculations for loss energies up to 3.5 eV [2]. The exposure of the reconstructed surfaces to molecular oxygen affects strongly the spectral features. [1] D.E.Aspnes, J.P.Harbison, A.A.Studna, L.T.Florez, Phys. Rev. Lett. 59 (1987) 1687; I.Kamiya, D.E.Aspnes, L.T.Florez, and J.T.Harbison, Phys. Rev. B 46 (1992) 15894. [2] A.Balzarotti, F.Arciprete, M.Fanfoni, F.Patella, E. Placidi, G.Onida, R.Del Sole, Surf. Sci. Lett. 524, L71 (2003); A.Balzarotti, E.Placidi, F.Arciprete, M.Fanfoni, F.Patella, Physical Review B, 67 115332 (2003); F.Arciprete, C. Goletti, E. Placidi, M.Fanfoni, F.Patella, P. Chiaradia, C. Hogan and A. Balzarotti, Phys. Rev. B 68 125328 (2003).

  1. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sharma, Savita [Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110075 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Investigated the optical properties of BiFeO{sub 3} (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO{sub 3} (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au{sup 9+} ions at a fluence of 1 × 10{sup 12} ions cm{sup −2}. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  2. Characterizing a New Surface-Based Shortwave Cloud Retrieval Technique, Based on Transmitted Radiance for Soil and Vegetated Surface Types

    Directory of Open Access Journals (Sweden)

    Patrick J. McBride

    2013-03-01

    Full Text Available This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (τ, droplet effective radius (re, and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1 the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2 the new spectral technique is more accurate (but still imprecise than a standard approach, in particular for τ between 5 and 60 and re less than approximately 20 μm; and (3 the retrieved cloud properties are dependent on sun angle for clouds of  from 5 to 10 and re < 10 μm, with maximum sensitivity obtained for an overhead sun.

  3. Characterizing a New Surface-Based Shortwave Cloud Retrieval Technique, Based on Transmitted Radiance for Soil and Vegetated Surface Types

    Science.gov (United States)

    Coddington, Odele; Pilewskie, Peter; Schmidt, K. Sebastian; McBride, Patrick J.; Vukicevic, Tomislava

    2013-01-01

    This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (tau), droplet effective radius (r(sub e)), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for tau between 5 and 60 and r(sub e) less than approximately 20 nm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of tau from 5 to 10 and r(sub e) less than 10 nm, with maximum sensitivity obtained for an overhead sun.

  4. Short clinical crowns (SCC) – treatment considerations and techniques

    OpenAIRE

    Sharma, Ashu; Rahul, G. R.; Poduval, Soorya T.; Shetty, Karunakar

    2012-01-01

    When the clinical crowns of teeth are dimensionally inadequate, esthetically and biologically acceptable restoration of these dental units is difficult. Often an acceptable restoration cannot be accomplished without first surgically increasing the length of the existing clinical crowns; therefore, successful management requires an understanding of both the dental and periodontal parameters of treatment. The complications presented by teeth with short clinical crowns demand a comprehensive tre...

  5. Short clinical crowns (SCC) – treatment considerations and techniques

    OpenAIRE

    Sharma, Ashu; G. R. Rahul; Poduval, Soorya T.; Shetty, Karunakar

    2012-01-01

    When the clinical crowns of teeth are dimensionally inadequate, esthetically and biologically acceptable restoration of these dental units is difficult. Often an acceptable restoration cannot be accomplished without first surgically increasing the length of the existing clinical crowns; therefore, successful management requires an understanding of both the dental and periodontal parameters of treatment. The complications presented by teeth with short clinical crowns demand a comprehensive tre...

  6. Endobutton technique for the treatment of acute acromioclavicular joint dislocations

    Directory of Open Access Journals (Sweden)

    Raif Özden

    2014-06-01

    Full Text Available Objective: Acromioclavicular (AC joint dislocation is a common injury frequently affecting young athletes. The aim of this study is to evaluate postoperative functional results in cases diagnosed with acute AC joint dislocation stabilized with endobutton system. Methods: This fixation procedure has been applied on 10 patients. Indications of the technique included: a grade V AC joint dislocation (7 patients, and grade III AC joint dislocation (3 patient according to Rockwood classification. The coracoclavicular (CC interval and AC joint were reduced using two endobuttons. One endobutton was fitted on the clavicle and the second was placed at the undersurface of the coracoid. Outcomes were assessed with the Constant shoulder score and visual analog pain scale. Results: All the patients had powerful intraoperative fixation. Immediately after surgery, and 6 weeks, and 1 year postoperative radiographs showed adequate reduction of the CC distance and the AC joint. The mean Constant shoulder score was 89 (88–92 in the injured shoulder and 90 (88–93 in the uninjured shoulder. There was no statically significant difference between the injured and normal shoulder in terms of Constant shoulder score and there was no complication during the process. Conclusion: This technique is a safe and effective method for providing fixation for the AC joint.

  7. In Situ Synthesis of Nanocrystalline Intermetallic Compound Layer during Surface Mechanical Attrition Treatment of Zirconium

    Institute of Scientific and Technical Information of China (English)

    SUNCai-yun; XIEJi-jia; WUXiao-lei; HONGYou-shi; LIUGang; LUJian; LUKe

    2004-01-01

    The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25μm thick and consisted of the intermetallic compound FeCr with an average grain size of 25+10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.

  8. Molecular surface structural changes of plasticized PVC materials after plasma treatment.

    Science.gov (United States)

    Zhang, Xiaoxian; Zhang, Chi; Hankett, Jeanne M; Chen, Zhan

    2013-03-26

    In this research, a variety of analytical techniques including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), and X-ray photoelectron spectroscopy (XPS) have been employed to investigate the surface and bulk structures of phthalate plasticized poly(vinyl chloride) (PVC) at the molecular level. Two types of phthalate molecules with different chain lengths, diethyl phthalate (DEP) and dibutyl phthalate (DBP), mixed with PVC in various weight ratios were examined to verify their different surface and bulk behaviors. The effects of oxygen and argon plasma treatment on PVC/DBP and PVC/DEP hybrid films were investigated on both the surface and bulk of films using SFG and CARS to evaluate the different plasticizer migration processes. Without plasma treatment, SFG results indicated that more plasticizers segregate to the surface at higher plasticizer bulk concentrations. SFG studies also demonstrated the presence of phthalates on the surface even at very low bulk concentration (5 wt %). Additionally, the results gathered from SFG, CARS, and XPS experiments suggested that the PVC/DEP system was unstable, and DEP molecules could leach out from the PVC under low vacuum after several minutes. In contrast, the PVC/DBP system was more stable; the migration process of DBP out of PVC could be effectively suppressed after oxygen plasma treatment. XPS results indicated the increase of C═O/C-O groups and decrease of C-Cl functionalities on the polymer surface after oxygen plasma treatment. The XPS results also suggested that exposure to argon plasma induced chemical bond breaking and formation of cross-linking or unsaturated groups with chain scission on the surface. Finally, our results indicate the potential risk of using DEP molecules in PVC since DEP can easily leach out from the polymeric bulk.

  9. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  10. Effects of oxygen plasma treatment on the surface wettability and dissolution of furosemide compacts.

    Science.gov (United States)

    Naseem, A; Olliff, C J; Martini, L G; Lloyd, A W

    2003-11-01

    The plasma irradiation of furosemide (frusemide) was investigated as a possible technique for increasing the dissolution rate of this drug. Oxygen plasma was used to generate oxygen-containing functional groups on the surface of the compact to increase the wettability of the surface and the dissolution rate of the drug. Compacts of furosemide (300 mg) were produced using a stainless steel die and punch assembly, which was placed into a KBr press. The time of the plasma treatment was varied to assess the effect if any upon the dissolution rate and the wettability of the drug. Dissolution experiments of the plasma-treated and untreated compacts were carried out using the paddle apparatus method. Dissolution was carried out at 37 degrees C using 1 L of 0.1 M HCl and phosphate buffer (pH 6). The wettability was assessed by contact angle measurements using the sessile drop technique. Untreated and plasma-treated samples were analysed by scanning electron microscopy at x 5000 magnification. Plasma treatment was found to lower the equilibrium contact angle from approximately 50 to 35 degrees but the dissolution rate was not significantly affected. This was attributed to fusion of the surface by the plasma treatment.

  11. A New Technique for System-to-system Transfer of Surface Data

    Science.gov (United States)

    Sterling, M. W.; Lucius, M. E.; Gordon, W. J.

    1985-01-01

    The purpose is to describe a recently developed technique aimed at providing a universal interface between surface types. In brief, a software package was developed which functions a common denominator of CAD/CAM surface types. This software enable one to convert from any given surface representation to any other target representation. The tiles maintain the same slope continuity as the target surface gram, bicubic patches are used since they allow one to match point, slope, and twist vectors to the target surface. Thus, slopes can be continuous or discontinuous as they are on the target surface. The patches can be of lower order if desired. For example, if only point information is available, the patches produced will be bilinear; however, the number of patches required is likely to increase correspondingly. The patches can be of higher order although many systems will not accept patches of more than order four. The final result of the program is a rectangular grid of bicubic patches. The patches fit the target surface exactly at their corners. Also, the patch corners have the same tangent and twist vectors. Adjacent patches will have slope continuity, unless a discontinuity was indicated by the target surface.

  12. A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices

    Directory of Open Access Journals (Sweden)

    Tina Govindarajan

    2014-08-01

    Full Text Available The search for a single material with ideal surface properties and necessary mechanical properties is on-going, especially with regard to cardiovascular stent materials. Since the majority of stent problems arise from surface issues rather than bulk material deficiencies, surface optimization of a material that already contains the necessary bulk properties is an active area of research. Polymers can be surface-modified using a variety of methods to increase hemocompatibilty by reducing either late-stage restenosis or acute thrombogenicity, or both. These modification methods can be extended to shape memory polymers (SMPs, in an effort to make these materials more surface compatible, based on the application. This review focuses on the role of surface modification of materials, mainly polymers, to improve the hemocompatibility of stent materials; additional discussion of other materials commonly used in stents is also provided. Although shape memory polymers are not yet extensively used for stents, they offer numerous benefits that may make them good candidates for next-generation stents. Surface modification techniques discussed here include roughening, patterning, chemical modification, and surface modification for biomolecule and drug delivery.

  13. The Shouldice technique for the treatment of inguinal hernia

    Directory of Open Access Journals (Sweden)

    Chan Chin

    2006-01-01

    Full Text Available The Shouldice repair has been refined over several decades and is the gold standard for the prosthesis-free treatment of inguinal hernias. A recurrence rate around 1% has been consistently demonstrated over the years. The objective of this paper is to outline and highlight the key principles, including the dedicated pre-operative preparation, the use of local anesthesia, a complete inguinal dissection and the eponymous four-layered reconstruction. A knowledge and understanding of inguinal hernia anatomy and the patho-physiology of recurrence are vital to achieving a long-term success and patient satisfaction for a pure tissue repair.

  14. Effect of heat treatment on structure, surface composition, infrared emission and surface electrical properties of tourmaline

    Science.gov (United States)

    He, Dengliang; Liu, Shuxin

    2017-02-01

    Crystal structure, surface composition, infrared emission properties and surface electrical properties of tourmaline from Guangxi of China, when subjected to heat treatment in air atmosphere had been studied by some methods, including X-ray fluorescence spectrum (XRF), X-ray diffraction (XRD) meter, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersion spectroscopy (EDS), scanning electron microscope (SEM) and Zeta potential analyzer, etc. Experimental results show that the unit cell of tourmaline would shrink during heat treatment because Fe2+ were oxidized. Moreover, the Fe3+/Fetotal inside tourmaline can be raised after treatment. Infrared normal total emissivity of tourmaline reaches 0.87, and infrared radiation energy density is 4.56 × 102W/m2. It can maintain excellent infrared emission properties at high temperature. Simultaneously, tourmaline presents negative Zeta potential in the aqueous solution, and its Zeta potential reaches ‑18.04 mV. Zeta potential of tourmaline was increased to ‑24.83 mV after heat treatment at 400∘C, and decrease to ‑11.78 mV after heat treatment at 600∘C. These findings may provide reference data for tourmaline’s application in the field of functional materials.

  15. Short clinical crowns (SCC) – treatment considerations and techniques

    Science.gov (United States)

    Rahul, G. R.; Poduval, Soorya T.; Shetty, Karunakar

    2012-01-01

    When the clinical crowns of teeth are dimensionally inadequate, esthetically and biologically acceptable restoration of these dental units is difficult. Often an acceptable restoration cannot be accomplished without first surgically increasing the length of the existing clinical crowns; therefore, successful management requires an understanding of both the dental and periodontal parameters of treatment. The complications presented by teeth with short clinical crowns demand a comprehensive treatment plan and proper sequencing of therapy to ensure a satisfactory result. Visualization of the desired result is a prerequisite of successful therapy. This review examines the periodontal and restorative factors related to restoring teeth with short clinical crowns. Modes of therapy are usually combined to meet the biologic, restorative, and esthetic requirements imposed by short clinical crowns. In this study various methods for treating short clinical crowns are reviewed, the role that restoration margin location play in the maintenance of periodontal and dental symbiosis and the effects of violation of the supracrestal gingivae by improper full-coverage restorations has also been discussed. Key words:Short clinical crown, surgical crown lengthening, forced eruption, diagnostic wax up, alveoloplasty, gingivectomy. PMID:24558561

  16. Development of dose audits for complex treatment techniques in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Stefanic, A. M.; Molina, L.; Vallejos, M.; Montano, G.; Zaretzky, A.; Saravi, M., E-mail: stefanic@cae.cnea.gov.ar [Centro Regional de Referencia con Patrones Secundarios para Dosimetria - CNEA, Presbitero Juan Gonzalez y Aragon 15, B1802AYA Ezeiza (Argentina)

    2014-08-15

    This work was performed in the frame of a Coordinated Research Project (CRP) with IAEA whose objective was to extend the scope of activities carried out by national TLD-based networks from dosimetry audit for rectangular radiation fields to irregular and small fields relevant to modern radiotherapy. External audit is a crucial element in QA programmes for clinical dosimetry in radiotherapy, therefore a methodology and procedures were developed and were made available for dose measurement of complex radiotherapy parameters used for cancer treatment. There were three audit steps involved in this CRP: TLD based dosimetry for irregular MLC fields for conformal radiotherapy, dosimetry in the presence of heterogeneities and 2D MLC shaped fields relevant to stereotactic radiotherapy and applicable to dosimetry for IMRT. In addition, a new development of film-based 2D dosimetry for testing dose distributions in small field geometry was included. The plan for each audit step involved a pilot study and a trial audit run with a few local hospitals. The pilot study focused on conducting and evaluation of the audit procedures with all participants. The trial audit run was the running of the audit procedures by the participants to test them with a few local radiotherapy hospitals. This work intends to provide audits which are much nearer clinical practice than previous audits as they involve significant testing of Tps methods, as well as verifications to determinate whether hospitals can correctly calculate dose delivery in radiation treatments. (author)

  17. Three-dimensional surface measurement based on the projected defocused pattern technique using imaging fiber optics

    Science.gov (United States)

    Parra Escamilla, Geliztle A.; Kobayashi, Fumio; Otani, Yukitoshi

    2017-05-01

    We present a three-dimensional surface measurement system using imaging fiber endoscope and the measurement is based on the focus technique in uniaxial configuration. The surface height variation of the sample is retrieved by taking into account the contrast modulation change obtained from a projected fringe pattern on the sample. The technique takes into account the defocus change of the fringe pattern due to the height variation of the sample and by a Gaussian fitting process the height reconstruction can be retrieved. A baseline signal procedure was implemented to remove back reflection light coming from the two fiber-surfaces (inlet and outlet) and also a Fourier transform filter was used to remove the pixelated appearance of the images. The depth range of the system is 1.1 mm and a lateral range of 2 mm by 2 mm. The novelties of the implementation are that the system uses the same imaging fiber as illumination and measurement and offers the advantage of the transportability to the measurement to a confined space having potential application on medical or industrial endoscopes systems. We demonstrate the technique by showing the surface profile of a measured object.

  18. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    Science.gov (United States)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  19. On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface

    Institute of Scientific and Technical Information of China (English)

    Yang Dong; Wang Zhongyuan

    2005-01-01

    High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.

  20. Comparison of two different plasma surface-modification techniques for the covalent immobilization of protein monolayers.

    Science.gov (United States)

    Cifuentes, Anna; Borrós, Salvador

    2013-06-04

    The immobilization of biologically active species is crucial for the fabrication of smart bioactive surfaces. For this purpose, plasma polymerization is frequently used to modify the surface nature without affecting the bulk properties of the material. Thus, it is possible to create materials with surface functional groups that can promote the anchoring of all kinds of biomolecules. Different methodologies in protein immobilization have been developed in recent years, although some drawbacks are still not solved, such as the difficulties that some procedures involve and/or the denaturalization of the protein due to the immobilization process. In this work, two different strategies to covalently attach bovine serum albumin (BSA) protein are developed. Both techniques are compared in order to understand how the nature of the surface modification affects the conformation of the protein upon immobilization.

  1. Surface nanobubbles studied by atomic force microscopy techniques: Facts, fiction, and open questions

    Science.gov (United States)

    Schönherr, Holger; Hain, Nicole; Walczyk, Wiktoria; Wesner, Daniel; Druzhinin, Sergey I.

    2016-08-01

    In this review surface nanobubbles, which are presumably gas-filled enclosures found at the solid-liquid interface, are introduced and discussed together with key experimental findings that suggest that these nanoscale features indeed exist and are filled with gas. The most prominent technique used thus far has been atomic force microscopy (AFM). However, due to its potentially invasive nature, AFM data must be interpreted with great care. Owing to their curved interface, the Laplace internal pressure of surface nanobubbles exceeds substantially the outside ambient pressure, and the experimentally observed long term stability is in conflict with estimates of gas transport rates and predicted surface nanobubble lifetimes. Despite recent explanations of both the stability and the unusual nanoscopic contact angles, the development of new co-localization approaches and the adequate analysis of AFM data of surface nanobubbles are important as a means to confirm the gaseous nature and correctly estimate the interfacial curvature.

  2. Surface modification by alkali and heat treatments in titanium alloys.

    Science.gov (United States)

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  3. Effect of Surface Treatments on Leakage of Zirconium Oxide Ceramics

    Directory of Open Access Journals (Sweden)

    Göknil Alkan Demetoğlu

    2016-08-01

    Full Text Available Objective: The aim of this pilot study was to compare the effects of pretreatments on leakage of zirconia ceramics. Materials and Methods: The speciments divided into 6 groups that were subsequently treated as follows: group 1, no treatment (control; group 2, the ceramic surfaces were airborne-particle abraded with 110 μm aluminum-oxide (Al2O3 particles; group 3, after abrasion of the surfaces with 110 μm Al2O3 particles, silica coating using 30 μm (Al2O3 particles modified by silica (rocatec system and application of the silane coupling agent (espe-sil; group 4, ceramic surfaces irritated with neodymium-doped yttrium aluminium garnet (Nd:YAG laser [fidelis plus 3 foton (Ljubljana, Slovenia] at 20 hz, 100 mj, 2 w, 100 μs; group 5, ceramic surfaces irritated with Nd:YAG laser at fidelis plus 3 fotona (Ljubljana, Slovenia at 20 hz, 100 mj, 2 w, 100 μs; group 6; application of a zirconia primer (z-prime plus bisco, IL, USA agent. And all ceramics tested for leakage. Results: For marginal leakage, score 0 was found in all groups. Conclusion: No significant differences were found in marginal leakage under all conditions.

  4. RF atmospheric plasma jet surface treatment of paper

    Science.gov (United States)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  5. Effect of polishing techniques and time on surface roughness, hardness and microleakage of resin composite restorations.

    Science.gov (United States)

    Venturini, Daniela; Cenci, Maximiliano Sérgio; Demarco, Flávio Fernando; Camacho, Guilherme Brião; Powers, John M

    2006-01-01

    This study evaluated the effects of immediate and delayed polishing on the surface roughness, microhardness and microleakage of a microfilled (Filtek A110) and a hybrid (Filtek Z250) resin composite. Standardized preparations were made on the buccal surfaces of 256 bovine teeth; half were restored with each composite (128 teeth per composite). Immediately after curing, gross finishing was carried out with #280 sandpaper. The specimens restored with each composite were divided into two subgroups. The first group (IM) was polished immediately after gross finishing, using three different systems (n=16): Sequence A, Sof-Lex; Sequence B, Flexicups and Sequence C, Flexicups + Jiffy Polishing Brush + Flexibuffs. The specimens were then stored for three weeks in saline 37 degrees C. The second group (DE) was stored for two weeks, then polished with the same systems and stored for one additional week. The controls (n=16) were analyzed without polishing. Five readings per specimen were taken for surface roughness and hardness. After immersion in basic fuchsin, microleakage was evaluated (40x) using standardized scores. The data were analyzed at a significance level of 0.05, with analysis of variance and an SNK test (surface roughness and microhardness) or with Kruskal-Wallis (microleakage). In both composites, only for the sequential technique was there an influence of delay in polishing on roughness (Ra). Flexicups exhibited the highest Ra of the three systems. The IM and Filtek Z-250 groups showed higher hardness than the DE and Filtek A-110 groups, respectively. Dentin margins showed more leakage than enamel margins; the sequential technique produced more leakage than the other techniques in dentin (pcomposite, time and polishing technique--had a significant influence on surface roughness, hardness and microleakage. Generally, immediate polishing produced no detrimental effect compared to delayed polishing.

  6. Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    The incorporation of nitrogen or carbon in steel is widely applied to provide major improvements in materials performance with respect to fatigue, wear, tribology and atmospheric corrosion. These improvements rely on a modification of the surface adjacent region of the material, by the (internal......) precipitation of alloying element nitrides/carbides or by the development of a continuous layer of iron-based (carbo-) nitrides. The evolution of the microstructure during thermochemical treatments is not only determined by solid state diffusion, but in many cases also by the kinetics of the surface reactions...... and the interplay with mechanical stress. In the present article a few examples, covering research on the interaction of carbon and/or nitrogen with iron-based metals, are included to illustrate the various aspects of gas-metal interactions....

  7. Escherichia coli control in a surface flow treatment wetland.

    Science.gov (United States)

    MacIntyre, M E; Warner, B G; Slawson, R M

    2006-06-01

    A field experiment showed that numbers of Escherichia coli declined significantly when floating Lemna spp. plants were removed to create open water areas in a typical newly constructed surface flow treatment wetland in southern Ontario. It is suggested that E. coli declined immediately after Lemna removal because the Lemna was shading the water column from penetration by natural UV radiation, it was providing favourable attachment sites for the E. coli, and it was not allowing effective free exchange of oxygen from surface winds to the water column to maintain high enough dissolved oxygen supplies for predator zooplankton populations. Operators of wetland systems must have the specialized skills required to recognize the cause and the appropriate maintenance requirements to maintain efficient operation of such unconventional systems should E. coli numbers increase during the course of operation.

  8. Bacterial Adhesion and Surface Roughness for Different Clinical Techniques for Acrylic Polymethyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Lucas Costa de Medeiros Dantas

    2016-01-01

    Full Text Available This study sought to assess the effect of different surface finishing and polishing protocols on the surface roughness and bacterial adhesion (S. sanguinis to polymethyl methacrylates (PMMA. Fifty specimens were divided into 5 groups (n=10 according to their fabrication method and surface finishing protocol: LP (3 : 1 ratio and laboratory polishing, NF (Nealon technique and finishing, NP (Nealon technique and manual polishing, MF (3 : 1 ratio and manual finishing, and MP (3 : 1 ratio and manual polishing. For each group, five specimens were submitted to bacterial adhesion tests and analyzed by scanning electron microscopy (SEM. Two additional specimens were subjected to surface topography analysis by SEM and the remaining three specimens were subjected to surface roughness measurements. Data were compared by one-way ANOVA. The mean bacterial counts were as follows: NF, 19.6±3.05; MP, 5.36±2.08; NP, 4.96±1.93; MF, 7.36±2.45; and LP, 1.56±0.62 (CFU. The mean surface roughness values were as follows: NF, 3.23±0.15; MP, 0.52±0.05; NP, 0.60±0.08; MF, 2.69±0.12; and LP, 0.07±0.02 (μm. A reduction in the surface roughness was observed to be directly related to a decrease in bacterial adhesion. It was verified that the laboratory processing of PMMA might decrease the surface roughness and consequently the adhesion of S. sanguinis to this material.

  9. Bacterial Adhesion and Surface Roughness for Different Clinical Techniques for Acrylic Polymethyl Methacrylate.

    Science.gov (United States)

    Dantas, Lucas Costa de Medeiros; da Silva-Neto, João Paulo; Dantas, Talita Souza; Naves, Lucas Zago; das Neves, Flávio Domingues; da Mota, Adérito Soares

    2016-01-01

    This study sought to assess the effect of different surface finishing and polishing protocols on the surface roughness and bacterial adhesion (S. sanguinis) to polymethyl methacrylates (PMMA). Fifty specimens were divided into 5 groups (n = 10) according to their fabrication method and surface finishing protocol: LP (3 : 1 ratio and laboratory polishing), NF (Nealon technique and finishing), NP (Nealon technique and manual polishing), MF (3 : 1 ratio and manual finishing), and MP (3 : 1 ratio and manual polishing). For each group, five specimens were submitted to bacterial adhesion tests and analyzed by scanning electron microscopy (SEM). Two additional specimens were subjected to surface topography analysis by SEM and the remaining three specimens were subjected to surface roughness measurements. Data were compared by one-way ANOVA. The mean bacterial counts were as follows: NF, 19.6 ± 3.05; MP, 5.36 ± 2.08; NP, 4.96 ± 1.93; MF, 7.36 ± 2.45; and LP, 1.56 ± 0.62 (CFU). The mean surface roughness values were as follows: NF, 3.23 ± 0.15; MP, 0.52 ± 0.05; NP, 0.60 ± 0.08; MF, 2.69 ± 0.12; and LP, 0.07 ± 0.02 (μm). A reduction in the surface roughness was observed to be directly related to a decrease in bacterial adhesion. It was verified that the laboratory processing of PMMA might decrease the surface roughness and consequently the adhesion of S. sanguinis to this material.

  10. [Professor LAI Xinsheng's treatment experience of infertility by Tongyuan needling technique].

    Science.gov (United States)

    Li, Yuemei; Meng, Zhenzhen; Wang, Ranran

    2015-03-01

    Professor LAI Xinsheng's treatment experience of infertility mainly by Tongyuan needling technique for both females and males is summarized. Tongyuan needling technique is a treatment method of leading qi to its primordial location mainly through viscera back-shu points that can dredge the governor vessel and tonify the spirit and conception vessel points in abdomen and abdominal front-mu points, and according to state of illness acupoints for opening the 4 gates or five shu points are combined; reinforcing and reducing manipulations of acupuncture are applied for reference. With the method of listing cases, professor LAI Xinsheng's Tongyuan needling technique is detailedly introduced in different aspects, such as the treatment of polycystic ovary syndrome infertility and male infertility and improving the success rate of test-tube baby, and the manipulation of Tongyuan needling technique is summarized, indicating that Tongyuan needling technique is worth vigorously prompting in clinical treatment of infertility.

  11. A wafer mapping technique for residual stress in surface micromachined films

    Science.gov (United States)

    Schiavone, G.; Murray, J.; Smith, S.; Desmulliez, M. P. Y.; Mount, A. R.; Walton, A. J.

    2016-09-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements.

  12. Dosimetric Comparison of Two Craniospinal Radiotherapy Techniques for Treatment Optimization

    Directory of Open Access Journals (Sweden)

    Hamidreza Baghani

    2010-06-01

    Full Text Available Introduction: Orthogonal radial fields are those in which the central axes are perpendicular to each other. An example of these orthogonal fields is the set of craniospinal orthogonal fields that are used for radiotherapy of medulloblastoma. Craniospinal radial fields consist of two parallel-opposed fields for brain exposure and one or two posterior spinal fields for spinal cord exposure. The main problem in using these combinative fields is the overlap of radial fields, where they adjoin. Therefore, adjusting radial fields in craniospinal radiotherapy is of remarkable significance and can outstandingly affect the reduction of the side effects due to radiotherapy. In doing so, two different setups were used for craniospinal radiotherapy, and by using dosimetry in each adjustment in the junction region between brain and upper spine fields and in organs at risk, the results of the two adjustments were compared. Materials and Methods: Each one of these two setups was separately performed on a Rando phantom. In the first setup, the arrangement of radial fields was performed without the rotation of the treatment bed and the collimators of the brain fields. In the second setup, the arrangement of radial fields was performed using the rotation of the treatment bed and the collimators of brain fields. For dosimetry, GR-200 TLDs were used. For radiotherapy, a varian linac (2100 C/D Model was used. Results: The results of dosimetry in the brain CTV, junction of brain and upper spine fields, thyroid and heart in the first setup were equal to 105, 168, 46 and 44 cGy, respectively, and in second setup, 106, 140, 48 and 44 cGy, respectively. Absorbed dose to the testes in both setups was negligible.  Discussion and Conclusion: The results of dosimetry in both setups showed that angling the bed and the collimators for the brain fields prevents the overlap of radial fields and reduces the side effects due to radiotherapy.

  13. Role of Imaging Techniques in Percutaneous Treatment of Mitral Regurgitation.

    Science.gov (United States)

    Li, Chi-Hion; Arzamendi, Dabit; Carreras, Francesc

    2016-04-01

    Mitral regurgitation is the most prevalent valvular heart disease in the United States and the second most prevalent in Europe. Patients with severe mitral regurgitation have a poor prognosis with medical therapy once they become symptomatic or develop signs of significant cardiac dysfunction. However, as many as half of these patients are inoperable because of advanced age, ventricular dysfunction, or other comorbidities. Studies have shown that surgery increases survival in patients with organic mitral regurgitation due to valve prolapse but has no clinical benefit in those with functional mitral regurgitation. In this scenario, percutaneous repair for mitral regurgitation in native valves provides alternative management of valvular heart disease in patients at high surgical risk. Percutaneous repair for mitral regurgitation is a growing field that relies heavily on imaging techniques to diagnose functional anatomy and guide repair procedures. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Behaviour of total surface charge in SiO{sub 2}-Si system under short-pulsed ultraviolet irradiation cycles characterised by surface photo voltage technique

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ban-Hong [Material Characterization Department, Shin Etsu Handotai (M) Sdn. Bhd., Ulu Klang, Selangor (Malaysia); Lee, Wah-Pheng [Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, 63100 Selangor (Malaysia); Yow, Ho-Kwang, E-mail: hkyow@mmu.edu.my [Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, 63100 Selangor (Malaysia); Tou, Teck-Yong [Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, 63100 Selangor (Malaysia)

    2009-04-15

    Effects of time-accumulated ultraviolet (UV) irradiation and surface treatment on thermally oxidized p-type silicon wafers were investigated by using the surface photo voltage (SPV) technique via the direct measurement of the total surface charge, Q{sub SC}. The rise and fall times of Q{sub sc} curves, as a function of accumulated UV irradiation, depended on the thermal oxide thickness. A simple model was proposed to explain the time-varying characteristics of Q{sub sc} based on the UV-induced bond breaking of SiOH and SiH, and photoemission of bulk electrons to wafer surface where O{sub 2}{sup -} charges were formed. While these mechanisms resulted in charge variations and hence in Q{sub sc}, these could be removed by rinsing the silicon wafers in de-ionized water followed by spin-dry or blow-dry by an ionizer fan. Empirical parameters were used in the model simulations and curve-fitting of Q{sub SC}. The simulated results suggested that initial changes in the characteristic behaviour of Q{sub sc} were mainly due to the net changes in the positive and negative charges, but subsequently were dominated by the accumulation of O{sub 2}{sup -} during the UV irradiation.

  15. Kinetics of Microstructure Evolution during Gaseous Thermochecical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    precipitation 6f ailoying element nitrides/carbides"or by thE development of a continuo_us laye_r of iron-based (carbo-) nitrides. The evolution of the microstructure during thermochemical treatme_nts is not only determined by solid-state diffusion, but in many cases also by the kinetics of the surface...... reactions and the interptay with mechanical stress.'In the present arlicle a few examplesr_co_ve_ring-research on the inleraction of carbon and,/or nitrogen with iron-based metals, are included to illustrate the various aspects of gas-metal interactidns....

  16. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L

    NARCIS (Netherlands)

    Arifvianto, B.; Suyitno, [No Value; Mahardika, M.; Dewo, P.; Iswanto, P. T.; Salim, U. A.

    2011-01-01

    Surface roughness and wettability are among the surface properties which determine the service lifetime of materials. Mechanical treatments subjected to the surface layer of materials are often performed to obtain the desired surface properties and to enhance the mechanical strength of materials. In

  17. Surface treatments to improve bond strength in removable partial dentures.

    Science.gov (United States)

    Kim-Hai, Nguyen; Esquivel-Upshaw, Josephine; Clark, Arthur E

    2003-01-01

    The metal and resin interface of removable partial dentures is weakened by the poor bond strength between the two materials. This study was designed to test the hypothesis that surface treatments--consisting of air abrasion, with aluminum oxide, tin plating and oxidation, and silanation, either alone or in combination--will improve the bond strength of acrylic resin to metal. Statistical analysis revealed that air abrasion, tin plating/oxidation, and silanation all showed significantly higher bond strength than either abrasion and tin plating, abrasion and silanation, or abrasion alone. Air abrasion demonstrated the greatest effect on improving bond strength. The mean bond strength of samples subjected to a combination of air abrasion, tin plating and oxidation, and silanation was significantly greater than any other combination treatment.

  18. Environmental performance assessment of a company of aluminum surface treatment

    Directory of Open Access Journals (Sweden)

    Susan Catieri Ramalho

    2013-08-01

    Full Text Available The purpose of this article was to evaluate the environmental performance of a medium-sized company that provides services for surface treatment of aluminum. The treatment is known as anodizing. The research method was qualitative numerical modeling. The environmental performance of the company was organized into five constructs: atmosphere, wastewater, energy and natural resources, solid waste, and legislation and management. Nineteen indicators were chosen to explain the five constructs. Ten employees of the company prioritized the constructs and evaluated the situation of the indicators by means of a scale of assessment. By means of a mathematical model, the general performance of the environmental operation was calculated at 74.5% of the maximum possible. The indicators that most contributed to the performance not to reach 100% were consumption of electricity and water consumption. The construct of worse performance was natural and energy resources. These are the priorities for future environmental improvement actions that the company may promote.

  19. Residual strain evaluation of curved surface by grating-transferring technique and GPA

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the...

  20. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    OpenAIRE

    Marzieh Alikhasi; Hakimeh Siadat; Elaheh Beyabanaki; Mohammad Javad Kharazifard

    2015-01-01

    Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials.Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray ...

  1. Preparation of quercetin imprinted core-shell organosilicate microspheres using surface imprinting technique

    Institute of Scientific and Technical Information of China (English)

    Peng Yang; Wen Dan Hou; Hong Deng Qiu; Xia Liu; Sheng Xiang Jiang

    2012-01-01

    In this work,the quercetin imprinted core-shell microspheres were prepared using silica surface imprinting technique.A simple sol-gel procedure was used for the synthesis of the imprinted materials with 3-aminopropyltriethoxysilane as functional monomer and tetraethyl orthosilicate as crosslinker.The SEM images indicated that the MIPs shell was successfully grafted onto the silica surface.The characteristics of the molecularly imprinted polymers such as capacity,selectivity and absorption dynamic were investigated by rebinding experiments.The results showed that the prepared MIPs had good imprinting effect and adsorption amount of quercetin.

  2. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    OpenAIRE

    Akkuş Emek; Turker Sebnem Begum

    2015-01-01

    Objectives: To compare the effects of airborne-particle abrasion (APA) and tribochemical silica coating (TSC) surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  3. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  4. TECHNIQUE FOR DETERMINATION OF SURFACE FRACTAL DIMENSION AND MORPHOLOGY OF MESOPOROUS TITANIA USING DYNAMIC FLOW ADSORPTION AND ITS CHARACTERIZATION

    OpenAIRE

    Tursiloadi, Silvester

    2010-01-01

    A technique to determine the surface fractal dimension of mesoporous TiO­2 using a dynamic flow adsorption instrument is described. Fractal dimension is an additional technique to characterize surface morphology. Surface fractal dimension, a quantitative measurement of surface ruggedness, can be determined by adsorbing a homologous series of adsorbates onto an adsorbent sample of mesoporous TiO­2. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical ...

  5. Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness.

    Science.gov (United States)

    Sturz, Candida R C; Faber, Franz-Josef; Scheer, Martin; Rothamel, Daniel; Neugebauer, Jörg

    2015-01-01

    Available chair-side surface treatment methods may adversely affect prosthetic materials and promote plaque accumulation. This study investigated the effects of treatment procedures on three resin restorative materials, zirconium-dioxide and polyetheretherketone in terms of surface roughness and hydrophobicity. Treatments were grinding with silicon carbide paper or white Arkansas stone, blasting with prophylaxis powder and polishing with diamond paste. Surface roughness was assessed using confocal laser scanning. Hydrophobicity as measured by water contact angle was determined by computerized image analysis using the sessile drop technique. All of the specific surface treatments performed led to significant changes in contact angle values and surface roughness (Ra) values. Median contact angle values ranged from 51.6° to 114°. Ra values ranged from 0.008 µm to 2.917 µm. Air-polishing as well as other polishing procedures increased surface roughness values in all materials except zirconium dioxide. Polyetheretherketone displayed greatest change in contact angle values after air-polishing treatment.

  6. The effect of zirconium-based surface treatment on the cathodic disbonding resistance of epoxy coated mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghanbari, A.; Attar, M.M., E-mail: attar@aut.ac.ir

    2014-10-15

    Highlights: • The effect of Zr surface treatment on the adhesion strength of organic coatings. • Describing the Zr-based layer utilizing FE-SEM and AFM techniques. • Presenting the cathodic disbonding propagation of bare and Zr-treated mild steel. • Quantifying of the disbonded area employing EIS technique. - Abstract: The effect of zirconium-based surface treatment on the cathodic disbonding resistance and adhesion performance of an epoxy coated mild steel substrate was investigated. The obtained data from pull-off, cathodic disbonding test and electrochemical impedance spectroscopy (EIS) indicated that the zirconium conversion layer significantly improved the adhesion strength and cathodic disbonding resistance of the epoxy coating. This may be attributed to formation of some polar zirconium compounds on the surface and increment of surface roughness, that were evident in the results of field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), respectively.

  7. MaterialVis: material visualization tool using direct volume and surface rendering techniques.

    Science.gov (United States)

    Okuyan, Erhan; Güdükbay, Uğur; Bulutay, Ceyhun; Heinig, Karl-Heinz

    2014-05-01

    Visualization of the materials is an indispensable part of their structural analysis. We developed a visualization tool for amorphous as well as crystalline structures, called MaterialVis. Unlike the existing tools, MaterialVis represents material structures as a volume and a surface manifold, in addition to plain atomic coordinates. Both amorphous and crystalline structures exhibit topological features as well as various defects. MaterialVis provides a wide range of functionality to visualize such topological structures and crystal defects interactively. Direct volume rendering techniques are used to visualize the volumetric features of materials, such as crystal defects, which are responsible for the distinct fingerprints of a specific sample. In addition, the tool provides surface visualization to extract hidden topological features within the material. Together with the rich set of parameters and options to control the visualization, MaterialVis allows users to visualize various aspects of materials very efficiently as generated by modern analytical techniques such as the Atom Probe Tomography.

  8. A technique to decrease surface roughness in overlapping laser shock peening

    Science.gov (United States)

    Dai, Fengze; Zhou, Jianzhong; Lu, Jinzhong; Luo, Xinmin

    2016-05-01

    A technique called elastic contact laser shock peening (ECLSP) is presented in this paper. In this technique, a metal foil with high dynamic yield strength is fixed between absorbing layer and workpiece, and the peak pressure of laser shock wave is a little less than the dynamic yield strength of metal foil, but higher than the Hugoniot Elastic Limit (HEL) of work piece. Surface roughness, microhardness and residual stress are investigated. Compared with regular laser shock peening (LSP), ECLSP can reduce the depth and area of secondary plastic deformation of overlapping region. This can effectively reduce surface roughness in overlapping LSP. Measurement of microhardness and residual stress shows that the work hardening effects and strengthening effect are similar as regular LSP.

  9. A Controlled Field Pilot for Testing Near Surface CO2 Detection Techniques and Transport Models

    Science.gov (United States)

    Spangler, L. H.; Dobeck, L.

    2007-12-01

    A field facility has been developed to allow controlled studies of near surface CO2transport and detection technologies. The key component of the facility is a shallow horizontal, well slotted over 70m of its length and divided into seven zones via packers with mass flow control in each individual zone. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects and those design parameters will be discussed. A wide variety of detection techniques were deployed by collaborators from Los Alamos National Lab, Lawrence Berkeley National Lab, the National Energy Technology Lab, Pacific Northwest National Lab, Lawrence Livermore National Lab and West Virginia University. Techniques included eddy covariance, soil gas measurements, hyperspectral imaging for plant stress detection, differential absorption LIDAR (both free space atmospheric and below surface soil gas), tracer studies, water sampling, stable isotope studies, and soil flux chambers. An overview of these results will be presented.

  10. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology.

    Science.gov (United States)

    Güven, Güray; Perendeci, Altunay; Tanyolaç, Abdurrahman

    2008-08-30

    Electrochemical treatment of deproteinated whey wastewater produced during cheese manufacture was studied as an alternative treatment method for the first time in literature. Through the preliminary batch runs, appropriate electrode material was determined as iron due to high removal efficiency of chemical oxygen demand (COD), and turbidity. The electrochemical treatment conditions were optimized through response surface methodology (RSM), where applied voltage was kept in the range, electrolyte concentration was minimized, waste concentration and COD removal percent were maximized at 25 degrees C. Optimum conditions at 25 degrees C were estimated through RSM as 11.29 V applied voltage, 100% waste concentration (containing 40 g/L lactose) and 19.87 g/L electrolyte concentration to achieve 29.27% COD removal. However, highest COD removal through the set of runs was found as 53.32% within 8h. These results reveal the applicability of electrochemical treatment to the deproteinated whey wastewater as an alternative advanced wastewater treatment method.

  11. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    Science.gov (United States)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  12. Survey of Techniques for Deep Web Source Selection and Surfacing the Hidden Web Content

    OpenAIRE

    Khushboo Khurana; M.B. Chandak

    2016-01-01

    Large and continuously growing dynamic web content has created new opportunities for large-scale data analysis in the recent years. There is huge amount of information that the traditional web crawlers cannot access, since they use link analysis technique by which only the surface web can be accessed. Traditional search engine crawlers require the web pages to be linked to other pages via hyperlinks causing large amount of web data to be hidden from the crawlers. Enormous data is available in...

  13. Variation of surface water spectral response as a function of in situ sampling technique

    Science.gov (United States)

    Davis, Bruce A.; Hodgson, Michael E.

    1988-01-01

    Tests were carried out to determine the spectral variation contributed by a particular sampling technique. A portable radiometer was used to measure the surface water spectral response. Variation due to the reflectance of objects near the radiometer (i.e., the boat side) during data acquisition was studied. Consideration was also given to the variation due to the temporal nature of the phenomena (i.e., wave activity).

  14. Techniques for fingerprint recovery on vegetable and fruit surfaces used in Slovenia--a preliminary study.

    Science.gov (United States)

    Trapecar, Matej; Vinkovic, Mojca Kern

    2008-12-01

    An examination was conducted to investigate whether certain dactyloscopic powders and reagents can recover latent fingerprints on vegetable and fruit surfaces (apple, banana, tomato and potato). Two fingerprint powders, Swedish Soot powder mixture (Swedish Black), Silver Special powder and cyanoacrylate fuming (CA), were investigated. The results have shown that detection with Swedish blackpowder is the most suitable procedure as the percentage finger marks which were of adequate quality for further examination, was higher than with any other technique examined.

  15. Survey of Techniques for Deep Web Source Selection and Surfacing the Hidden Web Content

    OpenAIRE

    Khushboo Khurana; M B Chandak

    2016-01-01

    Large and continuously growing dynamic web content has created new opportunities for large-scale data analysis in the recent years. There is huge amount of information that the traditional web crawlers cannot access, since they use link analysis technique by which only the surface web can be accessed. Traditional search engine crawlers require the web pages to be linked to other pages via hyperlinks causing large amount of web data to be hidden from the crawlers. Enormous data is available in...

  16. Surface plasmon effect in nanocrystalline copper/DLC composite films by electrodeposition technique

    Indian Academy of Sciences (India)

    S Hussain; A K Pal

    2006-11-01

    Composite films of nanocrystalline copper embedded in DLC matrix prepared by electrodeposition technique were studied for their optical properties. Particle size and metal volume fractions were tailored by varying the amount of copper containing salt in the electrolyte. Blue-shift of the surface plasmon resonance peak in the absorbance spectra of the films was observed with the reduction in size and volume fraction of metal particles. Mie theory was found to describe the experimental spectra quite well.

  17. Arthroscopic Technique for the Treatment of Pigmented Villonodular Synovitis of the Hip

    Science.gov (United States)

    Lee, Simon; Haro, Marc S.; Riff, Andrew; Bush-Joseph, Charles A.; Nho, Shane J.

    2015-01-01

    Open synovectomy remains the treatment of choice for pigmented villonodular synovitis (PVNS) of the hip but has shown modest results compared with the treatment of other joints. Recent advances in hip arthroscopy permit a thorough evaluation of the joint surfaces, improved access, and decreased postoperative morbidity. We describe an arthroscopic synovectomy technique for PVNS of the hip. The use of additional arthroscopic portals and creation of a large capsulotomy enable successful visualization and extensive synovectomy of the entire synovial lining of the hip. The T-capsulotomy enables extensive soft-tissue retraction for complete exposure. The midanterior portal enables use of an arthroscopic grasper and shaver to directly access and excise the synovial lining of the peripheral compartment while avoiding damage to the medial and lateral retinacular vessels. Technical innovations in hip arthroscopy have enhanced visualization in the central and peripheral compartments, as well as instrument management and diagnostic evaluation of the capsule, therefore allowing enhanced management of PVNS of the hip. PMID:25973372

  18. Phase-ratio technique as applied to the assessment of lunar surface roughness

    Science.gov (United States)

    Kaydash, Vadym; Videen, Gorden; Shkuratov, Yuriy

    Regoliths of atmosphereless celestial bodies demonstrate prominent light backscattering that is common for particulate surfaces. This occurs over a wide range of phase angles and can be seen in the phase function [1]. The slope of the function may characterize the complexity of planetary surface structure. Imagery of such a parameter suggests that information can be obtained about the surface, like variations of unresolved surface roughness and microtopography [2]. Phase-ratio imagery allows one to characterize the phase function slope. This imagery requires the ratio of two co-registered images acquired at different phase angles. One important advantage of the procedure is that the inherent albedo variations of the surface are suppressed, and, therefore, the resulting image is sensitive to the surface structure variation [2,3]. The phase-ratio image characterizes surface roughness variation at spatial scales on the order of the incident wavelengths to that of the image resolution. Applying the phase-ratio technique to ground-based telescope data has allowed us to find new lunar surface formations in the southern part of Oceanus Procellarum. These are suggested to be weak swirls [4]. We also combined the phase-ratio technique with the space-derived photometry data acquired from the NASA Lunar Reconnaissance Orbiter with high spatial resolution. Thus we exploited the method to analyze the sites of Apollo landings and Soviet sample-return missions. Phase-ratio imagery has revealed anomalies of the phase-curve slope indicating a smoothing of the surface microstructure at the sites caused by dust uplifted by the engine jets of the descent and ascent modules [5,6]. Analysis of phase-ratios helps to understand how the regolith properties have been affected by robotic and human activity on the Moon [7,8]. We have demonstrated the use of the method to search for fresh natural disturbances of surface structure, e.g., to detect areas of fresh slumps, accumulated material on

  19. New Surface Brightness Fluctuations Spectroscopic Technique: NGC4449 and its Stellar Tidal Stream

    CERN Document Server

    Toloba, Elisa; Romanowsky, Aaron; Brodie, Jean; Martinez-Delgado, David; Arnold, Jacob; Ramachandran, Neel; Theakanath, Kuriakose

    2016-01-01

    We present a new spectroscopic technique based in part on targeting the upward fluctuations of the surface brightness for studying the internal stellar kinematics and metallicities of low surface brightness galaxies and streams beyond the Local Group. The distance to these systems makes them unsuitable for targeting individual red giant branch (RGB) stars (tip of RGB at $I\\gtrsim24$~mag) and their surface brightness is too low ($\\mu_r\\gtrsim 25$~mag~arcsec$^{-2}$) for integrated light spectroscopic measurements. This technique overcomes these two problems by targeting individual objects that are brighter than the tip of the RGB. We apply this technique to the star-forming dwarf galaxy NGC 4449 and its stellar stream. We use Keck/DEIMOS data to measure the line-of-sight radial velocity out to $\\sim7$~kpc in the East side of the galaxy and $\\sim8$~kpc along the stream. We find that the two systems are likely gravitationally bound to each other and have heliocentric radial velocities of $227.3\\pm10.7$~km/s and $...

  20. Survey of Techniques for Deep Web Source Selection and Surfacing the Hidden Web Content

    Directory of Open Access Journals (Sweden)

    Khushboo Khurana

    2016-05-01

    Full Text Available Large and continuously growing dynamic web content has created new opportunities for large-scale data analysis in the recent years. There is huge amount of information that the traditional web crawlers cannot access, since they use link analysis technique by which only the surface web can be accessed. Traditional search engine crawlers require the web pages to be linked to other pages via hyperlinks causing large amount of web data to be hidden from the crawlers. Enormous data is available in deep web that can be useful to gain new insight for various domains, creating need to access the information from the deep web by developing efficient techniques. As the amount of Web content grows rapidly, the types of data sources are proliferating, which often provide heterogeneous data. So we need to select Deep Web Data sources that can be used by the integration systems. The paper discusses various techniques that can be used to surface the deep web information and techniques for Deep Web Source Selection.

  1. Laser surface annealing technique of aged Inconel 718 by laser beam irradiation

    Science.gov (United States)

    Liu, Liufa; Hirose, Akio; Kobayashi, Kojiro F.

    2003-03-01

    Laser was employed to anneal a thin surface layer of aged Inconel 718 by dissolving the strengthening phase, γ". The HE (Hydrogen Embrittlement) resistance of the alloy was improved via such laser surface annealing (LSA) processes. To establish a general LSA technique for engineer applications, experimental LSA processes were conducted to study the effects of the laser process parameters on the formation of the annealed surface layers, and applicable process parameter ranges were obtained. Next, a numerical method was developed for predicting the formation of the laser annealed surface layers in the following steps. Because only the γ" phase was dissolved in the LSA process, the dissolution kinetics of this phase was studied via thermal cycling experiments, and it was proved to follow an Avrami equation. FEM (Finite Element Method) simulations were conducted to calculate the thermal distribution in each laser annealed surface layer, and thermal history data were extracted every certain depth. The volume fractions of the γ" phase at these depths were calculated using these thermal history data based on the deduced Avrami equation. Using a developed relationship between the hardness variation of the alloy and the volume fraction variation of the γ" phase, the hardness distribution in the annealed surface layer and this layer's thickness were calculated. The predicted applicable laser process parameter ranges were obtained. These calculated results were compared with their corresponding experimental results. The good agreements between the calculated and measured results suggested that this numerical prediction approach is feasible for engineer applications.

  2. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    Science.gov (United States)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  3. Impedance spectroscopy studies of surface engineered TiO2 nanoparticles using slurry technique

    Indian Academy of Sciences (India)

    Sasidhar Siddabattuni; Sri Harsha Akella; Abilash Gangula; Sandeep Patnaik

    2015-09-01

    Dielectric analysis of nanometre range size ceramic particles like TiO2 is very important in the understanding of the performance and design of their polymer nanocomposites for energy storage and other applications. In recent times, impedance spectroscopy is shown to be a very powerful tool to investigate the dielectric characteristics of not only sintered and/or pelleted ceramic materials but also particulates/powders (both micron-sized and nano-sized) using the slurry technique. In the present work, impedance spectroscopy employing slurry methodology was extended to study the influence of various chemical groups on the nano-TiO2 surface on the electrical resistivity and the dielectric permittivity of nanoparticles. In this regard, different organophosphate ligands with linear, aromatic and extended aromatic nature of organic groups were employed to remediate the surface effects of nanoTiO2. It was observed that the type of chemical nature of surface engineered nanoparticles’ surface played significant role in controlling the surface electrical resistivity of nanoparticles. Surface passivated nanoTiO2 yielded dielectric permittivity of about 70–80, respectively.

  4. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Sharon [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); Back, Michael [Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun [National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore); Lu, Jaide Jay, E-mail: mdcljj@nus.edu.sg [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore)

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  5. In vitro study of microleakage of different techniques of surface preparation used in pits and fissures

    Directory of Open Access Journals (Sweden)

    Shahrzad Javadi Nejad

    2012-01-01

    Full Text Available Objective : The purpose of this in vitro study was to evaluate the effect of different techniques of surface preparation on the microleakage of a sealant applied with traditional acid etching and self-etched bonding agent. Study Design : A total of 60 extracted third molars were randomly assigned into six groups (n = 10/each. The occlusal surfaces were sealed with a sealant (Clinpro after one of the following pretreatments: (1 phosphoric acid etching; (2 Prompt L-Pop; (3 laser + etching; (4 laser + Prompt L-Pop; (5 air abrasion + etching; (6 air abrasion + Prompt L-Pop. The specimens were immersed in a 0.5% basic fuchsin solution. Buccolingual cuts parallel to the long axis of the tooth were made. The surfaces were scored 0--2 for extent of microleakage using a microscope and the data were analyzed statistically. Results : The poorest results were obtained with laser + Prompt L-Pop which showed a greater number of specimens with microleakage (80%. Air abrasion surface preparation + phosphoric acid etching showed less microleakage than the other groups (40%. Kruskal--Wallis and t-tests revealed no significant difference in microleakage between six groups. Conclusion : The self-etching adhesive studied seems an attractive alternative to the acid-etch technique for sealant application in young children where simplifications in the clinical procedure are warranted. No significant difference was noted between the different types of enamel preparation before fissure sealant.

  6. Cell-material interactions revealed via material techniques of surface patterning.

    Science.gov (United States)

    Yao, Xiang; Peng, Rong; Ding, Jiandong

    2013-10-04

    Cell-material interactions constitute a key fundamental topic in biomaterials study. Various cell cues and matrix cues as well as soluble factors regulate cell behaviors on materials. These factors are coupled with each other as usual, and thus it is very difficult to unambiguously elucidate the role of each regulator. The recently developed material techniques of surface patterning afford unique ways to reveal the underlying science. This paper reviews the pertinent material techniques to fabricate patterns of microscale and nanoscale resolutions, and corresponding cell studies. Some issues are emphasized, such as cell localization on patterned surfaces of chemical contrast, and effects of cell shape, cell size, cell-cell contact, and seeding density on differentiation of stem cells. Material cues to regulate cell adhesion, cell differentiation and other cell events are further summed up. Effects of some physical properties, such as surface topography and matrix stiffness, on cell behaviors are also discussed; nanoscaled features of substrate surfaces to regulate cell fate are summarized as well. The pertinent work sheds new insight into the cell-material interactions, and is stimulating for biomaterial design in regenerative medicine, tissue engineering, and high-throughput detection, diagnosis, and drug screening. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pursing Contamination Detection on Aircraft CFRP Surfaces By Artificial Olfaction Techniques

    Science.gov (United States)

    De Vito, Saverio; Massera, Ettore; Fattoruso, Grazia; Miglietta, Maria Lucia; Di Francia, Girolamo

    2011-09-01

    Carbon Fiber Reinforced Polymer (CFRP) structures can be easily bonded via adhesive assembly procedures but their cleanliness is of fundamental importance to ensure the strength of the adhesive bonding. Actually, surface contamination by several aeronautics fluids eventually results in weak or kissing bonds. The goal of our research work is to investigate solid state chemical sensors and artificial olfaction techniques (AO) for the detection of CFRP surface contamination by aeronautic fluids. This result will allow the implementation of an instrumental NDT procedure for CFRP surface cleanliness assessment prior to bonding. Herein, results of our first experimental setup, based on the use of an array of polymer sensors for the detection of aeronautic fluids contamination, are presented.

  8. Method for combining fast surface and exact volume visualization techniques in medicine

    Science.gov (United States)

    Englmeier, Karl-Hans; Haubner, Michael; Foerterer, H. M.; Perzl, W.; Fink, B. K.; Fink, U.

    1994-05-01

    In order to enable the interaction with and manipulation of 3-D data sets in the realm of medical diagnosis and therapy planning we developed a modified Z-merging algorithm that includes transparency and texture mapping features. For this an extended shape based interpolation model creates isotropic grayscale data volume in case of spatial image sequences. Interesting anatomical regions such as soft tissue, organs, and bones are detected by automatic and interactive segmentation procedures. Following that, a fully automatic surface construction algorithm detects the 3-D object boundaries by fitting geometric primitives to the binary data. The surface representations support the user with a fast overview about the structure of the 3D scene. Texture mapping is implemented as the projection of the gray values of the isotropic voxels onto a polygonal surface. Adaptive refinement, Phong's normal interpolation, and transparency are the most important features of this raytracer. The described technique enables the simultaneous display of multimodal 3D image data.

  9. Treatments and outcomes of peritoneal surface tumors through a centralized national service (United kingdom).

    Science.gov (United States)

    Rout, S; Renehan, A G; Parkinson, M F; Saunders, M P; Fulford, P E; Wilson, M S; O'Dwyer, S T

    2009-10-01

    Treatment of peritoneal surface malignancies with combined cytoreductive surgery and heated intraperitoneal chemotherapy may improve oncologic outcome. To better define treatment pathways, five-year results in patients referred to one of two centralized national treatment centers in the United Kingdom were analyzed. A prospective database of patients referred to the Manchester Peritoneal Tumor Service, established in 2002, was analyzed. Outcomes were evaluated using Kaplan-Meier life tables and Cox models. Two hundred seventy-eight patients (median age, 56.9 (range, 16-86) years) were considered by a dedicated multidisciplinary team and tracked on seven clinical pathways. Among the 118 surgically treated, the most common diagnosis was pseudomyxoma peritonei (101 patients, 86%). Major complications occurred in 11 patients (9%); there was no 30-day mortality. Where complete cytoreduction was achieved, three-year and five-year tumor-related survival rates were 94% and 86%, respectively. In the Cox model, incompleteness of cytoreduction (P = 0.001) and high-grade tumor (P < 0.0001) were independent prognosticators of poor outcome. The establishment of a national treatment center has allowed refinement of techniques to achieve internationally recognized results. Having achieved low levels of morbidity and mortality in the treatment of mainly pseudomyxoma peritonei of appendiceal origin, the technique of cytoreductive surgery and heated intraperitoneal chemotherapy may be considered for peritoneal carcinomatosis of colorectal origin.

  10. Intensity modulated radiation therapy for squamous cell carcinoma of the vulva: Treatment technique and outcomes

    Directory of Open Access Journals (Sweden)

    Yuan James Rao, MD

    2017-04-01

    Conclusions: IMRT for vulvar cancer is associated with high rates of LRC in the postoperative setting and limited radiation-related toxicity. Durable LRC of disease after definitive IMRT remains challenging, and several refinements to our treatment technique are suggested.

  11. Effects of 2 polishing techniques and reglazing on the surface roughness of dental porcelain.

    Science.gov (United States)

    Schneider, Jacqueline; Dias Frota, Bruna Marjorie; Passos, Vanara Florencio; Santiago, Sergio Lima; Freitas Pontes, Karina Matthes de

    2013-01-01

    The aim of this study was to compare the effect of 2 polishing systems and reglazing of dental porcelain through a quantitative and qualitative analysis of surface roughness using a stylus profilometer and scanning electron microscope. Fifteen porcelain specimens (10 x 3 x 3 mm) were used. On 1 surface of each block, a layer of glaze was applied, and surface roughness (Ra) was analyzed. All specimens were ground with aluminum oxide sandpaper until the shine was removed and the resulting Ra values were obtained. Afterwards, they were randomly divided into 3 treatment groups (n = 5): Group I (GI), polished with diamond-impregnated rubber wheels; Group II (GII), polished with silicon carbide-impregnated rubber wheels; and Group III (GIII), reglazed firing procedure alone. After the treatments, new Ra measurements were done. Data were submitted to analysis of variance (ANOVA), and Tukey tests at 5%. Comparisons between ground surface and treated surface were made by paired t-test. The ground and treated Ra values (µm) were determined as follows: GI: 0.66 ± 0.14, 0.35 ± 0.06; GII: 0.60 ± 0.04, 0.09 ± 0.03; and GIII: 0.67 ± 0.05, 0.75 ± 0.24. Significant differences were found between the ground and treated values for all groups. After the treatments, all groups differed statistically (P < 0.05). The silicon carbide system re-established the initial surface smoothness, while polishing with diamond-impregnated rubber or reglazing alone were not able to achieve a satisfactory smoothness.

  12. How ocular surface disease impacts the glaucoma treatment outcome.

    Science.gov (United States)

    Kaštelan, Snježana; Tomić, Martina; Metež Soldo, Kata; Salopek-Rabatić, Jasminka

    2013-01-01

    The treatment goals for glaucoma are lowering the intraocular pressure and preservation of vision. Topical hypotensive drops are the standard form of therapy which is often associated with some symptoms of toxicity, ocular inflammation, allergy, or ocular surface disease (OSD). OSD is a common comorbidity in glaucoma patients, and its prevalence with glaucoma increases with age. Use of topical treatment could additionally increase symptoms of OSD mostly due to preservatives added to multidose medication bottles used to reduce the risk of microbial contamination. This toxicity has been particularly associated with BAK, the most commonly used preservative which damages conjunctival and corneal epithelial cells and significantly aggravates OSD symptoms. OSD adversely affects patients' quality of life causing discomfort and problems with vision which in turn may result in noncompliance, lack of adherence, and eventually visual impairment. In the management of glaucoma patients OSD symptoms should not be overlooked. If they are present, topical glaucoma treatment should be adapted by decreasing the amount of drops instilled daily, using BAK-free or preservative-free medication and lubricants if necessary. Awareness of the presence and importance of OSD will in turn improve patients' adherence and compliance and thus ultimately the preservation of long-term vision.

  13. How Ocular Surface Disease Impacts the Glaucoma Treatment Outcome

    Science.gov (United States)

    Kaštelan, Snježana; Tomić, Martina; Metež Soldo, Kata; Salopek-Rabatić, Jasminka

    2013-01-01

    The treatment goals for glaucoma are lowering the intraocular pressure and preservation of vision. Topical hypotensive drops are the standard form of therapy which is often associated with some symptoms of toxicity, ocular inflammation, allergy, or ocular surface disease (OSD). OSD is a common comorbidity in glaucoma patients, and its prevalence with glaucoma increases with age. Use of topical treatment could additionally increase symptoms of OSD mostly due to preservatives added to multidose medication bottles used to reduce the risk of microbial contamination. This toxicity has been particularly associated with BAK, the most commonly used preservative which damages conjunctival and corneal epithelial cells and significantly aggravates OSD symptoms. OSD adversely affects patients' quality of life causing discomfort and problems with vision which in turn may result in noncompliance, lack of adherence, and eventually visual impairment. In the management of glaucoma patients OSD symptoms should not be overlooked. If they are present, topical glaucoma treatment should be adapted by decreasing the amount of drops instilled daily, using BAK-free or preservative-free medication and lubricants if necessary. Awareness of the presence and importance of OSD will in turn improve patients' adherence and compliance and thus ultimately the preservation of long-term vision. PMID:24224176

  14. How Ocular Surface Disease Impacts the Glaucoma Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Snježana Kaštelan

    2013-01-01

    Full Text Available The treatment goals for glaucoma are lowering the intraocular pressure and preservation of vision. Topical hypotensive drops are the standard form of therapy which is often associated with some symptoms of toxicity, ocular inflammation, allergy, or ocular surface disease (OSD. OSD is a common comorbidity in glaucoma patients, and its prevalence with glaucoma increases with age. Use of topical treatment could additionally increase symptoms of OSD mostly due to preservatives added to multidose medication bottles used to reduce the risk of microbial contamination. This toxicity has been particularly associated with BAK, the most commonly used preservative which damages conjunctival and corneal epithelial cells and significantly aggravates OSD symptoms. OSD adversely affects patients’ quality of life causing discomfort and problems with vision which in turn may result in noncompliance, lack of adherence, and eventually visual impairment. In the management of glaucoma patients OSD symptoms should not be overlooked. If they are present, topical glaucoma treatment should be adapted by decreasing the amount of drops instilled daily, using BAK-free or preservative-free medication and lubricants if necessary. Awareness of the presence and importance of OSD will in turn improve patients' adherence and compliance and thus ultimately the preservation of long-term vision.

  15. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Arai, Yuuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji [Rigaku Corporation, Takatsuki, Osaka 569-1146 (Japan); Ohtsu, Naofumi [Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan); Okamoto, Yukio [Research Institute of Industrial Technology, Toyo University, Kawagoe 350-8585 (Japan); Wagatsuma, Kazuaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-07-15

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH{sub 3} and H{sub 2} into the treatment chamber. While the nitriding reaction did not proceed in a simple N{sub 2} atmosphere due to surface oxidation, the surface reduction induced by the NH{sub 3} or H{sub 2} gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  16. Effect of laser treatment on the surface of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garbacz, Halina, E-mail: hgarbacz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland); Fortuna-Zalesna, Elzbieta [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland); Marczak, Jan [Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Koss, Andrzej; Zatorska, Anna [Academy of Fine Arts in Warsaw, Inter-Academy Institute for Conservation and Restoration of Works of Art, Wybrzeze Kosciuszkowskie 37, 00-379 Warsaw (Poland); Zukowska, Grazyna Z. [Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw (Poland); Onyszczuk, Tomasz; Kurzydlowski, Krzysztof J. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland)

    2011-06-15

    The paper presents the results of laser cleaning of the archaeological metal objects using two time widths of pulsed laser radiation, which are around 150 {mu}s and around 120 ns. Two archaeological objects made of copper alloys were studied: a bow and a ring. Both objects came from a cemetery which is located in the garden complex of Wilanow Palace in Warsaw and are dated from XII to XIII century. The bow and bronze ring had ornamental longitudinal grooving and were part of burial jewellery. The materials of which these artefacts were made of, as well as corrosion products on these objects, were studied by using a variety of analytical techniques. The phase composition of the corrosion layers was determined by using Raman spectroscopy. The surface topography as well as the chemical composition of the deposits and cleaned surfaces were investigated. The samples were examined using scanning electron microscopes equipped with EDS. The investigations included observations in SE and BSE modes and point analyses of the chemical composition by EDS.

  17. Surface Treatment for Improving Sulfidation Resistance of Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    2001-03-09

    The purpose of the cooperative research and development agreement (CRADA) between ABB Combustion Engineering, Inc. and the Oak Ridge National Laboratory (ORNL) was to develop improved, longer life, and corrosion resistance surfaces for fossil power system components for use primarily in sulfidizing environments. Four surface protection techniques were to be explored. These included diffusion process, weld overlay, hot-isostatic processing, and various spraying methods. The work was to focus on Fe{sub 3} Al-based iron aluminide to increase the component life. The successful completion of the CRADA would have required the achievement of the following four goals: (1) fabrication development, (2) characterization and possibly modification of the alloy to optimize its manufacturability and environmental resistance, (3) testing and evaluation of the specimens, and (4) fabrication and testing of prototype parts. Because of lack of active participation from the participant, this CRADA did not achieve all of its goals and was terminated prematurely. Work carried out at ORNL on the CRADA is described in this report.

  18. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology.

    Science.gov (United States)

    Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš

    2015-05-01

    Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches

  19. Laser surface modification treatment of aluminum bronze with B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Matthews, A. [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Department of Materials Science and Engineering, Sheffield University (United Kingdom); Leyland, A. [Department of Materials Science and Engineering, Sheffield University (United Kingdom); Karatas, C. [Engineering Faculty, Hacettepe University (Turkey); Akhtar, S.S.; Abdul Aleem, B.J. [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Fine grains and dense layer were formed in the surface vicinity; in which Cu{sub 3}N compound was present. Black-Right-Pointing-Pointer Due to volume shrinkage of the dense layer, a few locally scattered voids were formed below the surface. Black-Right-Pointing-Pointer Formation of Cu{sub 3}N compound in the surface region enhanced microhardness at the surface. Black-Right-Pointing-Pointer In-plane residual stress was compressive at surface and it was on the order of -400 MPa. Black-Right-Pointing-Pointer Self-annealing effect of lately formed laser scanning tracks reduced residual stress at the surface. - Abstract: One technique to improve tribological properties of aluminum bronze surfaces is to introduce laser controlled melting at the surface in the presence of a composition-modifying film. In this work, a 40 {mu}m thick organic film, containing B{sub 4}C particles, was formed at the workpiece surface prior to laser treatment. The organic coating provides enhanced absorption of the incident laser radiation and distributes the B{sub 4}C particles uniformly across the surface. Morphological and microstructural changes in the laser treated layer were examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The microhardness of the laser treated layer was measured and the residual stress formed at the treated surface was evaluated by X-ray diffraction using the sin{sup 2} {psi} technique. It was found that the laser treated surface produced is relatively free from defects and asperities with a microhardness that is notably higher than that of the as-received bronze substrate. This hardening effect can be attributed to the development of a dense layer consisting of fine grains, partially dissolved B{sub 4}C particles, and formation of Cu{sub 3}N compounds. The residual compressive stress obtained from X-ray diffraction peak evaluation is of the order of -400 MPa.

  20. Historic overview of treatment techniques for rib fractures and flail chest

    NARCIS (Netherlands)

    Bemelman, M.; Poeze, M.; Blokhuis, T. J.; LEENEN, LPH

    2010-01-01

    Introduction From the beginning of the twentieth century till the current time, an overview is presented of the surgical treatment for rib fractures and flail chest. Methods Many techniques have been used to stabilize the thorax wall. There has been no follow-up for the most described techniques and

  1. The feasibility of using Pareto fronts for comparison of treatment planning systems and delivery techniques

    DEFF Research Database (Denmark)

    Ottosson, Rickard O; Engstrom, Per E; Sjöström, David

    2008-01-01

    of a treatment planning system (TPS), treatment strategy or delivery technique, Pareto fronts for a given case are likely to differ. The aim of this study was to investigate the feasibility of using Pareto fronts as a comparative tool for TPSs, treatment strategies and delivery techniques. In order to sample...... Pareto fronts, multiple treatment plans with varying target conformity and dose sparing of OAR were created for a number of prostate and head & neck IMRT cases. The DVHs of each plan were evaluated with respect to target coverage and dose to relevant OAR. Pareto fronts were successfully created for all...... may be used to evaluate a number of parameters within radiotherapy. Examples are TPS optimization algorithms, the variation between accelerators or delivery techniques and the degradation of a plan during the treatment planning process. The issue of designing a model for unbiased comparison...

  2. Review of deep inspiration breath-hold techniques for the treatment of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Latty, Drew, E-mail: drew.latty@health.nsw.gov.au [Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales (Australia); Stuart, Kirsty E [Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales (Australia); Westmead Breast Cancer Institute, Sydney, New South Wales (Australia); Wang, Wei [Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales (Australia); Westmead Breast Cancer Institute, Sydney, New South Wales (Australia); Nepean Cancer Care Centre, Sydney, New South Wales (Australia); Ahern, Verity [Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales (Australia)

    2015-03-15

    Radiation treatment to the left breast is associated with increased cardiac morbidity and mortality. The deep inspiration breath-hold technique (DIBH) can decrease radiation dose delivered to the heart and this may facilitate the treatment of the internal mammary chain nodes. The aim of this review is to critically analyse the literature available in relation to breath-hold methods, implementation, utilisation, patient compliance, planning methods and treatment verification of the DIBH technique. Despite variation in the literature regarding the DIBH delivery method, patient coaching, visual feedback mechanisms and treatment verification, all methods of DIBH delivery reduce radiation dose to the heart. Further research is required to determine optimum protocols for patient training and treatment verification to ensure the technique is delivered successfully.

  3. Tracer techniques for the assessment of material migration and surface modification of plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M., E-mail: rubel@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology, 100 44 Stockholm (Sweden); Weckmann, A.; Ström, P.; Petersson, P.; Garcia-Carrasco, A. [Department of Fusion Plasma Physics, Royal Institute of Technology, 100 44 Stockholm (Sweden); Brezinsek, S.; Coenen, J.; Kreter, A.; Möller, S.; Wienhold, P. [Institute of Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Wauters, T. [LPP-ERM/KMS, Association EURATOM-Belgian State, 1000 Brussels (Belgium); Fortuna-Zaleśna, E. [Faculty of Materials Science, Warsaw University of Technology, 02-507 Warsaw (Poland)

    2015-08-15

    Highlights: • Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the retention of species used for plasma edge cooling or wall cleaning under different operation conditions. • Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). • The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. • The deposition and retention was studied on plasma-facing components, collector probes and test limiters. • Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and surface composition modification. - Abstract: Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the deposition of species used for plasma edge cooling or wall conditioning under different types of operation conditions. Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. The deposition and retention was studied on plasma-facing components, collector probes and test limiters. Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and the modification of surface composition. Molybdenum and light isotopes were detected on all types of limiters and short-term probes retrieved from the vessel showing that both helium and nitrogen are trapped following wall conditioning and edge cooling. Only small amounts below 1 × 10{sup 19} m{sup −2} of {sup 18}O were detected on surfaces treated by oxygen-assisted ICWC.

  4. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Science.gov (United States)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  5. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings; Journee Thematique: Corrosion et Traitements de surface dans les Installations Nucleaires. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  6. RECONSTRUCTIVE MICROSURGERY IN THE TREATMENT OF SURFACE FORMS OF CALCANEal OSTEOMYELITIS

    Directory of Open Access Journals (Sweden)

    E. S. Tsybul’

    2016-01-01

    Full Text Available One of the most common complications associated with the treatment of calcaneus fracturesis, a necrosis of the edges of the surgical wound and as a result – chronic nonhealing ulcers of the heel region and osteomyelitis of the calcaneus. In the structure of skeletal lesions osteomyelitic chronic osteomyelitis of the calcaneus occurs in 3.1–14.8% of cases, and in relation to the bones of the foot – up to 51%. At the same time after open fractures of the total incidence of deep infection from soft tissue even higher than that for the surface (12.2% vs. 9.6%. The traditional approach to the treatment of osteomyelitis of the calcaneus is often accompanied by poor performance with recurrent osteomyelitis process and highsubsequent disability of working age.Objective: to identify opportunities and assess the effectiveness of the use of reconstructive microsurgery techniques in the treatment of patients with superficial forms of osteomyelitis of the calcaneus, accompanied by the presence of soft tissue defect.Materials and мethods.The results of treatment of 28 patients with superficial forms of osteomyelitis of the calcaneus, which in the period from 2006 to 2013 in RNIITO them. R.R.Vredena were performed reconstructive plastic surgery using microsurgical techniques. Defects covering tissues were located on the sole (20 and back-side surfaces (8 of the calcaneus. Scope of interventions included the radical surgical treatment of osteomyelitis focus, marginal resection of the affected heel bone and tissue replacement of defect cover flap with axial blood supply.Results. With the localization of the defect cover tissues to non-reference surface of the heel region was carried out free plastic ray skin-fascial flap (9 cases. When the location of the defect on the plantar surface of the heel region favored medial plantar flap (10 cases. However, the presence of scarring and damage to the medial plantar artery was performed

  7. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    Science.gov (United States)

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants.

  8. A constant compliance force modulation technique for scanning force microscopy (SFM) imaging of polymer surface elasticity

    Science.gov (United States)

    Stroup, E.W.; Pungor, A/

    2012-01-01

    A new method of force modulation scanning force microscopy (SFM) imaging based on a constant compliance feedback loop is presented. The feedback adjusts the loading force applied by the SFM tip to the surface in order to maintain a constant compliance beneath the tip. The new method, constant compliance force modulation (CCFM), has the advantage of being able to quantify the loading force exerted by the tip onto the sample surface and thus to estimate the elastic modulus of the material probed by the SFM tip. Once the elastic modulus of one region is known, the elastic moduli of other surface regions can be estimated from the spatial map of loading forces using the Hertz model of deformation. Force vs. displacement measurements made on one surface locality could also be used to estimate the local modulus. Several model surfaces, including a rubber-toughened epoxy polymer blend which showed clearly resolved compliant rubber phases within the harder epoxy matrix, were analyzed with the CCFM technique to illustrate the method’s application. PMID:9195751

  9. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  10. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques.

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-05

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  11. Muscle surface pH: measurement technique and responses to acidosis and alkalosis.

    Science.gov (United States)

    Kost, G J

    1982-01-01

    The technique of muscle surface pH measurement used clinically was refined for application in animal experimentation. Guidelines for electrode utilization were developed, and sources of error were investigated. In pentobarbital sodium-anesthetized rabbits, during steady-state conditions, the surface pH of the medial gastrocnemius [7.39 +/- 0.05 (SD)] was equal to that of the soleus, and both were lower than femoral venous outflow pH (7.42 +/- 0.04, P less than 0.001), which was lower than arterial pH (7.46 +/- 0.05, P less than 0.001). With acid-base infusions, the same relationship found during steady-state control conditions (arterial greater than venous outflow greater than muscle surface pH) was observed despite large fluctuations in blood pH. Only during forced hypoventilation, when CO2 transiently moved into muscle, did the relationship reverse. In all experiments, muscle surface pH followed venous outflow pH more closely than it followed arterial pH, the soleus more rapidly than the medial gastrocnemius. Results were consistent with the physiological characteristics of the two muscles and demonstrated that muscle surface pH reflects the local pH of the interstitial compartment under the site of electrode placement.

  12. NUMERICAL MODELLING OF FREE-SURFACE FLOWS WITH BOTTOM AND SURFACE-LAYER PRESSURE TREATMENT

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; JIN Sheng; LIU Gang

    2009-01-01

    A new non-hydrostatic numerical model with the three-dimensional Navier-Stokes equations on structured grids was constructed and discussed. The algorithm is based upon a staggered finite difference Crank-Nicholson scheme on a Cartesian grid. The eddy viscosity coefficient was calculated by the efficient k-ε turbulence model. A new surface-layer non-hydrostatic treatment and a local cell bottom treatment were introduced so that the three-dimensional model is fully non-hydrostatic and is free of any hydrostatic assumption. The developed model is second-order accuracy in both time and space when semi-implicit coefficient is set to 0.5. The validity of the present solution algorithm was demonstrated from its application to the three-dimension channel flow and the wave propagation over a submerged bar problems.

  13. Generation of amphoteric surfaces via glow-discharge technique with single precursor and the behavior of bovine serum albumin at the surface.

    Science.gov (United States)

    Akdoğan, Ebru; Mutlu, Mehmet

    2012-01-01

    Amphoteric surfaces were generated on silicone substrates via plasma polymerization technique using a single monomer; diethyl allyl phosphate (DAP). Surface characterization was performed by the means of contact angle titration and Fourier transform infrared (FTIR) spectroscopy. The surface of silicone was found to be slightly basic with an apparent basicity of 0.12 μmol/m(2) while plasma surface modification made the surfaces amphoteric with the surface acid/base concentration adjustable by varying plasma parameters. The adsorption of model protein; bovine serum albumin (BSA) on the surfaces was found to be correlated to the surface acid/base ratio. Percent reduction on modified surfaces compared to bare silicone surface was 32, 59 and 92% for 20 W 5 min, 60 W 5 min and 100 W 5 min modified surfaces respectively. Conformational change of BSA upon adsorption to the surfaces was investigated with FTIR-ATR spectroscopy. It has been shown that BSA preserves more of its secondary structure upon adsorption to plasma modified surfaces than the bare silicone surface. It has been concluded that DAP modified surfaces reduces the amount of protein adsorption on the surfaces due to the modified surfaces amphoteric nature and the ability of modified surfaces to preserve the secondary structure of adsorbed protein better than the bare silicone surface.

  14. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Science.gov (United States)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  15. Wettability and XPS analyses of nickel–phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Energy Technology Data Exchange (ETDEWEB)

    Vivet, L., E-mail: laurent.vivet@valeo.com [Valeo, Group Electronic Expertise and Development Services, 2 rue André Boulle 94 046 Créteil (France); Joudrier, A.-L.; Bouttemy, M.; Vigneron, J. [Institut Lavoisier de Versailles, UMR CNRS 8180, 45 Avenue des Etats-Unis, 78035 Versailles (France); Tan, K.L.; Morelle, J.M. [Valeo, Group Electronic Expertise and Development Services, 2 rue André Boulle 94 046 Créteil (France); Etcheberry, A. [Institut Lavoisier de Versailles, UMR CNRS 8180, 45 Avenue des Etats-Unis, 78035 Versailles (France); Chalumeau, L. [Egide, Site industriel du Sactar, 85500 Bollène (France)

    2013-06-01

    Electroless nickel-high-phosphorus Ni–P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni–P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni–P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni–P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni–P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni–P surface preparation has been established. The sessile drop method can

  16. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  17. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  18. Surface roughness of Ti6Al4V after heat treatment evaluated by artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Altug, Mehmet [Inonu Univ., Malataya (Turkey). Dept. of Machine and Metal Technologies; Erdem, Mehmet; Bozkir, Oguz [Inonu Univ., Malataya (Turkey); Ozay, Cetin [Univ. of Firat Elazig (Turkey). Faculty of Tech. Education

    2016-05-01

    The study examines how, using wire electrical discharge machining (WEDM), the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4V are changed as a result of heat treatment and the effect they have on machinability. Scanning electron microscope (SEM), optical microscope and X-ray diffraction (XRD) examinations were performed to determine various characteristics and additionally related microhardness and conductivity measurements were conducted. L{sub 18} Taquchi test design was performed with three levels and six different parameters to determine the effect of such alterations on its machinability using WEDM and post-processing surface roughness (Ra) values were determined. Micro-changes were ensured successfully by using heat treatments. Results obtained with the optimization technique of artificial neural network (ANN) presented minimum surface roughness. Values obtained by using response surface method along with this equation were completely comparable with those achieved in the experiments. The best surface roughness value was obtained from sample D which had a tempered martensite structure.

  19. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  20. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment

    Science.gov (United States)

    Wang, Hao; Wang, Jianxiong; Hong, Lei; Tan, Yew Heng; Tan, Chuan Seng; Rusli

    2016-06-01

    SiNW/PEDOT:PSS hybrid solar cells are fabricated on 10.6-μm-thick crystalline Si thin films. Cells with Si nanowires (SiNWs) of different lengths fabricated using the metal-catalyzed electroless etching (MCEE) technique have been investigated. A surface treatment process using oxygen plasma has been applied to improve the surface quality of the SiNWs, and the optimized cell with 0.7-μm-long SiNWs achieved a power conversion efficiency (PCE) of 7.83 %. The surface treatment process is found to remove surface defects and passivate the SiNWs and substantially improve the average open circuit voltage from 0.461 to 0.562 V for the optimized cell. The light harvesting capability of the SiNWs has also been investigated theoretically using optical simulation. It is found that the inherent randomness of the MCEE SiNWs, in terms of their diameter and spacing, accounts for the excellent light harvesting capability. In comparison, periodic SiNWs of comparable dimensions have been shown to exhibit much poorer trapping and absorption of light.

  1. Influence of polishing procedures on the surface roughness of dental ceramics made by different techniques.

    Science.gov (United States)

    Oliveira-Junior, Osmir Batista; Buso, Leonardo; Fujiy, Fábio Hiroshi; Lombardo, Geraldo Henrique Leao; Campos, Fernanda; Sarmento, Hugo Ramalho; Souza, Rodrigo Othavio Assuncao

    2013-01-01

    The aim of this study was to evaluate the influence of 2 different surface polishing procedures-glazing and manual polishing-on the roughness of ceramics processed by computer-aided design/computer-aided manufacturing (CAD/CAM) and conventional systems (stratification technique). Eighty ceramic discs (diameter: 8 mm, thickness: 1 mm) were prepared and divided among 8 groups (n = 10) according to the type of ceramic disc and polishing method: 4 GZ and 4 MP. Specimens were glazed according to each manufacturer's recommendations. Two silicone polishing points were used on the ceramic surface for manual polishing. Roughness was measured using a surface roughness tester. The roughness measurements were made along a distance of 2 mm on the sample surface and the speed of reading was 0.1 mm/s. Three measurements were taken for each sample. The data (μm) were statistically analyzed using analysis of variance (ANOVA) and Tukey's test (α = 0.05). Qualitative analysis was performed using scanning electron microscopy (SEM). The mean (± SD) roughness values obtained for GZ were: 1.1 ± 0.40 μm; 1.0 ± 0.31 μm; 1.6 ± 0.31 μm; and 2.2 ± 0.73 μm. For MP, the mean values were: 0.66 ± 0.13 μm; 0.43 ± 0.14 μm; 1.6 ± 0.55 μm; and 2.0 ± 0.63 μm. The mean roughness values were significantly affected by the ceramic type (P = 0.0001) and polishing technique (P = 0.0047). The SEM images confirmed the roughness data. The manually polished glass CAD/CAM ceramics promoted lower surface roughness than did the glazed feldspathic dental ceramics.

  2. Waste treatment in NUCEF facility with silver mediated electrochemical oxidation technique

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, M.; Sugikawa, S. [Tokai Establishment, Japan Atomic Energy Research Institute, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    Silver mediated electrochemical oxidation technique has been considered one of promising candidates for alpha-bearing waste treatment. Destruction tests of organic compounds, such as insoluble tannin, TBP and dodecane, were carried out by this technique and the experimental data such as destruction rates, current efficiencies and intermediates were obtained. These compounds could be completely mineralized without the formation of reactive organic nitrate associated to safety hazards. On the basis of these results, the applicability of silver mediated electrochemical oxidation technique to waste treatment in NUCEF was evaluated. (authors)

  3. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  4. Characterization of Natural Dyes and Traditional Korean Silk Fabric by Surface Analytical Techniques

    Directory of Open Access Journals (Sweden)

    Yeonhee Lee

    2013-05-01

    Full Text Available Time-of-flight secondary ion mass spectrometry (TOF-SIMS and X-ray photoelectron spectroscopy (XPS are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric.

  5. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.

    Science.gov (United States)

    Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke

    2016-02-01

    Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results.

  6. Enamel Surface Roughness after Debonding of Orthodontic Brackets and Various Clean-Up Techniques

    Directory of Open Access Journals (Sweden)

    Farzaneh Ahrari

    2013-01-01

    Full Text Available Objective: This study aimed to evaluate enamel roughness after adhesive removal using different burs and an Er:YAG laser.Materials and Methods: The buccal surfaces of forty human premolars were sealed by two layers of nail varnish, except for a circular area of 3 mm in diameter on the middle third. The enamel surfaces were initially subjected to profilometry analysis and four parameters of surface irregularity (Ra, Rq, Rt and Rz were recorded. Following bracket bonding and debonding, adhesive remnants were removed by tungsten carbide burs in low- or high- speed handpieces (group 1 and 2, respectively, an ultrafine diamond bur (group 3 or an Er:YAG laser (250 mJ, long pulse, 4 Hz (group 4, and surface roughness parameters were measured again. Then, the buccal surfaces were polished and the third profilometry measurements were performed.Results: The specimens that were cleaned with a low speed tungsten carbide bur showed no significant difference in surface irregularity between the different treatment stages (p>0.05. Surface roughness increased significantly after clean-up with the diamond bur and the Er:YAG laser (p<0.01. In comparison between groups, adhesive removal with tungsten carbide burs at slow- or high-speed handpieces produced the lowest, while enamel clean-up with the Er:YAG laser caused the highest values of roughness measurements (P<0.05.Conclusion: Under the study conditions, application of the ultrafine diamond bur or the Er:YAG laser caused irreversible enamel damage on tooth surface, and thus these methods could not be recommended for removing adhesive remnants after debonding of orthodontic brackets.

  7. Surface treatment on polyethylenimine interlayer to improve inverted OLED performance

    Science.gov (United States)

    Wei, Chang-Ting; Zhuang, Jin-Yong; Chen, Ya-Li; Zhang, Dong-Yu; Su, Wen-Ming; Cui, Zheng

    2016-10-01

    Polyethylenimine (PEI) interlayer rinsing with different solvents for inverted organic light emitting diodes (OLEDs) is systematically studied in this paper. In comparison with the pristine one, the maximum current efficiency (CE max) and power efficiency (PE max) are enhanced by 21% and 22% for the device rinsing by ethylene glycol monomethyl ether (EEA). Little effect is found on the work function of the PEI interlayer rinsed by deionized water (DI), ethanol (EtOH), and EEA. On the other hand, the surface morphologies of PEI through different solvent treatments are quite different. Our results indicates that the surface morphology is the key to improving the device performance for IOLED as the work function of PEI keeps stable. Project supported by the National Key Basic Research Project of China (Grant No. 2015CB351901), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09020201), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2013206), the National Natural Science Foundation of China (Grant No. 21402233), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2012631 and BK20140387).

  8. Laparoscopic treatment of colovesical fistulas: technique and review of the literature.

    Science.gov (United States)

    Tsivian, Alexander; Kyzer, Shlomo; Shtricker, Avraham; Benjamin, Shalva; Sidi, Abraham Ami

    2006-05-01

    Colovesical fistula is an uncommon complication of diverticulitis. We present our technique of a laparoscopic approach for treatment of vesicosigmoid fistulas and review the available published literature. We believe that a laparoscopic approach is a feasible and advantageous alternative for the treatment of colovesical fistulas, with low morbidity and short hospital stay.

  9. Multiple sectioning and perforation techniques for TEM sub-surface studies. [4 MeV Ni/sup +2/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. H.; Rowcliffe, A. F.

    1978-01-01

    Techniques for preparing multiple electron transparent regions at several depth levels below the surface of a metal disk specimen are described. These techniques are relatively rapid and find application in many areas involving surface studies. Examples are shown of multiple thin areas produced at intervals of approximately 200 nm below the original surface of a stainless steel bombarded with 4 MeV Ni/sup +2/ ions for void swelling studies.

  10. Plasma treatments of wool fiber surface for microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Boo, Jin-Hyo, E-mail: jhboo@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Yun, Sang H., E-mail: shy@kth.se [Institute of Basic Science, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of)

    2015-09-15

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For this reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.

  11. Application of minimally invasive technique in surgical treatment of pancreatic diseases

    Directory of Open Access Journals (Sweden)

    ZHANG Yixi

    2015-05-01

    Full Text Available In recent years, with the rapid development of minimally invasive concept, from laparoscopic operation to three-dimension laparoscopic technique and to robotic surgical system, treatment modalities have changed a lot. Pancreatic diseases, including multiple lesions, have different prognoses. An appropriate surgical procedure should be selected while ensuring the radical treatment of disease, so as to minimize the injury to patients and the impairment of organ function. Minimally invasive technique is of great significance in the surgical treatment of pancreatic diseases.

  12. Electrical properties of bilayer graphene synthesized using surface wave microwave plasma techniques at low temperature

    Science.gov (United States)

    Yamada, Takatoshi; Kato, Hiromitsu; Okigawa, Yuki; Ishihara, Masatou; Hasegawa, Masataka

    2017-01-01

    Bilayer graphene was synthesized at low temperature using surface wave microwave plasma techniques where poly(methyl metacrylate) (PMMA) and methane (CH4) were used as carbon sources. Temperature-dependent Hall effect measurements were carried out in a helium atmosphere. Sheet resistance, sheet carrier density and mobility showed weak temperature dependence for graphene from PMMA, and the highest carrier mobility is 740 cm2 V-1 s-1. For graphene from CH4, tunneling of the domain boundary limited carrier transport. The difference in average domain size was determined by Raman signal maps. In addition, residuals of PMMA were detected on graphene from PMMA. The low sheet resistances of graphene synthesized at a temperature of 280 °C using plasma techniques were explained by the PMMA related residuals rather than the domain sizes.

  13. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    Science.gov (United States)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  14. ABO Blood-Typing Using an Antibody Array Technique Based on Surface Plasmon Resonance Imaging

    Science.gov (United States)

    Houngkamhang, Nongluck; Vongsakulyanon, Apirom; Peungthum, Patjaree; Sudprasert, Krisda; Kitpoka, Pimpun; Kunakorn, Mongkol; Sutapun, Boonsong; Amarit, Ratthasart; Somboonkaew, Armote; Srikhirin, Toemsak

    2013-01-01

    In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging) technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC) samples were applied to a multichannel flow cell that was orthogonal to the detection line arrays for blood group typing. We found that the blood samples were correctly grouped in less than 12 min by the SPR imaging technique, and the results were consistent with those of the standard agglutination technique for all 60 samples. We found that mixed clones of antibodies provided 33%–68% greater change in the SPR signal than the single-clone antibodies. Applying the SPR imaging technique using readily available antibodies may reduce the costs of the antibodies, shorten the measurement time, and increase the throughput. PMID:24021965

  15. Carbon fiber resin matrix interphase: effect of carbon fiber surface treatment on composite performance

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, S.; Megerdigian, C.; Papalia, R.

    1985-04-01

    Carbon fibers are supplied by various manufacturers with a predetermined level of surface treatment and matrix compatible sizings. Surface treatment of the carbon fiber increases the active oxygen content, the polarity and the total free surface energy of the fiber surface. This study is directed toward determining the effect of varying carbon fiber surface treatment on the composite performance of thermoset matrix resins. The effect of varying fiber surface treatment on performance of a promising proprietary sizing is also presented. 6 references, 11 figures.

  16. Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment

    Directory of Open Access Journals (Sweden)

    I.V. Smirnov

    2017-06-01

    Full Text Available In the present study, the Pulsed Laser Deposition (PLD technique was applied to coat titanium for orthopaedic and dental implant applications. Calcium carbonate (CC was used as starting coating material. The deposited CC films were transformed into octacalcium phosphate (OCP by chemical treatments. The results of X-ray diffraction (XRD, Raman, Fourier Transform Infrared Spectroscopy (FTIR and scanning electron microscopy (SEM studies revealed that the final OCP thin films are formed on the titanium surface. Human myofibroblasts from peripheral vessels and the primary bone marrow mesenchymal stromal cells (BMMSs were cultured on the investigated materials. It was shown that all the investigated samples had no short-term toxic effects on cells. The rate of division of myofibroblast cells growing on the surface and saturated BMMSs concentration for the OCP coating were about two times faster than of cells growing on the CC films.

  17. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    Institute of Scientific and Technical Information of China (English)

    Young Sun MOK; Hyun Tae AHN; Joeng Tai KIM

    2007-01-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  18. Surface treatment method for cladding tube of LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Yoshitaka; Matsumoto, Kunio; Ito, Kenji.

    1994-06-07

    Upon surface finishing by polishing, shot peening or blasting is applied on the outer surface of a cladding tube to eliminate orientation of residual stresses on the surface layer in order to eliminate residual stresses formed on the outer surface in the circumferential direction. This can suppress occurrence of cracks in oxide membranes formed on the outer surface to suppress development of corrosion on the outer surface irrespective of the ingredient composition of fuel cladding tube made of zircaloy. (T.M.).

  19. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  20. Study of multilayer packaging delamination mechanisms using different surface analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Garrido-Lopez, Alvaro [Department of Chemistry, University of La Rioja, C/Madre de Dios 51, E-26006 Logrono, La Rioja (Spain); Tena, Maria Teresa, E-mail: maria-teresa.tena@unirioja.es [Department of Chemistry, University of La Rioja, C/Madre de Dios 51, E-26006 Logrono, La Rioja (Spain)

    2010-04-01

    Multilayer packaging, consisting of different layers joined by using an adhesive or an extrusion process, is widely used to promote different products, such as food, cosmetics, etc. The main disadvantage in using this form of packaging is the delamination process. In this work, different surface techniques (X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy) are used to analyse the delaminated surfaces in order to study the mechanisms that cause delamination of multilayer packaging. According to our results, the reaction of migrated molecules with adhesive-aluminium bonds is the main cause of the chemical delamination process. In contrast, the delamination of extruded materials would seem to be caused by the breaking of Van der Waals bonds.

  1. Source-model technique analysis of electromagnetic scattering by surface grooves and slits.

    Science.gov (United States)

    Trotskovsky, Konstantin; Leviatan, Yehuda

    2011-04-01

    A computational tool, based on the source-model technique (SMT), for analysis of electromagnetic wave scattering by surface grooves and slits is presented. The idea is to use a superposition of the solution of the unperturbed problem and local corrections in the groove/slit region (the grooves and slits are treated as perturbations). In this manner, the solution is obtained in a much faster way than solving the original problem. The proposed solution is applied to problems of grooves and slits in otherwise planar or periodic surfaces. Grooves and slits of various shapes, both smooth ones as well as ones with edges, empty or filled with dielectric material, are considered. The obtained results are verified against previously published data.

  2. Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface.

    Science.gov (United States)

    Yu, Fayou; Li, Ping; Shen, Hao; Mathur, Sanjay; Lehr, Claus-Michael; Bakowsky, Udo; Mücklich, Frank

    2005-05-01

    Laser interference lithography (LIL) is a straightforward technique to prepare linear micropatterns for regulating cellular adhesion behaviors on polymer substratum. This process is based on selective laser ablation directly duplicating the interference patterns of two or more coherent laser beams onto the polymer surface. Micropatterns prepared by LIL on poly(ethylene terephthalate) and Thermanox were characterized using atomic force microscopy (AFM) and white light interferometer while the chemical surface modification induced by laser was analyzed by X-ray photoelectron spectroscopy (XPS). The AFM photographs show that the micropatterns are well-defined and of great consistency. Polymer properties and laser parameters related to LIL as well as laser ablation mechanisms are discussed in this technical note.

  3. Determining Engineering Properties of the Shallow Lunar Subsurface using Seismic Surface Wave Techniques

    Science.gov (United States)

    Yeluru, P. M.; Baker, G. S.

    2008-12-01

    The geology of Earth's moon has previously been examined via telescopic observations, orbiting spacecraft readings, lunar sample analysis, and also from some geophysical data. Previous researchers have examined layering of the moon and models exist explaining the velocity variations in the mantle and core. However, no studies (or datasets) currently exist regarding the engineering properties of the shallow (civil engineering works, as they characterize the mechanical behavior of geotechnical materials under various types of loading. Therefore, understanding the physical and engineering properties within the upper 30 m of the lunar subsurface will be critical for lunar exploration if deployment of large structures, large-scale excavation, and/or landing of large spacecraft on the surface is desired. Advances in near-surface geophysical techniques, such as Multi-channel Analysis of Surface Wave (MASW), has greatly increased our ability to map subsurface variations in physical properties. The MASW method involves deployment of multiple seismometers to acquire 1-D or 2-D shear wave velocity profiles that can be directly related to various engineering properties. The advantage of this technique over drilling boreholes or any other geophysical technique is that it is less intensive, non-invasive, more cost- effective, and more robust because strong surface-wave records are almost guaranteed. In addition, data processing and analysis is fairly straightforward, and the MASW method allows for analysis of a large area of interest as compared to drilling boreholes. A new scheme using randomly distributed geophones (likely deployed from a mortar-type device) instead of a conventional linear array will be presented. A random array is necessary for lunar exploration because of the logistical constraints involved in deploying a linear or circular array robotically or by astronaut. Initial results indicate that robust dispersion curves (and thus subsurface models of engineering

  4. Applications of surface analysis techniques to photovoltaic research: Grain and grain boundary studies

    Science.gov (United States)

    Kazmerski, L. L.

    Complementary surface analysis techniques (AES, SIMS, XPS) are applied to photovoltaic devices in order to assess the limiting factors of grain and grain boundary chemistry to the performance of polycrystalline solar cells. Results of these compositional and chemical studies are directly correlated with electrical measurements (EBIC) and with resulting device performance. Examples of grain boundary passivation in polycrystalline Si and GaAs solar cells are cited. The quality of the intragrain material used in these devices is shown to be equally important to the grain boundary activity in determining overall photovoltaic performance.

  5. A controlled field pilot for testing near surface CO2 detection techniques and transport models

    Science.gov (United States)

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.; Nehrir, A.; Humphries, S.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, Thomas; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2009-01-01

    A field facility has been developed to allow controlled studies of near surface CO2 transport and detection technologies. The key component of the facility is a shallow, slotted horizontal well divided into six zones. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects. A wide variety of detection techniques were deployed by collaborators from 6 national labs, 2 universities, EPRI, and the USGS. Additionally, modeling of CO2 transport and concentrations in the saturated soil and in the vadose zone was conducted. An overview of these results will be presented. ?? 2009 Elsevier Ltd. All rights reserved.

  6. Simple equations guide high-frequency surface-wave investigation techniques

    Science.gov (United States)

    Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.

    2006-01-01

    We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia

    Science.gov (United States)

    Shamsuddin, Mohd Khairul Nizar; Sulaiman, Wan Nor Azmin; Suratman, Saim; Zakaria, Mohamad Pauzi; Samuding, Kamarudin

    2014-05-01

    Bank infiltration (BI) is one of the solutions to providing raw water for public supply in tropical countries. This study in Malaysia explores the use of BI to supplement a polluted surface-water resource with groundwater. Three major factors were investigated: (1) contribution of surface water through BI to the resulting abstraction, (2) input of local groundwater, and (3) water-quality characteristics of the resulting water supply. A geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and the interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface-water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5-98 % decrease in turbidity, as well as reductions in HCO3 -, Cl-, SO4 2-, NO3 -, Ca2+, Al3+ and As concentrations compared with those of Langat River water. In addition, amounts of E. coli, total coliform and Giardia were significantly reduced (99.9 %). However, water samples from test wells during pumping showed high concentrations of Fe2+ and Mn2+. Pumping test results indicate that the two wells used in the study were able to sustain yields.

  8. Thinning identification technique using stainless steel film heater and response surface method

    Science.gov (United States)

    Ogasawara, Nagahisa; Yamada, Hiroyuki

    2011-05-01

    The infrared thermography has not been widely applied to nondestructive inspection for metals. It is because the metal emissivity is too low to be measured the temperature. To make up for this disadvantage, a new heating technique using a stainless steel film was proposed and a nondestructive inspection system with the response surface method was developed. The stainless film has a high electric resistance and generates large Joule heat. Its response is quick and the quantity of heat is easily controlled. Moreover, the film has a high enough thermal conductivity, therefore a black painted film can be a blackbody surface of metal structures. Consequently IR camera can easily measure the metal temperature accurately. The nondestructive inspection system that can quantitatively identify geometrical parameters of a local thinning was developed. The system consists of a forward analysis and an inverse analysis. In the forward analysis, the response surface that shows a relationship between geometrical parameters and characteristic values is built by experimental design method. In the inverse analysis, substituting the characteristic values into the response surface, the geometrical parameters are finally identified. The inspection system can identify the local thinning shape robustly by selecting the attribute for the shape parameters.

  9. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    Science.gov (United States)

    Dwivedi, D.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351

  10. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    Science.gov (United States)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  11. Effect of Different Surface Treatments on the Bond Strength of Lithium Disilicate Ceramic to the Zirconia Core.

    Science.gov (United States)

    Yilmaz-Savas, Tuba; Demir, Necla; Ozturk, A Nilgun; Kilic, Hamdi Sukur

    2016-06-01

    The aim of this study was to evaluate the effect of different surface treatments [sandblasting, Erbium:Yttrium-Aluminium-Garnet (Er:YAG), and femtosecond lasers] on the shear bond strength (SBS) of the CAD-on technique. Although demand for all-ceramic restorations has increased, chipping remains one of the major problems for zirconia-based restorations. Forty yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) zirconia plates (IPS e.max ZirCAD, Ivoclar Vivadent) were cut, sintered (12.4 × 11.4 × 3 mm) and divided into four groups according to the surface treatments (n = 10): a control group with no surface treatment (Group C), sandblasting with 50 μm Al2O3 (Group S), Er:YAG laser irradiation (Group E), and femtosecond laser irradiation (Group F). Also, 40 cylindrical (5 mm diameter, 2 mm height) lithium disilicate (IPS e.max CAD) veneer ceramics were cut and fused to all zirconia cores by a glass-fusion ceramic and crystallized according to the CAD-on technique. Specimens were subjected to shear force using a universal testing machine. The load was applied at a crosshead speed of 0.5 mm/min until failure. Mean SBS (MPa) were analyzed with one way ANOVA (p strength between zirconia-veneer specimens. However, the novel CAD-on technique with no surface treatment also showed high bonding strength. Thus, this technique could prevent ceramic chipping without additional surface treatments.

  12. Bacteria Adherence Properties of Nitrogen-Doped TiO2 Coatings by Plasma Surface Alloying Technique

    Institute of Scientific and Technical Information of China (English)

    WANG Hefeng; TANG Bin; LIN Naiming; LI Xiuyan; FAN Ailan; SHU Xuefeng

    2012-01-01

    In order to obtain a high-performance surface on 316L stainless steel (S.S) that can meet the requirements in medical material field environment,nitrogen-doped titanium dioxide (TiO2-xNx) was synthesized by oxidative annealing the resulted TiNx coatings in air.Titanium nitride coatings on 316L S.S were obtained by plasma surface alloying technique.The as-prepared coatings were characterized by X-ray diffraction,glow discharge optical emission spectrometer (GDOES),scanning electron microscopy and X-ray photoelectron spectroscopy,respectively.The bacteria adherence property of the TiO2-xNx coatings on S.S on the oral bacteria Streptococcus Mutans was investigated and compared with that of S.S by fluorescence microscopy.The mechanism of the bacteria adherence was discussed.The results show that the TiO2-xNx coatings are composed of anatase crystalline structure.SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment.Because of the photocatalysis and positive adhesion free energy,the TiO2-xNx coatings inhibit the bacteria adherence.

  13. Au/HClO4 interface: Influence of preparation technique of the electrode surface and specific anion adsorption

    Directory of Open Access Journals (Sweden)

    A HAMMADI

    2007-12-01

    Full Text Available We present electrochemical impedance spectra made on gold alloy containing 30% silver electrodes of various roughnesses in aqueous perchlorate acid solution as supporting electrolyte in the absence and the presence of mM of specifically adsorbed halide ions X (X = Br-, Cl-, I-, at potentials where the dominant electrode process is the adsorption of the above anions. Efforts were mainly concentrated on the importance of surface preparation technique of the electrode and its influence on impedance spectra. Atomic scale inhomogeneities are introduced by mechanical treatment and can be decreased by annealing. Due to the annealing the double layer behaves as (almost an ideal capacitance in the absence of specific adsorption though surface roughness remains the same. A study of the related impedance behaviour in the presence of adsorbates even at very low concentrations (10-4M, revealed capacitance dispersion increasing with the extent of specific anion adsorption at the gold/silver surface.

  14. A shear wave ground surface vibration technique for the detection of buried pipes

    Science.gov (United States)

    Muggleton, J. M.; Papandreou, B.

    2014-07-01

    A major UK initiative, entitled 'Mapping the Underworld' aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics; the application of this technology for detecting buried infrastructure, in particular pipes, is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured. Time-extended signals are employed to generate the illuminating wave. Generalized cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation are calculated and summed using a stacking method to generate a cross-sectional image of the ground. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal can be used as an additional reference when calculating the cross-correlation functions. Measurements have been made at two live test sites to detect a range of buried pipes. Successful detection of the pipes was achieved, with the use of the additional reference signal proving beneficial in the noisier of the two environments.

  15. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    Science.gov (United States)

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber.

  16. 3D precision measurements of meter sized surfaces using low cost illumination and camera techniques

    Science.gov (United States)

    Ekberg, Peter; Daemi, Bita; Mattsson, Lars

    2017-04-01

    Using dedicated stereo camera systems and structured light is a well-known method for measuring the 3D shape of large surfaces. However the problem is not trivial when high accuracy, in the range of few tens of microns, is needed. Many error sources need to be handled carefully in order to obtain high quality results. In this study, we present a measurement method based on low-cost camera and illumination solutions combined with high-precision image analysis and a new approach in camera calibration and 3D reconstruction. The setup consists of two ordinary digital cameras and a Gobo projector as a structured light source. A matrix of dots is projected onto the target area. The two cameras capture the images of the projected pattern on the object. The images are processed by advanced subpixel resolution algorithms prior to the application of the 3D reconstruction technique. The strength of the method lays in a different approach for calibration, 3D reconstruction, and high-precision image analysis algorithms. Using a 10 mm pitch pattern of the light dots, the method is capable of reconstructing the 3D shape of surfaces. The precision (1σ repeatability) in the measurements is  cost of ~2% of available advanced measurement techniques. The expanded uncertainty (95% confidence level) is estimated to be 83 µm, with the largest uncertainty contribution coming from the absolute length of the metal ruler used as reference.

  17. Development of CDMS-II Surface Event Rejection Techniques and Their Extensions to Lower Energy Thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Thomas James [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The CDMS-II phase of the Cryogenic Dark Matter Search, a dark matter direct-detection experiment, was operated at the Soudan Underground Laboratory from 2003 to 2008. The full payload consisted of 30 ZIP detectors, totaling approximately 1.1 kg of Si and 4.8 kg of Ge, operated at temperatures of 50 mK. The ZIP detectors read out both ionization and phonon pulses from scatters within the crystals; channel segmentation and analysis of pulse timing parameters allowed e ective ducialization of the crystal volumes and background rejection su cient to set world-leading limits at the times of their publications. A full re-analysis of the CDMS-II data was motivated by an improvement in the event reconstruction algorithms which improved the resolution of ionization energy and timing information. The Ge data were re-analyzed using three distinct background-rejection techniques; the Si data from runs 125 - 128 were analyzed for the rst time using the most successful of the techniques from the Ge re-analysis. The results of these analyses prompted a novel \\mid-threshold" analysis, wherein energy thresholds were lowered but background rejection using phonon timing information was still maintained. This technique proved to have signi cant discrimination power, maintaining adequate signal acceptance and minimizing background leakage. The primary background for CDMS-II analyses comes from surface events, whose poor ionization collection make them di cult to distinguish from true nuclear recoil events. The novel detector technology of SuperCDMS, the successor to CDMS-II, uses interleaved electrodes to achieve full ionization collection for events occurring at the top and bottom detector surfaces. This, along with dual-sided ionization and phonon instrumentation, allows for excellent ducialization and relegates the surface-event rejection techniques of CDMS-II to a secondary level of background discrimination. Current and future SuperCDMS results hold great promise for mid- to low

  18. Deposition of polycrystalline and nanocrystalline diamond on graphite: effects of surface pre-treatments

    Science.gov (United States)

    Villalpando, I.; John, P.; Porro, S.; Wilson, J. I. B.

    2017-03-01

    The growth of hydrogenated sp3-phase of diamond on the sp2-phase of graphite by Microwave Plasma Enhanced Chemical Vapour Deposition (MPECVD) is a challenge, primarily because hydrogen etches graphite much faster than the growth rate of diamond. To enhance nucleation of diamond on graphite, we used a plethora of techniques such as plasma etching, ion bombardment, manual scratching, and scratching by ultrasonic agitation. Nanocrystalline and polycrystalline diamond thin-films were grown by MPECVD on the surface of pre-treated or pristine graphite using 1.5, 3.0, and 3.6 kW microwave power. Samples were characterised by Scanning Electron Microscopy, Raman Spectroscopy, and X-ray Photoelectron Spectroscopy. Species in the gas phase during film deposition were monitored by Optical Emission Spectroscopy. We have found that the surface area covered and the morphology of the diamond films are dependent on the surface pre-treatment. The crystallite size of the films depends on the microwave power used during MPECVD growth. The results of this study establish the protocols for diamond deposition by MPECVD on graphite substrates with a desired crystalline quality based on the pre-treatment of the substrate and the microwave power used during MPECVD. These results are important to modern applications, such as plasma facing materials, in which diamond has shown outstanding performance in contrast to that of graphite.

  19. Effect of Laser Treatment on Surface Morphology of Indirect Composite Resin: Scanning Electron Microscope (SEM) Evaluation.

    Science.gov (United States)

    Mirzaie, Mansore; Garshasbzadeh, Nazanin Zeinab; Yassini, Esmaeil; Shahabi, Sima; Chiniforush, Nasim

    2013-01-01

    The aim of this study was to evaluate and compare the Scanning electron microscope (SEM) of indirect composite conditioned by Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser, Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) laser and Carbon Dioxide (CO2) laser. 18 indirect composite blocks (GC Gradia DA2, Japan) with 15 × 10 × 10 mm dimensions were made. The bonding surface of these blocks were polished, then the samples were divided into six groups as follow: Er:YAG laser with output power of 0.5 W and frequency of 10 Hz, Nd:YAG laser with output power of 0.25, 0.5 W and frequency of 10 Hz, CO2 laser with output power of 0.5 W and frequency of 10 Hz and 5 Hz, and no treatment. Then, the surfaces were evaluated by SEM. Irregularities were observed in Er:YAG laser samples compared to control group that produced suitable retention for adhesion of cements. Nd:YAG and CO2 lasers showed melting areas. Among different lasers, Er:YAG laser can be used as an alternative technique for surface treatment of indirect composites.

  20. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  1. Self-consistent Green’s-function technique for bulk and surface impurity calculations: Surface core-level shifts by complete screening

    DEFF Research Database (Denmark)

    Aldén, M.; Abrikosov, I. A.; Johansson, B.

    1994-01-01

    We have implemented an efficient self-consistent Green's-function technique, based on the tight-binding linear-muffin-tin-orbitals method, for calculating the electronic structure and total energy of a substitutional impurity located either in the bulk or at the surface. The technique makes use...

  2. The technique of «Subliminal verbal suggestion for the treatment of [pseudo]obsessions»

    Directory of Open Access Journals (Sweden)

    N. V. Danilevska

    2016-03-01

    Full Text Available [Pseudo]obsessions therapy in patients with endogenous diseases of schizophrenic round accompanied with difficulties, caused by both psycho etio pathogenetic features of the disease. Disadvantages of the existing methods of therapy are associated with therapeutic conflict between two nosologies. Aim: to develop and test etiopsychopathogenetic technique "Subliminal verbal suggestion for the treatment of [pseudo]obsessions" as a subsidiary method of treatment of schizophrenia patients with [pseudo] obsessions in the structure of the disease. Methods and results. 137 patients who underwent hospital treatment 65 schizophrenia patients (F20 with the [pseudo]obsessive symptoms in the structure of the disease were examined on the basis of Public Health Institution «Regional clinical mental hospital» of the Zaporizhzhian regional council. 30 patients received standard pharmacotherapy (antipsychotic drugs according to clinical protocols that was combined with proposed technique "Subliminal verbal suggestion for the treatment of [pseudo]obsessions". The comparison group consisted of 35 patients treated with the use of standard pharmacotherapy: antipsychotic drugs. The next methods were used: medical history assessment, follow-up, clinical-psychopathological, psychodiagnostic. "Subliminal verbal suggestion for the treatment of [pseudo]obsessions" technique was developed. This technique is a combination of suggestion in the waking state and neurolinguistic programming, implemented with specially compiled auditory complex listening. The main therapeutic component s realized through the subthreshold perception of the verbal formulas that are unavailable to awareness. The technique consists of two components – primary and secondary, and three stages. The methodology was tested, its therapeutic efficacy was confirmed. Conclusion. "Subliminal verbal suggestion for the treatment of [pseudo]obsessions" technique was developed as a subsidiary method of the

  3. Piriformis syndrome: implications of anatomical variations, diagnostic techniques, and treatment options.

    Science.gov (United States)

    Cassidy, Lindsey; Walters, Andrew; Bubb, Kathleen; Shoja, Mohammadali M; Tubbs, R Shane; Loukas, Marios

    2012-08-01

    Details of piriformis syndrome, including the proper diagnosis and most effective form of treatment, continue to be controversial. While the cause, diagnosis, and treatment of piriformis syndrome remain elusive, many studies have been conducted to investigate newly developed diagnostic techniques as well as various treatment options for piriformis-induced sciatica. Despite the quantity of literature, few studies have demonstrated statistically significant results that support one form of treatment over another. Thus, despite the evidence supporting the newer treatment methodologies for piriformis syndrome, research should continue. It is important not only to evaluate treatment outcomes based on associated pain relief, but also to investigate the functional and anatomical return that patients experience from these studied treatments in order to fully explore the most effective form of therapy for piriformis syndrome.

  4. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.

  5. Multivariate statistical techniques for the assessment of seasonal variations in surface water quality of pasture ecosystems.

    Science.gov (United States)

    Ajorlo, Majid; Abdullah, Ramdzani B; Yusoff, Mohd Kamil; Halim, Ridzwan Abd; Hanif, Ahmad Husni Mohd; Willms, Walter D; Ebrahimian, Mahboubeh

    2013-10-01

    This study investigates the applicability of multivariate statistical techniques including cluster analysis (CA), discriminant analysis (DA), and factor analysis (FA) for the assessment of seasonal variations in the surface water quality of tropical pastures. The study was carried out in the TPU catchment, Kuala Lumpur, Malaysia. The dataset consisted of 1-year monitoring of 14 parameters at six sampling sites. The CA yielded two groups of similarity between the sampling sites, i.e., less polluted (LP) and moderately polluted (MP) at temporal scale. Fecal coliform (FC), NO3, DO, and pH were significantly related to the stream grouping in the dry season, whereas NH3, BOD, Escherichia coli, and FC were significantly related to the stream grouping in the rainy season. The best predictors for distinguishing clusters in temporal scale were FC, NH3, and E. coli, respectively. FC, E. coli, and BOD with strong positive loadings were introduced as the first varifactors in the dry season which indicates the biological source of variability. EC with a strong positive loading and DO with a strong negative loading were introduced as the first varifactors in the rainy season, which represents the physiochemical source of variability. Multivariate statistical techniques were effective analytical techniques for classification and processing of large datasets of water quality and the identification of major sources of water pollution in tropical pastures.

  6. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  7. Low-cost, high performance surface plasmon resonance-compatible films characterized by the surface plasmon resonance technique

    Institute of Scientific and Technical Information of China (English)

    Li Song-Quan; Ye Hong-An; Liu Chun-Yu; Dou Yin-Feng; Huang Yan

    2013-01-01

    A new analytical method based on the surface plasmon resonance (SPR) technique is presented,with which SPR curves for both wavelength and angular modulations can be obtained simultaneously via only a single scan of the incident angle.Using this method,the SPR responses of TiO2-coated Cu films are characterized in the wavelength range from 600 nm to 900 nm.For the first time,we determine the effective optical constants and the thicknesses of TiO2-coated Cu films using the SPR curves of wavelength modulation.The sensitivities of prism-based SPR refractive index sensors using TiO2-coated Cu films are investigated theoretically for both wavelength and angular modulations,the results show that in the case of sensitivity with wavelength modulation,TiO2-coated Cu films are not as good as the Au film,however,they are more suitable than the Au film for SPR refractive index sensors with angular modulation because a higher sensitivity can be achieved.

  8. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites.

  9. Analytical modelling for ultrasonic surface mechanical attrition treatment

    Directory of Open Access Journals (Sweden)

    Guan-Rong Huang

    2015-07-01

    Full Text Available The grain refinement, gradient structure, fatigue limit, hardness, and tensile strength of metallic materials can be effectively enhanced by ultrasonic surface mechanical attrition treatment (SMAT, however, never before has SMAT been treated with rigorous analytical modelling such as the connection among the input energy and power and resultant temperature of metallic materials subjected to SMAT. Therefore, a systematic SMAT model is actually needed. In this article, we have calculated the averaged speed, duration time of a cycle, kinetic energy and kinetic energy loss of flying balls in SMAT for structural metallic materials. The connection among the quantities such as the frequency and amplitude of attrition ultrasonic vibration motor, the diameter, mass and density of balls, the sample mass, and the height of chamber have been considered and modelled in details. And we have introduced the one-dimensional heat equation with heat source within uniform-distributed depth in estimating the temperature distribution and heat energy of sample. In this approach, there exists a condition for the frequency of flying balls reaching a steady speed. With these known quantities, we can estimate the strain rate, hardness, and grain size of sample.

  10. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  11. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  12. Improvement of metal-semiconductor contact on silicon microstructured surface by electroless nickel technique

    Science.gov (United States)

    Long, Fei; Guo, Anran; Huang, Lieyun; Yu, Feng; Li, Wei

    2016-11-01

    Si micro-structures served as anti-reflection layer are widely employed in Si-based solar cells and detectors to enhance light harvesting. However, performance of these devices is suffered from the poor contact between the metal electrode and micro-structured surface. Conventional vacuum deposited metal electrode makes only superficial contact with the top of micro-structured surface and unable to fill the holes in the micro-structures. In this paper, instead, electroless nickel technique is applied to form low resistance ohmic contact. The surface micro-structures were fabricated by electrochemistry etching while the metal electrodes were deposited by sputtering and electroless pasting. Results show that only electroless nickel layer could fully fill the holes and achieve better ohmic contact than the sputtering ones before rapid annealing. Furthermore, a higher temperature rapid annealing process could improve the contact of all samples prepared by different ways. The specific contact resistance achieved by high alkalinity (pH=12) electroless nickel is 1.34×10-1Ω·cm2.

  13. Global database of surface ocean particulate organic carbon export fluxes diagnosed from the 234Th technique

    Directory of Open Access Journals (Sweden)

    F. A. C. Le Moigne

    2013-05-01

    Full Text Available The oceanic biological carbon pump is an important factor in the global carbon cycle. Organic carbon is exported from the surface ocean mainly in the form of settling particles derived from plankton production in the upper layers of the ocean. The large variability in current estimates of the global strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains poorly constrained. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. The dataset is archived on the data repository PANGEA® (www.pangea.de under doi:10.1594/PANGAEA.809717. Data were collected from tables in papers published between 1985 and early 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220 m. Globally the fluxes ranged from 0 to 1500 mg of C m−2 d−1.

  14. New technique to take samples from environmental surfaces using flocked nylon swabs.

    Science.gov (United States)

    Hedin, G; Rynbäck, J; Loré, B

    2010-08-01

    Environmental surfaces near infected and/or colonised patients in hospitals are commonly contaminated with potentially pathogenic micro-organisms. At present, however, there is no standardised method for taking samples from surfaces in order to perform quantitative cultures. Usually contact plates or swabs are used, but these methods may give different results. The recovery rate of traditional swabbing, e.g. cotton or rayon, is poor. With a new type of swab utilising flocked nylon, the recovery may be enhanced up to three times compared with a rayon swab. In this study, we inoculated reference strains of Staphylococcus aureus and Enterococcus hirae onto a bedside table and took samples 1h later when inocula were dry. Sequential samples were taken from the same surface. A new sampling technique using two sequential nylon swabs for each sample was validated. The efficiency of the sampling, percentage recovery of the inoculum and the variation of culture results obtained from repeated experiments are described. Enhanced efficiency and higher recovery of inoculum were demonstrated using two sequential flocked nylon swabs for sampling.

  15. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keturakis, Christopher J. [Operando Molecular Spectroscopy and Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Notis, Ben [Brandeis University, Waltham, MA 02453 (United States); Blenheim, Alex [Department of Mechanical Engineering, Pennsylvania State University, College Park, PA 16802 (United States); Miller, Alfred C.; Pafchek, Rob [Zettlemoyer Center for Surface Studies, Lehigh University, Bethlehem, PA 18015 (United States); Notis, Michael R., E-mail: mrn1@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Wachs, Israel E., E-mail: iew0@lehigh.edu [Operando Molecular Spectroscopy and Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States)

    2016-07-15

    Highlights: • Five ancient silver alloy coins (225 BCE–244 CE) were analyzed using surface characterization techniques. • Both destructive and non-destructive surface characterization methods were developed. • Alloying with copper, even in small amounts, leads to the formation of an outer Cu{sub 2}O corrosion layer. - Abstract: Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE–244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1–3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300–1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu{sub 2}O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu{sub 2}O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu{sub 2}O layer. Depth profiling revealed the presence of K, Na, Cl, and

  16. OPTIMASI TEKNIK PEMBUATAN TABLET EFFERVESCENT SARI BUAH DENGAN RESPONSE SURFACE METHOD [Optimization of Processing Technique of the Fruit Juice Effervescent Tablet with Response Surface Method

    Directory of Open Access Journals (Sweden)

    Ansar1

    2009-06-01

    Full Text Available This research was aimed to study optimization of processing technique of fruit juice effervescent tablet with Response Surface Method (RSM. The research design used was central composite designs with three dependent variables including X1 (compression force, X2 (the citric acid concentration, and X3 (the sodium bicarbonate concentration, where independent variables was hardness and solubility of the tablet. The results of the research showed that the optimum tablets hardness was 40.53 N that reached at treatment compression force of 2339.8 N; the citric acid concentration of 352.82 mg/gr; and the sodium bicarbonate concentration of 561.62 mg/gr. Whereas the solubilitation of 41.99 second was resulted at treatment compression force of 1417.6 N; 334.24 mg/unit weight citric acid; and 593.90 mg/gr sodium bicarbonate. To get tablet characteristic with high hardness but solubilize quickly, was made at 1500 N compression force; the citric acid concentration 350 mg/gr; and the sodium bicarbonate concentration 500 mg/gr.

  17. Center-blocked field technique for treatment of extensive chest wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E.B.; Pla, M.; Kim, T.H.; Freeman, C.R.

    1981-10-01

    Our treatment technique for patients with extensive chest wall disese is presented. A rotational center-blocked radiation field is used to cover the large tumor volume to a dose with +/- 10% while sparing the lungs and the spinal cord. The center block is tapered to match both the patient's mediastinal slope in the sagittal plane and the outline of the lungs in the coronal plane. Ten patients treated with this technique to a tumor dose of 50 Gy tolerated the treatment well, despite a high integral dose. The local responses were excellent, particularly in view of the initial extent of the disease.

  18. Dental implant surface treatments for osseointegration improvement: presentation and comparisonof methods

    Directory of Open Access Journals (Sweden)

    Faidra KAPOPOULOU

    2014-08-01

    Full Text Available The growing use of dental implants and the increase in requirements directed scientists to search for the implant surface which will ensure the greater bone to implant contact (BIC. Nowadays, implants are acid- etched (HCl, H 2 S Ο 4 promoting the osteoconductive ac- tivity or are grit-blasted with alumina particles, titanium oxide or calcium phosphates or finally they undergo dual treatment (combination of the two previous methods, which seems to have the better results as a method until now. Anodization is another method of treating the tita- nium implant surface and increased osseointegration is reported for implants coated with hydroxyapatite or ti- tanium plasma. The use of fluoride or wettability of im- plant surface in saline solution are also methods which have been used for treating the implant surface with low rates of osseointegration. Finally, new techniques made their appearance such as the use of laser, the use of drugs and specifically those of bisphosphonates and the use of BMPs. The last methods are very promising and their re- sults are still under research.

  19. Effect of surface treatments on shear bond strength of denture teeth to denture base resins

    Directory of Open Access Journals (Sweden)

    Farideh Bahrani

    2014-01-01

    Full Text Available Background: Debonding of denture teeth from denture bases is the most common failure in removable dentures. The purpose of this study was to evaluate the effect of surface treatments on shear bond strength of denture teeth to heat-polymerized and autopolymerized denture base resins. Materials and Methods: In this experimental in vitro study, 60 maxillary central incisor acrylic teeth were divided into two groups. Group M was polymerized with heat-polymerized acrylic resin (Meliodent by compression molding technique and group F was processed by autopolymerized acrylic resin (Futura Gen by injection molding technique. Within each group, specimens were divided into three subgroups according to the teeth surface treatments (n = 10: (1 ground surface as the control group (M 1 and F 1 , (2 ground surface combined with monomer application (M 2 and F 2 , and (3 airborne particle abrasion by 50 μm Al 2 O 3 (M 3 and F 3 . The shear bond strengths of the specimens were tested by universal testing machine with crosshead speed of 5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA and Tukey′s honestly significant difference (HSD tests (P < 0.05. Results: The mean shear bond strengths of the studied groups were 96.40 ± 14.01, 124.70 ± 15.64, and 118 ± 16.38 N for M 1 , M 2 , and M 3 and 87.90 ± 13.48, 117 ± 13.88, and 109.70 ± 13.78 N for F 1 , F 2 , and F 3 , respectively. The surface treatment of the denture teeth significantly affected their shear bond strengths to the both the denture base resins (P < 0.001. However, there were no significant differences between the groups treated by monomer or airborne particle abrasion (P = 0.29. The highest percentage of failure mode was mixed in Meliodent and adhesive in Futura Gen. Conclusion: Monomer application and airborne particle abrasion of the ridge lap area of the denture teeth improved their shear bond strengths to the denture base resins regardless of the type of polymerization.

  20. [Application progress of minimally invasive technique in treatment of calcaneus fractures].

    Science.gov (United States)

    Yu, Tao; Yang, Yunfeng; Yu, Guangrong

    2013-02-01

    To review the application progress of minimally invasive technique in the treatment of calcaneus fractures and to analyze the advantages and disadvantages of each method as well as to predict the trend of development in the field. Domestic and abroad literature concerning the minimally invasive technique applied in calcaneus fractures in recent years was reviewed extensively and analyzed thoroughly. There are both advantages and limitations of each minimally invasive technique including percutaneous reduction and fixation, limited incision, external fixator, arthroscopic assisted reduction, and balloon expansion reduction. But every technique is developing rapidly and becoming more and more effective. A variety of minimally invasive technique can not only be used independently but also can be applied jointly to complement one another. It needs further study how to improve the effectiveness and expand the indications. And the theoretical basis of evidence-based medicine needs to be provided more.

  1. Status of surface treatment in endosseous implant: A literary overview

    Directory of Open Access Journals (Sweden)

    Gupta Ankur

    2010-01-01

    Full Text Available The attachment of cells to titanium surfaces is an important phenomenon in the area of clinical implant dentistry. A major consideration in designing implants has been to produce surfaces that promote desirable responses in the cells and tissues. To achieve these requirements, the titanium implant surface can be modified in various ways. This review mainly focuses on the surface topography of dental implants currently in use, emphasizing the association of reported variables with biological outcome.

  2. CLINICAL OBSERVATION ON THE TREATMENT OF KNEE OSTEOARTHRITIS BY ACUPUNCTURE IN BA-HE TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIANG Yun-wu; TAN Yuan-sheng; ZHOU Jun

    2005-01-01

    Objective:To observe the clinical therapeutic effect of Ba-He technique of acupuncture in the treatment of knee osteoarthritis. Methods: A total of 90 cases of knee osteoarthritis were evenly randomized into Ba-He technique group (observation group) and common technique group (control group), with 45 cases in each group. Zusanli (足三里 ST 36), Heding (鹤顶 EX-LE 2) and Dubi (犊鼻 ST 35) were punctured respectively in Ba-He technique and common technique in the two groups. The therapeutic effects of the two groups were compared after one course of treatment (10 sessions) in accordance with Japanese assessment criteria for knee-joint functions. Results: Aftertreatment, among the 74 and 71 affected knees in the observation and control groups, the therapeutic effect was excellent in 42 (56.8%) and 26 (36.6%) knees, fine in 14 (18.9%) and 20 (28.2%), OK in 10 (13.5%) and 11 (15.5%), and poor in 8 (10.8%) and 14 (19.7%) respectively. The therapeutic effect of the observation group was significantly better than that of control group (P<0.01). Conclusion: The Ba-He technique of acupuncture applied to the above-mentioned three acupoints exerted remarkable therapeutic effect for knee osteoarthritis, which is obviously better than that of the common needling technique.

  3. Investigation of HCl-based surface treatment for GaN devices

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Hiroshi, E-mail: okada@ee.tut.ac.jp [Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan); Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan); Shinohara, Masatohi; Kondo, Yutaka; Sekiguchi, Hiroto; Yamane, Keisuke [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan); Wakahara, Akihiro [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan); Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2016-02-01

    Surface treatments of GaN in HCl-based solutions are studied by X-ray photoelectron spectroscopy (XPS) and electrical characterization of fabricated GaN surfaces. A dilute-HCl treatment (HCl:H{sub 2}O=1:1) at room temperature and a boiled-HCl treatment (undiluted HCl) at 108°C are made on high-temperature annealed n-GaN. From the XPS study, removal of surface oxide by the dilute-HCl treatment was found, and more thoroughly oxide-removal was confirmed in the boiled-HCl treatment. Effect of the surface treatment on electrical characteristics on AlGaN/GaN transistor is also studied by applying treatment processes prior to the surface SiN deposition. Increase of drain current is found in boiled-HCl treated samples. The results suggest that the boiled-HCl treatment is effective for GaN device fabrication.

  4. Test of on-line alkali detector based on surface ionisation technique

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorsson, L.-P.A.; Sjoestroem, L.K. [Chemical Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1998-12-31

    The objective of this project is to test on-line alkali metal measuring equipment in a reducing atmosphere. The equipment is based on surface ionisation (SI) technique. The tests have taken place in reactors of varying sizes, from mg per batch to continuous feeding of kg/h, non-pressurised and pressurised. On-line alkali metal detector prototypes have been tested in real gases at atmospheric and elevated pressure. The primary parts of the detector prototypes are a platinum filament and an ion collector. The first prototype (A) of the surface ionisation detector was tested in a mg-scale pyrolysis reactor, a so-called Pyrojector, by introducing the coal sample with a `pelletizer`. The generated detector signal, a current in the pA to {mu}A range, was directly proportional to the sample weight. The second prototype (B) of the surface ionisation detector was tested in a very tarry gas flow, 20 g tar/Nm{sup 3}, at atmospheric pressure in a continuously fed g/min-scale biomass pyrolysis apparatus. The generated detector signal, a current in the {mu}A range, was measured by a picoammeter and sampled on a computer. The feedstocks were pine and birch and straw. A third prototype (D) of the surface ionisation detector was tested during pressurised gasification in a fluidised bed reactor. The feedstock was birch. The prototype detected alkali in the gas, though the temperature was only 773-793 K in the vicinity of the detector. The filament temperature control has to be further developed and tested. 1 ref., 19 figs., 6 tabs.

  5. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  6. Statistical assessment of soil surface roughness for environmental applications using photogrammetric imaging techniques

    Science.gov (United States)

    Marzahn, Philip; Rieke-Zapp, Dirk; Ludwig, Ralf

    2010-05-01

    Micro scale soil surface roughness is a crucial parameter in many environmental applications. Recent soil erosion studies have shown the impact of micro topography on soil erosion rates as well as overland flow generation due to soil crusting effects. Besides the above mentioned, it is widely recognized that the backscattered signal in SAR remote sensing is strongly influenced by soil surface roughness and by regular higher order tillage patterns. However, there is an ambiguity in the appropriate measurement technique and scale for roughness studies and SAR backscatter model parametrization. While different roughness indices depend on their measurement length, no satisfying roughness parametrization and measurement technique has been found yet, introducing large uncertainty in the interpretation of the radar backscatter. In the presented study, we computed high resolution digital elevation models (DEM) using a consumer grade digital camera in the frame of photogrammetric imaging techniques to represent soil micro topography from different soil surfaces (ploughed, harrowed, seedbed and crusted) . The retrieved DEMs showed sufficient accuracy, with an RMSE of a 1.64 mm compared to high accurate reference points,. For roughness characterization, we calculated different roughness indices (RMS height (s), autocorrelation length (l), tortuosity index (TB)). In an extensive statistical investigation we show the behaviour of the roughness indices for different acquisition sizes. Compared to results from profile measurements taken from literature and profiles generated out of the dataset, results indicate,that by using a three dimensional measuring device, the calculated roughness indices are more robust against outliers and even saturate faster with increasing acquisition size. Dependent on the roughness condition, the calculated values for the RMS-height saturate for ploughed fields at 2.3 m, for harrowed fields at 2.0 m and for crusted fields at 1.2 m. Results also

  7. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.; Armeli, Y. P. [Department of Chemical Engineering, University of Diponegoro Prof. Soedarto, Tembalang, Semarang, 50239, Phone/Fax : (024) 7460058 (Indonesia)

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  8. Fretting of AISI 9310 and selected fretting resistant surface treatments

    Science.gov (United States)

    Bill, R. C.

    1977-01-01

    Fretting wear experiments were conducted with uncoated AISI 9310 mating surfaces, and with combinations incorporating a selected coating to one of the mating surfaces. Wear measurements and SEM observations indicated that surface fatigue, as made evident by spallation and surface crack formation, is an important mechanism in promoting fretting wear to uncoated 9310. Increasing humidity resulted in accelerated fretting, and a very noticeable difference in nature of the fretting debris. Of the coatings evaluated, aluminum bronze with a polyester additive was most effective at reducing wear and minimizing fretting damage to the mating uncoated surface, by means of a selflubricating film that developed on the fretting surfaces. Chromium plate performed as an effective protective coating, itself resisting fretting and not accelerating damage to the uncoated surface.

  9. Efficacy of needle-placement technique in radiofrequency ablation for treatment of lumbar facet arthropathy

    Directory of Open Access Journals (Sweden)

    Loh JT

    2015-10-01

    Full Text Available Jeffrey T Loh,1 Andrea L Nicol,1 David Elashoff,2 F Michael Ferrante,1 1Department of Anesthesiology, David Geffen School of Medicine, 2Department of Biomathematics, University of California Los Angeles, Los Angeles, CA, USA Background: Many studies have assessed the efficacy of radiofrequency ablation to denervate the facet joint as an interventional means of treating axial low-back pain. In these studies, varying procedural techniques were utilized to ablate the nerves that innervate the facet joints. To date, no comparison studies have been performed to suggest superiority of one technique or even compare the prevalence of side effects and complications. Materials and methods: A retrospective chart review was performed on patients who underwent a lumbar facet denervation procedure. Each patient's chart was analyzed for treatment technique (early versus advanced Australian, preprocedural visual numeric scale (VNS score, postprocedural VNS score, duration of pain relief, and complications. Results: Pre- and postprocedural VNS scores and change in VNS score between the two groups showed no significant differences. Patient-reported benefit and duration of relief was greater in the advanced Australian technique group (P=0.012 and 0.022, respectively. The advanced Australian technique group demonstrated a significantly greater median duration of relief (4 months versus 1.5 months, P=0.022. Male sex and no pain-medication use at baseline were associated with decreased postablation VNS scores, while increasing age and higher preablation VNS scores were associated with increased postablation VNS scores. Despite increasing age being associated with increased postablation VNS scores, age and the advanced Australian technique were found to confer greater patient self-reported treatment benefit. Conclusion: The advanced Australian technique provides a significant benefit over the early Australian technique for the treatment of lumbar facet pain, both in

  10. The Effect of Anodic Surface Treatment on the Oxidation of Catechols at Ultrasmall Carbon Ring Electrodes

    Science.gov (United States)

    1991-07-09

    selectivity. A model of the surface formed following anodic oxidation is consistent with previous models involving both surface cleanliness and carbon...involving both surface cleanliness and carbon structure orientation. 2 INTRODUCTION Because of the vast electroanalytical utility of carbon electrodes...of the electron transfer rate following treatment are a function of the surface cleanliness and the orientation of the carbon structure

  11. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Science.gov (United States)

    Joshi, Ujjwal Man; Subedi, Deepak Prasad

    2015-07-01

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  12. Surface treatment of high density polyethylene (HDPE film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Joshi Ujjwal Man

    2015-03-01

    Full Text Available Thin films of high density polyethylene (HDPE are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. HDPE samples before and after the treatment are studied using contact angle measurements, surface free energy calculations and atomic force microscopy (AFM. Distilled water (H2O, glycerol (C3H8O3 and diiodomethane (CH2I2 are used as test liquids. The contact angle measurements between test liquids and HDPE samples are used to determine total surface free energy using sessile drop technique. HDPE films show a remarkable increase in surface free energy after plasma treatment. AFM analysis of the plasma-treated HDPE films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  13. Bacteria Adherence Properties of Nitrogen-Doped TiO2 Coatings by Plasma Surface Alloying Technique

    Science.gov (United States)

    Wang, Hefeng; Tang, Bin; Li, Xiuyan; Fan, Ailan

    Titanium nitride coatings on 316L stainless steel (S. S) were obtained by plasma surface alloying technique. Nitrogen-doped titanium dioxide (TiO2-xNx) was synthesized by oxidative annealing the resulted TiNx coatings in air. The reference TiO2 samples were also prepared by oxidation of sputtered Ti coatings. The as-prepared coatings were characterized by X-ray diffraction, glow discharge optical emission spectrometer (GDOES), scanning electron microscopy, X-ray hotoelectron spectroscopy and UV-Vis spectrophotometry, respectively. The bacteria adherence property of the TiO2-xNx coatings on stainless steel on the oral bacteria Streptococcus Mutans was investigated and compared with that of stainless steel by fluorescence microscopy. The mechanism of the bacteria adherence was discussed. The results show that the TiO2-xNx coatings are composed of anatase crystalline structure. SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment. Optical properties reveal an extended tailing of the absorption edge toward the visible region due to nitrogen presence. The band gap of the N-doped sample is reduced from 2.29 eV to 1.90 eV compared with the pure TiO2 one. Because of the different roughness and microstructure, the TiO2-xNx coatings inhibit the bacteria adherence.

  14. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma:Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    Atsushi KUWABARA; Shin-ichi KURODA; Hitoshi KUBOTA

    2007-01-01

    The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed.The change of the surface property over time,in comparison with low pressure oxygen (O2) plasma treatment,is examined.As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement.However,when the atmospheric pressure plasma was used for PP(polypropylene),it produced remarkable hydrophilic effects.

  15. Temperature variation on root surface with three root-end cavity preparation techniques

    Directory of Open Access Journals (Sweden)

    Bodrumlu Emre

    2013-01-01

    Full Text Available Introduction. Thermal changes can occur on the external root surface when root-end cavity preparation is performed, which may damage periodontal ligament cells and alveolar bone. Objective. The purpose of this study was to evaluate the temperature changes during preparation of the root-end cavities at 1 and 3 mm to the sectioned apical root surfaces when either tungsten carbide round bur, diamond round bur or ultrasonic diamond tip was used. Methods. Root-end resection was performed at 90° to the long axis of the root, 3 mm from the apex. Specimens were randomly divided into thr