WorldWideScience

Sample records for surface treatment resulted

  1. Laser surface treatment and the resultant hierarchical topography of Ti grade 2 for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Kuczyńska, Donata, E-mail: donatakuczynska@gmail.com [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Kwaśniak, Piotr [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Marczak, Jan [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland); Bonarski, Jan [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Cracow (Poland); Smolik, Jerzy [Institute for Sustainable Technology–National Research Institute, Radom (Poland); Garbacz, Halina [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    2016-12-30

    Highlights: • Presented surface modification results in multimodal topography. • Laser treatment creates roughness in a range from nano- to micrometers. • Multimodal topography promote protein adsorption. • Hybrid surface treatment results in a texture favorable for osteogenic passes. - Abstract: Modern prosthesis often have a complex structure, where parts of an implant have different functional properties. This gradient of functional properties means that local surface modifications are required. Method presented in this study was develop to functionalize prefabricated elements with original roughness obtained by conventional treatments used to homogenize and clean surface of titanium implants. Demonstrated methodology results in multimodal, periodic grooved topography with roughness in a range from nano- to micrometers. The modified surfaces were characterized in terms of shape, roughness, wettability, surface energy and chemical composition. For this purpose, the following methods were used: scanning electron microscopy, optical profilometry, atomic force microscopy, contact angle measurements and X-ray photoelectron spectroscopy. Protein adsorption studies were conducted to determine the potential biomedical application of proposed method. In order to estimate the intensity and way of the protein adsorption process on different titanium surfaces, XPS studies and AFM measurements were performed. The systematic comparison of surface states and their osseointegration tendency will be useful to evaluate suitability of presented method as an single step treatment for local surface functionalization of currently produced implantable devices.

  2. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  3. Topical treatment of psoriasis: questionnaire results on topical therapy accessibility and influence of body surface area on usage.

    Science.gov (United States)

    Iversen, L; Lange, M M; Bissonette, R; Carvalho, A V E; van de Kerkhof, P C; Kirby, B; Kleyn, C E; Lynde, C W; van der Walt, J M; Wu, J J

    2017-07-01

    Topical treatment of mild to moderate psoriasis is first-line treatment and exhibits varying degrees of success across patient groups. Key factors influencing treatment success are physician topical treatment choice (high efficacy, low adverse events) and strict patient adherence. Currently, no formalized, international consensus guidelines exist to direct optimal topical treatment, although many countries have national guidelines. To describe and analyse cross-regional variations in the use and access of psoriasis topical therapies. The study was conducted as an observational cross-sectional study. A survey was distributed to dermatologists from the International Psoriasis Council (IPC) to assess topical therapy accessibility in 26 countries and to understand how body surface area (BSA) categories guide clinical decisions on topical use. Variation in the availability of tars, topical retinoids, dithranol and balneotherapy was reported. The vast majority of respondents (100% and 88.4%) used topical therapy as first-line monotherapy in situations with BSA 10%, the number of respondents who prescribe topical therapy decreased considerably. In addition, combination therapy of a topical drug and a systemic drug was frequently reported when BSA measured >10%. This physician survey provides new evidence on topical access and the influence of disease severity on topical usage in an effort to improve treatment strategies on a global level. © 2017 European Academy of Dermatology and Venereology.

  4. From acid etching treatments to tribocorrosive properties of dental implants: do some experimental results on surface treatments have an influence on the tribocorrosion behaviour of dental implants?

    International Nuclear Information System (INIS)

    Geringer, Jean; Demanget, Nicolas; Pellier, Julie

    2013-01-01

    Surface treatments of dental implants aim at promoting osseointegration, i.e. the anchorage of the metallic part. Titanium-, grade II–V, based material is used as a bulk material for dental implants. For promoting the anchorage of this metallic biomaterial in human jaw, some strategies have been applied for improving the surface state, i.e. roughness, topography and coatings. A case study, experimental study, is described with the method of acid etching on titanium grade 4, CpTi. The main goal is to find the right proportion in a mixture of two acids in order to obtain the best surface state. Finally, a pure theoretical prediction is quite impossible and some experimental investigations are necessary to improve the surface state. The described acid etching is compared with some other acid etching treatments and some coatings available on dental implants. Thus, the discussion is focused on the tribocorrosion behaviour of titanium-based materials. The purpose of the coating is that the lifetime under tribocorrosion is limited. Moreover, the surgery related to the implantation has a huge impact on the stability of dental implants. Thus, the performance of dental implants depends on factors related to surgery (implantation) that are difficult to predict from the biomaterial characteristics. From the tribocorrosion point of view, i.e. during the mastication step, the titanium material is submitted to some deleterious factors that cause the performance of dental implants to decrease. (paper)

  5. Topical treatment of psoriasis: questionnaire results on topical therapy accessibility and influence of body surface area on usage

    NARCIS (Netherlands)

    Iversen, L.; Lange, M.M. De; Bissonette, R.; Carvalho, A.V.E.; Kerkhof, P.C.M. van de; Kirby, B.; Kleyn, C.E.; Lynde, C.W.; Walt, J.M. van der; Wu, J.J.

    2017-01-01

    BACKGROUND: Topical treatment of mild to moderate psoriasis is first-line treatment and exhibits varying degrees of success across patient groups. Key factors influencing treatment success are physician topical treatment choice (high efficacy, low adverse events) and strict patient adherence.

  6. Monolayer alignment on azobenzene surfaces during UV light irradiation: Analysis of optical polarized absorption measurement results and theoretical treatment

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2006-01-01

    The influence of the charge separation during the trans-cis conformational change on the surface of azobenzene 6Az10PVA monolayer on the polar liquid-crystal monolayer film, such as 4-n-pentyl-4 ' -cyanobiphenyl(5CB), is investigated. The effective anchoring energy (in the Rapini-Papolar form) is phenomenologically described in the framework of the molecular model, which takes into account the interaction between the surface polarization and surface electric field, for number of conformational states of the boundary surface. It is shown, using the experimental data for the voltage across the 6Az10PVA+5CB film, provided by the surface-potential technique, that the charge separation during the conformational changing, caused by the UV irradiation, may lead to changing of the surface alignment of liquid-crystalline molecules. The influence of the photoisomerization process on the orientational order parameter S 2 (t) using the optical polarized absorption measurement is also investigated

  7. Building 107 for surface treatment

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    A brand new state-of-the-art building hosting laboratories for the surface treatment of vacuum equipment and workshops for the manufacturing and treatment of printed circuit boards was completed in 2017.

  8. The Role of Light-Induced Fluorescence in the Treatment of Smooth Surface Carious Lesions with Icon Infiltration and the Results After 1 Year

    Directory of Open Access Journals (Sweden)

    Kabaktchieva R.

    2014-12-01

    Full Text Available Caries infiltration is a novel technique that brings out immediate esthetic improvement in the opacity of the white spot lesions. Light-induced fluorescence method is a modern caries diagnostic method. In this study SoproLife camera (Acteon, France was applied for diagnosing and follow-up of the results. The aims of this in vivo study are to test the role of light-induced fluorescence method (SoploLife camera in the diagnosis of non-cavitated smooth surfaces carious lesions (ICDAS codes 1 and 2 of primary and permanent teeth and in the follow-up period immediately after application, 6 months and 1 year after applying ICON material (DMG. Teeth: n = 90; primary teeth: 6 kids; n = 40 teeth; permanent teeth: 6 patients; n = 50 teeth. Visual examination by ICDAS without probe, dry for 10 s with 3-in-1 syringe using lightening; SoproLife camera (450 nm, digital photos. LIF method applied with SoproLife camera (Diagnostic mode with day light and blue light is more accurate than visual examination only when applied for single tooth diagnose. Moreover, LIF method for single tooth is more accurate in following up the effect of non-operative treatment of smooth surfaces lesions than using digital images. ICON is a material that stops the progression of non-cavitated smooth surfaces carious lesions in both primary and permanent teeth and make the aesthetic result better up to 1 year following the procedure.

  9. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  10. Surface treatment of zirconia ceramics

    International Nuclear Information System (INIS)

    1980-01-01

    A method of chemically micropitting and/or microcratering at least a portion of a smooth surface of an impervious zirconia-base ceramic is described, comprising (a) contacting the smooth surface with a liquid leachant selected from concentrated sulphuric acid, ammonium bisulphate, alkali metal bisulphates and mixtures thereof at a temperature of at least 250 0 C for a period of time sufficient to effect micropitting and/or microcratering generally uniformly distributed throughout the microstructure of the resultant leached surface; (b) removing the leached surface from contact with the leachant; (c) contacting the leached surface with hydrochloric acid to effect removal from the leached surface of a residue thereon comprising sulphate of metal elements including zirconium in the ceramic; (d) removing the leached surface from contact with the hydrochloric acid; and (e) rinsing the leached surface with water to effect removal of acid residue from that surface. (author)

  11. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  12. Treatment Results of Ovarian Dysqerminoma

    International Nuclear Information System (INIS)

    Chung, Eun Ji; Suh, Chang Ok; Seong, Jin Sil; Keum, Ki Chang; Kim, Gwi Eon

    1996-01-01

    Purpose : We tried to evaluate the clinical characteristics, the treatment methods, the results of treatments, and the patterns of failure in ovarian dysgerminoma retrospectively. According to the results we would like to suggest the proper management guideline of stage la ovarian dysgerminoma patients who want to maintain fertility. Methods and Materials : Between 1975 and 1990, 34 patients with ovarian dysgerminoma were treated at the Yonsei University Hospital. The case records of these patients have been reviewed for presenting symptoms, treatment methods, local control, and survival following treatment. Excluded from analysis were five patients with mixed ovarian germ cell tumors and gonadoblastomas (46,XY). Treatment results of the twenty nine patients were analysed by each treatment modality. Twenty one patients were treated with surgery and postoperative adjuvant radiotherapy(group 1). The other eight patients were treated with operation alone (group 2). The median age of twenty-nine patients was 23 years with a range of 8 to 39 years. Presenting symptoms were abdominal mass(20), pelvic discomfort or pain(5) et al. Radiotherapy was performed by 10MV LINAC or Co-60 teletherapy unit. The total radiation dose of the whole abdomen was 20-25 Gy/3 weeks, 1-1.5 Gy/fraction with a boost to the whole pelvis 10-15 Gy / 1-2 weeks1.8-2.0 Gy/fraction. Advanced stage disease (stage II or stage III) patients received prophylactic mediastinal and supraclavicular irradiation to a dose of 16-26 Gy. Median duration of follow-up of living patients was 80 months (range : 13-201 months). Results : All of the twenty one patients of group 1 were alive without disease (100%). Among the eight patients who were not treated with radiotherapy (group 2), six patients developed local recurrence. Four patients referred with recurrent disease were treated with salvage radiotherapy. Three of four patients were salvaged and one patient who had recurrent intra-abdominal disease died of

  13. Surface engineering and heat treatment

    International Nuclear Information System (INIS)

    Morton, P.H.

    1991-01-01

    This book is the proceedings of a Conference organised jointly by The Institute of Metals and The Centre for Exploitation of Science and Technology (CEST). It sets out to review this role and point the way to the future by collecting together a series of invited papers written by noted authorities in their fields. The opening review by CEST highlights the economic and industrial importance of Surface Engineering and is followed by a group of four articles devoted to specific branches of industry. Several technical papers then describe various aspects of the development of heat treatment over the last twenty-five years. These are followed by papers describing advances made possible by new technologies such as plasma, laser and ion beam. A separate abstract has been prepared for a paper on materials aspects of ion beam technology. (author)

  14. [Treatment possibilities and treatment results in pneumoconioses].

    Science.gov (United States)

    Ulmer, W T

    1983-01-01

    Some types of pneumoconiosis, such as asbestosis, are characterized by marked restrictive functional patterns. Treatment is begun when definite arterial hypoxemia appears, since the inhalation of oxygen clearly lowers pulmonary artery pressure. It is also important that the onset of concomitant airway obstruction is recognized promptly. From the sociomedical standpoint the most significant pneumoconiosis continues to be the miner's anthracosilicosis. The functional pattern of this pneumoconiosis is clearly airway obstruction, and such anthracosilicotic airway obstruction responds like all other forms of airway obstruction to antiobstructive therapy. The fundamentals of this therapy, which is based on the use of bronchodilators, adrenal cortical hormones and antibiotics, are described.

  15. Friction Surface Treatment Selection: Aggregate Properties, Surface Characteristics, Alternative Treatments, and Safety Effects

    Science.gov (United States)

    2017-07-01

    This study aimed to evaluate the long term performance of the selected surface friction treatments, including high friction surface treatment (HFST) using calcined bauxite and steel slag, and conventional friction surfacing, in particular pavement pr...

  16. Method for surface treatment by electron beams

    International Nuclear Information System (INIS)

    Panzer, S.; Doehler, H.; Bartel, R.; Ardenne, T. von.

    1985-01-01

    The invention has been aimed at simplifying the technology and saving energy in modifying surfaces with the aid of electron beams. The described beam-object geometry allows to abandon additional heat treatments. It can be used for surface hardening

  17. Surface treatments for aluminium alloys

    Science.gov (United States)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  18. Treatment Results of Supraglottic Carcinoma

    International Nuclear Information System (INIS)

    Park, Charn Il; Kim, Kwang Hyun

    1984-01-01

    From March of 1979 through December of 1982, 84 patients with supraglottic carcinoma were seen and evaluated in the Department of Therapeutic Radiology, Seoul National University Hospital. Of these, 68 patients were treated with a curative intent by employing either radiotherapy alone or a combined approach of radiotherapy plus surgery. Sixteen patients refused to complete the treatment program. Seventy-three per cent of patients had T3 and T4 lesions and 63% of patients had lymph node metastasis at the time of diagnosis. Actuarial recurrence-free survival at 3 year was: Stage I-III 62%, Stage III 54%, Stage IV 18%. For T1-2, T3 and T4 lesions, the actuarial recurrence free survival at 3 years were 50%, 34% and 9% respectively. Of 39 patients with treatment failure, 29 patients (78%) had uncontrol or ultimate recurrence at the primary site while 9 patients having lymph node recurrence, 14 patients(21%) had lymph node recurrence, and 5 patients had distant metastasis. It is suggested that planned combined radiotherapy is indicated for advanced but respectable supraglottic carcinoma

  19. Homestake surface-underground scintillators: Initial results

    International Nuclear Information System (INIS)

    Cherry, M.L.; Corbato, S.; Daily, T.; Fenyves, E.J.; Kieda, D.; Lande, K.; Lee, C.K.

    1986-01-01

    The first 70 tons of the 140-ton Large Area Scintillation Detector (LASD) have been operating since Jan. 1985 at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine, Lead, S.D. A total of 4 x 10(4) high-energy muons (E sub mu is approx. 2.7 TeV at the surface) have been detected. The remainder of the detector is scheduled to be in operation by the Fall of 1985. In addition, a surface air shower array is under construction. The first 27 surface counters, spaced out over an area of 270' x 500', began running in June, 1985. The LASD performance, the potential of the combined shower array and underground muon experiment for detecting point sources, and the initial results of a search for periodic emission from Cygnus X-3 are discussed

  20. Surface treatment of ceramic articles

    International Nuclear Information System (INIS)

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-01-01

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs

  1. Dynamically triangulated surfaces - some analytical results

    International Nuclear Information System (INIS)

    Kostov, I.K.

    1987-01-01

    We give a brief review of the analytical results concerning the model of dynamically triangulated surfaces. We will discuss the possible types of critical behaviour (depending on the dimension D of the embedding space) and the exact solutions obtained for D=0 and D=-2. The latter are important as a check of the Monte Carlo simulations applyed to study the model in more physical dimensions. They give also some general insight of its critical properties

  2. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    . Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  3. High Friction Surface Treatments, Transportation Research Synthesis

    Science.gov (United States)

    2018-03-01

    MnDOT and local transportation agencies in Minnesota are considering the use of a high friction surface treatment (HFST) as a safety strategy. HFST is used as a spot pavement surfacing treatment in locations with high friction demand (for example, cr...

  4. [Influence of different surface treatments on porcelain surface topography].

    Science.gov (United States)

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  5. Heparin-bonded, expanded polytetrafluoroethylene-lined stent graft in the treatment of femoropopliteal artery disease: 1-year results of the VIPER (Viabahn Endoprosthesis with Heparin Bioactive Surface in the Treatment of Superficial Femoral Artery Obstructive Disease) trial.

    Science.gov (United States)

    Saxon, Richard R; Chervu, Arun; Jones, Paul A; Bajwa, Tanvir K; Gable, Dennis R; Soukas, Peter A; Begg, Richard J; Adams, John G; Ansel, Gary M; Schneider, Darren B; Eichler, Charles M; Rush, Michael J

    2013-02-01

    To evaluate the performance of a heparin-bonded, expanded polytetrafluoroethylene (ePTFE)-lined nitinol endoprosthesis in the treatment of long-segment occlusive disease of the femoropopliteal artery (FPA) and to identify factors associated with loss of patency. In a single-arm, prospective, 11-center study (VIPER [Gore Viabahn Endoprosthesis with Heparin Bioactive Surface in the Treatment of Superficial Femoral Artery Obstructive Disease] trial), 119 limbs (113 patients; 69 men; mean age, 67 y), including 88 with Rutherford category 3-5 disease and 72 with Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II) C or D lesions of the FPA, underwent stent graft implantation. The mean lesion length was 19 cm; 56% of lesions were occlusions. Follow-up evaluations included color duplex ultrasonography in all patients, with patency defined as a peak systolic velocity ratio20% was 70% (P = .047). Primary patency was not significantly affected by device diameter (5 vs 6 vs 7 mm) or lesion length (≤20 cm vs>20 cm). The 30-day major adverse event rate was 0.8%. The heparin-bonded, ePTFE/nitinol stent graft provided clinical improvement and a primary patency rate of 73% at 1 year in the treatment of long-segment FPA disease. Careful sizing of the device relative to vessel landing zones is essential for achieving optimal outcomes. Copyright © 2013 SIR. Published by Elsevier Inc. All rights reserved.

  6. Ultrasonic Surface Treatment of Titanium Alloys. The Submicrocrystalline State

    Science.gov (United States)

    Klimenov, V. A.; Vlasov, V. A.; Borozna, V. Y.; Klopotov, A. A.

    2015-09-01

    The paper presents the results of the research on improvement of physical-and- mechanical properties of titanium alloys VT1-0 and VT6 by modification of surfaces using ultrasonic treatment, and a comprehensive study of the microstructure and mechanical properties of modified surface layers. It has been established that exposure to ultrasonic treatment leads to formation in the surface layer of a structure with an average size of elements 50 - 100 nm, depending on the brand of titanium alloy.

  7. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    International Nuclear Information System (INIS)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R.

    2004-01-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle

  8. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Science.gov (United States)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  9. Surface modification of polymer nanofibres by plasma treatment

    International Nuclear Information System (INIS)

    Wei, Q.F.; Gao, W.D.; Hou, D.Y.; Wang, X.Q.

    2005-01-01

    Polymer nanofibres have great potential for technical applications in biomaterials, filtration, composites and electronics. The surface properties of nanofibres are of importance in these applications. In this study, cold gas plasma treatment was used to modify the surface of polyamide 6 nanofibres prepared by electrospinning. The chemical nature of the nanofibre surfaces was examined by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was employed to study the surface characteristics of the fibres. The AFM results indicate a significant change in the morphology of the fibre surface before and after plasma treatment. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behaviour of the fibres. In the ESEM, relative humidity was raised to 100% to facilitate the water condensation onto fibre surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of the polyamide 6 nanofibres

  10. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  11. Erosion resistance comparison of alternative surface treatments

    Science.gov (United States)

    Česánek, Z.; Schubert, J.; Houdková, Š.

    2017-05-01

    Erosion is a process characterized by the particle separation and the damage of component functional surfaces. Thermal spraying technology HP/HVOF (High Pressure / High Velocity Oxygen Fuel) is commonly used for protection of component surfaces against erosive wear. Alloy as well as cermet based coatings meet the requirements for high erosion resistance. Wear resistance is in many cases the determining property of required component functioning. The application suitability of coating materials is particularly influenced by different hardness. This paper therefore presents an erosion resistance comparison of alloy and cermet based coatings. The coatings were applied on steel substrates and were subjected to the erosive test using the device for evaluation of material erosion resistance working on the principle of centrifugal erodent flow. Abrasive sand Al2O3 with grain size 212-250 μm was selected as an erosive material. For this purpose, the specimens were prepared by thermal spraying technology HP/HVOF using commercially available powders Stellite 6, NiCrBSi, Cr3C2-25%NiCr, Cr3C2-25%CoNiCrAlY, Hastelloy C-276 and experimental coating TiMoCN-29% Ni. Erosion resistance of evaluated coatings was compared with erosive resistance of 1.4923 high alloyed steel without nitridation and in nitrided state and further with surface treatment using technology PVD. According to the evaluation, the resulting erosive resistance depends not only on the selected erodent and surface protection, but also on the erodent impact angle.

  12. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  13. Surface modification of steels by electrical discharge treatment in electrolyte

    International Nuclear Information System (INIS)

    Krastev, D.; Paunov, V.; Yordanov, B.; Lazarova, V.

    2013-01-01

    Full text: In this work are discussed some experimental data about the influence of applied electrical discharge treatment in electrolyte on the surface structure of steels. The electrical discharge treatment of steel surface in electrolyte gives a modified structure with specific combination of characteristics in result of nonequilibrium transformations. The modification goes by a high energy thermal process in a very small volume on the metallic surface involving melting, vaporisation, activation and alloying in electrical discharges, and after that cooling of this surface with high rate in the electrolyte. The surface layers obtain a different structure in comparison with the metal matrix and are with higher hardness, wear resistance and corrosion resistance. key words: surface modification, electrical discharge treatment in electrolyte, steels

  14. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Surface oxide formation during corona discharge treatment of AA 1050 aluminium surfaces

    DEFF Research Database (Denmark)

    Minzari, Daniel; Møller, Per; Kingshott, Peter

    2008-01-01

    process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide...

  16. LRAD surface monitoring results at TA-21

    International Nuclear Information System (INIS)

    Bounds, J.A.

    1995-01-01

    In August/September 1994, NIS-6 personnel used LRAD soil surface monitor technology to characterize the extent of alpha contamination on the surface of a parking lot adjacent to TA-21, LANL, known as Material Disposal Area B. This report documents that monitoring. Based on this survey, there is no reason for concern about significant contamination in the parking area as a whole, although unexpected small hot spots could exist between the grid points where monitoring was performed. However, the grouping of high readings on the east side of the parking area does point to possible contamination at the level of 100 dpm/100 cm 2 or less (above background). Further monitoring or remediation of this area seems appropriate. In addition, because this was an alpha survey, one cannot rule out contamination under the asphalt or possibly between layers if it was paved more than once

  17. Advances in surface treatments: Technology, applications, effects

    International Nuclear Information System (INIS)

    Niku-Lari, A.

    1987-01-01

    An international handbook has been produced to include all aspects of residual stresses, including the theoretical background, effects of residual stresses, measurement and calculation and quantitative assessment of residual stress effects. Techniques for altering residual stresses, particularly surface treatments, are discussed. Up to date information on the state of the art is presented. (UK)

  18. Treatment of polymer surfaces in plasma Part I. Kinetic model

    International Nuclear Information System (INIS)

    Tabaliov, N A; Svirachev, D M

    2006-01-01

    The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances

  19. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Improvement of crystalline silicon surface passivation by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Martin, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P.

    2004-01-01

    A completely dry low-temperature process has been developed to passivate 3.3 Ω cm p-type crystalline silicon surface with excellent results. Particularly, we have investigated the use of a hydrogen plasma treatment, just before hydrogenated amorphous silicon carbide (a-SiC x :H) deposition, without breaking the vacuum. We measured effective lifetime, τ eff , through a quasi-steady-state photoconductance technique. Experimental results show that hydrogen plasma treatment improves surface passivation compared to classical HF dip. S eff values lower than 19 cm s -1 were achieved using a hydrogen plasma treatment and an a-SiC x :H film deposited at 300 deg. C

  1. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    International Nuclear Information System (INIS)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-01-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased

  2. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon

    2012-08-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  3. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon; Oh, Sang-gyun; Ha, Juyoung; Monteiro, Paulo M.

    2012-01-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  4. Effect of surface treatment of tailings on effluent quality

    International Nuclear Information System (INIS)

    Murray, D.R.

    1980-01-01

    Successful reclamation treatment, in preparation for long range abandonment of mining wastes, involves both surface treatment and water quality control containment of waste solids and liquid contaminants. This paper describes use of lysimeters containing 125 tonnes of tailings to determine the impact of gravel, sawdust, and vegetation as surface treatments on the quality and quantity of effluent produced from sulphide-containing uranium mill tailings. Over a five-year period these treatments were observed and compared with bare tailings where no surface addition was made. The treatments did not alter the effluent quality to a level acceptable to regulatory requirements. Surface treatments did not appear to affect the leaching of Ra-226, NH 4 and NO 3 . The concentration of Fe, SO 4 , Cu, Pb, and Al increased with the rise of acidity as the pH changed from pH 9.5 to pH 2 in four and one-half years. However the rate and extent of changes of some of these parameters vary with the treatment. The experimental results for the observed trends are presented with limited explanation. Original design problems and unexpected delays in tailing reactions have made firm conclusions impossible at this stage. These data, however, provide a base for further investigation and development of explanations and firm conclusions, as to the role of surface treatment in long-term waste abandonment

  5. Laser welding, cutting and surface treatment

    International Nuclear Information System (INIS)

    Crafer, R.C.

    1984-01-01

    Fourteen articles cover a wide range of laser applications in welding, cutting and surface treatment. Future trends are covered as well as specific applications in shipbuilding, the manufacture of heart pacemakers, in the electronics industry, in automobile production and in the aeroengine industry. Safety with industrial lasers and the measurement of laser beam parameters are also included. One article on 'Lasers in the Nuclear Industry' is indexed separately. (U.K.)

  6. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  7. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  8. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Bahre, H; Böke, M; Winter, J; Bahroun, K; Behm, H; Hopmann, Ch; Steves, S; Awakowicz, P

    2013-01-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. (paper)

  9. Ion implantation as an efficient surface treatment

    International Nuclear Information System (INIS)

    Straede, C.A.

    1992-01-01

    Ion beam processing has for several years been well established in the semiconductor industry. In recent years ion implantation of tool steels, ceramics and even plastics has gained increasing industrial awareness. The development of ion implantation to a commercially viable surface treatment of tools and spare parts working in production type environments is very dependent on technical merits, economic considerations, competing processes and highly individual barriers to acceptance for each particular application. Some examples of this will be discussed. The development of the process is very closely linked with the development of high current accelerators and their ability to efficiently manipulate the samples being treated, or to make sample manipulation superfluous by using special beam systems like the PSII. Furthermore, the ability to produce high beam currents (mA) of a wide variety of ions is crucial. Previously, it was broadly accepted that ion implantation of tools on a commercial basis generally had to be limited to nitrogen implantation. The development of implanters which can produce high beam currents of ions like B + , C + , Ti + , Cr + and others is rapidly changing this situation, and today an increasing number of commercial implantations are performed with these ions although nitrogen is still successfully used in the majority of commercial implantation. All in all, the recent development of equipment makes it possible to a higher extent than before to tailor the implantation to a specific situation. The emerging new possibilities in this direction will be discussed, and a broad selection of practical examples of ion implantation at standard low temperatures of tools and spare parts will be given. Furthermore, very interesting results have been obtained recently by implanting nitrogen at elevated temperatures, which yields a relatively deep penetration of the implanted ions. (orig./WL)

  10. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    Science.gov (United States)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  11. Ion beam surface treatment: A new capability for rapid melt and resolidification of surfaces

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McIntyre, D.C.; Buchheit, R.G.; Greenly, J.B.; Thompson, M.O.

    1994-01-01

    The emerging capability to produce high average power (5--250 kW) pulsed ion beams at 0.2--2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This technique uses high energy, pulsed (≤100 ns) ion beams to directly deposit energy in the top 2--20 micrometers of the surface of any material. Depth of treatment is controllable by varying the ion energy and species. Deposition of the energy with short pulses in a thin surface layer allows melting of the layer with relatively small energies and allows rapid cooling of the melted layer by thermal diffusion into the underlying substrate. Typical cooling rates of this process (10 9 10 10 K/sec) cause rapid resolidification, resulting in production of non-equilibrium microstructures (nano-crystalline and metastable phases) that have significantly improved corrosion, wear, and hardness properties. We have conducted IBEST feasibility experiments with results confirming surface hardening, nanocrystaline grain formation, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning

  12. Chronic total coronary occlusion: treatment results.

    Science.gov (United States)

    Kirk Christensen, Martin; Freeman, Phillip Fischer; Rasmussen, Jeppe Groendal; Villadsen, Anton Boel; Raungaard, Bent; Eggert Jensen, Svend; Thuesen, Leif

    2017-08-01

    To describe the clinical and procedural coronary chronic total occlusion (CTO) treatment results in a Nordic PCI centre during the implementation of a CTO treatment program. In a retrospective registry study, we assessed; (1) indication for the procedure, (2) Canadian Cardiovascular Society angina pectoris score (CCS)/New York Heart Association (NYHA) heart failure score, (3) lesion complexity and (4) adverse events during hospital stay and three months following the index procedure. The study cohort included 503 patients (594 lesions). From 2010 to 2013 96% of procedures were performed with antegrade wire-escalation technique and 4% performed using retrograde techniques, from 2013-2016 the corresponding numbers were 83% and 17.0%. The procedural success rate was 69%, increasing from 64% before to 72% (p = .06) after routinely using the retrograde approach. No individual patient characteristic, lesion variable or score was strongly associated with procedural success or failure. There were 4% serious procedure related complications. In patients with PCI of a CTO lesion only, 87% were in CCS or NYHA functional class ≥2 before the index procedure vs. 22% at follow-up. Routine use of retrograde techniques tended to increase the procedural success rate. Clinical results after three months were acceptable, but the complication rate was higher than for non-CTO PCI. Individual patient and lesion characteristics had a low predictability for procedural success. Therefore, clinical symptoms, objective signs of myocardial ischemia and procedural risk should be focus points in coronary chronic total occlusion treatment strategies.

  13. Hepatic toxicity resulting from cancer treatment

    International Nuclear Information System (INIS)

    Lawrence, Theodore S.; Robertson, John M.; Anscher, Mitchell S.; Jirtle, Randy L.; Ensminger, William D.; Fajardo, Luis F.

    1995-01-01

    Radiation-induced liver disease (RILD), often called radiation hepatitis, is a syndrome characterized by the development of anicteric ascites approximately 2 weeks to 4 months after hepatic irradiation. There has been a renewed interest in hepatic irradiation because of two significant advances in cancer treatment: three dimensional radiation therapy treatment planning and bone marrow transplantation using total body irradiation. RILD resulting from liver radiation can usually be distinguished clinically from that resulting from the preparative regime associated with bone marrow transplantation. However, both syndromes demonstrate the same pathological lesion: veno-occlusive disease. Recent evidence suggests that elevated transforming growth factor β levels may play a role in the development of veno-occlusive disease. Three dimensional treatment planning offers the potential to determine the radiation dose and volume dependence of RILD, permitting the safe delivery of high doses of radiation to parts of the liver. The chief therapy for RILD is diuretics, although some advocate steroids for severe cases. The characteristics of RILD permit the development of a grading system modeled after the NCI Acute Common Toxicity Criteria, which incorporates standard criteria of hepatic dysfunction

  14. Results of complex treatment of Hodgkin's disease

    International Nuclear Information System (INIS)

    Kolygin, B.A.; Lebedev, S.V.; Borodina, A.F.; Kochurova, N.V.; Malinin, A.P.; Safonova, S.A.; Punanov, Yu.A.

    2000-01-01

    The evaluation of remote results of the complex treatment (polychemotherapy plus radiotherapy) for identification of the forecasting factor which may be applied, by stratification into the risk groups, is carried out. The group of 334 children up to 15 years with lymphogranulomatosis, subjected to not less than 2 cycles of inductive polychemotherapy and consolidating radiotherapy, is analyzed. The irradiation was conducted at the radiotherapeutic devices ROCUS LUE-25 and LUEV-15 M1. The complete remission after the treatment program was fixed by 95.1% of the patients the partial remission-by 6.3%; no effect was noted by 0.6% of the patients. Actuarial 10-year survival constituted 85.9%, the frequency of nonrelapsing flow - 74.3% [ru

  15. Long term results of childhood dysphonia treatment.

    Science.gov (United States)

    Mackiewicz-Nartowicz, Hanna; Sinkiewicz, Anna; Bielecka, Arleta; Owczarzak, Hanna; Mackiewicz-Milewska, Magdalena; Winiarski, Piotr

    2014-05-01

    The aim of this study was to assess the long term results of treatment and rehabilitation of childhood dysphonia. This study included a group of adolescents (n=29) aged from 15 to 20 who were treated due to pediatric hyperfunctional dysphonia and soft vocal fold nodules during their pre-mutational period (i.e. between 5 and 12 years of age). The pre-mutational therapy was comprised of proper breathing pattern training, voice exercises and psychological counseling. Laryngostroboscopic examination and perceptual analysis of voice were performed in each patient before treatment and one to four years after mutation was complete. The laryngostroboscopic findings, i.e. symmetry, amplitude, mucosal wave and vocal fold closure, were graded with NAPZ scale, and the GRBAS scale was used for the perceptual voice analysis. Complete regression of the childhood dysphonia was observed in all male patients (n=14). Voice disorders regressed completely also in 8 out of 15 girls, but symptoms of dysphonia documented on perceptual scale persisted in the remaining seven patients. Complex voice therapy implemented in adolescence should be considered as either the treatment or preventive measure of persistent voice strain, especially in girls. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Using a nitrogen dielectric barrier discharge for surface treatment

    International Nuclear Information System (INIS)

    Borcia, G; Anderson, C A; Brown, N M D

    2005-01-01

    In this paper, continuing previous work, we report on the installation and the testing of an experimental dielectric barrier discharge (DBD) reactor run in a controlled atmospheric pressure gaseous environment other than air. Here, the effects of a N 2 -DBD treatment on the surface of a test polymer material (UHMW polyethylene) are examined, reported, discussed and compared to results obtained previously following air-DBD treatment. Surface analysis and characterization were performed using x-ray photoelectron spectroscopy, contact angle measurement and scanning electron microscopy before and following the DBD processing described. The discharge parameters used were correlated with the changes in the surface characteristics found following DBD treatments of various durations in a nitrogen atmosphere. The work focuses on the control of the gaseous environment supporting the discharge and on the possibility of overcoming the potentially dominant effect of reactive oxygen-related species, derived from any residual air present. The results obtained underline the very high reactivity of such species in the discharge, but are encouraging in respect of the possibility of the implantation or generation of functional groups other than oxygen-related ones at the surface of interest. The processing conditions concerned simulate 'real' continuous high speed processing, allowing the planning of further experiments, where various gaseous mixtures of the type X + N 2 will be used for controlled surface functionalization

  17. Surgical Treatment Results of Acute Acromioclavicular Injuries

    Directory of Open Access Journals (Sweden)

    Mahmoud Jabalameli

    2010-02-01

    Full Text Available Background Different methods of surgical treatment for acromioclavicular(ACjoint injury were considered in the literature. The purpose of the study was to compare intra- articular AC repair technique with the extra-articular coracoclavicular repair technique for the patients with Rockwood type III and VAC joint injury when indicated.Methods: Nineteen consecutive patients with Rockwood type III and VAC joint injury  were treated with intra-articular (Group I - 12 cases and extra-articular (Group II - 7cases repair technique between 1380 - 1386, and the results reviewed. When the diagnosis was established, the mean age of the patients was 32.5 years (Range, 18 - 60; group I and II 31.8 years (Range, 18 - 60 and 34 years (Range, 22 - 58 respectively. The mean duration of postoperative follow - up was 24 months. The Constant shoulder scoring system was applied to obtain clinical results.   Results: Only in group I, the post-surgical complication was associated with fiber allergy, wound infection and pin site infection in two patients respectively. No pain was detected in fourteen cases. Four patients in group I had occasional mild pain during sport activity, while one case in this group reported severe pain during resting which prevented the patient from activity. Also, there was an ossification in thirteen patients particularly in group I. Clinical results showed the mean constant shoulder score was 93.4 in group I and 97.1 in group II.Conclusion: At the time of the follow - up, there was a clear difference between both groups regarding to postoperative pain and discomfort.Therefore, it seemed that potential cause of pain was due to postoperative complications. An interesting postoperative complication without interfere in the functional outcome was coracoclavicular space ossification in most cases. This was probably because of soft tissue injury during the operation.It seemed that surgical treatment of Rockwood type III and VAC joint injuries

  18. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  19. Surface treatments for material protection in nuclear power plants

    International Nuclear Information System (INIS)

    De, P.K.; Gadiyar, H.S.

    1987-01-01

    The paper highlights some of the surface treatment methods used in nuclear power plants to improve their performance. The corrosion resistance of zirconium alloys results from the formation of an adherent and protective film of ZrO 2 . Graphite coating of zircaloy-2 cladding minimizes the susceptibility to environmental induced cracking. Magnetite formation during the hot conditioning operation improves the corrosion resistance of carbon steel as well as controls the spread of radioactivity. It has been illustrated how the surface treatment is helpful for redistributing residual stress to facilitate conversion of tensile stress to compressive stress to mitigate failures due to stress corrosion and fatigue corrosion. Inhibitors and passivators can modify the surface conditions (in situ) of condenser tubes and cooling water systems. These aspects have been dealt in the text of the paper. (author). 8 refs., 3 figures

  20. Thymoma - prognostic factors and treatment results

    International Nuclear Information System (INIS)

    Gripp, S.; Hilgers, K.; Schmitt, G.

    1997-01-01

    Purpose/Objective: To assess the prognostic factors and treatment results of thymoma with emphasis on surgery and radiotherapy. Materials and Methods: Thymoma patients treated at Duesseldorf University Hospital from 1954 to 1991 were studied in this retrospective analysis. Depending on stage and residual disease, treatment was surgery (sternotomy or thoracotomy) with and without radiotherapy and chemotherapy (Holoxan, Endoxan, Vinblastin, Adriamycin, Bleomycin, CDDP, Vepesid). 70 patients (38f, 32m) were enrolled in this study. The mean age was 46,5 years. At presentation the median Karnofsky's index was 90%. In 19% thymoma was accidentally diagnosed, 81% presented symptoms at diagnosis. Masaoka's staging system was used (I: intact capsule; II: invasion of the capsule; III: invasion of neighboring organs; IV: dissemination). Stage at presentation was I:21%; II: 26%; III: 43%; IV: 10%. All histologic slices were peer reviewed. Histologic classification according to Lewis (predominantly lymphocytic: 36%; predominantly epithelial: 23%; mixed type: 33%, spindle cell thymoma: 9%) was applied. All available paraffin embedded specimens (36) were studied with DNA cytometric analysis after Feulgen staining. Occasionally thymoma was accompanied by Myasthenia gravis (23%) or other paraneoplastic syndromes (19%). Statistical analysis was performed using the Kaplan-Meier method and logrank-tests. Multivariate analysis was also performed. Results: From 70 patients treated surgically, 68% were radically resected (R0), 26% incompletely resected (R1,2) and 6% had biopsy only. The median cause specific survival (CSS) was 132 months. All patients with localized disease (stage I and II) were completely resected and received no further therapy, whereas only 50% (15 pat) in stage III and 0% in stage IV were amenable to radical resection. 36% (25 pat) received an additional therapy (CMT): 31% (22 pat) postoperative irradiation and 4% (3 pat) combined radio-chemotherapy. The radiation

  1. Surface Treatment of PET Nonwovens with Atmospheric Plasma

    International Nuclear Information System (INIS)

    Li Shufang

    2013-01-01

    In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.

  2. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  3. Treatment results in isolated humerus majus fractures

    Directory of Open Access Journals (Sweden)

    Hakan Serhat Yanık

    2012-09-01

    Full Text Available Introduction: The aim of this study is to evaluate the resultsof patients with the isolated greater tubercul fractures(GTF of humerus who conservatively or surgicallytreated.Materials and methods: 23 patients were admitted (11women, 12 men with GTF (54% dominant side of 24shoulder between 2008 and 2011. All of patient wereevaluated with MRI as preoperatively soft tissue injury.There was supraspinatus muscle tear together with GTFin 3 case and their shoulder were arthroscopically assistedrotator cuff repair. Osteosynthesis was performed in 3case with screw and fixation in 2 case with suture. GTF of16 shoulder were conservatively treated. Shoulder functionafter treatment were evaluated according to Constantscore (CS, Quick-DASH score (QDS and VAS score.Results: Three patients with screw fixation had CS 68,6points, QDS 12,8 points, VAS score 1,66. Two patientswith suture fixation had 67,5 CS points, 5,1 QDS pointsp,and 2 VAS score. Three patients with rotator cuff tear repairhad 82,6 CS points, 16,6 QDS points, and 2,33 VASscore. In patients with conservatively treated mean CSwas 63,9 points, QDS 26,1 points, VAS 2,96 points.Conclusions: In this study, conservative and surgicaltreatment results were satisfactory. In terms of pain theresults were excellent. In conclusion, GTFs are rare buttrouble-free with a good observation and sufficient rehabilitation.J Clin Exp Invest 2012; 3 (3: 378-382Key words: Humerus, fracture, greater, tubercul

  4. Functional results after treatment for rectal cancer

    Directory of Open Access Journals (Sweden)

    Katrine Jossing Emmertsen

    2014-01-01

    Full Text Available Introduction: With improving survival of rectal cancer, functional outcome has become in- creasingly important. Following sphincter-preserving resection many patients suffer from severe bowel dysfunction with an impact on quality of life (QoL – referred to as low ante- rior resection syndrome (LARS. Study objective: To provide an overview of the current knowledge of LARS regarding symp- tomatology, occurrence, risk factors, pathophysiology, evaluation instruments and treat- ment options. Results: LARS is characterized by urgency, frequent bowel movements, emptying difficulties and incontinence, and occurs in up to 50-75% of patients on a long-term basis. Known risk factors are low anastomosis, use of radiotherapy, direct nerve injury and straight anasto- mosis. The pathophysiology seems to be multifactorial, with elements of anatomical, sen- sory and motility dysfunction. Use of validated instruments for evaluation of LARS is es- sential. Currently, there is a lack of evidence for treatment of LARS. Yet, transanal irrigation and sacral nerve stimulation are promising. Conclusion: LARS is a common problem following sphincter-preserving resection. All pa- tients should be informed about the risk of LARS before surgery, and routinely be screened for LARS postoperatively. Patients with severe LARS should be offered treatment in order to improve QoL. Future focus should be on the possibilities of non-resectional treatment in order to prevent LARS. Resumo: Introdução: Com o aumento da sobrevida após câncer retal, o resultado funcional se tornou cada vez mais importante. Após ressecção com preservação do esfíncter, muitos pacientes sofrem de disfunção intestinal com um impacto sobre a qualidade de vida (QdV – denomi- nada síndrome da ressecção anterior baixa (LARS. Objetivo do estudo: Fornecer uma visão geral do conhecimento atual da LARS com relação à sintomatologia, à ocorrência, aos fatores de risco, à fisiopatologia, aos

  5. Surface treatment of glass substrates for the preparation of long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Takekoshi, Eiko

    1981-02-01

    Glass substrates having uniformly distributed microscopic grains on the surfaces are useful to make long-lived carbon stripper foils for heavy ions. A method of surface treatment of glass substrates to form the surface structure is described. This method consists of precipitation of glass components, such as soda, onto the surfaces in a hot and humid atmosphere and a fogging treatment of forming microscopic grains of the precipitated substances. Some results of studies on the treatment conditions are also presented. (author)

  6. Transfer matrix treatment of atomic chemisorption on transition metal surface

    International Nuclear Information System (INIS)

    Mariz, A.M.; Koiller, B.

    1980-05-01

    The atomic adsorption of hydrogen on paramagnetic nickel 100 surface is studied, using the Green's function formalism and the transfer matrix technique, which allows the treatment of the geometry of the system in a simple manner. Electronic correlation at the adatom orbital in a self consistent Hartree-Fock approach is incorporated. The adsorption energy, local density of states and charge transfer between the solid and the adatom are calculated for different crystal structures (sc and fcc) and adatom positions at the surface. The results are discussed in comparison with other theories and with available experimental data, with satisfactory agreement. (Author) [pt

  7. Chromium surface alloying of structural steels during laser treatment

    International Nuclear Information System (INIS)

    Kurov, I.E.; Nagornykh, S.N.; Sivukhin, G.A.; Solenov, S.V.

    1987-01-01

    Results of matrix alloying from the surface layer and creation of considerably increased chromium concentration in the depth which permits to increase the efficiency of laser treatment of steels (12Kh18N10T and 38KhN3M) in the process of their further mechanical polishing, are presented. The treatment was realized by continuous CO 2 -laser at different power densities and scanning rates are presented. A model describing the creation of anomalous distributions of the alloying element in steels is plotted

  8. Bioinspired Surface Treatments for Improved Decontamination: Icephobic Surfaces

    Science.gov (United States)

    2017-06-26

    5 TABLES Table 1 — Contact angles ...fluorosilane to produce both texture and hydrophobic properties. [1, 2] The coating technology is reported to produce a water contact angle of greater than...160° with sliding angles ᝺° classifying the surface as superhydrophobic (water contact angles >150°). The durability of the material was previously

  9. Graphoepitaxy of sexithiophene and orientation control by surface treatment

    International Nuclear Information System (INIS)

    Ikeda, Susumu; Saiki, Koichiro; Wada, Yasuo; Inaba, Katsuhiko; Ito, Yoshiyasu; Kikuchi, Hirokazu; Terashima, Kazuo; Shimada, Toshihiro

    2008-01-01

    The factors influencing the graphoepitaxy of organic semiconductor α-sexithiophene (6T) on thermally oxidized silicon substrates were studied and it was discovered that a wider pitch in the microgrooves decreased the degree of graphoepitaxy. A more significant finding was that in-plane orientation could be changed by simple surface treatment. On UV/ozone-treated substrates (hydrophilic condition), the b-axis of 6T was parallel to the grooves. Further surface treatment with hexamethyl-disiloxane (under hydrophobic conditions) changed this in-plane orientation by 90 deg. This change is due to the interaction between the topmost chemical species (functional groups) of the groove walls and organic molecules, a behavior peculiar to organic graphoepitaxy and exploitable for optimal orientation control in device processing. The nucleation and growth processes that cause the graphoepitaxy are discussed, based on the experimental results

  10. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  11. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].

    Science.gov (United States)

    Cao, Hongdan; Yang, Xiaodong; Wu, Dayi; Zhang, Xingdong

    2007-04-01

    The roughness treatment of dental implant surface could improve the bone bonding and increase the success rate of implant, but the difference of diverse treatments is still unknown. In this study using scanning electron microscopy (SEM), energy disperse spectrometer (EDS) and the test of contact angle, we studied the microstructure, surface contamination and surface energy, and hence conducted a comparative analysis of the following surface roughness treatments: Polished Treatment (PT), Sandblasting with Alumina(SA), Sandblasting with Aluminia and Acid-etched (SAA), Sandblasting with Titanium Acid-etched (STA), Electro-erosion Treatment(ET). The result of SEM showed that the surface displayed irregularities after roughness treatments and that the surface properties of different roughness treatments had some distinctions. SAA and SA had some sharp edges and protrutions; the STA showed a regular pattern like honeycomb, but the ET sample treated by electric erosion exhibited the deeper pores of different sizes and the pores with a perforated secondary structure. The EDS indicated that the surface was contaminated after the treatment with foreign materials; the SA surface had some embedded contaminations even after acid etching. The measurement of water contact angle indicated that the morphology correlated with the surface treatments. These findings suggest that the distinction of surface structure and composition caused by different treatments may result in the disparity in biological behavior of dental implant.

  12. Modification on surface oxide layer structure and surface morphology of niobium by gas cluster ion beam treatments

    International Nuclear Information System (INIS)

    Wu, A.T.; Swenson, D.R.; Insepov, Z.

    2010-01-01

    Recently, it was demonstrated that significant reductions in field emission on Nb surfaces could be achieved by means of a new surface treatment technique called gas cluster ion beam (GCIB). Further study as shown in this paper revealed that GCIB treatments could modify surface irregularities and remove surface asperities leading to a smoother surface finish as demonstrated through measurements using a 3D profilometer, an atomic force microscope, and a scanning electron microscope. These experimental observations were supported by computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics. Measurements employing a secondary ion mass spectrometry found that GCIB could also alter Nb surface oxide layer structure. Possible implications of the experimental results on the performance of Nb superconducting radio frequency cavities treated by GCIB will be discussed. First experimental results on Nb single cell superconducting radio frequency cavities treated by GCIB will be reported.

  13. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  14. Effects of surface treatments on microstructure in stainless steel

    International Nuclear Information System (INIS)

    Mabuchi, Yasuhiro; Tamako, Hiroaki; Kaneda, Junya; Yamashita, Norimichi; Miyakawa, Masahiko

    2009-01-01

    It is revealed that Stress Corrosion Cracking (SCC) on the surface of the L-grade stainless steels in Nuclear Power Plants is caused by heavily cold work of the materials. The microstructure, hardness and residual stress on the surface of the material are factors for SCC initiation. There are surface treatment methods that is effective reduction on SCC such as Flap Wheel (FW) polishing, Clean N Strip (CNS) polishing, Water Jet Peening (WJP) and Shot Peening (SP). In this paper, the characteristics of the surface cold worked layer of the L-grade stainless steels conducted by above-mentioned surface treatments are analyzed, and effects of the surface treatments on the surface layer are discussed. (author)

  15. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Science.gov (United States)

    Shen, Tao; Liu, Yong; Zhu, Yan; Yang, De-Quan; Sacher, Edward

    2017-07-01

    Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (sbnd OH, sbnd CHdbnd O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose sbnd NH2 groups were then able to form a bonding complex with the Ag NPs.

  16. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  17. Bioinspired Surface Treatments for Improved Decontamination: Fluoro-Plasma Treatment

    Science.gov (United States)

    2017-07-21

    were baked at 100°C or equilibrated to a specific relative humidity prior to collection of contact angles (Table 2). The impact of surface...No significant changes in the appearance or wetting characteristics were noted during this period. When the soapy water process was employed

  18. Corrosion of Inconel-625, Hastelloy-X280 and Incoloy-800 in 550 - 750°C superheated steam. Influence of alloy heat treatment, surface treatment, steam temperature and steam velocity. Part I: Results up to 6000 hours exposure time. RCN Report

    International Nuclear Information System (INIS)

    Tilborg, P.J. van; Linde, A. van der

    1969-10-01

    Sheet samples of Inconel-625, Hastelloy-X280 and Incoloy-800 were tested, in the solution annealed and in the solution annealed + 20% cold worked + 800°C tempered condition, in steam with a velocity of 5 m/sec. at 550, 650 and 750°C and in steam with a volocity of 15 and 85 m/sec. at 550°C. At 550°C and 750°C the samples were tested in the heat treated, annealed or tempered and the heat treated + electropolished condition. At 650°C moreover as heat treated + ground and pickled samples were tested. Post-corrosion sample investigations involved measurement of the adherent oxide thickness, the total amount of corroded metal, the metal loss to system, and the metallographic and microprobe investigation of the adherent oxide film and adjacent diffusion disturbed alloy layer. The results obtained up to 6000 hours exposure time showed that the surface treatment has a decisive influence on the corrosion behaviour of all three alloys tested. The differences in the corrosion data for the two heat treatment conditions are small. The influence of the steam velocity, as tested at 550°C, on the initial corrosion rate was surprisingly high, while the long-term linear corrosion rates are only slightly influenced by the gas velocity. In general the linear corrosion rates were low, 1-5 mg/dm 2 month, and not consistently affected by the test-temperature. The metal loss to system values were 2 <15 mg/dm 2 in the low velocity steam at all three test temperatures and <30 mg/dm 2 in the high velocity steam at 550°C. The metallographic and microprobe examinations revealed no remarkable results, as compared with the results of analogous tests reported in literature. (author)

  19. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  20. The HIE-ISOLDE Superconducting Cavities: Surface Treatment and Niobium Thin Film Coating

    CERN Document Server

    Lanza, G; Ferreira, L M A; Gustafsson, A E; Pasini, M; Trilhe, P; Palmieri, V

    2010-01-01

    CERN has designed and prepared new facilities for the surface treatment and niobium sputter coating of the HIE-ISOLDE superconducting cavities. We describe here the design choices, as well as the results of the first surface treatments and test coatings.

  1. Effect of surface treatment of tailings on effluent quality

    International Nuclear Information System (INIS)

    Murray, D.R.; Okuhara, D.

    1980-01-01

    Lysimeters containing 125 tons of mine tailings were used to determine the impact of gravel, sawdust, and vegetation as surface treatments on the quality and quantity of effluent produced from sulfide-containing uranium mill tailings. Over a 5-yr period, treatments did not alter the effluent quality to a level acceptable to regulatory requirements. The concentration of iron, copper, lead, aluminum, and sulfate increased with the rise of acidity during this period. However, the rate and extent of changes did vary with the treatment. The role of surface treatment in long-term waste abandonment must be investigated further

  2. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tao [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Liu, Yong [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Zhu, Yan, E-mail: zhuyan@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Yang, De-Quan, E-mail: dequan.yang@gmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Sacher, Edward [Regroupement Québécois de Matériaux de Pointe, Department of Engineering Physics, École Polytechnique de Montréal, Case Postale 6079, succursale Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2017-07-31

    Highlights: • A two-step process has been developed to enhance the adhesion of immobilized Ag NPs to the PET surface. • The method is simple, easy to use and low-cost for mass production. • The increased density of active sites (−OH, −CH=O and COOH) at the PET surface, after plasma treatment, permits increased reaction with 3-aminopropyltriethoxysilane (APTES). • The presence of APTES with high surface density permits −NH{sub 2}-Ag complex formation, increasing the adhesion of the Ag NPs. - Abstract: Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (−OH, −CH=O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose −NH{sub 2} groups were then able to form a bonding complex with the Ag NPs.

  3. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  4. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  5. Effect of surface treatments on stress corrosion cracking susceptibility of nickel base alloys

    International Nuclear Information System (INIS)

    Iwanami, Masaru; Kaneda, Junya; Tamako, Hiroaki; Hato, Hisamitsu; Takamoto, Shinichi

    2009-01-01

    Effect of surface treatment on SCC susceptibility of Ni base alloys was investigated. Cracks were observed in all grinding specimens in a creviced bent beam (CBB) test. On the other hand, no cracks occurred in shot peening (SP), water jet peening (WJP) specimens. It was indicated that these surface treatments effectively reduced the SCC susceptibility of nickel-base alloys. As a result of a residual stress test, the surface of specimens with grinding had high tensile residual stress. However, SP and WJP improved surface residual stress to compressive stress. The depth of the compressive effect of WJP was almost the same as that of SP. However, the surface hardness of WJP specimens differed from that of SP and it was found that WJP had less impact on surface hardening. This difference was consistent with their surface microstructures. The surface of SP specimens had clearly the deformation region, but the surface of WJP specimens was localized. (author)

  6. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang, Cheng; Zhou, Yang; Shao, Tao; Xie, Qing; Xu, Jiayu; Yang, Wenjin

    2014-01-01

    Highlights: • Increase in hydrophobicity on PMMA is achieved after the DBD treatment in CF 4 , and the water contact angle can increase from 68° to 100° after treatment. • Nanosecond-pulse DBD is used for the surface treatment and the power density is about 114.8 mW/cm 2 . • The effects of applied voltage, CF 4 flow, and time on plasma treatment are investigated. • Plasma treatment causes morphological change, significantly increases the roughness of the surface, and introduces fluorine-containing groups into the polymethylmethacrylate surface. • Hydrophobic behavior of the treated PMMA surface is slightly affected by the aging effect. - Abstract: Nanosecond-pulse dielectric barrier discharge (DBD) can provide non-thermal plasmas with extremely high energy and high density, which can result in a series of complicated physical and chemical reactions in the surface treatment of polymers. Therefore, in this paper, hydrophobic treatment of polymethylmethacrylate (PMMA) surface is conducted by nanosecond-pulse DBD in carbon tetrafluoride (CF 4 ) at atmospheric pressure. Investigations on surface morphology and chemical composition before and after the DBD treatment in CF 4 are conducted with the contact angle measurement, atomic force microscope, Fourier transform infrared spectroscopy, and X-ray photoelectron spectrometer. The effects of the applied voltage, CF 4 flow rate, and treatment time on the hydrophobic modification are studied. Results show that the contact angles of the treated PMMA surface increases with the applied voltage, and it could be greatly affected by the CF 4 flow rate and the treatment time. The water contact angle can increase from 68° to 100° after the treatment. Furthermore, both surface morphology and chemical composition of the PMMA samples are changed. Both the increase of the surface roughness and the occurrence of fluorine-containing functional groups on the PMMA surface treated by DBD in CF 4 lead to the hydrophobicity

  7. Analysis of the Surface of Deposited Copper After Electroerosion Treatment

    Science.gov (United States)

    Ablyaz, T. R.; Simonov, M. Yu.; Shlykov, E. S.

    2018-03-01

    An electron microscope analysis of the surface of deposited copper is performed after a profiling-piercing electroerosion treatment. The deposited copper is treated with steel, duralumin, and copper electrode tools at different pulse energies. The treatment with the duralumin electrode produces on the treated surface a web-like structure and cubic-morphology polyhedral dimples about 10 μm in size. The main components of the surface treated with the steel electrode are developed polyhedral dimples with a size of 10 - 50 μm. After the treatment with the copper electrode the main components of the treated surface are large polyhedral dimples about 30 - 80 μm in size.

  8. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  9. Numerical treatment of free surface problems in ferrohydrodynamics

    International Nuclear Information System (INIS)

    Lavrova, O; Matthies, G; Mitkova, T; Polevikov, V; Tobiska, L

    2006-01-01

    The numerical treatment of free surface problems in ferrohydrodynamics is considered. Starting from the general model, special attention is paid to field-surface and flow-surface interactions. Since in some situations these feedback interactions can be partly or even fully neglected, simpler models can be derived. The application of such models to the numerical simulation of dissipative systems, rotary shaft seals, equilibrium shapes of ferrofluid drops, and pattern formation in the normal-field instability of ferrofluid layers is given. Our numerical strategy is able to recover solitary surface patterns which were discovered recently in experiments

  10. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui; Kuffel, E

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH 3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly

  11. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    Science.gov (United States)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  12. Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment

    International Nuclear Information System (INIS)

    Han, Song Hee; Oh, Hyun Ju; Kim, Seong Su

    2013-01-01

    In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XP S, Sem, and single-filament tensile test. The interlaminar shear strength (Ilks) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the Ilks of the plasma-treated specimen increased with the treatment time. The Ilks of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen

  13. Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Bottoli, Federico; Dahl, Kristian Vinter

    2017-01-01

    ) layers with hardnesses up to 1800 HV. Titanizing of ARNE tool steel results in a surface layer consisting of TiC with a hardness of approximately 4000 HV. Duplex treatments, where boriding is combined with subsequent (TRD) titanizing, result in formation of hard TiB2 on top of a thick layer of Fe......Thermo-reactive deposition and diffusion (TRD) and boriding are thermochemical processes that result in very high surface hardness by conversion of the surface into carbides/nitrides and borides, respectively. These treatments offer significant advantages in terms of hardness, adhesion, tribo...... subjected to TRD (chromizing and titanizing) and boriding treatments. For the steels with low carbon content, chromizing results in surface alloying with chromium, i.e., formation of a (soft) “stainless” surface zone. Steels containing higher levels of carbon form chromium carbide (viz. Cr23C6, Cr7C3...

  14. Studies on the treatment of surface water using rajma seeds

    Directory of Open Access Journals (Sweden)

    Merlin S. Babitha

    2018-03-01

    Full Text Available Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it’s biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.

  15. Studies on the treatment of surface water using rajma seeds

    Science.gov (United States)

    Merlin, S. Babitha; Abirami, M.; Kumar, R. Suresh

    2018-03-01

    Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it's biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant) followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.

  16. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M.

    2012-01-01

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  17. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    2012-02-01

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  18. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    International Nuclear Information System (INIS)

    Lai Jiangnan; Sunderland, Bob; Xue Jianming; Yan, Sha; Zhao Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang Yugang

    2006-01-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity

  19. The effect of surface treatment on the microstructure of the skin of concrete

    Science.gov (United States)

    Sadowski, Łukasz; Stefaniuk, Damian

    2018-01-01

    The aim of this study is to better understand the heterogeneity and microstructural properties of the skin of concrete. The microstructural evaluation of the skin of concrete was performed using X-ray micro computed tomography (micro-CT). The concrete surface was treated using four methods, due to which different surfaces were obtained, i.e. a raw surface, a surface formed after contact with formwork, a grinded surface and also a shotblasted surface. The results of the pore structure obtained from the micro-CT images were used to assess the influence of selected surface treatment method on the nature of the skin of concrete. It was shown that the thickness and unique nature of the skin of concrete differ for various surface treatment methods.

  20. Infiltration of surface mined land reclaimed by deep tillage treatments

    International Nuclear Information System (INIS)

    Chong, S.K.; Cowsert, P.

    1994-01-01

    Surface mining of coal leads to the drastic disturbance of soils. Compaction of replaced subsoil and topsoil resulting from hauling, grading, and leveling procedures produces a poor rooting medium for crop growth. Soil compaction results in high bulk density, low macroporosity, poor water infiltration capacity, and reduced elongation of plant roots. In the United States, Public Law 95-87 mandates that the rooting medium of mined soils have specific textural characteristics and be graded and shaped to a topography similar to premining conditions. Also, crop productivity levels equivalent to those prior to mining must be achieved, especially for prime farmland. Alleviation of compaction has been the major focus of reclamation, and recently new techniques to augment the rooting zone with deep-ripping and loosening equipment have come to the forefront. Several surface mine operators in the Illinois coal basin are using deep tillage equipment that is capable of loosening soils to greater depths than is possible with conventional farm tillage equipment. Information on the beneficial effects of these loosening procedures on soil hydrological properties, such as infiltration, runoff potential, erosion, and water retention, is extremely important for future mined land management. However, such information is lacking. In view of the current yield demonstration regulation for prime farmland and other unmined soils, it is important that as much information as possible be obtained concerning the effect of deep tillage on soil hydrologic properties. The objectives of this study are: (1) to compare infiltration rates and related soil physical properties of mined soils reclaimed by various deep tillage treatments and (2) to study the temporal variability of infiltration and related physical properties of the reclaimed mined soil after deep tillage treatment

  1. Surface improvement of EPDM rubber by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, J H [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Silva Sobrinho, A S da [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Maciel, H S [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Dutra, J C N [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Massi, M [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Mello, S A C [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Schreiner, W H [Physics Department, UFPR, Centro Politecnico, 80060-000 Curitiba, P.R. (Brazil)

    2007-12-21

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N{sub 2}/Ar and N{sub 2}/H{sub 2}/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  2. Surface improvement of EPDM rubber by plasma treatment

    International Nuclear Information System (INIS)

    Moraes, J H; Silva Sobrinho, A S da; Maciel, H S; Dutra, J C N; Massi, M; Mello, S A C; Schreiner, W H

    2007-01-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N 2 /Ar and N 2 /H 2 /Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber

  3. Surface improvement of EPDM rubber by plasma treatment

    Science.gov (United States)

    Moraes, J. H.; da Silva Sobrinho, A. S.; Maciel, H. S.; Dutra, J. C. N.; Massi, M.; Mello, S. A. C.; Schreiner, W. H.

    2007-12-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N2/Ar and N2/H2/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  4. The morphology of coconut fiber surface under chemical treatment

    OpenAIRE

    Arsyad, Muhammad; Wardana, I Nyoman Gede; Pratikto,; Irawan, Yudy Surya

    2015-01-01

    The objective of this study was to determine the effect of chemical treatment on the coconut fiber surface morphology. This study is divided into three stages, preparation of materials, treatment and testing of coconut fiber. The first treatment is coconut fiber soaked in a solution of NaOH for 3 hours with concentration, respectively 5%, 10%, 15%, and 20%. The second treatment is coconut fiber soaked in KMnO4 solution with a concentration of 0.25%, 0.5%, 0.75%, and 1% for 3 hours. The third ...

  5. Surface Modification of Polymeric Materials by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    E.F. Castro Vidaurre

    2002-03-01

    Full Text Available Low-temperature plasma treatment has been used in the last years as a useful tool to modify the surface properties of different materials, in special of polymers. In the present work low temperature plasma was used to treat the surface of asymmetric porous substrates of polysulfone (PSf membranes. The main purpose of this work was to study the influence of the exposure time and the power supplied to argon plasma on the permeability properties of the membranes. Three rf power levels, respectively 5, 10 and 15 W were used. Treatment time ranged from 1 to 50 min. Reduction of single gas permeability was observed with Ar plasma treatments at low energy bombardment (5 W and short exposure time (20 min. Higher power and/or higher plasma exposition time causes a degradation process begins. The chemical and structural characterization of the membranes before and after the surface modification was done by AFM, SEM and XPS.

  6. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  7. Surface treatment of reinforced cement concrete mixtures of hpcm type

    OpenAIRE

    Vyrozhemsky, V.; Krayushkina, K.

    2006-01-01

    One of the most perspective ways of pavement roughness and durability improvement is the arrangement of thin cement concrete layer surface treatment reinforced with different types of fiber. The name of this material is known abroad as HPCM (High Performance Cementious Materials) durable thin layer concrete pavement in a thickness of 1 cm, dispersion-like reinforced with metal or polymer fibers. To enhance bind properties the stone material grade 3 7mm is applied on the top of concrete surfac...

  8. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  9. A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

    International Nuclear Information System (INIS)

    Park, Soo Jin; Chang, Yong Hwan; Moon, Cheol Whan; Suh, Dong Hack; Im, Seung Soon; Kim, Yeong Cheol

    2010-01-01

    In this study, the atmospheric plasma treatment with He/O 2 was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix

  10. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  11. Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F.; Luais, E. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Thobie-Gautier, C. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Tessier, P.-Y. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France)], E-mail: mohammed.boujtita@univ-nantes.fr

    2009-04-15

    Radiofrequency argon plasma was used for screen-printed carbon electrodes (SPCE) surface treatment. The cyclic voltammetry of ferri/ferrocyanide as redox couple showed a remarkable improvement of the electrochemical reactivity of the SPCE after the plasma treatment. The effect of the plasma growth conditions on the efficiency of the treatment procedure was evaluated in term of electrochemical reactivity of the SPCE surface. The electrochemical study showed that the electrochemical reactivity of the treated electrodes was strongly dependant on radiofrequency power, treatment time and argon gas pressure. X-ray photoelectron spectroscopy (XPS) analysis showed a considerable evolution on the surface chemistry of the treated electrodes. Our results clearly showed that the argon plasma treatment induces a significant increase in the C{sub sp2}/C{sub sp3} ratio. The scanning electron micrograph (SEM) also showed a drastic change on the surface morphology of the treated SPCEs.

  12. Plasma treatments of wool fiber surface for microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Boo, Jin-Hyo, E-mail: jhboo@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Yun, Sang H., E-mail: shy@kth.se [Institute of Basic Science, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of)

    2015-09-15

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For this reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.

  13. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  14. Plasma etching treatment for surface modification of boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Ito, Hiroyuki [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Kusakabe, Kazuhide [Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Ohkawa, Kazuhiro [Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Fujishima, Akira [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan); Kawai, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)]. E-mail: kawai@ci.kagu.tus.ac.jp

    2007-03-01

    Boron-doped diamond (BDD) thin film surfaces were modified by brief plasma treatment using various source gases such as Cl{sub 2}, CF{sub 4}, Ar and CH{sub 4}, and the electrochemical properties of the surfaces were subsequently investigated. From X-ray photoelectron spectroscopy analysis, Cl and F atoms were detected on the BDD surfaces after 3 min of Cl{sub 2} and CF{sub 4} plasma treatments, respectively. From the results of cyclic voltammetry and electrochemical AC impedance measurements, the electron-transfer rate for Fe(CN){sub 6} {sup 3-/4-} and Fe{sup 2+/3+} at the BDD electrodes was found to decrease after Cl{sub 2} and CF{sub 4} plasma treatments. However, the electron-transfer rate for Ru(NH{sub 3}){sub 6} {sup 2+/3+} showed almost no change after these treatments. This may have been related to the specific interactions of surface halogen (C-Cl and C-F) moieties with the redox species because no electrical passivation was observed after the treatments. In addition, Raman spectroscopy showed that CH{sub 4} plasma treatment of diamond surfaces formed an insulating diamond-like carbon thin layer on the surfaces. Thus, by an appropriate choice of plasma source, short-duration plasma treatments can be an effective way to functionalize diamond surfaces in various ways while maintaining a wide potential window and a low background current.

  15. Fractal structure formation on the surfaces of solids subjected to high intensity electron and ion treatment

    International Nuclear Information System (INIS)

    Altajskij, M.V.; Ivanov, V.V.; Korenev, S.A.; Orelovich, O.L.; Puzynin, I.V.; Chernik, V.V.

    1997-01-01

    We discuss the results of scanning electron microscopy of surfaces of the solids subjected to high intensity electron and ion beam treatment. The appearance of fractal structures on the modified surfaces is shown. The fractal dimensions of these structures were estimated by box-counting algorithm

  16. Laser treatment of a neodymium magnet and analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  17. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  18. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    2013-01-09

    Jan 9, 2013 ... waste water treatment from heavy and toxic metals, low-level nuclear waste management and separation of Zr from ... solid surface permits a rapid and qualitative evaluation of the SFE of the polymer. The water contact angle ...

  19. 40 CFR 268.4 - Treatment surface impoundment exemption.

    Science.gov (United States)

    2010-07-01

    ... residues may not be placed in any other surface impoundment for subsequent management. (iv) Recordkeeping... exemption. 268.4 Section 268.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...), the residues from treatment are analyzed, as specified in § 268.7 or § 268.32, to determine if they...

  20. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform......A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  1. Facile Dry Surface Cleaning of Graphene by UV Treatment

    Science.gov (United States)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  2. Advantages of surface treatment processes by ionic sputtering

    International Nuclear Information System (INIS)

    Gantois, M.

    1976-01-01

    The use of high intensity glow-discharge permits to realize a superficial thermochemical treatment. Ions formed by discharge are accelerated against the surfaces to be treated; by effect of ion bombardment, surfaces get heated and a chemical reaction is developed depending on the composition of the ionized gas. The technique presents advantages, as the potential of the active gas might be freely chosen, and as many gases might be used, the decomposition of gases by pyrolysis and a homogeneous treatment (concerning nature of phases and thickness) all over the surface being not necessary. It is possible to develop layers of various nature, looking for those which offer the best properties to solve a technological problem (wear, friction, fatigue toughness, etc.). Some examples of nitruration, carbonitruration are considered [fr

  3. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  4. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  5. Apparatus and process for the surface treatment of carbon fibers

    Science.gov (United States)

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    2016-05-17

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  6. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  7. Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires

    Directory of Open Access Journals (Sweden)

    Yeonho Jeong

    2017-07-01

    Full Text Available Nanowire structures have attracted attention in various fields, since new characteristics could be acquired in minute regions. Especially, Anodic Aluminum Oxide (AAO is widely used in the fabrication of nanostructures, which has many nanosized pores and well-organized nano pattern. Using AAO as a template for replication, nanowires with a very high aspect ratio can be fabricated. Herein, we propose a facile method to fabricate a nano-micro hybrid structure using nanowires replicated from AAO, and surface treatment. A polymer resin was coated between Polyethylene terephthalate (PET and the AAO filter, roller pressed, and UV-cured. After the removal of aluminum by using NaOH solution, the nanowires aggregated to form a micropattern. The resulting structure was subjected to various surface treatments to investigate the surface behavior and wettability. As opposed to reported data, UV-ozone treatment can enhance surface hydrophobicity because the UV energy affects the nanowire surface, thus altering the shape of the aggregated nanowires. The hydrophobicity of the surface could be further improved by octadecyltrichlorosilane (OTS coating immediately after UV-ozone treatment. We thus demonstrated that the nano-micro hybrid structure could be formed in the middle of nanowire replication, and then, the shape and surface characteristics could be controlled by surface treatment.

  8. Polymerization by plasma: surface treatment and plasma simulation

    International Nuclear Information System (INIS)

    Morales C, J.

    2001-01-01

    One of the general objectives that are developed by the group of polymers semiconductors in the laboratory of polymers of the UAM-Iztapalapa is to study the surface treatment for plasma of different materials. Framed in this general objective, in this work three lines of investigation have been developed, independent one of other that converge in the general objective. The first one tries about the modeling one and evaluation of the microscopic parameters of operation of the polymerization reactor. The second are continuation of the study of conductive polymers synthesized by plasma and the third are an application of the treatment for plasma on natural fibers. In the first one it lines it is carried out the characterization and simulation of the parameters of operation of the polymerization reactor for plasma. They are determined the microscopic parameters of operation of the reactor experimentally like they are the electronic temperature, the potential of the plasma and the density average of electrons using for it an electrostatic Langmuir probe. In the simulation, starting from the Boltzmann transport equation it thinks about the flowing pattern and the electronic temperature, the ions density is obtained and of electrons. The data are compared obtained experimentally with the results of the simulation. In second line a study is presented about the influence of the temperature on the electric conductivity of thin films doped with iodine, of poly aniline (P An/I) and poly pyrrole (P Py/I). The films underwent heating-cooling cycles. The conductivity of P An/I and P Py/I in function of the temperature it is discussed based on the Arrhenius model, showing that it dominates the model of homogeneous conductivity. It is also synthesized a polymer bi-layer of these two elements and a copolymer random poly aniline-poly pyrrole, of the first one it the behavior of its conductivity discusses with the temperature and of the second, the conductivity is discussed in

  9. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    International Nuclear Information System (INIS)

    Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A.

    2006-01-01

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results

  10. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, A. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia)]. E-mail: asma_abderrahmen@yahoo.fr; Romdhane, F.F. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ben Ouada, H. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia); Gharbi, A. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia)

    2006-03-15

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results.

  11. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  12. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  13. Surface treatments of metal supports for photocatalysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Montecchio, Francesco, E-mail: fmon@kth.se [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden); Chinungi, Don [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden); Lanza, Roberto [Verdant Chemical Technologies AB, 114 28 Stockholm (Sweden); Engvall, Klas [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden)

    2017-04-15

    Highlights: • Treated metals can be used as photocatalyst support in full-scale applications. • Various electrochemical treatments were performed, checking the surface corrugation. • Stainless steel etched in DC and aqua regia shows the highest surface modification. • P25 coated on the DC etched sample has a high stability, with constant activity. • The support modification increases the UV irradiated area and the activity of P25. - Abstract: One of the most important challenges, for scaling up a photocatalytic system for VOCs abatement to full-scale, is the design of a suitable photocatalyst support. The support has to firmly immobilize the photocatalyst, without using an organic adhesive, and should also withstand relatively high mechanical stresses. Metals may be effectively implemented as a support material, after a corrugation of the surface with electrochemical treatments. In the present work, we treated stainless steel and aluminum supports, evaluating the surface modifications due to the electrochemical treatments, with scanning electron microscopy (SEM) and confocal microscopy. Five samples showing the highest degree of restructuring were selected and spray coated with P25, a TiO{sub 2} photocatalyst, evaluating the mechanical stability of the coating with a standard tape test method. One particular stainless steel sample presented a superior surface restructuring and coating stability. The photocatalytic activity of this sample, evaluated measuring the complete oxidation of acetaldehyde, was tested for 15 h, and compared with sample of TiO{sub 2}-P25 on a ceramic support. The stainless steel exhibited a constant performance after an initial stabilization period. The stainless steel sample showed a slightly higher activity, due to the surface restructuring, increasing the irradiated area available for the coated photocatalyst.

  14. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  15. Mitigated subsurface transfer line leak resulting in a surface pool

    Energy Technology Data Exchange (ETDEWEB)

    SCOTT, D.L.

    1999-02-08

    This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values.

  16. Mitigated subsurface transfer line leak resulting in a surface pool

    International Nuclear Information System (INIS)

    SCOTT, D.L.

    1999-01-01

    This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values

  17. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  18. Surgical treatment of brain metastases - a review. Part 2. Results of treatment

    International Nuclear Information System (INIS)

    Wronski, M.; Czernicki, Z.

    1994-01-01

    Results of treatment of most frequent brain metastases from nonsmall cell lung cancer, breast cancer, malignant melanoma and kidney tumors are discussed. Also efficacy of surgical treatment, chemotherapy, radiotherapy and radiosurgery is analyzed

  19. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Beltran, Francisco [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C.I. [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Poncin-Epaillard, Fabienne, E-mail: epaill@univ-lemans.fr [Institute for Molecules and Materials, UMR CNRS 6283, Av. O. Messiaen, Universitè du Maine, Le Mans 72085 (France); Luna-Barcenas, Gabriel, E-mail: gluna@qro.cinvestav.mx [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico)

    2015-11-01

    Highlights: • Kelvin-probe-force microscopy helps study of PET surface treated by Ar ion beam. • Ar ion beam surface treatment promotes chain scission and N insertion. • Surface roughness and work function increases as intensity of ion energy increases. • Adhesive force of PET decrease due to the surface changes by ion bombardment. - Abstract: The effect of argon (Ar{sup +}) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar{sup +} ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φ{sub e}) from 5.1 V (untreated) to 5.2 V (treated). Ar{sup +} ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  20. Integrated thermal treatment system sudy: Phase 2, Results

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  1. Integrated thermal treatment system sudy: Phase 2, Results

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr)

  2. Psychogenic non-epileptic seizures and psychoanalytical treatment: results

    Directory of Open Access Journals (Sweden)

    Niraldo de Oliveira Santos

    2014-12-01

    Full Text Available Background: the occurrence of psychogenic non-epileptic seizures (PNES is estimated to be between 2 to 33 cases in every 100,000 inhabitants. The number of patients with PNES reaches 19% of those treated as epileptics. Patients with PNES are treated as if they had intractable epilepsy, with unsatisfactory results even after medication treatment is used to its maximum. The aim of this study is to present the effects of individual psychoanalytical treatment in patients with PNES, assessing its impact in the evolution of the clinical picture and its association with sex, time of disease, social, psychological and professional harm, as well as going through with treatment. Methods: The case base was composed of 37 patients with PNES. The diagnosis was reached with video-EEG monitoring. Psychoanalytical treatment was carried out through 12 months of weekly sessions timed for around 50-minutes each, in a total of 48 individual sessions. Results: This study found a high rate of success in the treatment of PNES patients. 29.7% (n=11 of patients had cessation or cure of symptoms and 51.4% (n=19 had a decrease in the number of episodes. There is an association between cessation or decrease in the number of episodes and sex (p<0.01, religion (p<0.01 and concluding treatment (p<0.01. Conclusion: Individual psychoanalytical treatment applied to patients with PNES is considered effective and can be an essential form of assistance for the reduction or cessation of episodes.

  3. Analytical modelling for ultrasonic surface mechanical attrition treatment

    Directory of Open Access Journals (Sweden)

    Guan-Rong Huang

    2015-07-01

    Full Text Available The grain refinement, gradient structure, fatigue limit, hardness, and tensile strength of metallic materials can be effectively enhanced by ultrasonic surface mechanical attrition treatment (SMAT, however, never before has SMAT been treated with rigorous analytical modelling such as the connection among the input energy and power and resultant temperature of metallic materials subjected to SMAT. Therefore, a systematic SMAT model is actually needed. In this article, we have calculated the averaged speed, duration time of a cycle, kinetic energy and kinetic energy loss of flying balls in SMAT for structural metallic materials. The connection among the quantities such as the frequency and amplitude of attrition ultrasonic vibration motor, the diameter, mass and density of balls, the sample mass, and the height of chamber have been considered and modelled in details. And we have introduced the one-dimensional heat equation with heat source within uniform-distributed depth in estimating the temperature distribution and heat energy of sample. In this approach, there exists a condition for the frequency of flying balls reaching a steady speed. With these known quantities, we can estimate the strain rate, hardness, and grain size of sample.

  4. Hybrid fuzzy logic control of laser surface heat treatments

    International Nuclear Information System (INIS)

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  5. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    International Nuclear Information System (INIS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-01-01

    Thin layers of Al 2 O 3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p + emitters, due to a high density of fixed negative charges. Recent results indicate that Al 2 O 3 can also provide a good passivation of certain phosphorus-diffused n + c-Si surfaces. In this work, we studied the recombination at Al 2 O 3 passivated n + surfaces theoretically with device simulations and experimentally for Al 2 O 3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al 2 O 3 interface. This pronounced maximum was also observed experimentally for n + surfaces passivated either with Al 2 O 3 single layers or stacks of Al 2 O 3 capped by SiN x , when activated with a low temperature anneal (425 °C). In contrast, for Al 2 O 3 /SiN x stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n + diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al 2 O 3 /SiN x stacks can provide not only excellent passivation on p + surfaces but also on n + surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments

  6. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  7. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  8. Effect of surface pre-treatments on biocompatibility of magnesium.

    Science.gov (United States)

    Lorenz, Carla; Brunner, Johannes G; Kollmannsberger, Philip; Jaafar, Leila; Fabry, Ben; Virtanen, Sannakaisa

    2009-09-01

    This study reports the influence of Mg surface passivation on the survival rate of human HeLa cells and mouse fibroblasts in cell culture experiments. Polished samples of commercially pure Mg show high reactivity in the cell culture medium, leading to a pH shift in the alkaline direction, and therefore cell adhesion and survival is strongly impaired. Passivation of the Mg surface in 1M NaOH can strongly enhance cell survival. The best initial cell adhesion is observed for Mg samples incubated in simulated body fluid (M-SBF), which leads to the formation of a biomimetic, amorphous Ca/Mg-phosphate layer with high surface roughness. This surface layer, however, passivates and seals the Mg surface only partially. Subsequent Mg dissolution leads to a significantly stronger pH increase compared to NaOH-passivated samples, which prevents long-term cell survival. These results demonstrate that surface passivation with NaOH and M-SBF together with the associated changes of surface reactivity, chemistry and roughness provide a viable strategy to facilitate cell survival on otherwise non-biocompatible Mg surfaces.

  9. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  10. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  11. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  12. Influence of the chemical composition, heat and surface treatment in the biofouling of austenitic stainless steels

    International Nuclear Information System (INIS)

    Sarro, M. I.; Aleman, O.; Moreno, D. A.; Roso, M.; Ranninger, C.

    2004-01-01

    The main objective of this study was to analyse the biofouling processes in the kinds of stainless steels used normally in industry (UNS S30400, UNS S30403 and UNS S31600), with different surface treatments after grinding and polishing. The study was developed using two microscopy techniques. Scanning Electron Microscopy (SEM was used to evaluate the microorganisms distribution in the materials, and Epi fluorescence Microscopy was used to evaluate the viability of cells in the biofilm. The results revealed the influence of the material, heat treatment, surface treatment and roughness in the biofouling processes in the stainless steel assays. (Author) 33 refs

  13. Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials.

    Science.gov (United States)

    Amin Yavari, S; Ahmadi, S M; van der Stok, J; Wauthle, R; Riemslag, A C; Janssen, M; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-08-01

    Bio-functionalizing surface treatments are often applied for improving the bioactivity of biomaterials that are based on otherwise bioinert titanium alloys. When applied on highly porous titanium alloy structures intended for orthopedic bone regeneration purposes, such surface treatments could significantly change the static and fatigue properties of these structures and, thus, affect the application of the biomaterial as bone substitute. Therefore, the interplay between biofunctionalizing surface treatments and mechanical behavior needs to be controlled. In this paper, we studied the effects of two bio-functionalizing surface treatments, namely alkali-acid heat treatment (AlAcH) and acid-alkali (AcAl), on the static and fatigue properties of three different highly porous titanium alloy implants manufactured using selective laser melting. It was found that AlAcH treatment results in minimal mass loss. The static and fatigue properties of AlAcH specimens were therefore not much different from as-manufactured (AsM) specimens. In contrast, AcAl resulted in substantial mass loss and also in significantly less static and fatigue properties particularly for porous structures with the highest porosity. The ratio of the static mechanical properties of AcAl specimens to that of AsM specimen was in the range of 1.5-6. The fatigue lives of AcAl specimens were much more severely affected by the applied surface treatments with fatigue lives up to 23 times smaller than that of AsM specimens particularly for the porous structures with the highest porosity. In conclusion, the fatigue properties of surface treated porous titanium are dependent not only on the type of applied surface treatment but also on the porosity of the biomaterial. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Single DNA molecules as probes for interrogating silica surfaces after various chemical treatments

    International Nuclear Information System (INIS)

    Liu Xia; Wu Zhan; Nie Huagui; Liu Ziling; He Yan; Yeung, E.S.

    2007-01-01

    We examined the adsorption of single YOYO-1-labeled λ-DNA molecules at glass surfaces after treatment with various chemical cleaning methods by using total internal reflection fluorescence microscopy (TIRFM). The characteristics of these surfaces were further assessed using contact angle (CA) measurements and atomic force microscopy (AFM). By recording the real-time dynamic motion of DNA molecules at the liquid/solid interface, subtle differences in adsorption affinities were revealed. The results indicate that the driving force for adsorption of DNA molecules on glass surfaces is mainly hydrophobic interaction. We also found that surface topography plays a role in the adsorption dynamics

  15. Light transmittance and surface roughness of a feldspathic ceramic CAD-CAM material as a function of different surface treatments.

    Science.gov (United States)

    Ural, Çağrı; Duran, İbrahim; Evmek, Betül; Kavut, İdris; Cengiz, Seda; Yuzbasioglu, Emir

    2016-07-15

    The aim of the present study was to determine the effect of different surface treatments on light transmission of aesthetic feldspathic ceramics used in CAD-CAM chairside restorations. Forty eight feldspatic ceramic test specimens were prepared from prefabricated CAD-CAM blocks by using a slow speed diamond saw. Test specimens were prepared and divided into 4 groups (n = 12). In the control group, no surface treatments were applied on the feldspathic ceramic surfaces. In the hydrofluoric acid group, the bonding surfaces of feldspathic ceramics were etched with 9.5 % hydrofluoric acid. In the sandblasting group the feldspathic ceramic surfaces were air-abraded with 30-μm alumium oxide (Al2O3) particles and Er:YAG laser was used to irradiate the ceramic surfaces. The incident light power given by the LED device and the transmitted light power through each ceramic sample was registered using a digital LED radiometer device. Each polymerization light had a light guide with 8-mm-diameter tips. Light transmission of feldspathic ceramic samples was determined by placing it on the radiometer and irradiating the specimen for 10 s at the highest setting for each light polymerization. All specimens were coated with gold using a sputter coater and examined under a field emission scanning electron microscope. Surface roughness measurement each group were evaluated with 3D optical surface and tactile profilometers. One-way ANOVA test results revealed that both surface conditioning method significantly affect the light transmittance (F:412.437; p ceramic material below the value of 400 mW/cm(2) which is critical limit for safe polymerization.

  16. Surface treatment systems for concrete in marine environment: Effect of concrete cover thickness

    Directory of Open Access Journals (Sweden)

    Marcelo Henrique Farias de Medeiros

    Full Text Available Abstract There are some ways to extend the service life of a reinforced concrete structure. This paper focuses on the extension of the service life by treating the surface of reinforced concrete, specifically on the effect of the concrete cover thickness on the surface treatment system efficacy. Thus, chloride migration tests were performed and diffusion chloride coefficients were calculated. The service life of each case (treated or non-treated concrete was estimated using these data and Fick's second law of diffusion. Results indicated that the thicker the concrete cover is, the greater the efficacy of the concrete surface treatment system will be. The dissemination of this information is important, since it is almost intuitive to think that the effect of a surface treatment system depends only on itself and this study shows the opposite.

  17. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect

    International Nuclear Information System (INIS)

    Wang Yingjun; Yin Shiheng; Ren Li; Zhao Lianna

    2009-01-01

    Chitosan has received considerable attention for biomedical applications in recent years because of its biocompatibility and biodegradability. In this paper, angle-resolved x-ray photoelectron spectroscopy (ARXPS) was carried out to investigate the chemical groups' spatial orientation on the chitosan membrane surface. Oxygen plasma treatment was also employed to improve the surface hydrophilicity of the chitosan membrane. The results of ARXPS revealed the distribution of surface polar groups, such as-OH and O=CNH 2 toward the membrane bulk, which was the origin of the chitosan membrane surface hydrophobicity. The contact angle measurements and XPS results indicated that oxygen plasma treatment can markedly improve the surface hydrophilicity and surface energy of the chitosan membrane by incorporating oxygen-containing polar groups. With the existence of the aging process, the influence of plasma treatment was not permanent, it faded with storage time. The ARXPS result discovered that the reorientation of polar functional groups generated by plasma treatment toward the membrane bulk was primarily responsible for the aging effect.

  18. Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

    Science.gov (United States)

    Zhao, W.; Yang, Zh.; Chen, Zh.; Liu, J.; Wang, W. Ch.; Zheng, W. Yu.

    2016-05-01

    This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370-1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15-55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.

  19. Inelastic electron holography: First results with surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Roeder; Hannes, Lichte [Triebenberg Labor, Institute for Structure Physics, TU Dresden, 01062 Dresden (Germany)

    2011-07-01

    Inelastic interaction and wave optics seem to be incompatible in that inelastic processes destroy coherence, which is the fundamental requirement for holography. In special experiments it is shown that energy transfer larger than some undoubtedly destroys coherence of the inelastic electron with the elastic remainder. Consequently, the usual inelastic processes, such as phonon-, plasmon- or inner shell-excitations with energy transfer of several out to several, certainly produce incoherence with the elastic ones. However, it turned out that within the inelastic wave, *newborn* by the inelastic process, there is a sufficiently wide area of coherence for generating *inelastic holograms*. This is exploited to create holograms with electrons scattered at surface-plasmons, which opens up quantum mechanical investigation of these inelastic processes.

  20. Bacterial Adhesion on the Titanium and Stainless-Steel Surfaces Undergone Two Different Treatment Methods: Polishing and Ultrafast Laser Treatment

    Science.gov (United States)

    Chik, N.; Zain, W. S. Wan Md; Mohamad, A. J.; Sidek, M. Z.; Ibrahim, W. H. Wan; Reif, A.; Rakebrandt, J. H.; Pfleging, W.; Liu, X.

    2018-05-01

    Bacterial adhesion has become a significant problem in many industries causing billions of dollars for its complicated removal treatment and maintenance. In this study, metal surfaces undergone treatment with ultrafast laser with varies power. The microstructure produced on its original surfaces were expected to prevent the adhesion of Escherichia coli (E. coli) ATCC 8739 and Staphylococcus aureus (S. aureus) ATCC 6838. The laser treatment was performed at 380 fs pulse duration, 515 µm central wavelength and a repetition rate of 200 kHz. Stainless steel AISI 316L was treated with an average laser power of 0.04 W (SS-0.04) and 0.11 W (SS-0.11), while Grade 5 titanium alloy was tested with high laser power 0.11 W (T-0.11). The adhesion was observed after 16 hours and the number of adhering bacteria was counted per cm2. The result achieved shows that, increasing the average laser power is leading to an enhanced S. aureus adhesion while E. coli adhesion is reduced which is due to the hydrophobicity interaction and difference in surface texture. Meanwhile, the laser treatment showed significant reduction of the bacterial adhesion on its surface compared to the polished surfaces. Thus, ultrafast laser texturing can be suggested as a promising method to reduce the bacterial adhesion, which reduced the adhesion of >80% for E. coli and >20% for S. aureus.

  1. Results of laser treatment for sub-retinal neovascular membranes ...

    African Journals Online (AJOL)

    A retrospective study was carried out to determine the results of laser treatment for choroidal neovascular membranes in age-related macular degeneration in 92 patients in whom fluorescein angiography was performed for this condition over a 7-year period. Twenty-nine of these patients, treated with the argon laser, were ...

  2. Clinical confrontation results of diagnostics and treatment of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter of book authors investigated the clinical confrontation results of diagnostics and treatment of skin cancer. They noted that diagnostic of skin cancer have to foresee the determination morphologic implements and degree of malignancy tumorous process why in general depend prognosis of illness

  3. Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments

    International Nuclear Information System (INIS)

    Gao Yukui

    2011-01-01

    Surface integrity changes of TA2 pure titanium including surface topography, microstructure and nanohardness distribution along surface layer were investigated by different techniques of low energy high current pulsed electron beam treatments (LEHCPEBTs). The surface topography was characterized by SEM. Moreover, the TEM observation and X-ray diffraction analysis were performed to reveal the surface modification mechanism of TA2 pure titanium by LEHCPEBTs. The surface roughness was modified by electron beam treatment and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM and TEM. The results show that the surface finish obtains good polishing quality and there is no phase transformation but the dislocations by LEHCPEBT. Furthermore, the nanohardness in the surface modified layer is improved. The remelt and fine-grain microstructure of surface layer caused by LEHCPEBTs are the main polishing mechanism and the reason of modification of surface topography and the increment in nanohardness is mainly due to the dislocations and fine grains in the modified layer induced by LEHCPEBT.

  4. [Integrated intensive treatment of tinnitus: method and initial results].

    Science.gov (United States)

    Mazurek, B; Georgiewa, P; Seydel, C; Haupt, H; Scherer, H; Klapp, B F; Reisshauer, A

    2005-07-01

    In recent years, no major advances have been made in understanding the mechanisms underlying the development of tinnitus. Hence, the present therapeutic strategies aim at decoupling the subconscious from the perception of tinnitus. Mindful of the lessons drawn from existing tinnitus retraining and desensitisation therapies, a new integrated day hospital strategy of treatment lasting 7-14 days has been developed at the Charité Hospital and is presented in the present paper. The strategy for treating tinnitus in the proximity of patient domicile is designed for patients who feel disturbed in their world of perception and their efficiency due to tinnitus and give evidence of mental and physical strain. In view of the etiologically non-uniform and multiple events connected with tinnitus, consideration was also given to the fact that somatic and psychosocial factors are equally involved. Therefore, therapy should aim at diagnosing and therapeutically influencing those psychosocial factors that reduce the hearing impression to such an extent that the affected persons suffer from strain. The first results of therapy-dependent changes of 46 patients suffering from chronic tinnitus are presented. The data were evaluated before and after 7 days of treatment and 6 months after the end of treatment. Immediately after the treatment, the scores of both the tinnitus questionnaire (Goebel and Hiller) and the subscales improved significantly. These results were maintained during the 6-month post-treatment period and even improved.

  5. Results of treatment in irradiated testicular seminoma patients

    International Nuclear Information System (INIS)

    Kellokump-Lehtinen, P.

    1990-01-01

    Excellent treatment results have been acieved historically with postoperative radiotherapy in testicular seminoma. In this retrospective study the treatment results of 211 patients with Stage I/II testicular seminoma treated in Finland during the years 1970-1983 were evaluated. 176 (84%) patients received postoperative radiotherapy alone. In addition to radiotherapy, 26 (12%) patients received chemotherapy during the primary treatment. There were 129 Stage I (61%), 66 Stage IIA-B (31%) and 16 Stage IIC (8%) tumors. The 5-year survival rate was 95% in Stage I, 87% in Stage IIA-B and 73% in Stage IIC. In Stage I, seven relapses (relapse rate 6%) occured after irradiation; three of them were cured with second-line therapies. None of the relapses occurred within the radiotherapy field. In Stage IIA-B, 31 patients had only parailiacic + aortic irradiation, 25 patients received both parailiacic + aortic and mediastinal irradiation. With both radiotherapy techniques there was no significant difference in the number of relapses (seven and three) and in the remission rate (94% and 96%). Radiotherapy alone was used on four Stage IIC patients and one of them died during the primary treatment. Two of them relapsed, but could be cured with chemotherapy. These results correspond to those reported in the literature and tye suggest that prophylactic mediastinal irradiation is unneccessary in Stage IIA-B patients. Stage IIC patients should receive chemotherapy initially. (author). 19 refs.; 2 figs.; 2 tabs

  6. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    Science.gov (United States)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  7. SEM Analysis of Surface Impact on Biofilm Antibiotic Treatment.

    Science.gov (United States)

    Gomes, Luciana Calheiros; Mergulhão, Filipe José

    2017-01-01

    The aim of this work was to use scanning electron microscopy (SEM) to investigate the effect of ampicillin treatment on Escherichia coli biofilms formed on two surface materials with different properties, silicone (SIL) and glass (GLA). Epifluorescence microscopy (EM) was initially used to assess biofilm formation and killing efficiency on both surfaces. This technique showed that higher bacterial colonization was obtained in the hydrophobic SIL than in the hydrophilic GLA. It has also shown that higher biofilm inactivation was attained for GLA after the antibiotic treatment (7-log reduction versus 1-log reduction for SIL). Due to its high resolution and magnification, SEM enabled a more detailed analysis of the antibiotic effect on biofilm cells, complementing the killing efficiency information obtained by EM. SEM micrographs revealed that ampicillin-treated cells have an elongated form when compared to untreated cells. Additionally, it has shown that different materials induced different levels of elongation on cells exposed to antibiotic. Biofilms formed on GLA showed a 37% higher elongation than those formed on SIL. Importantly, cell elongation was related to viability since ampicillin had a higher bactericidal effect on GLA-formed biofilms. These findings raise the possibility of using SEM for understanding the efficacy of antimicrobial treatments by observation of biofilm morphology.

  8. Investigation the effects of metallic substrate surfaces due to ion-plasma treatment

    International Nuclear Information System (INIS)

    Shulaev, V.M.; Taran, V.S.; Timoshenko, A.I.; Gasilin, V.V.

    2011-01-01

    It has been found correlation between modification effects and duration of ion-plasma cleaning the substrate surface with titanium ions. Experiments were carried out using serial vacuum-arc equipment ''Bulat-6'' at the stationary mode in non-filtered titanium plasma, which contained considerable quantity of evaporated material droplets. The polished cylinder substrates (diameter and height 9,14,20 mm) have been treated. The substrates were manufactured of stainless steel 12X18H10T and non-oxygen copper M00b. The substrates surface roughness after ion-plasma treatment has been investigated with electron microscope JEOL JSM-840 and optic interference non-contact profilograph- profilometer ''Micron-alpha''. According obtained results the surface of copper and stainless steel substrates has been treated to intensive modification, i.e. substrate surface after treatment significantly differs from initial one. During final ion-plasma treatment a number of effects occur: purification from surface oxides is accompanied with metallic surface ''contamination'' by the cathode material macrodroplets, surface micromelting accompanied by roughness increase, the surface layer annealing with noticeable decrease of hardness.

  9. Preliminary results report: Conasauga near-surface heater experiment

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-06-01

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW for heater mid-plane temperatures of 385 0 C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples

  10. Modification of SrTiO3 single-crystalline surface after plasma flow treatment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A.; Weissbach, Torsten; Leisegang, Tilmann; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Kulagin, Nikolay A. [Kharkiv National University for Radioelectronics, av. Shakespeare 6-48, 61045 Kharkiv (Ukraine); Langer, Enrico [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-07-01

    Surface of pure and transition metal-doped SrTiO3(STO) single crystals before and after hydrogen plasma-flow treatment (energy of 5..20 J/cm2) is investigated by wide-angle X-ray diffraction (WAXRD), fluorescence X-ray absorption near edge structure (XANES) and scanning electron microscopy (SEM) techniques. Plasma treatment results in the formation of a textured polycrystalline layer at the surface of the single-crystalline samples with different orientation. The formation of the quasi-ordered structures consisting of nanoscale-sized pyramids is observed by SEM. XANES evidences the change of the valency of the part of Ti4+ to Ti3+ due to the plasma treatment. The data obtained together with results of X-ray spectroscopy measurements gives evidences of the change of stoichiometry of the STO samples resulting in a change of their physical properties after plasma treatment.

  11. RF atmospheric plasma jet surface treatment of paper

    Science.gov (United States)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  12. Alternative to chrome in the aluminium surface finishing industry. Low environmental impact surface treatments

    International Nuclear Information System (INIS)

    Aballe Villero, A.; Bethencourt Nunez, M.; Botana Pedemonte, F. J.; Marco Barcena, M.; Sanchez-Amaya, J. M.

    2001-01-01

    Chromates are one of the most commonly used compounds in anti corrosive protection systems because of its excellent rate efficiency/cost. In the case of aluminium alloys, these compounds are employed as inhibitors as well as in the anti-corrosive pretreatments to develop protective films. However, chromates are highly toxic and its use involves a high risk for health and environment. Consequently, in the last years intensive efforts have been achieved in the surface treatment industry to find ecological alternatives to this kind of compounds. In this work, the main alternatives proposed in literature to substitute chromates in the surface treatments of aluminium alloys are reviewed. To begin with, the role of chromates in these systems and their environmental consequences has been briefly reviewed. (Author) 16 refs

  13. Preliminary Results of the Louisiana Sex Offender Treatment Program

    Directory of Open Access Journals (Sweden)

    Lee A. Underwood

    2015-12-01

    Full Text Available The purpose of this study was to offer preliminary support for the Louisiana Sex Offender Treatment Program (LSOTP in addressing the needs of juvenile sex offenders. Research objectives were (1 to offer statistical evidence for reductions in anxiety, depression, cognitive distortion and negative attitudes towards women comparing a group of 21 adolescents, 12 of whom received services as usual and nine of whom participated in the LSOTP. A controlled experimental evaluation design was utilized. The juvenile sex offenders were randomly assigned to the experimental group for 12 weeks receiving treatment services and a control group receiving care “as usual” in a residential group care program. Participants in the experimental group experienced statistically significant decreases in cognitive distortions related specifically to rape and molestation.The results of this study offer preliminary support of the LSOTP as a best practices alternative to other treatment modalities.

  14. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  15. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  16. Percutaneous Treatment of Splenic Cystic Echinococcosis: Results of 12 Cases

    Energy Technology Data Exchange (ETDEWEB)

    Akhan, Okan, E-mail: akhano@tr.net; Akkaya, Selçuk, E-mail: selcuk.akkaya85@gmail.com [Hacettepe University, Department of Radiology, School of Medicine (Turkey); Dağoğlu, Merve Gülbiz, E-mail: drmgkartal@gmail.com [Istanbul University, Department of Radiology, Istanbul School of Medicine (Turkey); Akpınar, Burcu, E-mail: burcu-akpinar@yahoo.com [Hacettepe University, Department of Radiology, School of Medicine (Turkey); Erbahçeci, Aysun, E-mail: aysunerbahceci@yahoo.com [Istanbul Bakirkoy Dr. Sadi Konuk Education and Research Hospital, Department of Radiology (Turkey); Çiftçi, Türkmen, E-mail: turkmenciftci@yahoo.com [Hacettepe University, Department of Radiology, School of Medicine (Turkey); Köroğlu, Mert, E-mail: mertkoroglu@hotmail.com [Antalya Education and Research Hospital, Department of Radiology (Turkey); Akıncı, Devrim, E-mail: akincid@hotmail.com [Hacettepe University, Department of Radiology, School of Medicine (Turkey)

    2016-03-15

    PurposeCystic echinococcosis (CE) in the spleen is a rare disease even in endemic regions. The aim of this study was to examine the efficacy of percutaneous treatment for splenic CE.Materials and MethodsTwelve patients (four men, eight women) with splenic CE were included in this study. For percutaneous treatment, CE1 and CE3A splenic hydatid cysts were treated with either the PAIR (puncture, aspiration, injection, respiration) technique or the catheterization technique.ResultsEight of the hydatid cysts were treated with the PAIR technique and four were treated with catheterization. The volume of all cysts decreased significantly during the follow-up period. No complication occurred in seven of 12 patients. Abscess developed in four patients. Two patients underwent splenectomy due to cavity infection developed after percutaneous treatment, while the spleen was preserved in 10 of 12 patients. Total hospital stay was between 1 and 18 days. Hospital stay was longer and the rate of infection was higher in the catheterization group. Follow-up period was 5–117 months (mean, 44.8 months), with no recurrence observed.ConclusionThe advantages of the percutaneous treatment are its minimal invasive nature, short hospitalization duration, and its ability to preserve splenic tissue and function. As the catheterization technique is associated with higher abscess risk, we suggest that the PAIR procedure should be the first percutaneous treatment option for splenic CE.

  17. Surface treatment to reduce icing; Oberflaechenbehandlung zur Vereisungsverringerung

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, P.; Kulik, G.; Zehnder, M.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of work done at the Swiss Federal Institute of Technology in Lausanne, Switzerland, on reducing ice formation on the evaporators of air-water heat-pumps and speeding-up the defrosting cycle by making their surfaces hydrophobic. The authors report that highest water repellence was achieved by high surface roughness and application of a strongly hydrophobic per fluorosilane coating. The results of tests carried out with uncoated and differently coated sample heat exchangers are presented. Three geometrically identical miniaturised heat exchangers were used that differed in roughness and surface wettability. Surprisingly, the rough and strongly repellent heat-exchanger showed worse defrosting behaviour than the uncoated heat-exchanger. The flat and hydrophobic-coated heat-exchanger showed the best performance. The amount of frost formed was 25% less and defrosting time was much shorter.

  18. System for supporting conception in the field of surface treatments

    International Nuclear Information System (INIS)

    Evrard, J.M.; Gras, M.

    1989-01-01

    The application of the techniques issued from artificial intelligence for assisting the development of a computer technical memory on a representative subject, which is the surface treatments and coating in tribology, is illustrated. The development of the system is composed of several steps: data acquisition and formatting representation, data validation and software. Particular attention is given to the dialogue between the user and the system. The study shows that the development of the following points are indispensable: the possibility of following the user's reasoning and coming back to previous steps or exploring several parallel ways [fr

  19. Managing AVN following internal fixation: treatment options and clinical results.

    Science.gov (United States)

    Hoskinson, Simon; Morison, Zachary; Shahrokhi, Shahram; Schemitsch, Emil H

    2015-03-01

    Avascular necrosis (AVN) after internal fixation of intracapsular hip fractures is a progressive multifactorial disease that ultimately results in local ischemia with ensuing osteocyte necrosis and structural compromise. This disease can cause significant clinical morbidity and affects patients of any age, including young and active patients. Effective treatment of this condition among young adults is challenging due to their high functional demands. The aim of managing AVN is to relieve pain, preserve range of movement and improve function. Treatment methods vary depending on the stage of the disease and can be broadly categorised into two options, hip preserving surgery and hip arthroplasty. Although, hip preserving techniques are attractive in the young adult, they may alter the morphology of the proximal femur and make subsequent arthroplasty more challenging. Conversely, arthroplasty in the young adult may require repeat revision procedures throughout the patient's life. Current evidence suggests that modifications of prevailing treatments, in addition to new technologies, have led to the development of management strategies that may be able to alter the course of femoral head osteonecrosis. This review aims to summarise the options available for treatment of AVN in the young adult and review the clinical results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / Development of the plasma use surface treatment process by in-situ control (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / in-situ seigyo ni yoru plasma riyo hyohi shori process no kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the fiscal 1997 result of the development. To know of in-plasma phenomena such as carburization and nitriding, a basic plasma experimental device was fabricated for quantitative measurement of reaction activity species. For the study of reaction control between plasma and substrate, a rotary analyzer type ellipsometer was fabricated as a method to detect composition and thickness of the deposit on the substrate surface. For He gas cooling after carburization and hardening, basic specifications for He gas refining/circulating system were confirmed. For perfect non-hazardous processing of exhaust gas from plasma carburization furnace, conducted was the thermodynamic computation of the process. Priority in order of the functions to be possessed as specifications for basic design of mini plant is plasma carburization, He gas cooling, and in-situ measurement. To make the most of the plasma use surface treatment as substitutes for expensive alloy elements, sliding parts/die-cast mold raw materials were carburized to measure the hardness. The Cr carbide coating technology by plasma CVD is also under study as an application example except carburization. 47 refs., 59 figs., 31 tabs.

  1. Environmental performance assessment of a company of aluminum surface treatment

    Directory of Open Access Journals (Sweden)

    Susan Catieri Ramalho

    2013-08-01

    Full Text Available The purpose of this article was to evaluate the environmental performance of a medium-sized company that provides services for surface treatment of aluminum. The treatment is known as anodizing. The research method was qualitative numerical modeling. The environmental performance of the company was organized into five constructs: atmosphere, wastewater, energy and natural resources, solid waste, and legislation and management. Nineteen indicators were chosen to explain the five constructs. Ten employees of the company prioritized the constructs and evaluated the situation of the indicators by means of a scale of assessment. By means of a mathematical model, the general performance of the environmental operation was calculated at 74.5% of the maximum possible. The indicators that most contributed to the performance not to reach 100% were consumption of electricity and water consumption. The construct of worse performance was natural and energy resources. These are the priorities for future environmental improvement actions that the company may promote.

  2. Evaluation of Ti-6Al-4V surface treatments for use with a polyphenylquinoxaline adhesive

    Science.gov (United States)

    Progar, Donald J.

    1987-01-01

    Three surface treatments for Ti-6Al-4V adherends were evaluated using a thermoplastic polymer monoether polyphenylquinoxaline, MEPPQ, which had been shown in previous studies to have good potential as a high temperature adhesive for aerospace applications. Initial results based on long term thermal exposure at 232 C (450 F) using the phosphate-fluoride (PF) and chromic acid anodized (CAA) treatments with MEPPQ adhesive were not encouraging. A significant improvement in strength retention and a change in failure mode (cohesive) at 232 C (450 F) was found for the SHA treated specimens compared to the PF and CAA treatments. Although an improvement in long term thermal durability was obtained with the SHA treatment of Ti-6Al-4V, an improved surface treatment with better long term durability is still required for aerospace applications.

  3. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    Science.gov (United States)

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  4. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  5. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadizenouz

    2016-03-01

    Full Text Available Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1; air abrasion with 50-μm aluminum oxide particles (group 2; irradiation with Er:YAG laser beams (group 3; roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4; and etching with 9% hydrofluoric acid for 120 s (group 5. Another group of Filtek Z350XT composite resin samples (4×6 mm was fabricated for the measurement of cohesive strength (group 6. A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05. Results. One-way ANOVA indicated significant differences between the groups (P < 0.05. SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  6. Pirfenidone treatment in idiopathic pulmonary fibrosis: nationwide Danish results

    Directory of Open Access Journals (Sweden)

    Goran Nadir Salih

    2016-09-01

    Full Text Available Background: Pirfenidone was approved by the European Medicines Agency and introduced in most European countries in 2011 for treatment of idiopathic pulmonary fibrosis (IPF. Objective: To describe the national Danish experiences of pirfenidone treatment for IPF during 30 months with respect to target population, safety, adherence to the treatment and effect analysis in a well-characterised IPF population in a real-life setting. Methods: Retrospective data collection from medical records of all patients in Denmark with IPF from 2011 to 2014. Data included baseline demographics, high-resolution computed tomography (HRCT, histopathology, forced vital capacity (FVC and 6-min walk test (6MWT. Longitudinal data on FVC, walk test, adherence to the treatment and vital status were also collected. Results: Pirfenidone treatment was initiated in 113 patients. Mean age was 69.6±8.1 years (±SD, and 71% were male. Definite IPF diagnosis required thoracoscopic lung biopsy in 45 patients (39.8%. The remaining 68 cases had a definite (64 patients or possible usual interstitial pneumonia (four patients pattern on HRCT. Patients were followed for 0.1–33.8 months (median 9.4 months. Fifty-one patients (45.2% needed dose adjustment, 18 (16% patients discontinued therapy and 13 patients (11.5% died. The annual mean decline in FVC was 164 ml (SE 33.2. The decline in 6MWT was 18.2 m (SE 11.2. Nausea (44.2%, fatigue (38.9% and skin reactions (32.7% were frequent adverse events. Conclusion: Patients with IPF treated with pirfenidone experienced tolerable adverse events. Patients were maintained on treatment due to a careful follow-up and dose adjustment programme. The annual decline in physiological parameters and mortality rate was comparable to previous randomised controlled trials.

  7. APPLICATION OF CHEMICAL PRE-TREATMENT ON THE POLISHED SURFACE OF ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Pavel Kraus

    2016-12-01

    Full Text Available This paper reports the preparation and characterization of thin transparent nanolayers with phase composition ZrF4 and different modification of SiO2 with special focus on affecting the surface roughness of the material and the way of exclusion of the thin nanolayer on the surface of the polished aluminium material. The thin nanolayer was prepared by the sol-gel method. The final treatment based on PTFE was applied on the surface of some samples. This treatment is suitable for increasing wear resistance. The films were characterized with help of SEM microscopy and EDS analysis. The surface roughness was measured with classical surface roughness tester. The results on this theme have already published but not on the polished surface of the aluminium material. The results from the experiment show the problems with application of these nanolayers because a cracks were found on the surface of the material and deformations of the layer after application of the PTFE final layer. The surface layer formation is discussed.

  8. Novel surface treatment for hydrogen storage alloy in Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiangyu; Ma, Liqun; Ding, Yi; Yang, Meng; Shen, Xiaodong [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China)

    2009-05-15

    A novel surface treatment for the MlNi{sub 3.8}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.2} (La-rich mischmetal) hydrogen storage alloy has been carried out by using an aqueous solution of HF and KF with a little addition of KBH{sub 4}. The results of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that rough surface was formed and Al was partly dissolved into the solution after the treatment. The result of XPS indicated the formation of Ni{sub 3}B and LaF{sub 3} compounds on the alloy surface by the treatment. The probable chemical reaction mechanism for the surface treatment was introduced. The treatment resulted in significant improvements in the activation property, discharge capacity and cycle life of the alloy, especially the high rate dischargeability (HRD). The HRD of the treated alloy still remained 54.9% while that of the untreated one was only 15.1% at a discharge current density of 1200 mA/g. (author)

  9. A study of laser surface treatment in bonded repair of composite aircraft structures.

    Science.gov (United States)

    Li, Shaolong; Sun, Ting; Liu, Chang; Yang, Wenfeng; Tang, Qingru

    2018-03-01

    Surface pre-treatment is one of the key processes in bonded repair of aircraft carbon fibre reinforced polymer composites. This paper investigates the surface modification of physical and chemical properties by laser ablation and conventional polish treatment techniques. Surface morphology analysed by laser scanning confocal microscopy and scanning electron microscopy showed that a laser-treated surface displayed higher roughness than that of a polish-treated specimen. The laser-treated laminate exhibited more functional groups in the form of O 1 s/C 1 s atomic ratio of 30.89% for laser-treated and 20.14% for polish-treated as evidenced by X-ray photoelectron spectroscopy observation. Contact angle goniometry demonstrated that laser treatment can provide increased surface free energy and wettability. In the light of mechanical interlocking, molecular bonding and thermodynamics theories on adhesion, laser etching process displayed enhanced bonding performance relative to the polishing surface treatment. These properties resulted in an increased single lap shear strength and a cohesive failure mode for laser etching while an adhesive failure mode occurred in polish-treated specimen.

  10. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Directory of Open Access Journals (Sweden)

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  11. Water evaporation from substrate tooth surface during dentin treatments.

    Science.gov (United States)

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  12. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  13. Effect of Enamel and Dentin Surface Treatment on the Self-Adhesive Resin Cement Bond Strength.

    Science.gov (United States)

    Mushashe, Amanda Mahmmad; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Moro, Alexandre; Correr, Gisele Maria

    2016-01-01

    The aim of this study was to evaluate the effect of enamel and dentin surface treatment on the micro-shear bond strength of self-adhesive cement. Seventy-two extracted third molars had their crowns embedded in acrylic resin and worn to obtain a flat enamel or dentin surface. The enamel and dentin specimens were randomly assigned to 8 groups (n=12) that were based on surface treatment (11.5% polyacrylic acid solution or no treatment), substrate condition (wet or dry) and storage period (1 day or 90 days), and treated accordingly. Cylinders (1 × 1 mm) were fabricated using self-adhesive resin cement (RelyX U200) following the manufacturer's instructions. The specimens were stored in distilled water at 37 °C for either 1 day or 90 days and subjected to micro-shear bond strength test (EMIC DL 2000 at 0.5 mm/min). After this, the failure type of the specimens was determined. Data were subjected to statistical analysis (a=0.05). According to the results, the 11.5% polyacrylic acid application decreased the bond strength in both enamel and dentin samples. The moist groups showed higher bond strength than the dry ones, regardless of the substrate and surface treatment. Storage period did not influence bond strength. In conclusion, surface treatment with 11.5% polyacrylic acid and absence of moisture decreased the bond strength of the resin-cement (RelyU200), regardless of the storage period.

  14. Surface science in hernioplasty: The role of plasma treatments

    Science.gov (United States)

    Nisticò, Roberto; Magnacca, Giuliana; Martorana, Selanna

    2017-10-01

    The aim of this review is to clarify the importance of surface modifications induced in biomaterials for hernia-repair application. Starting from the pioneering experiences involving proto-materials as ancient prosthesis, a historical excursus between the biomaterials used in hernioplasty was realized. Subsequently, after the revolutionary discovery of stereoregular polymerization followed by the PP application in the biomedical field performed by the surgeon F. Usher, a comparative study on different hernia-repair meshes available was realized in order to better understand all the outstanding problems and possible future developments. Furthermore, since many unsolved problems on prosthetic devices implantation are linked to phenomena occurring at the interface between the biomaterials surface and the body fluids, the importance of surface science in hernioplasty was highlighted and case studies of new surface-modified generations of prosthesis presented. The results discussed in the following evidence how the surface study are becoming increasingly important for a proper knowledge of issues related to the interaction between the living matter and the artificial prostheses.

  15. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  16. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    International Nuclear Information System (INIS)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Ren, Chengyan; Shao, Tao; Xie, Qin

    2017-01-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level. (paper)

  17. Development of Vegetation and Surface Fuels Following Fire Hazard Reduction Treatment

    Directory of Open Access Journals (Sweden)

    Scott L. Stephens

    2012-08-01

    Full Text Available In dry western Unites States forests where past resource management has altered the ecological role of fire and stand characteristics alike, mechanical thinning and prescribed burning are commonly applied in wildfire hazard abatement. The reduced surface fuel loads and stand structures resulting from fuels modifications are temporary, yet few studies have assessed the lifespan of treatment effects. We sampled forest fuels and vegetation following fuels reduction in a chronosequence of time since treatment in the northern Sierra Nevada and southern Cascade regions of California. Treatments altered overstory characteristics including stand density, basal area, and species composition. These effects were still present on the oldest treatment sites (8–15 years post-treatment. Other stand characteristics, particularly timelag fuel loads, seedling density, and shrub cover, exhibited substantial variability, and differences between treatment age classes and between treatment and control groups were not statistically significant.

  18. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  19. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    International Nuclear Information System (INIS)

    Majewski, Peter; Keegan, Alexandra

    2012-01-01

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g silica . Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10 2 and 10 4 cfu/mL.

  20. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-12-01

    Full Text Available Due to their large compatibility difference, polyethylene (PE and polyoxymethylene (POM cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM, optical microscopy, and X-ray photoelectron spectroscopy (XPS. Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.

  1. Inactivation of norovirus surrogates on surfaces and raspberries by steam-ultrasound treatment

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Uhrbrand, Katrine; Nørrung, Birgit

    2012-01-01

    of infectious virus and viral genomes were determined by plaque assay and reverse transcription-real time quantitative PCR (RT-qPCR), respectively. On plastic surfaces, an inactivation of >99.99% was obtained for both MS2 and FCV, corresponding to a 9.1-log and >4.8-log reduction after 1 or 3 s of treatment......) resulted in negligible reductions of viral genome titers of MS2, FCV, and MNV on plastic surfaces as well as of MS2 inoculated on raspberries. Steam-ultrasound treatment in its current format does not appear to be an appropriate method to achieve sufficient decontamination of NoV-contaminated raspberries...... treatment that combines pressurized steam and high-power ultrasound (steam-ultrasound) was assessed for its efficacy to inactivate human NoV surrogates: coliphage (MS2), feline calicivirus (FCV), and murine norovirus (MNV) inoculated on plastic surfaces and MS2 inoculated on fresh raspberries. The amounts...

  2. Direct observation of deformation of nafion surfaces induced by methanol treatment by using atomic force microscopy

    International Nuclear Information System (INIS)

    Umemura, Kazuo; Kuroda, Reiko; Gao Yanfeng; Nagai, Masayuki; Maeda, Yuta

    2008-01-01

    We successfully characterized the effect of methanol treatment on the nanoscopic structures of a nafion film, which is widely used in direct methanol fuel cells (DMFCs). Atomic force microscopy (AFM) was used to repetitively image a particular region of a nafion sample before and after methanol solutions were dropped onto the nafion film and dried in air. When the surface was treated with 20% methanol for 5 min, many nanopores appeared on the surface. The number of nanopores increased when the sample was treated twice or thrice. By repetitive AFM imaging of a particular region of the same sample, we found that the shapes of the nanopores were deformed by the repeated methanol treatment, although the size of the nanopores had not significantly changed. The creation of the nanopores was affected by the concentration of methanol. Our results directly visualized the effects of methanol treatment on the surface structures of a nafion film at nanoscale levels for the first time

  3. Clinical results of nonsurgical treatment for spinal metastases

    International Nuclear Information System (INIS)

    Katagiri, Hirohisa; Takahashi, Mitsuru; Inagaki, Jiro; Kobayashi, Hidetoshi; Sugiura, Hideshi; Yamamura, Shigeki; Iwata, Hisashi

    1998-01-01

    Purpose: In contrast with many analyses of surgical treatment for spinal metastases, there have been only a few recent well-documented publications assessing nonsurgical treatment. This paper is a study of the outcome of nonsurgical therapy for metastatic tumors of the spine. Methods and Materials: One hundred and one patients with spinal metastases were treated with radiation therapy and/or chemotherapy without surgical intervention between 1990 and 1995, in prospective analysis, and had follow-up for more than 24 months. This study included 59 men and 42 women with a mean age of 61 years (range: 14 to 81). Mean follow-up periods were 11 months for patients dying of the disease and 53 months for the survivors. Neurological status, pain relief, functional improvement, and cumulative survival rate were assessed. Results: Of the total treated, 67 patients (66%) were evaluated as being neurologically stable or improved after treatment. Pain relief was achieved in 67%, and 64% showed functional improvement. Primary lesion responsiveness to nonsurgical therapy influenced the survival, neurological recovery, pain control, and function. Neurological findings before therapy were useful in predicting ambulatory status after treatment. Conclusion: Nonsurgical treatment was often successful when primary tumors had responsiveness to radiation therapy and/or chemotherapy. We found this to be evident even when neurological deficits were found, particularly in lumbar spines. Spinal metastases of tumors with less responsiveness, unless patients were neurologically intact, responded poorly to therapy. Most of the patients who were successfully treated enjoyed relief lasting nearly until death. Their functional ability was limited by general debility, rather than by local tumor regeneration

  4. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  5. Upper cervical injuries: Clinical results using a new treatment algorithm

    Directory of Open Access Journals (Sweden)

    Andrei F Joaquim

    2015-01-01

    Full Text Available Introduction: Upper cervical injuries (UCI have a wide range of radiological and clinical presentation due to the unique complex bony, ligamentous and vascular anatomy. We recently proposed a rational approach in an attempt to unify prior classification system and guide treatment. In this paper, we evaluate the clinical results of our algorithm for UCI treatment. Materials and Methods: A prospective cohort series of patients with UCI was performed. The primary outcome was the AIS. Surgical treatment was proposed based on our protocol: Ligamentous injuries (abnormal misalignment, facet perched or locked, increase atlanto-dens interval were treated surgically. Bone fractures without ligamentous injuries were treated with a rigid cervical orthosis, with exception of fractures in the dens base with risk factors for non-union. Results: Twenty-three patients treated initially conservatively had some follow-up (mean of 171 days, range from 60 to 436 days. All of them were neurologically intact. None of the patients developed a new neurological deficit. Fifteen patients were initially surgically treated (mean of 140 days of follow-up, ranging from 60 to 270 days. In the surgical group, preoperatively, 11 (73.3% patients were AIS E, 2 (13.3% AIS C and 2 (13.3% AIS D. At the final follow-up, the American Spine Injury Association (ASIA score was: 13 (86.6% AIS E and 2 (13.3% AIS D. None of the patients had neurological worsening during the follow-up. Conclusions: This prospective cohort suggested that our UCI treatment algorithm can be safely used. Further prospective studies with longer follow-up are necessary to further establish its clinical validity and safety.

  6. Emergency Endovascular Treatment of Abdominal Aortic Aneurysms: Feasibility and Results

    International Nuclear Information System (INIS)

    Lagana, Domenico; Carrafiello, Gianpaolo; Mangini, Monica; Fontana, Federico; Caronno, Roberto; Castelli, Patrizio; Cuffari, Salvatore; Fugazzola, Carlo

    2006-01-01

    Purpose. To assess the feasibility and effectiveness of emergency endovascular treatment of abdominal aortic aneurysms (AAAs). Methods. During 36 months we treated, on an emergency basis, 30 AAAs with endovascular exclusion. In 21 hemodynamically stable patients preoperative CT angiography (CTA) was performed to confirm the diagnosis and to plan the treatment; 9 patients with hemorrhagic shock were evaluated with angiography performed in the operating room. Twenty-two Excluder (Gore) and 8 Zenith (Cook) stent-grafts (25 bifurcated and 5 aorto-uni-iliac) were used. The follow-up was performed by CTA at 1, 3, 6, and 12 months. Results. Technical success was achieved in 100% of cases with a 10% mortality rate. The total complication rate was 23% (5 increases in serum creatinine level and 2 wound infections). During the follow-up, performed in 27 patients (1-36 months, mean 15.2 months), 4 secondary endoleaks (15%) (3 type II, 2 spontaneously thrombosed and 1 under observation, and 1 type III treated by iliac extender insertion) and 1 iliac leg occlusion (treated with femoro-femoral bypass) occurred. We observed a shrinkage of the aneurysmal sac in 8 of 27 cases and stability in 19 of 27 cases; we did not observe any endotension. Conclusions. Endovascular repair is a good option for emergency treatment of AAAs. The team's experience allows correct planning of the procedure in emergency situations also, with technical results comparable with elective repair. In our experience the bifurcated stent-graft is the device of choice in patients with suitable anatomy because the procedure is less time-consuming than aorto-uni-iliac stent-grafting with surgical crossover, allowing faster aneurysm exclusion. However, further studies are required to demonstrate the long-term efficacy of endovascular repair compared with surgical treatment

  7. Comparison of Treatment Results Between Adult and Juvenile Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Downing, N. Lance; Wolden, Suzanne; Wong, Priscilla; Petrik, David W.; Hara, Wendy; Le, Quynh-Thu

    2009-01-01

    Purpose: Nasopharyngeal carcinoma (NPC) has a bimodal age distribution. In contrast to the adult variant, little is known about the juvenile form. This study examined the treatment results between adult (aNPC) and juvenile NPC (jNPC) patients for future treatment considerations in jNPC. Methods and Materials: The jNPC population included 53 patients treated at two institutions between 1972 and 2004. The aNPC population included 84 patients treated at one institution. The patients had received a median dose of 66 Gy of external beam radiotherapy and 72% underwent chemotherapy. The mean follow-up for surviving patients was 12.6 years for jNPC and 6.6 years for aNPC. Results: The jNPC patients presented with more advance stages than did the aNPC patients (92% vs. 67% Stage III-IV, p = .006). However, jNPC patients had significantly better overall survival (OS) than did aNPC patients. The 5-year OS rate was 71% for jNPC and 58% for aNPC (p = .03). The jNPC group also demonstrated a trend for greater relapse-free survival than the aNPC group (5-year relapse-free survival rate, 69% vs. 49%; p = .056). The pattern of failure analysis revealed that the jNPC patients had greater locoregional control and freedom from metastasis but the differences were not statistically significant. Univariate analysis for OS revealed that age group, nodal classification, and chemotherapy use were significant prognostic factors. Age group remained significant for OS on multivariate analysis, after adjusting for N classification and treatment. Conclusion: Despite more advance stage at presentation, jNPC patients had better survival than did aNPC patients. Future treatment strategies should take into consideration the long-term complications in these young patients.

  8. SEM observations of particle track membrane surfaces modificated using plasma treatment

    International Nuclear Information System (INIS)

    Sartowska, B.; Buczkowski, M.; Starosta, W.

    2003-01-01

    This work presents results of scanning electron microscopy (SEM) observations of 0.4 μm membranes after plasma treatment with different parameters. The morphology changes at the surfaces and at the pore walls were observed. The character of changes in the membrane parameters according to the process conditions was determined

  9. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli.Results: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency...... frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes.......Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...

  10. The results of surgical and nonsurgical treatment of mallet finger

    Directory of Open Access Journals (Sweden)

    Starčević Branislav

    2006-01-01

    Full Text Available Introduction: The injury of the hand tendon classified as mallet finger presents the loss of continuity of the united lateral band of the extensor apparatus above distal interphalangeal joint, which consequently leads to specific deformity of distal interphalangeal joint which is called mallet (hammer finger. Objective Our paper had several research Objectives: presentation of the existing Results of surgical and nonsurgical treatment of mallet finger deformities and comparison of our findings and other authors’ Results. Method: The study was retro-prospective, and analyzed 62 patients treated in the Clinical Center of Serbia in Belgrade (at the Institute of Orthopedic Surgery and Traumatology, and the Emergency Center in the period 1998 to 2003. The follow up of these patients lasted at least 8 months (from 8.3 months to 71.7 months. An average follow up was 28.7 months. The Objective parameters used in the study were as follows: sex, age, dominating hand, hand injury, finger injury, mode of treatment, complications, distal interphalangeal joint flexion and total movement of the distal interphalangeal joint. Collected data were analyzed by χ2-test and Student’s t-test. The confidence interval was p=0.05. Results: A total range of motion was 51.9±6.6 for nonsurgically treated patients, and 48.2±4.2 degrees for operated patients. Mean extension deficit of the distal interphalangeal joint was 6.5±3.3 for nonsurgical and 10.0±3.2 for operated patients. Conclusion: The Results confirmed that nonsurgical mode of treatment of mallet finger deformity was much more successful than surgical Method of treating the same deformity.

  11. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Marina Cumerlato

    Full Text Available ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT on the shear bond strength (SBS of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI. Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48: Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01, result not observed with ageing (p= 0.45. Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05. SBS was greater in the groups 3 and 4 (drilling, sandblasting than in the Group 2 (grinding (p< 0.05. SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05. Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.

  12. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Science.gov (United States)

    Cumerlato, Marina; de Lima, Eduardo Martinelli; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; de Menezes, Luciane Macedo; Rizzatto, Susana Maria Deon

    2017-01-01

    ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI. PMID:28902249

  13. A well-defined mesoporous amine silica surface via a selective treatment of SBA-15 with ammonia

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa; Pelletier, Jeremie; Abou-Hamad, Edy; Emsley, Lyndon; Basset, Jean-Marie

    2012-01-01

    2D double-quantum 1H- 1H NMR unambiguously shows that the "isolated" Si-OH surface silanols of dehydroxylated SBA-15 are converted upon treatment with ammonia into single silylamine surface site Si-NH 2. The "gem" di-silanols (Si(OH) 2) remain intact. Treatment using HMDS produces (Si(OSiMe 3) 2) but leaves Si-NH 2 untouched. The resulting surface is hydrophobic and stable. © The Royal Society of Chemistry 2012.

  14. Treatment's results of hyperthyroid patients with Iodine-131

    International Nuclear Information System (INIS)

    Bastan-Hagh, M.H.; Larijani, B.; Rahim-Tabrizi, P.; Khalili-Fard, A.R.; Baradar-Jalili, R.; Saghari, M.

    2004-01-01

    Introduction: radioiodine ( 131 I) is an effective and inexpensive alternative to surgery in the treatment of thyroid hyper function. The debate today concerns the maximum and minimum ablative doses, and factors leading to hypothyroidism. Patients and method: 1035 hyperthyroid patients treated with weight-adjusted ablative doses of 131 I were retrospectively assessed for treatment outcome or correlated with sex, age, underlying pathology, and administrated dose of 131 I . Results: Thyroid hyper function was more common in women. The greatest proportions of patients were in the 31-40 years age group and the smallest proportion over -70. The commonest underlying pathology was Grave's disease. Men had a lower response rate to 131 I therapy, with 2.4-fold greater probability of persistent hyperthyroidism (P 131 I hypothyroidism decreased with increasing age (P 131 I therapy was seen in patients with toxic adenoma, (P=0.0001). The incidence of hypothyroidism did not show a positive correction with increased administered dose of 131 I (P 131 I was effective in reducing thyroid nodule size. There were 18 cases of temporary hyperthyroidism, all of which recovered to euthyroid status within 12 months. Conclusion: one dose of radioiodine was effective in treatment of hyperthyroid patients in 91.2 % of cases. Age, sex and underlying pathology were determining factors. In most cases the average time to hypothyroidism was reasonably short, obviating the need for long time follow up in these patients

  15. Results of radioiodine treatment in various types of hyperthyroidism

    International Nuclear Information System (INIS)

    Donner, C.S.

    1988-01-01

    During an investigation period starting early in 1982 and ending in the middle of 1985 a total of 360 patients were treated with iodine-131 for hyperthyroidism of different origins. The case reports of 337 of these patients were reviewed for the purposes of this study. The patients were divided into three groups. In this cohort, the healing rates achieved with one single treatment were 84.4% for autonomic adenomas, 50.8% for hyperthyroidism of other than immunologic origins and 22.7% for Basedow's disease. After a series of up to four treatments the healing rates were seen to be increased to 93% for autonomous adenomas, 84% for nonimmunogenic hyperthyroidism and 80% for Basedow's disease. The results thus achieved appeared to be unrelated to the patients' sex or previous surgical interventions for disorders of the thyroid. The findings show that therapeutic regimes calculated individually on the basis of a formula should be approached with some caution. Thus, doses lower than 100 Gy are hardly advisable for patients showing diffuse hyperthyroidism. It would also appear wise in autonomous adenomas to reduce the dose from 400 to 200 Gy. Likewise, the use of doses above 15 mCi should be restricted to special cases. A dose-effect relationship could not be detected in patients suffering from Basedow's disease. It seems recommendable here to use low initial doses so as to permit less radiosensitive patients to be healed by repeat treatment with a higher dose. (orig./MG) [de

  16. Analysis of results of surgical treatment of posttraumatic stiff elbow

    Directory of Open Access Journals (Sweden)

    Rex Chandrabose

    2008-01-01

    Full Text Available Background: Surgical management of posttraumatic elbow stiffness has been reported with poor outcome following treatment. Sequential release in earlier stages of stiffness yielded much better results. The goal of our study was to assess the outcome in improvement of the range of motion of the elbow after surgical release and to analyze a tailor-made approach according to individual needs to yield good result. Materials and Methods: A prospective study was conducted in 47 cases of elbow stiffness due to various types of injuries. All the cases were treated with sequential release if there was no progress after adequate supervised conservative management except in unreduced dislocations. All the cases were followed up for a minimum period of 24 months. Overall outcome was rated with the functional scoring system by Mayo Clinic Performance Index. Results: Twenty-five (44.68% out of 47 patients had excellent results with a mean preoperative range of motion of 33.9° and postoperative range of motion of 105° with net gain in range of motion of 71.1° (′ t ′ test value is 19.27, P < 0.01. None of the patients had elbow instability. Patients not having heterotopic ossification, who underwent surgery from three to six months post injury had a mean gain of 73.5°. In patients who waited for more than six months had mean gain of 66.8°. However, the results in cases having heterotopic ossification followed a slightly different pattern. In cases where release was performed from three months to six months had mean gain of 77.5°. Cases in which release was performed after six months had gain of 57.1°. Conclusions: In cases of posttraumatic elbow stiffness after a failed initial conservative treatment, early arthrolysis with sequential surgical soft tissue release yields good result than delayed surgery.

  17. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment.

    Science.gov (United States)

    Strasser, Thomas; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-02-05

    The aim of this study was to examine the effects of surface pre-treatment on CAD/CAM materials including ceramics, zirconia, resin-infiltrated ceramic, and resin-based composite. Specimens were made of ten CAD/CAM materials (Celtra Duo, Degudent, D; Vita Suprinity, Vita, D; E.max CAD, Ivoclar-Vivadent, FL; E.max ZirCAD, Ivoclar-Vivadent, FL; Vita Enamic, Vita, D; Cerasmart, GC, B; LAVA Ultimate, 3M, D; SHOFU Block HC, SHOFU, US; Grandio Blocs, VOCO, D; BRILLIANT Crios, Coltene, CH) and pretreated to represent clinical procedures (Hf 20 s/5%; phosphoric acid 20 s/37%; Monobond etch and prime (Ivoclar-Vivadent, FL); water-cooled diamond bur (80 μm; 4 μm); Al 2 O 3 -blasting (50 μm/1 bar, 50 μm/2 bar, 120 μm/1 bar, 120 μm/2 bar); untreated; manufacturer's instructions). SEM-analysis (Phenom, FEI, NL) of the surfaces was performed (magnifications ≤ 10,000×). Roughness values R a , R z (KJ 3D, Keyence, J), and surface energy SE (OCA15 plus, SCA20, DataPhysics, D) were determined (statistics: non-parametric Mann-Whitney U test/Kruskal-Wallis test for independent specimen, α = 0.05). Kruskal-Wallis revealed significant (p CAD/CAM materials require individual pre-treatment for optimized and protective surface activation. Cementation is a key factor for clinical success. Given the variety of available CAD/CAM materials, specific procedures are needed.

  18. Treatment results of radical radiotherapy in uterine cervix cancer

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seung Jae; Kim, Bo Kyong; Lim, Do Hoon; Shin, Seong Soo; Lee, Jeong Eun; Kang, Min Kyu; Ahn, Yong Chan [Samsung Medical center, sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    This study was conducted to evaluate the treatment results, prognostic factors, and complication rates after high dose rate (HDR) brachytherapy in patients with uterine cervix cancer who were treated with curative aim. Of 269 cervix cancer patients treated at the department of radiation oncology, Samsung Medical Center from September 1994 to July 1998, the 106 who were treated with radical radiotherapy were analyzed. The median age was 61 years (range 22 to 89). All patients except 4 with carcinoma in situ (CIS) were given external beam radiotherapy (range 30.6 {approx} 50.4 Gy to whole pelvis) and HDR brachytherapy. The common regimens of HDR brachytherapy were a total dose of 24 {approx} 28 Gy with 6 {approx} 7 fractions to point A at two fractions per week. The median overall treatment time was 55 days (range 44 to 104) in patients given both external beam radiotherapy and HDR brachytherapy. Early response of radiotherapy were evaluated by gynecologic examination and follow-up MRI 1 month after radiotherapy. Treatment responses were complete remission in 72 patients, partial response in 33 and no response in 1. The overall survival (OS) rate of all patients was 82%, and 73%, and the disease free survival (DFS) rate was 72%, and 69%, at 3, and 5 years, respectively. The pelvic control rate (PCR) was 79% at both 3 and 5 years. According to the FIGO stage, 3 and 5 year OS were 100% and 50% in CIS/IA, 100% in 100% in IB, 83% and 69% in IIA, 87% and 80% in IIB, and 62% and 62% in III, respectively. The 3 year OS in 4 patients with stage IVA was 100%. Three-year DFS were 80% in CIS/IA, 88% in IB, 100% in IIA, 64% in IIB, 58% in III, and 75% in IVA. Three-year PCR were 100% in CIS/IA, 94% in IB, 100% in IIA, 84% in IIB, 69% in III, and 50% in IVA. By univariate analysis, FIGO stage and treatment response were significant factors for OS. The significant factors for DFS were age, FIGO stage, treatment response and overall treatment time (OTT). For pelvic control rate

  19. Our Treatment Results of Circumscribed and Diffuse Choroidal Hemangiomas

    Directory of Open Access Journals (Sweden)

    Esra Savku

    2013-08-01

    Full Text Available Purpose: To discuss our treatment results of choroidal hemangiomas. Material and Method: The records of 39 cases of choroidal hemangioma followed up at our clinic between July 1999–October 2012 were reviewed retrospectively. Asymptomatic cases were followed up. Symptomatic cases with subretinal fluid and impaired vision received treatment. Results: Mean age of the 39 patients was 44 (12-80 years. Thirty-five of 39 cases had circumscribed choroidal hemangioma, and 4 cases had diffuse choroidal hemangioma. Sturge-Weber syndrome was present in 3 cases with diffuse choroidal hemangioma. Cases with circumscribed choroidal hemangioma and minimal subretinal fluid were treated with TTT in 11 cases, PDT in 12 cases, and PDT+TTT in 1 case. Cases with circumscribed choroidal hemangioma and excessive subretinal fluid were treated with Ru-106 plaque radiotherapy in 1 case, Ru-106 plaque radiotherapy+TTT in 1 case, EBRT in 3 cases, and TTT+EBRT in 1 case. One painful blind eye with neovascular glaucoma and complicated cataract was enucleated. Cases with diffuse choroidal hemangioma and excessive subretinal fluid were treated with Ru-106 plaque radiotherapy+TTT in 1 case and EBRT in 1 case. Ahmed glaucoma valve implantation and FAKO emulsification were applied to a case with neovascular glaucoma and complicated cataract. Complete resorption of subretinal fluid was achieved in 23 (72% of treated 32 cases. When mean initial tumor thickness was 2.6 mm (0.5-6, mean final tumor thickness was 1.4 mm (0-6. When mean initial visual acuity (LogMAR was 1.5 (0-3, mean final visual acuity was 1.1 (0-3. No recurrence was observed. Discussion: The amount of the subretinal fluid determines the method of treatment in circumscribed choroidal hemangioma. While TTT and PDT are effective treatment modalities for minimal subretinal fluid, plaque radiotherapy and EBRT are applied in cases with excessive subretinal fluid. Combination therapies may be necessary according to the

  20. Martensitic phase transformations in the nanostructured surface layers induced by mechanical attrition treatment

    International Nuclear Information System (INIS)

    Ni Zhichun; Wang Xiaowei; Wu Erdong; Liu Gang

    2005-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) and x-ray diffraction (XRD) analysis have been used to investigate the relationship between characteristics of phase transformation and the treatment time in surface nanocrystallized 316L stainless steel induced by surface mechanical attrition treatment (SMAT). A similar trend of development of the martensitic phase upon the treatment time has been observed from both CEMS and XRD measurements. However, in the CEMS measurement, two types of martensite phase with different magnetic hyperfine fields are revealed. Based on a random distribution of the non-iron coordinating atoms, a three-element theoretical model is developed to illustrate the difference of two types of martensite phase. The calculated results indicate the segregation of the non-iron atoms associated with SMAT treatment

  1. A Pulse Power Modulator System for Commercial High Power Ion Beam Surface Treatment Applications

    International Nuclear Information System (INIS)

    Barrett, D.M.; Cockreham, B.D.; Dragt, A.J.; Ives, H.C.; Neau, E.L.; Reed, K.W.; White, F.E.

    1999-01-01

    The Ion Beam Surface Treatment (lBESTrM) process utilizes high energy pulsed ion beams to deposit energy onto the surface of a material allowing near instantaneous melting of the surface layer. The melted layer typically re-solidifies at a very rapid rate which forms a homogeneous, fine- grained structure on the surface of the material resulting in significantly improved surface characteristics. In order to commercialize the IBESTTM process, a reliable and easy-to-operate modulator system has been developed. The QM-I modulator is a thyratron-switched five-stage magnetic pulse compression network which drives a two-stage linear induction adder. The adder provides 400 kV, 150 ns FWHM pulses at a maximum repetition rate of 10 pps for the acceleration of the ion beam. Special emphasis has been placed upon developing the modulator system to be consistent with long-life commercial service

  2. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF{sub 4} at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Yang [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Shao, Tao, E-mail: st@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Xie, Qing [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003 (China); Xu, Jiayu [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wenjin [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-30

    Highlights: • Increase in hydrophobicity on PMMA is achieved after the DBD treatment in CF{sub 4}, and the water contact angle can increase from 68° to 100° after treatment. • Nanosecond-pulse DBD is used for the surface treatment and the power density is about 114.8 mW/cm{sup 2}. • The effects of applied voltage, CF{sub 4} flow, and time on plasma treatment are investigated. • Plasma treatment causes morphological change, significantly increases the roughness of the surface, and introduces fluorine-containing groups into the polymethylmethacrylate surface. • Hydrophobic behavior of the treated PMMA surface is slightly affected by the aging effect. - Abstract: Nanosecond-pulse dielectric barrier discharge (DBD) can provide non-thermal plasmas with extremely high energy and high density, which can result in a series of complicated physical and chemical reactions in the surface treatment of polymers. Therefore, in this paper, hydrophobic treatment of polymethylmethacrylate (PMMA) surface is conducted by nanosecond-pulse DBD in carbon tetrafluoride (CF{sub 4}) at atmospheric pressure. Investigations on surface morphology and chemical composition before and after the DBD treatment in CF{sub 4} are conducted with the contact angle measurement, atomic force microscope, Fourier transform infrared spectroscopy, and X-ray photoelectron spectrometer. The effects of the applied voltage, CF{sub 4} flow rate, and treatment time on the hydrophobic modification are studied. Results show that the contact angles of the treated PMMA surface increases with the applied voltage, and it could be greatly affected by the CF{sub 4} flow rate and the treatment time. The water contact angle can increase from 68° to 100° after the treatment. Furthermore, both surface morphology and chemical composition of the PMMA samples are changed. Both the increase of the surface roughness and the occurrence of fluorine-containing functional groups on the PMMA surface treated by DBD in CF

  3. Analysis of the influence of chemical treatment to the strength and surface roughness of FDM

    Science.gov (United States)

    Hambali, R. H.; Cheong, K. M.; Azizan, N.

    2017-06-01

    The applications of Additive Manufacturing (AM) technology have a greater functionality and wider range of application beyond an intention of prototyping. AM is the process of joining materials to form objects from Computer-Aided Design (CAD) models via layer upon layer process. One of AM technologies is the Fused Deposition Modelling (FDM), which use an extrusion method to create a part. FDM has been applied in many manufacturing applications includes an end-used parts. However, FDM tends to have bad surface quality due to staircase effect and post treatment is required. This chemical treatment is one of a way to improve the surface roughness of FDM fabricated parts. This method is one of economical and faster method. In order to enhance the surface finish of Acrylonitrile-Butadiene-Styrene (ABS) FDM parts by performing chemical treatment in an acetone solution as acetone has very low toxicity, high diffusion and low cost chemical solution. Therefore, the aim of this research is to investigate the influence of chemical treatment to the FDM used part in terms of surface roughness as well as the strength. In this project, ten specimens of standard ASTM D638 dogbone specimens have been fabricated using MOJO 3D printer. Five specimens from the dogbone were tested for surface roughness and tensile testing while another five were immersed in the chemical solution before the same testing. Based on results, the surface roughness of chemically treated dogbone has dramatically improved, compared to untreated dogbone with 97.2% of improvement. However, in term of strength, the tensile strength of dogbone is reduced 42.58% due to the rearrange of material properties and chemical effects to the joining of the filaments. In conclusion, chemical treatment is an economical and sustainable approach to enhance the surface quality of AM parts.

  4. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  5. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  6. Evaluation of chemical surface treatment methods for mitigation of PWSCC

    International Nuclear Information System (INIS)

    Dame, C.; Marks, C.; Olender, A.; Farias, J.

    2015-01-01

    As part of its mission to propose innovative and safe technologies to mitigate Primary Water Stress Corrosion Cracking (PWSCC) in Pressurized Water Reactors (PWR), EPRI recently initiated a program to evaluate potential new chemical surface treatments that might delay the occurrence of PWSCC such that no failure of components would be observed during their lifetime. Among the initial screening of more than thirty technologies, seven were selected for a more detailed review. The selected technologies were: nickel and nickel alloy plating, organic inhibitors, chromium-based inhibitors, silicon carbide, titanium-based inhibitors, rare earth metal (REM)-based inhibitors and encapsulation. The conclusions of the review of these technologies were that two of them were worth pursuing, titanium-based and REM-based inhibitors, and that evaluating the radiological consequences of injecting these products in the primary system, as well as assessing their efficacy to mitigate PWSCC, should be prioritized as the next required steps in qualification for implementation. (authors)

  7. Varfarin in the complex treatment of antiphospholipid syndrome: preliminary results

    Directory of Open Access Journals (Sweden)

    T M Reshetnyak

    2003-01-01

    Full Text Available Objective. To assess efficacy and tolerance of varfarin in prophylaxis and therapy of thrombotic complications in patients with antiphospholipid syndrome (APS. Methods. 20 pts with APS (5 male and 15 female received varfarin during a year. 8 of them had primary APS (PAPS and 12 -systemic lupus erythematosus with APS (SLE+APS. 2 other pts (I with SLE+APS and I with PAPS received varfarin during the last 4 years. Nobody from 9 pts with PAPS received corticosteroids (CS. In SLE+APS pts CS dose varied from 4 to 20 mg/day and was not increased during follow up. During the study prothrombine time (PT was examined with thromboplastin ( manufactured by Renam having international sensitivity index 1,2 and international normalization relation (INR. Depending on treatment scheme APS pts were divided into 3 groups. Group 1 included 8 pts with INR<2,0, Group 2-7 with INR >3,0, group 3 - 7 pts with INR<2,0 receiving as additional treatment thrombo ASS 100 mg/day and vasonit from 600 to 1200 mg/day. Results. Two pts with INR = 1,8 had thrombosis recurrence (due to leg thrombophlebitis. There were no recurrences in other groups. 2 from 22 pts had "large" bleedings. "Small" bleedings episodes were noted in 7 from 22 pts. Largely that were subcutaneous bleedings (in 4 pts no more than 5 cm of size. Two pts receiving varfarin with INR 1,8 and 2,4 had renal colic. Conclusion. Our preliminary results prove the necessity of inclusion of varfarin in the treatment of pts with APS and thrombosis but intensive anticoagulant effect is not always desired.

  8. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  9. Longterm results of 131I treatment of hyperthyroidism

    International Nuclear Information System (INIS)

    Hamada, Noboru; Ito, Kunihiko; Mimura, Takashi; Nishikawa, Yoshihiko; Momotani, Naoko

    1979-01-01

    The results of 131 I treatment were analyzed in 512 out of 1,620 cases of hyperthyroid patients treated with 131 I from 1963 to 1967 at Ito Hospital, Tokyo. The incidence of hypothyroidism, diagnosed clinically referring serum T 3 , T 4 and metabolic index, was 28.5%, euthyroidism 66.4% and hyperthyroidism 5.1%. Fourty one percent of euthyroid cases had high levels of serum TSH. While TRH tests were performed in 11 euthyroid cases with normal TSH levels, TSH response was normal in only 3 of the cases. Since there was no difference in the incidence of hypothyroidism among patients receiving a single dose of 6,001 - 7,000, 7,001 - 8,000 and 8,001 - 9,000 rads, relationship between the results of therapy and various factors which might influence the outcome of therapy was investigated in these cases. The incidence of hypothyroidism was higher in patients with shorter period between the onset of hyperthyroid symptoms and 131 I therapy, previous therapy with external irradiation, small goiter, severe exophthalmus, and shorter effective half life of 131 I at the time of treatment. Three cases of thyroid cancer and 2 cases of leukemia were observed in 823 patients which included 311 cases followed up only by inquiry. (author)

  10. Medium-Term Results After Treatment of Recalcitrant Lateral Epicondylitis

    Science.gov (United States)

    Meknas, Khaled; Al Hassoni, Thabit N.; Odden-Miland, Åshild; Castillejo, Miguel; Kartus, Jüri

    2013-01-01

    Background: Recalcitrant lateral epicondylitis (elbow extensor–origin tendinosis) is a common cause of elbow pain with many treatment options. In the present study, the medium-term results after open release and radiofrequency microtenotomy are reported. Hypothesis: Microtenotomy would provide long-term pain relief that was as good as the open release method. Study Design: Prospective, randomized trial. Methods: Twenty-four patients randomized to either open release or microtenotomy were assessed after 5 to 7 years. Clinical examination and dynamic infrared thermography (DIRT) of both elbows were performed preoperatively and at the medium-term follow-up. Magnetic resonance imaging (MRI) of both elbows was performed at the medium-term follow-up. Results: Significant pain reduction was found using a visual analog scale (VAS) at the medium-term follow-up in both groups compared with the preoperative assessment (P lateral epicondylitis. The hypothesis was thus verified. PMID:26535247

  11. Results of Entecavir treatment in patients with chronic hepatitis B

    Directory of Open Access Journals (Sweden)

    Şükran Köse

    2013-12-01

    Full Text Available Objective: This study was designed to determine the efficacy and safety of Entecavir (ETV after 96 weeks treatment in patients with chronic viral hepatitis B (CHB. Methods: Thirty-eight patients were included into the study. The criteria for starting ETV treatment were as follows: elevated ALT levels >upper limit of normal (ULN two times, with HBV-DNA levels ≥5 log10 copies/ml (≥20000 IU/mL, in HBe Ag positive patients, ≥4log10 copies/ml (≥2000IU/mL in HBe Ag negative patients and liver damage was confirmed by histopathology (Knodell HAI ≥4 or fibrosis ≥1. Patients were followed up every 12 weeks by virological and biochemical tests. Results: Twenty-four of 38 patients (63.2% were male. Mean age of patients were 38.6 years, 14 of them were HBeAg positive (36.8%. At baseline, median ALT level was detected as 106.7 IU/ml, median HBV DNA levels were 4.8 x 107 copy/ml, and mean Knodell HAI score was nine. Eleven of 14 HBe Ag positive patients (78.6% were treatment-naïve. No resistance mutation was determined during treatment. Biochemical responses (BR at 48 th and 96th week were 100% and virologic response (VR were 57.1%, and 50%, respectively. Serological response (SR at 48th and 96 th weeks were 35.7% and 42.8% respectively. Fifteen (62.5% of 24 HBe Ag negative patients were treatment-naïve; two patients were detected to have lamivudine resistance mutation. At 48 th and 96 th week, BR was 95.8%, and 100%, respectively; and VR were 83.3% both. Conclusion:In our study, virologic response was significantly high after two years of therapy with Entecavir in HBe Ag negative patients. J Microbiol Infect Dis 2013;3(4: 176-180

  12. Enzymatic Treatments to Improve Mechanical Properties and Surface Hydrophobicity of Jute Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Aixue Dong

    2016-02-01

    Full Text Available Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2’-azino-bis-(3-ethylthiazoline-6-sulfonate (ABTS and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.

  13. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    International Nuclear Information System (INIS)

    Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

  14. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    Science.gov (United States)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  15. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  16. [Surgical treatment of Marfan syndrome; late results and new strategy].

    Science.gov (United States)

    Aomi, S; Nonoyama, M; Tomioka, H; Endo, M; Nagashima, H; Sakomura, Y; Aoka, Y; Kasanuki, H; Kurosawa, H

    2002-07-01

    Rapid progress has been made in the treatment of Marfan syndrome. Today, the treatment is relatively established and the results have also improved. Even if surgery is performed, however, vascular lesions may recur late after operation and late prognosis is poor considering the age of patients. Issues such as whether a reoperation should be conducted or how the late results might be improved are subjects of debate. Based on an analysis of recent late data, we have performed operations according to the new treatment policy, and here report the results. A total of 203 consecutive operations were conducted in 141 patients with Marfan syndrome who underwent surgery for aortic aneurysm at our department between February 1973 and August 2001. The mean age of patients was 39 (11 years with a male/female ratio of 95:46. At the first operation, 72 patients were diagnosed with annuloaortic ectasia (AAE), 17 patients with AAE + chronic dissection (DeBakey I), 14 patients with AAE + chronic dissection (DeBakey II), 6 patients with AAE + acute dissection (Stanford A), 11 patients with AAE + dissection (DeBakey III), 9 patients with dissection (DeBakey III) only, 3 patients with AAE + abdominal aortic aneurysm only, and 2 patients with abdominal aortic aneurysm only. The cause of reoperation were a new lesion in 17 patients, dissection in 13 patients and a true aneurysm in 4 patients. In 36 patients, an increase in the remaining lesion occurred or a scheduled stage 2 operation was performed. Reoperation was performed following the Bentall operation in 7 patients, dehiscence of the anastomotic region of the coronary artery in 5 patients, aneurysm of the anastomotic region of the coronary artery in 1 patients, and infection of the artificial valve with aneurysm of the anastomotic region of the coronary artery in 1 patient. Hospital deaths were reported in 8 (6%) patients who underwent composite valve graft replacement (including simultaneous arch replacement) for AAE. Hospital

  17. Urethral carcinoma in women: results of treatment with primary radiotherapy

    International Nuclear Information System (INIS)

    Milosevic, M.F.; Wards, P.R.; Gospodarowicz, M.K.; McLean, M.; Catton, P.A.; Catton, C.N.; Banerjee, D.

    2000-01-01

    Urethral carcinoma in women is uncommon. This study was undertaken to evaluate the role of radiotherapy in the treatment of these tumors. The hospital records of 34 women with primary urethral carcinoma were retrospectively reviewed. There were 15 squamous cell carcinomas, 13 transitional cell carcinomas, and six adenocarcinomas. The primary tumor was >4 cm in size in eight patients, involved the proximal urethra in 19 and extended to adjacent organs in 22. Inguinal or iliac lymphadenopathy was present in nine patients. There were eight TNM stage I/II tumors, 11 stage III tumors and 15 stage IV tumors. Radiotherapy was administered only to the primary tumor in 15 patients, and to the primary tumor and regional lymph nodes in the remaining 19 patients. Brachytherapy with or without external radiation was used to treat the primary tumor in 20 patients. Tumor recurred in 21 patients. The 7-year actuarial overall and cause-specific survivals were 41 and 45%, respectively. Large primary tumor bulk and treatment with external beam radiation alone (no brachytherapy) were independent adverse prognostic factors for local tumor recurrence. Brachytherapy reduced the risk of local recurrence by a factor of 4.2. The beneficial effect of brachytherapy was most prominently seen in patients with bulky primary disease. Large tumor size was the only independent adverse predictor of overall disease recurrence and death from cancer. Radiotherapy is an effective treatment for carcinoma of the female urethra and preserves normal anatomy and function. Brachytherapy improves local tumor control, possibly as a result of the higher radiation dose that can safely be delivered. (author)

  18. [Perinatal result with conservative treatment in preeclampsia-eclampsia].

    Science.gov (United States)

    Briones-Garduño, Jesús Carlos; de León-Ponce, Manuel Díaz; González-Vargas, Angel; Briones-Vega, Carlos Gabriel

    2003-01-01

    Conservative treatment in severe preeclampsia has been documented by several authors citing significant improvement in neonatal outcome lacking a significant increase in maternal complications. Our objective was to inform of our preliminary results using protocolized conservative management in women with preeclampsia-eclampsia, favoring better neonate conditions. We included 34 patients with average age of 28.2 years with documented severe preeclampsia-eclampsia complicating a 36-weeks or less pregnancy, admitted in the obstetric intensive care unit (OICU) between October 2001 and February 2002. Patients received protocolized management consisting of intravascular colume expansion, anti-hypertensive control, target organ protection, monitoring, and clinical observation. We considered conservative management as a 24 or more period offered to patients with satisfactory response to medical treatment and no evidence of binomial compromise. Of our group, 85% corresponded to severe preeclampsia, 9% to eclampsia, 3% to imminence of eclampsia, and 3% to HELLP syndrome. Average stay in OICU was 5.5 days with 3.5 days average management before pregnancy was interrupted. These patients presented mean gestational age of 32.8 weeks during which we observed anemia, low platelets, D dimmer increments, MAP average of 112.8, PCOc 18.6, and BI 0.15. We obtained 36 live newborns of whom 12% four died, two were extremely immatures (510 g and 600 g, respectively); one 980-g newborn presented intraventricular hemorrhage, and a 1,450-g newborn had multiple organ failure. Conservative treatment in patients with severe preeclampsia-eclampsia is a feasible alternative in hospitals with an ICU. Conservative management can improve neonatal survival and prognosis in preterm newborns.

  19. Treatments Results and Prognostic Factors in Locally Advanced Hypopharyngeal Cancer

    International Nuclear Information System (INIS)

    Yoon, Mee-Sun; Chung, Woong-Ki; Ahn, Sung-Ja; Nam, Taek-Keun; Song, Ju-Young; Nah, Byung-Sik; Lim, Sang Cheol; Lee, Joon Kyoo

    2007-01-01

    The purpose of this study is to present the treatment results and to identify possible prognostic indicators in patients with locally advanced hypopharyngeal carcinoma. Materials and Methods: Between October 1985 to December 2000, 90 patients who had locally advanced stage IV hypopharyngeal carcinoma were studied retrospectively. Twelve patients were treated with radiotherapy alone, 65 patients were treated with a combination of chemotherapy and radiotherapy, and 13 patients were treated with surgery and postoperative radiotherapy with or without neoadjuvant chemotherapy. Total radiation dose ranged from 59.0 to 88.2 Gy (median 70 Gy) for radiotherapy alone. Most patients had ciplatin and 5-fluorouracil, and others had cisplatin and peplomycin or vincristin. Median follow-up period was 15 months. Kaplan-Meier method was used for survival rate and Cox proportional hazard model for multivariate analysis of prognostic factors. Results: Overall 3- and 5-year survival rates were 27% and 17%, respectively. The 2-year locoregional control rates were 33% for radiotherapy alone, 32% for combined chemotherapy and radiotherapy, and 81% for combined surgery and radiotherapy (p=0.006). The prognostic factors affecting overall survival were T stage, concurrent chemo radiation and treatment response. Overall 3- and 5-year laryngeal preservation rates in combined chemotherapy and radiotherapy were 26% and 22%, respectively. Of these, the 5-year laryngeal preservation rates were 52% for concurrent chemo radiation group (n=11), and 16% for neoadjuvant chemotherapy and radiotherapy (n=54, p=0.012). Conclusion: Surgery and postoperative radiotherapy showed better results than radiotherapy alone or with chemotherapy. Radiotherapy combined with concurrent chemotherapy is an effective modality to achieve organ preservation in locally advanced hypopharyngeal cancer. Further prospective randomized studies will be required

  20. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  1. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  2. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment

    Science.gov (United States)

    De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana

    2018-03-01

    In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.

  3. Treatment of surfaces with low-energy electrons

    Science.gov (United States)

    Frank, L.; Mikmeková, E.; Lejeune, M.

    2017-06-01

    Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  4. Low-energy particle treatment of GaAs surface

    International Nuclear Information System (INIS)

    Pincik, E.; Ivanco, J.; Brunner, R.; Jergel, M.; Falcony, C.; Ortega, L.; Kucera, J. M.

    2002-01-01

    The paper presents results of a complex study of surface properties of high-doped (2x10 18 cm -3 ) and semi-insulating GaAs after an interaction with the particles coming from low-energy ion sources such as RF plasma and ion beams. The virgin samples were mechano-chemically polished liquid-encapsulated Czochralski-grown GaAs (100) oriented wafers. The crystals were mounted on the grounded electrode (holder). The mixture Ar+H 2 as well as O 2 and CF 4 were used as working gases: In addition, a combination of two different in-situ exposures was applied, such as e.g. hydrogen and oxygen. Structural, electrical and optical properties of the exposed surfaces were investigated using X-ray diffraction at grazing incidence, quasi-static and high-frequency C-V curve measurements, deep-level transient spectroscopy, photo-reflectance, and photoluminescence. Plasma and ion beam exposures were performed in a commercial RF capacitively coupled plasma equipment SECON XPL-200P and a commercial LPAI device, respectively. The evolution of surface properties as a function of the pressure of working gas and the duration of exposure was observed. (Authors)

  5. Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeonghwa [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Sakuragi, Makoto; Shibata, Aya; Abe, Hiroshi; Kitajima, Takashi; Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Mizutani, Masayoshi; Ohmori, Hitoshi [Material Fabrication Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Ayame, Hirohito [Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Son, Tae Il [Bioscience and Biotechnology, Chung-Ang University, 40-1 San, Nae-Ri, Daeduck-myun, Ansung-si, Kyungki-do, 456-756 (Korea, Republic of); Aigaki, Toshiro [Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan)

    2012-12-01

    Titanium and stainless steel were modified with dopamine for the immobilization of biomolecules, epidermal growth factor (EGF). First, the treatment of metal surfaces with a dopamine solution under different pH conditions was investigated. At higher pH, the dopamine solution turned brown and formed precipitates. Treatment of the metals with dopamine at pH 8.5 also resulted in the development of brown color at the surface of the metals. The hydrophobicity of the surfaces increased after treatment with dopamine, independently of pH. X-ray photoelectron spectroscopy revealed the formation of a significant amount of an organic layer on both surfaces at pH 8.5. According to ellipsometry measurements, the organic layer formed at pH 8.5 was about 1000 times as thick as that formed at pH 4.5. The amount of amino groups in the layer formed at pH 8.5 was also higher than that observed in the layer formed at pH 4.5. EGF molecules were immobilized onto the dopamine-treated surfaces via a coupling reaction using carbodiimide. A greater amount of EGF was immobilized on surfaces treated at pH 8.5 compared with pH 4.5. Significantly higher growth of rat fibroblast cells was observed on the two EGF-immobilized surfaces compared with non-immobilized surfaces in the presence of EGF. The present study demonstrated that metals can become bioactive via the surface immobilization of a growth factor and that the effect of the immobilized growth factor on metals was greater than that of soluble growth factor. - Highlights: Black-Right-Pointing-Pointer Epidermal growth factor was covalently immobilized on titan or stainless steel surfaces. Black-Right-Pointing-Pointer Amino groups were formed on the surfaces by the treatment and the growth factor was immobilized through amide bonds. Black-Right-Pointing-Pointer The immobilized epidermal growth factor accelerated cell proliferation more than soluble ones on the surfaces.

  6. [Treatment and results of therapy in autoimmune hemolytic anemia].

    Science.gov (United States)

    Tasić, J; Macukanović, L; Pavlović, M; Koraćević, S; Govedarević, N; Kitić, Lj; Tijanić, I; Bakić, M

    1994-01-01

    Basic principles in the therapy of idiopathic autoimmune hemolytic anemia induced by warm antibody were glucocorticoides and splenectomy. Immunosupresive drugs, plasmaferesis and intravenous high doses gamma globulin therapy are also useful. In secundary autoimmune hemolytic anemia induced by warm antibody we treated basic illness. During the period of 1990-1992 we treated 21 patients with primary autoimmune hemolytic anemia and 6 patients with secondary /4 CLL and 2 Non-Hodgkin's lymphoma/. Complete remission we found as a normalisation of reticulocites and hemoglobin level respectively. Complete remission by corticoides we got in 14/21 patients, partial response in 2/21 respectively. Complete response by splenectomy we got in 2/3 splenoctomized patients (idiopathic type). For successful treatment secondary hemolytic anemias we treated primary diseases (CLL and malignant lymphoma) and we got in 4/6 patients complete remission. Our results were standard in both type of autoimmune hemolytic anaemias induced by warm antibody.

  7. Treatment-related neuroendocrine prostate cancer resulting in Cushing's syndrome.

    Science.gov (United States)

    Ramalingam, Sundhar; Eisenberg, Adva; Foo, Wen Chi; Freedman, Jennifer; Armstrong, Andrew J; Moss, Larry G; Harrison, Michael R

    2016-12-01

    Here we present, to the best of our knowledge, the first case of a paraneoplastic Cushing's syndrome (hypercortisolism) resulting from treatment-related neuroendocrine prostate cancer - a highly aggressive and difficult disease to treat. A 51-year-old man was started on androgen deprivation therapy after presenting with metastatic prostate cancer, characterized by diffuse osseous metastasis. Shortly thereafter, he developed progressive disease with biopsy proven neuroendocrine prostate cancer as well as symptoms of increased skin pigmentation, hypokalemia, hypertension, hyperglycemia and profound weakness, consistent with ectopic Cushing's syndrome. Molecular analysis of the patient's tumor through RNA sequencing showed high expression of several genes including CHGA, ASCL1, CALCA, HES6, PCSK1, CALCB and INSM1 confirming his neuroendocrine phenotype; elevated POMC expression was found, supporting the diagnosis of ectopic Cushing's syndrome. © 2016 The Japanese Urological Association.

  8. Topical Peptide Treatments with Effective Anti-Aging Results

    Directory of Open Access Journals (Sweden)

    Silke Karin Schagen

    2017-05-01

    Full Text Available In the last two decades, many new peptides have been developed, and new knowledge on how peptides improve the skin has been uncovered. The spectrum of peptides in the field of cosmetics is continuously growing. This review summarizes some of the effective data on cosmeceutical peptides that work against intrinsic and extrinsic aging. Some peptides have been proven in their efficacy through clinical skin trials. Well-known and documented peptides like copper tripeptide are still under research to obtain more details on their effectiveness, and for the development of new treatments. Palmitoyl pentapeptide-4 and Carnosine are other well-researched cosmeceuticals. Additionally, there are many more peptides that are used in cosmetics. However, study results for some are sparse, or have not been published in scientific journals. This article summarizes topical peptides with proven efficacy in controlled in vivo studies.

  9. Treatment of surfaces with low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  10. [Clinical Results of Endoscopic Treatment of Greater Trochanteric Pain Syndrome].

    Science.gov (United States)

    Zeman, P; Rafi, M; Skala, P; Zeman, J; Matějka, J; Pavelka, T

    2017-01-01

    PURPOSE OF THE STUDY This retrospective study aims to present short-term clinical outcomes of endoscopic treatment of patients with greater trochanteric pain syndrome (GTPS). MATERIAL AND METHODS The evaluated study population was composed of a total of 19 patients (16 women, 3 men) with the mean age of 47 years (19-63 years). In twelve cases the right hip joint was affected, in the remaining seven cases it was the left side. The retrospective evaluation was carried out only in patients with greater trochanteric pain syndrome caused by independent chronic trochanteric bursitis without the presence of m. gluteus medius tear not responding to at least 3 months of conservative treatment. In patients from the followed-up study population, endoscopic trochanteric bursectomy was performed alone or in combination with iliotibial band release. The clinical results were evaluated preoperatively and with a minimum follow-up period of 1 year after the surgery (mean 16 months). The Visual Analogue Scale (VAS) for assessment of pain and WOMAC (Western Ontario MacMaster) score were used. In both the evaluated criteria (VAS and WOMAC score) preoperative and postoperative results were compared. Moreover, duration of surgery and presence of postoperative complications were assessed. Statistical evaluation of clinical results was carried out by an independent statistician. In order to compare the parameter of WOMAC score and VAS pre- and post-operatively the Mann-Whitney Exact Test was used. The statistical significance was set at 0.05. RESULTS The preoperative VAS score ranged 5-9 (mean 7.6) and the postoperative VAS ranged 0-5 (mean 2.3). The WOMAC score ranged 56.3-69.7 (mean 64.2) preoperatively and 79.8-98.3 (mean 89.7) postoperatively. When both the evaluated parameters of VAS and WOMAC score were compared in time, a statistically significant improvement (ppain syndrome yields statistically significant improvement of clinical results with the concurrent minimum incidence of

  11. Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth

    Directory of Open Access Journals (Sweden)

    XU Jian

    2018-01-01

    Full Text Available The carbon fiber cloth was treated by surface treatment, and then it was used as the electrode substrate. The electrode material based on carbon fibers was synthesized by a galvanostatic electrodeposition method. The interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode were characterized by four-probe method and electrochemical workstation, respectively. The results show that the surface roughness and chemical activity of the carbon fibers can be significantly improved through surface treatment. The carbon fibers possess the best chemical activity on the surface at the hot-air oxidation temperature of 400℃. Joint hot-air and liquid-phase oxidations show that the chemical activity of the carbon fibers on the surface is further improved, the grooves and pits on the surface of the carbon fibers are more obvious, after this treatment, the interface resistivity of the CF/β-PbO2 electrode reaches the minimum value of 6.19×10-5Ω·m, meanwhile, the conductivity and the electrochemical property of the CF/β-PbO2 electrode reaches the best, and with the best corrosion resistance, the corrosion rate is only 1.44×10-3g·cm-2·h-1.Thus, the interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode depend on the the interface structure of the CF/β-PbO2 electrode obtained under different surface treatments.

  12. The results of treatment for thyrotoxicosis at Bach Mai hospital

    International Nuclear Information System (INIS)

    Phan Sy An

    2002-01-01

    The authors evaluated the results of treating hyperthyroidism with 131 I. Patient selection for tre treatment is based on clinical features and laboratory test results such as thyroid uptake, scintigraphy and RIA determinations of thyroid hormones. The average dose is 6.2±1.1 m Ci (that is 233.1±40.7 MBq). The average number of doses is 1.3 for one patient. The results are as follows: - Euthyroid status after 4 years follow-up from the 1 31 I dose administration: 72.3 - Persistent or recurrent hyperthyroidism: 20 %. - Hypothyroid complication appears 6 years after the administration of 1 31 I dose: 14 %. So the cumulative hypothyroid rate is: 2.3 % per year. - Serious complications were not observed in any patient. Hyperthyroidism is a common health problem in Vietnam (1). In the past, only antithyroid drugs and surgery were used. 131 I was first introduced to Vietnam in the Nuclear Medicine Department in Bach Mai in 1971 and thereafter widely applied in the country. (Author)

  13. Treatment results in anal cancer: non-operative treatment versus operative treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chie, Eui Kyu; Park, Jae Gahb; Bang, Yung Jue; Heo, Dae Seog; Kim, Noe Kyeong [Seoul National University College of Medicine, Seoul (Korea, Republic of); Ha, Sung Whan [Medical Reasearch Center, Seoul National University, Seoul (Korea, Republic of)

    2002-03-15

    This study was undertaken to analyze the efficacy and sphincter preservation rate of platinum based neoadjuvant chemotherapy plus radiotherapy versus abdominoperineal resection and postoperative radiotherapy for anal cancer. Data of forty-two patients with anal cancer were retrospectively analyzed. Among thirty-eight patients with epidermoid histology, four patients received radiotherapy, and nineteen patients received abdominoperineal resection and adjuvant radiotherapy with or without chemotherapy (APR + RT {+-} CT), and fifteen patients received neoadjuvant chemotherapy and radiotherapy (CRT). The CRT regimen was composed of three cycles of 5-fluorouracil (1,000 mg/m{sup 2} bolus on D1 {approx} 5) and cisplatin (60 mg/m{sup 2} bolus on D1) followed by 50.4 Gy to the tumor bed and regional lymphatics over 5.5 weeks. Both inguinal lymphatics were treated with an identical dose schedule. Residual disease was treated with an additional three cycles of identical adjuvant chemotherapy. An identical dose schedule was used for post-operative radiotherapy. Median follow-up period was eighty-five months. Overall five-year survival rates were 80.3%, 88.9% and 79.4% for entire patients, APR + RT {+-} CT group, and the CRT group, respectively. No significant difference was found between the two groups ({rho} = 0.49). Anus preservation rate for the CRT group was 86.7%. Age ({rho} = 0.0164) and performance status ({rho} = 0.0007) were found to be significant prognostic factors by univariate analysis. Age ({rho} = 0.0426), performance status ({rho} = 0.0068), and inguinal lymph node metastasis ({rho} = 0.0093) were statistically significant prognostic factors by multivariate analysis. No case of RTOG grade 3 complication or higher was reported. This and other recent studies have shown that combined chemotherapy plus radiotherapy for anal cancer results in a high rate of anal sphincter preservation as well as local control and survival. Furthermore, neoadjuvant use of

  14. Surface treatment in a cathodic arc plasma. Key step for interface engineering

    International Nuclear Information System (INIS)

    Schoenjahn, C.

    2001-02-01

    The effect of substrate surface treatment (substrate sputter cleaning) in a cathodic arc plasma prior to unbalanced magnetron deposition of transition metal nitride coatings on the performance of the coated components has been investigated. In particular the influence of parameters such as ion species, ion energy and exposure time on the changes in substrate surface topography, microstructure and microchemistry were studied employing transmission electron microscopy, energy dispersive X-ray analysis, electron energy loss spectroscopy, X-ray diffraction, atomic force microscopy and optical microscopy. The consequences for both the microstructure of subsequently grown transition metal nitride coatings and their adhesion were elucidated. The relevance for practical applications was demonstrated using the example of dry high-speed milling tests, which showed that an appropriate choice of substrate surface pre-treatment parameters can double the life time of the coated tools. This was found to be due to an improved adhesion as a result of a combination of reduced oxygen incorporation at the interface between coating and substrate and local epitaxial growth of the coating. The latter is promoted by certain substrate surface pre-treatment procedures, which provide clean surfaces with preserved crystallographic order. (author)

  15. [Treatment results for different categories of vaginal intraepithelial neoplasia with electrocoagulation, 5-fluorouracil and combined treatment].

    Science.gov (United States)

    Veloz-Martínez, María Guadalupe; Quintana-Romero, Verónica; Contreras-Morales, María del Rosario Sandra; Jiménez-Vieyra, Carlos Ramón

    2015-10-01

    Vaginal intraepithelial neoplasia (VAIN) represents a variety of changes that initiate as an intraepithelial squamous lesion with the possibility of resulting in cancer. To compare the results of the treatment for the different categories of VAIN with electrocoagulation, 5-fluorouracil and combined treatment. Observational an analytical study. We stablished groups according to the category of VAIN evaluating and comparing remission, persistence, recurrence, or progression of the disease ac- cording to the received treatment, with a 1-year follow up. The results were compared by chi2 and Kruskal Wallis. The statistics analysis was done with the SPSS program version 20. One hundred thirty seven patients between 20 and 81 years of age (mean age: 52.49 years) were included. Seventy-four percent of the patients had a history of premalignant or malignant cervical lesions. Seventy-four patients had VAIN I, 34 patients had VAIN II, 22 patients had VAIN III and there were seven cases of vaginal carcinoma in situ. Fifty-eight patients were treated with electrocoagulation, 55 patients were treated with 5-FU, 16 patients had combined treatment, and eight patients received expectant management. Sixty three percent of patients had total remission of the lesion, 34% had persistence and 3% showed progression, and there were no cases of recurrence. Results were better in patients with VAIN I treated with 5-FU (bigger percentage of remission P .026), for the remaining categories of VAIN, no treatment showed superior results. The superior response occurs in patients with VAIN I treated with 5-FU. None of the treatments achieves a 100% remission. The VAIN frequency is high, patients with a history of malignant or premalignant cervical pathology should undergo a closer surveillance through cytocolposcopic control with respect to the remaining population.

  16. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2016-07-01

    Full Text Available The viability of mechanical polishing as a surface pre-treatment method for commercially available platinum screen-printed electrodes (SPEs was investigated and compared to a range of other pre-treatment methods (UV-Ozone treatment, soaking in N,N-dimethylformamide, soaking and anodizing in aqueous NaOH solution, and ultrasonication in tetrahydrofuran. Conventional electrochemical activation of platinum SPEs in 0.5 M H2SO4 solution was ineffective for the removal of contaminants found to be passivating the screen-printed surfaces. However, mechanical polishing showed a significant improvement in hydrogen adsorption and in electrochemically active surface areas (probed by two different redox couples due to the effective removal of surface contaminants. Results are also presented that suggest that SPEs are highly susceptible to degradation by strong acidic or caustic solutions, and could potentially lead to instability in long-term applications due to continual etching of the binding materials. The ability of SPEs to be polished effectively extends the reusability of these traditionally “single-use” devices. Keywords: Screen-printed electrodes, Polishing, Platinum, Activation, Pre-treatment, Cyclic voltammetry

  17. Influence of different surface treatments on the fracture toughness of a commercial ZTA dental ceramic

    Directory of Open Access Journals (Sweden)

    Flavio Teixeira da Silva

    2007-03-01

    Full Text Available The objective of this study was to investigate how mechanical surface treatments performed for removal of excess of molten glass, influence the fracture toughness of a dental zirconia toughened alumina (In-Ceram® Zirconia. Infiltrated ZTA disks were submitted to three different surface treatments (grinding, sandblasting and grinding + sandblasting + annealing. Fracture toughness was accessed through indentation strength test (IS. X ray diffraction was used to investigate the metastability of tetragonal zirconia particles under all treatments proposed. Kruskall-Wallis non-parametrical test and Weibull statistics were used to analyze the results. Grinding (group 1 introduced defects which decreased the fracture toughness and reliability, presenting the lowest K IC. On the other hand, grinding followed by sandblasting and annealing (group 3 presented the highest K IC. Sandblasting (group 2 presented the highest reliability but lower K IC compared to group 3.

  18. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  19. Pinus Pinaster surface treatment realized in spatial and temporal afterglow DBD conditions

    Science.gov (United States)

    Lecoq, E.; Clément, F.; Panousis, E.; Loiseau, J.-F.; Held, B.; Castetbon, A.; Guimon, C.

    2008-04-01

    This experimental work deals with the exposition of Pinus Pinaster wood samples to a DBD afterglow. Electrical parameters like duty cycle and injected energy in the gas are being varied and the modifications induced by the afterglow on the wood are analysed by several macroscopic and microscopic ways like wettability, XPS analyses and also soaking tests of treated wood in a commercial fungicide solution. Soaking tests show that plasma treatment could enhance the absorption of fungicide into the wood. The wettability results point out that the plasma treatment can inflict on the wood different surface properties, making it hydrophilic or hydrophobic, when varying electrical parameters. XPS analyses reveal several chemical modifications like an increase of the O/C ratio and the presence of carboxyl groups on the surface after plasma treatments.

  20. Cosmetic results of conservative treatment for early breast cancer

    International Nuclear Information System (INIS)

    Kim, Bo Kyoung; Shin, Seong Soo; Kim, Seong Deok; Ha, Sung Whan; Noh, Dong Young

    2001-01-01

    This study was performed to evaluate the cosmetic outcome of conservative treatment for early breast cancer and to analyze the factors influencing cosmetic outcome. From February 1992 through January 1997, 120 patients with early breast cancer were treated with conservative surgery and postoperative radiotherapy. The types of conservative surgery were quadrantectomy and axillary node dissection for 108 patients (90%) and lumpectomy or excisional biopsy for 10 patients (8.3%). Forty six patients (38%) received adjuvant chemotherapy (CMF or CAF). Cosmetic result evaluation was carried out between 16 and 74 months (median, 33 months) after surgery. The cosmetic results were classified into four categories, i.e., excellent, good, fair, and poor. The appearances of the patients' breasts were also analyzed for symmetry using the differences in distances from the stemal notch to right and left nipples. A logistic regression analysis was performed to identify independent variables influencing the cosmetic outcome. Cosmetic score was excellent or good in 76% (91/120), fair in 19% (23/120) and poor in 5% (6/ 120) of the patients. Univariate analysis showed that tumor size (T1 versus T2) (p=0.04), axillary node status (NO versus N1) (p=0.0002), extent of surgery (quadrantectomy versus lumpectomy or excisional biopsy) (p=0.02), axillary node irradiation (p=0.0005) and chemotherapy (p=0,0001) affected cosmetic score. Multivariate analysis revealed that extent of surgery (p=0.04) and chemotherapy (p=0.0002) were significant factors. For breast symmetry, univariate analysis confirmed exactly the same factors as above. Multivariate analysis revealed that tumor size (p=0.003) and lymph node status (p=0.007) affected breast symmetry. Conservative surgery and postoperative radiotherapy resulted in excellent or good cosmetic outcome in a large portion of the patients. Better cosmetic results were achieved generally in the group of patients with smaller tumor size, without axillary

  1. Treatment results of incomplete chemoradiotherapy in locally advanced cervical cancer

    Directory of Open Access Journals (Sweden)

    Gao Y

    2013-04-01

    Full Text Available Ying Gao,1,* Fei Gao,2,* Zi Liu,1 Li-ping Song1 1Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, People’s Republic of China; 2Second Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, People’s Republic of China *These authors contributed equally to this work Objective: Regimens that combine chemotherapy and radiotherapy increase toxicity and compromise a patient’s ability to adhere to the treatment plan. We evaluated the efficacy and safety of a partially completed chemoradiation regimen prescribed for locally advanced carcinoma of the cervix. Methods: Medical records of 156 patients with locally advanced cervical cancer stage IIB–IVA who received chemoradiation with cisplatin (40 mg/m2 and 5-fluorouracil (500 mg/m2 from October 2006 to October 2008 were collected. The treatment protocol called for two cycles of chemotherapy. External beam radiation therapy was administered using a 10-MeV electron beam. Local control, disease free survival, overall survival, and toxicities were evaluated. Results: With a median follow-up of 37.5 months, 89 patients (57% completed the planned protocol. Sixty seven patients (43% completed fewer than two cycles. The 3-year local control rate was significantly better in the patient group that completed the prescribed plan (92.1% compared to 80.6%; P = 0.033. No statistical significance was observed between the groups that completed or did not complete the two cycle protocol with regard to disease free survival (80.9% and 73.2%, respectively; P = 0.250, overall survival (84.3% and 79.1%; P = 0.405, and progression survival (3.4% and 3.0%; P = 0.892. Differences in acute hematologic toxicity and subcutaneous toxicity were observed between the two groups. Conclusions: Completion of two cycles of 5-fluorouracil and cisplatin with radiotherapy was effective, safe, and responsible for better local control

  2. [Results of treatment for high-pressure injection hand injuries].

    Science.gov (United States)

    Zyluk, A; Walaszek, I

    2000-01-01

    High-pressure injection injuries of the hand have a reputation for being dangerous for individual fingers and even for whole hand. Usually appearing innocuous at presentation because of small puncture entry wound, these injuries result in severe damage of most internal structures in finger and hand due to extensive penetration of injected substance. This paper reviews the outcome of the treatment of such injuries in 10 patients: 9 sustained injection of toxic paint, and one lead shot. All the patients were operated on: eight a few hours after injury and two with 3 days delay. The surgical technique included wide exposure from site of injection up to the farthest place in which foreign substance was seen. Thorough debridment of injected material and contaminated tissue was performed with careful preservation of neurovascular structures and tendons. Wounds were not closed, but managed by open technique. In all patients wounds healed well: in 3 by secondary intention, in 6 by delayed closure and 2 were covered by skin grafts. No amputation was performed. Final results were assessed form 1.5 to 3.5 years after initial injury (mean at 2.5 years). Two patients complained of moderate pain related to the weather, five of cold intolerance and two of impaired sensation on fingertips. Active range of motion of affected fingers was in whole group from 90% to 104% (mean 97%) of the range of motion of unaffected fingers from the other side. Range of motion of the wrist (2 patients) was 76% and 117% of range of motion of the other side. Pinch grip strength was from 81% to 116% (mean 99%), and global grip strength from 77% to 119% (mean 97%) of the other side. All patients went back to their previous jobs and periods of sick leave were from 2 weeks to 6 months (mean 3 mo). Excellent results achieved in this study--full functional recovery in 9 of 10 patients confirm the effectiveness of aggressive treatment by open wound technique of such injuries.

  3. Thermal plasma treatment of cell-phone waste : preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Ruj, B. [Central Mechanical Engineering Research Inst., Durgapur (India). Thermal Engineering Group; Chang, J.S.; Li, O.L. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Pietsch, G. [RWTH Aachen Univ., Aachen (Germany)

    2010-07-01

    The cell phone is an indispensable service facilitator, however, the disposal and recycling of cell phones is a major problem. While the potential life span of a mobile phone, excluding batteries, is over 10 years, most of the users upgrade their phones approximately four times during this period. Cell phone waste is significantly more hazardous than many other municipal wastes as it contains thousands of components made of toxic chemicals and metals like lead, cadmium, chromium, mercury, polyvinyl chlorides (PVC), brominated flame retardants, beryllium, antimony and phthalates. Cell phones also use many expensive rare metals. Since cell phones are made up of plastics, metals, ceramics, and trace other substances, primitive recycling or disposal of cell phone waste to landfills and incinerators creates irreversible environmental damage by polluting water and soil, and contaminating air. In order to minimize releases into the environment and threat to human health, the disposal of cell phones needs to be managed in an environmentally friendly way. This paper discussed a safer method of reducing the generation of syngas and hydrocarbons and metal recovery through the treatment of cell phone wastes by a thermal plasma. The presentation discussed the experiment, with particular reference to sample preparation; experimental set-up; and results four samples with different experimental conditions. It was concluded that the plasma treatment of cell phone waste in reduced condition generates gaseous components such as hydrogen, carbon monoxide, and hydrocarbons which are combustible. Therefore, this system is an energy recovery system that contributes to resource conservation and reduction of climate change gases. 5 refs., 2 tabs., 2 figs.

  4. Early glottic carcinoma: results of treatment by radiotherapy

    International Nuclear Information System (INIS)

    Smee, R.; Williams, J.; Fisher, R.; Bridger, G.P.

    2000-01-01

    The purpose of the present paper was to review the results of treating early stages glottic, squamous cell carcinoma by radiotherapy in the Department of Radiation Oncology, Prince of Wales Hospital, Sydney. A retrospective review was carried out of all patients seen in the department from 1967 to 1994, inclusive. To be eligible, patients had to have newly diagnosed cancer and to have been treated with curative intent by radiotherapy alone. Three hundred and sixty-nine patients satisfied the eligibility requirements. The mean follow-up time was 12.2 years (maximum: 28 years). At 5 years the actuarial local control rate was 80% (84% for stage T 1 and 72% for T 2 ). The ultimate local control rate was 96%. The overall survival rates at 5 and 10 years were 73% and 52%, respectively. The risk of nodal recurrence was much higher after persisting disease or local recurrence. Our results confirm the high cure rates achieved with this modality of treatment and are comparable with those reported in the literature. Copyright (1999) Blackwell Science Pty. Ltd

  5. The effect of phosphorus and sulfur treatment on the surface properties of InP

    Science.gov (United States)

    Iyer, R.; Chang, R. R.; Dubey, A.; Lile, D. L.

    1988-01-01

    Experimental results are presented for InP surfaces treated by using red phosphorus as a source to create an excess overpressure of phosphorus during annealing and prior to silicon dioxide deposition. The surface has been probed by in situ photoluminescence, noncontacting remote gate C-V, and conventional high-frequency and quasi-static C-V methods. A study has also been made of the surface of sulfurized InP following heating in aqueous (NH4)2S(x). MISFETs fabricated using the benefits of these surface treatments show high transconductances and stabilities approaching those of thermal SiO2/Si with less than 5-percent variation in drain current over a 12-hr period.

  6. Influence of TiO{sub 2} Surface Properties on Water Pollution Treatment and Photocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Min [Southwest Univ. of Science and Technology, Mianyang (China)

    2013-03-15

    The titania surface showed different characteristics depending on the charge of the dye molecules. Compared with the MB molecules, the negatively charged MO molecules strongly adsorbed on the titania surface. Furthermore, the decomposition kinetics of the dye molecules by the photocatalytic activity also deepened with the charge of the dye molecules. The relation between the UV irradiation time and the molar ratio of the decomposed dye molecules followed the Avrami equation. According to the results of the analysis by using the Avrami equation, the MO molecules were decomposed on the titania particle surface. In contrast, the MB molecules were decomposed in the aqueous solution. The difference in kinetics was related to the interaction of the dye molecules and the titania surface. These preferential adsorption and decomposition characteristics will improve its applications in water pollution treatment.

  7. Influence of surface treatment on the crevice corrosion of super duplex stainless steel

    International Nuclear Information System (INIS)

    Malik, H.

    1997-01-01

    The aim of this work was to try and discover if changes i surface condition, derived through various methods could influence the resistance to crevice corrosion of super duplex stainless teel (SDS). Such data could then be employed to elucidate the main factors controlling crevice corrosion. Through the manipulation of these parameters it was envisaged that the crevice corrosion temperature of this material may be further advanced and to increase its application within harsher industrial environments. For this reason a series of crevice tests were performed on SDSS heat exchanger tubing both in the as received condition and after various surface treatments. Such modification was carried out by; shot blasting, passivation, pickling and combinations of annealing, shot blasting, pickling and passivation. Results have indicated that the main factor controlling the resistance to crevice corrosion is the level of Cr depletion within a few microns of the steel surface. Although various treatments such as shot blasting and pickling reduce Cr depletion by removal of surface material, the nature of the surface finish itself was not found to affect the corrosion resistance. An increase in Cr content from 20 to 25% within 2 microns of the surface of the tubing was able to increase the crevice corrosion temperature by 20 sub deg. C. (author)

  8. Plastic deformation to enhance plasma-assisted nitriding: On surface contamination induced by Surface Mechanical Attrition Treatment

    International Nuclear Information System (INIS)

    Samih, Youssef; Novelli, Marc; Bolle, Bernard; Allain, Nathalie; Fundenberger, Jean-Jacques; Marcos, Grégory; Czerwiec, Thierry; Grosdidier, Thierry; Thiriet, Tony

    2014-01-01

    The Surface Mechanical Attrition Treatment is a recent technique leading to the formation of nanostructured layers by the repeated action of impacting balls. While several communications have revealed possible contamination of the SMATed surfaces, the nature of this surface contamination was analyzed in the present contribution for the treatment of an AISI 316L stainless steel. It is shown, by a combination of Transmission Electron Microscopy and Glow Discharge – Optical Emission Spectrometry, that the surface was alloyed with Ti, Al and V coming from the sonotrode that is used to move the balls as well as Zr coming from the zirshot® balls themselves

  9. Plastic deformation to enhance plasma-assisted nitriding: On surface contamination induced by Surface Mechanical Attrition Treatment

    Science.gov (United States)

    Samih, Youssef; Novelli, Marc; Thiriet, Tony; Bolle, Bernard; Allain, Nathalie; Fundenberger, Jean-Jacques; Marcos, Grégory; Czerwiec, Thierry; Grosdidier, Thierry

    2014-08-01

    The Surface Mechanical Attrition Treatment is a recent technique leading to the formation of nanostructured layers by the repeated action of impacting balls. While several communications have revealed possible contamination of the SMATed surfaces, the nature of this surface contamination was analyzed in the present contribution for the treatment of an AISI 316L stainless steel. It is shown, by a combination of Transmission Electron Microscopy and Glow Discharge - Optical Emission Spectrometry, that the surface was alloyed with Ti, Al and V coming from the sonotrode that is used to move the balls as well as Zr coming from the zirshot® balls themselves.

  10. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H 2 SO 4 and CaCl 2 . Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H 2 SO 4 and CaCl 2 ; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of surface treatment of provisional crowns on the shear bond strength of brackets

    Directory of Open Access Journals (Sweden)

    Josiane Xavier de Almeida

    2013-08-01

    Full Text Available OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30 according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.

  12. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    Science.gov (United States)

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

  13. Nanostructure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    Directory of Open Access Journals (Sweden)

    K. M. Zhang

    2013-01-01

    Full Text Available The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nanostructure formations of steels by using a low energy high pulsed electron beam (LEHCPEB treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels.

  14. Surfaces in classical geometries a treatment by moving frames

    CERN Document Server

    Jensen, Gary R; Nicolodi, Lorenzo

    2016-01-01

    Designed for intermediate graduate studies, this text will broaden students' core knowledge of differential geometry providing foundational material to relevant topics in classical differential geometry. The method of moving frames, a natural means for discovering and proving important results, provides the basis of treatment for topics discussed. Its application in many areas helps to connect the various geometries and to uncover many deep relationships, such as the Lawson correspondence. The nearly 300 problems and exercises range from simple applications to open problems. Exercises are embedded in the text as essential parts of the exposition. Problems are collected at the end of each chapter; solutions to select problems are given at the end of the book. Mathematica®, Matlab™, and Xfig are used to illustrate selected concepts and results. The careful selection of results serves to show the reader how to prove the most important theorems in the subject, which may become the foundation of future progress...

  15. Endovascular Treatment of Chronic Mesenteric Ischemia: Results in 14 Patients

    International Nuclear Information System (INIS)

    Chahid, Tamam; Alfidja, Agaicha T.; Biard, Marie; Ravel, Anne; Garcier, Jean Marc; Boyer, L.

    2004-01-01

    We evaluated immediate and long-term results of percutaneous transluminal angioplasty (PTA) and stent placement to treat stenotic and occluded arteries in patients with chronic mesenteric ischemia. Fourteen patients were treated by 3 exclusive celiac artery (CA) PTAs (2 stentings), 3 cases with both Superior Mesenteric Artery (SMA) and CA angioplasties, and 8 exclusive SMA angioplasties (3 stentings). Eleven patients had atheromatous stenoses with one case of an early onset atheroma in an HIV patient with antiphospholipid syndrome. The other etiologies of mesenteric arterial lesions were Takayashu arteritis (2 cases) and a postradiation stenoses (1 case). Technical success was achieved in all cases. Two major complications were observed: one hematoma and one false aneurysm occurring at the brachial puncture site (14.3%). An immediate clinical success was obtained in all patients. During a follow-up of 1-83 months (mean: 29 months), 11 patients were symptom free; 3 patients had recurrent pain; in one patient with inflammatory syndrome, pain relief was obtained with medical treatment; in 2 patients abdominal pain was due to restenosis 36 and 6 months after PTA, respectively. Restenosis was treated by PTA (postirradiation stenosis), and by surgical bypass (atheromatous stenosis). Percutaneous endovascular techniques are safe and accurate. They are an alternative to surgery in patients with chronic mesenteric ischemia due to short and proximal occlusive lesions of SMA and CA

  16. Treatment results of radiotherapy for carcinoma of the cervical esophagus

    International Nuclear Information System (INIS)

    Yamada, Kazunari; Okuno, Yoshishige; Nakajima, Toshifumi; Kusumi, Fusako; Takakuwa, Hiroshi; Matsusue, Satoru; Murakami, Masao; Okamoto, Yoshiaki

    2006-01-01

    The methods and results of treatment for cancer of the cervical esophagus differ from those for cancer of the thoracic esophagus. Our objective was to retrospectively review the outcome for cervical esophageal cancer patients treated with radiotherapy. Twenty-seven patients with carcinoma of the cervical esophagus treated with definitive radiotherapy from 1988 to 2002 were enrolled in the study. Clinical stage (UICC 1997) was stage I in five, II in six, III in 12 and IV in four. Concurrent head and neck malignancy was found in six patients (22%). The mean radiation dose was 66 Gy. Concurrent chemotherapy (cisplatin and 5-fluorouracil) was performed in 23 patients. The actuarial overall survival rates at 1, 3 and 5 years were 55.6%, 37.9% and 37.9%, respectively, with a median survival of 13.9 months. In the patients with stage I, the 3-year and 5-year survival rates were 75% and 75%, respectively. With univariate analysis, only two of the possible prognostic factors were found to actually influence survival: performance status (p<0.01) and tumor length (p<0.01). The survival of patients with cervical esophageal cancer remains poor. It is thought that organ preservation is possible by definitive chemoradiation for early cancer

  17. Changes in the surface roughness and friction coefficient of orthodontic bracket slots before and after treatment.

    Science.gov (United States)

    Liu, Xiaomo; Lin, Jiuxiang; Ding, Peng

    2013-01-01

    In this study, we tested the surface roughness of bracket slots and the friction coefficient between the bracket and the stainless steel archwire before and after orthodontic treatment. There were four experimental groups: groups 1 and 2 were 3M new and retrieved brackets, respectively, and groups 3 and 4 were BioQuick new and retrieved brackets, respectively. All retrieved brackets were taken from patients with the first premolar extraction and using sliding mechanics to close the extraction space. The surface roughness of specimens was evaluated using an optical interferometry profilometer, which is faster and nondestructive compared with a stylus profilometer, and provided a larger field, needing no sample preparation, compared with atomic force microscopy. Orthodontic treatment resulted in significant increases in surface roughness and coefficient of friction for both brands of brackets. However, there was no significant difference by brand for new or retrieved brackets. These retrieval analysis results highlight the necessity of reevaluating the properties and clinical behavior of brackets during treatment to make appropriate treatment decisions. © Wiley Periodicals, Inc.

  18. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  19. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-01-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  20. Status of surface treatment in endosseous implant: A literary overview

    Directory of Open Access Journals (Sweden)

    Gupta Ankur

    2010-01-01

    Full Text Available The attachment of cells to titanium surfaces is an important phenomenon in the area of clinical implant dentistry. A major consideration in designing implants has been to produce surfaces that promote desirable responses in the cells and tissues. To achieve these requirements, the titanium implant surface can be modified in various ways. This review mainly focuses on the surface topography of dental implants currently in use, emphasizing the association of reported variables with biological outcome.

  1. Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    KAUST Repository

    Jahangir, Daniyal

    2017-12-01

    Membrane fouling, which is caused by deposition/adsorption of foulants on the surface or within membrane pores, still remains a bottleneck that hampers the widespread application of membrane bioreactor (MBR) technology for wastewater treatment. Recently membrane surface modification has proved to be a useful method in water/wastewater treatment to improve the surface hydrophilicity of membranes to obtain higher water fluxes and to reduce fouling. In this study, membrane modification was investigated by depositing a thin film of same thickness of TiO2 on the surface of an ultrafiltration alumina membrane. Various thin-film deposition (TFD) methods were employed, i.e. electron-beam evaporation, sputter and atomic layer deposition (ALD), and a comparative study of the methods was conducted to assess fouling inhibition performance in a lab-scale anaerobic MBR (AnMBR) fed with synthetic municipal wastewater. Thorough surface characterization of all modified membranes was carried out along with clean water permeability (CWP) tests and fouling behavior by bovine serum albumin (BSA) adsorption tests. The study showed better fouling inhibition performance of all modified membranes; however the effect varied due to different surface characteristics obtained by different deposition methods. As a result, ALD-modified membrane showed a superior status in terms of surface characteristics and fouling inhibition performance in AnMBR filtration tests. Hence ALD was determined to be the best TFD method for alumina membrane surface modification for this study. ALD-modified membranes were further characterized to determine an optimum thickness of TiO2-film by applying different ALD cycles. ALD treatment significantly improved the surface hydrophilicity of the unmodified membrane. Also ALD-TiO2 modification was observed to reduce the surface roughness of original alumina membrane, which in turn enhanced the anti-fouling properties of modified membranes. Finally, a same thickness of ALD

  2. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y. [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  3. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  4. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.

    Science.gov (United States)

    Li, Chun-Yi; Liao, Ying-Chih

    2016-05-11

    In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices.

  5. Surface modification of Ti-_6Al-_4V titanium alloy by combined ion-plasma treatment

    International Nuclear Information System (INIS)

    Cherenda, N.N.; Shimanskij, V.I.; Laskovnev, A.P.; Basalaj, A.V.; Astashinskij, V.M.; Kuz'mitskij, A.M.

    2015-01-01

    Investigation results of phase and elemental composition, microhardness and friction coefficient of Ti-_6Al-_4V alloy samples precoated by titanium subjected to compression plasma flows treatment have been presented in this work. It has been established that the combined effect of ion-plasma flows diminishes aluminum and vanadium concentration in the surface layer, leads to the growth of its microhardness and decrease of the friction coefficient. (authors)

  6. Effect of passive film on electrochemical surface treatment for indium tin oxide

    International Nuclear Information System (INIS)

    Wu, Yung-Fu; Chen, Chi-Hao

    2013-01-01

    Highlights: ► Oxalic, tartaric, and citric acid baths accompanying with applied voltages were used to treat the ITO surface. ► We investigated the changes in ITO surfaces by examining the potentiodynamic behavior of ITO films. ► AFM analysis showed the formation of a passive layer could assist to planarize surface. ► XPS analysis indicated this passive layer was mainly composed of SnO 2. ► A better planarization was obtained by treating in 3.0 wt.% tartaric acid at 0.5 V due to weak complexation strength. - Abstract: Changes in indium tin oxide (ITO) film surface during electrochemical treatment in oxalic acid, tartaric acid, and citric acid were investigated. Controlling the voltage applied on ITO film allows the formation of a passive layer, effectively protecting the film surface. X-ray photoelectron spectrometry showed that the passive layer composition was predominantly SnO 2 in tartaric acid, while a composite of tin oxide and tin carboxylate in citric or oxalic acid. Even though the passive films on ITO surface generated in these organic acids, the indium or tin could complex with the organic acid anions, enhancing the dissolution of ITO films. The experimental results show that the interaction between the dissolution and passivation could assist to planarize the ITO surface. We found that the optimal treatment at 0.5 V in 3 wt.% tartaric acid could provide the ITO surface with root-mean-squared roughness less than 1.0 nm, due to the weak complexing characteristics of tartaric acid.

  7. Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.

    Science.gov (United States)

    Bousselmi, L; Geissen, S U; Schroeder, H

    2004-01-01

    Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.

  8. Radiotherapy treatment checking procedures throughout Australasia: results of a survey

    International Nuclear Information System (INIS)

    Duggan, L.; Kron, T.; Howlett, S.

    1996-01-01

    In July 1995, a questionnaire was forwarded to thirty two physicists overseeing Radiation Oncology Departments and brachytherapy in hospitals throughout Australia and New Zealand. From the thirty seven hospitals reached by this survey, details were gathered on thirty hospitals, including the Newcastle In most radiotherapy centres where treatment planning is performed by radiation therapists, at least some of the treatment sheets and their calculations are double checked by radiotherapy physicists. While 23% checked the treatment sheets of all patients, in the majority of centres physicists were found to check only a minor selection, that is, less than 20% of all treatment sheets. Only in six centres physicists were not involved. 5 refs., 4 tabs., 5 figs

  9. Spinal infection--an overview and the results of treatment.

    Science.gov (United States)

    Razak, M; Kamari, Z H; Roohi, S

    2000-09-01

    A retrospective review of thirty-eight patients (16 males and 22 females) with spinal infection between 1993 and 1998 revealed that the mean age was 39.9 years and the peak incidence was in the 5th decade of life. Infections in thirty-two patients (84.2%) were tuberculous in origin, 13.2% were pyogenic and 2.6% were fungal. Back pain was a symptom in 94.7% while 55.8% had neurological deficits, of which two-thirds were tuberculous in origin. Twenty-two patients (57.9%) had an impaired immune status secondary to pulmonary either tuberculosis, diabetes mellitus, intravenous drug abuse, prolonged steroid treatment, malnutrition, or advanced age. History of contact with tuberculous patients was elicited in 31.3%, extraskeletal tuberculosis was found in 28.1%, while Mantoux test was only positive in 53.1% of tuberculous patients. Majority of the cases (57.9%) involved lumbar vertebra. The histopathological examination was only positive in 22.2% from material taken via CT guided biopsy but 93.3% were found to be conclusive from open biopsy. 4 out of 5 patients who had a pyogenic infection were treated conservatively and produced a good result. There was no difference in outcome for tuberculosis patients treated with either the 3 drug or 4 drug regimen. Anterior decompression and bone grafting in tuberculous patients was superior in terms of a faster fusion rate, early pain relief and prevention of kvphotic deformity. The initial neurological deficit did not reflect the future prognosis of patients with spinal infection.

  10. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  11. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs

  12. Effect of the linseed oil surface treatment on the performance of resistive plate chambers

    International Nuclear Information System (INIS)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Ranieri, A.; Romano, F.; Arena, V.; Bonomi, G.; Braj, A.; Gianini, G.; Liguori, G.; Ratti, S.P.; Riccardi, C.; Viola, L.; Vitulo, P.

    1997-01-01

    Results on the behaviour of several bakelite resistive plate chambers (RPCs) without the linseed oil treatment of the internal electrodes will be presented. Efficiency, collected charge and cluster size distributions will be compared to the ones of a standard oiled RPC. Currents and single rate are the quantities most affected by the surface treatment of the electrodes beyond the optical/mechanical properties. A factor 4 less in currents and at least a factor 10 less in single rate is achieved using standard oiled RPCs operated in streamer mode. (orig.)

  13. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V. [Taurida National V.I. Vernadsky University, Vernadsky Avenue, 4, Simferopol, 95007 (Ukraine); Kotov, V.A. [V.A. Kotelnikov Institute of Radio Engineering and Electronics, RAS, 11 Mohovaya Street, Moscow, 125009 (Russian Federation); Balabanov, D.E. [Moscow Institute of Physics and Technology, Dolgoprudny, 141700 (Russian Federation); Sharay, I.V.; Salyuk, O.Y. [Institute of Magnetism, NAS of Ukraine, 03142, Kiev (Ukraine); Vasiliev, M. [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027 (Australia); Golub, V.O., E-mail: v_o_golub@yahoo.com [Institute of Magnetism, NAS of Ukraine, 03142, Kiev (Ukraine)

    2014-07-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd{sub 3}Ga{sub 5}O{sub 12} substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar{sup +} ion beams is a result of the substrate surface amorphization caused by the ion bombardment.

  14. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V.; Kotov, V.A.; Balabanov, D.E.; Sharay, I.V.; Salyuk, O.Y.; Vasiliev, M.; Golub, V.O.

    2014-01-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd 3 Ga 5 O 12 substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi 2.8 Y 0.2 Fe 5 O 12 was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar + ion beams is a result of the substrate surface amorphization caused by the ion bombardment

  15. Improvement of chronic corneal opacity in ocular surface disease with prosthetic replacement of the ocular surface ecosystem (PROSE) treatment.

    Science.gov (United States)

    Cressey, Anna; Jacobs, Deborah S; Remington, Crystal; Carrasquillo, Karen G

    2018-06-01

    To demonstrate clearing of chronic corneal opacities and improvement of visual acuity with the use of BostonSight prosthetic replacement of the ocular surface ecosystem (PROSE) treatment in ocular surface disease. We undertook retrospective analysis of the medical records of a series of patients who underwent PROSE treatment from August 2006 to December 2014. Patients were referred for ocular surface disease of various etiologies. Primary inclusion criterion was corneal opacity that improved with PROSE treatment. Patients were excluded if topical steroids or adjuvant therapy used once PROSE treatment was initiated. Underlying disease, prior treatment, clinical presentation, and clinical course were extracted from the medical record. Four patients are included in this series. There were three females and one male; median age at time of treatment initiation was 30 years (range = 0.5-58 years). Median duration of PROSE treatment at time of retrospective analysis was 3.5 years (range = 1-8 years). Two cases had corneal opacification in the context of neurotrophic keratopathy: a unilateral case due to presumed herpes simplex keratitis and a bilateral case due to congenital corneal anesthesia associated with familial dysautonomia. One case had corneal opacity from exposure related to seventh nerve palsy, and one had corneal opacification associated with recurrent surface breakdown, neurotrophic keratopathy, and limbal stem deficiency of uncertain etiology. After consistent wear of prosthetic devices used in PROSE treatment for support of the ocular surface, visual acuity improved and clearing of the opacities was observed, without use of topical steroids or adjuvant therapy. These cases demonstrate clearing of chronic corneal opacity with PROSE treatment for ocular surface disease. This clearing can occur with no adjuvant therapy, suggesting that restoration of ocular surface function and integrity allows for corneal remodeling.

  16. Tuning the adhesion between polyimide substrate and MWCNTs/epoxy nanocomposite by surface treatment

    Science.gov (United States)

    Bouhamed, Ayda; Kia, Alireza Mohammadian; Naifar, Slim; Dzhagan, Volodymyr; Müller, Christian; Zahn, Dietrich R. T.; Choura, Slim; Kanoun, Olfa

    2017-11-01

    MWCNTs/epoxy nanocomposite thin films are coated on the polyimide (PI) flexible substrate, to be used as a strain sensor. Previous studies showed that the adhesion between polyimide and other materials are very poor. In this work, two approaches, oxygen plasma cleaning and simple solvent cleaning are performed for activation of the polyimide surface. In order to understand the impact of both cleaning techniques, the physicochemical properties of PI are measured and characterized using contact angle measurements (CAMs), X-ray photoelectron spectroscopy(XPS), and atomic force microscopy (AFM). In addition, the adhesion properties of PI/[MWCNTs/epoxy] systems by varying surface treatment time are investigated and evaluated using force-distance measurements by AFM. The results illustrate that the activated surface exhibits higher surface energy for oxygen plasma cleaning in comparison with the solvent cleaning method. The improvement can be related to the increase of oxygen concentration, which is accompanied by the enhancement of the polar component to 53.79 mN/m due to the formation of functional groups on the surface and the change of the substrate surface roughness from 1.72 nm to 15.5 nm. As a result, improved adhesion was observed from force-distance measurement between PI/[MWCNTs/epoxy] systems due to oxygen plasma effects.

  17. Medulloblastoma in adults: treatment results and prognostic factors

    International Nuclear Information System (INIS)

    Abacioglu, Ufuk; Uzel, Omer; Sengoz, Meric; Turkan, Sedat; Ober, Ahmet

    2002-01-01

    Purpose: To investigate the treatment outcome and prognostic factors of adult medulloblastoma patients who received postoperative craniospinal irradiation (RT). Methods and Materials: Between 1983 and 2000, 30 adult patients (17 men and 13 women, age ≥16 years, median 27, range 16-45) underwent postoperative RT. The median duration of symptoms was 2 months (range 1-9). The tumor location was lateral in 16 (53%). A desmoplastic variant was seen in 12 (40%). Tumor resection was complete in 20 (67%) and incomplete in 10 (33%). All patients received craniospinal RT. The median dose to the whole brain was 40 Gy (range 36-51), to the posterior fossa 54 Gy (range 49-56), and to the spinal axis 36 Gy (range 24-40). The median interval between surgery and the start of RT was 31 days (range 12-69), and the median duration of RT was 45 days (range 34-89). Ten patients (33%) received adjuvant chemotherapy. The median follow-up was 51 months (range 5-215). Results: The 5- and 8-year overall survival and disease-free survival rates were 65% and 51% and 63% and 50%, respectively. Twelve patients (40%) developed relapse, with a median follow-up of 51 months. The posterior fossa was the most common site of relapse (6 patients). The median time to relapse was 26 months (range 4-78). Fifty percent of the relapses occurred after 2 years, 17% after 5 years. In univariate analysis, M stage and the interval between surgery and the start of RT were significant prognostic factors for disease-free survival. At 5 years, 70% of M0 patients were estimated to be disease-free, but none of the 3 M3 patients reached 5 years without recurrence (p=0.0002). The 5-year disease-free survival rate for the patients whose interval between surgery and the start of RT was 6 weeks was 0%, 85%, and 75%, respectively (p=0.002). The 5-year posterior fossa control rate for patients who received ≥54 Gy or <54 Gy to the posterior fossa was 91% and 33%, respectively (p=0.05). Conclusion: The survival results

  18. How does the surface treatment change the cytocompatibility of implants made by selective laser melting?

    Science.gov (United States)

    Matouskova, Lucie; Ackermann, Michal; Horakova, Jana; Capek, Lukas; Henys, Petr; Safka, Jiri

    2018-04-01

    The study investigates the potential for producing medical components via Selective Laser Melting technology (SLM). The material tested consisted of the biocompatible titanium alloy Ti6Al4V. The research involved the testing of laboratory specimens produced using SLM technology both in vitro and for surface roughness. The aim of the research was to clarify whether SLM technology affects the cytocompatibility of implants and, thus, whether SLM implants provide suitable candidates for medical use following zero or minimum post-fabrication treatment. Areas covered: The specimens were tested with an osteoblast cell line and, subsequently, two post-treatment processes were compared: non-treated (as-fabricated) and glass-blasted. Interactions with MG-63 cells were evaluated by means of metabolic MTT assay and microscope techniques (scanning electron microscopy, fluorescence microscopy). Surface roughness was observed on both the non-treated and glass-blasted SLM specimens. Expert Commentary: The research concluded that the glass-blasting of SLM Ti6Al4V significantly reduces surface roughness. The arithmetic mean roughness Ra was calculated at 3.4 µm for the glass-blasted and 13.3 µm for the non-treated surfaces. However, the results of in vitro testing revealed that the non-treated surface was better suited to cell growth.

  19. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    International Nuclear Information System (INIS)

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-01-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio® treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  20. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    International Nuclear Information System (INIS)

    Wang Shifang; Li Juan; Suo Jinping; Luo Tianzhi

    2010-01-01

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3 deg. to 30 ± 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K 0.27 MnO 2 .0.54H 2 O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  1. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shifang; Li Juan [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China); Luo Tianzhi [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China)

    2010-01-15

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 {+-} 3 deg. to 30 {+-} 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K{sub 0.27}MnO{sub 2}.0.54H{sub 2}O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  2. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Directory of Open Access Journals (Sweden)

    Willy Zorzi

    2012-08-01

    Full Text Available This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions.

  3. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Science.gov (United States)

    Poncin-Epaillard, Fabienne; Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Coudreuse, Arnaud; Legeay, Gilbert; El Moualij, Benaïssa; Zorzi, Willy

    2012-01-01

    This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions. PMID:24955631

  4. Long term results of 125I for treatment of hyperthyroidism

    International Nuclear Information System (INIS)

    Bremner, W.F.; McDougall, I.R.; Greig, W.R.; Ratcliffe, J.G.

    1976-01-01

    125 I emits very low energy conversion and Auger electrons. This radionuclide has been used in place of 131 I with the hope of reducing the incidence of post treatment hypothyroidism. 303 of 360 patients treated have been reviewed. Originally very large doses of 125 I were prescribed (751-1,600 μCi/g) but 9 out of 15 patients (60%) became hypothyroid, therefore 4 smaller therapeutic regimes were employed. (1) 55 patients received doses of 200 μCi or less/g thyroid, 69% are euthyroid and 24% hypothyroid after an average of 33 months from treatment. (2) 87 patients received doses of 201-350 μCi/g thyroid, 67% are euthyroid and 21% hypothyroid after an average follow up of 30 months. (3) 70 patients received doses of 351-500 μCi/g thyroid, 77% are euthyroid and 18% hypothyroid 36 months after treatment and (4) 76 patients received doses of 501-750 μCi/g, 41% are euthyroid and 56% hypothyroid 49 months after therapy. No long term complications such as thyroid cancer or leukaemia have occurred but because 125 I does not eliminate or reduce the incidence of post treatment hypothyroidism it probably should not be used in preference to 131 I for the routine treatment of hyperthyroidism

  5. Results of surgical treatment for juvenile myasthenia gravis.

    Science.gov (United States)

    Vázquez-Roque, F J; Hernández-Oliver, M O; Medrano Plana, Y; Castillo Vitlloch, A; Fuentes Herrera, L; Rivero-Valerón, D

    2017-04-01

    Radical or extended thymectomy is an effective treatment for myasthenia gravis in the adult population. There are few reports to demonstrate the effectiveness of this treatment in patients with juvenile myasthenia gravis. The main objective of this study was to show that extended transsternal thymectomy is a valid option for treating this disease in paediatric patients. Twenty-three patients with juvenile myasthenia gravis underwent this surgical treatment in the period between April 2003 and April 2014; mean age was 12.13 years and the sample was predominantly female. The main indication for surgery, in 22 patients, was the generalised form of the disease (Osserman stage II) together with no response to 6 months of medical treatment. The histological diagnosis was thymic hyperplasia in 22 patients and thymoma in one patient. There were no deaths and no major complications in the postoperative period. After a mean follow-up period of 58.87 months, 22 patients are taking no medication or need less medication to manage myasthenic symptoms. Extended (radical) transsternal thymectomy is a safe and effective surgical treatment for juvenile myasthenia gravis. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Effect of surface treatments on radiation buildup in steam generators

    International Nuclear Information System (INIS)

    Asay, R.H.; Pick, M.E.; van Melsen, C.

    1991-11-01

    Test coupons of typical PWR materials of construction were prepared using a number of pretreatments to minimize radiation buildup. The coupons were then exposed to primary coolant at the Doel-2 PWR in Belgium. The exposure periods for the coupons ranged from one to three fuel cycles. After removal from the primary system, doserate and gamma spectroscopy measurements were made to determine the radioactivity levels on the coupons. Varying levels of success were achieved for the preconditioning techniques tested. Electropolishing alone provided some degree of resistance to radiation buildup on the treated surface and electropolishing plus passivation was shown to be even better. Radiation buildup resistance of the palladium-coated coupons was poor; radiation levels on these coupons were even higher than on the untreated reference coupons. The poor performance of the palladium-coated coupons was possibly due to the method used to apply the coating. In contrast to palladium coating, very encouraging results were achieved with chromium plating plus passivation. Preliminary results show that this technique can inhibit activity deposition by as much as a factor of ten. 4 refs., 64 figs., 26 tabs

  7. Wettability and XPS analyses of nickel–phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    International Nuclear Information System (INIS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K.L.; Morelle, J.M.; Etcheberry, A.; Chalumeau, L.

    2013-01-01

    Electroless nickel-high-phosphorus Ni–P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni–P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni–P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni–P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni–P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni–P surface preparation has been established. The sessile drop method can

  8. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Science.gov (United States)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  9. Stem cells show promising results for lymphoedema treatment

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan

    2015-01-01

    Abstract Lymphoedema is a debilitating condition, manifesting in excess lymphatic fluid and swelling of subcutaneous tissues. Lymphoedema is as of yet still an incurable condition and current treatment modalities are not satisfactory. The capacity of mesenchymal stem cells to promote angiogenesis......, secrete growth factors, regulate the inflammatory process, and differentiate into multiple cell types make them a potential ideal therapy for lymphoedema. Adipose tissue is the richest and most accessible source of mesenchymal stem cells and they can be harvested, isolated, and used for therapy...... in a single stage procedure as an autologous treatment. The aim of this paper was to review all studies using mesenchymal stem cells for lymphoedema treatment with a special focus on the potential use of adipose-derived stem cells. A systematic search was performed and five preclinical and two clinical...

  10. International registry results for an interstitial laser BPH treatment device

    Science.gov (United States)

    Conn, Richard L.; Muschter, Rolf; Adams, Curtis S.; Esch, Victor C.

    1996-05-01

    Benign prostatic hyperplasia (BPH) can significantly impair quality of life in older men. Most men over 60 experience some symptoms due to BPH and it is thought that essentially all men would eventually be affected by it if they lived long enough. At present, transurethral resection of the prostate (TURP), a surgical treatment for BPH, is one of the more common procedures performed in the developed world, particularly in the United States. A number of other treatments are also often used, including open prostatectomy, side-firing lasers, and drug therapy. With the population in the developed world rapidly aging, BPH is expected to affect an even larger group of men in the future. Current methods of therapy carry significant disadvantages. Open prostatectomy carries a fairly high risk of impotence and incontinence, as well as sometimes significant risk of death depending on the patient's age and medical conditions. TURP also carries similar risks, albeit reduced, including the risk of substantial blood loss and a small but meaningful risk of death. Side-firing lasers are thought to have a reduced risk of death compared to TURP due to significantly reduced bleeding; however, patients often experience an extended period of pain during voiding due to prolonged tissue sloughing. Drug treatment, although useful for some patients, does not strongly improve symptoms in the majority of patients. Even with the current range of treatments, many patients with symptomatic BPH elect to avoid any current treatment due to risks and side effects. As a possible solution to this problem, previous writers have suggested the possibility of treating BPH through interstitial thermotherapy. In this treatment, prostatic tissue is heated from within the prostate to the point of irreversible necrosis. Healing processes then reduce the volume of the affected tissue, even in the absence of sloughing. This study covers initial human use of such a device, using an 810 nm wavelength diode laser

  11. Surgical treatment of congenital mitral stenosis: medium-term results

    Directory of Open Access Journals (Sweden)

    Atik Fernando A.

    2003-01-01

    Full Text Available OBJECTIVE: For a cohort of patients with congenital mitral stenosis (CMS, to determine: patient outcomes, predictors of valve repairability and predictors of durability of valve repair. METHODS: From 1989 and 2002, 23 patients underwent surgical treatment of CMS, excluding those with common atrioventricular canal, and univentricular forms. The median age at operation was 15.5 months (range 2-204, and the median body weight was 11 Kg (range 4.5-51.6. Seventeen patients (73.9% had associated anomalies, including Shone's complex in nine (39.1% and pulmonary hypertension in 14 (60.9%. Mitral stenosis was severe in 14 patients (60.9% and moderate in the remaining (median trans-mitral gradient of 16 mmHg, range 8.5-32. Mitral valve repair was performed in 18 patients (78.3%, and valve replacement in five (21.7%. Repair techniques included papillary muscle splitting (n=10, excision of supravalvular ring (n=9 and commissurotomy (n=8. Twelve patients (52.2% required associated procedures. RESULTS: There were no early and late deaths at a mean follow-up of 58.5 ± 46.7 months (range 1-156. Mean hospital stay was 12.7 ± 8.2 days. There were no significant factors associated with unsuccessful valve repair. Actuarial freedom from reoperation at five years was 67.1% (CI 95%: 56.8% to 77.4%. The mitral valve repair group required reoperation in eight patients (44.4% (two early and six late, as opposed to one (20% in the replacement group. The presence of preoperative pulmonary hypertension was significantly related (p<0.005 to higher reoperation rates. All but two the followed patients are presently in functional class I and the echocardiography has shown less than 2+ mitral stenosis and/or regurgitation. CONCLUSION: Reoperations were the most important cause of morbidity at the medium-term follow-up of CMS. Preoperative pulmonary hypertension may predict the need for reoperation after mitral valve repair, which is the procedure of choice in CMS.

  12. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Keegan, Alexandra [Microbiology Research, Australian Water Quality Centre, South Australian Water Corporation, Adelaide (Australia)

    2012-01-15

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g{sub silica}. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10{sup 2} and 10{sup 4} cfu/mL.

  13. Results of gamma-ray treatment of vegetable seeds

    Energy Technology Data Exchange (ETDEWEB)

    Boshnakov, P

    1975-01-01

    Tests carried out (1973 and 1974) at the Chair of Gardening, VKHIA, Plovdiv, were aimed at producing stimulative effects through irradiation of vegetable seeds. Treatment with 2000 R enhanced the ripening of the early tomato variety Pioneer 2 by 18.6% and its overall yield by 14.0% on a two year mean, while the same treatment of Triumph variety proved ineffective. Kourtovska Kapiya pepper variety did not positively respond to gamma-rays irradiation with 1200 R. Irradiation with 2000 R raised the earliness of Bulgarski 12 eggplant variety by 10.8% and the yield by 6.0%.

  14. Surface treatment of dental implants with high- power pulsed ion beams

    International Nuclear Information System (INIS)

    Shulov, V.A.; Nochovnaya, N.A.; Remnev, G.E.; Ivanov, S.Y.; Lomakin, M.V.

    2001-01-01

    The objective of the present research is development of HPPIB technology for surface processing of compact components with a complex shape. The surface state of the dental implants from titanium alloys before and after irradiation and long time operation was investigated by Auger electron spectroscopy, scanning electron microscopy, X-ray structural analysis, optical metallography methods. It is shown that the homogeneous state in the surface layer of titanium alloys is formed due to the irradiation (carbon ions and protons, energy of ions is equal to 300 keV, density of ion energy in a pulse achieves 1-5 J/cm 2 ). This state is characterized by a low amount of the impurities and a fine dispersion structure formed as a result of high speed crystallization. Thus, HPPIB irradiation of the dental implants leads to formation of developed micro relief and the decrease of impurities content on the surface. As a result, this treatment allows one to achieve a good cohesion between the implants and a body tissue. The latter allows the conclusion that biocompatibility of the dental titanium implants produced by can be improved using HPPIB treatment

  15. Surface roughness of Ti6Al4V after heat treatment evaluated by artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Altug, Mehmet [Inonu Univ., Malataya (Turkey). Dept. of Machine and Metal Technologies; Erdem, Mehmet; Bozkir, Oguz [Inonu Univ., Malataya (Turkey); Ozay, Cetin [Univ. of Firat Elazig (Turkey). Faculty of Tech. Education

    2016-05-01

    The study examines how, using wire electrical discharge machining (WEDM), the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4V are changed as a result of heat treatment and the effect they have on machinability. Scanning electron microscope (SEM), optical microscope and X-ray diffraction (XRD) examinations were performed to determine various characteristics and additionally related microhardness and conductivity measurements were conducted. L{sub 18} Taquchi test design was performed with three levels and six different parameters to determine the effect of such alterations on its machinability using WEDM and post-processing surface roughness (Ra) values were determined. Micro-changes were ensured successfully by using heat treatments. Results obtained with the optimization technique of artificial neural network (ANN) presented minimum surface roughness. Values obtained by using response surface method along with this equation were completely comparable with those achieved in the experiments. The best surface roughness value was obtained from sample D which had a tempered martensite structure.

  16. Integrated thermal treatment system study: Phase 1 results. Volume 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked

  17. Effect of surface treatment on flexural strength of zirconia bars

    NARCIS (Netherlands)

    Aboushelib, M.N.; Wang, H.

    2010-01-01

    Statement of problem Clinical and laboratory processing techniques induce damage to the surface of zirconia frameworks, which significantly lessens their strength. Purpose The purpose of this study was to investigate the influence of 3 surface restoration methods on the flexural strength of zirconia

  18. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.

    Science.gov (United States)

    Wichelhaus, Andrea; Geserick, Marc; Hibst, Raimund; Sander, Franz G

    2005-10-01

    Since the low friction of NiTi wires allows a rapid and efficient orthodontic tooth movement, the aim of this research was to investigate the friction and surface roughness of different commercially available superelastic NiTi wires before and after clinical use. The surface of all of the wires had been pre-treated by the manufacturer. Forty superelastic wires (Titanol Low Force, Titanol Low Force River Finish Gold, Neo Sentalloy, Neo Sentalloy Ionguard) of diameter 0.016 x 0.022 in. were tested. The friction for each type of NiTi archwire ligated into a commercial stainless steel bracket was determined with a universal testing machine. Having ligated the wire into the bracket, it could then be moved forward and backwards along a fixed archwire whilst a torquing moment was applied. The surface roughness was investigated using a profilometric measuring device on defined areas of the wire. Statistical data analysis was conducted by means of the Wilcoxon test. The results showed that initially, the surface treated wires demonstrated significantly (p < 0.01) less friction than the non-treated wires. The surface roughness showed no significant difference between the treated and the non-treated surfaces of the wires. All 40 wires however showed a significant increase in friction and surface roughness during clinical use. Whilst the Titanol Low Force River Finish Gold (Forestadent, Pforzheim, Germany) wires showed the least friction of all the samples and consequently should be more conservative on anchorage, the increase in friction of all the surface treated wires during orthodontic treatment almost cancels out this initial effect on friction. It is therefore recommended that surface treated NiTi orthodontic archwires should only be used once.

  19. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Directory of Open Access Journals (Sweden)

    Mohammad Joulaei

    2012-11-01

    Full Text Available Background and aims. Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS of silica- (Spectrum TPH and zirconia-filled (Filtek Z250 composite resins. Materials and methods. Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05. Results. Analysis of data showed that the effect of composite resin type was not significant (p > 0.05, but the effects of the type of surface treatment (p = 0.01 and the type of adhesive system (p = 0.01 were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05. However, the cumulative effects of the adhesive system-surface treatment (p = 0.03 and the composite type-the adhesive system-surface treatments (p = 0.002 were significant. Conclusion. Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently.

  20. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Science.gov (United States)

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  1. Effect of Various Surface Treatment on Repair Strength of Composite Resin

    Directory of Open Access Journals (Sweden)

    Y. Alizade

    2004-12-01

    Full Text Available Statement of Problem: In some clinical situations, repair of composite restorations is treatment of choice. Improving the bond strength between one new and old composite usually requires increased surface roughness to promote mechanical interlocking sincechemical bonding might not be adequate. Similarly, the treatment of a laboratory fabricated resin composite restoration involves the same procedures, and there is a need to create the strongest possible bond of a resin cement to a previously polymerized composite.Purpose: The aim of this study was to evaluate the effect of various surface treatments on the shear bond strength of repaired to aged composite resin.Materials and Methods: Eighty four cylindrical specimens of a composite resin were fabricated and stored in distilled water for 100 days prior to surface treatment. Surface treatment of old composite was done in 6 groups as follow:1- Air abrasion with CoJet sand particles with micoretcher + silane + dentin bonding agent2- Air abrasion with 50μm Al2O3 particles+ phosphoric acid+ silane+ dentin bonding agent3- Air abrasion with 50μm Al2O3 particles + phosphoric acid + dentin bonding agent4- Diamond bur + phosphoric acid + silane + dentin bonding agent5- Diamond bur + phosphoric acid + dentin bonding agent6- Diamond bur + phosphoric acid + composite activator + dentin bonding agentThen fresh composite resin was bonded to treated surfaces. Twelve specimens were also fabricated as control group with the same diameter but with the height twice as much as other specimens. All of the specimens were thermocycled prior to testing for shear bondstrength. The bond strength data were analyzed statistically using one way ANOVA test, t test and Duncan's grouping test.Results: One-way ANOVA indicated no significant difference between 7 groups (P=0.059. One-way ANOVA indicated significant difference between the three diamond bur groups (P=0.036. Silane had a significant effect on the repair bond

  2. Nano structure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    International Nuclear Information System (INIS)

    Zhang, K.M.; Zou, J.X.; Zou, J.X.; Grosdidier, T.; Zou, J.X.; Grosdidier, T.; Grosdidier, T.

    2013-01-01

    The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels

  3. In Vitro Evaluation of Various Surface Treatments of Fiber Posts on the Bond Strength to Composite Core

    Directory of Open Access Journals (Sweden)

    Sareh Nadalizadeh

    Full Text Available Introduction: The reliable bond at the root-post-core interface is critical for the clinical success of post-retained restorations. To decrease the risk of fracture, it is important to optimize the adhesion. Therefore, various post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of fiber posts on the bond strength to composite core. Materials & Methods: In this study, 40 fiber reinforced posts were used. After preparing and sectioning them, resulting specimens were divided into four groups (N=28. The posts received different surface treatments such as no surface treatment (control group, preparing with hydrogen peroxide 10%, preparing with silane, preparing with HF and silane. Then, posts were tested in micro tensile testing machine. The results were analyzed by One-Way ANOVA and Dunnett T3 test. Results: The greatest bond strength observed was in treatment with hydrogen peroxide 10% (19.84±8.95 MPa, and the lowest strength was related to the control group (12.44±3.40 MPa. The comparison of the groups with Dunnett T3 test showed that the differences between the groups was statistically significant (α=0.05.Conclusion: Based on the results of this study, preparing with H2O2 -10 % and silane increases the bond strength of FRC posts to the composite core more than the other methods. Generally, the bond strength of posts to the composite core increases by surface treatment.

  4. Road surface erosion on the Jackson Demonstration State Forest: results of a pilot study

    Science.gov (United States)

    Brian Barrett; Rosemary Kosaka; David. Tomberlin

    2012-01-01

    This paper presents results of a 3 year pilot study of surface erosion on forest roads in the Jackson Demonstration State Forest in California’s coastal redwood region. Ten road segments representing a range of surface, grade, and ditch conditions were selected for the study. At each segment, settling basins with tipping buckets were installed to measure...

  5. Results from radiant treatment in no Hodgkin's lymphomas of adults

    International Nuclear Information System (INIS)

    Alert, J.; Rodriguez, E.; Mesa, E.; Diaz, C.

    1982-01-01

    From 1973 to 1979, at the Institute of Oncology and Radiobiology, Havana City, 91 adults were irradiated because they underwent no Hodgkin's lymphomas at Stage I (located) and Stage II (regional extension) to whom radiant treatment was the basic therapeutic selection, with single or multiple fields and dose ranging between 3 500 and 4 000 rads-tumor, and some of them at Stage III, where primary treatment was chemotherapy. Present survival for all of them after 3 and 5 years is 55.7% and 54.7%, with 84.4% for patients at Stage I, 55.8% and 52.4% for Stage II and 33.8% for Stage III. Survival was similar for both sexes; in the same way ganglionar processes and those of extraganglionar localization presented no significant survival differences. Only to 7 patients (7.7%) modular forms were diagnosed. (author)

  6. Preliminary Results of the Louisiana Sex Offender Treatment Program

    OpenAIRE

    Lee A. Underwood; Frances L.L. Dailey; Carrie Merino; Yolanda Crump

    2015-01-01

    The purpose of this study was to offer preliminary support for the Louisiana Sex Offender Treatment Program (LSOTP) in addressing the needs of juvenile sex offenders. Research objectives were (1) to offer statistical evidence for reductions in anxiety, depression, cognitive distortion and negative attitudes towards women comparing a group of 21 adolescents, 12 of whom received services as usual and nine of whom participated in the LSOTP. A controlled experimental evaluation design was utilize...

  7. Detection surgical treatment and its results in children's thyroid gland

    International Nuclear Information System (INIS)

    Polyakov, V.G.; Lebedev, V.I.; Belkina, B.M.; Shishkov, R.V.; Makarova, I.S.; Durnov, L.A.

    1995-01-01

    208 patients with thyroid gland cancer were observed in 1975-1993 . The morphological investigations point to an absolute prevalence of highly differentiated forms of thyroid gland cancer in children. The radiation diagnostic techniques included ultrasound investigations of neck organs, chest roentgenography, thyroid gland scintigraphy. It is shown that the surgical method is the basic technique of treating thyroid gland cancer in children. 5-year survival rate of patients depending on the stage of disease development and scope of surgical treatment is analysed

  8. Effect of fusion mixture treatment on the surface of low grade natural ruby

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, R., E-mail: velsak_r@yahoo.com; Pradhan, K.C.; Nayak, B.B.; Dash, Tapan; Sahu, R.K.; Mishra, B.K.

    2017-05-01

    Graphical abstract: The colour of low grade natural ruby is enhanced with fusion mixture treatment. Comparative optical absorption and photoluminesence properties of both untreated and treated ruby samples are studied. - Highlights: • Colour of the low grade natural ruby is improved with fusion mixture treatment. • Surface impurities are removed with fusion mixture. • Photoluminescence spectrum of ruby influenced by its Cr{sup 3+} concentration. • X-ray diffraction study confirms the presence of corundum phases in ruby samples. • Treated ruby looks brighter than untreated ruby due to variation in Cr{sup 3+} concentration. - Abstract: Improvement in aesthetic look of low grade natural ruby (gemstone) surface was clearly evident after fusion mixture treatment. Surface impurities of the gemstone were significantly reduced to give it a face lift. The processing consists of heat treatment (1000 °C) of the raw gemstone with fusion mixture (sodium and potassium carbonates), followed by hydrochloric acid digestion (90 °C) and ultrasonic cleaning.Both the untreated and the treated gemstone were characterized by X-ray diffraction, UV–vis spectroscopy (diffuse reflectance),photoluminescence and X-ray photoelectron spectroscopy. The paper consolidates the results of these studies and presents the effect of the typical chemical treatment (stated above) on the low grade natural ruby. While X-ray diffraction study identifies the occurrence of alumina phase in both the treated and the untreated gemstones, the UV–vis spectra exhibit strong characteristic absorption of Cr{sup 3+}at 400 and 550 nm wavelength for the treated gemstone in contrast to weak absorption observed for the untreated gemstone at such wavelengths, thus showing the beneficial effect of fusion mixture treatment. Peaks observed for the gemstone (for both treated and untreated samples) in the excitation spectra of photoluminescence show a good correlation with observed UV–vis (diffuse reflectance

  9. Treatment of neuroblastoma with metaiodobenzylguanidine: results and side effects

    International Nuclear Information System (INIS)

    Treuner, J.; Klingebiel, T.; Bruchelt, G.; Feine, U.; Niethammer, D.

    1987-01-01

    Between April 1984 and December 1985 we treated ten children suffering from neuroblastoma in a total of 25 metaiodobenzylguanidine (MIBG) courses. Five had had a relapse of neuroblastoma stage III or IV, three had never achieved a remission in spite of intensive chemotherapy, and two were treated with an unstable remission. The children were each administered from 1 to 5 courses with a dosage per course of between 1295 and 9065 MBq. The sum of the single doses during the whole course of therapy ranged between 3145 and 21,904 MBq per child. Five of five children suffering from bone pain and fever became free of complaints during the first three treatment days. Six of eight children with manifest tumor at onset of therapy responded well to the treatment: response extended from transitory decrease in elevated catecholamine levels in serum and urine to complete disappearance of large abdominal tumor masses. We also observed a decrease in bone marrow involvement and a stabilization of osteolytic lesions. Seven of these eight children died in spite of a good response from 55 to 350 days after the first MIBG treatment course. The only side effect we witnessed was a reversible bone marrow depression. In three children we combined the MIBG therapy with bone marrow transplantation

  10. Expanded heat treatment to form residual compressive hoop stress on inner surface of zirconium alloy tubing

    International Nuclear Information System (INIS)

    Megata, Masao

    1997-01-01

    A specific heat treatment process that introduces hoop stress has been developed. This technique can produce zirconium alloy tubing with a residual compressive hoop stress near the inner surface by taking advantage of the mechanical anisotropy in hexagonal close-packed zirconium crystal. Since a crystal having its basal pole parallel to the tangential direction of the tubing is easier to exhibit plastic elongation under the hoop stress than that having its basal pole parallel to the radial direction, the plastic and elastic elongation can coexist under a certain set of temperature and hoop stress conditions. The mechanical anisotropy plays a role to extend the coexistent stress range. Thus, residual compressive hoop stress is formed at the inner surface where more plastic elongation occurs during the heat treatment. This process is referred to as expanded heat treatment. Since this is a fundamental crystallographic principle, it has various applications. The application to improve PCI/SCC (pellet cladding interaction/stress corrosion cracking) properties of water reactor fuel cladding is promising. Excellent results were obtained with laboratory-scale heat treatment and an out-reactor iodine SCC test. These results included an extension of the time to SCC failure. (author)

  11. Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces

    Science.gov (United States)

    Xiaoming, ZHU; Heng, GUO; Jianfeng, ZHOU; Xiaofei, ZHANG; Jian, CHEN; Jing, LI; Heping, LI; Jianguo, TAN

    2018-04-01

    Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin-dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester. The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin-dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.

  12. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    Science.gov (United States)

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  13. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    Science.gov (United States)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  14. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon

    2012-01-01

    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.

  15. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping, E-mail: jipingwanghz@gmail.com

    2014-03-01

    Graphical abstract: - Highlights: • We used a simple and easy way to measure the enzyme activity. • We studied the mechanism by characterizing the chemical changes in the surface of fabric. • We studied the advantages in surface wettability, fiber integrity and mechanical performance of cutinase treated fabrics. • Cutinase pretreated fibers exhibited much improved fabric wicking and better fiber integrity comparing to alkali treated ones. • Cutinase pretreatment technology promotes energy conservation and emission reduction. - Abstract: Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  16. Influence of surface treatment on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Ione Helena Vieira Portella Brunharo

    2013-06-01

    Full Text Available INTRODUCTION: The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. METHODS: Two hundred and eighty test samples were divided into 28 groups (n = 10, where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. RESULTS: Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27±2.78; burs 9.26±3.01; stone 7.95±3.67; aluminum oxide blasting 7.04±3.21; phosphoric acid 5.82±1.90; hydrofluoric acid 4.54±2.87, and without treatment 2.75±1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83, burs (0.98 and stone drilling (0.46. CONCLUSION: The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  17. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2016-10-01

    Full Text Available Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316, surface-textured 316 (ST-316, and duplex-treated 316 (DT-316 in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  18. Initial treatment results using cyberknife for head and neck tumor

    International Nuclear Information System (INIS)

    Himei, Kengo; Katsui, Kuniaki; Yoshida, Atsushi; Takemoto, Mitsuhiro; Kobayashi, Mitsuru; Kuroda, Masahiro; Hiraki, Yoshio

    2002-01-01

    The CyberKnife, a medical device for stereotactic radiotherapy, is composed of a combination of a robot manipulator and LINAC. For the treatment of head and neck tumors, this system has been applied. Between June 2000 and January 2001, 18 patients with head and neck tumor were treated with this system because of tumor recurrence, difficulty in surgery or additional increase after external radiotherapy. The median age was 64 years. Primary lesions were skull base (4), nasopharynx (3), paranasal sinus (3), nasal cavity (2), lacrimal gland (1), oropharynx (1), oral floor (1), and buccul mucosa (1), metastatic lymph nodes were found in three. The prescribed dose was 12-38 Gy as for marginal dose. The response rate (CR+PR) was 44.4% and local control rate (CR+PR+NC) was 77.8%. The adverse effects were assessed by the NCI-CTC Version 2.0 and observed grade 3 in two cases. Our early experience indicates that this system could to be feasible for the treatment of locally advanced or recurrent head and neck tumor, and for the reduction of adverse effect and maintenance of useful QOL of patients. (author)

  19. [Treatment and results of therapy in chronic idiopathic thrombocytopenic purpura].

    Science.gov (United States)

    Tasić, J; Milenović, M; Drasković, S; Vukicević, T; Macukanović, L; Kitić, Lj; Bakić, M

    1994-01-01

    Basic principles in the therapy of chronic idiopathic thrombocytopenic purpura are glucocorticoides and splenectomy. Other measures: Intravenous high doses gamma globulin therapy, attenuated androgenes, immunosupresive drugs and plasmaferesis are less effective. During the period of 1989-1992 we treated 34 patients. From 34 patients, 23 were women and 11 were men. We treated patients primarily by prednisolon approximaly for 2 - 4 weeks. Rarely we use doses of 3 mg/kg per day for short periods of time (5 to 10 days) or "pulse therapy" of 500 mg per day. Those doses may be effective in elevating platelet count if the response is poor. If response occurs, high dosages of steroides should be tareped to determine the amount that will maintain the platelet count in the range of 30x10(9)/l to 50x10(9)/l (to minimaze the toxic sade effects of steroides). If steroides are ineffective, we perform splenectomy. From 34 treated patients by glucocorticoides, in 16 we got remission and in 11 partial response. We discussed in detailes relationship duration of treatment with glucocorticoides and level of platelets, and also correlation duration of treatment with prognosis. From 6 splenectomized patients 3 were successful. In two patients we applied intravenous gamma globulin therapy and attenuated androgen successfuly. In one patients therapy with gamma globulin, immunosupresive drugs, androgen and other measures was ineffective. In one patients without splenectomy we administrated successfuly gamma globulin therapy and androgen for peroid of two years.

  20. Medulloblastoma in childhood: long-term results of treatment

    International Nuclear Information System (INIS)

    Broadbent, V.A.; Barnes, N.D.; Wheeler, T.K.

    1981-01-01

    Thirty-one children under the age of 15 years with verified medulloblastoma were treated at Addenbrookes Hospital from 1940 to 1976. In addition to surgical treatment, all received high dose irradiation to the whole neuraxis. Nine were still alive in 1979, of whom eight were examined. All these patients showed some residual problems, but five were leading active lives and had only minor physical disability. There was evidence of disturbance in growth, with shortening of the spine in relation to the limbs, in all the children. The height centile was lower than expected from parental height in four and one was severely dwarfed. Growth hormone secretion in response to exercise was, however, normal in five of six patients tested. Three children also showed failure of growth of the jaw sufficiently severe to be a cosmetic problem. Frank mental retardation was present in three children. A raised resting TSH level was found in two children, one of whom had a multinodular goiter. Of the three children with severe problems, two had been treated when under two years of age. Long-term follow-up of children who survive medulloblastoma is clearly necessary and consideration should perhaps be given to revision of current treatment regimes in very young children

  1. Vapour explosions (fuel-coolant interactions) resulting from the sub-surface injection of water into molten metals: preliminary results

    International Nuclear Information System (INIS)

    Asher, R.C.; Bullen, D.; Davies, D.

    1976-03-01

    Preliminary experiments are reported on the relationship between the injection mode of contact and the occurrence and magnitude of vapour explosions. Water was injected beneath the surface of molten metals, chiefly tin at 250 to 900 0 C. Vapour explosions occurred in many, but not all, cases. The results are compared with Dullforce's observations (Culham Report (CLM-P424) on the dropping mode of contact and it appears that rather different behaviour is found; in particular, the present results suggest that the Temperature Interaction Zone is different for the two modes of contact. (author)

  2. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  3. CLINICAL RESULTS FROM THE TREATMENT OF CHRONIC SKIN WOUNDS WITH PLATELET RICH PLASMA (PRP

    Directory of Open Access Journals (Sweden)

    Pencho Kossev

    2015-12-01

    Full Text Available PURPOSE: To show platelet rich plasma (PRP application of chronic skin wounds and to evaluate the results from the treatment. MATERIAL AND METHODS: A total of 14 patients with problematic skin wounds had been treated at the clinic for a period of five years (from May 2009 to December 2014 with the following patient sex ratio: male patients - 5 and female patients - 9. Average age - 48,5 (30-76. Patients with Type 2 Diabetes - 4, with decubitus ulcers - 6, traumatic - 8, with infection - 5. Based on a scheme developed by us, all cases were treated by administering platelet-rich plasma, derived by PRGF Endoret system. Follow-up period was within 4 - 6 months (4,5 on average. RESULTS: The results have been evaluated based on the following functional scoring systems - Total wound score, Total anatomic score and Total score (20. The baseline values at the very beginning of the follow-up period were as follows: Total wound score - 12 p.; Total anatomic score - 10 p., Total score - 17 p. By the end of the treatment period the score was 0 p., which means excellent results, i.e. complete healing of the wounds. CONCLUSION: We believe that the application of PRP may become optimal therapy in the treatment of difficult to heal wounds around joints, bone, subject tendons, plantar surface of the foot, etc., as it opens new perspectives in the field of human tissue regeneration.

  4. Anismus: the cause of constipation? Results of investigation and treatment.

    Science.gov (United States)

    Duthie, G S; Bartolo, D C

    1992-01-01

    Anismus, or failure of the somatic sphincter apparatus to relax at defecation, has been implicated as a major contributor to the problem of obstructed defecation. Current diagnostic methods depend on laboratory measurements of attempted defecation and the most complex, dynamic proctography has been the mainstay of diagnosis. Using a new computerized ambulatory method of recording sphincter function in these patients at home, we report an 80% reduction in our diagnostic rate suggesting that conventional tests fail to accurately diagnose this condition, probably because they poorly represent the natural physiology of defecation. Treatment of this distressing condition is more complex and a variety of surgical and pharmacological measures have failed. Biofeedback retraining of anorectal function of these patients has been very successful and represents the management of choice.

  5. Effects of aqueous ammonia treatment on fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    International Nuclear Information System (INIS)

    Ling, Tang Pei; Hassan, Osman

    2013-01-01

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%. Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber’s surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber’s surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment

  6. Effects of aqueous ammonia treatment on fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Tang Pei; Hassan, Osman [Department of Food Science, School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia)

    2013-11-27

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%. Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber’s surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber’s surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment.

  7. Effects of aqueous ammonia treatment on fiber's surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    Science.gov (United States)

    Ling, Tang Pei; Hassan, Osman

    2013-11-01

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber's surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%. Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber's surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber's surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment.

  8. Preliminary Investigation of the Effect of Surface Treatment on the Strength of a Titanium Carbide - 30 Percent Nickel Base Cermet

    Science.gov (United States)

    Robins, Leonard; Grala, Edward M

    1957-01-01

    Specimens of a nickel-bonded titanium carbide cermet were given the following surface treatments: (1) grinding, (2) lapping, (3) blast cleaning, (4) acid roughening, (5) oxidizing, and (6) oxidizing and refinishing. Room-temperature modulus-of-rupture and impact strength varied with the different surface treatments. Considerable strength losses resulted from the following treatments: (1) oxidation at 1600 F for 100 hours, (2) acid roughening, and (3) severe grinding with 60-grit silicon carbide abrasive. The strength loss after oxidation was partially recovered by grit blasting or diamond grinding.

  9. Surface treatment and history-dependent corrosion in lead alloys

    International Nuclear Information System (INIS)

    Li Ning; Zhang Jinsuo; Sencer, Bulent H.; Koury, Daniel

    2006-01-01

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services

  10. Surface treatment and history-dependent corrosion in lead alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Los Alamos National Laboratory, Los Alamos, NM (United States)]. E-mail: ningli@lanl.gov; Zhang Jinsuo [Los Alamos National Laboratory, Los Alamos, NM (United States); Sencer, Bulent H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Koury, Daniel [University of Nevada, Las Vegas, NV (United States)

    2006-06-23

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services.

  11. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  12. Influence of surface treatment on the biocompatibility of aluminum substrates promising for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kiradzhiyska, D. D., E-mail: denica.kiradjiiska@gmail.com; Mantcheva, R. D., E-mail: r-manch@abv.bg [Medical University - Plovdiv, Faculty of Pharmacy, Department of Chemical Science15A Vassil Aprilov blvd., 4002 Plovdiv (Bulgaria); Feodorova, Y. N.; Draganov, M. M. [Medical University - Plovdiv, Medical Faculty, Department of Medical Biology, 15A Vassil Aprilov blvd., 4002 Plovdiv (Bulgaria); Girginov, Ch. A. [University of Chemical Technology and Metallurgy -Sofia, Department of Chemical Science, Subdepartment of Physical Chemistry, 8 Kliment Ohridski Blvd. 1756 Sofia (Bulgaria); Viraneva, A. P.; Yovcheva, T. A. [University of Plovdiv “Paisiy Hilendarski”, Faculty of Physics, Department of Experimental Physic, 24 Tsar Assen str., 4000 Plovdiv (Bulgaria)

    2016-03-25

    Materials for medical implants should have suitable mechanical properties, excellent biocompatibility and high corrosion resistance. They should not stimulate allergic and immunologic reactions and should not cause cancer. The use of aluminum as a construction material in implantology is continuously expanding. There are various methods for surface treatment to improve its biocompatibility. In this study aluminum samples anodized in 15% H{sub 2} SO{sub 4} or treated with positive or negative corona discharge were investigated. PDL-cell line of immortalized cells, precursors of periodontal ligament and RAW 264.7 cell line from mouse macrophages are used for the bioassays. The results show that 10 and 20 μm thick oxide film provides better development of the PLD cells, compared to untreated aluminum. Metal surfaces with 10 μm thick oxide film show the best properties in terms of cells vitality, proliferation and growth. Polymer treated but uncharged samples show good results.

  13. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi.

    Science.gov (United States)

    Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2017-07-18

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  14. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Gabriela Albara Lando

    2017-07-01

    Full Text Available Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR, scanning electron microscopy (SEM, and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  15. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Overstory removal and residue treatments affect soil surface, air, and soil temperature: implications for seedling survival

    Science.gov (United States)

    Roger D. Hungerford; Ronald E. Babbitt

    1987-01-01

    Potentially lethal ground surface temperatures were measured at three locations in the Northern Rocky Mountains but occurred more frequently under treatments with greater overstory removal. Observed maximum and minimum temperatures of exposed surfaces are directly related to the thermal properties of the surface materials. Survival of planted seedlings was consistent...

  17. Ambient plasma treatment of silicon wafers for surface passivation recovery

    Science.gov (United States)

    Ge, Jia; Prinz, Markus; Markert, Thomas; Aberle, Armin G.; Mueller, Thomas

    2017-08-01

    In this work, the effect of an ambient plasma treatment powered by compressed dry air on the passivation quality of silicon wafers coated with intrinsic amorphous silicon sub-oxide is investigated. While long-time storage deteriorates the effective lifetime of all samples, a short ambient plasma treatment improves their passivation qualities. By studying the influence of the plasma treatment parameters on the passivation layers, an optimized process condition was identified which even boosted the passivation quality beyond its original value obtained immediately after deposition. On the other hand, the absence of stringent requirement on gas precursors, vacuum condition and longtime processing makes the ambient plasma treatment an excellent candidate to replace conventional thermal annealing in industrial heterojunction solar cell production.

  18. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  19. Effect of surface treatment of FRC-Post on bonding strength to resin cements

    Directory of Open Access Journals (Sweden)

    Chan-Hyun Park,

    2011-03-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of surface treatment of FRC-Post on bonding strength to resin cements. Materials and Methods Pre-surface treated LuxaPost (DMG, Rely-X Fiber Post (3M ESPE and self adhesive resin cement Rely-X Unicem (3M ESPE, conventional resin cement Rely-X ARC (3M ESPE, and Rely-X Ceramic Primer (3M ESPE were used. After completing the surface treatments of the posts, posts and resin cement were placed in clear molds and photo-activation was performed. The specimens were sectioned perpendicular to the FRC-Post into 2 mm-thick segments, and push-out strength were measured. The results of bond strength value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results Silanization of posts affect to the bond strength in LuxaPost, and did not affect in Rely-X Fiber Post. Rely-X ARC showed higher value than Rely-X Unicem. Conclusions Silanization is needed to enhance the bond strength between LuxaPost and resin cements.

  20. Influence of surface treatment on the oxidation behavior of zirconium and zircaloy-4

    International Nuclear Information System (INIS)

    Costa, I.; Ramanathan, L.V.

    1986-01-01

    The influence of fluoride concentration in surface treatment solutions on the oxidation behavior of Zr and Zircaloy-4 in the temperature range 350-760 0 C have been studied by means of thermogravimetric analysis. Two solutions containing different concentrations of hydrofluoric acid have been used for surface treatments, following which surface roughness measurements were also carried out. The influence of fluoride ion concentration on oxidation behavior has been found to be significant at higher temperatures. (Author) [pt

  1. Surface activation of dyed fabric for cellulase treatment.

    Science.gov (United States)

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Results of conservative treatment in patients with occult pneumothorax].

    Science.gov (United States)

    Llaquet Bayo, Heura; Montmany Vioque, Sandra; Rebasa, Pere; Navarro Soto, Salvador

    2016-04-01

    An occult pneumothorax is found in 2-15% trauma patients. Observation (without tube thoracostomy) in these patients presents still some controversies in the clinical practice. The objective of the study is to evaluate the efficacy and the adverse effects when observation is performed. A retrospective observational study was undertaken in our center (university hospital level II). Data was obtained from a database with prospective registration. A total of 1087 trauma patients admitted in the intensive care unit from 2006 to 2013 were included. In this period, 126 patients with occult pneumothorax were identified, 73 patients (58%) underwent immediate tube thoracostomy and 53 patients (42%) were observed. Nine patients (12%) failed observation and required tube thoracostomy for pneumothorax progression or hemothorax. No patient developed a tension pneumothorax or experienced another adverse event related to the absence of tube thoracostomy. Of the observed patients 16 were under positive pressure ventilation, in this group 3 patients (19%) failed observation. There were no differences in mortality, hospital length of stay or intensive care length of stay between the observed and non-observed group. Observation is a safe treatment in occult pneumothorax, even in pressure positive ventilated patients. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Improvement of Surface Wettability and Hydrophilization of Poly-paraphenylene benzobisoxazole Fiber with Fibrillation Combined Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Xiwen Wang

    2012-01-01

    Full Text Available A new surface modification method fibrillation combined with oxygen plasma treatment to improve the wettability and hydrophily of PBO fiber was studied in this paper. The surface chemical structure and morphology of PBO fiber were characterized by the methods of FTIR, XPS and SEM. The wettability and hydrophlic characters changes on the surface were evaluated by the dynamic contact angle system and image analysis. The results show that the increase surface roughness by fibrillation could improve the wettability. Fibrillation combined oxygen plasma treatment has a better effect than oxygen plasma treatment to improve the wettability and hdyrophlization of PBO fiber. The specific area of PBO fiber increased to 10.7 m2/g from 0.7 m2/g, contact angle decreased to 43.2° from 84.4° and WRV increased to 208.4% from 13.7%. The modified fibers have a good dispersion in water for hydrophilization improvement.

  4. Effect of artificial aging and surface treatment on bond strengths to dental zirconia.

    Science.gov (United States)

    Perdigão, J; Fernandes, S D; Pinto, A M; Oliveira, F A

    2013-01-01

    The objective of this project was to study the influence of artificial aging and surface treatment on the microtensile bond strengths (μTBS) between zirconia and a phosphate monomer-based self-adhesive cement. Thirty zirconia disks (IPS e.max ZirCAD, Ivoclar Vivadent) were randomly assigned to two aging regimens: AR, used as received, which served as a control, and AG, artificial aging to simulate low-temperature degradation. Subsequently, the disks of each aging regimen were assigned to three surface treatments: NT, no surface treatment; CO, surface silicatization with CoJet sand (3M ESPE); and ZP, zirconia surface treated with Z-Prime Plus (Bisco Inc). Thirty discs were made of Filtek Z250 (3M ESPE) composite resin and luted to the zirconia discs using RelyX Unicem (3M ESPE). The specimens were sectioned with a diamond blade in X and Y directions to obtain bonded beams with a cross-section of 1.0 ± 0.2 mm. The beams were tested in tensile mode in a universal testing machine at a speed of 0.5 mm/min to measure μTBS. Selected beams were selected for fractographic analysis under the SEM. Statistical analysis was carried out with two-way analysis of variance and Dunnett T3 post hoc test at a significance level of 95%. The mean μTBS for the three AR subgroups (AR-NT, AR-CO, and AR-ZP) were significantly higher than those of the corresponding AG groups (p<0.0001). Both AR-CO and AR-ZP resulted in statistically significant higher mean bond strengths than the group AR-NT (p<0.006 and p<0.0001, respectively). Both AG-CO and AG-ZP resulted in statistically significant higher mean bond strengths than the group AG-NT (both at p<0.0001). Overall, AG decreased mean μTBS. Under the SEM, mixed failures showed residual cement attached to the zirconia side of the beams. CO resulted in a characteristic roughness of the zirconia surface. AR-ZP was the only group for which the amount of residual cement occupied at least 50% of the interface in mixed failures.

  5. Postirradiation lesions of the brachial plexus. Results of surgical treatment

    International Nuclear Information System (INIS)

    LeQuang, C.

    1989-01-01

    In a series of 103 cases of postirradiation lesions of the brachial plexus operated on between 1978 and 1986--of which 60 patients have been reviewed with a follow up from 2 to 9 years--the surgical results are analyzed according to an anatomic classification, a clinical classification, and the surgical procedures. We conclude that the radiation plexitis should be treated surgically and at the earliest possible time after the onset of paresthesias. Also, the surgical procedure which gives the best results is neurolysis with pedicled omentoplasty

  6. Plasma Rich in Growth Factors for the Treatment of Ocular Surface Diseases.

    Science.gov (United States)

    Anitua, Eduardo; Muruzabal, Francisco; de la Fuente, María; Merayo, Jesús; Durán, Juan; Orive, Gorka

    2016-07-01

    The purpose of this work is to describe and review the technology of plasma rich in growth factors (PRGF), a novel blood derivative product, in the treatment of ocular surface disorders. To demonstrate the importance of this technology in the treatment of ocular pathologies, a thorough review of the preclinical and clinical literature results obtained following use of the different therapeutic formulations of PRGF was carried out. A literature search for applications of PGRF plasma in the ophthalmology field was carried out using the PubMed database. PRGF involves the use of patient's own biologically active proteins, growth factors, and biomaterial scaffolds for therapeutic purposes. This procedural technology is gaining interest in regenerative medicine due to its potential to stimulate and accelerate the tissue healing processes. The versatility and biocompatibility of this technology opens the door to a personalized medicine on ocular tissue regeneration. This review discusses the state of the art of the new treatments and technologies developed to promote ocular surface tissue regeneration. The standardized protocol that has been developed to source eye drops from PRGF technology is also described. The preclinical research, together with the most relevant clinical applications are summarized and discussed. The preliminary results suggest that the use of PRGF to enhance ocular tissue regeneration is safe and efficient.

  7. The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology or Data Quality?

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.; Or, Dani; Best, Martin J.; Johnson, Helen R.; Balsamo, Gianpaolo; Boone, Aaron; Cuntz, Matthais; Decharme, Bertrand; hide

    2016-01-01

    The PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER) illustrated the value of prescribing a priori performance targets in model intercomparisons. It showed that the performance of turbulent energy flux predictions from different land surface models, at a broad range of flux tower sites using common evaluation metrics, was on average worse than relatively simple empirical models. For sensible heat fluxes, all land surface models were outperformed by a linear regression against downward shortwave radiation. For latent heat flux, all land surface models were outperformed by a regression against downward shortwave, surface air temperature and relative humidity. These results are explored here in greater detail and possible causes are investigated. We examine whether particular metrics or sites unduly influence the collated results, whether results change according to time-scale aggregation and whether a lack of energy conservation in fluxtower data gives the empirical models an unfair advantage in the intercomparison. We demonstrate that energy conservation in the observational data is not responsible for these results. We also show that the partitioning between sensible and latent heat fluxes in LSMs, rather than the calculation of available energy, is the cause of the original findings. Finally, we present evidence suggesting that the nature of this partitioning problem is likely shared among all contributing LSMs. While we do not find a single candidate explanation forwhy land surface models perform poorly relative to empirical benchmarks in PLUMBER, we do exclude multiple possible explanations and provide guidance on where future research should focus.

  8. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment

    International Nuclear Information System (INIS)

    Rong, Yi; Welsh, James S.

    2010-01-01

    Purpose: The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. Methods: The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. Results: The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with ±5% variation for 16 sources. The dose-rate output and stability (within ±5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be

  9. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Yi; Welsh, James S. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 and University of Wisconsin Cancer Center-Riverview, Riverview Hospital Association, Wisconsin Rapids, Wisconsin 54494 (United States); Department of Human Oncology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 and University of Wisconsin Cancer Center-Riverview, Riverview Hospital Association, Wisconsin Rapids, Wisconsin 54494 (United States)

    2010-10-15

    Purpose: The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. Methods: The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. Results: The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with {+-}5% variation for 16 sources. The dose-rate output and stability (within {+-}5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs

  10. Effects of surface treatments on bond strength of dental Ti-20Cr and Ti-10Zr alloys to porcelain

    International Nuclear Information System (INIS)

    Lin, Hsi-Chen; Wu, Shih-Ching; Ho, Wen-Fu; Huang, Ling-Hsiu; Hsu, Hsueh-Chuan

    2010-01-01

    The purpose of this study was to investigate the effect of surface treatments, including sandblasting and grinding, on the bond strength between a low-fusing porcelain and c.p. Ti, Ti-20Cr and Ti-10Zr alloys. The surface treatments were divided into 2 groups. Grinding surface treatment was applied to the first group, which served as the control, and sandblasting was applied to the second group. After treatment, low-fusing porcelain (Titankeramik) was fired onto the surface of the specimens. A universal testing machine was used to perform a 3-point bending test. The metal-ceramic interfaces were subjected to scanning electron microscopic analysis. Of the sandblasted samples, the debonding test showed that Ti-20Cr alloy had the strongest (31.50 MPa) titanium-ceramic bond (p < 005), followed by c.p. Ti (29.4 MPa) and Ti-10Zr (24.3 MPa). Of the grinded samples, Ti-20Cr alloy showed 27.3 MPa titanium-ceramic bond (p < 005), followed by c.p. Ti (14.3 MPa) and Ti-10Zr (failure). The SEM micrographs of the metal surface after debonding showed residual porcelain retained on all samples. On the whole, sandblasting surface treatment appears to have had a more beneficial effect on the Ti-ceramic bond strength than grinding surface treatment. Furthermore, surface treatment of Ti-20Cr with either grinding or sandblasting resulted in adequate bond strength, which exceeded the lower limit value in the ISO 9693 standard (25 MPa).

  11. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    International Nuclear Information System (INIS)

    Chen, Po-Hsun; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui; Zheng, Hao-Xuan; Chen, Min-Chen; Sze, Simon M.

    2017-01-01

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O_2 inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O_2 plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O_2 plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O_2 plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O_2 plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O_2 plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  12. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Po-Hsun [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chang, Kuan-Chang, E-mail: kcchang@pkusz.edu.cn [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); School of Electronic and Computer Engineering, Peking University, Shenzhen 518055 (China); Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Zheng, Hao-Xuan; Chen, Min-Chen [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Sze, Simon M. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2017-08-31

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O{sub 2} inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O{sub 2} plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O{sub 2} plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O{sub 2} plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O{sub 2} plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O{sub 2} plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  13. Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes.

    Science.gov (United States)

    Prevost, B; Goulet, M; Lucas, F S; Joyeux, M; Moulin, L; Wurtzer, S

    2016-03-15

    After many outbreaks of enteric virus associated with consumption of drinking water, the study of enteric viruses in water has increased significantly in recent years. In order to better understand the dynamics of enteric viruses in environmental water and the associated viral risk, it is necessary to estimate viral persistence in different conditions. In this study, two representative models of human enteric viruses, adenovirus 41 (AdV 41) and coxsackievirus B2 (CV-B2), were used to evaluate the persistence of enteric viruses in environmental water. The persistence of infectious particles, encapsidated genomes and free nucleic acids of AdV 41 and CV-B2 was evaluated in drinking water and surface water at different temperatures (4 °C, 20 °C and 37 °C). The infectivity of AdV 41 and CV-B2 persisted for at least 25 days, whatever the water temperature, and for more than 70 days at 4 °C and 20 °C, in both drinking and surface water. Encapsidated genomes persisted beyond 70 days, whatever the water temperature. Free nucleic acids (i.e. without capsid) also were able to persist for at least 16 days in drinking and surface water. The usefulness of a detection method based on an intercalating dye pre-treatment, which specifically targets preserved particles, was investigated for the discrimination of free and encapsidated genomes and it was compared to virus infectivity. Further, the resistance of AdV 41 and CV-B2 against two major disinfection treatments applied in drinking water plants (UV and chlorination) was evaluated. Even after the application of UV rays and chlorine at high doses (400 mJ/cm(2) and 10 mg.min/L, respectively), viral genomes were still detected with molecular biology methods. Although the intercalating dye pre-treatment had little use for the detection of the effects of UV treatment, it was useful in the case of treatment by chlorination and less than 1 log10 difference in the results was found as compared to the infectivity measurements

  14. Improvements in or relating to surface treatment of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.; Hartley, N.E.W.

    1975-01-01

    A method is described for surface treating metals so as to reduce their coefficients of friction. The metal is subjected to bombardment by a beam of ions of dry lubricant material, or material that forms a dry lubricant. The ions should have energies sufficient to cause them to be implanted into the surface region of the metal. The metal may be heated to facilitate assimilation of the ions, and implantation may be enhanced by means of irradiation of the article with radiation of energy sufficient to enhance diffusion of the ions into the article. The dry lubricant ions may comprise Mo + , In + , or Sn + . Where the article is of steel suitable ions are Mo + and S + deposited in the ratio of 1:2. Examples of application of the method are given, using a 500 Kv Cockcroft-Walton accelerator for the implantation. (U.K.)

  15. Apparatus and method for carbon fiber surface treatment

    Science.gov (United States)

    Paulauskas, Felix L; Sherman, Daniel M

    2014-06-03

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  16. Nanocrystalline-grained tungsten prepared by surface mechanical attrition treatment: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Guo, Hong-Yan; Xia, Min; Wu, Zheng-Tao; Chan, Lap-Chung; Dai, Yong; Wang, Kun; Yan, Qing-Zhi; He, Man-Chao; Ge, Chang-Chun; Lu, Jian

    2016-01-01

    A nanostructured surface layer was fabricated on commercial pure tungsten using the method of surface mechanical attrition treatment (SMAT). The microstructure evolution of the surface layer was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and its formation mechanism was discussed as well. Both refinement and elongation of the brittle W grains were confirmed. The elongated SMATed W was heavily strained, the maximum value of the strain at the grain boundaries reaches as high as 3–5%. Dislocation density in the SMATed W nanograins was found to be 5 × 10 12  cm −2 . The formation of the nanograins in the top surface layer of the W was ascribed to the extremely high strain and strain rate, as well as the multidirectional repetitive loading. Bending strength of commercial W could be improved from 825 MPa to 1850 MPa by SMAT process. Microhardness results indicated the strain range in SMATed W can reach up to 220 μm beneath the top surface. The notched Charpy testing results demonstrated that SMATed W possess higher ductility than that of commercial W. The top surface of the W plates with and without SMATe processing possesses residual compressive stress of about −881 MPa and −234 MPa in y direction, and −872 MPa and −879 MPa in x direction respectively. The improvement of toughness (DBTT shift) of SMATed W may be the synergistic effect of residual compressive stress, dislocation density improvement and microstructure refinement induced by SMAT processing. SMAT processing could be a complementary method to further decrease the DBTT value of tungsten based materials.

  17. Nanocrystalline-grained tungsten prepared by surface mechanical attrition treatment: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong-Yan [State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); Institute of Nuclear Materials, University of Science & Technology Beijing, Beijing 100083 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tae Chee Avenue Kowloon, Hong Kong 999077 (China); Xia, Min, E-mail: xmdsg@ustb.edu.cn [Institute of Nuclear Materials, University of Science & Technology Beijing, Beijing 100083 (China); Wu, Zheng-Tao [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chan, Lap-Chung [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tae Chee Avenue Kowloon, Hong Kong 999077 (China); Dai, Yong; Wang, Kun [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5323 Villigen PSI (Switzerland); Yan, Qing-Zhi [Institute of Nuclear Materials, University of Science & Technology Beijing, Beijing 100083 (China); He, Man-Chao [State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); Ge, Chang-Chun, E-mail: ccge@mater.ustb.edu.cn [Institute of Nuclear Materials, University of Science & Technology Beijing, Beijing 100083 (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tae Chee Avenue Kowloon, Hong Kong 999077 (China)

    2016-11-15

    A nanostructured surface layer was fabricated on commercial pure tungsten using the method of surface mechanical attrition treatment (SMAT). The microstructure evolution of the surface layer was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and its formation mechanism was discussed as well. Both refinement and elongation of the brittle W grains were confirmed. The elongated SMATed W was heavily strained, the maximum value of the strain at the grain boundaries reaches as high as 3–5%. Dislocation density in the SMATed W nanograins was found to be 5 × 10{sup 12} cm{sup −2}. The formation of the nanograins in the top surface layer of the W was ascribed to the extremely high strain and strain rate, as well as the multidirectional repetitive loading. Bending strength of commercial W could be improved from 825 MPa to 1850 MPa by SMAT process. Microhardness results indicated the strain range in SMATed W can reach up to 220 μm beneath the top surface. The notched Charpy testing results demonstrated that SMATed W possess higher ductility than that of commercial W. The top surface of the W plates with and without SMATe processing possesses residual compressive stress of about −881 MPa and −234 MPa in y direction, and −872 MPa and −879 MPa in x direction respectively. The improvement of toughness (DBTT shift) of SMATed W may be the synergistic effect of residual compressive stress, dislocation density improvement and microstructure refinement induced by SMAT processing. SMAT processing could be a complementary method to further decrease the DBTT value of tungsten based materials.

  18. Specifics of surface runoff contents and treatment in large cities

    OpenAIRE

    V.N. Chechevichkin; N.I. Vatin

    2014-01-01

    The degree of surface runoff pollution in large cities has been assessed in modern conditions in the case study of production sites of St. Petersburg. Increased content of petroleum derivatives and heavy metal ions both in rainwater runoff and especially in snowmelt runoff has been revealed. It has been established that the composition of infiltration runoff from the newly built-up sites within the city limits commonly depends on their background, especially in the places of former unaut...

  19. Prospects of DLC coating as environment friendly surface treatment process.

    Science.gov (United States)

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation

    Directory of Open Access Journals (Sweden)

    V Milleret

    2011-05-01

    Full Text Available Titanium implants are most commonly used for bone augmentation and replacement due to their favorable osseointegration properties. Here, hyperhydrophilic sand-blasted and acid-etched (SBA titanium surfaces were produced by alkali treatment and their responses to partially heparinized whole human blood were analyzed. Blood clot formation, platelet activation and activation of the complement system was analyzed revealing that exposure time between blood and the material surface is crucial as increasing exposure time results in higher amount of activated platelets, more blood clots formed and stronger complement activation. In contrast, the number of macrophages/monocytes found on alkali-treated surfaces was significantly reduced as compared to untreated SBA Ti surfaces. Interestingly, when comparing untreated to modified SBA Ti surfaces very different blood clots formed on their surfaces. On untreated Ti surfaces blood clots remain thin (below 15 mm, patchy and non-structured lacking large fibrin fiber networks whereas blood clots on differentiated surfaces assemble in an organized and layered architecture of more than 30 mm thickness. Close to the material surface most nucleated cells adhere, above large amounts of non-nucleated platelets remain entrapped within a dense fibrin fiber network providing a continuous cover of the entire surface. These findings might indicate that, combined with findings of previous in vivo studies demonstrating that alkali-treated SBA Ti surfaces perform better in terms of osseointegration, a continuous and structured layer of blood components on the blood-facing surface supports later tissue integration of an endosseous implant.

  1. The Immediate Results of Surgical Treatment of Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Alexei L. Charyshkin

    2016-06-01

    Full Text Available The objective of this study was to evaluate the immediate results of the use of ureterointestinal anastomosis according to the Bricker technique at radical cystectomy (RC for bladder cancer (BC. Materials and Results: The study included 96 patients (11.5% women and 88.5% men with bladder cancer (BC, aged from 31 to 74 years (mean age 63.8±7.2, who underwent RC in the Lipetsk Regional Oncology Center, in the period from 2005 to 2014. Among the early postoperative complications, we identified dynamic ileus (16.7%, inflammatory complications of the surgical wound (12.5%, acute pyelonephritis (10.4%, and failure of ureterointestinal anastomosis (4.2%. The frequency of postoperative acute pyelonephritis corresponded to the findings of other authors. Two (2.1% patients died from early postoperative complications because of concomitant diseases (ischemic heart disease, myocardial infarction; thus, postoperative mortality in the early postoperative period was 4.2%. Chronic pyelonephritis with chronic renal failure detected in 15(15.6% patients after one year after surgery was the most frequent late postoperative complication. The stricture of ureterointestinal anastomosis in 9(9.4% patients has been eliminated through relaparotomy and resection of anastomosis. The development of urolithiasis in 12(12.5% patients after one year after surgery has required the implementation of contact lithotripsy and litholytic therapy.

  2. Economic study of the treatment of surface water by small ...

    African Journals Online (AJOL)

    The purpose of this work is to evaluate the possibility of utilising an ultrafiltration process for the treatment of water from the dam in the Kabylia region of Algeria and, in particular, for the provision of drinking water to people living in dispersed small villages. The water quality was determined by measuring turbidity, and ...

  3. Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment.

    Science.gov (United States)

    Pacifici, Edoardo; Bossù, Maurizio; Giovannetti, Agostino; La Torre, Giuseppe; Guerra, Fabrizio; Polimeni, Antonella

    2013-01-01

    Even today, use of Glass Ionomer Cements (GIC) as restorative material is indicated for uncooperative patients. The study aimed at estimating the surface roughness of different GICs using or not their proprietary surface coatings and at observing the interfaces between cement and coating through SEM. Forty specimens have been obtained and divided into 4 groups: Fuji IX (IX), Fuji IX/G-Coat Plus (IXC), Vitremer (V), Vitremer/Finishing Gloss (VFG). Samples were obtained using silicone moulds to simulate class I restorations. All specimens were processed for profilometric evaluation. The statistical differences of surface roughness between groups were assessed using One-Way Analysis of Variance (One-Way ANOVA) (p<0.05). The Two-Way Analysis of Variance (Two-Way ANOVA) was used to evaluate the influence of two factors: restoration material and presence of coating. Coated restoration specimens (IXC and VFG) were sectioned perpendicular to the restoration surface and processed for SEM evaluation. No statistical differences in roughness could be noticed between groups or factors. Following microscopic observation, interfaces between restoration material and coating were better for group IXC than for group VFG. When specimens are obtained simulating normal clinical procedures, the presence of surface protection does not significantly improve the surface roughness of GICs.

  4. Assessment of Surface Area Characteristics of Dental Implants with Gradual Bioactive Surface Treatment

    Science.gov (United States)

    Czan, Andrej; Babík, Ondrej; Miklos, Matej; Záušková, Lucia; Mezencevová, Viktória

    2017-10-01

    Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on successful osseointegration. Among other characteristics that predetermine titanium of different grades of pureness as ideal biomaterial, titanium shows high mechanical strength making precise miniature machining increasingly difficult. Current titanium-based implants are often anodized due to colour coding. This anodized layer has important functional properties for right usage and also bio-compatibility of dental implants. Physical method of anodizing and usage of anodizing mediums has a significant influence on the surface quality and itself functionality. However, basic requirement of the dental implant with satisfactory properties is quality of machined surface before anodizing. Roughness, for example, is factor affecting of time length of anodizing operation and so whole productivity. The paper is focused on monitoring of surface and area characteristics, such as roughness or surface integrity after different cutting conditions of miniature machining of dental implants and their impact on suitability for creation of satisfactory anodized layer with the correct biocompatible functional properties.

  5. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    Science.gov (United States)

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  6. Influence of Alkali Treatment on the Surface Area of Aluminium Dross

    Directory of Open Access Journals (Sweden)

    N. S. Ahmad Zauzi

    2016-01-01

    Full Text Available Aluminium dross is an industrial waste from aluminium refining industry and classified as toxic substances. However, the disposal of dross as a waste is a burden to aluminium manufacturer industries due to its negative effects to the ecosystem, surface, and ground water. Therefore the purpose of this study is to evaluate the influence of sodium hydroxide (NaOH on the surface area and pore size of aluminium dross. There were 3 stages in the treatment activities, which were leaching, precipitation, and calcination process. The optimum result from this study was the surface area of aluminium dross increases from 10.1 m2/g up to 80.0 m2/g at 40°C, 1% NaOH, and 15-minute reaction time. Thus, aluminium dross has a potential to be converted into other useful material such as catalyst and absorbent. The benefit of this research is that the hazardous industrial waste can be turned into wealth to be used in other applications such as in catalytic activities and absorber in waste water treatment. Further investigation on the physicochemical of aluminium dross with different acid or alkali should be conducted to get deeper understanding on the aluminium dross as a catalyst-type material.

  7. Surface dosimetry in phototherapy: comparison of three ultraviolet B lamps used in the treatment of psoriasis

    International Nuclear Information System (INIS)

    Snow, J.L.; Muller, S.A.

    1996-01-01

    The quantitation (dosimetry) of ultraviolet B irradiation (UVB) administered during phototherapy for psoriasis is fundamental to this modality of treatment because only absorbed irradiation can cause a photochemical reaction and, hence, a phototherapeutic effect. Significant differences may exist in surface dosimetry achieved with different UVB irradiators, and this could have important consequences for the observed clinical efficacy of phototherapy as well as practical implications for avoiding burning when transferring patients between systems. Multiple anatomically referenced polysulphone photodosimeters were applied to the skin of five subjects receiving treatment for severe psoriasis. Three subjects were irradiated with both a free-standing hot quartz lamp and a fluorescent cabinet. Two others were irradiated with a flat bank of fluorescent tubes. Topographical maps of surface irradiation were constructed. 'Cold' areas ( 100% of stated dose) included the forearms and posterior thighs for the hot quartz lamp; the lateral arms, dorsal forearm, and abdomen for the cabinet; and the central trunk (anterior and posterior) for the bank of tubes. Thus, striking differences in surface irradiation exist among the three UVB irradiators studied, and this has an impact on the results of phototherapy for psoriasis. (author)

  8. Surface dosimetry in phototherapy: comparison of three ultraviolet B lamps used in the treatment of psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Snow, J.L.; Muller, S.A. [Mayo Clinic, Rochester, MN (United States)

    1996-12-01

    The quantitation (dosimetry) of ultraviolet B irradiation (UVB) administered during phototherapy for psoriasis is fundamental to this modality of treatment because only absorbed irradiation can cause a photochemical reaction and, hence, a phototherapeutic effect. Significant differences may exist in surface dosimetry achieved with different UVB irradiators, and this could have important consequences for the observed clinical efficacy of phototherapy as well as practical implications for avoiding burning when transferring patients between systems. Multiple anatomically referenced polysulphone photodosimeters were applied to the skin of five subjects receiving treatment for severe psoriasis. Three subjects were irradiated with both a free-standing hot quartz lamp and a fluorescent cabinet. Two others were irradiated with a flat bank of fluorescent tubes. Topographical maps of surface irradiation were constructed. `Cold` areas (< 50% of stated dose) included the neck, upper chest, shoulders, and anterolateral thighs for the hot quartz lamp; the medial arms, medial legs, and feet for the cabinet; and the lateral arms, forearms, lower legs, and feet for the bank of tubes. `Hot` areas (> 100% of stated dose) included the forearms and posterior thighs for the hot quartz lamp; the lateral arms, dorsal forearm, and abdomen for the cabinet; and the central trunk (anterior and posterior) for the bank of tubes. Thus, striking differences in surface irradiation exist among the three UVB irradiators studied, and this has an impact on the results of phototherapy for psoriasis. (author).

  9. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    Science.gov (United States)

    Young, Sun Mok; Hyun, Tae Ahn; Joeng, Tai Kim

    2007-02-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  10. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  11. Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment

    Directory of Open Access Journals (Sweden)

    I.V. Smirnov

    2017-06-01

    Full Text Available In the present study, the Pulsed Laser Deposition (PLD technique was applied to coat titanium for orthopaedic and dental implant applications. Calcium carbonate (CC was used as starting coating material. The deposited CC films were transformed into octacalcium phosphate (OCP by chemical treatments. The results of X-ray diffraction (XRD, Raman, Fourier Transform Infrared Spectroscopy (FTIR and scanning electron microscopy (SEM studies revealed that the final OCP thin films are formed on the titanium surface. Human myofibroblasts from peripheral vessels and the primary bone marrow mesenchymal stromal cells (BMMSs were cultured on the investigated materials. It was shown that all the investigated samples had no short-term toxic effects on cells. The rate of division of myofibroblast cells growing on the surface and saturated BMMSs concentration for the OCP coating were about two times faster than of cells growing on the CC films.

  12. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    International Nuclear Information System (INIS)

    Mok, Young Sun; Ahn, Hyun Tae; Kim, Joeng Tai

    2007-01-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly

  13. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  14. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites

    International Nuclear Information System (INIS)

    Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B.

    2014-01-01

    Highlights: • Surface treatment of Fe 2 O 3 with amino propyl tri methoxy silane. • The surface chemistry pigments were affected by the chemical treatment. • Surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. • The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles. - Abstract: Fe 2 O 3 nanoparticles were modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Modified and unmodified nanoparticles were introduced into the polyurethane matrix at different concentrations. Fourier transform infrared radiation (FT-IR) and X-ray photoelectron spectrophotometer (XPS) were employed in order to investigate the APTMS grafting on the nanoparticles field emission-scanning electron microscope (FE-SEM) was utilized in order to investigate nanoparticles dispersion in the polyurethane coating matrix as well as the fracture behavior of the nanocomposites. The mechanical properties of the nanocomposites were investigated by dynamic mechanical thermal analysis (DMTA) and tensile test. The FTIR spectra and XPS analysis clearly showed that APTMS was grafted on the surface of nanoparticles successfully and formed chemical bonds with the surface. Also, surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles

  15. Radiotherapy treatment results of bladder cancer: study of 458 patients

    International Nuclear Information System (INIS)

    Vara Santos, J.; Torre Tomas, A. de la; Romero Fernandez, J.; Regueiro Otero, C.; Clavo Varas, B.; Magallan Sebastian, R.; Valcarcel Sancho, F.; Polo Tolosana, E.; Aragon de la Cruz, G.

    1994-01-01

    Between 1964 to 1990, 458 patients diagnosed of bladder cancer have been treated with radical radiotherapy in our department. The 5-years and 10-years actuarial survival rates were 37% and 27% respectively. The 5-years and 10-years actuarial local control rates, evaluated in 404 patients, were 41% and 38%. In regard to survival, T stage (p=0.013), advanced intravesical extension or multicentrity (p>0.0001), and squamous differentiation (p<0.0001), reached statistical significance as adverse prognostic factors. In 248 patients, with invasive transitional carcinoma, radical radiotherapy alone was used. In this group of patients, T stage (p=0.006) and advanced intravesical extension or multicentrity (p=0.0002) were adverse prognostic factors for survival. Our results suggest that radical radiotherapy must be considered and alternative to surgery in management of bladder cancer. On the basis of prognostic factors evidenced in this series a subgroup of patients with low probability of survival when treated with exclusive radiotherapy are defined. This patients must be included in clinical research protocols. (Author) 44 refs

  16. Treatment of surfaces with low-energy electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mikmeková, Eliška; Lejeune, M.

    2017-01-01

    Roč. 407, JUN 15 (2017), s. 105-108 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Low- energy electrons * Electron beam induced release * Graphene * Ultimate cleaning of surfaces Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  17. Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    The incorporation of nitrogen or carbon in steel is widely applied to provide major improvements in materials performance with respect to fatigue, wear, tribology and atmospheric corrosion. These improvements rely on a modification of the surface adjacent region of the material, by the (internal...... and the interplay with mechanical stress. In the present article a few examples, covering research on the interaction of carbon and/or nitrogen with iron-based metals, are included to illustrate the various aspects of gas-metal interactions....

  18. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... the sensitive fraction of the commensal flora.Growth parameters for competing bacterial strains were estimated from the combined in vitro pharmacodynamic effect of two antimicrobials using the relationship between concentration and net bacterial growth rate. Predictions of in vivo bacterial growth were...... (how frequently antibiotics are alternated in a sequential treatment) of the two drugs was dependent upon the order in which the two drugs were used.Conclusion: Sequential treatment was more effective in preventing the growth of resistant strains when compared to the combination treatment. The cycling...

  19. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    International Nuclear Information System (INIS)

    Ponomarev, A V; Pedos, M S; Scherbinin, S V; Mamontov, Y I; Ponomarev, S V

    2015-01-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface. (paper)

  20. Effect of Extraction Process and Surface Treatment on the mechanical properties in Pineapple Leaf Fibre

    Directory of Open Access Journals (Sweden)

    Ariffin Azrie

    2017-01-01

    Full Text Available Pineapple Leaf Fibre (PALF is a one of the natural fibre that has high potential in the industry. Natural fibres have become the main alternative source in the modern world industry. The objective of this study is to observe the effect chemical treatment using Sodium Hydroxide (NaOH solution on the physical and mechanical properties of pineapple leaf fibre. Different concentration of NaOH solution (2%, 4%, 6%, 8% and different treatment time (1 hour, 3 hour and 5 hour are used for the experiment. The tensile test was conducted to obtain the mechanical properties such as tensile strength, Yong modulus, (E and elongation at break. From the results obtained, NaOH concentration of 6% and five-hour treatment time that was used for treatment showed the higher physical and mechanical properties values. Furthermore, morphology analysis also shows the surface of the fibre at 6% NaOH after five-hour of treatment was in the better condition with good bonding arrangement of the fibre.

  1. Bioinspired Surface Treatments for Improved Decontamination: Commercial Products

    Science.gov (United States)

    2017-07-28

    treatments onto painted was completed as advised by manufacturer directions. All drying and curing steps were completed under laboratory ambient...retained the following: paraoxon – 4.90 g/m2, MES – 4.81 g/m2, DMMP – 4.95 g/m2, DFP – 3.60 g/m2. Though the nominal target application was 5 g/m2

  2. Surface treatment of non-ferrous metal samples to be certified for their oxygen, nitrogen and carbon content

    International Nuclear Information System (INIS)

    Weber, G.Y.; Quaglia, L.; David, D.; Pauwels, J.; Vanaudenhove, J.

    1977-01-01

    Surface treatment on non-ferrous metals is proposed in order to minimize or determine quantitatively the interference of gaseous contamination. Two types of surface treatment have been applied to the specimens; mechanical treatment (sawing, turning, polishing); chemical treatment (etching). Three main conditions govern the choice of treatment: it must give a minimum surface content of the elements to be determined; it must exhibit the reproducibility of the treatment; it must be easy to perform with the normal equipment in the analytical laboratories concerned. A table corresponding to each element gives the range of surface content liable to be used for corrections of determination in the mass, a mechanical treatment, a chemical etching. The elements concerned are: Ta, Mo, W, Ti, Zr, Nb, Cu, Cu/Zn, Al, Al/Mg, Al/Si, Pb, Pb/Sb, Si, Ge, GaAs. The proposals result from a large number of determinations of superficial contamination on several materials using microanalysis by nuclear reactions. (T.G.)

  3. The effect of different surface treatments on the shear bond strength of luting cements to titanium.

    Science.gov (United States)

    Abi-Rached, Filipe de Oliveira; Fonseca, Renata Garcia; Haneda, Isabella Gagliardi; de Almeida-Júnior, Antonio Alves; Adabo, Gelson Luis

    2012-12-01

    Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti). Two hundred and forty CP Ti cast disks (9.0 × 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 µm Al(2)O(3) particles; 2) 120 µm Al(2)O(3) particles; 3) 250 µm Al(2)O(3) particles; 4) 50 µm Al(2)O(3) particles + silane (RelyX Ceramic Primer); 5) 120 µm Al(2)O(3) particles + silane; 6) 250 µm Al(2)O(3) particles + silane; 7) 30 µm silica-modified Al(2)O(3) particles (Cojet Sand) + silane; and 8) 120 µm Al(2)O(3) particles, followed by 110 µm silica-modified Al(2)O(3) particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5°C to 55°C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (α=.05). Failure mode was determined with a stereomicroscope (×20). The surface treatments, cements, and their interaction significantly affected the SBS (Pbehavior for all surface treatments. For both cements, only the group abraded with 50 μm Al(2)O(3) particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 μm Al(2)O(3) particles resulted in significantly lower SBS than abrasion with 120 μm and 250 μm particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode. The adhesive capability of RelyX Luting 2 and RelyX U

  4. Novel ion-molecular surface reaction to result in CH3 adsorbates on (111) surface of chemical vapor deposition diamond from ethane and surface anionic sites

    International Nuclear Information System (INIS)

    Komatsu, Shojiro; Okada, Katsuyuki; Shimizu, Yoshiki; Moriyoshi, Yusuke

    2001-01-01

    The existence of CH 3 adsorbates on (111) surface of chemical vapor deposited diamond, which was observed by scanning tunneling microscopy, was explained by the following S N 2 (bimolecular, substitutional, and nucleophilic) type surface reaction; C(s) - +C 2 H 6 ->C(s)-CH 3 +CH 3 - , where C(s) denotes a surface carbon atom. The activation energy was estimated to be 36.78 kcal/mol and the reaction proved to be exothermic with the enthalpy change of -9.250 kcal/mol, according to ab initio molecular orbital calculations at MP2/3-21+G * //RHF/3-21G * level; this result is consistent with typical substrate temperatures, namely about 900 degree C, for chemical vapor deposition of diamond. Charge transfer from the highest occupied molecular orbital of the surface anionic site to the lowest unoccupied molecular orbital of ethane, that is antibonding at the CH 3 - CH 3 bond, has been clearly visualized. A characteristic configuration of an ethane molecule which is associated with an anionic vacant site C(s) - on hydrogenated (111) surface of diamond was also found. [copyright] 2001 American Institute of Physics

  5. Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Gyeong; Hur, Bo-Young; Lee, Dong-Geun; Lee, Yong-Tai; Yaskiv, O.

    2011-01-01

    The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to 100um. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

  6. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    Science.gov (United States)

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

    Science.gov (United States)

    Muniz, German; Alum, Jorge

    1996-02-01

    In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

  8. Surface treatment of low-cost beta titanium alloy to combat wear

    International Nuclear Information System (INIS)

    Redmore, E.; Li, X.; Dong, H.

    2010-01-01

    The development of an effective ceramic conversion treatment of TIMETAL LCB (Ti-6.8Mo-4.5Fe-1.5Al) has been investigated. Various characterisation methods were used to analyse samples in order to identify the best process conditions including SEM, EDX, XRD, GDS, micro-indentation and scratch testing. The results show that the tribological properties of the TIMETAL LCB alloy have been significantly enhanced by the new ceramic conversion treatment specifically developed for beta alloys. The improved friction and wear properties can be attributed to the low-friction TiO_2 surface layer supported by an oxygen diffusion hardened case up to a depth of ∼70μm. (author)

  9. Treatment of sulphated water of surface origin produced by an open pit coal mine

    Directory of Open Access Journals (Sweden)

    Alan Campos-Sánchez

    2016-12-01

    Full Text Available The purpose of this study was to select the most suitable method of treatment of sulfated water produced by an open pit coal mine in Venezuela. Samples of water taken on surface, middle and bottom of water bodies in three areas were subjected to basic, gravimetric, volumetric and colorimetric analysis. The results indicated that the pH is within limits permitted by current environmental regulations, while total suspended solids, total dissolved solids, and sulfates exceed the normed values. The aerobic wetland method was selected as the most efficient for the removal of sulfates, depending on the physicochemical characteristics of the sulphated waters from the mine and because they are systems that use natural energy to purify water, its construction and maintenance costs Is significantly inferior to the conventional treatments and because, being replicas of natural ecosystems, they are integrated to the environment.

  10. Effect of Abrasive Waterjet Peening Surface Treatment of Steel Plates on the Strength of Single-Lap Adhesive Joints

    Directory of Open Access Journals (Sweden)

    Kamil Anasiewicz

    2017-09-01

    Full Text Available The paper presents results of comparative study of shear strength of single–lap adhesive joints, depending on the method of surface preparation of steel plates with increased corrosion resistance. The method of preparing adherend surfaces is often one of the most important factors determining the strength of adhesive joints. Appropriate geometric surface development and cleaning of the surface enhances adhesion forces between adherend material and adhesive. One of the methods of shaping engineering materials is waterjet cutting, which in the AWJP – abrasive waterjet peening variant, serves to shape flat surfaces of the material by changing the roughness and introducing stresses into the surface layer. These changes are valuable when preparing adhesive joints. In the study, surface roughness parameters obtained with AWJP treatment, were analyzed in direct relation to the strength of the adhesive joint. As a consequence of the experimental results analysis, the increase in the strength of the adhesive joints was observed in a certain range of parameters used for AWJP treatment. A decrease in shear strength of adhesive joint with the most modified topography of overlap surface was observed.

  11. Treatment of Low Back Pain with a Digital Multidisciplinary Pain Treatment App: Short-Term Results.

    Science.gov (United States)

    Huber, Stephan; Priebe, Janosch A; Baumann, Kaja-Maria; Plidschun, Anne; Schiessl, Christine; Tölle, Thomas R

    2017-12-04

    Even though modern concepts of disease management of unspecific low back pain (LBP) postulate active participation of patients, this strategy is difficult to adapt unless multidisciplinary pain therapy is applied. Recently, mobile health solutions have proven to be effective aides to foster self-management of many diseases. The objective of this paper was to report on the retrospective short-term results of a digital multidisciplinary pain app for the treatment of LBP. Kaia is a mobile app that digitalizes multidisciplinary pain treatment and is in the market as a medical product class I. For the current study, the data of anonymized Kaia users was retrospectively analyzed. User data were evaluated for 12 weeks regarding duration of use and effect on in-app user reported pain levels, using the numerical rating scale (NRS), depending on whether LBP was classified as acute, subacute, or chronic back pain according to current guidelines. Data of 180 users were available. The mean age of the users was 33.9 years (SD 10.9). Pain levels decreased from baseline NRS 4.8 to 3.75 for all users at the end of the observation period. Users who completed 4, 8, or 12 weeks showed an even more pronounced decrease in pain level NRS (baseline 4.9 [SD 1.7] versus 3.6 [SD 1.5] at 4 weeks; baseline 4.7 [SD 1.8] versus 3.2 [SD [2.0] at 8 weeks; baseline 4.6 [SD 2.2] versus 2.6 [SD 2.0] at 12 weeks). In addition, subgroup analysis of acute, subacute, or chronic classification revealed no significant main effect of group (P>.30) on the reduction of pain. Conclusions: This retrospective study showed that in a pre-selected population of app users, an app digitalizing multidisciplinary rehabilitation for the self-management of LBP reduced user-reported pain levels significantly. The observed effect size was clinically relevant. Ongoing prospective randomized controlled trials (RCTs) will adjust for potential bias and selection effects. This retrospective study showed that in a pre

  12. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.

    Key words: Hydrology (desertification - Meterology and

  13. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    2000-03-01

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.Key words: Hydrology (desertification - Meterology and atmospheric

  14. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    Science.gov (United States)

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  15. A treatment strategy for waste waters resulting from uranium mine decommissioning in Romania

    International Nuclear Information System (INIS)

    Georgescu, D.P.; Vacariu, V.T.; Popa, N.

    2000-01-01

    The exploitation activities in two important uranium mining areas in Romania are foreseen to be closed down in correlation with the national energy policy and nuclear strategy. This close down activity involves a number of technical decisions for environmental restoration. Reducing the contamination due to radioactive water of these areas, during the operation period and after the close down period, is one of the main components of the environment rehabilitation strategy. In this paper, the current situation and the program foreseen for ground and surface water treatment at an uranium mining unit situated in the S-W of Romania are presented. This program was established on the base of the results of our research carried out in order to decrease the content of radioactive elements. After closing down the mining facility, naturally flooding waters should be evacuated at the surface by a pump system and properly treated. A station for water decontamination is under construction. The underground water decontamination is based on two methods: ion exchange for uranium and adsorption on active coal for Ra-226. The technological flow chart of the treatment installation is realized on the basis of laboratory and industrial research and it will output treated water with less than 60 mg solid/l, 0.021 mg U/l and 0.088 Bq Ra-226/l. The installation is able to treat contaminated water flow rates between 10 and 30 l/s at a cost of about 0.1 USD/m 3 . The total investment cost is estimated to be 9.7 - 12.6 billions RO Lei (USD 500.000 - 650.000), depending of the treatment capacity. (authors)

  16. Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation

    Directory of Open Access Journals (Sweden)

    Silviya Mikhailovna Ojovan

    2014-06-01

    Full Text Available Using a variety of proliferating cell types, it was shown that the surface of nanocrystalline-diamond (NCD provides a permissive substrate for cell adhesion and development without the need of complex chemical functionalization prior to cell seeding. In an extensive series of experiments we found that, unlike proliferating cells, post-mitotic primary neurons do not adhere to bare NCD surfaces when cultured in defined medium. These observations raise questions on the potential use of bare NCD as an interfacing layer for neuronal devices. Nevertheless, we also found that classical chemical functionalization methods render the hostile bare NCD surfaces with adhesive properties that match those of classically functionalized substrates used extensively in biomedical research and applications. Based on the results, we propose a mechanism that accounts for the conflicting results; which on one hand claim that un-functionalized NCD provides a permissive substrate for cell adhesion and growth, while other reports demonstrate the opposite.

  17. Effects of unplanned treatment interruptions on HIV treatment failure– results from TAHOD

    Science.gov (United States)

    Jiamsakul, Awachana; Kerr, Stephen J.; Ng, Oon Tek; Lee, Man Po; Chaiwarith, Romanee; Yunihastuti, Evy; Van Nguyen, Kinh; Pham, Thuy Thanh; Kiertiburanakul, Sasisopin; Ditangco, Rossana; Saphonn, Vonthanak; Sim, Benedict L. H.; Merati, Tuti Parwati; Wong, Wingwai; Kantipong, Pacharee; Zhang, Fujie; Choi, Jun Yong; Pujari, Sanjay; Kamarulzaman, Adeeba; Oka, Shinichi; Mustafa, Mahiran; Ratanasuwan, Winai; Petersen, Boondarika; Law, Matthew; Kumarasamy, Nagalingeswaran

    2016-01-01

    Objectives Treatment interruptions (TI) of combination antiretroviral therapy (cART) are known to lead to unfavourable treatment outcomes but do still occur in resource-limited settings. We investigated the effects of TI associated with adverse events (AEs) and non-AE-related reasons, including their durations, on treatment failure after cART resumption in HIV-infected individuals in Asia. Methods Patients initiating cART between 2006-2013 were included. TI was defined as stopping cART for >1 day. Treatment failure was defined as confirmed virological, immunological or clinical failure. Time to treatment failure during cART was analysed using Cox regression, not including periods off treatment. Co-variables with p30 days were associated with failure (31-180 days HR=2.66, 95%CI (1.70-4.16); 181-365 days HR=6.22, 95%CI (3.26-11.86); and >365 days HR=9.10, 95% CI (4.27-19.38), all pfailure. If TI is unavoidable, its duration should be minimised to reduce the risk of failure after treatment resumption. PMID:26950901

  18. Local thermal property analysis by scanning thermal microscopy of an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.A. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China) and Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France)]. E-mail: guofuan@yahoo.com; JI, Y.L. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China); Trannoy, N. [Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France); Lu, J. [LASMIS, Universite de Technologie de Troyes, 12 Rue Marie Curie, Troyes 10010 (France)

    2006-06-15

    Scanning thermal microscopy (SThM) was used to map thermal conductivity images in an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment (SMAT). It is found that the deformed surface layer shows different thermal conductivities that strongly depend on the grain size of the microstructure: the thermal conductivity of the nanostructured surface layer decreases obviously when compared with that of the coarse-grained matrix of the sample. The role of the grain boundaries in thermal conduction is analyzed in correlation with the heat conduction mechanism in pure metal. A theoretical approach, based on this investigation, was used to calculate the heat flow from the probe tip to the sample and then estimate the thermal conductivities at different scanning positions. Experimental results and theoretical calculation demonstrate that SThM can be used as a tool for the thermal property and microstructural analysis of ultrafine-grained microstructures.

  19. Effect of Four Methods of Surface Treatment on Shear Bond Strength of Orthodontic Brackets to Zirconium

    Directory of Open Access Journals (Sweden)

    Soghra Yassaei

    2015-10-01

    Full Text Available Objectives: Providing reliable attachment between bracket base and zirconia surface is a prerequisite for exertion of orthodontic force. The purpose of the present study was to eval- uate the effect of four zirconium surface treatment methods on shear bond strength (SBS of orthodontic brackets.Materials and Methods: One block of zirconium was trimmed into four zirconium sur- faces, which served as our four study groups and each had 18 metal brackets bonded to them. Once the glazed layer was removed, the first group was etched with 9.6% hydrofluoric acid (HF, and the other three groups were prepared by means of sandblasting and 1 W, and 2 W Er: YAG laser, respectively. After application of silane, central incisor brackets were bonded to the zirconium surfaces. The SBS values were measured by a Dartec testing ma- chine with a crosshead speed of 1 mm/min.Results: The highest SBS was achieved in the sandblasted group (7.81±1.02 MPa followed in a descending order by 2 W laser group (6.95±0.87 MPa, 1 W laser group (6.87±0.92MPa and HF acid etched group (5.84±0.78 MPa. The differences between the study groups, were statistically significant except between the laser groups (P < 0.05. Conclusion: In terms of higher bond strength and safety, sandblasting and Er: YAG laser irradiation with power output of 1 W and 2 W can be considered more appropriate alterna- tives to HF acid etching for zirconium surface treatment prior to bracket bonding.

  20. Analysis of reverse gate leakage mechanism of AlGaN/GaN HEMTs with N2 plasma surface treatment

    Science.gov (United States)

    Liu, Hui; Zhang, Zongjing; Luo, Weijun

    2018-06-01

    The mechanism of reverse gate leakage current of AlGaN/GaN HEMTs with two different surface treatment methods are studied by using C-V, temperature dependent I-V and theoretical analysis. At the lower reverse bias region (VR >- 3.5 V), the dominant leakage current mechanism of the device with N2 plasma surface treatment is the Poole-Frenkel emission current (PF), and Trap-Assisted Tunneling current (TAT) is the principal leakage current of the device which treated by HCl:H2O solution. At the higher reverse bias region (VR current of the device with N2 plasma surface treatment is one order of magnitude smaller than the device which treated by HCl:H2O solution. This is due to the recovery of Ga-N bond in N2 plasma surface treatment together with the reduction of the shallow traps in post-gate annealing (PGA) process. The measured results agree well with the theoretical calculations and demonstrate N2 plasma surface treatment can reduce the reverse leakage current of the AlGaN/GaN HEMTs.

  1. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.; Armeli, Y. P. [Department of Chemical Engineering, University of Diponegoro Prof. Soedarto, Tembalang, Semarang, 50239, Phone/Fax : (024) 7460058 (Indonesia)

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  2. FRACTURES OF THE FIFTH METATARSAL RESULTS OF THE EARLY OPERATIVE TREATMENT OF ACUTE DISPLACED FRACTURES

    Directory of Open Access Journals (Sweden)

    Slaviša Mihaljević

    2004-04-01

    Full Text Available Background. Fracture of the proximal 5th metatarsal bone (MTB reach almost 2% of all fractures of the foot. Conservative treatment is method of choice in almost all cases. Selected cases can benefit from acute surgery especially if the proximal fragment is severe displaced or the excessive articular step off is present.Materials and methods. In a 4 year period 14 patients were operated due to the acute fracture of proximal 5th MTB. All patients were treated in less than 2 weeks after the injury. 10 patients had base avulsion fracture in zone I and 4 had Jones fracture in zone II with dislocation of fragments? 5 mm, articular step off of 2 mm and 30% of articulation surface. We used tension bend wire in 9 cases (64%, partially threaded cancellous screw in 4 cases (28% and bone sutures in 1 case (7%. Postoperatively all patients used crutches with nonweight bearing for 4 weeks and afterwards partial weight bearing till the end of the treatment. All patients were practicing active exercises for ankle, foot and toes. The results were evaluated according to the Maryland Foot Score (MFS at least 20 months after injury.Results. 13 patients (93% were included in follow up. 12 patients were evaluated as excellent and only one as a good. All 13 patients have no or slight pain with no change in ADL or work ability. 9 patients (69% reached full functional result and 4 (31% patients had slight limitation during distance walk. Patients reached full weight bearing in average 7 weeks (5–13.Conclusions. Early operative treatment of selected cases allows fast return to preoperative activity without long term functional sequel. Both operative procedures, screw fixation and tension wire, yielded comparable and excellent end result.

  3. Structural and surface changes in glassy carbon due to strontium implantation and heat treatment

    Science.gov (United States)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L. C.; Njoroge, E. G.; Erasmus, R.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2018-01-01

    There are still questions around the microstructure of glassy carbon (GC), like the observation of the micropores. These were proposed to explain the low density of GC. This paper explains the effect of ion bombardment (200 keV Sr+, 1 × 1016 Sr+/cm2 at RT) on the microstructure of GC. TEM and AFM show that micropores in pristine GC are destroyed leading to densification of GC from 1.42 g/cm3 to 2.03 g/cm3. The amorphisation of glassy carbon was also not complete with graphitic strands embedded within the GC. These were relatively few, as Raman analysis showed that the Sr implantation resulted in a typical amorphous Raman spectrum. Annealing of the sample at 900 °C only resulted in a slight recovery of the GC structure. AFM and SEM analysis showed that the surface of the sample became rougher after Sr implantation. The roughness increased after the sample was annealed at 600 °C due to segregation of Sr towards the surface of the GC. SEM measurements of a sample with both implanted and un-implanted edges after annealing at 900 °C, showed that the high temperature heat treatment did not affect the surface topography of un-irradiated GC.

  4. Pavement service life extension due to asphalt surface treatment interlayer : research project capsule.

    Science.gov (United States)

    2016-07-01

    The Louisiana Department of Transportation and Development (DOTD) has been : using asphalt surface treatment (AST) interlayers over soil cement base courses : as a means to mitigate shrinkage cracks from reflecting through the asphaltic : concrete (A...

  5. Environmentally Benign Sol-Gel Surface Treatment for Aluminum Bonding Applications

    National Research Council Canada - National Science Library

    Osborne, Joseph

    1996-01-01

    A surface treatment process for aluminum using sol-gel chemistry has been developed that produces strong adhesive bonds without the rinse water requirements of traditional anodizing or etching processes...

  6. Corrosion resistance of hsla steel after various surface treatments in chloride environment

    Czech Academy of Sciences Publication Activity Database

    Borko, K.; Pastorek, F.; Fintová, Stanislava; Hadzima, B.

    2016-01-01

    Roč. 18, č. 4 (2016), s. 99-102 ISSN 1335-4205 Institutional support: RVO:68081723 Keywords : Corrosion properties * Iron phosphating * S355J steel Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  7. Organoselenium Surface Modification of Stainless Steel Surfaces To Prevent Biofouling in Treatment of Space Wastestreams, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to quantify the reduction of biofilm formation in a water distribution system resulting from an organoselenium surface coating on...

  8. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics

    Science.gov (United States)

    Ren, Yu; Xu, Lin; Wang, Chunxia; Wang, Xiaona; Ding, Zhirong; Chen, Yuyue

    2017-12-01

    Polylactic acid (PLA) nonwoven fabrics are treated with atmospheric dielectric barrier discharge (DBD) plasma to improve surface wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show that micro- to nano-scale textures appear on the treated PLA surfaces dependent on the treatment time. X-ray photoelectron spectroscopy (XPS) analysis reveals that the DBD plasma treatments result in decreased carbon contents and increased oxygen contents as well as slightly increased nitrogen contents. The water contact angle decreases sharply with the increase of the DBD plasma treatment time. The super hydrophilic PLA surfaces (the water contact angle reached 0°) are obtained when the treatment time is longer than 90 s. Ninety days after the DBD plasma treatment, the XPS analysis shows that Csbnd O/Csbnd N and Cdbnd O/Osbnd Cdbnd O percentages decline for all treatment groups. However, the water contact angle is kept constant at 0° for the groups treated above 90 s, which could be due to the oxidized nano-structured layer on the DBD plasma treated PLA surfaces.

  9. Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases

    Directory of Open Access Journals (Sweden)

    Fei Li

    2016-01-01

    Full Text Available Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs, derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease.

  10. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP-CVD.

    Science.gov (United States)

    Ida; Matsuyama; Yamamoto

    2000-07-01

    Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.

  11. Restoration of metal properties of circulation pump blades by the method of surface ultrasonic impact treatment

    Science.gov (United States)

    Povarov, V. P.; Urazov, O. V.; Bakirov, M. B.; Pakhomov, S. S.; Belunik, I. A.

    2017-10-01

    During the transition period to a market economy, the works producing equipment for the nuclear industry became lame duck companies. The market of heavy industry equipment reduced dramatically, and quality control requirements imposed to goods became lower. Deviations from regulations' requirements and technical specifications for equipment manufacture results in inevitable decrease of reliability during operation but also to failure during check tests. It is not always possible to replace promptly ill-conditioned equipment; in such cases, it is necessary to carry out compensatory measures for restoring working properties up to an acceptable level in order to ensure operational reliability due to the strength improvement of the components of machines and constructions during the whole service life or up to the scheduled date of equipment replacement. This paper is dedicated to development and practical implementation of restorative technology of strengthening ultrasonic treatment used for the metal of the blades of impellers of 16DPA10-28 circulation pumps of 10URS unit pump station located at Novovoronezh NPP-2. The dynamic surface treatment was implemented for compensating the technological defects of the metal of blades. It was revealed that the impact elastic-plastic deformation has a comprehensive compensation effect on the metal of blades in the initial state of delivery and creates the surface-strengthening layer with higher strength properties (strain hardening) of the depth up to 1.5 mm. The surface strain hardening increases the cyclic strength, re-distributes beneficially the residual technological and repair stresses, and heals small surface cracks improving the surface quality. The developed technology was used for treatment of 32 blades of impellers of 10PAC01AP001, 10PAC02AP001, 10PAC03AP001, 10PAC04AP001 circulation pumps. The implemented 100-h full-scale test of the pumps revealed the high efficiency of the developed technology and made it possible

  12. Incoming Shortwave Fluxes at the Surface--A Comparison of GCM Results with Observations.

    Science.gov (United States)

    Garratt, J. R.

    1994-01-01

    Evidence is presented that the exam surface net radiation calculated in general circulation models at continental surfaces is mostly due to excess incoming shortwave fluxes. Based on long-term observations from 22 worldwide inland stations and results from four general circulation models the overestimate in models of 20% (11 W m2) in net radiation on an annual basis compares with 6% (9 W m2) for shortwave fluxes for the same 22 locations, or 9% (18 W m2) for a larger set of 93 stations (71 having shortwave fluxes only). For annual fluxes, these differences appear to be significant.

  13. An experimental result of surface roughness machining performance in deep hole drilling

    Directory of Open Access Journals (Sweden)

    Mohamad Azizah

    2016-01-01

    Full Text Available This study presents an experimental result of a deep hole drilling process for Steel material at different machining parameters which are feed rate (f, spindle speed (s, the depth of the hole (d and MQL, number of drops (m on surface roughness, Ra. The experiment was designed using two level full factorial design of experiment (DoE with centre points to collect surface roughness, Ra values. The signal to noise (S/N ratio analysis was used to discover the optimum level for each machining parameters in the experiment.

  14. Influence of Three Permeable Pavement Surfaces on Nitrogen Treatment

    Science.gov (United States)

    Nitrogen is a stressor of concern in many nutrient sensitive watersheds often associated with algal blooms and resulting fish kills. Communities are increasingly installing green infrastructure stormwater control measures (SCMs) to reduce pollutant loads associated with stormwat...

  15. Effects of Chemical Surface Treatment on Mechanical Properties of ...

    African Journals Online (AJOL)

    MBI

    2015-06-28

    Jun 28, 2015 ... method for seven days according to the method reported by (Favaro et al., 2010). ... strength and stiffness (Hashim, 2012), as shown in the reaction. .... fibers which result in direct bonding between the cellulose and the matrix.

  16. Phase transformations on the surface of YAG composite ceramics under the action of directed laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, M., E-mail: vlasovamarina@inbox.ru; Márquez Aguilar, P.A.; Escobar Martinez, A.; Kakazey, M.; Guardian Tapia, R.; Trujillo Estrada, A.

    2016-07-30

    Highlights: • During directed laser treatment of the surface of the composite ceramics consisting of predominantly Y{sub 3}Al{sub 5}O{sub 12} and Al{sub 2}O{sub 3}, the oriented crystallization of YAG and Al{sub 2}O{sub 3} takes place. • As a result of high-temperature heating, in the surface layer of tracks, the partial dissociation of Y{sub 3}Al{sub 5}O{sub 12}, Y{sub 2}Ti{sub 2}O{sub 7}, and Al{sub 2}Y{sub 4}O{sub 9} and enrichment in YAlO{sub 3} occur. • The content of YAlO{sub 3}, the size of YAG crystallites, and their crystallographic texturing depend on the irradiation mode. • After laser treatment, the ceramic material transforms into a three-layer macrostructure consisting of the basic ceramic material, near-surface textured layer, and surface layer. - Abstract: The laser treatment of composite ceramics based on Y{sub 3}Al{sub 5}O{sub 12} with Y{sub 2}Ti{sub 2}O{sub 7}, Al{sub 2}Y{sub 4}O{sub 9}, and Al{sub 2}O{sub 3} additives is accompanied by the melting of the surface layer and formation of tracks. In the volume of tracks, the partial dissociation of Y{sub 3}Al{sub 5}O{sub 12}, Y{sub 2}Ti{sub 2}O{sub 7}, and Al{sub 2}Y{sub 4}O{sub 9}, and the formation of new phases such as YAlO{sub 3} of orthorhombic and hexagonal modifications along with the appearance of additional content of Y{sub 3}Al{sub 5}O{sub 12} and Al{sub 2}O{sub 3} are observed. The content of all these phases depends on the irradiation mode and the phase composition of the ceramics. With increase in the corundum content in ceramic specimens, in the tracks, the Al{sub 2}O{sub 3} content increases, and the Y{sub 3}Al{sub 5}O{sub 12} content decreases. In the volume of tracks, Y{sub 3}Al{sub 5}O{sub 12} crystallites are textured. The size of YAG crystallites and their crystallographic texturing depend on the irradiation mode and Y{sub 3}Al{sub 5}O{sub 12}/Al{sub 2}O{sub 3} phase ratio. On the surface of tracks, a layer enriched in YAlO{sub 3} forms. Thus, as a result of laser

  17. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  18. Description of the surface water filtration and ozone treatment system at the Northeast Fishery Center

    Science.gov (United States)

    A water filtration and ozone disinfection system was installed at the U.S. Fish and Wildlife Service's Northeast Fishery Center in Lamar, Pennsylvania to treat a surface water supply that is used to culture sensitive and endangered fish. The treatment system first passes the surface water through dr...

  19. Antimicrobial and cold plasma treatments for inactivation of listeria monocytogenes on whole apple surface

    Science.gov (United States)

    Introduction: Produce and bacterial cell surface structure play an important role as to where and how bacteria attach to produce surfaces. The efficacy of a novel antimicrobial solution developed in our laboratory was investigated in combination with cold plasma treatments for inactivation of Liste...

  20. Airport surface moving map displays: OpEval-2 evaluation results and future plans

    Science.gov (United States)

    Livack, Garret; McDaniel, James I.; Battiste, Vernol

    2001-08-01

    The Federal Aviation Administration (FAA), in cooperation with the Cargo Airline Association (CAA) and three of its member airlines (Airborne Express, Federal Express, and United Parcel Service), have embarked upon an aggressive yet phased approach to introduce new Free Flight-enabling technologies into the U.S. National Airspace System (NAS). General aviation is also actively involved, represented primarily by the Aircraft Owners and Pilots Association (AOPA). These new technologies being evaluated include advanced cockpit avionics and a complimentary ground infrastructure. In support of this initiative, a series of operational evaluations (OpEvals) have been conducted or are planned. The OpEvals have evaluated in-flight as well as airport surface movement applications. Results from the second OpEval, conducted at Louisville, Kentucky in October 2000, indicated that runway incursions might be significantly reduced with the introduction of a cockpit-based moving map system derived from emerging technologies. An additional OpEval is planned to evaluate the utility of an integrated cockpit and airport surface architecture that provides enhanced pilot and controller awareness of airport surface operations. It is believed that the combination of such an airborne and a ground-based system best addresses many of the safety issues surrounding airport surface operations. Such a combined system would provide both flight crews and controllers with a common awareness, or shared picture of airport surface operations.

  1. Heparin surface stent-graft for the treatment of a carotid pseudoaneurysm.

    Science.gov (United States)

    Tsolaki, Elpiniki; Elpiniki, Tsolaki; Salviato, Elisabetta; Rocca, Tiberio; Braccini, Lucia; Galeotti, Roberto; Mascoli, Francesco

    2010-10-01

    Carotid pseudoaneurysms are a rare consequence of carotid surgery, trauma, and infection. Historically, carotid aneurysms and pseudoaneurysms were treated surgically. However, endovascular techniques have recently become a valid alternative for the treatment of carotid pseudoaneurysms. The case of a 57-year-old male patient with a pseudoaneurysm of the right internal carotid artery is described. The patient came to our unit with a painless and pulsatile mass in the neck, which was growing slowly. Five years earlier, he had undergone surgery on a saccular aneurysm located on the distal extracranial segment of the right internal carotid artery. The pseudoaneurysm was successfully treated with a heparin surface Viabahn stent-graft system (Gore AL, Flagstaff, AZ). Heparin surface stent-grafts can be used for the treatment of carotid lesions and may offer protection against intimal hyperplasia and thrombosis. Further studies are needed to evaluate the long-term results. Copyright © 2010 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.

  2. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  3. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    P. Arulmathi

    2015-01-01

    Full Text Available Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD. The results showed that electrochemical treatment process effectively removed the COD (89.5% and color (95.1% of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl concentration of 1.67 g/L, respectively.

  4. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    International Nuclear Information System (INIS)

    Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Sheibani, S.

    2011-01-01

    Highlights: ► A UASB was successfully used for treatment of petroleum refinery effluent. ► Response surface methodology was applied to design and analysis of experiments. ► System was modeled between efficient factors include HRT, influent COD and V up . ► UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m 3 d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V up ) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V up of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  5. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  6. Effects of acid treatment on the clay palygorskite: XRD, surface area, morphological and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Katiane Cruz Magalhaes; Santos, Maria do Socorro Ferreira dos; Santos, Maria Rita Morais Chaves; Oliveira, Marilia Evelyn Rodrigues; Osajima, Josy Antevelli; Silva Filho, Edson Cavalcanti da [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil); Carvalho, Maria Wilma Nunes Cordeiro, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2014-08-15

    The palygorskite is an aluminum-magnesium silicate that has a fibrous morphology. Their physicochemical characteristics are the result of high surface area, porosity and thermal resistance which make it an attractive adsorbent. Its adsorption capacity can be increased through chemical reactions and/or heat treatments. The objective of this work is to verify the effects of acid activation on the palygorskite, treated with HCl at 90 °C at concentrations of 2, 4 and 6 mol L{sup -1} in 2 and 4 hours, with clay/acid solution ratio 1 g 10 mL{sup -1} and characterized by techniques: XRF, XRD and surface area. A significant increase in specific surface area was observed in the sample treated with HCl at the concentration 6 mol L{sup -1}. The changes were more pronounced at stricter concentrations of acidity, with decreasing intensity of reflection of the clay indicated in the XRD. These changes were confirmed in the XRF with the leaching of some oxides and with increasing concentration of SiO{sub 2}. (author)

  7. Modeling and optimization of ammonia treatment by acidic biochar using response surface methodology

    Directory of Open Access Journals (Sweden)

    Narong Chaisongkroh

    2012-09-01

    Full Text Available Emission of ammonia (NH3 contaminated waste air to the atmosphere without treatment has affected humans andenvironment. Eliminating NH3 in waste air emitted from industries is considered an environmental requisite. In this study,optimization of NH3 adsorption time using acidic rubber wood biochar (RWBs impregnated with sulfuric acid (H2SO4 wasinvestigated. The central composite design (CCD in response surface methodology (RSM by the Design Expert softwarewas used for designing the experiments as well as the full response surface estimation. The RSM was used to evaluate theeffect of adsorption parameters in continuous mode of fixed bed column including waste air flow rate, inlet NH3 concentration in waste air stream, and H2SO4 concentration for adsorbent surface modification. Based on statistical analysis, the NH3symmetric adsorption time (at 50% NH3 removal efficiency model proved to be very highly significant (p<0.0001. The optimum conditions obtained were 300 ppmv inlet NH3 concentration, 72% H2SO4, and 2.1 l/min waste air flow rate. This resultedin 219 minutes of NH3 adsorption time as obtained from the predicted model, which fitted well with the laboratory verification result. This was supported by the high value of coefficient of determination (R2=0.9137. (NH42SO4, a nitrogen fertilizerfor planting, was the by-product from chemical adsorption between NH3 and H2SO4.

  8. SURFACE TREATMENT AND EXAMINATION OF GRADE 2 AND GRADE 5 TITANIUM

    Directory of Open Access Journals (Sweden)

    Peter Nagy

    2016-02-01

    Full Text Available Surface characteristics play an important role in the implant-bone integration that is required for the long-term reliability of dental and orthopedic implants. In this paper, we investigate the effect of acid etching on the mass reduction and roughness of grade 2 and grade 5 Ti under controlled experimental conditions. Three different etching compounds were investigated: 30% HCl, 85% H3PO4 and the compound of 30% (COOH2 × 2H2O and 30% H2O2 in various treatment intervals under controlled temperature. Stereo microscopy, scanning electron microscopy, roughness and weight measurements were carried out on the samples. We found that neither 85% H3PO4 nor the compound of 30% (COOH2 × 2H2O and 30% H2O2 were able to remove the machining marks from the surface of Ti discs in our experimental setting. On the other hand, etching in 30% HCl yielded even surfaces both on Ti grade 2 and 5 discs. We also found that etching at higher temperatures in 30% HCl resulted in significant mass loss.

  9. Initial results of tests of depth markers as a surface diagnostic for fusion devices

    Directory of Open Access Journals (Sweden)

    L.A. Kesler

    2017-08-01

    Full Text Available The Accelerator-Based In Situ Materials Surveillance (AIMS diagnostic was developed to perform in situ ion beam analysis (IBA on Alcator C-Mod in August 2012 to study divertor surfaces between shots. These results were limited to studying low-Z surface properties, because the Coulomb barrier precludes nuclear reactions between high-Z elements and the ∼1 MeV AIMS deuteron beam. In order to measure the high-Z erosion, a technique using deuteron-induced gamma emission and a low-Z depth marker is being developed. To determine the depth of the marker while eliminating some uncertainty due to beam and detector parameters, the energy dependence of the ratio of two gamma yields produced from the same depth marker will be used to determine the ion beam energy loss in the surface, and thus the thickness of the high-Z surface. This paper presents the results of initial trials of using an implanted depth marker layer with a deuteron beam and the method of ratios. First tests of a lithium depth marker proved unsuccessful due to the production of conflicting gamma peaks, among other issues. However, successful trials with a boron depth marker show that it is possible to measure the depth of the marker layer with the method of gamma yield ratios.

  10. Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies

    International Nuclear Information System (INIS)

    1996-12-01

    In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy's (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled open-quotes Integrated Thermal Treatment System Study - Phase 1 Resultsclose quotes (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was open-quotes to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.close quotes The study also open-quotes identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.close quotes This study evaluated ten primary thermal treatment technologies, organized into complete open-quotes cradle-to-graveclose quotes systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews

  11. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...

  12. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  13. Treatment of esophageal tumors using high intensity intraluminal ultrasound: first clinical results

    Directory of Open Access Journals (Sweden)

    Prat Frederic

    2008-06-01

    Full Text Available Abstract Background Esophageal tumors generally bear a poor prognosis. Radical surgery is generally the only curative method available but is not feasible in the majority of patients; palliative therapy with stent placement is generally performed. It has been demonstrated that High Intensity Ultrasound can induce rapid, complete and well-defined coagulation necrosis. Thus, for the treatment of esophageal tumors, we have designed an ultrasound applicator that uses an intraluminal approach to fill up this therapeutic gap. Methods Thermal ablation is performed with water-cooled ultrasound transducers operating at a frequency of 10 MHz. Single lesions extend from the transducer surface up to 10 mm in depth when applying an intensity of 14 W/cm2 for 10s. A lumen inside the therapy applicator provides path for an endoscopic ultrasound imaging probe operating at a frequency of 12 MHz. The mechanical rotation of the applicator around its axis enables treatment of sectorial or cylindrical volumes. This method is thus particularly suitable for esophageal tumors that may develop only on a portion of the esophageal circumference. Previous experiments were conducted from bench to in vivo studies on pig esophagi. Results Here we report clinical results obtained on four patients included in a pilot study. The treatment of esophageal tumors was performed under fluoroscopic guidance and ultrasound imaging. Objective tumor response was obtained in all cases and a complete necrosis of a tumor was obtained in one case. All patients recovered uneventfully and dysphagia improved significantly within 15 days, allowing for resuming a solid diet in three cases. Conclusion This clinical work demonstrated the efficacy of intraluminal high intensity ultrasound therapy for local tumor destruction in the esophagus.

  14. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    International Nuclear Information System (INIS)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo; Shrestha, Shankar Prasad

    2014-01-01

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O 2 flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O 2 flow rate. Resistance changes only slightly with different O 2 flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O 2 or N 2 plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance

  15. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  16. MO-FG-CAMPUS-TeP1-03: Pre-Treatment Surface Imaging Based Collision Detection

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, D; Maurer, J; Liu, H; Hayes, T; Shang, Q; Sintay, B [Cone Health Cancer Center, Greensboro, NC (United States)

    2016-06-15

    Purpose: Modern radiotherapy increasingly employs large immobilization devices, gantry attachments, and couch rotations for treatments. All of which raise the risk of collisions between the patient and the gantry / couch. Collision detection is often achieved by manually checking each couch position in the treatment room and sometimes results in extraneous imaging if collisions are detected after image based setup has begun. In the interest of improving efficiency and avoiding extra imaging, we explore the use of a surface imaging based collision detection model. Methods: Surfaces acquired from AlignRT (VisionRT, London, UK) were transferred in wavefront format to a custom Matlab (Mathworks, Natick, MA) software package (CCHECK). Computed tomography (CT) scans acquired at the same time were sent to CCHECK in DICOM format. In CCHECK, binary maps of the surfaces were created and overlaid on the CT images based on the fixed relationship of the AlignRT and CT coordinate systems. Isocenters were added through a graphical user interface (GUI). CCHECK then compares the inputted surfaces to a model of the linear accelerator (linac) to check for collisions at defined gantry and couch positions. Note, CCHECK may be used with or without a CT. Results: The nominal surface image field of view is 650 mm × 900 mm, with variance based on patient position and size. The accuracy of collision detections is primarily based on the linac model and the surface mapping process. The current linac model and mapping process yield detection accuracies on the order of 5 mm, assuming no change in patient posture between surface acquisition and treatment. Conclusions: CCHECK provides a non-ionizing method to check for collisions without the patient in the treatment room. Collision detection accuracy may be improved with more robust linac modeling. Additional gantry attachments (e.g. conical collimators) can be easily added to the model.

  17. Minimally invasive treatment of pilon fractures with a low profile plate: preliminary results in 17 cases.

    Science.gov (United States)

    Borens, Olivier; Kloen, Peter; Richmond, Jeffrey; Roederer, Goetz; Levine, David S; Helfet, David L

    2009-05-01

    To determine the results of "biologic fixation" with a minimally invasive plating technique using a newly designed low profile "Scallop" plate in the treatment of pilon fractures. Retrospective case series. A tertiary referral center. Seventeen patients were treated between 1999 and 2001 for a tibial plafond fracture at the Hospital for Special Surgery with a newly designed low-profile plate. Eleven of the fractures (65%) were high-energy injuries. Two fractures were open. Staged surgical treatment with open reduction and fixation of the fibular fracture and application of an external fixator was performed in 12 cases. As soon as the soft tissues and swelling allowed, i.e. skin wrinkling, the articular surface was reconstructed and simply reduced, if necessary through an small incision, and the articular block was fixed to the diaphysis using a medially placed, percutaneously introduced flat scallop plate. In the remaining five cases the operation was performed in one session. Time to healing and complications including delayed union, non-union, instrument failure, loss of fixation, infection, quality of reduction and number of reoperations were evaluated. Quality of results and outcome were graded using the ankle-hindfoot-scale and a modified rating system. All patients went on to bony union at an average time of 14 weeks. There were no plate failures or loss of fixation/reduction. Two superficial wound-healing problems resolved with local wound care. At an average follow up of 17 months (range 6-29 months) eight patients (47%) had an excellent result; seven (41%) had a fair result whereas two (12%) had a poor result. The average ankle-hindfoot-score was 86.1 (range 61-100). Four patients have had the hardware removed and one of them is awaiting an ankle arthrodesis. Based on these initial results, it appears that a minimally invasive surgical technique including new low profile plate can decrease soft tissue problems while leading to fracture healing and

  18. Recent surface displacements in the Upper Rhine Graben — Preliminary results from geodetic networks

    Science.gov (United States)

    Fuhrmann, Thomas; Heck, Bernhard; Knöpfler, Andreas; Masson, Frédéric; Mayer, Michael; Ulrich, Patrice; Westerhaus, Malte; Zippelt, Karl

    2013-08-01

    Datasets of the GNSS Upper Rhine Graben Network (GURN) and the national levelling networks in Germany, France and Switzerland are investigated with respect to current surface displacements in the Upper Rhine Graben (URG) area. GURN consists of about 80 permanent GNSS (Global Navigation Satellite Systems) stations. The terrestrial levelling network comprises 1st and 2nd order levelling lines that have been remeasured at intervals of roughly 25 years, starting in 1922. Compared to earlier studies national institutions and private companies made available raw data, allowing for consistent solutions for the URG region. We focussed on the southern and eastern parts of the investigation area. Our preliminary results show that the levelling and GNSS datasets are sensitive to resolve small surface displacement rates down to an order of magnitude of 0.2 mm/a and 0.4 mm/a, respectively. The observed horizontal velocity components for a test region south of Strasbourg, obtained from GNSS coordinate time series, vary around 0.5 mm/a. The results are in general agreement with interseismic strain built-up in a sinistral strike-slip regime. Since the accuracy of the GNSS derived vertical component is insufficient, data of precise levelling networks is used to determine vertical displacement rates. More than 75% of the vertical rates obtained from a kinematic adjustment of 1st order levelling lines in the eastern part of URG vary between - 0.2 mm/a and + 0.2 mm/a, indicating that this region behaves stable. Higher rates up to 0.5 mm/a in a limited region south of Freiburg are in general agreement with active faulting. We conclude that both networks deliver stable results that reflect real surface movements in the URG area. We note, however, that geodetically observed surface displacements generally result from a superposition of different effects, and that a separation in tectonic and non-tectonic processes needs additional information and expertise.

  19. Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2018-03-01

    Full Text Available Surface texture (ST has been confirmed as an effective and economical surface treatment technique that can be applied to a great range of materials and presents growing interests in various engineering fields. Ti6Al4V which is the most frequently and successfully used titanium alloy has long been restricted in tribological-related operations due to the shortcomings of low surface hardness, high friction coefficient, and poor abrasive wear resistance. Ti6Al4V has benefited from surface texture-based surface treatments over the last decade. This review begins with a brief introduction, analysis approaches, and processing methods of surface texture. The specific applications of the surface texture-based surface treatments for improving surface performance of Ti6Al4V are thoroughly reviewed from the point of view of tribology and biology.

  20. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@list.ru; Filatova, V.S.; Makeeva, I.N.; Vasylyev, M.A.

    2017-06-30

    Highlights: • Ultrasonic impact treatment in air enhances oxidation of CoCrMo alloy. • Impact treatment promotes segregation and accumulation of carbon on the surface. • Intense deformation brings about partial dissolution of carbides. • Impact-induced fcc-to-hcp transformation and hardening of the alloy. • Impact treatment improves corrosion properties of the alloy. - Abstract: X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and X-ray diffraction were employed to study the effect of intense mechanical treatment on the surface chemical state, composition and structure of a commercial biomedical CoCrMo alloy (‘Bondi-Loy’). The ultrasonic impact treatment of the alloy in air with duration up to 30 s was found to cause the deformation-enhanced oxidation and deformation-induced surface segregation of the components and impurities from the bulk. The compositionally inhomogeneous mixed oxide layer formed under impact treatment was composed mainly of Cr{sub 2}O{sub 3} and silicon oxide with admixture of CoO, MoO{sub 2}, MoO{sub 3} and iron oxide/hydroxide, the latter being transferred onto the alloy surface from the steel pin. The impact treatment promoted a progressive accumulation of carbon on the alloy surface due to its deformation-induced segregation from the bulk and deformation-induced uptake of hydrocarbons from the ambient; concurrently, the dissolution/refinement of carbides originally present in the as-cast CoCrMo alloy occurred. The impact treatment gave rise to a two-fold increase in the volume fraction of the martensitic hcp ε-phase, a 30% increase in the surface microhardness and improved resistance to corrosion in the solution of artificial saliva compared to the as-polished alloy.

  1. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    International Nuclear Information System (INIS)

    Pandiyaraj, Krishnasamy Navaneetha; Yoganand, Paramasivam; Selvarajan, Vengatasamy; Deshmukh, Rajendrasing R.; Balasubramanian, Suresh; Maruthamuthu, Sundaram

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  2. Treatment of Surface water in lebanon by using the coagulation-flocculation procedure

    International Nuclear Information System (INIS)

    SLIM, K.; Saad, Z.; Kazpard, V.; El Samarani, A.

    2005-01-01

    In the absence of application of environmental protection laws in Lebanon. Anthropic effluents are directly discharged in the course of rivers. More specially two coastal rivers (GHadir and Ibrahim)located near Beirut. Treatment of these surface waters is done by coagulation-flocculation process by using Al13 coagulant. The elimination of suspended matters in Ghadir and Ibrahim rivers is studied by simple jar test coupled to measurement of supernatant turbidity and sediment volume. Physical and chemical parameters of water before and after treatment are given by Atomic absorption and ion chromatography analysis. The optimal coagulation concentration of Al was defined relatively to lowest concentration of Aluminum needed for maximum turbidity removal in treated water. This study showed that hydrolysis of aluminum salts before adding to water is relevant to the use of similar quantities of Al for the coagulation-flocculation process that eliminates primarily suspended matter in river. Restabilisation is shown in all Jar tests of Ibrahim river, but not in Ghadir where buffering effect is elevated. Results also showed that waters with low turbidity request low concentration of aluminum for the destabilization process. For this, Ibrahim water treatment was found better than river Ghadir characterized by higher inputs of anthropogenic effluents in its course. In all cases, cationic exchanges with Al 1 3 polycations within the sediments caused the release of calcium and the elevation of its concentration in the supernatant. Sulfate concentration diminished continuously in supernatant after the addition of the optimal coagulation concentration of aluminum. (author)

  3. Effect of surface finishing and heat treatments on the mechanical strength of sintered alumina

    International Nuclear Information System (INIS)

    Lino, U.R.A.

    1982-04-01

    The effect of surface finishing on the mechanical strength of two pure aluminas, one of self-production and another a commercial one, is studied. Three types of finishings: as-sintered, as machined and as-machined with thermal treatment were studied. It was verified that the as-machined alumina is about 50 percent stronger than the as-sintered one, and that a thermal treatment increases even more the mechanical strength of the sintered alumina. The effect of the volume and pressing direction on mechanical strength was studied. The kinetics of crack healing was determined from a series of systematically selected thermal treatments with annealing temperatures between 1200 0 C and 1600 0 C. It was verified that a recently developed theoretical model for crack healing can describe the experimental results; using this model a value for the activation energy of the process of 715 kJ/mcl was obtained, which suggests that crack healing is promoted by volume diffusion. The material behavior under subcritical crack growth action was also studied, and a value of about 40 for the subcritical crack growth exponent N from dynamic loading tests in water was found. A fractographic study intended to localize and measure the flaws that originated the fracture of the tested specimens was performed; the measured flaw sizes were compared with the flaw size calculated from the values of the measured mechanical strength; in this comparison an excellent agreement was observed. (Author) [pt

  4. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  5. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics

    Science.gov (United States)

    Wang, Tao; Wang, Xiaolin; Yang, Bin; Chen, Xiang; Yang, Chunsheng; Liu, Jingquan

    2017-07-01

    In this paper, the uniformity of polymer film etching by an atmospheric pressure He/O2 microplasma jet array (μPJA) is first investigated with different applied voltage. Plasma characteristics of μPJA were recorded by optical discharge images. Morphologies and chemical compositions of polymer film etched by μPJA were analyzed by optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). By increasing the applied voltage from 8.5 kV to 16.4 kV, the non-uniformity of the luminous intensity of the plasma jets increases. It is interesting that the plasma treated regions are actually composed of an etched region and modification region, with distinct morphologies and chemical compositions. The diameters of the etched parylene-C film show the increase of non-uniformity with higher applied voltage. SEM results show that the non-uniformity of surface morphologies of both the modification regions and etched regions increases with the increase of applied voltage. EDS and XPS results also present the significant effect of higher applied voltage on the non-uniformity of surface chemical compositions of both modification and etched regions. The Coulomb interaction of the streamer heads and the hydrodynamic interaction between the plasma jets and the surrounding air are considered to be responsible for this phenomenon. The results shown in this work can help improve the processing quality of polymer film etched by an atmospheric pressure microplasma jet array and two applications are demonstrated to illustrate the uniform downstream surface treatment.

  6. Effect of Different Surface Treatments on the Bond Strength of Repaired Resin Restorations

    International Nuclear Information System (INIS)

    Engy Fahmy Ismaiel Fekry Abaza

    2010-01-01

    In the last decade, growing demands by patients for mercury-free esthetic restorations had markedly increased the use of resin composites in restorative dentistry. However, despite the continuing development of resin composites with improved properties, several factors, such as discoloration, color mismatch, wear; chipping or bulk fracture might present clinical problems (Mjor and Gordan. 2002, Vichi et al. 2004 and Kolbeck et al. 2006). As a result, the clinician should decide whether to replace or simply repair these restorations. Total replacement of the restoration might be regarded as over-treatment since in most cases, large portions of the restorations might be clinically and radio graphically considered free of failure. Moreover, complete removal of the restoration inevitably resulted in weakening of the tooth, unnecessary removal of intact dental tissues, more money and time consuming. For these reasons, the repair of the restoration instead of its removal would be a favorable procedure (Lucena-Martin et al. 2001, Frankenberger et al. 2003 a and Oztas et al. 2003). The key element in the determination of successful repair procedures was the adequate bond strength between the existing resin composite and the new one. Various methods have been suggested to improve the bond strength of the repaired resin restorations (Tezvergil et al. 2003 and Bonstein et al. 2005). Mechanical and/or chemical treatments had been investigated for preparation of the aged resin restorations to be repaired (Tezvergil et al. 2003, Ozcan et al. 2005 and Hannig et al. 2006). These treatments were introduced to counteract the problems of aged resin restorations which were limited amount of residual free radicals available for reaction with the repair material, contaminated surface, and highly cross-linked resin matrix ( Dall Oca et al. 2006 and Papacchini et al. 2007 a) Previous studies emphasized that mechanical treatments are the most important factor in obtaining optimal repair

  7. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; S