WorldWideScience

Sample records for surface treatment process

  1. Apparatus and process for the surface treatment of carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    2016-05-17

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  2. Plasma Surface Treatment of Powder Materials — Process and Application

    Directory of Open Access Journals (Sweden)

    Monika Pavlatová

    2012-01-01

    Full Text Available Polyolefin particles are hydrophobic, and this prevents their use for various applications. Plasma treatment is an environment-friendly polyolefin hydrophilisation method. We developed an industrial-scale plant for plasma treatment of particles as small as micrometers in diameter. Materials such as PE waxes, UHMWPE and powders for rotomolding production were tested to verify their new surface properties. We achieved significantly increased wettability of the particles, so that they are very easily dispersive in water without agglomeration, and their higher surface energy is retained even after sintering in the case of rotomolding powders.

  3. Enhancement of surface properties on commercial polymer packaging films using various surface treatment processes (fluorination and plasma)

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, Jérémy, E-mail: jeremy.peyroux@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Dubois, Marc, E-mail: marc.dubois@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Tomasella, Eric, E-mail: eric.tomasella@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Petit, Elodie, E-mail: elodie.petit@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Flahaut, Delphine, E-mail: delphine.flahaut@univ-pau.fr [Université de Pau et des Pays de l’Adour, IPREM/ECP (UMR 5254), Hélioparc, 2 av. Pierre Angot, 64053 Pau cedex 9 (France)

    2014-10-01

    Graphical abstract: - Highlights: • Two different surface treatment processes were investigated in this work. • Both processes drastically change the composition induced on the surfaces. • Direct fluorination is identified as an efficient way to adjust surface properties. • Plasma processes result in a specific enhancement of the surface properties. • The pristine polymer surface has been successfully improved. - Abstract: Before considering their combination on commercial packaging films, two surface treatments processes were investigated. Indeed, direct fluorination and plasma processes are currently recognized as effective processes to improve polymer surface properties. The aim of this first work is to elucidate mechanisms that occur on the treated surface. The modifications of the surface layer were characterized using various complementary spectroscopy techniques such as Fourier Transform Infrared (FTIR) spectroscopy, high resolution solid state Nuclear Magnetic Resonance (NMR) with {sup 19}F nucleus which are suitable to determine the nature of bonding and specific groups formed during the process. X-ray Photoelectron Spectroscopy (XPS) was also achieved to extract the surface chemical compositions. In addition, surface properties of the treated films were studied by specific measurements of surface energy in order to reveal surface parameters such as rugosity and chemical composition which could be adjusted. All these results underline that the layer induced regardless of the two processes plays a key role in the enhancement of the surface properties.

  4. Effects of plasma treatment and sanding process on surface roughness of wood veneers

    OpenAIRE

    2014-01-01

    An ideal veneer surface is crucial for good panel properties in plywood manufacturing. The aim of this study was to compare plasma treatments and sanding (mechanical) processes with respect to the surface roughness of veneers. Rotary-cut veneers with a thickness of 2 mm from Scots pine (Pinus sylvestris) logs were used as material. After rotary peeling, veneer sheets were dried at 110 °C in a veneer dryer. Veneer sheets were divided into 4 main groups. The surfaces of the control veneer sheet...

  5. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper.

  6. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology.

    Science.gov (United States)

    Arulmathi, P; Elangovan, G; Begum, A Farjana

    2015-01-01

    Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD) and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD). The results showed that electrochemical treatment process effectively removed the COD (89.5%) and color (95.1%) of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm(2), electrolysis time of 103.27 min, and electrolyte (NaCl) concentration of 1.67 g/L, respectively.

  7. Process optimization via response surface methodology in the treatment of metal working industry wastewater with electrocoagulation.

    Science.gov (United States)

    Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan

    2017-02-01

    In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m(3) for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.

  8. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.

    Science.gov (United States)

    Tsioptsias, C; Petridis, D; Athanasakis, N; Lemonidis, I; Deligiannis, A; Samaras, P

    2015-12-01

    Molasses wastewater is a high strength effluent of food industry such as distilleries, sugar and yeast production plants etc. It is characterized by a dark brown color and exhibits a high content in substances of recalcitrant nature such as melanoidins. In this study, electrocoagulation (EC) was studied as a post treatment step for biologically treated molasses wastewater with high nitrogen content obtained from a baker's yeast industry. Iron and copper electrodes were used in various forms; the influence and interaction of current density, molasses wastewater dilution, and reaction time, on COD, color, ammonium and nitrate removal rates and operating cost were studied and optimized through Box Behnken's response surface analysis. Reaction time varied from 0.5 to 4 h, current density varied from 5 to 40 mA/cm(2) and dilution from 0 to 90% (v/v expressed as water concentration). pH, conductivity and temperature measurements were also carried out during each experiment. From preliminary experiments, it was concluded that the application of aeration and sample dilution, considerably influenced the kinetics of the process. The obtained results showed that COD removal varied between 10 and 54%, corresponding to an operation cost ranging from 0.2 to 33 euro/kg COD removed. Significant removal rates were obtained for nitrogen as nitrate and ammonium (i.e. 70% ammonium removal). A linear relation of COD and ammonium to the design parameters was observed, while operation cost and nitrate removal responded in a curvilinear function. A low ratio of electrode surface to treated volume was used, associated to a low investment cost; in addition, iron wastes could be utilized as low cost electrodes i.e. iron fillings from lathes, aiming to a low operation cost due to electrodes replacement. In general, electrocoagulation proved to be an effective and low cost process for biologically treated molasses-wastewater treatment for additional removal of COD and nitrogen content and

  9. Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology

    Institute of Scientific and Technical Information of China (English)

    Orathai Chavalparit; Maneerat Ongwandee

    2009-01-01

    The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G).Currently,flotation is the conventional primary treatment for O&G removal prior to biological treatments.In this study,electrocoagulation (EC) was adopted to treat the biodiesel wastewater.The effects of initial pH,applied voltage,and reaction time on the EC process for the removal of COD,O&G,and suspended solids (SS) were investigated using one factor at a time experiments.Furthermore,the Box-Behnken design,an experimental design for response surface methodology (RSM),was used to create a set of 15 experimental runs needed for optimization of the operating conditions.Quadratic regression models with estimated coefficients were developed to describe the pollutant removals.The experimental results show that EC was effective at reducing COD,O&G,and SS by 55.43%,98.42%,and 96.59%,respectively,at the optimum conditions of pH 6.06,applied voltage 18.2 V,and reaction time 23.5 min.The experimental observations were in reasonable agreement with the modeled values.

  10. Influence of Gate Dielectric and Its Surface Treatment on Electrical Characteristics of Solution-Processed ZnO Transistors.

    Science.gov (United States)

    Song, Dong-Seok; Kim, Jae-Hyun; Jung, Ji-Hoon; Bae, Jin-Hyuk; Zhang, Xue; Park, Ji-Ho; Park, Jaehoon

    2016-02-01

    We report how interface treatments affect electrical performance, including subthreshold characteristics, in solution-processed transparent metal oxide thin-film transistors (TFTs) with SiO2 and SiNx gate dielectrics. Ultra-violet (UV) ozone treatment and O2 plasma treatment are carried out as a surface treatment of the interface between a spin-coated zinc oxide (ZnO) layer and a gate dielectric. With the SiO2 dielectric, UV ozone treatment dominantly affects subthreshold characteristics, while O2 plasma treatment produces enhanced mobility and lower threshold voltage shift. With the SiNx dielectric, every electrical parameter including mobility, threshold voltage shift, and subthreshold characteristics is enhanced by 02 plasma treatment. Our experimental results demonstrate that interface engineering treatments variously influence the electrical performance in solution-processed ZnO TFTs.

  11. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  12. Effect of drinking water treatment process parameters on biological removal of manganese from surface water.

    Science.gov (United States)

    Hoyland, Victoria W; Knocke, William R; Falkinham, Joseph O; Pruden, Amy; Singh, Gargi

    2014-12-01

    Soluble manganese (Mn) presents a significant treatment challenge to many water utilities, causing aesthetic and operational concerns. While application of free chlorine to oxidize Mn prior to filtration can be effective, this is not feasible for surface water treatment plants using ozonation followed by biofiltration because it inhibits biological removal of organics. Manganese-oxidizing bacteria (MOB) readily oxidize Mn in groundwater treatment applications, which normally involve pH > 7.0. The purpose of this study was to evaluate the potential for biological Mn removal at the lower pH conditions (6.2-6.3) often employed in enhanced coagulation to optimize organics removal. Four laboratory-scale biofilters were operated over a pH range of 6.3-7.3. The biofilters were able to oxidize Mn at a pH as low as pH 6.3 with greater than 98% Mn removal. Removal of simulated organic ozonation by-products was also greater than 90% in all columns. Stress studies indicated that well-acclimated MOB can withstand variations in Mn concentration (e.g., 0.1-0.2 mg/L), hydraulic loading rate (e.g., 2-4 gpm/ft(2); 1.36 × 10(-3)-2.72 × 10(-3) m/s), and temperature (e.g., 7-22 °C) typically found at surface water treatment plants at least for relatively short (1-2 days) periods of time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Science.gov (United States)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  14. Wettability and XPS analyses of nickel–phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Energy Technology Data Exchange (ETDEWEB)

    Vivet, L., E-mail: laurent.vivet@valeo.com [Valeo, Group Electronic Expertise and Development Services, 2 rue André Boulle 94 046 Créteil (France); Joudrier, A.-L.; Bouttemy, M.; Vigneron, J. [Institut Lavoisier de Versailles, UMR CNRS 8180, 45 Avenue des Etats-Unis, 78035 Versailles (France); Tan, K.L.; Morelle, J.M. [Valeo, Group Electronic Expertise and Development Services, 2 rue André Boulle 94 046 Créteil (France); Etcheberry, A. [Institut Lavoisier de Versailles, UMR CNRS 8180, 45 Avenue des Etats-Unis, 78035 Versailles (France); Chalumeau, L. [Egide, Site industriel du Sactar, 85500 Bollène (France)

    2013-06-01

    Electroless nickel-high-phosphorus Ni–P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni–P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni–P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni–P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni–P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni–P surface preparation has been established. The sessile drop method can

  15. Chemical surface modification of glass beads for the treatment of paper machine process waters

    Energy Technology Data Exchange (ETDEWEB)

    Jradi, Khalil, E-mail: khalil.jradi@uqtr.c [Centre de Recherche en Pates et Papiers, Universite du Quebec a Trois Rivieres, 3351 boul. des forges, C.P. 500, Trois Rivieres, QC, G9A-5H7 (Canada); Daneault, Claude [Canada Research Chair in Value-Added Paper Manufacturing (Canada); Chabot, Bruno [Centre de Recherche en Pates et Papiers, Universite du Quebec a Trois Rivieres, 3351 boul. des forges, C.P. 500, Trois Rivieres, QC, G9A-5H7 (Canada)

    2011-04-29

    Adsorption of detrimental contaminants on a solid sorbent is proposed to remove these contaminants from process waters to increase water recycling and reduce effluent loads in the papermaking industry. A self-assembly process of attaching (covalent grafting) cationic aminosilane molecules to glass beads was investigated. The existence and the hydrolytic stability of self-assembled monolayers and multilayers were confirmed by X-Ray Photoelectron Spectroscopy and contact angle measurements. Effects of reaction time and curing on aminosilane layer structures are also discussed. The curing step after silanization seems to be crucial in the hydrophobization of the quaternary ammonium silane coated onto glass beads, and curing could affect the final chemical structure of the ammonium groups of grafted organosilane. Results indicated that modified glass beads have a strong hydrophobicity, which is attributed to the hydrophobic property of the longest carbon chain grafted onto the glass surface. Adsorption of a model contaminant (stearic acid) onto chemically modified glass beads was determined using colloidal titration. Hydrophobic interactions could be the main driving force involved between the long carbon chains of stearic acid and the carbon chains of the aminosilane layers on glass bead surfaces. Finally, self-assembly processes applied onto glass beads may have two promising applications for papermaking and self-cleaning systems.

  16. Biocompatible implant surface treatments.

    Science.gov (United States)

    Pattanaik, Bikash; Pawar, Sudhir; Pattanaik, Seema

    2012-01-01

    Surface plays a crucial role in biological interactions. Surface treatments have been applied to metallic biomaterials in order to improve their wear properties, corrosion resistance, and biocompatibility. A systematic review was performed on studies investigating the effects of implant surface treatments on biocompatibility. We searched the literature using PubMed, electronic databases from 1990 to 2009. Key words such as implant surface topography, surface roughness, surface treatment, surface characteristics, and surface coatings were used. The search was restricted to English language articles published from 1990 to December 2009. Additionally, a manual search in the major dental implant journals was performed. When considering studies, clinical studies were preferred followed by histological human studies, animal studies, and in vitro studies. A total of 115 articles were selected after elimination: clinical studies, 24; human histomorphometric studies, 11; animal histomorphometric studies, 46; in vitro studies, 34. The following observations were made in this review: · The focus has shifted from surface roughness to surface chemistry and a combination of chemical manipulations on the porous structure. More investigations are done regarding surface coatings. · Bone response to almost all the surface treatments was favorable. · Future trend is focused on the development of osteogenic implant surfaces. Limitation of this study is that we tried to give a broader overview related to implant surface treatments. It does not give any conclusion regarding the best biocompatible implant surface treatment investigated till date. Unfortunately, the eventually selected studies were too heterogeneous for inference of data.

  17. Treatment process for a surface-active nitric acid solution used for rinsing nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Celles, Caroline; Bisel, Isabelle; Gastaldi, Michel; Rudloff, David [CEA Valrho/DEN/VRH/DRCP/SCPS/LPCP, BP 17171, Bagnols sur Ceze cedex, 30207 (France)

    2008-07-01

    Full text of publication follows: The rinsing of the nuclear fuel reprocessing plants before their final shut-down and their dismantling is considered by the use of surface-active compounds in nitric acid medium. Before being vitrified, this solution must be mineralized and concentrated. Two treatments ways have been studied: The first was to act a direct concentration followed up by a mineralization through the Fenton reaction. The second way proposed to begin with the mineralization followed up by a concentration with denitration. The second way was not kept since laboratory tests showed organic phase demixion in distillate which is difficult to manage in industrial plants. The study presents the performance Fenton reaction with a new surface-active solution. In order to be representative of real solution in these nuclear installations to rinse, some hypothesis have been established concerning cations and TBP concentrations, likely to be present in the installation. Influences of parameters like temperature, the nature of the Fenton catalyst, the catalyst concentration, and the concentration of surface-active species were tested. The study highlight the kinetics of the mineralization, the H{sub 2}O{sub 2} consumption, the degradation products of surface-active compounds and TBP. Finally optimized operating conditions have been proposed and a reference test has been performed showing a mineralization out put of about 90% for 167 hours of reaction. Added H{sub 2}O{sub 2} leads to dilute the medium by a factor 2. The main degradation products obtained at the end of reaction are acetic, formic and phosphoric acids. Contrary to acetic and formic acid which will probably be destroyed during following concentration, phosphoric acid behaviour has to be studied in plutonium containing solutions. This study is still in progress. (authors)

  18. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  19. A Novel Single-Step Surface-Treatment Process for Forming Cr-Nitride Coatings on Steels

    Science.gov (United States)

    Lu, X. J.; Xiang, Z. D.

    2017-02-01

    A novel single-step surface-treatment process is demonstrated for forming Cr-nitride coatings on steels. The process was carried out at 1327 K (1100 °C) for two steel grades with differing carbon concentrations. For steel grade with 0.42 to 0.5C (wt pct), the coatings formed consisted of an outer Cr2N layer and an inner Cr-carbide layer with a Cr-enriched interdiffusion zone underneath. However, for steel grade with C ≤ 0.17 wt pct, the inner Cr-carbide layer was absent.

  20. The optimization of electrocoagulation process for treatment of the textile wastewater by Response surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Samaneh Ghodrati

    2014-10-01

    Conclusion: The experimental results indicated that the EC process is an efficient and promising process for the decolorization and COD removal of textile effluents. Under the optimized conditions, the experimental values had a good correlation with the predicted ones, indicating suitability of the model and the success of the RSM in optimizing the conditions of EC process in treating the textile wastewater with maximum removals of color and COD under selected conditions of independent variables.

  1. Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology

    Science.gov (United States)

    Birjandi, Noushin; Younesi, Habibollah; Bahramifar, Nader

    2016-11-01

    In the present study, a coagulation process was used to treat paper-recycling wastewater with alum coupled with poly aluminum chloride (PACl) as coagulants. The effect of each four factors, viz. the dosages of alum and PACl, pH and chemical oxygen demand (COD), on the treatment efficiency was investigated. The influence of these four parameters was described using response surface methodology under central composite design. The efficiency of reducing turbidity, COD and the sludge volume index (SVI) were considered the responses. The optimum conditions for high treatment efficiency of paper-recycling wastewater under experimental conditions were reached with numerical optimization of coagulant doses and pH, with 1,550 mg/l alum and 1,314 mg/l PACl and 9.5, respectively, where the values for reduction of 80.02 % in COD, 83.23 % in turbidity, and 140 ml/g in SVI were obtained.

  2. Influence of the surface pre-treatment of aluminum on the processes of formation of cerium oxides protective films

    Science.gov (United States)

    Andreeva, R.; Stoyanova, E.; Tsanev, A.; Stoychev, D.

    2016-03-01

    It is known that there is special interest in the contemporary investigations on conversion treatment of aluminum aimed at promoting its corrosion stability, which is focused on electrolytes on the basis of salts of metals belonging to the group of rare-earth elements. Their application is especially attractive, as it enables a successful substitution of the presently applied highly efficient, but at the same time toxic Cr6+-containing electrolytes. The present paper presents a study on the influence of the preliminary alkaline activation and acidic de-oxidation of the aluminum surface on the processes of immersion formation of protective cerium oxides films on Al 1050. The results obtained show that their deposition from simple electrolytes (containing only salts of Ce3+ ions) on the Al surface, treated only in alkaline solution, occurs at a higher rate, which leads to preparing thicker oxide films having a better protective ability. In the cases when the formation of oxide films is realized in a complex electrolyte (containing salts of Ce3+ and Cu2+ ions), better results are obtained with respect to the morphology and protective action of cerium oxides film on samples that have been consecutively activated in alkaline solution and deoxidized in acidic solution. Electrochemical investigations were carried out in a model corrosion medium (0.1 M NaCl); it was shown that the cerium protective films, deposited by immersion, have a cathodic character with regard to the aluminum support and inhibit the occurrence of the depolarizing corrosion process -- the reaction of oxygen reduction.

  3. Surface chemical treatment of ultrafine-grained Ti–6Al–7Nb alloy processed by severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, D.P., E-mail: dpedreira@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, SP (Brazil); Prokofiev, E. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, SP (Brazil); Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., Ufa 450000 (Russian Federation); Sanches, L.F.R. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, SP (Brazil); Polyakova, V. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., Ufa 450000 (Russian Federation); Valiev, R.Z., E-mail: rzvaliev@mail.rb.ru [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., Ufa 450000 (Russian Federation); Botta, W.J.; Junior, A.M.J.; Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, SP (Brazil)

    2015-09-15

    Highlights: • Ultrafine-grained titanium alloys is a good choice for biomedical applications. • Acid phosphoric treatment enhances bioactivity of Ti–6Al–7Nb alloy. • Apatite precipitation was increased in ultrafine-grained after surface modification. - Abstract: Ti–6Al–7Nb containing harmless for tissues niobium can be a good choice replacing Ti–6Al–4V for orthopedic implants application. Formation of ultrafine-grained (UFG) structure in metals and alloys by severe plastic deformation (SPD) techniques allows for achieving unique mechanical properties. Using equal channel angular pressing (ECAP) UFG structure in Ti–6Al–7Nb alloy with an average size of grains/subgrains of 200 nm was obtained. This UFG Ti–6Al–7Nb alloy has high mechanical (ultimate tensile strength 1470 MPa) and fatigue properties, suitable for practical application. Additionally, surface modifications of titanium alloys aim induce specific responses on osteoblastic cells after implantation. Chemical surface treatments are simple methods to obtain a bioactive for apatite precipitation surface. Phosphoric acid etching combined or not with alkaline treatment presented bioactivity after seven days soaked in simulated body fluid (SBF) solution.

  4. Toxicology and occupational hazards of new materials and processes in metal surface treatment, powder metallurgy, technical ceramics, and fiber-reinforced plastics.

    Science.gov (United States)

    Midtgård, U; Jelnes, J E

    1991-12-01

    Many new materials and processes are about to find their way from the research laboratory into industry. The present paper describes some of these processes and provides an overview of possible occupational hazards and a list of chemicals used or produced in the processes. The technological areas that are considered are metal surface treatment (ion implantation, physical and chemical vapor deposition, plasma spraying), powder metallurgy, advanced technical ceramics, and fiber-reinforced plastics.

  5. Modelling and control of laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus Benardus Engelina

    1999-01-01

    The results of laser surface treatment may vary significantly during laser surface processing. These variations arise from the sensitivity of the process to disturbances, such as varying absorptivity and the small dimensions of the work piece. To increase the reproducibility of the process, a real-t

  6. Modelling and control of laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina

    1999-01-01

    The results of laser surface treatment may vary significantly during laser surface processing. These variations arise from the sensitivity of the process to disturbances, such as varying absorptivity and the small dimensions of the work piece. To increase the reproducibility of the process, a

  7. Simulation of surface processes.

    Science.gov (United States)

    Jónsson, Hannes

    2011-01-18

    Computer simulations of surface processes can reveal unexpected insight regarding atomic-scale structure and transitions. Here, the strengths and weaknesses of some commonly used approaches are reviewed as well as promising avenues for improvements. The electronic degrees of freedom are usually described by gradient-dependent functionals within Kohn-Sham density functional theory. Although this level of theory has been remarkably successful in numerous studies, several important problems require a more accurate theoretical description. It is important to develop new tools to make it possible to study, for example, localized defect states and band gaps in large and complex systems. Preliminary results presented here show that orbital density-dependent functionals provide a promising avenue, but they require the development of new numerical methods and substantial changes to codes designed for Kohn-Sham density functional theory. The nuclear degrees of freedom can, in most cases, be described by the classical equations of motion; however, they still pose a significant challenge, because the time scale of interesting transitions, which typically involve substantial free energy barriers, is much longer than the time scale of vibrations--often 10 orders of magnitude. Therefore, simulation of diffusion, structural annealing, and chemical reactions cannot be achieved with direct simulation of the classical dynamics. Alternative approaches are needed. One such approach is transition state theory as implemented in the adaptive kinetic Monte Carlo algorithm, which, thus far, has relied on the harmonic approximation but could be extended and made applicable to systems with rougher energy landscape and transitions through quantum mechanical tunneling.

  8. Enhanced processability of MWCNT through surface treatment by octa(phenol) polyhedral oligomeric silsesquioxane nano-crosslinking

    Science.gov (United States)

    Omrani, Abdollah; Yen, Ying-Chieh; Cheng, Chih-Chia; Chang, Feng-Chih

    2014-01-01

    A facile method was developed to prepare MWCNT/POSS nanocomposites by direct esterification between carboxylic acid functionalized MWCNT and octa(phenol) octasilsesquioxane. Completeness of the MWCNT surface modification was confirmed by FT-IR. The hybrid nano-MWCNT-OP-POSS composite structure and properties was characterized using DSC, TGA, optical microscopy, WAXD, and AFM. The results indicated the solubility and processability of MWCNT-COOH improved because of OP-POSS grafting on MWCNT surface. The Tg and thermal stability of the nanocomposites was higher than that of the OP-POSS as a result of the cross-linking reaction. AFM observations revealed that the nanocomponents were reacted in a homogeneous phase at nanoscale level.

  9. 模具表面化学热处理工艺的透析%Analysis of"Password"for Chemical Heat Treatment Process of Mold Surface

    Institute of Scientific and Technical Information of China (English)

    洪桂香

    2015-01-01

    化学热处理就是利用化学反应和物理冶金相结合的方法,改变金属材料表面的化学成分和组织结构,从而使材料表面获得某种性能的工艺过程。化学热处理能有效地提高模具表面的抗氧化性等性能。几乎所有的化学热处理工艺均可用于模具钢的表面处理。根据模具表面的化学热处理目的及基本组成,介绍了模具表面的化学热处理的方法、作用及其工艺过程,研究了模具表面的离子渗氮化学热处理,分析了模具表面的渗碳或碳氮共渗化学热处理,提出了模具表面离子渗硼、渗金属的化学热处理。%Chemical heat treatment is the process of combining of chemical reaction with physical metallurgy, so as to change chemical composition and structure on the surface of the metal material, and so a certain performance of the material surface can be obtained. Chemical heat treatment can effectively improve the mold surface properties, such as oxidation resistance. Almost all the chemical heat treatment process can be used for the surface treatment of steels. According to the purpose and procedure of chemical heat treatment on the surface of the mould, the methods, effect and process of the chemical heat treatment on the surface of the mold were described;the ion nitriding into mould surface was studied;the way of carbonitriding into the surface of the mold was analyzed and the measures for ion boronizing, surface alloying were put forward.

  10. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  11. Localized CO2 laser treatment and post-heating process to reduce the growth coefficient of fused silica surface damage

    Institute of Scientific and Technical Information of China (English)

    Shizhen Xu; Xiaotao Zu; Xiaodong Yuan

    2011-01-01

    The lifetime of optical components in high-fluence ultraviolet (UV) laser applications is typically limited by laser-initiated damage and its subsequent growth. Using 10.6-μm CO2 laser pulses, we successfully mitigate 355-nm laser induced damage sites on fused silica surface with dimensions less than 200 μm.The damage threshold increases and the damage growth mitigates. However, the growth coefficients of new damage on the CO2 laser processed area are higher than those of the original sample. The damage grows with crack propagation for residual stress after CO2 laser irradiation. Furthermore, post-heating is beneficial to the release of residual stress and slows down the damage growth.%@@ The lifetime of optical components in high-fluence ultraviolet (UV) laser applications is typically limited by laser-initiated damage and its subsequent growth.Using 10.6-μm CO2 laser pulses, we successfully mitigate 355-nm laser induced damage sites on fused silica surface with dimensions less than 200 μm.The damage threshold increases and the damage growth mitigates.However, the growth coefficients of new damage on the CO2 laser processed area are higher than those of the original sample.The damage grows with crack propagation for residual stress after CO2 laser irradiation.Furthermore, post-heating is beneficial to the release of residual stress and slows down the damage growth.

  12. A Novel Surface Treatment for Titanium Alloys

    Science.gov (United States)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  13. Ti-WC nanocrystalline coating formed by surface mechanical attrition treatment process on 316L stainless steel.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour; Ghobadi, E

    2011-10-01

    Nanocrystalline coatings were performed on the surface of 316L stainless steel plates mechanically with a mixture of Ti and WC powders under vacuum conditions. The targets were replaced in the end of the high energy milling rig, while Ti-WC mixture was milled as usual. It is shown that the coatings are nanocrystalline in nature with narrow distribution of average size of nanocrystallites. X-ray diffraction and scanning electron microscopy (with energy-dispersive spectrometer) revealed that the top layer of the coatings is uniform. Microhardness, roughness and primary corrosion tests (tafel tests) proved enhancement of coated samples with respect to raw materials. Transmission electron microscope image of deformed surface confirmed surrounding of nanoparticles by dislocation loops after plastic deformation.

  14. System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces.

    Science.gov (United States)

    Ehrlich, Stephan; Moellmann, Jonas; Reckien, Werner; Bredow, Thomas; Grimme, Stefan

    2011-12-09

    Dispersion-corrected density functional theory calculations (DFT-D3) were performed for the adsorption of CO on MgO and C(2) H(2) on NaCl surfaces. An extension of our non-empirical scheme for the computation of atom-in-molecules dispersion coefficients is proposed. It is based on electrostatically embedded M(4)X(4) (M=Na, Mg) clusters that are used in TDDFT calculations of dynamic dipole polarizabilities. We find that the C(MM)(6) dispersion coefficients for bulk NaCl and MgO are reduced by factors of about 100 and 35 for Na and Mg, respectively, compared to the values of the free atoms. These are used in periodic DFT calculations with the revPBE semi-local density functional. As demonstrated by calculations of adsorption potential energy curves, the new C(6) coefficients lead to much more accurate energies (E(ads)) and molecule-surface distances than with previous DFT-D schemes. For NaCl/C(2) H(2) we obtained at the revPBE-D3(BJ) level a value of E(ads) =-7.4 kcal mol(-1) in good agreement with experimental data (-5.7 to -7.1 kcal mol(-1)). Dispersion-uncorrected DFT yields an unbound surface state. For the MgO/CO system, the computed revPBE-D3(BJ) value of E(ads) =-4.1 kcal mol(-1) is also in reasonable agreement with experimental results (-3.0 kcal mol(-1)) when thermal corrections are taken into account. Our new dispersion correction also improves computed lattice constants of the bulk systems significantly compared to plain DFT or previous DFT-D results. The extended DFT-D3 scheme also provides accurate non-covalent interactions for ionic systems without empirical adjustments and is suggested as a general tool in surface science.

  15. Surface Processes and Hack's law

    Science.gov (United States)

    Walcott, R.

    2010-12-01

    Hack’s law describes the non-linear relationship between the area of a catchment and the length of the longest stream within it. First described in the 1950’s based on a small area in the Appalachians, more recent studies have suggested that this relationship is consistent for over 13 orders of magnitude. As a result Hack’s law is generally considered as one of the fundamental morphological relationships of geomorphology and much effort has been devoted to understanding its origins. This law suggests that catchments are scale independent, however, recent work has demonstrated that the form of catchments varies depending on the type of surface processes operating within the catchment. In this paper we analyse the relationship between hillslope processes and Hack’s law for catchments that range over several orders of magnitude in size in the Himalaya and Chile. We show that Hack’s law varies systematically depending on the mean slope of a catchment. As the dominant process that operates within a catchment also varies with slope and scales with catchment size our findings have important implications for the robustness of Hack’s law and the scale independence of catchments.

  16. Improvement of oleuropein extractability by optimising steam blanching process as pre-treatment of olive leaf extraction via response surface methodology.

    Science.gov (United States)

    Stamatopoulos, Konstantinos; Katsoyannos, Evangelos; Chatzilazarou, Arhontoula; Konteles, Spyros J

    2012-07-15

    Impact of steam, hot water blanching and UV-C irradiation as pre-treatments on extraction of oleuropein and related biophenols from olive leaves (OLs), was investigated. Moreover, particle size effect of olive leaves and steam blanching duration were selected as independent variables to optimise steam blanching process in terms of oleuropein content (OC) and antioxidant activity (AC) of ethanolic extracts, by using response surface methodology. Optimum conditions for OC and AC were 10 min steam blanching of 20-11 and 3-1mm olive leaf fraction, respectively. Depending on the extraction procedure, at optimum conditions of steaming the results indicate that steam blanching of OL prior to extraction can significantly increase oleuropein yield from 25 to 35 times compared to non-steam blanched sample, whereas the antioxidant activity increased from 4 to 13 times. No significant UV-C effect was observed in OC and AC, while hot water blanched samples showed significantly higher oleuropein yields and antioxidant activity compared to untreated samples.

  17. Laser surface processing and model studies

    CERN Document Server

    Yilbas, Bekir Sami

    2013-01-01

    This book introduces model studies associated with laser surface processing such as conduction limited heating, surface re-melting, Marangoni flow and its effects on the temperature field, re-melting of multi-layered surfaces, laser shock processing, and practical applications. The book provides insight into the physical processes involved with laser surface heating and phase change in laser irradiated region. It is written for engineers and researchers working on laser surface engineering.

  18. Antibacterial Surface Treatment for Orthopaedic Implants

    Directory of Open Access Journals (Sweden)

    Jiri Gallo

    2014-08-01

    Full Text Available It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be “smart” and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.

  19. Antibacterial surface treatment for orthopaedic implants.

    Science.gov (United States)

    Gallo, Jiri; Holinka, Martin; Moucha, Calin S

    2014-08-11

    It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be "smart" and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.

  20. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  1. Surface studies of plasma processed Nb samples

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Puneet V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Doleans, Marc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Hannah, Brian S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Afanador, Ralph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Stewart, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Mammosser, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Howell, Matthew P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Saunders, Jeffrey W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Degraff, Brian D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  2. Excimer surface treatment to enhance bonding in coated steels

    Science.gov (United States)

    Mueller, Robert E.; Olfert, M.; Duley, Walter W.; North, T.; Hood, J.; Sakai, D.

    1996-04-01

    Zinc coated sheet steel in the form of temper rolled galvanize and galvanneal are used extensively in the automotive industry. Through a process of excimer laser surface treatment, we have succeeded in significantly enhancing the adhesion characteristics of these coated steels. The laser treatment is performed by scanning focused excimer laser radiation in a raster pattern over the surface to be bonded. Adhesion tests have been carried out in the form of T peel tests, using either a hot melt nylon resin or an epoxy as the adhesive. An increase in bond strength was observed over a substantial range of surface treatment conditions. The largest improvement observed was more than a factor of three greater than for untreated surfaces. With the improved surface condition, the bond strength became limited by the cohesive strength of the adhesive. The physical structure and chemical composition of the parent and excimer treated surfaces have been examined using scanning electron microscopy and X-ray photoelectron spectroscopy to determine the nature and extent of the changes caused by the surface treatment. The effects of the observed changes on the bonding performance will be discussed. Surfaces have been processed under an inert atmosphere to isolate the effects of physical surface modification and surface oxidation. An attempt will be made to correlate the surface changes with the bonding characteristics and thereby indicate which changes are most beneficial. The ultimate goal is to optimize the surface condition for bonding and maximize the process rate.

  3. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  4. Durable, Low-Surface-Energy Treatments

    Science.gov (United States)

    Willis, Paul B.; Mcelroy, Paul M.; Hickey, Gregory S.

    1992-01-01

    Chemical treatment for creation of durable, low-surface-energy coatings for glass, ceramics and other protonated surfaces easily applied, and creates very thin semipermanent film with extremely low surface tension. Exhibits excellent stability; surfaces retreated if coating becomes damaged or eroded. Uses include water-repellent surfaces, oil-repellent surfaces, antimigration barriers, corrosion barriers, mold-release agents, and self-cleaning surfaces. Film resists wetting by water, alcohols, hydrocarbon solvents, and silicone oil. Has moderate resistance to abrasion, such as rubbing with cloths, and compression molding to polymers and composite materials.

  5. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  6. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    surfaces. A gap was observed between the polymer surface and the luminous region of the plasma column, indicating the existence of a gas boundary layer. The thickness of the gas boundary layer is smaller at higher gas flow-rates or with ultrasonic irradiation to the AC gliding arc and the polymer surface....... Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  7. Surface reactions in microelectronics process technology.

    Science.gov (United States)

    Levitin, Galit; Hess, Dennis W

    2011-01-01

    Current integrated circuit (IC) manufacturing consists of more than 800 process steps, nearly all of which involve reactions at surfaces that significantly impact device yield and performance. From initial surface preparation through film deposition, patterning, etching, residue removal, and metallization, an understanding of surface reactions and interactions is critical to the successful continuous scaling, yield, and reliability of electronic devices. In this review, some of the most important surface reactions that drive the development of microelectronic device fabrication are described. The reactions discussed do not constitute comprehensive coverage of this topic in IC manufacture but have been selected to demonstrate the importance of surface/interface reactions and interactions in the development of new materials, processing sequences, and process integration challenges. Specifically, the review focuses on surface reactions related to surface cleaning/preparation, semiconductor film growth, dielectric film growth, metallization, and etching (dry and wet).

  8. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  9. EFFECT OF SURFACE TREATMENT ON ENAMEL SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Şeyda Erşahan

    2016-01-01

    Full Text Available Purpose: To compare the effects of different methods of surface treatment on enamel roughness. Materials and Methods: Ninety human maxillary first premolars were randomly divided into three groups (n=30 according to type of enamel surface treatment: I, acid etching; II, Er:YAG laser; III, Nd:YAG laser. The surface roughness of enamel was measured with a noncontact optical profilometer. For each enamel sample, two readings were taken across the sample—before enamel surface treatment (T1 and after enamel surface treatment (T2. The roughness parameter analyzed was the average roughness (Ra. Statistical analysis was performed using a Paired sample t test and the post-hoc Mann- Whitney U test, with the significance level set at 0.05. Results: The highest Ra (average roughness values were observed for Group II, with a significant difference with Groups I and III (P<0.001. Ra values for the acid etching group (Group I were significantly lower than other groups (P<0.001. Conclusion: Surface treatment of enamel with Er:YAG laser and Nd:YAG laser results in significantly higher Ra than acid-etching. Both Er:YAG laser or Nd:YAG laser can be recommended as viable treatment alternatives to acid etching.

  10. Atomic Processes on Mineral Surfaces

    Science.gov (United States)

    Hillner, Paul Everett

    This thesis describes research using atomic force microscopy (AFM) to observe the growth and dissolution mechanisms of crystals. Chapter 1 starts with an overview of crystal growth theory and then outlines the impact of AFM on the field. Chapter 2 introduces the techniques of real-time AFM imaging of crystal growth and shows the strong preferential dissolution of material at defects. Chapter 3 expands the importance of crystal defects, showing the importance of spiral defects to the aqueous growth of calcite. Chapter 4 presents a rigorous analysis of step kinetics on calcite and shows that surface diffusion is not the controlling factor of growth rate. Chapter 5 examines the effect of solvent modifications on the growth morphology of spiral hillocks on calcite and also determines the mechanisms by which manmade and natural poisons stop crystal growth. Chapter 6 presents quantitative calcite spiral rotation rates and step velocities vs. supersaturation as well as contrasting the layer-spiral growth mechanism of calcite with the poly -nucleation growth mechanism of fluorite.

  11. Response surface optimization of electro-oxidation process for the treatment of C.I. Reactive Yellow 186 dye: reaction pathways

    Science.gov (United States)

    Rajkumar, K.; Muthukumar, M.

    2015-03-01

    In this study, central composite design at five levels (-β, -1, 0, +1, +β) combined with response surface methodology has been applied to optimize C.I. Reactive Yellow 186 using electro-oxidation process with graphite electrodes in a batch reactor. The variables considered were the pH (X 1), NaCl concentration (M) (X 2), and electrolysis time (min) (X 3) on C.I. Reactive Yellow 186 were studied. A second-order empirical relationship between the response and independent variables was derived. Analysis of variance showed a high coefficient of determination value (R 2 = 0.9556 and 0.9416 for color and COD, respectively). The optimized condition of the electro-oxidation of Reactive Yellow 186 is as follows: pH 3.9; NaCl concentration 0.11 M; and electrolysis time 18 min. Under this condition, the maximal decolorization efficiency of 99 % and COD removal 73 % was achieved. Detailed physico-chemical analysis of electrode and residues of the electro-oxidation process has also been carried out UV-Visible and Fourier transform infrared spectroscopy. The intermediate compounds formed during the oxidation were identified using a gas chromatography coupled with mass spectrometry. According to these results, response surface methodology could be useful for reducing the time to treat effluent wastewater.

  12. Response surface optimization of electro-oxidation process for the treatment of C.I. Reactive Yellow 186 dye: reaction pathways

    Science.gov (United States)

    Rajkumar, K.; Muthukumar, M.

    2017-05-01

    In this study, central composite design at five levels (- β, -1, 0, +1, + β) combined with response surface methodology has been applied to optimize C.I. Reactive Yellow 186 using electro-oxidation process with graphite electrodes in a batch reactor. The variables considered were the pH ( X 1), NaCl concentration (M) ( X 2), and electrolysis time (min) ( X 3) on C.I. Reactive Yellow 186 were studied. A second-order empirical relationship between the response and independent variables was derived. Analysis of variance showed a high coefficient of determination value ( R 2 = 0.9556 and 0.9416 for color and COD, respectively). The optimized condition of the electro-oxidation of Reactive Yellow 186 is as follows: pH 3.9; NaCl concentration 0.11 M; and electrolysis time 18 min. Under this condition, the maximal decolorization efficiency of 99 % and COD removal 73 % was achieved. Detailed physico-chemical analysis of electrode and residues of the electro-oxidation process has also been carried out UV-Visible and Fourier transform infrared spectroscopy. The intermediate compounds formed during the oxidation were identified using a gas chromatography coupled with mass spectrometry. According to these results, response surface methodology could be useful for reducing the time to treat effluent wastewater.

  13. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  14. Process control of laser surface alloying

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.; Olde Benneker, Jeroen

    1998-01-01

    In spite of the many advantages of laser surface treatment, such as high production rates and low induced thermal distortion, and its great potential for modifying the surface properties of a wide range of new and existing materials, industrial applications are still limited. This is not only

  15. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  16. Application of Response Surface Methodology for Modeling of Postweld Heat Treatment Process in a Pressure Vessel Steel ASTM A516 Grade 70.

    Science.gov (United States)

    Peasura, Prachya

    2015-01-01

    This research studied the application of the response surface methodology (RSM) and central composite design (CCD) experiment in mathematical model and optimizes postweld heat treatment (PWHT). The material of study is a pressure vessel steel ASTM A516 grade 70 that is used for gas metal arc welding. PWHT parameters examined in this study included PWHT temperatures and time. The resulting materials were examined using CCD experiment and the RSM to determine the resulting material tensile strength test, observed with optical microscopy and scanning electron microscopy. The experimental results show that using a full quadratic model with the proposed mathematical model is YTS = -285.521 + 15.706X1 + 2.514X2 - 0.004X1(2) - 0.001X2(2) - 0.029X1X2. Tensile strength parameters of PWHT were optimized PWHT time of 5.00 hr and PWHT temperature of 645.75°C. The results show that the PWHT time is the dominant mechanism used to modify the tensile strength compared to the PWHT temperatures. This phenomenon could be explained by the fact that pearlite can contribute to higher tensile strength. Pearlite has an intensity, which results in increased material tensile strength. The research described here can be used as material data on PWHT parameters for an ASTM A516 grade 70 weld.

  17. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  18. Integrated mold/surface-micromachining process

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S.; Sniegowski, J.J.; Hetherington, D.L.

    1996-03-01

    We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: In the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch-fabricated and monolithically integrated into complex microelectromechanical systems.

  19. Modeling heterogeneous chemical processes on aerosol surface

    Institute of Scientific and Technical Information of China (English)

    Junjun Deng; Tijian Wang; Li Liu; Fei Jiang

    2010-01-01

    To explore the possible impact of heterogeneous chemical processes on atmospheric trace components,a coupled box model including gas-phase chemical processes,aerosol thermodynamic equilibrium processes,and heterogeneous chemical processes on the surface of dust,black carbon(BC)and sea salt is set up to simulate the effects of heterogeneous chemistry on the aerosol surface,and analyze the primary factors affecting the heterogeneous processes.Results indicate that heterogeneous chemical processes on the aerosol surface in the atmosphere will affect the concentrations of trace gases such as H2O2,HO2,O3,NO2,NO3,HNO3 and SO2,and aerosols such as SO42-,NO3-and NH4+.Sensitivity tests suggest that the magnitude of the impact of heterogeneous processes strongly depends on aerosol concentration and the surface uptake coefficients used in the box model.However,the impact of temperature on heterogeneous chemical processes is considerably less.The"renoxification"of HNO3 will affect the components of the troposphere such as nitrogen oxide and ozone.

  20. Quantitative Modeling of Earth Surface Processes

    Science.gov (United States)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes. More details...

  1. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  2. Surface quality in rapid prototype MMD process

    Directory of Open Access Journals (Sweden)

    Lisandro Vargas Henríquez

    2010-04-01

    Full Text Available This article summarises a Manufacturing Materials and Processes MSc thesis written for the Mechanical and Electrical Engineering Department. The paper shows the interaction of process, gap (deposition distance and extursion terminal velocity modelled process parameters for CEIF's (Centro de Equipos Interfacultades rapid prototype molten material deposit (MMD Titan SH-1 machine by analysing prototupes improved surface quality and resistence to tension and characterising material. The project applies experimental design criteria for orientating the selection of experimental process parameters. Acrylonitrile-buttadin-styrene (ABS had alredy been mechanically and physicochemically characterised (i.e the material used in the MMD process.

  3. Fundamental processes of plasma and reactive gas surface treatment for the recovery of hydrogen isotopes from carbon co-deposits in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Soeren

    2014-11-01

    The use of carbon-based plasma-facing wall components offers many advantages for plasma operation in magnetic confinement nuclear fusion devices. However, through reactions with the hydrogen based fusion plasma, carbon forms amorphous hydrogenated carbon co-deposits (a-C:H) in the vacuum vessels. If tritium is used to fuel the reactor, this co-deposition can quickly lead to an inacceptable high tritium inventory. Through co-deposition with carbon about 10% of the tritium injected into the reactor can be trapped. Even with other wall materials co-deposition can be significant. A method to recover the hydrogen isotopes from the co-deposits is necessary. The method has to be compatible with the requirements of the devices and nuclear fusion plasma operation. In this work thermo-chemical removal by neutral gases (TCR) and removal by plasmas is investigated. Models are developed to describe the involved processes of both removal methods. TCR is described using a reaction-diffusion model. Within this model the reactive gas diffuses into the co-deposits and subsequently reacts in a thermally activated process. The co-deposits are pyrolysed, forming volatile gases, e.g. CO{sub 2} and H{sub 2}O. These gases are pumped from the vacuum vessel and recycled. Applying the model to literature observations enables to connect data on exposure temperature, pressure, time and co-deposit properties. Two limits of TCR (reaction- or diffusion-limited) are identified. Plasma removal sputters co-deposits by their chemical and physical interaction with the impinging ions. The description uses a 0D plasma model from the literature which derives plasma parameters from the balance of input power to plasma power losses. The model is extended with descriptions of the plasma sheath and ion-surface interactions to derive the co-deposit removal rates. Plasma removal can be limited by this ion induced surface release rate or the rate of pumping of the released species. To test the models dedicated

  4. Laser surface treatment of materials with presence of carbides at the surface.

    OpenAIRE

    Jabbar, Abdul Aleeem B

    2012-01-01

    Some of the studies associated with laser assisted processing including machining, surface treatment applications, and electrochemical response of the selective surfaces were carried out prior to the thesis work by the thesis author. In the light of the previous studies, additional study on laser controlled melting of surfaces is carried out for pre-prepared Haynes 188 and Inconel 718 alloys, and high speed steel workpieces. Metallurgical and morphological changes in the laser treated layer a...

  5. Laser surface treatment of materials with presence of carbides at the surface.

    OpenAIRE

    Jabbar, Abdul Aleeem B

    2012-01-01

    Some of the studies associated with laser assisted processing including machining, surface treatment applications, and electrochemical response of the selective surfaces were carried out prior to the thesis work by the thesis author. In the light of the previous studies, additional study on laser controlled melting of surfaces is carried out for pre-prepared Haynes 188 and Inconel 718 alloys, and high speed steel workpieces. Metallurgical and morphological changes in the laser treated layer a...

  6. DICOR surface treatments for enhanced bonding.

    Science.gov (United States)

    Bailey, L F; Bennett, R J

    1988-06-01

    Treatments for preparing castable ceramic surfaces for enhanced bonding to specially formulated resin-based cements were examined. An ammonium bifluoride etch combined with gamma-methacryloxypropyl-trimethoxysilane produced shear bond strengths higher than when an ammonium bifluoride treatment was used alone. The method of curing the silane was highly significant in the contribution to the cement/substrate bond strength, with the heat-cure producing the highest values. Long-term water storage tests indicated that the cement bond with etch plus silane-treated castable ceramic surfaces (whether heat or chemically cured silane was used) demonstrated no significant decrease in strength after a one-year period.

  7. Surface oxide formation during corona discharge treatment of AA 1050 aluminium surfaces

    DEFF Research Database (Denmark)

    Minzari, Daniel; Møller, Per; Kingshott, Peter

    2008-01-01

    Atmospheric plasmas have traditionally been used as a non-chemical etching process for polymers, but the characteristics of these plasmas could very well be exploited for metals for purposes more than surface cleaning that is presently employed. This paper focuses on how the corona discharge...... process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide...... and hydroxide. The thickness of the oxide layer extends to 150–300 nm after prolonged treatment. Potentiodynamic polarization experiments show that the corona treatment reduces anodic reactivity of the surface significantly and a moderate reduction of the cathodic reactivity....

  8. Land surface processes and Sahel climate

    Science.gov (United States)

    Nicholson, Sharon

    2000-02-01

    This paper examines the question of land surface-atmosphere interactions in the West African Sahel and their role in the interannual variability of rainfall. In the Sahel, mean rainfall decreased by 25-40% between 1931-1960 and 1968-1997; every year in the 1950s was wet, and nearly every year since 1970 has been anomalously dry. Thus the intensity and multiyear persistence of drought conditions are unusual and perhaps unique features of Sahel climate. This article presents arguments for the role of land surface feedback in producing these features and reviews research relevant to land surface processes in the region, such as results from the 1992 Hydrologic Atmospheric Pilot Experiment (HAPEX)-Sahel experiment and recent studies on aerosols and on the issue of desertification in the region, a factor implicated by some as a cause of the changes in rainfall. Included also is a summary of evidence of feedback on meteorological processes, presented from both model results and observations. The reviewed studies demonstrate numerous ways in which the state of the land surface can influence interactions with the atmosphere. Surface hydrology essentially acts to delay and prolong the effects of meteorological drought. Each evaporative component of the surface water balance has its own timescale, with the presence of vegetation affecting the process both by delaying and prolonging the return of soil moisture to the atmosphere but at the same time accelerating the process through the evaporation of canopy-intercepted water. Hence the vegetation structure, including rooting depth, can modulate the land-atmosphere interaction. Such processes take on particular significance in the Sahel, where there is a high degree of recycling of atmospheric moisture and where the meteorological processes from the scale of boundary layer development to mesoscale disturbance generation are strongly influenced by moisture. Simple models of these feedback processes and their various timescales

  9. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    Science.gov (United States)

    Mustard, John F.

    1997-01-01

    The main results have been published in the refereed literature, and thus this report serves mainly to summarize the main findings and indicate where the detailed papers may be found. Reflectance spectroscopy has been an important tool for determining the mineralogic makeup of the near surface materials on Mars. Analysis of the spectral properties of the surface have demonstrated that these attributes are heterogeneous from the coarse spatial but high spectral resolution spectra obtained with telescopes to the high spatial but coarse spectral resolution Viking data (e.g. Arvidson et al., 1989; McEwen et al., 1989). Low albedo materials show strong evidence for the presence of igneous rock forming minerals while bright materials are generally interpreted as representing heavily altered crustal material. How these materials are physically and genetically related has important implications for understanding martian surface properties and processes, weathering histories and paths, and crustal composition. The goal of this research is to characterize the physical and chemical properties of low albedo materials on Mars and the relationship to intermediate and high albedo materials. Fundamental science questions to be pursued include: (1) the observed distributions of soil, rock, and dust a function of physical processes or weathering and (2) different stages of chemical and physical alteration fresh rock identified. These objectives will be addressed through detailed analyses and modelling of the ISM data from the Phobos-2 mission with corroborating evidence of surface composition and properties provided by data from the Viking mission.

  10. Graphite Surface Modification by Heterogeneous Nucleation Process

    Institute of Scientific and Technical Information of China (English)

    CAO Ran; LI Hongxia

    2006-01-01

    Flaky graphite particles were coated by ZrOCl2·8H2O as precursors by heterogeneous nucleation process.The effects of factors such as pH values (2.4-5.1),concentration of the precursor solution (0.005-0.1 mol·L-1 ) , mixing method of graphite and precursor solution on the surface modification of graphite were studied. Result shows that: 1) the preferable technical process for heterogeneous nucleation modified graphite is to mix the graphite suspension and precursor solution with concentration 0. 025 mol·L -1 and then drip ammonia water to adjust the pH value to 3.6; 2)By surface modification, the ZrO2 particles are evenly coated on graphite surface and therefore improve oxidation resistance and dispersion ability of graphite.

  11. Surface Cleaning or Activation?Control of Surface Condition Prior to Thermo-Chemical Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Brigitte Haase; Juan Dong; Jens Heinlein

    2004-01-01

    Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts' surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part's surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface's activity or passivity can be detected electrochemically, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.

  12. Effect of Surface Treatment on the Enzymatic Treatment of Cellulosic Fiber

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Jiang, S. Q.

    Fiber modifications by environmentally friendly processing are essential in order to simplify the preparation and finishing processes, in addition to minimizing the chemical waste and associated disposal problem. In this regard, enzymes have been used extensively because it can remove the small fiber ends from yarn surface to create a smooth fabric surface appearance and introduce a degree of softness without using traditional chemical treatment. However, a significant strength reduction and slow reaction rate of the enzymatic reaction limit its industrial application. In this paper, the potential of using low-temperature plasma (LTP) as a surface pre-treatment prior to enzyme treatment on flax fiber has been studied. By means of the LTP pre-treatment, the effectiveness of enzyme treatment can be enhanced.

  13. Mechanical assessment of grit blasting surface treatments of dental implants.

    Science.gov (United States)

    Shemtov-Yona, K; Rittel, D; Dorogoy, A

    2014-11-01

    This paper investigates the influence of surface preparation treatments of dental implants on their potential (mechanical) fatigue failure, with emphasis on grit-blasting. The investigation includes limited fatigue testing of implants, showing the relationship between fatigue life and surface damage condition. Those observations are corroborated by a detailed failure analysis of retrieved fracture dental implants. In both cases, the negative effect of embedded alumina particles related to the grit-blasting process is identified. The study also comprises a numerical simulation part of the grit blasting process that reveals, for a given implant material and particle size, the existence of a velocity threshold, below which the rough surface is obtained without damage, and beyond which the creation of significant surface damage will severely reduce the fatigue life, thus increasing fracture probability. The main outcome of this work is that the overall performance of dental implants comprises, in addition to the biological considerations, mechanical reliability aspects. Fatigue fracture is a central issue, and this study shows that uncontrolled surface roughening grit-blasting treatments can induce significant surface damage which accelerate fatigue fracture under certain conditions, even if those treatments are beneficial to the osseointegration process.

  14. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability

    Directory of Open Access Journals (Sweden)

    Veronica Satulu

    2016-12-01

    Full Text Available Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.

  15. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  16. 强化水解酸化/MBR治理表面处理行业综合废水%Treatment of Surface Industrial Comprehensive Wastewater by Biofilm Enhanced Hydrolysis Acidification/MBR Process

    Institute of Scientific and Technical Information of China (English)

    刘星; 赵庆良; 王广智; 韩利明; 高丽娟; 于洋洋

    2016-01-01

    表面处理行业废水水质复杂,单靠常规的生化处理很难稳定达标(COD<80 mg/L).采用生物膜强化水解酸化/MBR工艺对综合废水进行处理,研究不同浓度重金属离子(Cu2+、Ni2+、Cr6+)冲击负荷下该工艺对COD、VFAs的去除效果,并与常规水解酸化/MBR组合工艺进行对比.结果表明,随着重金属浓度的升高,两种工艺对COD和VFAs的去除效果具有显著性差异.在30 mg/L的金属离子冲击下,生物膜强化工艺和常规工艺对COD的去除率分别为78.5%和67.2%,平均出水COD分别为64和97 mg/L,生物膜强化工艺的处理效果更好,且出水水质达到了行业排放标准.%In order to control the pollution of wastewater from the surface treatment industry,the discharge of COD should be less than 80 mg/L,it is difficult to achieve this standard by conventional biochemical treatment.Therefore,the biofilm enhanced hydrolysis acidification/MBR process was used to treat the surface industrial comprehensive wastewater.The removal efficiency of COD and VFAs by the combined process under shock loads of different concentrations of heavy metal ions (Cu2 +,Ni2 + and Cr6+) was investigated and compared with that by conventional hydrolysis acidification/MBR process.The results showed that with the increase of heavy metal concentration,the removal efficiency of COD and VFAs was significantly different between the two combined processes.Under the shock of metal ions at a concentration of 30 mg/L,the removal rates of COD by the combined biofilm process and the conventional combined process were 78.5% and 67.2%,with the average effluent COD concentration of 64 mg/L and 97 mg/L,respectively.The combined biofilm process had a better treatment effect and could achieve the industrial discharge standards.

  17. Surface Treatments of Nb by Buffered Electropolishing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Andy T. [JLAB; Rimmer, Robert A. [JLAB; Ciovati, Gianluigi [JLAB; Manus, Robert L. [JLAb; Reece, Charles E. [JLAB; Williams, J. S. [JLAB; Eozénou, F. [CEA, Gif-sur-Yvette; Jin, S. [PKU/IHIP, Beijing; Lin, L. [PKU/IHIP, Beijing; Lu, X.Y. [PKU/IHIP, Beijing; Mammosser, John D. [JLAB; Wang, E. [BNL

    2009-11-01

    Buffered electropolishing (BEP) is a Nb surface treatment technique developed at Jefferson Lab1. Experimental results obtained from flat Nb samples show2-4 that BEP can produce a surface finish much smoother than that produced by the conventional electropolishing (EP), while Nb removal rate can be as high as 4.67 μm/min. This new technique has been applied to the treatments of Nb SRF single cell cavity employing a vertical polishing system5 constructed at JLab as well as a horizontal polishing system at CEA Saclay. Preliminary results show that the accelerating gradient can reach 32 MV/m for a large grain cavity and 26.7 MV/m for a regular grain cavity. In this presentation, the latest progresses from the international collaboration between Peking University, CEA Saclay, and JLab on BEP will be summarized.

  18. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2–4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  19. Surface modification of multiwall carbon nanotubes by sulfonitric treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Sofía, E-mail: sofiagomez@cetmic.unlp.edu.ar [Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, C.C.49, M.B. Gonnet B1897ZCA (Argentina); Rendtorff, Nicolás M., E-mail: rendtorff@cetmic.unlp.edu.ar [Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, C.C.49, M.B. Gonnet B1897ZCA (Argentina); Departamento de Química, Facultad de Ciencias Exactas—UNLP, Calle 115 y 47, La Plata 1900 (Argentina); Aglietti, Esteban F., E-mail: eaglietti@cetmic.unlp.edu.ar [Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, C.C.49, M.B. Gonnet B1897ZCA (Argentina); Departamento de Química, Facultad de Ciencias Exactas—UNLP, Calle 115 y 47, La Plata 1900 (Argentina); Sakka, Yoshio, E-mail: SAKKA.Yoshio@nims.go.jp [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Suárez, Gustavo, E-mail: gsuarez@cetmic.unlp.edu.ar [Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Camino Centenario y 506, C.C.49, M.B. Gonnet B1897ZCA (Argentina); Departamento de Química, Facultad de Ciencias Exactas—UNLP, Calle 115 y 47, La Plata 1900 (Argentina)

    2016-08-30

    Highlights: • After the acid treatment highly increase the amount carbonyl and carboxylic groups. • The oxidation of MWCNT generates a high negative charge of it in all the pH range. • It could achieve a good dispersion of the MWCNT in water-based suspension. • There is morphological damage on the surfaces of MWCNT after the acid treatment. • Some surface defects but no shortening were observed by TEM images. - Abstract: Carbon nanotubes are widely used for electronic, mechanical, and optical devices due to their unique structural and quantum characteristics. The species generated by oxidation on the surface of these materials permit binding new reaction chains, which improves the dispersibility, processing and compatibility with other materials. Even though different acid treatments and applications of these CNT have been reported, relatively few research studies have focused on the relationship between the acid treatment and the formation of nanodefects, specific oxidized species or CNT surface defects. In this work, multiwall carbon nanotube (MWCNT) oxidation at 90 °C was characterized in order to determine the acid treatment effect on the surface. It was found that oxidized species are already present in MWCNT without an acid treatment, but there are not enough to cause water-based dispersion. The species were identified and quantified by infrared spectroscopy and X-ray photoelectron spectroscopy. Also, transmission electron microscopy observations showed not only modifications of the oxidized species, but also morphological damage on the surfaces of MWCNT after being subjected to the acid treatment. This effect was also confirmed by Raman spectroscopy. The acid treatment generates higher oxidized species, decreasing the zeta potential in the whole pH range.

  20. Enceladus and Tethys: Ultraviolet clues to surface composition & surface processing

    Science.gov (United States)

    Hendrix, Amanda R.; Hansen, Candice; Cassidy, Timothy A.; Royer, Emilie M.; Esposito, Larry W.; Holsclaw, Gregory

    2016-10-01

    Cassini's Ultraviolet Imaging Spectrograph (UVIS) is sensitive to the uppermost portion of the regoliths of the icy Saturnian moons, where interactions with E-ring grains and plasma processing are important. Organics are present in at least 30% of E ring grains (Postberg et al., 2008) and are likely transported to the surfaces of the satellites orbiting Saturn within the E ring. Plasma bombardment on the trailing hemispheres of the satellites can further process these organic species. Enceladus' surface exhibits visible color variations (Schenk et al., 2011), evidence of plume fall-out zones and zones where plume fall-out is not as heavy (and where E ring grain bombardment dominates). In this study, we investigate far-UV spectral and photometric differences in the Enceladus plume fallout and non-fallout regions to study compositional and structural differences, and we also study compositional and photometric variations in regions on Tethys' trailing and leading hemispheres to understand spectral effects of organics, E ring bombardment and plasma bombardment.

  1. Collagen immobilization on polyethylene terephthalate surface after helium plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena, E-mail: maflori@icmpp.ro [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Drobota, Mioara [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Dimitriu, Dan Gh. [Faculty of Physics, “Alexandru Ioan Cuza” University, 20A Bulevardul Carol I, 700505 Iasi (Romania); Stoica, Iuliana [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 71141 Bucharest (Romania); Harabagiu, Valeria [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    An attractive alternative to add new functionalities such as biocompatibility due to the micro- and nano-scaled modification of polymer surfaces is offered by plasma processing. Many vital processes of tissue repair and growth following injuries depend on the rate of adsorption and self-assembling of the collagen molecules at the interfaces. Consequently, besides the amount of protein, it is necessary to investigate the form in which the collagen molecules are organizing on the polymer surface. In this study, direct current (DC) helium plasma treatment was used in order to obtain poly(ethylene terephthalate) (PET) films with different amounts of collagen and different shapes of aggregates formed from the collagen molecules. The immobilization of collagen on PET surface was confirmed by XPS measurements, an increase of the nitrogen content by increasing the plasma exposure time being recorded. The SEM and AFM measurements revealed the presence of grains and dendrites of collagen formed on the polymer surface. At 15 min plasma treatment time, the polymer surface after collagen immobilization has a homogenous topography. Usually, one can find fibrils, coil or dendrimers of collagen formed in buffer solutions and immobilized on different polymer surfaces. On the other hand, in this particular configuration, the combination of DC plasma and helium gas as a PET functionalization tool is an original one. As the collagen is not covalently immobilized on the surfaces, it may interact with the cell culture medium proteins, part of the collagen might being replaced by other serum proteins.

  2. Surface modification of multiwall carbon nanotubes by sulfonitric treatment

    Science.gov (United States)

    Gómez, Sofía; Rendtorff, Nicolás M.; Aglietti, Esteban F.; Sakka, Yoshio; Suárez, Gustavo

    2016-08-01

    Carbon nanotubes are widely used for electronic, mechanical, and optical devices due to their unique structural and quantum characteristics. The species generated by oxidation on the surface of these materials permit binding new reaction chains, which improves the dispersibility, processing and compatibility with other materials. Even though different acid treatments and applications of these CNT have been reported, relatively few research studies have focused on the relationship between the acid treatment and the formation of nanodefects, specific oxidized species or CNT surface defects. In this work, multiwall carbon nanotube (MWCNT) oxidation at 90 °C was characterized in order to determine the acid treatment effect on the surface. It was found that oxidized species are already present in MWCNT without an acid treatment, but there are not enough to cause water-based dispersion. The species were identified and quantified by infrared spectroscopy and X-ray photoelectron spectroscopy. Also, transmission electron microscopy observations showed not only modifications of the oxidized species, but also morphological damage on the surfaces of MWCNT after being subjected to the acid treatment. This effect was also confirmed by Raman spectroscopy. The acid treatment generates higher oxidized species, decreasing the zeta potential in the whole pH range.

  3. A Modified Surface on Titanium Deposited by a Blasting Process

    Directory of Open Access Journals (Sweden)

    Caroline O’Sullivan

    2011-09-01

    Full Text Available Hydroxyapatite (HA coating of hard tissue implants is widely employed for its biocompatible and osteoconductive properties as well as its improved mechanical properties. Plasma technology is the principal deposition process for coating HA on bioactive metals for this application. However, thermal decomposition of HA can occur during the plasma deposition process, resulting in coating variability in terms of purity, uniformity and crystallinity, which can lead to implant failure caused by aseptic loosening. In this study, CoBlastTM, a novel blasting process has been used to successfully modify a titanium (V substrate with a HA treatment using a dopant/abrasive regime. The impact of a series of apatitic abrasives under the trade name MCD, was investigated to determine the effect of abrasive particle size on the surface properties of both microblast (abrasive only and CoBlast (HA/abrasive treatments. The resultant HA treated substrates were compared to substrates treated with abrasive only (microblasted and an untreated Ti. The HA powder, apatitic abrasives and the treated substrates were characterized for chemical composition, coating coverage, crystallinity and topography including surface roughness. The results show that the surface roughness of the HA blasted modification was affected by the particle size of the apatitic abrasives used. The CoBlast process did not alter the chemistry of the crystalline HA during deposition. Cell proliferation on the HA surface was also assessed, which demonstrated enhanced osteo-viability compared to the microblast and blank Ti. This study demonstrates the ability of the CoBlast process to deposit HA coatings with a range of surface properties onto Ti substrates. The ability of the CoBlast technology to offer diversity in modifying surface topography offers exciting new prospects in tailoring the properties of medical devices for applications ranging from dental to orthopedic settings.

  4. Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processing

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Metallization of polymers is a widely used process in the electronic industry that involves their surface modification as a pre-treatment step. Laser-based surface modification is one of the commonly used techniques for polymers due to its speed and precision. The process involves laser heating...... of the polymer surface to generate a rough or porous surface. Laser processing in liquid generates superior surface characteristics that result in better metal deposition. In this study, a comparison of the surface characteristics obtained by laser processing in water vis-à-vis air along with the deposition...... of water, and it is because of these effects that causes an increase in surface porosity....

  5. Surface treatment of CFRP composites using femtosecond laser radiation

    Science.gov (United States)

    Oliveira, V.; Sharma, S. P.; de Moura, M. F. S. F.; Moreira, R. D. F.; Vilar, R.

    2017-07-01

    In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1-0.5 mJ and 0.1-5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.

  6. The surface of Mars: Morphology and process

    Science.gov (United States)

    Aharonson, Oded

    The goal of this work is a quantitative description of the morphology of the surface of Mars, in order to constrain the nature of processes acting during the ancient past through today. Emphasis is placed on linking geometric properties to physical mechanisms. Surface smoothness on Mars is distinctive in the vast northern hemisphere plains. Amazonis Planitia is remarkable in its smoothness, exhibiting an rms variation in topography of relief-building tectonics and volcanics. The shallower long-wavelength portion of the lowlands' topographic power spectrum relative to the highlands' can be accounted for by a simple model of sedimentation such as might be expected at an ocean's floor, but the addition of another process such as cratering is necessary to explain the spectral slope in short wavelengths. Large drainage systems on Mars have geomorphic characteristics that are inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. We demonstrate that features known as slope streaks form exclusively in regions of low thermal inertia, steep slopes, and incredibly, only where daily peak temperatures exceed 275 K during the martian year. The results suggest that at least small amounts of water may be currently present and undergo phase transitions. We detect subtle changes of the polar surface height during the course of seasonal cycles. Using altimetric crossover residuals, we show that while zonally averaged data captures the global behavior of CO 2 exchange, there is a strong dependence of the pattern on longitude. Decomposition of the signal into harmonics in time shows the amplitudes are correlated with the polar cap deposits. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  7. Uncovering deformation processes from surface displacements

    Science.gov (United States)

    Stramondo, Salvatore; Trasatti, Elisa; Albano, Matteo; Moro, Marco; Chini, Marco; Bignami, Christian; Polcari, Marco; Saroli, Michele

    2016-12-01

    Today, satellite remote sensing has reached a key role in Earth Sciences. In particular, Synthetic Aperture Radar (SAR) sensors and SAR Interferometry (InSAR) techniques are widely used for the study of dynamic processes occurring inside our living planet. Over the past 3 decades, InSAR has been applied for mapping topography and deformation at the Earth's surface. These maps are widely used in tectonics, seismology, geomorphology, and volcanology, in order to investigate the kinematics and dynamics of crustal faulting, the causes of postseismic and interseismic displacements, the dynamics of gravity driven slope failures, and the deformation associated with subsurface movement of water, hydrocarbons or magmatic fluids.

  8. Method for treatment of a surface area of steel

    NARCIS (Netherlands)

    Bhowmik, S.; Aaldert, P.J.

    2009-01-01

    The invention relates to a method for treatment of a surface area of steel by polishing said surface area and performing a plasma treatment of said surface area wherein the plasma treatment is performed at at least atmospheric conditions and wherein the plasma treatment is carried out at a power of

  9. Laser surface treatment of magnesium alloys with aluminium oxide powder

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-11-01

    Full Text Available Purpose: The aim of this paper was to improve the magnesium cast alloys surface layer by laser surface treatment and to determine the laser treatment parameters.Design/methodology/approach: The laser treatment of magnesium alloys with alloying Al2O3 powder of the particle about 80μm was carried out using a high power diode laser (HPDL. The resulting microstructure in the modified surface layer was examined using scanning electron microscopy. Phase composition was determined by the X-ray diffraction method using the XPert device. The measurements of microhardness of the modified surface layer were also studied.Findings: The alloyed region has a fine microstructure with hard carbide particles. Microhardness of laser surface alloyed layer was significantly improved as compared to an alloy without laser treatment.Research limitations/implications: The investigations were conducted for cast magnesium alloys MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 and Al2O3 powder of the particle size about 80 μm. One has used laser power in the range from 1.2to 2.0 kW.Practical implications: The results obtained in this investigation were promising comparing with the other conventional processes. High Power Diode Laser can be used as an economical substitute of Nd: YAG and CO2 to improve the surface magnesium alloy by feeding the carbide particles.Originality/value: The value of this paper is to define the influence of laser treatment parameters on quality, microstructure and microhardness of magnesium cast alloys surface layer.

  10. Water treatment processes for oilfield steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, A.; Pauley, J.C. [Chevron Canada Ltd., Vancouver, BC (Canada)

    2009-07-01

    Various water treatment processes are used within the oilfield industry. Processes tend to be common within one region of the world, but different between regions due to untreated water characteristics and treated water quality requirements. This paper summarized Chevron's view of water treatment requirements and processes for oilfield steam injection. It identified water treatment systems that have been used at thermal projects, where they are most commonly utilized, their purpose, and the limits of each process. The advantages and disadvantages of different water treatment systems were also reviewed. The paper focused on the treatment of fresh waters, low-TDS produced waters, high-hardness waters, and high-silica produced waters. Challenges and opportunities were also identified. It was concluded that the challenges created by high-silica, or by high-hardness produced waters lead to more costly processes. 25 refs., 5 tabs., 4 figs.

  11. Estimation of the Processing Parameters in Electron Beam Thermal Treatments

    Directory of Open Access Journals (Sweden)

    DULAU Mircea

    2014-05-01

    Full Text Available Electron beam have many special properties which make them particularly well suited for use in materials handling through melting, welding, surface treatment, etc., taking into account that this manufacturing is performed in vacuum. The use of electron beam for surface limited heat treatment of workpiece has brought about a noticeable extension of the beam technologies. Some theoretical aspects and simulation results are presented in this paper, considering a high power electron beam processing system and Matlab facilities. This paper can be used in power engineering and electro-technologies fields as a guideline, in order to simulate and analyse the process parameters.

  12. ELECTROLYTIC-PLASMA TREATMENT OF INNER SURFACE OF TUBULAR PRODUCTS

    Directory of Open Access Journals (Sweden)

    Yu. G. Alekseev

    2016-01-01

    Full Text Available While manufacturing a number of important tubular products stringent requirements have been imposed on quality of their inner surfaces. The well-known methods for inner surface treatment of pipes include sandblasting, chemical cleaning with acid reagents (oxalic, formic, sulfamic, orthophosphoric acids and electrochemical polishing. Disadvantages of the chemical method are cleaning-up irregularities, high metal removal, limited number of reagent application, complicated selection of reagent chemical composition and concentration, complicated and environmentally harmful recycling of waste chemicals, high cost of reagents. Low productivity at a high cost, as well as hazardous impact on personnel due to high dispersion of abrasive dust are considered as disadvantages of sandblasting. Electrochemical polishing is characterized by the following disadvantages: low processing productivity because supply of high currents is rather difficult due to electrolyte scattering capacity away from the main electrode action zone, limited length of the cavity to be treated due to heating of flexible current leads at operating current densities, application of expensive aggressive electrolytes and high costs of their recycling. A new method for polishing and cleaning of inner surfaces of tubular products based on electrolyte-plasma treatment has been developed. In comparison with the existing methods the proposed methods ensures quality processing with high intensity while applying non-toxic, environmentally friendly and cheap electrolytes. The paper presents results of investigations on technological specific features of electrolyte-plasma treatment for inner surfaces of tubular products: influence of slotted nozzle width, electrolyte flow and rate on stability of gas-vapor blanket, current density and productivity. Results of the research have made it possible to determine modes that provide stability and high productivity in the process of electrolyte

  13. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  14. Research on Surface Treatment Process of Corundum Filler for Epoxy Resin Casting Material%环氧浇注用氧化铝填料表面处理工艺研究

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The effects of surface treatment processes such as acid pickling, alkali neutralization, and high-temperature calcination on the fused corundum produced in electric arc furnace for abrasive industry were compared, the effect of different surface treatment methods on the physical and chemical properties such as conductivity and pH value of corundum solution, and the effect of different corundums on the rheological properties and mechanical properties of epoxy casting materials were analyzed. The results show that the corundum neutralized by alkali or treated by calcination after acid pickling could adjust the usable time of epoxy casting material and improve the mechanical properties of the cured epoxy resin.%通过比较酸洗、碱处理中和、高温煅烧处理等表面处理工艺对磨料工业电弧炉法熔炼制备电熔刚玉型氧化铝填料的影响,分析了不同表面处理方法对氧化铝填料粉体水洗电导率、pH值等性能的影响及对其环氧浇注料流变性能、固化物力学性能的影响.结果表明:酸洗后通过碱处理或煅烧处理均能有效调节环氧浇注的可使用时间及改善环氧浇注固化物的力学性能.

  15. Hair treatment process providing dispersed colors by light diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Richard Matthew Charles; Lamartine, Bruce Carvell; Orler, E. Bruce; Song, Shuangqi

    2015-12-22

    A hair treatment process for providing dispersed colors by light diffraction including (a) coating the hair with a material comprising a polymer, (b) pressing the hair with a pressing device including one or more surfaces, and (c) forming a secondary nanostructured surface pattern on the hair that is complementary to the primary nanostructured surface pattern on the one or more surfaces of the pressing device. The secondary nanostructured surface pattern diffracts light into dispersed colors that are visible on the hair. The section of the hair is pressed with the pressing device for from about 1 to 55 seconds. The polymer has a glass transition temperature from about 55.degree. C. to about 90.degree. C. The one or more surfaces include a primary nanostructured surface pattern.

  16. Uncovering deformation processes from surface displacements

    Science.gov (United States)

    Stramondo, Salvatore

    2013-04-01

    The aim of this talk is to provide an overview about the most recent outcomes in Earth Sciences, describe the role of satellite remote sensing, together with GPS, ground measurement and further data, for geophysical parameter retrieval in well known case studies where the combined approach dealing with the use of two or more techniques/datasets have demonstrated their effectiveness. The Earth Sciences have today a wide availability of instruments and sensors able to provide scientists with an unprecedented capability to study the physical processes driving earthquakes, volcanic eruptions, landslides, and other dynamic Earth systems. Indeed measurements from satellites allow systematic observation of the Earth surface covering large areas, over a long time period and characterized by growing sample intervals. Interferometric Synthetic Aperture Radar (InSAR) technique has demonstrated its effectiveness to investigate processes responsible for crustal faulting stemming from the detection of surface deformation patterns. Indeed using satellite data along ascending and descending orbits, as well as different incident angles, it is possible in principle to retrieve the full 3D character of the ground motion. To such aim the use of GPS stations providing 3D displacement components is a reliable complementary instrument. Finally, offset tracking techniques and Multiple Aperture Interferometry (MAI) may provide a contribution to the analysis of horizontal and NS deformation vectors. The estimation of geophysical parameters using InSAR has been widely discussed in seismology and volcanology, and also applied to deformation associated with groundwater and other subsurface fluids. These applications often involve the solution of an inverse problem, which means the retrieval of optimal source parameters at depth for volcanoes and earthquakes, from the knowledge of surface deformation from InSAR. In recent years, InSAR measurements combined with traditional seismological and

  17. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  18. Hybrid Sludge Modeling in Water Treatment Processes

    OpenAIRE

    Brenda, Marian

    2015-01-01

    Sludge occurs in many waste water and drinking water treatment processes. The numeric modeling of sludge is therefore crucial for developing and optimizing water treatment processes. Numeric single-phase sludge models mainly include settling and viscoplastic behavior. Even though many investigators emphasize the importance of modeling the rheology of sludge for good simulation results, it is difficult to measure, because of settling and the viscoplastic behavior. In this thesis, a new method ...

  19. Diffuse coplanar surface barrier discharge -- basic properties and its application in surface treatment of nonwovens

    Science.gov (United States)

    Kovacik, Dusan; Rahel, Jozef; Kubincova, Jana; Zahoranova, Anna; Cernak, Mirko

    2009-10-01

    In recent years, low temperature atmospheric pressure plasma surface treatments have become a hot topic because of the potential of fast and efficient in-line processing fabrication without expensive vacuum equipment. A major problem of atmospheric pressure treatment in air is insufficient treatment uniformity because, particularly at the higher plasma power densities, the air plasma has the tendency of filamentation and transition into an arc discharge. Diffuse coplanar surface barrier discharge (DCSBD) plasma source has been developed to overcome these problems. This type of discharge enables to generate macroscopically homogeneous thin (˜ 0.3 mm) plasma layer with power density of some 100 W/cm^3 practically in any gas without admixture of He. It was found that the ambient air plasma of DCSBD is capable to make lightweight polypropylene nonwoven fabrics permanently hydrophilic, without any pinholing and with low power consumption of some 1 kWh/kg.

  20. Process for hardening the surface of polymers

    Science.gov (United States)

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  1. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  2. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  3. Carotenes in processed tomato after thermal treatment

    NARCIS (Netherlands)

    Luterotti, S.; Bicanic, D.D.; Markovic, K.; Franko, M.

    2015-01-01

    This report adds to the ongoing vivid dispute on the fate of carotenes in tomato upon thermal processing. Although many papers dealing with changes in the raw tomatoes during industrial treatment have already appeared, data on the fate of finished, processed tomato products when they are additionall

  4. Process for the treatment of lignocellulosic biomass

    Science.gov (United States)

    Dale, Bruce E.

    2014-07-08

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  5. Process for the treatment of lignocellulosic biomass

    Science.gov (United States)

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  6. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  7. Surface processes during purification of InP quantum dots.

    Science.gov (United States)

    Mordvinova, Natalia; Emelin, Pavel; Vinokurov, Alexander; Dorofeev, Sergey; Abakumov, Artem; Kuznetsova, Tatiana

    2014-01-01

    Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  8. Miniaturized Temperature-Controlled Planar Chromatography (Micro-TLC) as a Versatile Technique for Fast Screening of Micropollutants and Biomarkers Derived from Surface Water Ecosystems and During Technological Processes of Wastewater Treatment.

    Science.gov (United States)

    Ślączka-Wilk, Magdalena M; Włodarczyk, Elżbieta; Kaleniecka, Aleksandra; Zarzycki, Paweł K

    2017-07-01

    There is increasing interest in the development of simple analytical systems enabling the fast screening of target components in complex samples. A number of newly invented protocols are based on quasi separation techniques involving microfluidic paper-based analytical devices and/or micro total analysis systems. Under such conditions, the quantification of target components can be performed mainly due to selective detection. The main goal of this paper is to demonstrate that miniaturized planar chromatography has the capability to work as an efficient separation and quantification tool for the analysis of multiple targets within complex environmental samples isolated and concentrated using an optimized SPE method. In particular, we analyzed various samples collected from surface water ecosystems (lakes, rivers, and the Baltic Sea of Middle Pomerania in the northern part of Poland) in different seasons, as well as samples collected during key wastewater technological processes (originating from the "Jamno" wastewater treatment plant in Koszalin, Poland). We documented that the multiple detection of chromatographic spots on RP-18W microplates-under visible light, fluorescence, and fluorescence quenching conditions, and using the visualization reagent phosphomolybdic acid-enables fast and robust sample classification. The presented data reveal that the proposed micro-TLC system is useful, inexpensive, and can be considered as a complementary method for the fast control of treated sewage water discharged by a municipal wastewater treatment plant, particularly for the detection of low-molecular mass micropollutants with polarity ranging from estetrol to progesterone, as well as chlorophyll-related dyes. Due to the low consumption of mobile phases composed of water-alcohol binary mixtures (less than 1 mL/run for the simultaneous separation of up to nine samples), this method can be considered an environmentally friendly and green chemistry analytical tool. The described

  9. Investigation of HCl-based surface treatment for GaN devices

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Hiroshi, E-mail: okada@ee.tut.ac.jp [Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan); Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan); Shinohara, Masatohi; Kondo, Yutaka; Sekiguchi, Hiroto; Yamane, Keisuke [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan); Wakahara, Akihiro [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan); Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2016-02-01

    Surface treatments of GaN in HCl-based solutions are studied by X-ray photoelectron spectroscopy (XPS) and electrical characterization of fabricated GaN surfaces. A dilute-HCl treatment (HCl:H{sub 2}O=1:1) at room temperature and a boiled-HCl treatment (undiluted HCl) at 108°C are made on high-temperature annealed n-GaN. From the XPS study, removal of surface oxide by the dilute-HCl treatment was found, and more thoroughly oxide-removal was confirmed in the boiled-HCl treatment. Effect of the surface treatment on electrical characteristics on AlGaN/GaN transistor is also studied by applying treatment processes prior to the surface SiN deposition. Increase of drain current is found in boiled-HCl treated samples. The results suggest that the boiled-HCl treatment is effective for GaN device fabrication.

  10. Solution-processed amorphous silicon surface passivation layers

    Energy Technology Data Exchange (ETDEWEB)

    Mews, Mathias, E-mail: mathias.mews@helmholtz-berlin.de; Sontheimer, Tobias; Korte, Lars; Rech, Bernd [Helmholtz-Zentrum Berlin, Institute of Silicon Photovoltaics, Kekuléstraße 5, D-12489 Berlin (Germany); Mader, Christoph; Traut, Stephan; Wunnicke, Odo [Evonik Industries AG, Creavis Technologies and Innovation, Paul-Baumann-Straße 1, D-45772 Marl (Germany)

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivation.

  11. Aluminium surface treatment with ceramic phases using diode laser

    Science.gov (United States)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  12. Impact of UV/ozone surface treatment on AlGaN/GaN HEMTs

    Institute of Scientific and Technical Information of China (English)

    Yuan Tingting; Liu Xinyu; Zheng Yingkui; Li Chengzhan; Wei Ke; Liu Guoguo

    2009-01-01

    Surface treatment plays an important role in the process of making high performance AIGaN/GaN HEMTs. A clean surface is critical for enhancing device performance and long-term reliability. By experiment-ing with different surface treatment methods, we find that using UV/ozone treatment significantly influences the electrical properties of Ohmic contacts and Schottky contacts. According to these experimental phenomena and X-ray photoelectron spectroscopy surface analysis results, the effect of the UV/ozone treatment and the reason that it influences the Ohmic/Schottky contact characteristics of A1GaN/GaN HEMTs is investigated.

  13. Evaluation of the topographical surface changes and roughness of zirconia after different surface treatments.

    Science.gov (United States)

    Subaşı, Meryem Gülce; İnan, Özgür

    2012-07-01

    The purpose of this study was to investigate the surface morphology and roughness of zirconia after different surface treatments. Eighty sintered zirconia specimens were divided into four groups (n = 20) according to the surface treatments received: no treatment, erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation (400 mJ, 10 Hz, 4 W, 100 MPS, distance: 1 mm), tribochemical silica coating with 30 μm aluminum oxide (Al(2)O(3)) modified by silica, and air abrasion with 110 μm Al(2)O(3) particles. After the surface treatments, the surface roughness (Ra in μm) of the specimens was evaluated using a surface texture measuring instrument. Surface morphology of a specimen from each group was evaluated with atomic force microscope (AFM) and scanning electron microscope (SEM) analyses. The surface roughness values were statistically analyzed by the Kruskal-Wallis and Mann-Whitney U tests (p = 0.05). All of the surface treatments produced rougher surfaces than the control group (p roughness of laser and silica groups (p > 0.05). SEM and AFM analyses revealed changes in surface topography after surface treatments, especially in the laser group with the formation of rare pits and in the silica and air abrasion groups with the formation of microretentive grooves. According to the results of the statistical and microscopic analyses, all of the surface treatments can be used for roughening zirconia prior to cementation; however, air abrasion is the most effective surface treatment to obtain micromechanical retention.

  14. System and process for biomass treatment

    Science.gov (United States)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  15. Surface processing using water cluster ion beams

    Science.gov (United States)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  16. Surface processing using water cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H., E-mail: gtakaoka@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2013-07-15

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO{sub 2}, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  17. Electron beam flue gas treatment process. Review

    Energy Technology Data Exchange (ETDEWEB)

    Honkonen, V.A. [Kuopio Univ. (Finland). Dept. of Physics; Chmielewski, A.G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1996-12-31

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO{sub 2} and NO{sub x} removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab.

  18. Processing ISS Images of Titan's Surface

    Science.gov (United States)

    Perry, Jason; McEwen, Alfred; Fussner, Stephanie; Turtle, Elizabeth; West, Robert; Porco, Carolyn; Knowles, Ben; Dawson, Doug

    2005-01-01

    One of the primary goals of the Cassini-Huygens mission, in orbit around Saturn since July 2004, is to understand the surface and atmosphere of Titan. Surface investigations are primarily accomplished with RADAR, the Visual and Infrared Mapping Spectrometer (VIMS), and the Imaging Science Subsystem (ISS) [1]. The latter two use methane "windows", regions in Titan's reflectance spectrum where its atmosphere is most transparent, to observe the surface. For VIMS, this produces clear views of the surface near 2 and 5 microns [2]. ISS uses a narrow continuum band filter (CB3) at 938 nanometers. While these methane windows provide our best views of the surface, the images produced are not as crisp as ISS images of satellites like Dione and Iapetus [3] due to the atmosphere. Given a reasonable estimate of contrast (approx.30%), the apparent resolution of features is approximately 5 pixels due to the effects of the atmosphere and the Modulation Transfer Function of the camera [1,4]. The atmospheric haze also reduces contrast, especially with increasing emission angles [5].

  19. Formation of VC- composites surface layers on spheroidized graphite cast iron by laser surface cladding process

    Directory of Open Access Journals (Sweden)

    Essam R.I. Mahmoud

    2015-01-01

    Full Text Available Spheroidal graphite cast iron was laser cladded with VC powder of 44-53 μm particle size using YAG Fiber laser at 500, 1000, and 1500 W processing power and fixed travelling speed of 4 mm/s. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. To prevent the oxidation, argon gas was used as a shielding gas. After the treatment, three zones were resulted: build-up (cladding, fusion, and heat affected zones. The build-up zone was a composite structure consisted of VC particles/dendrites dispersed in a matrix of martensite, carbides and ledeburite structure. At 500 W, most of the VC particles were appeared as their original large size. When the laser power was increased to 1000 W or more, the VC particles were melted and then re-solidified in the form of fine dendrites. The surface hardness of the cladded area was remarkably improved. As the distance from the free surface increases, the hardness decreases. The average hardness value at the surface treated by 500 W was about 710 HV (3 times of the hardness of substrate, while it reached to about 1340 HV and 1520 HV at powers of 1000 W and 1500 W, respectively. The wear resistance of the laser treated samples was improved at all investigated laser processing powers, especially at 1000W and 1500 W.

  20. The Modern Applications of Surface Duplex Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    JerzySmolik; JanWalkowicz; AdamMazurkiewicz; JerzyTomaszewski

    2004-01-01

    The paper presents results of the research carried out by the authors in different fields of plasma surface technologies applications. Three groups of different surface engineering technologies are shown in the paper. The first one concerns the possibility of using the duplex treatment technology for creation of biocompatible diamond-like a-C:H films. The paper presents research results concerning influence of the process parameters of the a-C:H coatings creation by means of the RFPACVD method in the pure methane amlosphere on their phase structure and mechanical properties. In the second case authors present the concept of a new special multilayer thermal barrier coatings with the PAPVD diffusion barrier layers based on aluminium oxide. As the last one the special application of plasma techniques for creation of composite materials characterized by the muffling of mechanical vibration was presented.

  1. The Modern Applications of Surface Duplex Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    Jerzy Smolik; Jan Walkowicz; Adam Mazurkiewicz; Jerzy Tomaszewski

    2004-01-01

    The paper presents results of the research carried out by the authors in different fields of plasma surface technologies applications. Three groups of different surface engineering technologies are shown in the paper. The first one concerns the possibility of using the duplex treatment technology for creation of biocompatible diamond-like a-C:H films.The paper presents research results concerning influence of the process parameters of the a-C:H coatings creation by means of the RF PACVD method in the pure methane atmosphere on their phase structure and mechanical properties. In the second case authors present the concept of a new special multilayer thermal barrier coatings with the PAPVD diffusion barrier layers based on aluminium oxide. As the last one the special application of plasma techniques for creation of composite materials characterized by the muffling of mechanical vibration was presented.

  2. Surface osteosarcomas: Diagnosis, treatment and outcome

    Directory of Open Access Journals (Sweden)

    Venkatesan Sampath Kumar

    2014-01-01

    Full Text Available Surface osteosarcomas are a rare form of osteosarcomas accounting for around 3-6% of all osteosarcomas. Three major groups of surface osteosarcomas are parosteal, periosteal and the high grade surface osteosarcomas. Of these, the parosteal osteosarcoma is the most common. Parosteal and periosteal osteosarcomas are distinct clinical entities and it is important to identify the clinicoradiological differences between the two types. Surface osteosarcomas occur at a later age as compared to conventional osteosarcomas. The classical site is the lower end of the femur followed by the upper end of the tibia and upper end of humerus, in that order. The periosteal variant affects the tibia more commonly than the parosteal variety. Neo-adjuvant chemotherapy is the standard of care for high grade surface osteosarcomas. Parosteal osteosarcomas, being low grade lesions, can be treated by upfront wide excision without adjuvant systemic therapy. Controversy prevails over the need for chemotherapy in periosteal osteosarcomas, which are intermediate grade lesions.

  3. Urea Synthesis Plant - Process Water Treatment

    Directory of Open Access Journals (Sweden)

    Matijašević, Lj.

    2007-09-01

    Full Text Available After the years of operation of Petrokemija d. d. from Kutina it has been recognized that the technology of urea production can be improved at several points, including wastewater treatment.The wastewater treatment area is a part of the urea plant, Urea 2 of Petrokemija d. d., Kutina. The plant has been in operation since 1983 based on the licensed Stamicarbon CO2 stripping process. So far there have been no major process improvements in terms of utility savings. This part of the plant releases into the environment almost 800 t per day of superfluous wastewater polluted with small, however significant, amounts of urea and ammonium. As such, this wastewater cannot be used in any other segment of urea production. The aim of this paper is to improve the current process from the economical and ecological point of view with ultimate goal of implementing the results obtained.

  4. Report on experimental research and best practice for surface treatment solutions

    DEFF Research Database (Denmark)

    Gavillet, Jerome; Tosello, Guido; Gasparin, S.

    2011-01-01

    The present deliverable contains the report of the work and results achieved within the framework of WP 2.3 / Task 2.3.2 on “Surface treatments and thin layers/films deposition to improve process output”....

  5. Pilot-scale UV/H2O2 advanced oxidation process for surface water treatment and downstream biological treatment: effects on natural organic matter characteristics and DBP formation potential.

    Science.gov (United States)

    Sarathya, Siva R; Stefan, Mihaela I; Royce, Alan; Mohseni, M

    2011-12-01

    The effects of the advanced oxidation process (AOP) of ultraviolet radiation in combination with hydrogen peroxide (UV/H2O2) on the structure and biodegradability of dissolved natural organic matter (NOM) and on the formation of disinfection by-products (DBPs) through the post-UV/H2O2 chlorination were investigated using UV reactors equipped with either low-pressure amalgam lamps or medium-pressure mercury vapour lamps. With electrical energy doses and H2O2 concentrations typically applied in full-scale UV systems for water remediation, the UV/H2O2 AOP partially oxidized NOM, reducing its degree of aromaticity and leading to an increase in the level of biodegradable species. Also, when combined with a downstream biological activated carbon (BAC) filter, UV/H2O2 AOP reduced the formation of DBPs by up to 60% for trihalomethanes and 75% for haloacetic acids. Biological activated carbon was also shown to effectively remove biodegradable by-products and residual H2O2.

  6. Method of surface treatment on sapphire substrate

    Institute of Scientific and Technical Information of China (English)

    NIU Xin-huan; LIU Yu-ling; TAN Bai-mei; HAN Li-ying; ZHANG Jian-xin

    2006-01-01

    Sapphire single crystals are widely used in many areas because of the special physic properties and important application value. As an important substrate material,stringent surface quality requirements,i.e. surface finish and flatness,are required. The use of CMP technique can produce high quality surface finishes at low cost and with fast material removal rates. The sapphire substrate surface is treated by using CMP method. According to sapphire substrate and its product properties,SiO2 sol is chosen as abrasive. The particle size is 15-25 nm and the concentration is 40%. According to the experiment results,pH value is 10.5-11.5. After polishing and cleaning the sapphire surface,the surface roughness was measured by using AFM method and the lowest value of Ra 0.1 nm was obtained. From the results,it can be seen that using such method,the optimal sapphire surface can be gotten,which is advantageous for epitaxial growth and device making-up.

  7. Feasibility Studies on Underwater Laser Surface Hardening Process

    OpenAIRE

    Biao Jin; Min Li; TaeWoo Hwang; YoungHoon Moon

    2015-01-01

    Laser surface hardening process is a very promising hardening method for ferrous and nonferrous alloys where transformations occur during cooling after laser melting in the solid state. This study experimentally characterizes laser surface hardening of tool steel in both water and air. For the underwater operation, laser surface scanning is performed over the tool steel surface which is immersed in water. The laser surface hardening tests are performed with a maximum 200 W fiber laser with a ...

  8. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  9. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....... is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...

  10. Feasibility Studies on Underwater Laser Surface Hardening Process

    Directory of Open Access Journals (Sweden)

    Biao Jin

    2015-01-01

    Full Text Available Laser surface hardening process is a very promising hardening method for ferrous and nonferrous alloys where transformations occur during cooling after laser melting in the solid state. This study experimentally characterizes laser surface hardening of tool steel in both water and air. For the underwater operation, laser surface scanning is performed over the tool steel surface which is immersed in water. The laser surface hardening tests are performed with a maximum 200 W fiber laser with a Gaussian distribution of energy in the beam. For the surface hardening, single-track melting experiment which sequentially scans elongated path of single line has been performed. As the hardened depth depends on the thermal conductivity of the material, the surface temperature and the penetration depth may be varied by underwater laser processing. The feasibility of underwater laser surface hardening process is discussed on the basis of average hardness level and hardened bead shape.

  11. Surface modification by alkali and heat treatments in titanium alloys.

    Science.gov (United States)

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  12. RF atmospheric plasma jet surface treatment of paper

    Science.gov (United States)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  13. Effect of treatment time on characterization and properties of nanocrystalline surface layer in copper induced by surface mechanical attrition treatment

    Indian Academy of Sciences (India)

    Farzad Kargar; M Laleh; T Shahrabi; A Sabour Rouhaghdam

    2014-08-01

    Nanocrystalline surface layers were synthesized on pure copper by means of surface mechanical attrition treatment (SMAT) at various treatment times. The microstructural features of the surface layers produced by SMAT were systematically characterized by optical microscopy (OM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Hardness and surface roughness measurements were also carried out. It is found that the thickness of the deformed layer increased from 50 to 500 m with increasing treatment time from 10 to 300 min, while the average grain size of the top surface layer decreased from 20 to 7 nm. Hardness of the all SMATed samples decreased with depth. Furthermore, the hardness of the top surface layer of the SMATed samples was at least two times higher than that of the un-treated counterpart. Surface roughness results showed different trend with treatment time. Amounts of PV and a values first sharply increased and then decreased.

  14. Surface compositional changes in GaAs subjected to argon plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Surdu-Bob, C.C.; Sullivan, J.L.; Saied, S.O.; Layberry, R.; Aflori, M

    2002-12-30

    X-ray photoelectron spectroscopy (XPS) has been employed to study surface compositional changes in GaAs (1 0 0) subjected to argon plasma treatment. The experimental results have been explained in terms of predicted argon ion energies, measured ion densities and etch rates. A model is proposed for the processes taking place at the surface of GaAs in terms of segregation, sputtering and surface relaxation. Stopping and range of ions in matter (SRIM) code has also been employedan aid to identification of the mechanisms responsible for the compositional changes. Argon plasma treatment induced surface oxidation at very low energies and sputtering and surface damage with increasing energy.

  15. Surface Electromyography Signal Processing and Classification Techniques

    Directory of Open Access Journals (Sweden)

    Tae G. Chang

    2013-09-01

    Full Text Available Electromyography (EMG signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.

  16. Surface Electromyography Signal Processing and Classification Techniques

    Science.gov (United States)

    Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.

    2013-01-01

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337

  17. Surface electromyography signal processing and classification techniques.

    Science.gov (United States)

    Chowdhury, Rubana H; Reaz, Mamun B I; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A A; Chellappan, K; Chang, T G

    2013-09-17

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.

  18. New surface treatment techniques against ice formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Megateli, R. [TechnoCentre eolien Gaspesie-les Iles, Murdochville, PQ (Canada). Centre CORUS

    2007-07-01

    The average wind speed in Murdochville, Quebec is 9 m/s, making it one of Canada's richest wind resource regions. As such, it is the site of a natural laboratory for the CORUS Center to study the North American climate and wind energy extraction. This presentation outlined research initiatives at CORUS, with particular reference to innovative treatments against ice accretion on wind turbine blades. Ice changes the aerodynamic profile of turbine blades, overloads the structure, increases vibrations and causes component wear. This results in loss of energy production, frequent failures, reduced service life and increased operating and maintenance costs. CORUS has been working on reducing ice accretion on blade surfaces without affecting the manufacturing process using ion implantation and UV rays irradiation. The ions used in the process are hydrogen, fluorine and argon. The technique modifies the surface chemical properties at the nano-scale depth level. This presentation provided details of the ion implantation procedure and the UV rays exposure procedure. An evaluation of wetting and water contact angles on blade samples was provided. Preliminary results showed that the high hysteresis of the non-treated samples had favourable conditions to ice adhesion. Argon implantation reduced the water contact angles and particularly hysteresis. Hydrogen implantation slightly increased the water contact angles and reduced the hysteresis. The process was beneficial in terms of service life. UV irradiation increased the hysteresis. figs.

  19. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  20. Features of molten pool free surface in laser processing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of static characteristics of free surface of molten pools in laser processing, starting with the change of surface tension, the uniform numerical models are developed for both the liquid and solid regions of metals by applying the enthalpy source method and the porous region model. The flow and heat transfer characteristics in the molten pools and the distribution of surface tension on free surface are disclosed. The shape of free surface is analyzed by considering the static forces on the free surface and by combining with the calculated results of the molten pool. The model is applied to analyzing the laser processing of AISI 304 stainless steel, and the effects of different processing tech nics and material properties on shaping of free surface are discussed.

  1. Surface processing methods for point sets using finite elements

    NARCIS (Netherlands)

    Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru

    2004-01-01

    We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. At the core of our method is a finite element discretization of PDEs

  2. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Science.gov (United States)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  3. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  4. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R

    2004-06-30

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 {mu}m, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 {mu}m. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  5. Laser gas assisted treatment of steel 309: Corrosion and scratch resistance of treated surface

    Science.gov (United States)

    Toor, Ihsan-ul-Haq; Yilbas, B. S.; Ahmed, Junaid; Karatas, C.

    2017-10-01

    Laser gas assisted surface treatment of steel 309 is carried out and the characteristics of the resulting surface are analyzed using the analytical tools. Scanning electron and 3-D optical microscopes are used to assess the morphological and metallurgical changes in the laser treated layer. Energy spectroscopy and X-ray diffraction are carried out to determine the elemental composition and compounds formed on the laser treated surface. The friction coefficient of the laser treated surface is measured using the micro-tribometer and compared to that of the as received surface. The corrosion resistance of the laser treated and as received surfaces is measured incorporating the electrochemical tests. It is found that laser treatment results in a dense layer and formation of nitride compounds at the surface. This enhances the microhardness at the laser treated surface. The friction coefficient attains lower values at the laser treated surface than that corresponding to the as received surface. The corrosion rate of the surface reduces significantly after the laser treatment process, which can be attributed to the passive layer at the surface via formation of a dense layer and nitride compounds in the surface vicinity. In addition, the number of pit sites decreased for the laser treated surface than that of as received surface.

  6. Laser induced surface emission of neutral species and its relationship to optical surface damage processes

    Science.gov (United States)

    Chase, L. L.; Smith, L. K.

    1988-03-01

    The laser-induced emission of neutral constituents and impurities from surfaces of several optical materials is shown to be correlated with optical surface damage thresholds. The characteristics of the emission can be utilized to investigate physical processes involved in the absorption of laser energy at the surface. Examples are given of neutral emission correlated with catastrophic surface heating, changes in surface stoichiometry, and thermally-induced cracking.

  7. Luster Polish Strengthening Treatment for Raceway Surface of Aeroengine Bearings

    Institute of Scientific and Technical Information of China (English)

    DENG Si-er; TENG Hong-fei; MA Fu-jian; HAO Jian-jun; CHEN Tao

    2007-01-01

    A new surface strengthening technology, luster polish strengthening treatnent, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably.Theoretical calculation result agrees with that obtained by experiment.

  8. Effects of surface performance on bamboo by microwave plasma treatment

    Institute of Scientific and Technical Information of China (English)

    Guanben DU; Zhaobin SUN; Linrong HUANG

    2008-01-01

    Surface treatment of bamboo was carried out by microwave plasma (MWP), surface contact angle of the sample was measured using glycerin and urea-form-aldehyde resin (UFR) liquid, and the effects on the surface performance of the bamboo sample was evaluated. The results show that the surface contact angle of the sample presented a generally decreasing trend when prolonging the MWP treatment time and shortening the distance between the sample and the resonance cavity. The surface contact angle of the sample decreased by 49%-59% under the following conditions: MWP treatment for 30 s, the distance between the sample and resonance cavity at 40 mm, and measurement at 15 s after dripping with gly-cerin. The surface contact angle of the sample measured with the glycerin was lower than that with UFR. No mat-ter whether we used glycerin or UFR, the contact angle of the sample at 15 s after dripping was lower than that at 5 s after dripping. The grinding treatment had little effect on the surface contact angle of the sample after MWP treat-ment, and the modification effect of MWP treatment after grinding was better than that of sole MWP treatment.

  9. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / Development of the plasma use surface treatment process by in-situ control (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / in-situ seigyo ni yoru plasma riyo hyohi shori process no kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the fiscal 1997 result of the development. To know of in-plasma phenomena such as carburization and nitriding, a basic plasma experimental device was fabricated for quantitative measurement of reaction activity species. For the study of reaction control between plasma and substrate, a rotary analyzer type ellipsometer was fabricated as a method to detect composition and thickness of the deposit on the substrate surface. For He gas cooling after carburization and hardening, basic specifications for He gas refining/circulating system were confirmed. For perfect non-hazardous processing of exhaust gas from plasma carburization furnace, conducted was the thermodynamic computation of the process. Priority in order of the functions to be possessed as specifications for basic design of mini plant is plasma carburization, He gas cooling, and in-situ measurement. To make the most of the plasma use surface treatment as substitutes for expensive alloy elements, sliding parts/die-cast mold raw materials were carburized to measure the hardness. The Cr carbide coating technology by plasma CVD is also under study as an application example except carburization. 47 refs., 59 figs., 31 tabs.

  10. Simulation Experiments of Land Surface Physical Processes and Ecological Effect over Different Underlying Surface

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...

  11. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  12. Complicated hollow turbine blades and surface grain refinement process

    OpenAIRE

    Peng Zhijiang; Jia Shuqin; Zhang Zehai

    2010-01-01

    The control of grain size in superalloys is critical in the manufacture of gas turbine blades. The aim of the present research is to provide the technology for producing complicated hollow turbine blades with fine surface grains and better comprehensive mechanical properties. By melt superheating treatment and coating the internal surfaces of shell mould using a cobalt aluminate-bearing coating material, the influence of cobalt aluminate as inoculant on the surface grain sizes of turbine blad...

  13. Enhancement of surface processes with low energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.

    1995-05-01

    Continuing trends in device fabrication towards smaller feature sizes, lower thermal budgets and advanced device structures put greater emphasis on controlling the surface structure and reactivity during processing. Since the evolution of the semiconductor surface during processing is determined by the interaction of multiple surface processes, understanding how to control and modify these processes on the atomic level would enable us to exert greater control over the resulting morphology and composition. Low energy ions represent one method for bringing controlled amounts of energy to the surface to modify surface structure and kinetics. The kinetic energy deposited by the ions can break bonds and displace atoms, creating defect populations significantly in excess of the equilibrium concentration. Consequences of these non-equilibrium conditions include the enhancement of surface kinetic processes, increased surface reactivity and formation of metastable structures and compositions. These effects can be beneficial (ion enhanced mass transport can lead to surface smoothing) or they can be detrimental (residual defects can degrade electrical properties or lead to amorphization). The net results depend on a complex balance that depends on many parameters including ion mass, energy, flux and temperature. In the following section, we review progress both in our fundamental understanding of the production of low-energy ion-induced defects and in the use of low energy ions to enhance surface morphology, stimulate low temperature growth and obtain non-equilibrium structures and compositions.

  14. Bioinspired Surface Treatments for Improved Decontamination: Silicate-Based Slippery Liquid-Infused Porous Surfaces (SLIPS)

    Science.gov (United States)

    2017-07-20

    environment including contamination avoidance, individual protection, collective protection, and decontamination. In January 2015, the Center for Bio...methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a soapy water solution...and diisopropyl fluorophosphate following treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on

  15. Surface treatment by propane operated static jet engine

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-03-01

    Based on the principle of the jet engine, by projecting abrasive materials in hot gas at supersonic speed, 'thermo-blasting' is an industrial solution for surface treatment which combines propane, innovation and environmental protection. From the very outset, these three reasons incited Primagaz to take part in the perfection and development of the system designed by Thermo-Blast International SA. This young company from Pau (Southern France) which also validated its design with Turbomeca and the ENSAM in Paris, is currently enjoying a growing reputation at international level. In order to remain the world leader in its field and retain its technological advance, Thermo-Blast continues to refine its process with the support of Primagaz and D.B. Consultants with regard to optimising gas combustion techniques. (author)

  16. Process analysis and optimization models defining recultivation surface mines

    Directory of Open Access Journals (Sweden)

    Dimitrijević Bojan V.

    2015-01-01

    Full Text Available Surface mines are generally open and very dynamic systems influenced by a large number of technical, economic, environmental and safety factors and limitations in all stages of the life cycle. In this paper the dynamic compliance period surface mining phases and of the reclamation. Also, an analysis of the reclamation of surface mines, and process flow management project recultivation is determined by the principled management model reclamation. The analysis of the planning process is defined by the model optimization recultivation surface mine.

  17. Surface Treatment for New Engineered Aerospace Systems

    OpenAIRE

    2012-01-01

    During this EngD project, two pigmented, anti-corrosion polymer/sol-gel hybrid coatings were developed with the aim of producing an eco-friendly alternative to conventional, toxic hexavalent chromate conversion and anodized anti-corrosion alloy treatments for the aircraft manufacturer; Airbus S.A.S. The polymer/sol-gel hybrid coatings were then tested and validated as anti-corrosion coatings on the AA2024-T3 aluminium aerospace alloy and in certain cases, their performance was compared agains...

  18. Pickling Process and Treatment of Black Film on Surface of E110 Alloy Tube%E11O合金管材酸洗工艺与表面黑膜的处理

    Institute of Scientific and Technical Information of China (English)

    李晓维; 王增民; 薛祥义; 袁改焕; 刘蕾; 王建国

    2011-01-01

    通过对E110合金管材酸洗过程中表面黑膜的产生与酸洗液中氢氟酸含量关系的对比实验及试样表面Fˉ残留的检测,探讨了适应于该合金材料酸洗的酸洗液配比.同时,通过酸洗后管材表面黑膜的不同处理方案,确定了去除黑膜的有效方法.实验最终确定的酸洗液配比为25%硝酸+1.5%~2%氢氟酸+73%~73.5%水(体积分数),酸洗工艺为水浸→酸洗→NH4 HC03洗涤→80~90℃热水洗→高压水洗→冷水洗→海绵吹擦.%The relationship between the surface black film and the content ratio of HF acid in acid pickling, and the F" residues on the sample surface of the El 10 alloy tube after acid pickling were analyzed. The suitable acid pickling ratio for this alloy material was also discussed. Meanwhile, the method of dealing with the black film on surface with the different processes was obtained, to provide experimental basis for the alloy pickling process of industrial production. The confirmed acid pickling ratio is 25%HNO3 + 1.5% -2% HF +73% -73.5% water, and the pickling process is water immersion→pickling→NH4HCO3 washing→80-90℃ hot water washing→high pressure water washing → cold water washing →wipe with sponge according to experiments.

  19. Effect of treatment temperature on surface wettability of methylcyclosiloxane layer formed by chemical vapor deposition

    Science.gov (United States)

    Ishizaki, Takahiro; Sasagawa, Keisuke; Furukawa, Takuya; Kumagai, Sou; Yamamoto, Erina; Chiba, Satoshi; Kamiyama, Naosumi; Kiguchi, Takayoshi

    2016-08-01

    The surface wettability of the native Si oxide surfaces were tuned by chemical adsorption of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) molecules through thermal CVD method at different temperature. Water contact angle measurements revealed that the water contact angles of the TMCTS-modified Si oxide surfaces at the temperature of 333-373 K were found to be in the range of 92 ± 2-102 ± 2°. The advancing and receding water contact angle of the surface prepared at 333 K were found to be 97 ± 2/92 ± 2°, showing low contact angle hysteresis surface. The water contact angles of the surfaces prepared at the temperature of 373-413 K increased with an increase in the treatment temperature. When the treatment temperature was more than 423 K, the water contact angles of TMCTS-modified surfaces were found to become more than 150°, showing superhydrophobic surface. AFM study revealed that the surface roughness of the TMCTS-modified surface increased with an increase in the treatment temperature. This geometric morphology enhanced the surface hydrophobicity. The surface roughness could be fabricated due to the hydrolysis/condensation reactions in the gas phase during CVD process. The effect of the treatment temperature on the reactivity of the TMCTS molecules were also investigated using a thermogravimetric analyzer.

  20. Diamond Processing by Focused Ion Beam - Surface Damage and Recovery

    CERN Document Server

    Bayn, Igal; Cytermann, Catherine; Meyler, Boris; Richter, Vladimir; Salzman, Joseph; Kalish, Rafi

    2011-01-01

    The Nitrogen Vacancy color center (NV-) in diamond is of great interest for novel photonic applications. Diamond nano-photonic structures are often implemented using Focused-Ion-Beam (FIB) processing, leaving a damaged surface which has a detrimental effect on the color center luminescence. The FIB processing effect on single crystal diamond surfaces and their photonic properties is studied by Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and photoluminescence (PL). Exposing the processed surface to hydrogen plasma, followed by chemical etching, drastically decreases implanted Ga concentration, resulting in a recovery of the NV- photo-emission and in a significant increase of the NV-/NV0 ratio.

  1. Equilibrium fluctuations in the theory of surface processes on microparticles

    Science.gov (United States)

    Tovbin, Yu. K.

    2010-11-01

    The question of the role of equilibrium fluctuations in the adsorption theory and kinetics of surface processes occurring on the particles of the nanometer size range is discussed. Differences are put forward that need to be introduced to the fluctuation theory of surface processes on microparticles and that generalize Hill's approach to describing the thermodynamic properties of small systems. We show the importance of allowing for the discrete character of adsorption centers on the surfaces and their heterogeneity when describing adsorption isotherms and the rates of adsorption processes.

  2. Laser treatment of a neodymium magnet and analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  3. Process-integrated slag treatment; Prozessintegrierte Schlackebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Koralewska, R.; Faulstich, M. [Technische Univ., Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft

    1998-09-01

    The present study compares two methods of washing waste incineration slag, one with water only, and one which uses additives during wet deslagging. The presented aggregate offers ideal conditions for process-integrated slag treatment. The paper gives a schematic description of the integrated slag washing process. The washing liquid serves to wash out the readily soluble constituents and remove the fines, while the additives are for immobilising heavy metals in the slag material. The study is based on laboratory and semi-technical trials on the wet chemical treatment of grate slag with addition of carbon dioxide and phosphoric acid. [Deutsch] Die dargestellten Untersuchungen beziehen sich auf den Vergleich zwischen einer Waesche der Muellverbrennungsschlacke mit Wasser und unter Zugabe von Additiven im Nassentschlacker. In diesem Aggregat bieten sich optimale Voraussetzungen fuer eine prozessintegrierte Schlackebehandlung. Die Durchfuehrung der integrierten Schlackewaesche wird schematisch gezeigt. Durch die Waschfluessigkeit sollen die leichtloeslichen Bestandteile ausgewaschen und die Feinanteile ausgetragen sowie durch die Additive zusaetzlich die Schwermetalle im Schlackematerial immobilisiert werden. Dazu erfolgten Labor- und halbtechnische Versuche zur nasschemischen Behandlung der Rostschlacken unter Zugabe von Kohlendioxid und Phosphorsaeure. (orig./SR)

  4. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  5. Suppression of surface crystallization on borosilicate glass using RF plasma treatment

    Science.gov (United States)

    Yoo, Sunghyun; Ji, Chang-Hyeon; Jin, Joo-Young; Kim, Yong-Kweon

    2014-10-01

    Surface crystallization on a commercial grade borosilicate glass wafer, Borofloat® 33, is effectively prevented against 3 h of thermal reflow process at 850 °C. Surface plasma treatment with three different reactive gases, CF4, SF6, and Cl2, has been performed prior to the annealing. The effect of plasma treatment on surface ion concentration and nucleation of cristobalite were examined through optical microscope and x-ray photoemission spectroscopy. The dominant cause that suppresses crystallization was verified to be the increase of surface ion concentration of alumina during the plasma treatment. Both CF4 and SF6 treatment of no less than 30 s showed significant efficacy in suppressing crystallization by a factor of more than 112. Average surface roughness and the optical transparency were also enhanced by a factor of 15 and 3, respectively, compared to untreated sample.

  6. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  7. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon

    2012-08-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  8. Experimental Study on Plasma Surface Treatment of Capacitors Film

    Science.gov (United States)

    Ling, Dai; Ting, Yin; Fuchang, Lin; Fei, Yan

    Plasma surface treatment is an optional way to change the electrical performance of the film capacitors used widely in pulse power application. This paper presents the experimental study of glow discharge plasma treatment to polyphenylene sulfide (PPS) film. By using infrared spectra and scanning electron microscope (SEM), the chemical component and microstructure of material surface has detected to be changed with different treatment strength and various discharge gas. After treatment, the film surface tends to be rougher and some sorts of polar radicals or groups found to be introduced. But there is no obvious change of the electrical strength of the film. At last, theoretical analysis has been carried out with polypropylene film experimental treatment results in author's former work.

  9. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  10. Bonding to zirconia using a new surface treatment

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.

    2010-01-01

    Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed tec

  11. Bonding to zirconia using a new surface treatment

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.

    2010-01-01

    Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed

  12. SURFACE TREATMENT OF POLY(ETHYLENE TEREPHTHALATE) FABRIC WITH POLYETHYLENEIMINE

    Institute of Scientific and Technical Information of China (English)

    O.J. ATEIZA; I. HOLME; J.E. McINTYRE

    1997-01-01

    A branched polyethyleneimine (BPEI) was applied to poly(ethylene terephthalate)(PET) fabric to improve its surface moisture absorption so that the fabric becomes less liable to retention of electrostatic charge. The durability of this treatment was assessed by washing and followed by measurement of charge development on the fabric. The treated samples showed improved surface wetting compared to the untreated. The results are consistent with attachment of the BPEI to the PET surface by a cross-linking mechanism.

  13. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  14. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology

    Directory of Open Access Journals (Sweden)

    Pietro Mandracci

    2016-01-01

    Full Text Available Surface modification of dental implants is a key process in the production of these medical devices, and especially titanium implants used in the dental practice are commonly subjected to surface modification processes before their clinical use. A wide range of treatments, such as sand blasting, acid etching, plasma etching, plasma spray deposition, sputtering deposition and cathodic arc deposition, have been studied over the years in order to improve the performance of dental implants. Improving or accelerating the osseointegration process is usually the main goal of these surface processes, but the improvement of biocompatibility and the prevention of bacterial adhesion are also of considerable importance. In this review, we report on the research of the recent years in the field of surface treatments and coatings deposition for the improvement of dental implants performance, with a main focus on the osseointegration acceleration, the reduction of bacterial adhesion and the improvement of biocompatibility.

  15. Early Student Support for Process Studies of Surface Freshwater Dispersal

    Science.gov (United States)

    2016-06-24

    light field is varied to decay exponentially with depth. The spectra of tracer variance are computed for different growth rates and related to the...To) 06/24/2016 FINAL 12/01 /2012-03/31 /2016 4. TITLE AND SUBTITLE sa. CONTRACT NUMBER Early Student Support for Process Studies of Surface...ONRREPORT Early Student Support Process Studies of Surface Freshwater Dispersal June 24, 2016 Amala Mahadevan Woods Hole Oceanographic Institution

  16. High surface area carbon and process for its production

    Science.gov (United States)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  17. Thermophilic aerobic post treatment of anaerobically pretreated paper process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.

    2002-01-01

    Thermophilic waste- or process water treatment increases in importance as industries shift from end-of-pipe treatment towards integrated process water treatment. The need for process water treatment becomes evident as the levels of pollutants in industrial water circuits need to be co

  18. Thermophilic aerobic post treatment of anaerobically pretreated paper process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.

    2002-01-01

    Thermophilic waste- or process water treatment increases in importance as industries shift from end-of-pipe treatment towards integrated process water treatment. The need for process water treatment becomes evident as the levels of pollutants in industrial water

  19. Thermophilic aerobic post treatment of anaerobically pretreated paper process water

    OpenAIRE

    Vogelaar, J.C.T.

    2002-01-01

    Thermophilic waste- or process water treatment increases in importance as industries shift from end-of-pipe treatment towards integrated process water treatment. The need for process water treatment becomes evident as the levels of pollutants in industrial water circuits need to be controlled whereas the intake of fresh water generally diminishes. In the paper and board industry, high process water temperatures prevail and thus water treatment needs to take place under thermophilic conditions...

  20. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology

    OpenAIRE

    Pietro Mandracci; Federico Mussano; Paola Rivolo; Stefano Carossa

    2016-01-01

    Surface modification of dental implants is a key process in the production of these medical devices, and especially titanium implants used in the dental practice are commonly subjected to surface modification processes before their clinical use. A wide range of treatments, such as sand blasting, acid etching, plasma etching, plasma spray deposition, sputtering deposition and cathodic arc deposition, have been studied over the years in order to improve the performance of dental implants. Impro...

  1. Surface treatment and corrosion behaviour of austenitic stainless steel biomaterial

    Science.gov (United States)

    Oravcová, M.; Palček, P.; Zatkalíková, V.; Tański, T.; Król, M.

    2017-02-01

    In this article results from corrosion behaviour of austenitic stainless steel AISI 316L after different surface treatments are published. “As received” surface and surface after grinding resulted in lower resistance to pitting corrosion in physiological solution than electrochemically polished in H3PO4+H2SO4+H2O. Electropolishing also improved the surface roughness in comparison with the “as received” surface. Deposition of Al2O3 nanometric ALD coating improves the corrosion resistance of stainless steel in chloride-containing environment by shifting the breakdown potential toward more positive values. This oxide coating not only improves the corrosion resistance but it also affects the wettability of the surface, resulting in hydrophobic surface.

  2. Creation of surface defects on carbon nanofibers by steam treatment

    Institute of Scientific and Technical Information of China (English)

    Zhengfeng; Shao; Min; Pang; Wei; Xia; Martin; Muhler; Changhai; Liang

    2013-01-01

    A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.

  3. Complicated hollow turbine blades and surface grain refinement process

    Directory of Open Access Journals (Sweden)

    Peng Zhijiang

    2010-05-01

    Full Text Available The control of grain size in superalloys is critical in the manufacture of gas turbine blades. The aim of the present research is to provide the technology for producing complicated hollow turbine blades with fine surface grains and better comprehensive mechanical properties. By melt superheating treatment and coating the internal surfaces of shell mould using a cobalt aluminate-bearing coating material, the influence of cobalt aluminate as inoculant on the surface grain sizes of turbine blade was studied with addition of cobalt aluminate: 0, 35%, 45% – 65% and 100% respectively. At the same time, the effects of cooling circumstances of the blades on surface grain sizes were also experimented under the same addition of cobalt aluminate. The results showed that the melt superheating treatment plays a significant role in the grain size and carbide morphology; and fine surface grains were obtained when the internal surfaces of shell mould were coated using cobalt aluminate coatings. When the addition of cobalt aluminate in coating is between 45% - 65%, and the melt is poured into preheated shell moulds with fine silica sand as backing sand, the blades satisfied the surface grain size requirement is over 90%. In addition, comparisons of the surface grain size and the mechanical properties were also conducted between home-made and foreign-made blades.

  4. Effect of aqueous and dye treatments on the wool fibre surface

    Energy Technology Data Exchange (ETDEWEB)

    Brack, N.; Lamb, R. [The University of New South Wales, Sydney, NSW (Australia). School of Chemistry, Surface Science and Technology; Pham, D.; Phillips, T.; Turner, P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Belmont, VIC (Australia). Wool Technology

    1999-12-01

    Full text: Aqueous treatments are used in many stages of wool processing, such as scouring, shrink-resist treatments, finishing and dyeing. There is incomplete understanding of the full effects of aqueous treatments on the fibre surface. A thorough understanding of such effects is critical for further optimisation of present technology and development of future processing technologies. This paper investigates changes to the fibre surface as a result of exposure to water in terms of the current model of the fibre surface and relates such changes to the effectiveness of further processing stages. The surface chemistry of solvent cleaned, unprocessed fibres which have been exposed to water at elevated temperatures (50-100 deg C) is investigated by a combination of techniques including X-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and field emission scanning electron microscopy (FESEM). This study is extended to investigate the area of dyeing. During the dyeing process, fibres are exposed to elevated temperatures (> 70 deg C) for typically 1 hour. The initial adsorption of dye molecules and subsequent diffusion process and the effect the chemical nature of the fibre surface has on these processes is discussed. Chemical changes to the fibre surface is monitored by XPS, while the physical location of the dye is determined by fluorescence microscopy. Copyright (1999) Australian X-ray Analytical Association Inc.

  5. The influence of surface treatment on the implant roughness pattern

    Directory of Open Access Journals (Sweden)

    Marcio Borges Rosa

    2012-10-01

    Full Text Available An important parameter for the clinical success of dental implants is the formation of direct contact between the implant and surrounding bone, whose quality is directly influenced by the implant surface roughness. A screw-shaped design and a surface with an average roughness of Sa of 1-2 µm showed a better result. The combination of blasting and etching has been a commonly used surface treatment technique. The versatility of this type of treatment allows for a wide variation in the procedures in order to obtain the desired roughness. OBJECTIVES: To compare the roughness values and morphological characteristics of 04 brands of implants, using the same type of surface treatment. In addition, to compare the results among brands, in order to assess whether the type of treatment determines the values and the characteristics of implant surface roughness. MATERIAL AND METHODS: Three implants were purchased directly from each selected company in the market, i.e., 03 Brazilian companies (Biomet 3i of Brazil, Neodent and Titaniumfix and 01 Korean company (Oneplant. The quantitative or numerical characterization of the roughness was performed using an interferometer. The qualitative analysis of the surface topography obtained with the treatment was analyzed using scanning electron microscopy images. RESULTS: The evaluated implants showed a significant variation in roughness values: Sa for Oneplant was 1.01 µm; Titaniumfix reached 0.90 µm; implants from Neodent 0.67 µm, and Biomet 3i of Brazil 0.53 µm. Moreover, the SEM images showed very different patterns for the surfaces examined. CONCCLUSIONS: The surface treatment alone is not able to determine the roughness values and characteristics.

  6. 1983-2004 Heat Treatment Embraces Surface Engineering

    Institute of Scientific and Technical Information of China (English)

    Tom Bell

    2004-01-01

    The origins of surface engineering lie in antiquity, with the practices in ancient Greece and China of hardening,tempering and crude form of case hardening using solid organic materials. The formation of the International Federation for Heat Treatment in 1971 later to include Surface Engineering has been pre-eminent in the globalisation of the rapidly developing discipline of surface engineering. The dominant effect of environmental aspects of surface engineering are discussed regarding the impact for change to light weight materials and the adoption of environmentally friendly plasma technologies.

  7. Surface Wettability and Chemistry of Ozone Perfusion Processed Porous Collagen Scaffold

    Institute of Scientific and Technical Information of China (English)

    Chaozong Liu; Shirley Z. Shen; Zhiwu Han

    2011-01-01

    Crosslinking treatment of collagen has often been used to improve the biological stability and mechanical properties of 3D porous collagen scaffolds. However, accompanying these improvements, the collagen fibril surface becomes hydrophobic nature resulting in a reduced surface wettability. The wetting of the collagen fibril by culture medium is reduced and it is difficult for the medium to diffuse into the 3D structure of a porous collagen scaffold. This paper reports a "perfusion processing"strategy using ozone to improve the surface wettability of chemical crosslinked collagen scaffolds. Surface wettability, surface composition and biological stability were analyzed to evaluate the effectiveness of this surface processing strategy. It was observed that ozone perfusion processing improved surface wettability for both exterior and interior surfaces of the porous 3D collagen scaffold. The improvement in wettability is attributed to the incorporation of oxygen-containing functional groups onto the surface of the collagen fibrils, as confirmed by X-ray Photoelectron Spectroscopy (XPS) analysis. This leads to a significant improvement in water taking capability without compromising the bulk biological stability and mechanical properties, and confirms that ozone perfusion processing is an effective tool to modify the wettability both for interior and exterior surfaces throughout the scaffold.

  8. Treatment of Landfill Leachate by Fenton Oxidation Process

    Institute of Scientific and Technical Information of China (English)

    ZHANGHui; HUANGChin-Pao

    2002-01-01

    Central composite design (CCD), the most popular design of response surface methodology (RSM), was employed to investigate the effect of total organic carbon (TOC) ratio of high molecular weight organic matter (HMW) to low molecular weight organic matter (LMW), the LMW strength and molar ratio of hydrogen peroxide to ferrous ion on landfill leachate treatment by Fention process. Based on the experimental data, a response surface quadratic model in terms of actual factors was obtained through analysis of variance (ANOVA). The model showed that TOC removal increased with the increase of HMW to LMW ratio and the decrease of LMW strength. There existed an optimal hydrogen peroxide to ferrous ion molar ratio for TOC removal.

  9. THE EFFECT OF DIFFERENT SURFACE TREATMENT TECHNIQUES ON THE SURFACE ROUGHNESS OF FELDSPATHIC PORCELAIN

    Directory of Open Access Journals (Sweden)

    Fidan ALAKUŞ-SABUNCUOĞLU

    2016-10-01

    Full Text Available Purpose: This in vitro study compared the effect of five different techniques on the surface roughness of feldspathic porcelain. Materials and Methods: 100 feldspathic porcelain disk samples mounted in acrylic resin blocks were divided into five groups (n=20 according to type of surface treatment: I, hydrofluoric acid (HFA; II, Deglazed surface porcelain treated with Neodymium:yttrium- aluminum-garnet (Nd:YAG laser; III, Deglazed porcelain surface treated with Erbium:yttrium-aluminum-garnet (Er:YAG laser; IV, Glazed porcelain surface treated with Neodymium:yttrium-aluminum-garnet (Nd:YAG laser, V; Glazed porcelain surface treated with Erbium:yttrium-aluminum-garnet (Er:YAG laser. The surface roughness of porcelain was measured with a noncontact optical profilometer. For each porcelain sample, two readings were taken across the sample, before porcelain surface treatment (T1 and after porcelain surface treatment (T2. The roughness parameter analyzed was the average roughness (Ra. Statistical analysis was performed using Kolmogorov–Smirnov and Wilcoxon signed rank test. Results: Mean Ra values for each group were as follows: I, 12.64±073; II, 11.91±0.74; III, 11.76±0.59; IV, 3.82 ±0.65; V, 2.77±0.57. For all porcelain groups, the lowest Ra values were observed in Group V. The highest Ra values were observed for Group I, with a significant difference with the other groups. Kolmogorov–Smirnov showed significant differences among groups (p<0.001. Conclusion: Surface treatment of porcelain with HFA resulted in significantly higher Ra than laser groups. Both Er:YAG laser or Nd:YAG laser on the deglaze porcelain surface can be recommended as viable treatment alternatives to acid etching.

  10. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleema, N., E-mail: saleema.noormohammed@imi.cnrc-nrc.gc.ca [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), University of Quebec at Chicoutimi (UQAC), 555 Boulevard University East, Saguenay, Quebec G7H 2B1 (Canada); Paynter, R.W. [Institut National de la Recherche Scientifique Energie Materiaux Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Gallant, D.; Eskandarian, M. [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. Black-Right-Pointing-Pointer Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. Black-Right-Pointing-Pointer Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. Black-Right-Pointing-Pointer Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure

  11. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Science.gov (United States)

    Lai, Jiangnan; Sunderland, Bob; Xue, Jianming; Yan, Sha; Zhao, Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang, Yugang

    2006-03-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C dbnd O bond is the key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  12. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lai Jiangnan [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Sunderland, Bob [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Xue Jianming [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Yan, Sha [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Zhao Weijiang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Folkard, Melvyn [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Michael, Barry D. [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Wang Yugang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China)]. E-mail: ygwang@pku.edu.cn

    2006-03-15

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  13. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    S K Rajappa; T V Venkatesha; B M Praveen

    2008-02-01

    The surface treatment of zinc and its corrosion inhibition was studied using a product (BTSC) formed in the reaction between benzaldehyde and thiosemicarbozide. The corrosion behaviour of chemically treated zinc surface was investigated in aqueous chloride–sulphate medium using galvanostatic polarization technique. Zinc samples treated in BTSC solution exhibited good corrosion resistance. The measured electrochemical data indicated a basic modification of the cathode reaction during corrosion of treated zinc. The corrosion protection may be explained on the basis of adsorption and formation of BTSC film on zinc surface. The film was binding strongly to the metal surface through nitrogen and sulphur atoms of the product. The formation of film on the zinc surface was established by surface analysis techniques such as scanning electron microscopy (SEM–EDS) and Fourier transform infrared spectroscopy (FTIR).

  14. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    Science.gov (United States)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  15. K Basin sludge treatment process description

    Energy Technology Data Exchange (ETDEWEB)

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  16. Molecular Dynamics Simulations of Surface Processes: Oxygen Recombination on Silica Surfaces at High Temperature

    Science.gov (United States)

    2007-07-01

    size-scalable cluster approach with SixOy clusters of increasing size cleaved from the β- cristobalite unit cell. In this study the hybrid Hartree...values of the β- cristobalite cell and extending the Molecular Dynamics Simulations of Surface Processes: Oxygen Recombination on Silica Surfaces at... cristobalite surface is reported as a function of the distance of the N atom from the Si active atom. The dashed line shows the interaction

  17. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...... ~15 to 30 minutes, indicating that the tablet surface was homogeneously covered with film coating. The surface roughness started to increase from the beginning of the coating process, and the increase in the roughness broke off after 30 minutes of spraying. The results clearly showed that the surface...

  18. Electrode process of diethyldithiocarbamate on surface of pyrrhotite

    Institute of Scientific and Technical Information of China (English)

    LI Wei-zhong; QIN Wen-qing; QIU Guan-zhou; DONG Qing-hai

    2005-01-01

    The electrode process of diethyldithiocarbamate on the surface of pyrrhotite was studied using systematic electrochemical analysis, including cyclic voltammetry, chronopotentiometry and galvanostatic. Experimental results show that tetraethylthioram disulphide(TETD) is electrodeposited on pyrrhotite electrode surface in the presence of 1.0×10-4 mol/L diethyldithiocarbamate when the electrode potential is higher than 0.25 V. The electrochemical kinetics parameters of the electrode process of diethyldithiocarbamate on surface of pyrrhotite are calculated as follows: the exchange current density is 2.48 μA/cm2, and the transmission coefficient is 0.46. The electrodeposition includes two steps electrochemical reaction. The first reaction is electrochemical adsorption of diethyldithiocarbamate ion, then the adsorbed ion associates with a diethyldithiocarbamate ion from the solution and forms tetraethylthioram disulphide on the surface of pyrrhotite.

  19. Surface processes during purification of InP quantum dots

    OpenAIRE

    2014-01-01

    Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during ...

  20. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    N L Singh; S M Pelagade; R S Rane; S Mukherjee; U P Deshpande; V Ganeshan; T Shripathi

    2013-01-01

    Polyethersulphone (PES) was modified to improve the hydrophilicity of its surface, which in turn helps in improving its adhesive property. The modified PES surface was characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Vicker’s microhardness measurement. The contact angles of the modified PES reduces from 49° to 10° for water. The surface free energy (SFE) calculated from measured contact angles increases from 66.3 to 79.5 mJ/m2 with the increase in plasma treatment time. The increase in SFE after plasma treatment is attributed to the functionalization of the polymer surface with hydrophilic groups. The XPS analysis shows that the ratio of O/C increases from 0.177 to 0.277 for modified PES polymer. AFM shows that the average surface roughness increases from 6.9 nm to 23.7 nm due to the increase in plasma treatment time. The microhardness of the film also increases with plasma treatment.

  1. Surface Modification of Medical Polyurethane by Plasma Treatment

    Science.gov (United States)

    Li, Dejun; Zhao, Jie; Gu, Hanqing; Lu, Mozhu; Ding, Fuqing; Hu, Jianfang

    1992-02-01

    The wettability and surface structure of plasma treatment on medical polyurethane were studied. Two kinds of gas, N2, Ar, were used to create the low-temperature plasma under low pressure. The wettability was investigated by means of the sessile drop method using water, the results show that the contact angle of water decreases from 78.8° to 61.9° as the treatment time increases. The results of electron spectroscopy for chemical analysis indicate that original chemical bonds were broken up after plasma treatment, which was the main reason for the surface modification. At same time, the results of electron spinning resonance show that the amounts of radicals did not increase significantly after treatment, which is advantageous to clinical practice of polyurethane.

  2. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  3. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  4. Contribution of cloud condensate to surface rainfall process

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yushu; CUI Xiaopeng; LI Xiaofan

    2006-01-01

    Contribution of cloud condensate to surface rainfall processes is investigated in a life span of tropical convection based on hourly data from a two-dimensional cloud resolving simulation. The model is forced by the large-scale vertical velocity, zonal wind and horizontal advections obtained from tropical ocean global atmosphere coupled ocean-atmosphere response experiment (TOGA COARE). The results show that during the genesis, development, and decay of tropical convection, calculations with water vapor overestimate surface rain rate, and cloud condensate plays an important role in correcting overestimation in surface rain rates. The analysis is carried out in deep convective clouds and anvil clouds during the development of tropical convection. The surface rain rates calculated with water vapor in deep convective clouds and anvil clouds have similar magnitudes, the large surface rain rate appears in deep convective clouds due to the consumption of water hydrorneteors whereas the small surface rain rate occurs in anvil clouds because of the gain of ice hydrometeors. Further analysis of the grid data shows that the surface rain rates calculated with water vapor and with cloud condensate are negatively correlated with the correlation coefficient of - 0.85, and the surface rain rate calculated with cloud condensate is mainly contributed to the water hydrometeors in the tropical deep convective regime.

  5. Optimization of electrocoagulation process for the treatment of landfill leachate

    Science.gov (United States)

    Huda, N.; Raman, A. A.; Ramesh, S.

    2017-06-01

    The main problem of landfill leachate is its diverse composition comprising of persistent organic pollutants (POPs) which must be removed before being discharge into the environment. In this study, the treatment of leachate using electrocoagulation (EC) was investigated. Iron was used as both the anode and cathode. Response surface methodology was used for experimental design and to study the effects of operational parameters. Central Composite Design was used to study the effects of initial pH, inter-electrode distance, and electrolyte concentration on color, and COD removals. The process could remove up to 84 % color and 49.5 % COD. The experimental data was fitted onto second order polynomial equations. All three factors were found to be significantly affect the color removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was conducted to obtain the optimum process performance. Further work will be conducted towards integrating EC with other wastewater treatment processes such as electro-Fenton.

  6. Surface treatment of nickel substrate for the preparation of BSCCO film through sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Yang Huazhe, E-mail: hzyang@mail.cmu.edu.cn [Department of Biophysics, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Yu Xiaoming [Institute of Materials Physics and Chemistry, School of Sciences, Northeastern University, Shenyang 110819 (China); Ji Yang [Stomatology Department of the General Hospital of Shenyang Military Area Command, Shenyang, 110840 (China); Qi Yang, E-mail: qiyang@imp.neu.edu.cn [Institute of Materials Physics and Chemistry, School of Sciences, Northeastern University, Shenyang 110819 (China)

    2012-03-15

    A modified degreasing-oxidization process was devised and settled to treat the surface of nickel (Ni) substrates, and BSCCO films were prepared on the treated NiO/Ni substrates by sol-gel method. X-ray diffraction (XRD) and optical microscopy were adopted to clarify the function of different treatment on phase formation and wettability of NiO/Ni substrates. Differential thermal analysis and thermal gravimetry analysis were adopted to confirm the desirable heat treatment process. XRD and scanning electron microscopy were adopted to investigate the phase constituent and surface morphology of BSCCO films. Results demonstrate that both the surface wettability of the substrate to sol and the lattice matching between the substrate and BSCCO can be improved through the modified treatment, which are favorable for the preparation of BSCCO films.

  7. An Experimental Study of the Dropwise Condensation on Physically Processed Surface

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jaeyoung; Chang, Soonheung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Watanabe, N.; Sambuichi, T.; Shiota, D.; Aritomi, M. [Tokyo Institute of Technology, Tokyo (Japan)

    2013-05-15

    Recent research by Kawakubo et al. derived empirical condensation heat transfer correlation suitable for wider range of operating condition in presence of non-condensable gas. However, their proposals of PCCS are focused on plane tube surface. To design better PCCS heat exchanger with high heat transfer coefficient new treatment on condensation surface can be considered in order to maintain dropwise condensation, the heat transfer coefficient of which has an order of magnitude larger than those of film condensation. Advanced research measure dropwise condensation heat transfer coefficient of Au and Cr coated surface based on number of droplet and droplet growth rate. However, coated surface is not desirable in power plant due to its duration of few years. On the other hand, physical processing (micro holes and patterns) on stainless steel and titanium surface is expected to perform better heat transfer, also is durable for the whole reactor lifetime. Since there is no published research about dropwise condensation for physically processed surface on SUS and Ti, the purposes of this research are to measure the condensation heat transfer coefficient and analyze its mechanism of enhanced heat transfer of treated SUS and Ti commonly used to nuclear plant. In the comparison of theoretical equation and experiment, it shows same result that heat transfer coefficient is proportional to maximum droplet diameter power to -0.321. Moreover, in the comparison of bare and processed surface, heat transfer coefficient decreases in processed surface.

  8. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts...... for subsequent polymer replication by injection moulding was analyzed. New tooling solutions to produce nano structured mould surfaces were investigated. Experiments based on three different chemical-based-batch techniques to establish surface nano (i.e. sub-μm) structures on large areas were performed. Three...... approaches were selected: (1) using Ø500 nm nano beads deposition for direct patterning of a 4” silicon wafer; (2) using Ø500 nm nano beads deposition as mask for 4” silicon wafer etching and subsequent nickel electroplating; (3) using the anodizing process to produce Ø500 nm structures on a 30x80 mm2...

  9. Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Turski, M.; Clitheroe, S.; Withers, P.J. [Manchester University, School of Materials, Manchester (United Kingdom); Evans, A.D. [Paul Scherrer Institut, Villigen-PSI (Switzerland); Rodopoulos, C. [University of Patras, Patras (Greece); Hughes, D.J. [Institut Laue Langevin, Grenoble (France)

    2010-06-15

    Four mechanical surface treatments have been considered for the application to austenitic stainless steel structures. Shot peening (SP), laser shock peening (LSP), ultrasonic impact treatment (UIT) and water jet cavitation peening (WJCP), also known as cavitation shotless peening (CSP), have been applied to 8 mm thick Type 304 austenitic stainless steel coupons. This study considers the merits of each of these mechanical surface treatments in terms of their effect on the surface roughness, microstructure, level of plastic work and through thickness residual stress distribution. Microstructural studies have revealed the formation of martensite close to the treated surface for each process. Residual stress measurements in the samples show compressive stresses to a significantly greater depth for the LSP, UIT and WJCP samples compared to the more conventional SP treated sample. (orig.)

  10. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    Science.gov (United States)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng

    2016-09-01

    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  11. 40 CFR 268.4 - Treatment surface impoundment exemption.

    Science.gov (United States)

    2010-07-01

    ... residues may not be placed in any other surface impoundment for subsequent management. (iv) Recordkeeping... exemption. 268.4 Section 268.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...), the residues from treatment are analyzed, as specified in § 268.7 or § 268.32, to determine if they...

  12. Inverse Calculation of Power Density for Laser Surface Treatment

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be ca

  13. Inverse calculation of power density for laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be

  14. Inverse calculation of power density for laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.

    2000-01-01

    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be ca

  15. Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vušković, L

    2014-01-01

    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence...

  16. Sunspot Groups as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    Μ. Η. Gokhale

    2000-09-01

    Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last decade or so.

  17. Processes of India's offshore summer intraseasonal sea surface temperature variability

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, N.; Lengaigne, M.; Gopalakrishna, V.V.; Vialard, J.; Pous, S.; Peter, A-C.; Durand; Naik, Shweta

    ., vol.63; 2013; 329-346 Processes of India’s offshore summer intraseasonal sea surface temperature variability K. Nisha1, M. Lengaigne1,2, V.V. Gopalakrishna,1 J. Vialard2, S. Pous2, A.-C. Peter2, F. Durand3, S.Naik1 1. NIO, CSIR, Goa, India 2...

  18. EXPERIMENTAL VALIDATION OF CUMULATIVE SURFACE LOCATION ERROR FOR TURNING PROCESSES

    Directory of Open Access Journals (Sweden)

    Adam K. Kiss

    2016-02-01

    Full Text Available The aim of this study is to create a mechanical model which is suitable to investigate the surface quality in turning processes, based on the Cumulative Surface Location Error (CSLE, which describes the series of the consecutive Surface Location Errors (SLE in roughing operations. In the established model, the investigated CSLE depends on the currently and the previously resulted SLE by means of the variation of the width of cut. The phenomenon of the system can be described as an implicit discrete map. The stationary Surface Location Error and its bifurcations were analysed and flip-type bifurcation was observed for CSLE. Experimental verification of the theoretical results was carried out.

  19. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  20. Optimum Design Of Addendum Surfaces In Sheet Metal Forming Process

    Science.gov (United States)

    Debray, K.; Sun, Z. C.; Radjai, R.; Guo, Y. Q.; Dai, L.; Gu, Y. X.

    2004-06-01

    The design of addendum surfaces in sheet forming process is very important for the product quality, but it is very time-consuming and needs tedious trial-error corrections. In this paper, we propose a methodology to automatically generate the addendum surfaces and then to optimize them using a forming modelling solver. The surfaces' parameters are taken as design variables and modified in course of optimization. The finite element mesh is created on the initial addendum surfaces and mapped onto the modified surfaces without remeshing operation. The Feasible Sequential Quadratic Programming (FSQP) is adopted as our algorithm of optimization. Two objective functions are used: the first one is the thickness function to minimize the thickness variation on the workpiece ; the second one is the appearance function aiming to avoid the scratching defects on the external surfaces of panels. The FSQP is combined with our "Inverse Approach" or "One Step Approach" which is a very fast forming solver. This leads to a very efficient optimization procedure. The present methodology is applied to a square box. The addendum surfaces are characterised by four geometrical variables. The influence of optimization criteria is studied and discussed.

  1. Biofunctionalization of titanium surfaces for osseintegration process improvement

    Energy Technology Data Exchange (ETDEWEB)

    Sevilla, P; Godoy, M; Salvagni, E; Rodriguez, D; Gil, F J, E-mail: pablo.sevilla@upc.edu

    2010-11-01

    This study aims to improve the osseointegration of titanium implants through surface immobilization of peptides that induce a beneficial biological response. This was carried out biofunctionalizating titanium surfaces by silanization and subsequent covalent binding of a peptide with a sequence that promotes cell adhesion. Objective: The development of a new technique of immobilization of oligopeptides on the surface of titanium by using 3-chloropropyltrietoxisilane (CPTES) as bonding agent between the surface of titanium and the peptide. Materials and methods: A physicochemical characterization of the surfaces through the techniques of XPS, ToF-SIMS and contact angle was performed. Also cell adhesion studies have been conducted to evaluate in vitro biological response. Results: Through the process of silanization the titanium surface is completely covered with CPTES, which allows the subsequent accession of oligopeptides. The cell adhesion results show a higher cell adhesion and cell extension on biofunctionalized samples. Conclusions: We developed a system of covalent binding of oligopeptides on titanium surfaces that can modify the biological response of the attached cells.

  2. Biofunctionalization of titanium surfaces for osseintegration process improvement

    Science.gov (United States)

    Sevilla, P.; Godoy, M.; Salvagni, E.; Rodríguez, D.; Gil, F. J.

    2010-11-01

    This study aims to improve the osseointegration of titanium implants through surface immobilization of peptides that induce a beneficial biological response. This was carried out biofunctionalizating titanium surfaces by silanization and subsequent covalent binding of a peptide with a sequence that promotes cell adhesion. Objective: The development of a new technique of immobilization of oligopeptides on the surface of titanium by using 3-chloropropyltrietoxisilane (CPTES) as bonding agent between the surface of titanium and the peptide. Materials and methods: A physicochemical characterization of the surfaces through the techniques of XPS, ToF-SIMS and contact angle was performed. Also cell adhesion studies have been conducted to evaluate in vitro biological response. Results: Through the process of silanization the titanium surface is completely covered with CPTES, which allows the subsequent accession of oligopeptides. The cell adhesion results show a higher cell adhesion and cell extension on biofunctionalized samples. Conclusions: We developed a system of covalent binding of oligopeptides on titanium surfaces that can modify the biological response of the attached cells.

  3. Surface Treatment of PET Nonwovens with Atmospheric Plasma

    Science.gov (United States)

    Li, Shufang

    2013-01-01

    In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.

  4. Hardening Effect on Machined Surface for Precise Hard Cutting Process with Consideration of Tool Wear

    Institute of Scientific and Technical Information of China (English)

    YANG Yongheng

    2014-01-01

    During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.

  5. An alternative treatment of occlusal wear: Cast metal occlusal surface

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2012-01-01

    Full Text Available Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal surfaces, however, these methods are time-consuming, expensive and requires many cumbersome steps. These methods also requires the patient to be without the prosthesis for the time during which the laboratory procedures are performed. This article presents a quick, simple and relatively inexpensive procedure for construction of metal occlusal surfaces on complete dentures.

  6. Modeling of electrohydrodynamic drying process using response surface methodology.

    Science.gov (United States)

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-05-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box-Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM.

  7. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    Science.gov (United States)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  8. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  9. A Pulse Power Modulator System for Commercial High Power Ion Beam Surface Treatment Applications

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, D.M.; Cockreham, B.D.; Dragt, A.J.; Ives, H.C.; Neau, E.L.; Reed, K.W.; White, F.E.

    1999-05-24

    The Ion Beam Surface Treatment (lBESTrM) process utilizes high energy pulsed ion beams to deposit energy onto the surface of a material allowing near instantaneous melting of the surface layer. The melted layer typically re-solidifies at a very rapid rate which forms a homogeneous, fine- grained structure on the surface of the material resulting in significantly improved surface characteristics. In order to commercialize the IBESTTM process, a reliable and easy-to-operate modulator system has been developed. The QM-I modulator is a thyratron-switched five-stage magnetic pulse compression network which drives a two-stage linear induction adder. The adder provides 400 kV, 150 ns FWHM pulses at a maximum repetition rate of 10 pps for the acceleration of the ion beam. Special emphasis has been placed upon developing the modulator system to be consistent with long-life commercial service.

  10. Hybrid modelling of anaerobic wastewater treatment processes.

    Science.gov (United States)

    Karama, A; Bernard, O; Genovesi, A; Dochain, D; Benhammou, A; Steyer, J P

    2001-01-01

    This paper presents a hybrid approach for the modelling of an anaerobic digestion process. The hybrid model combines a feed-forward network, describing the bacterial kinetics, and the a priori knowledge based on the mass balances of the process components. We have considered an architecture which incorporates the neural network as a static model of unmeasured process parameters (kinetic growth rate) and an integrator for the dynamic representation of the process using a set of dynamic differential equations. The paper contains a description of the neural network component training procedure. The performance of this approach is illustrated with experimental data.

  11. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    OpenAIRE

    Fatma Yalcinkaya; Baturalp Yalcinkaya; Adam Pazourek; Jana Mullerova; Martin Stuchlik; Jiri Maryska

    2016-01-01

    Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was...

  12. Specifics of surface runoff contents and treatment in large cities

    Directory of Open Access Journals (Sweden)

    V.N. Chechevichkin

    2014-10-01

    Full Text Available The degree of surface runoff pollution in large cities has been assessed in modern conditions in the case study of production sites of St. Petersburg. Increased content of petroleum derivatives and heavy metal ions both in rainwater runoff and especially in snowmelt runoff has been revealed. It has been established that the composition of infiltration runoff from the newly built-up sites within the city limits commonly depends on their background, especially in the places of former unauthorized dumps, which are usually buried under the building sites. The content of petroleum derivatives in such surface runoff can exceed significantly their content in the runoff of landfills. Most petroleum derivatives appear in the surface runoff as emulsified and associated with suspended matters forms, which are a source of secondary pollution of waste water as it is accumulated in settlers and traps of local waste water treatment plants. Filtrational-sorptive technologies of surface runoff treatment are the most effective and simple in terms of both treatment and waste disposal.

  13. Plasma treatment of polystyrene thin films affects more than the surface.

    Science.gov (United States)

    Calchera, Angela R; Curtis, Alexander D; Patterson, James E

    2012-07-25

    Plasma treatment of polymer materials introduces chemical functionalities and modifies the material to make the native hydrophobic surface more hydrophilic. It is generally assumed that this process only affects the surface of the material. We used vibrationally resonant sum-frequency generation spectroscopy to observe changes in the orientation of phenyl groups in polystyrene (PS) thin films on various substrates before and after plasma treatment. VR-SFG selectively probes regions of broken symmetry, such as surfaces, but can also detect the emergence of anisotropy. On dielectric substrates, such as fused silica, the spectroscopic peak corresponding to the symmetric stretching (ν2) mode of the phenyl rings was undetectable after plasma treatment, showing that surface phenyl rings were altered. This peak also diminished on conducting substrates, but the intensity of another peak corresponding to the same mode in a bulklike environment increased significantly, suggesting that plasma treatment induces partial ordering of the bulk polymer. This ordering is seen on conducting substrates even when the polymer is not directly exposed to the plasma. Annealing reverses these effects on the polystyrene bulk; however, the surface phenyl rings do not return to the orientation observed for untreated films. These results call into question the assumption that the effects of plasma treatment are limited to the free surface and opens up other possibilities for material modification with low-temperature plasmas.

  14. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  15. Introduction of Enhanced Compressive Residual Stress Profiles in Aerospace Components Using Combined Mechanical Surface Treatments

    Science.gov (United States)

    Gopinath, Abhay; Lim, Andre; Nagarajan, Balasubramanian; Cher Wong, Chow; Maiti, Rajarshi; Castagne, Sylvie

    2016-11-01

    Mechanical surface treatments such as Shot Peening (SP) and Deep Cold Rolling (DCR) are being used to introduce Compressive Residual Stress (CRS) at the surface and subsurface layers of aerospace components, respectively. This paper investigates the feasibility of a combined introduction of both the surface and sub-surface compressive residual stress on Ti6Al4V material through a successive application of the two aforementioned processes, one after the other. CRS profiles between individual processes were compared to that of combination of processes to validate the feasibility. It was found out that shot peening introduces surface compressive residual stress into the already deep cold rolled sample, resulting in both surface and sub-surface compressive residual stresses in the material. However the drawback of such a combination would be the increased surface roughness after shot peening a deep cold rolled sample which can be critical especially in compressor components. Hence, a new technology, Vibro-Peening (VP) may be used as an alternative to SP to introduce surface stress at reduced roughness.

  16. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  17. Neutralization process of Xeq+ ion grazing on Al(111) surface

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A code has been developed to simulate the neutralization and grazing process of slow highly charged ion Xeq+ on Al(111) surface under the classical-over-the-barrier model. The image energy gain of Xeq+ ions are calculated and compared with experiment data. The simulation results of image energy gain are in good agreement with the experiment data. Meanwhile, in the present work, the reflection coefficient of incident Xeq+ on Al(111) surface as a function of the incidence angle, energy and charge state is also studied.

  18. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  19. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  20. Effect of Surface Treatments on Leakage of Zirconium Oxide Ceramics

    OpenAIRE

    Göknil Alkan Demetoğlu; Mustafa Zortuk

    2016-01-01

    Objective: The aim of this pilot study was to compare the effects of pretreatments on leakage of zirconia ceramics. Materials and Methods: The speciments divided into 6 groups that were subsequently treated as follows: group 1, no treatment (control); group 2, the ceramic surfaces were airborne-particle abraded with 110 μm aluminum-oxide (Al2O3) particles; group 3, after abrasion of the surfaces with 110 μm Al2O3 particles, silica coating using 30 μm (Al2O3) particles modified by silica (r...

  1. Model application for acid mine drainage treatment processes

    Directory of Open Access Journals (Sweden)

    Nantaporn Noosai, Vineeth Vijayan, Khokiat Kengskool

    2014-01-01

    Full Text Available This paper presents the utilization of the geochemical model, PHREEQC, to investigate the chemical treatment system for Acid Mine Drainage (AMD prior to the discharge. The selected treatment system consists of treatment processes commonly used for AMD including settling pond, vertical flow pond (VFP and caustic soda pond were considered in this study. The use of geochemical model for the treatment process analysis enhances the understanding of the changes in AMD’s chemistry (precipitation, reduction of metals, etc. in each process, thus, the chemical requirements (i.e., CaCO3 and NaOH for the system and the system’s treatment efficiency can be determined. The selected treatment system showed that the final effluent meet the discharge standard. The utilization of geochemical model to investigate AMD treatment processes can assist in the process design.

  2. Surface grain refinement mechanism of SMA490BW steel cross joints by ultrasonic impact treatment

    Institute of Scientific and Technical Information of China (English)

    Bo-lin He; Lei Xiong; Ming-ming Jiang; Ying-xia Yu; Li Li

    2017-01-01

    Ultrasonic impact treatment (UIT) is a postweld technique for improving the fatigue strength of welded joints. This technique makes use of ultrasonic vibration to impact and plastically deform a weld toe and can achieve surface grain refinement of the weld toe, which is considered as the main reason for the improvement of fatigue strength. In this paper, the microstructure of the surface of a treated weld toe was observed by metallographic microscopy and transmission electron microscopy (TEM). The results show that UIT could produce severe plastic deformation on the surface layer of the weld toe and the maximum depth of plastic deformation extended to approximately 260 μm beneath the treated surface. Repeated processing could exacerbate the plastic deformation on the surface layer, resulting in finer grains. We can conclude that the surface grain refinement mechanism of SMA490BW welded joints is related to the high density of dislocation tangles and dislocation walls.

  3. Some Aspects of Surface Water Treatment Technology in Tirana Drinking Water Treatment Plant

    OpenAIRE

    , Tania Floqi; , Aleksandër Trajçe; , Daut Vezi

    2009-01-01

    Tirana’s Bovilla treatment plant was the Şrst of its kind for Albania, which treats surface water. The input water comes from the Bovilla artiŞcial lake, around which, the presence of villages induces pollution in the surface water and therefore affects the efŞciency of treatment plant and consequently the quality of drinking water. The treatment plant is a simple conventional system and includes pre-oxidation, coagulation, şocculation & sedimentation, fast Şltration, post-oxidation. ...

  4. Ambient plasma treatment of silicon wafers for surface passivation recovery

    Science.gov (United States)

    Ge, Jia; Prinz, Markus; Markert, Thomas; Aberle, Armin G.; Mueller, Thomas

    2017-08-01

    In this work, the effect of an ambient plasma treatment powered by compressed dry air on the passivation quality of silicon wafers coated with intrinsic amorphous silicon sub-oxide is investigated. While long-time storage deteriorates the effective lifetime of all samples, a short ambient plasma treatment improves their passivation qualities. By studying the influence of the plasma treatment parameters on the passivation layers, an optimized process condition was identified which even boosted the passivation quality beyond its original value obtained immediately after deposition. On the other hand, the absence of stringent requirement on gas precursors, vacuum condition and longtime processing makes the ambient plasma treatment an excellent candidate to replace conventional thermal annealing in industrial heterojunction solar cell production.

  5. Marangoni driven turbulence in high energy surface melting processes

    CERN Document Server

    Kidess, Anton; Righolt, Bernhard W; Kleijn, Chris R

    2016-01-01

    Experimental observations of high-energy surface melting processes, such as laser welding, have revealed unsteady, often violent, motion of the free surface of the melt pool. Surprisingly, no similar observations have been reported in numerical simulation studies of such flows. Moreover, the published simulation results fail to predict the post-solidification pool shape without adapting non-physical values for input parameters, suggesting the neglect of significant physics in the models employed. The experimentally observed violent flow surface instabilities, scaling analyses for the occurrence of turbulence in Marangoni driven flows, and the fact that in simulations transport coefficients generally have to be increased by an order of magnitude to match experimentally observed pool shapes, suggest the common assumption of laminar flow in the pool may not hold, and that the flow is actually turbulent. Here, we use direct numerical simulations (DNS) to investigate the role of turbulence in laser melting of a st...

  6. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhi, E-mail: c2002z@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Li Feng [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Hao Limei [Department of Applied Physics, Xi' an University of Science and Technology, Xi' an 710054 (China); Chen Anqi; Kong Youchao [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China)

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl{sub 2}{center_dot}4H{sub 2}O), myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163 Degree-Sign and rolling angle is less than 3 Degree-Sign . Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  7. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Science.gov (United States)

    Chen, Zhi; Li, Feng; Hao, Limei; Chen, Anqi; Kong, Youchao

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163° and rolling angle is less than 3°. Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  8. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  9. Mechanical and tribological properties of ion beam-processed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Padma [Univ. of Maryland, College Park, MD (United States)

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  10. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    S Prabhu; B K Vinayagam

    2010-12-01

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great challenge in the manufacturing industry. Finishing of micro components such as micro-moulds, micro-lenses and micro-holes need different processing techniques. Conventional finishing methods used so far become almost impossible or cumbersome. In this paper, a nano material especially multi wall carbon nano tube is used in the machining process like grinding to improve the surface characteristics from micro to nano level.

  11. Ions Bombardment in Thin Films and Surface Processing

    Institute of Scientific and Technical Information of China (English)

    许沭华; 任兆杏

    2003-01-01

    Ions bombardment is very important in thin films and surface processing. The ionenergy and ion flux are two important parameters in ion bombardment. The ion current densitymainly dependent on the plasma density gives the number of energetic ions bombarding thesubstrate. The self-bias voltage in plasma sheath accelerates plasma ions towards the substrate.RF discharge can increase plasma density and RF bias can also provide the insulator substrate witha plasma sheath. In order to choose and control ion energy, ion density, the angle of incidence,and ion species, ion beam sources are used. New types of electrodeless ion sources (RF, MW,ECR-MW) have been introduced in detail. In the last, the effects of ion bombardment on thinfilms and surface processing are presented.

  12. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    Science.gov (United States)

    Lee, Hooseok; Ohsawa, Isamu; Takahashi, Jun

    2015-02-01

    We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  13. Development of sustainable paper coatings using nanoscale industrial surface processing

    DEFF Research Database (Denmark)

    Markert, Frank; Breedveld, Leo; Lahti, Johanna

    developers, production industries, consumers and authorities. Part of the consideration is the public perception of the new product and the processes to manufacture it, which is an important aspect for products being developed using nanoscale surface processing. Such considerations are integrated...... to inform the public about the processes and benefits of the prototype products, and partly to give feedback to the project partners on the environmental and safety aspects of the different material, processing, use and waste stages. By that being a link between the industrial project partners developing...... in the PlasmaNice project, as environmental and social aspects are addressed using methods like life cycle check (LCC), life cycle assessment (LCA), and industrial risk assessment (RA) within the boundary of an economical production for different market segments. The results are intended to be used partly...

  14. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    Science.gov (United States)

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  15. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  16. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    Science.gov (United States)

    Stráský, Josef; Havlíková, Jana; Bačáková, Lucie; Harcuba, Petr; Mhaede, Mansour; Janeček, Miloš

    2013-09-01

    Presented work aims at multi-method characterization of combined surface treatment of Ti-6Al-4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  17. Probing Interfacial Processes on Graphene Surface by Mass Detection

    Science.gov (United States)

    Kakenov, Nurbek; Kocabas, Coskun

    2013-03-01

    In this work we studied the mass density of graphene, probed interfacial processes on graphene surface and examined the formation of graphene oxide by mass detection. The graphene layers were synthesized by chemical vapor deposition method on copper foils and transfer-printed on a quartz crystal microbalance (QCM). The mass density of single layer graphene was measured by investigating the mechanical resonance of the QCM. Moreover, we extended the developed technique to probe the binding dynamics of proteins on the surface of graphene, were able to obtain nonspecific binding constant of BSA protein of graphene surface in aqueous solution. The time trace of resonance signal showed that the BSA molecules rapidly saturated by filling the available binding sites on graphene surface. Furthermore, we monitored oxidation of graphene surface under oxygen plasma by tracing the changes of interfacial mass of the graphene controlled by the shifts in Raman spectra. Three regimes were observed the formation of graphene oxide which increases the interfacial mass, the release of carbon dioxide and the removal of small graphene/graphene oxide flakes. Scientific and Technological Research Council of Turkey (TUBITAK) grant no. 110T304, 109T209, Marie Curie International Reintegration Grant (IRG) grant no 256458, Turkish Academy of Science (TUBA-Gebip).

  18. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    A gliding arc is a plasma generated between diverging electrodes and extended by a high speed gas flow. It can be operated in air at atmospheric pressure. It potentially enables selective chemical processing with high productivity, and is useful for adhesion improvement of material surfaces....... The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...... that ultrasonic irradiation reduced the OH rotational temperature of the gliding arc. The wettability of the GFRP surface was significantly improved by the plasma treatment without ultrasonic irradiation, and tended to improve furthermore at higher power to the plasma. Ultrasonic irradiation during the plasma...

  19. Assessment of airborne nanoparticles present in industry of aluminum surface treatments.

    Science.gov (United States)

    Santos, R J; Vieira, M T

    2017-03-01

    Conventional industrial processes are emission sources of unintended nanoparticles which are potentially harmful for the environment and human health. The aim of this study is to assess airborne nanoparticle release from aluminum surface treatment processes in various workplaces. Two direct reading instruments, a scanning mobility particle sizer to measure size distribution and a nanoparticle surface area monitoring to measure the surface area of particles deposited in the human lung, were employed to perform area monitoring. The lacquering paint was the process which released the highest concentration of particles from 10-487 nm (7.06 × 10(6) particles/cm(3)). The lacquering baths process emitted particles of the largest average size (76.9 nm) and the largest surface area deposited in the human lung (167.4 µm(2)/cm(3)). Conversely, the anodizing bath process generated particles of the smallest average size (44.3 nm) and the lowest human lung-deposited surface area (1.2 µm(2)/cm(3)). The total number of particles and the surface area can only be fairly correlated for environments in which the surface area presented higher values. The transmission electron microscopy analysis confirmed the presence of aluminum oxide particles of different dimensions near the LB and AB areas and polymeric-based particles near the LP areas. The findings of this study indicated that lacquering and anodizing surface treatments are indeed responsible for the emission of airborne nanoparticles. It also highlights the importance of control strategies as a means of protecting workers' health and environment.

  20. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  1. Surface treatments of metal supports for photocatalysis applications

    Science.gov (United States)

    Montecchio, Francesco; Chinungi, Don; Lanza, Roberto; Engvall, Klas

    2017-04-01

    One of the most important challenges, for scaling up a photocatalytic system for VOCs abatement to full-scale, is the design of a suitable photocatalyst support. The support has to firmly immobilize the photocatalyst, without using an organic adhesive, and should also withstand relatively high mechanical stresses. Metals may be effectively implemented as a support material, after a corrugation of the surface with electrochemical treatments. In the present work, we treated stainless steel and aluminum supports, evaluating the surface modifications due to the electrochemical treatments, with scanning electron microscopy (SEM) and confocal microscopy. Five samples showing the highest degree of restructuring were selected and spray coated with P25, a TiO2 photocatalyst, evaluating the mechanical stability of the coating with a standard tape test method. One particular stainless steel sample presented a superior surface restructuring and coating stability. The photocatalytic activity of this sample, evaluated measuring the complete oxidation of acetaldehyde, was tested for 15 h, and compared with sample of TiO2-P25 on a ceramic support. The stainless steel exhibited a constant performance after an initial stabilization period. The stainless steel sample showed a slightly higher activity, due to the surface restructuring, increasing the irradiated area available for the coated photocatalyst.

  2. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Science.gov (United States)

    Majewski, Peter; Keegan, Alexandra

    2012-01-01

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/gsilica. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 102 and 104 cfu/mL.

  3. Surface Treatment of Polyethylene Terephthalate Film Using Atmospheric Pressure Glow Discharge in Air

    Institute of Scientific and Technical Information of China (English)

    方志; 邱毓昌; 王辉

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted.The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19°, respectively.

  4. Analysis of the influence of chemical treatment to the strength and surface roughness of FDM

    Science.gov (United States)

    Hambali, R. H.; Cheong, K. M.; Azizan, N.

    2017-06-01

    The applications of Additive Manufacturing (AM) technology have a greater functionality and wider range of application beyond an intention of prototyping. AM is the process of joining materials to form objects from Computer-Aided Design (CAD) models via layer upon layer process. One of AM technologies is the Fused Deposition Modelling (FDM), which use an extrusion method to create a part. FDM has been applied in many manufacturing applications includes an end-used parts. However, FDM tends to have bad surface quality due to staircase effect and post treatment is required. This chemical treatment is one of a way to improve the surface roughness of FDM fabricated parts. This method is one of economical and faster method. In order to enhance the surface finish of Acrylonitrile-Butadiene-Styrene (ABS) FDM parts by performing chemical treatment in an acetone solution as acetone has very low toxicity, high diffusion and low cost chemical solution. Therefore, the aim of this research is to investigate the influence of chemical treatment to the FDM used part in terms of surface roughness as well as the strength. In this project, ten specimens of standard ASTM D638 dogbone specimens have been fabricated using MOJO 3D printer. Five specimens from the dogbone were tested for surface roughness and tensile testing while another five were immersed in the chemical solution before the same testing. Based on results, the surface roughness of chemically treated dogbone has dramatically improved, compared to untreated dogbone with 97.2% of improvement. However, in term of strength, the tensile strength of dogbone is reduced 42.58% due to the rearrange of material properties and chemical effects to the joining of the filaments. In conclusion, chemical treatment is an economical and sustainable approach to enhance the surface quality of AM parts.

  5. Exposing earth surface process model simulations to a large audience

    Science.gov (United States)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  6. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    Science.gov (United States)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 °C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1° and a low contact angle hysteresis of 2.5°. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  7. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  8. Management of Ocular Surface Tumors: Excision vs. Topical Treatment

    Directory of Open Access Journals (Sweden)

    Sotiria Palioura

    2014-10-01

    Full Text Available Ocular surface squamous neoplasia (OSSN encompasses a range of corneal and conjunctival lesions from intraepithelial dysplasia to invasive squamous cell carcinoma. The mainstay of treatment for OSSN has traditionally been surgical excision with wide margins and cryotherapy. Increasing evidence on the efficacy and safety of medical therapy and the avoidance of surgical complications has made topical chemotherapy increasingly popular among corneal specialists. The most common topical agents used for the treatment of OSSN include mitomycin C, 5-fluorouracil, and interferon a 2b. Herein, we review recent advances in the surgical and medical management of OSSN and discuss advantages and disadvantages of each approach. The role of ultra highresolution optical coherence tomography in the diagnosis and treatment of primary and recurrent OSSN lesions is also discussed.

  9. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  10. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chao-Hsuan [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Lin, Hsin-Han [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, Chin-Cheng [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin C.-N., E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O{sub 2} plasma treatment and further immersed in titanium tetrachloride (TiCl{sub 4}) solution. The process conditions for producing a very thin TiO{sub 2} blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO{sub 2} nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm{sup 2} using backside illumination mode. Surface treatments of Ti substrate and TiO{sub 2} anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%.

  11. Process optimization of mechano-electrospinning by response surface methodology.

    Science.gov (United States)

    Bu, Ningbin; Huang, YongAn; Duan, Yongqing; Yin, Zhouping

    2014-05-01

    In this paper, mechano-electrospinning (MES) is presented to write the polyvinylidene fluoride (PVDF) solution into fibers directly, and the effects of the process parameters on the fiber are investigated experimentally based on response surface methodology. The different width of the fiber is obtained by adjusting the individual process parameters (velocity of the substrate, applied voltage and nozzle-to-substrate distance). Considering the continuous jet and stable Taylor-cone, the operation field is selected for investigating the complicated relationship between the process parameters on the width of the fiber by using the response surface methodology. The experiment results show that the predicted width of the fiber is in good agreement with the actual width of the fiber. Based on the analysis of the importance of the terms in the equation, a simple model can be used to predict the width of the fiber. Depending on this model, a large number of calibration experiments can be subducted. Additionally, the principle of the selection of the process parameters is presented by optimizing parameters, which can give a guideline for obtaining the desired fiber in the experiment.

  12. Effect of ultrasound treatment conditions on Saccharomyces cerevisiae by response surface methodology.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Zhou, Lizhen; Li, Bing; Xu, Zhenbo

    2017-09-15

    This study aimed to investigate the effect of different ultrasound treatment conditions on the inactivation of Saccharomyces cerevisiae with the application of response surface methodology (RSM). Ultrasound treatment were applied on different concentrations of S. cerevisiae cells with different pH, temperature, ultrasound power, irradiating time, and pulse duty ratio. Cell viability was determined by plate counting method. Response surface methodology was used to analysis the correlation among various factors. Limited with low ultrasound power, lower pH value slightly improved the ultrasound treatment efficiency. Also, higher nonlethal temperature and ultrasound power, longer irradiation time, and lower pulse duty ratio facilitated the inactivation of S. cerevisiae. Cell concentration has no effect on ultrasound efficiency. Ultrasound power played the most important role in the ultrasound irradiation process according to RSM analyses. Information derived from this study may aid in the control of the sublethal injury of S. cerevisiae during ultrasound treatment in food industry. Copyright © 2017. Published by Elsevier Ltd.

  13. VIRTUAL PROCESSING OF LASER SURFACE HARDENING ON AUTOBODY DIES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Taohong; YU Gang; WANG Jianlun; LIU Xiangyang

    2006-01-01

    A new method of collision-free path plan integrated in virtual processing is developed to improve the efficiency of laser surface hardening on dies. The path plan is based on the premise of no collision and the optimization object is the shortest path. The optimization model of collision-free path is built from traveling salesman problem (TSP). Collision-free path between two machining points is calculated in configuration space (C-Space). Ant colony optimization (ACO) algorithm is applied to TSP of all the machining points to find the shortest path, which is simulated in virtual environment set up by IGRIP software. Virtual machining time, no-collision report, etc, are put out after the simulation. An example on autobody die is processed in the virtual platform, the simulation results display that ACO has perfect optimization effect, and the method of virtual processing with integration of collision-free optimal path is practical.

  14. Evidence of Space Weathering Processes Across the Surface of Vesta

    Science.gov (United States)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; hide

    2011-01-01

    As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit

  15. WASTE WATER TREATMENT IN VISCOUS CRUDE PROCESSING IN SHENGLI OILFIELDS

    Institute of Scientific and Technical Information of China (English)

    Yang Huaijie; Xu Hui

    1997-01-01

    @@ Apart from sewage pretreatment and stepped control, the Viscous Crude Processing Plant of Shengli Petrochemical General Works has established a new process of sewage treatment featuring with flexible and advanced technology and strong impact strength, with the crude sewage treatment yield reaching more than 95%.

  16. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Science.gov (United States)

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  17. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadizenouz

    2016-03-01

    Full Text Available Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1; air abrasion with 50-μm aluminum oxide particles (group 2; irradiation with Er:YAG laser beams (group 3; roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4; and etching with 9% hydrofluoric acid for 120 s (group 5. Another group of Filtek Z350XT composite resin samples (4×6 mm was fabricated for the measurement of cohesive strength (group 6. A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05. Results. One-way ANOVA indicated significant differences between the groups (P < 0.05. SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  18. Process Improvement Education with Professionals in the Addiction Treatment Field

    Science.gov (United States)

    Pulvermacher, Alice

    2006-01-01

    Continuing education is being provided to professionals in the addiction treatment field to help them develop skills in process improvement and better meet the needs and requests they encounter. Access and retention of individuals seeking addiction treatment have been two of the greatest challenges addiction treatment professionals face.…

  19. Elementary surface processes during reactive magnetron sputtering of chromium

    Energy Technology Data Exchange (ETDEWEB)

    Monje, Sascha; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von [Research Group Reactive Plasmas, Ruhr-University Bochum, Universitystr. 150, 44801 Bochum (Germany)

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  20. Surface activation of dyed fabric for cellulase treatment.

    Science.gov (United States)

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry.

  1. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  2. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  3. Evaluation of characteristics on titanium surface treatment for absorption of functional groups

    Institute of Scientific and Technical Information of China (English)

    JIN Guang-chun; PARK Rl-song; PARK Hyeoung-ho; SEO Jae-min; LEE Sook-jeong; LEE Min-ho

    2010-01-01

    Background In order to bind or fix bioactive materials directly to the surface of a Ti implant, the prior binding process of functional groups (FGs, -COOH and -OH) to the implant surface is necessary. Conventional binding processes are so high-cost and complex, so it is essential to find a simple and effective procedure for Ti-FG binding.Methods Various electrolyte compositions and electrochemical processing were adopted in this study to develop a relatively simple and effective Ti-FG binding process. The ability of Ti-FG binding and calcium (Ca)/phosphorous (P)absorption and corrosion resistance were evaluated according to various titanium surface treatment in electrolyte involving -COOH and -OH ion by using X ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FE-SEM) and potentiodynamic scan method respectively.Results In cases of -COOH, the anodic oxidation process (AN) showed an effective binding ability between -COOH and Ti surface. On the other hand, in cases of -OH, there were no significant differences in the result between the conditions used. In regard to the absorption of Ca and P on Ti surface, there was a minimal amount of Ca absorbed but no P was absorbed. The anodic oxidation series showed homogenous corrosion, whereas the electrolyte immersion (EL)series showed unstable corrosion. Although EL-OH showed a novel corrosion potential, the EL-COOH series showed good corrosion resistance over the anodic potential range.Conclusions The ability of binding between FG and the Ti surface and Ca/P absorption were strongly associated with the surface potential (ξ, potential), which was dependent on the pH of the electrolyte. Accordingly, in order to achieve the effective absorption of various FGs on the Ti surface, it is needed to develop the combination process in addition to the electric affinity, relation with the ξ, potential.

  4. Gaseous Nitriding Process of Surface Nanocrystallized (SNCed) Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The behavior of gaseous nitriding on the surface nanocrystallized (SNCed) steel was investigated. The mild steel discs were SNCed on one side by using the method of ultrasonic shot peening. The opposite side of the discs maintained the original coarse-grained condition. The gaseous nitriding was subsequently carried out at three different temperatures:460, 500 and 560℃. The compound layer growth and diffusion behavior were then studied. It was revealed that SNC pretreatment greatly enhances both diffusion coefficient D and surface reaction rate. As a result, nitriding time could be reduced to the half. It was also found that the growth of compound layer with nitriding time conformed with parabolic relationship from the start of nitriding process in the SNCed samples.

  5. Nitrocarburizing treatments using flowing afterglow processes

    Science.gov (United States)

    Jaoul, C.; Belmonte, T.; Czerwiec, T.; David, N.

    2006-09-01

    Nitrocarburizing of pure iron samples is achieved at 853 K and is easily controlled by introducing C 3H 8 in the afterglow of a flowing microwave Ar-N 2-H 2 plasma. The carbon uptake in the solid is actually possible with methane but strongly limited. The use of propane enhances the carbon flux and the ɛ/α configuration is synthesized for the first time by this kind of process. For this stack, diffusion paths in the ternary system determined from chemical analyses by secondary neutral mass spectrometry reproduce satisfactorily X-ray diffraction results which only reveal, as optical micrographs, ɛ and α phases. Propane offers an accurate control of the nitrocarburizing conditions. As an example, a modulation of N and C contents in iron could be achieved to create new carbonitride multilayers.

  6. Nitrocarburizing treatments using flowing afterglow processes

    Energy Technology Data Exchange (ETDEWEB)

    Jaoul, C. [Laboratoire de Science et Genie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, 54042 Nancy Cedex (France); Belmonte, T. [Laboratoire de Science et Genie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, 54042 Nancy Cedex (France)]. E-mail: Thierry.Belmonte@mines.inpl-nancy.fr; Czerwiec, T. [Laboratoire de Science et Genie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, 54042 Nancy Cedex (France); David, N. [Laboratoire de Chimie du Solide Mineral, Universite Henri Poincare Nancy-I, Vandoeuvre-Les-Nancy (France)

    2006-09-30

    Nitrocarburizing of pure iron samples is achieved at 853 K and is easily controlled by introducing C{sub 3}H{sub 8} in the afterglow of a flowing microwave Ar-N{sub 2}-H{sub 2} plasma. The carbon uptake in the solid is actually possible with methane but strongly limited. The use of propane enhances the carbon flux and the {epsilon}/{alpha} configuration is synthesized for the first time by this kind of process. For this stack, diffusion paths in the ternary system determined from chemical analyses by secondary neutral mass spectrometry reproduce satisfactorily X-ray diffraction results which only reveal, as optical micrographs, {epsilon} and {alpha} phases. Propane offers an accurate control of the nitrocarburizing conditions. As an example, a modulation of N and C contents in iron could be achieved to create new carbonitride multilayers.

  7. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  8. Effect of heat treatment on structure, surface composition, infrared emission and surface electrical properties of tourmaline

    Science.gov (United States)

    He, Dengliang; Liu, Shuxin

    2017-02-01

    Crystal structure, surface composition, infrared emission properties and surface electrical properties of tourmaline from Guangxi of China, when subjected to heat treatment in air atmosphere had been studied by some methods, including X-ray fluorescence spectrum (XRF), X-ray diffraction (XRD) meter, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersion spectroscopy (EDS), scanning electron microscope (SEM) and Zeta potential analyzer, etc. Experimental results show that the unit cell of tourmaline would shrink during heat treatment because Fe2+ were oxidized. Moreover, the Fe3+/Fetotal inside tourmaline can be raised after treatment. Infrared normal total emissivity of tourmaline reaches 0.87, and infrared radiation energy density is 4.56 × 102W/m2. It can maintain excellent infrared emission properties at high temperature. Simultaneously, tourmaline presents negative Zeta potential in the aqueous solution, and its Zeta potential reaches ‑18.04 mV. Zeta potential of tourmaline was increased to ‑24.83 mV after heat treatment at 400∘C, and decrease to ‑11.78 mV after heat treatment at 600∘C. These findings may provide reference data for tourmaline’s application in the field of functional materials.

  9. Molecular surface structural changes of plasticized PVC materials after plasma treatment.

    Science.gov (United States)

    Zhang, Xiaoxian; Zhang, Chi; Hankett, Jeanne M; Chen, Zhan

    2013-03-26

    In this research, a variety of analytical techniques including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), and X-ray photoelectron spectroscopy (XPS) have been employed to investigate the surface and bulk structures of phthalate plasticized poly(vinyl chloride) (PVC) at the molecular level. Two types of phthalate molecules with different chain lengths, diethyl phthalate (DEP) and dibutyl phthalate (DBP), mixed with PVC in various weight ratios were examined to verify their different surface and bulk behaviors. The effects of oxygen and argon plasma treatment on PVC/DBP and PVC/DEP hybrid films were investigated on both the surface and bulk of films using SFG and CARS to evaluate the different plasticizer migration processes. Without plasma treatment, SFG results indicated that more plasticizers segregate to the surface at higher plasticizer bulk concentrations. SFG studies also demonstrated the presence of phthalates on the surface even at very low bulk concentration (5 wt %). Additionally, the results gathered from SFG, CARS, and XPS experiments suggested that the PVC/DEP system was unstable, and DEP molecules could leach out from the PVC under low vacuum after several minutes. In contrast, the PVC/DBP system was more stable; the migration process of DBP out of PVC could be effectively suppressed after oxygen plasma treatment. XPS results indicated the increase of C═O/C-O groups and decrease of C-Cl functionalities on the polymer surface after oxygen plasma treatment. The XPS results also suggested that exposure to argon plasma induced chemical bond breaking and formation of cross-linking or unsaturated groups with chain scission on the surface. Finally, our results indicate the potential risk of using DEP molecules in PVC since DEP can easily leach out from the polymeric bulk.

  10. Effect of Surface Treatments on Leakage of Zirconium Oxide Ceramics

    Directory of Open Access Journals (Sweden)

    Göknil Alkan Demetoğlu

    2016-08-01

    Full Text Available Objective: The aim of this pilot study was to compare the effects of pretreatments on leakage of zirconia ceramics. Materials and Methods: The speciments divided into 6 groups that were subsequently treated as follows: group 1, no treatment (control; group 2, the ceramic surfaces were airborne-particle abraded with 110 μm aluminum-oxide (Al2O3 particles; group 3, after abrasion of the surfaces with 110 μm Al2O3 particles, silica coating using 30 μm (Al2O3 particles modified by silica (rocatec system and application of the silane coupling agent (espe-sil; group 4, ceramic surfaces irritated with neodymium-doped yttrium aluminium garnet (Nd:YAG laser [fidelis plus 3 foton (Ljubljana, Slovenia] at 20 hz, 100 mj, 2 w, 100 μs; group 5, ceramic surfaces irritated with Nd:YAG laser at fidelis plus 3 fotona (Ljubljana, Slovenia at 20 hz, 100 mj, 2 w, 100 μs; group 6; application of a zirconia primer (z-prime plus bisco, IL, USA agent. And all ceramics tested for leakage. Results: For marginal leakage, score 0 was found in all groups. Conclusion: No significant differences were found in marginal leakage under all conditions.

  11. INVESTIGATIONS ON SEWAGE TREATMENT PROCESS USING COMBINED BIO-OXIDIZERS

    Directory of Open Access Journals (Sweden)

    V. N. Jaromsky

    2010-01-01

    Full Text Available The paper presents results of investigations on process of aerobic waste water treatment with combined bio-oxidizers at milk processing enterprises. It has been shown that attached biocenosis, free-floating biocenosis and also bio-module rotation frequency  have exerted a significant influence on the process of an aerobic sewage treatment. It has been established that combined bio-oxidizers can be used for cleaning high concentrated waste water at the enterprises of food industry.

  12. INVESTIGATIONS ON SEWAGE TREATMENT PROCESS USING COMBINED BIO-OXIDIZERS

    OpenAIRE

    V. N. Jaromsky; E. I. Mihnevich

    2010-01-01

    The paper presents results of investigations on process of aerobic waste water treatment with combined bio-oxidizers at milk processing enterprises. It has been shown that attached biocenosis, free-floating biocenosis and also bio-module rotation frequency  have exerted a significant influence on the process of an aerobic sewage treatment. It has been established that combined bio-oxidizers can be used for cleaning high concentrated waste water at the enterprises of food industry.

  13. Impact Of Strain In Drawing Process And Surface Modification On Resistance To Electrochemical Corrosion Of Wires Used In Dentistry

    Directory of Open Access Journals (Sweden)

    Przondziono J.

    2015-09-01

    Full Text Available The study presents the results of research into the impact of strain in cold drawing and surface modification treatment on corrosion properties of wires made of X10CrNi 18-8 steel used in maxillofacial surgery. Scanning microscopy enabled to make images of the surface of wires after drawing process as well as after surface modification treatment. Resistance to electrochemical corrosion was evaluated on the ground of registered anodic polarisation curves in artificial saliva. In order to evaluate physical and chemical properties of the surface, electrochemical impedance spectroscopy was performed.

  14. Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    The incorporation of nitrogen or carbon in steel is widely applied to provide major improvements in materials performance with respect to fatigue, wear, tribology and atmospheric corrosion. These improvements rely on a modification of the surface adjacent region of the material, by the (internal......) precipitation of alloying element nitrides/carbides or by the development of a continuous layer of iron-based (carbo-) nitrides. The evolution of the microstructure during thermochemical treatments is not only determined by solid state diffusion, but in many cases also by the kinetics of the surface reactions...... and the interplay with mechanical stress. In the present article a few examples, covering research on the interaction of carbon and/or nitrogen with iron-based metals, are included to illustrate the various aspects of gas-metal interactions....

  15. Escherichia coli control in a surface flow treatment wetland.

    Science.gov (United States)

    MacIntyre, M E; Warner, B G; Slawson, R M

    2006-06-01

    A field experiment showed that numbers of Escherichia coli declined significantly when floating Lemna spp. plants were removed to create open water areas in a typical newly constructed surface flow treatment wetland in southern Ontario. It is suggested that E. coli declined immediately after Lemna removal because the Lemna was shading the water column from penetration by natural UV radiation, it was providing favourable attachment sites for the E. coli, and it was not allowing effective free exchange of oxygen from surface winds to the water column to maintain high enough dissolved oxygen supplies for predator zooplankton populations. Operators of wetland systems must have the specialized skills required to recognize the cause and the appropriate maintenance requirements to maintain efficient operation of such unconventional systems should E. coli numbers increase during the course of operation.

  16. The Characterization of Al Bond Pad Surface Treatment in Electroless Nickel Immersion Gold (ENIG Deposition

    Directory of Open Access Journals (Sweden)

    M. K. M. Arshad

    2007-01-01

    Full Text Available This study reports a number of experiments that were designed to characterize aluminum bond pad surfaces prior to electroless nickel immersion gold (ENIG. In the ENIG process, aluminum bond pads need special treatment to achieve successful nickel deposition and provide reliable interconnection of under bump metallurgy in advanced packaging. During this treatment process, the aluminum pad was cleaned, activated and then coated with a layer of zinc. Systematic study was carried out to determine the best parameters, through multiple and various exposure times of the zincation process and zincation solution concentration effect on the Ni/Au surface roughness and aluminum dissolution rate on the bond pad during multiple zincation process. The ball shear strength was evaluated between eutectic 37Pb/63Sn solder ball and under bump metallurgy (UBM interfaces across multiple zincation process. Scanning Electron Microscope (SEM, Energy Dispersive X-Ray (EDX, Atomic Force Microscopy (AFM, Focused Ion Beam (FIB and ball shear tester were used as analytical tools. The results suggest that the multiple zincation process consistently produces a smoother surface of ENIG UBM and consequently provides a better shear strength.

  17. Process of forming catalytic surfaces for wet oxidation reactions

    Science.gov (United States)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  18. Laser gas-assisted processing of carbon coated and TiC embedded Ti-6Al-4V alloy surface

    Science.gov (United States)

    Yilbas, B. S.; Akhtar, S.; Aleem, B. J. Abdul; Karatas, C.

    2010-11-01

    Laser gas-assisted treatment of Ti-6Al-4V alloy surface is carried out. The alloy surface is initially coated by a carbon layer, in which the TiC particles are embedded prior to laser processing of the surface. The carbon coating with the presence of TiC particles on the workpiece surface is expected to result in carbonitride compound in the surface vicinity after the laser treatment process. Optical and scanning electron microscopes are used to examine the morphological and the metallurgical changes in the laser treated layer. The residual stress formed in the surface region after the laser treatment process is critical for the practical applications of the resulting surface. Therefore, the residual stress formed in the laser treated region is predicted from the analytically equation. The X-ray diffraction technique is incorporated to obtain the residual stress formed in the surface region. It is found that the residual stress predicted agrees with the X-ray diffraction data. The dense structures consisting of TiCxN1-x, TiNx, Ti2N, and TiC compounds are formed in the surface region of the treated layer. This, in turn, significantly increases the microhardness at the surface.

  19. Laser gas-assisted processing of carbon coated and TiC embedded Ti-6Al-4V alloy surface

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (Saudi Arabia); Akhtar, S.; Aleem, B.J. Abdul [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (Saudi Arabia); Karatas, C. [Faculty of Engineering, Hacettepe University (Turkey)

    2010-11-01

    Laser gas-assisted treatment of Ti-6Al-4V alloy surface is carried out. The alloy surface is initially coated by a carbon layer, in which the TiC particles are embedded prior to laser processing of the surface. The carbon coating with the presence of TiC particles on the workpiece surface is expected to result in carbonitride compound in the surface vicinity after the laser treatment process. Optical and scanning electron microscopes are used to examine the morphological and the metallurgical changes in the laser treated layer. The residual stress formed in the surface region after the laser treatment process is critical for the practical applications of the resulting surface. Therefore, the residual stress formed in the laser treated region is predicted from the analytically equation. The X-ray diffraction technique is incorporated to obtain the residual stress formed in the surface region. It is found that the residual stress predicted agrees with the X-ray diffraction data. The dense structures consisting of TiC{sub x}N{sub 1-x}, TiN{sub x}, Ti{sub 2}N, and TiC compounds are formed in the surface region of the treated layer. This, in turn, significantly increases the microhardness at the surface.

  20. Experimental investigation of laser surface processing of flexure silicon nitride ceramic

    Institute of Scientific and Technical Information of China (English)

    SUN Li; A. P. MALSHE; JIANG Wen-ping; P. H. MCCLUSKEY

    2006-01-01

    A continuous wave carbon dioxide (CO2) laser (λ=10.6μm) was employed to treat the surface of Si3N4 MOR (modulus of rupture) bars. The effects of the CO2 laser process on physical and mechanical properties of ground Si3N4 samples were investigated. Scanning electron microscopy (SEM) analysis shows that the area occupied by cavities and fracture is decreased by about 49.4% after laser treatments. Cross-sectional metallography results indicate that the secondary YSiAlON phase in the Si3N4 ceramic is softened/melted and flowed into the defects. Four-point bending tests show that the flexural strength of the treated samples is improved to 10.9%. Fractographic analysis show that the fracture origins move from the surface to subsurface. It is concluded that laser surface processing have significant effects on fracture behavior of flexure Si3N4 ceramic.

  1. Transferred plasma jet from a dielectric barrier discharge for processing of poly(dimethylsiloxane) surfaces

    CERN Document Server

    Nascimento, Fellype do; Canesqui, Mara A; Moshkalev, Stanislav

    2016-01-01

    In this work we studied processing of poly(dimethylsiloxane) (PDMS) surfaces using dielectric barrier discharge (DBD) plasma in two different assemblies, one using the primary plasma jet obtained from a conventional DBD and the other using a DBD plasma jet transfer. The evolution of water contact angle (WCA) in function of plasma processing time and in function of aging time as well as the changes in the surface roughness of PDMS samples for both plasma treatments have been studied. We also compared vibrational and rotational temperatures for both plasmas and for the first time the vibrational temperature (T_vib) for the transferred plasma jet has been shown to be higher as compared with the primary jet. The increment in the T_vib value seems to be the main reason for the improvements in adhesion properties and surface wettability for the transferred plasma jet. Possible explanations for the increase in the vibrational temperature are presented.

  2. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs.

    Science.gov (United States)

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P composite resin used.

  3. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  4. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces.

    Science.gov (United States)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  5. Kinetics of Microstructure Evolution during Gaseous Thermochecical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    precipitation 6f ailoying element nitrides/carbides"or by thE development of a continuo_us laye_r of iron-based (carbo-) nitrides. The evolution of the microstructure during thermochemical treatme_nts is not only determined by solid-state diffusion, but in many cases also by the kinetics of the surface...... reactions and the interptay with mechanical stress.'In the present arlicle a few examplesr_co_ve_ring-research on the inleraction of carbon and,/or nitrogen with iron-based metals, are included to illustrate the various aspects of gas-metal interactidns....

  6. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L

    NARCIS (Netherlands)

    Arifvianto, B.; Suyitno, [No Value; Mahardika, M.; Dewo, P.; Iswanto, P. T.; Salim, U. A.

    2011-01-01

    Surface roughness and wettability are among the surface properties which determine the service lifetime of materials. Mechanical treatments subjected to the surface layer of materials are often performed to obtain the desired surface properties and to enhance the mechanical strength of materials. In

  7. Preference for pharmaceutical formulation and treatment process attributes

    Directory of Open Access Journals (Sweden)

    Stewart KD

    2016-07-01

    Full Text Available Katie D Stewart,1 Joseph A Johnston,2 Louis S Matza,1 Sarah E Curtis,2 Henry A Havel,3 Stephanie A Sweetana,3 Heather L Gelhorn1 1Outcomes Research, Evidera, Bethesda, MD, USA; 2Global Patient Outcomes & Real World Evidence, 3Small Molecule Design and Development, Eli Lilly & Company, Indianapolis, IN, USA Purpose: Pharmaceutical formulation and treatment process attributes, such as dose frequency and route of administration, can have an impact on quality of life, treatment adherence, and disease outcomes. The aim of this literature review was to examine studies on preferences for pharmaceutical treatment process attributes, focusing on research in diabetes, oncology, osteoporosis, and autoimmune disorders.Methods: The literature search focused on identifying studies reporting preferences for attributes of the pharmaceutical treatment process. Studies were required to use formal quantitative preference assessment methods, such as utility valuation, conjoint analysis, or contingent valuation. Searches were conducted using Medline, EMBASE, Cochrane Library, Health Economic Evaluation Database, and National Health Service Economic Evaluation Database (January 1993–October 2013.Results: A total of 42 studies met inclusion criteria: 19 diabetes, nine oncology, five osteoporosis, and nine autoimmune. Across these conditions, treatments associated with shorter treatment duration, less frequent administration, greater flexibility, and less invasive routes of administration were preferred over more burdensome or complex treatments. While efficacy and safety often had greater relative importance than treatment process, treatment process also had a quantifiable impact on preference. In some instances, particularly in diabetes and autoimmune disorders, treatment process attributes had greater relative importance than some or all efficacy and safety attributes. Some studies suggested that relative importance of treatment process depends on disease (eg

  8. MO-B-BRB-00: Optimizing the Treatment Planning Process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  9. Surface treatments to improve bond strength in removable partial dentures.

    Science.gov (United States)

    Kim-Hai, Nguyen; Esquivel-Upshaw, Josephine; Clark, Arthur E

    2003-01-01

    The metal and resin interface of removable partial dentures is weakened by the poor bond strength between the two materials. This study was designed to test the hypothesis that surface treatments--consisting of air abrasion, with aluminum oxide, tin plating and oxidation, and silanation, either alone or in combination--will improve the bond strength of acrylic resin to metal. Statistical analysis revealed that air abrasion, tin plating/oxidation, and silanation all showed significantly higher bond strength than either abrasion and tin plating, abrasion and silanation, or abrasion alone. Air abrasion demonstrated the greatest effect on improving bond strength. The mean bond strength of samples subjected to a combination of air abrasion, tin plating and oxidation, and silanation was significantly greater than any other combination treatment.

  10. Environmental performance assessment of a company of aluminum surface treatment

    Directory of Open Access Journals (Sweden)

    Susan Catieri Ramalho

    2013-08-01

    Full Text Available The purpose of this article was to evaluate the environmental performance of a medium-sized company that provides services for surface treatment of aluminum. The treatment is known as anodizing. The research method was qualitative numerical modeling. The environmental performance of the company was organized into five constructs: atmosphere, wastewater, energy and natural resources, solid waste, and legislation and management. Nineteen indicators were chosen to explain the five constructs. Ten employees of the company prioritized the constructs and evaluated the situation of the indicators by means of a scale of assessment. By means of a mathematical model, the general performance of the environmental operation was calculated at 74.5% of the maximum possible. The indicators that most contributed to the performance not to reach 100% were consumption of electricity and water consumption. The construct of worse performance was natural and energy resources. These are the priorities for future environmental improvement actions that the company may promote.

  11. Experimental investigation of surface roughness in electrical discharge turning process

    Science.gov (United States)

    Gohil, Vikas; Puri, Y. M.

    2016-10-01

    In the present study the effects of machining parameters on the average surface roughness (Ra) in electrical discharge turning (EDT) is investigated. EDT is a new machining process in which a rotary spindle is added to a conventional die-sinking EDM machine in order to produce cylindrical components. In this method a new process parameter (spindle rotation) along with pulse on time and current is introduced to study its effect on Ra. This has been done by means of full factorial design (21 × 32) of experiments. A mathematical model has been developed for Ra by regression analysis and factor effects were analyzed using analysis of variance (ANOVA). Signal-to-noise ratio analysis is used to find the optimal condition.

  12. Collisional Processing of Comet Surfaces: Impact Experiments into Olivine

    Science.gov (United States)

    Lederer, S. M.; Jensen, E. A.; Cintala, M. J.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Wooden, D. H.; Fernandez, Y. R.; Zolensky, M. E.

    2011-01-01

    A new paradigm has emerged where 3.9 Ga ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. In addition, objects in the Kuiper Belt are believed to undergo extensive collisional processing while in the Kuiper Belt. Physical manifestations of shock effects (e.g., planar dislocations) in minerals typically found in comets will be correlated with spectral changes (e.g. reddening, loss and shift of peaks, new signatures) to allow astronomers to better understand geophysical impact processing that has occurred on small bodies. Targets will include solid and granular olivine (forsterite), impacted over a range of impact speeds with the Experimental Impact Laboratory at NASA JSC. Analyses include quantification of the dependence of the spectral changes with respect to impact speed, texture of the target, and temperature.

  13. Progress in 193-nm top-surface imaging process development

    Science.gov (United States)

    Hutchinson, John M.; Rao, Veena; Zhang, Guojing; Pawloski, Adam R.; Fonseca, Carlos A.; Chambers, Janet; Holl, Susan M.; Das, Siddhartha; Henderson, Craig C.; Wheeler, David R.

    1998-06-01

    The maturity and acceptance of top surface imaging (TSI) technology has been hampered by several factors including inadequate resist sensitivity and silylation contrast, defects and line edge roughness and equipment performance/reliability issues. We found that the use of a chemically amplified resist can improve the sensitivity by a factor of 1.5 - 2X, without compromising line edge roughness. While the post-silylation contrast of this chemically amplified material is poor ((gamma) > 10) and the use of advanced silylation chemistries (disilanes) can further reduce the dose-to-size and increase the contrast. We have also demonstrated that using sulfur dioxide in the plasma etch process can improve the sidewall passivation of the resist lines, thus reducing the overall line edge roughness. Finally, we have been able to successfully use the TSI process to pattern deep sub-micron polysilicon and metal patterns.

  14. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    OpenAIRE

    Akkuş Emek; Turker Sebnem Begum

    2015-01-01

    Objectives: To compare the effects of airborne-particle abrasion (APA) and tribochemical silica coating (TSC) surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  15. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  16. Laser surface treatment and the resultant hierarchical topography of Ti grade 2 for biomedical application

    Science.gov (United States)

    Kuczyńska, Donata; Kwaśniak, Piotr; Marczak, Jan; Bonarski, Jan; Smolik, Jerzy; Garbacz, Halina

    2016-12-01

    Modern prosthesis often have a complex structure, where parts of an implant have different functional properties. This gradient of functional properties means that local surface modifications are required. Method presented in this study was develop to functionalize prefabricated elements with original roughness obtained by conventional treatments used to homogenize and clean surface of titanium implants. Demonstrated methodology results in multimodal, periodic grooved topography with roughness in a range from nano- to micrometers. The modified surfaces were characterized in terms of shape, roughness, wettability, surface energy and chemical composition. For this purpose, the following methods were used: scanning electron microscopy, optical profilometry, atomic force microscopy, contact angle measurements and X-ray photoelectron spectroscopy. Protein adsorption studies were conducted to determine the potential biomedical application of proposed method. In order to estimate the intensity and way of the protein adsorption process on different titanium surfaces, XPS studies and AFM measurements were performed. The systematic comparison of surface states and their osseointegration tendency will be useful to evaluate suitability of presented method as an single step treatment for local surface functionalization of currently produced implantable devices.

  17. Surface implantation treatments to prevent infection complications in short term devices.

    Science.gov (United States)

    Davenas, J; Thévenard, P; Philippe, F; Arnaud, M N

    2002-08-01

    Surface treatments of short term devices are actually evaluated to reduce the risk of infections, which in particular are one of the main causes of complications following catheter insertion. We have investigated the efficacy of ion beam techniques to reduce bacterial adhesion-or to induce bactericidal activity of different polymer materials: PVC, silicone rubber, poly(urethane) and poly(ethylene). Two routes have been evaluated, based on the production of non fouling surfaces, through the production of diamond-like surfaces upon irradiation with rare gases, or the implantation of silver, known for its bactericidal action. In this contribution we discuss more specifically the treatment of poly(ethylene), where a broad range of surface characterisation techniques could show that the biological activity resulted from the formation of metallic colloidal silver near the surface of the polymer, associated to the formation of a dense surface acting as a diffusion barrier. Reduction of the implantation energy to 10 keV, led to activity enhancement resulting from the easier accessibility of surface colloids evidenced by AFM microscopy. This study emphasises the specific processes induced by the formation of silver nano-particles at low energy implantation, which differs basically from Ion Beam Assisted Deposition (IBAD technique) leading to the formation of a continuous silver coating (Artif. Organs 18 (1994) 266; International Patent (PCT) WO 95/18637 (1995)).

  18. The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics and treatments

    Science.gov (United States)

    Asatourian, Armen; Garcia-Godoy, Franklin; Sheibani, Nader

    2016-01-01

    Background Angiogenesis plays an important role in osseointegration process by contributing to inflammatory and regenerative phases of surrounding alveolar bone. The present review evaluated the effect of titanium alloys and their surface characteristics including: surface topography (macro, micro, and nano), surface wettability/energy, surface hydrophilicity or hydrophobicity, surface charge, and surface treatments of dental implants on angiogenesis events, which occur during osseointegration period. Material and Methods An electronic search was performed in PubMed, MEDLINE, and EMBASE databases via OVID using the keywords mentioned in the PubMed and MeSH headings regarding the role of angiogenesis in implant dentistry from January 2000-April 2014. Results Of the 2,691 articles identified in our initial search results, only 30 met the inclusion criteria set for this review. The hydrophilicity and topography of dental implants are the most important and effective surface characteristics in angiogenesis and osteogenesis processes. The surface treatments or modifications of dental implants are mainly directed through the enhancement of biological activity and functionalization in order to promote osteogenesis and angiogenesis, and accelerate the osseointegration procedure. Conclusions Angiogenesis is of great importance in implant dentistry in a manner that most of the surface characteristics and treatments of dental implants are directed toward creating a more pro-angiogenic surface on dental implants. A number of studies discussed the effect of titanium alloys, dental implant surface characteristic and treatments on agiogenesis process. However, clinical trials and in-vivo studies delineating the mechanisms of dental implants, and their surface characteristics or treatments, action in angiogenesis processes are lagging. Key words:Angiogenesis, dental implant, osseointergration. PMID:27031073

  19. Inductively Coupling Plasma (ICP) Treatment of Propylene (PP) Surface and Adhesion Improvement

    Science.gov (United States)

    Liu, Yenchun; Fu, Yenpei

    2009-12-01

    Study on increasing the roughness of the polymer substrate surface to enhance the adhesion with the copper layer in an inductively coupling plasma (ICP) process was carried out. The microstructure of the polymer substrate surfaces, which were exposed to different kinds of plasma treatment, was identified by scanning electron microscopy(SEM) analysis, peel strength of the copper coating and water surface contact angle. The adhesion of the substrate was largely enhanced by plasma treatment and the copper deposited coating reached a value of 7.68 kgf/m in verifying the adhesion of the copper coating with polymer material. The quality of the line/space 50/50 μm produced in the laboratory was examined by the pressure cooker test and proved to meet the requirement.

  20. Efficiency and countereffects of cleaning treatment on limestone surfaces - investigation on the Corfu Venetian Fortress

    Energy Technology Data Exchange (ETDEWEB)

    Moropoulou, A.; Kefalonitou, S. [National Technical University of Athens (Greece). Dept. of Chemical Engineering

    2002-11-01

    Surface alterations of the original limestone and the efficiency of several cleaning methods were investigated on the Corfu Venetian Fortress facade. Black crusts of gypsum dendrites and loose depositions or black-grey calcareous encrustations in combination with biological decay were identified as main decay processes. The cleaning treatments, chosen according to their acting on the stone surface, were: sepiolite for solvent action, ammonium bicarbonate for exchange action, EDTA for the chemical chelating action, hydrogen peroxide for chemical action on biological species and nylon brushes for physical action. Each cleaning method's efficiency and counteractions were evaluated by laboratory examinations concerning the morphology and the composition of the surface with SEM observations and X-ray microanalysts, before and after treatment and during ageing tests in sulphur dioxide and humidity atmosphere. The used methodology creates a sound basis for the evaluation and proper selection of a cleaning method, which should be highly efficient and with limited counteractions to the stone. (author)

  1. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology.

    Science.gov (United States)

    Güven, Güray; Perendeci, Altunay; Tanyolaç, Abdurrahman

    2008-08-30

    Electrochemical treatment of deproteinated whey wastewater produced during cheese manufacture was studied as an alternative treatment method for the first time in literature. Through the preliminary batch runs, appropriate electrode material was determined as iron due to high removal efficiency of chemical oxygen demand (COD), and turbidity. The electrochemical treatment conditions were optimized through response surface methodology (RSM), where applied voltage was kept in the range, electrolyte concentration was minimized, waste concentration and COD removal percent were maximized at 25 degrees C. Optimum conditions at 25 degrees C were estimated through RSM as 11.29 V applied voltage, 100% waste concentration (containing 40 g/L lactose) and 19.87 g/L electrolyte concentration to achieve 29.27% COD removal. However, highest COD removal through the set of runs was found as 53.32% within 8h. These results reveal the applicability of electrochemical treatment to the deproteinated whey wastewater as an alternative advanced wastewater treatment method.

  2. Mechanical Behavior of Ultrafine Gradient Grain Structures Produced via Ambient and Cryogenic Surface Mechanical Attrition Treatment in Iron

    Directory of Open Access Journals (Sweden)

    Heather A. Murdoch

    2015-06-01

    Full Text Available Ambient and cryogenic surface mechanical attrition treatments (SMAT are applied to bcc iron plate. Both processes result in significant surface grain refinement down to the ultrafine-grained regime; the cryogenic treatment results in a 45% greater grain size reduction. However, the refined region is shallower in the cryogenic SMAT process. The tensile ductility of the grain size gradient remains low (<10%, in line with the expected behavior of the refined surface grains. Good tensile ductility in a grain size gradient requires the continuation of the gradient into an undeformed region.

  3. Influence of Surface Pre-treatments on Laser Welding of Ti6Al4V Alloy

    Science.gov (United States)

    Sánchez-Amaya, J. M.; Amaya-Vázquez, M. R.; González-Rovira, L.; Botana-Galvin, M.; Botana, F. J.

    2014-05-01

    In the present study, Ti6Al4V samples have been welded under conduction regime by means of a high power diode laser. The main objective of the work has been to determine the actual influence of the surface pre-treatments on the laser welding process. Thus, six different pre-treatments were applied to Ti6Al4V samples before performing bead-on-plate and butt welding treatments. The depth, width, microstructure, and microhardness of the different weld zones were deeply analyzed. Grinding, sandblasting, and chemical cleaning pre-treatments lead to welds with the highest depth values, presenting high joint strengths. Treatments based on the application of dark coatings generate welds with lower penetration and worse mechanical properties, specially the graphite-based coating.

  4. Surfaces: processing, coating, decontamination, pollution, etc. Surface mastering to prevent component corrosion; Surfaces: traitement, revetements, decontamination, pollution, etc. Maitrise de la surface pour prevenir la corrosion des composants

    Energy Technology Data Exchange (ETDEWEB)

    Foucault, M. [Departement Corrosion Chimie, AREVA Centre Technique, BP 181, 71205 Le Creusot (France)

    2012-07-01

    In the primary and secondary circuits of nuclear Pressurized Water Reactors, AREVA uses several nickel-based alloys or austenitic stainless steels for the manufacture of safety components. The experience feedback of the last twenty years allows us to point out the major role hold by the component surface state in their life duration. In this paper, we present four examples of problem encountered and solved by a surface study and the definition and implementation of processes for the surface control of the repaired components. Then, we propose some ideas about the present needs in term of analysis means to improve the surface knowledge and control of the manufactured components. (author)

  5. Laser surface treatment of magnesium alloy with WC and TiC powders using HPDL

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-06-01

    Full Text Available Purpose: The aim of this work was to improve the surface layer cast magnesium alloy EN-MCMgAl6Zn1 by laser surface treatment. The purpose of this work was also to determine the laser treatment parameter.Design/methodology/approach: The laser treatment of an EN-MCMgAl6Zn1 magnesium alloy with alloying WC and also TiC powders was carried out using a high power diode laser (HPDL. The resulting microstructure in the modified surface layer was examinated using scanning electron microscopy. Phase composition was determined by the X-ray diffraction method using the XPert device. The measurements of microhardness of the modified surface layer was also studied.Findings: The alloyed region has a fine microstructure with hard carbide particles. Microhardness of laser surface alloyed layer with both TiC and WC particles was significantly improved as compared to alloy without laser treatment.Research limitations/implications: In this research two powders (WC and TiC were used with the particle size over 5µm This investigation presents different speed rates feed by one process laser power.Practical implications: The results obtained in this investigation were promising to compared other conventional processes. High Power Diode Laser can be used as an economical substitute of Nd:YAG and CO2 to improve the surface magnesium alloy by feeding the carbide particles.Originality/value: The originality of this work is applying of High Power Diode Laser for alloying of magnesium alloy using hard particles like tungsten carbide and titanium carbide.

  6. EFFECT OF SURFACE TREATMENT ON THE MECHANICAL PROPERTIES OF BAGASSE FIBER REINFORCED POLYMER COMPOSITE

    Directory of Open Access Journals (Sweden)

    Samir Kumar Acharya

    2011-06-01

    Full Text Available Bagasse is a by-product of the sugarcane milling process, and it also is an important fuel resource for that industry. In this study an attempt has been made to utilize this by-product to prepare a composite using epoxy resin. The fibers surface was modified by alkali treatment with 5% NaOH solution for 0, 2, 4 and 6 hrs. The effect of fiber surface modification on the mechanical properties such as flexural strength of the composites was investigated with the fibers as received from the milling process. It was found that alkali-treated bagasse/epoxy composites significantly improved the flexural strength of the composite. An SEM investigation also indicated that the surface modifications improved the fiber–matrix interaction.

  7. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining.

    Science.gov (United States)

    Bae, Won Gyu; Song, Ki Young; Rahmawan, Yudi; Chu, Chong Nam; Kim, Dookon; Chung, Do Kwan; Suh, Kahp Y

    2012-07-25

    We present a direct one-step method to fabricate dual-scale superhydrophobic metallic surfaces using wire electrical discharge machining (WEDM). A dual-scale structure was spontaneously formed by the nature of exfoliation characteristic of Al 7075 alloy surface during WEDM process. A primary microscale sinusoidal pattern was formed via a programmed WEDM process, with the wavelength in the range of 200 to 500 μm. Notably, a secondary roughness in the form of microcraters (average roughness, Ra: 4.16 to 0.41 μm) was generated during the exfoliation process without additional chemical treatment. The low surface energy of Al 7075 alloy (γ = 30.65 mJ/m(2)) together with the presence of dual-scale structures appears to contribute to the observed superhydrophobicity with a static contact angle of 156° and a hysteresis less than 3°. To explain the wetting characteristics on dual-scale structures, we used a simple theoretical model. It was found that Cassie state is likely to present on the secondary roughness in all fabricated surfaces. On the other hand, either Wenzel or Cassie state can present on the primary roughness depending on the characteristic length of sinusoidal pattern. In an optimal condition of the serial cutting steps with applied powers of ∼30 and ∼8 kW, respectively, a stable, superhydrophobic metallic surface was created with a sinusoidal pattern of 500 μm wavelength.

  8. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic.

    Science.gov (United States)

    Moradabadi, Ashkan; Roudsari, Sareh Esmaeily Sabet; Yekta, Bijan Eftekhari; Rahbar, Nima

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30× magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments.

  9. Applied multi-pulsed laser in surface treatment and numerical-experimental analysis

    Science.gov (United States)

    Laazizi, Abdellah; Courant, Bruno; Jacquemin, Frédéric; Andrzejewski, Henri

    2011-10-01

    This paper presents a comparison between simulation and experimental results of the melting process of metallic material by a pulsed laser source Nd-YAG. The simulations of temperature and velocity fields of melted material were done by solving the transient heat transfer and fluid-flow equations. Variations of the thermophysical properties were considered. Furthermore, the model included the effects of the surface-tension gradient on the fluid surface and the buoyancy force. The simulation was useful in improving our understanding of the phenomena occurring in the treated material. Using a laser triangulation sensor, an experimental study was also conducted on the surface profile of the melted zones to seek a relationship between the so-called keyhole effect and the laser triangulation measurements. The keyhole effect induced strong surface deformations and often formed cavities, which were undesirable in the surface treatment process. The laser power, energy density, and treatment duration could be optimized to prevent the keyhole effect. The predicted laser melted zone (LMZ) morphology was in good agreement with the corresponding experimental measurements for various irradiation conditions, as long as the keyhole effect did not occur.

  10. A research paper of `the basic sciences of the radioactive waste treatment` (Jul. 28,29, 1994) and `Interface and surface science of solid waste processing and disposal -differences between cement and bentonite` (Dec. 14, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report contains copies of OHP at the meetings of which discussions were centered upon the points of sameness and difference between cement and bentonite. There are sixteen papers, eleven in the first meeting and five in the second one. The following studies were read as under, on the first meeting, the role of retardation effect on the safety of high level atomic waste stratum processing, determination of colloid particle diameters by use of fieldflow fractionation, adsorption behavior of uranium, into black mica in granite, masstransfer mechanism of Cs and Se in the compression-bentonite, delay mechanism under conditions of mineral alteration, effects of humus on the behavior of radionuclides in stratum, formation of actinoids - humic acid complex and its effect on adsorption behavior, characteristic properties of water in bentonite, measurement of solubility of uranium and niobium, behavior of colloidal Am in the bentonite, illite - water system, effects of aging deterioration of bentonite on diffusion of nuclides, and on the second meeting, a view of cement materials, chemical behavior and long period stability of cement - relating to Atkinson model -, the present conditions of studies about sorption in cement, chemical properties of pore water in bentonite and interaction of bentonite and nuclides in solid - liquid interface. (S.Y.)

  11. FE-SEM COMPARATIVE STUDY ON SURFACE MODIFICATION OF WOOL FIBER AFTER DIFFERENT CHEMICAL TREATMENTS

    Directory of Open Access Journals (Sweden)

    BONET-ARACIL Marilés

    2016-05-01

    Full Text Available Wool surface comprehends numerous scales which are responsible of certain undesirable behavior of this fiber during its use and maintenance. One of the most significant issues is related to shrinkage, caused during washing, as a consequence of friction between the fibers. Chemical modification of wool is considered a useful option to avoid these kind of circumstances. During the last years, multiple alternatives for chemical modification of wool have been studied, comprising enzymes or acids amongst others. In this case of study, three different treatments were carried out in order to evaluate wool morphological appearance. The first treatment was an oxidative procedure, containing Basolan DC and sodium acetate as the main components. The second treatment was accomplished using Lanaperm VPO, a commercial finishing agent for wool fiber that claims to soften its surface. The third finishing process was performed employing Siligen FA, a commercial agent intended to act as an antimigrant for dye baths and also provide a smoother and regular surface. After said treatments, microphotographs of all treated and untreated fibers were taken so that a comparison between final appearance could be done. Analyzing results and conclusions, it can be stated that chemical modification of fiber does change its surface appearance and, consequently, its behaviour. Oxidation, Lanaperm, Siligen, wool cuticle, scales

  12. Coupling between mantle and surface processes: Insights from analogue modelling

    Science.gov (United States)

    Király, Ágnes; Sembroni, Andrea; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    Thermal or density anomalies located beneath the lithosphere are thought to generate dynamic topography. Such a topographic signal compensates the viscous stresses originating from the anomaly driven mantle flow. It has been demonstrated that the erosion modulates the dynamic signal of topography changing the uplift rate by unload. The characteristic time for adjustments of dynamic topography due to surface erosion is likely similar to post-glacial rebound time (10000 - 50000 years). Here we present preliminary results of a new set of analogue models realized to study and quantify the contribution given by erosion to dynamic topography, during a process specifically driven by a positively buoyant deep anomaly. The adopted set up consists of a Plexiglas box (40x40x50 cm3) filled with glucose syrup as analogue upper mantle. A silicon plate positioned on the top of the syrup simulates the lithosphere. On the silicone plate is placed a thin layer of a high viscous glucose syrup which reproduces the upper, erodible layer of the crust. To simulate the positively buoyant anomaly we used an elastic, undeformable silicon ball free to rise by buoyancy in the syrup until the floating silicone plate is hit. The changes in topography have been monitored by using a 3D laser scan, while a side-view camera recorded the position of the rising ball in time. Data have been post-processed with image analysis techniques (e.g., Particle Image Velocimetry) in order to obtain the evolution of topography, uplift rate, erosion patterns of the top layer, bulge width and mantle circulation during the experiment. We ran experiments with and without the shallow, erodible crustal layer in order to quantify the effect of erosion on dynamic topography. Preliminary results showed that both the maximum topography and uplift rate are inversely proportional to the lithospheric thickness. The maximum uplift rate and the deformation of the lithospheric plate occurred just before the arrival of the

  13. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  14. How ocular surface disease impacts the glaucoma treatment outcome.

    Science.gov (United States)

    Kaštelan, Snježana; Tomić, Martina; Metež Soldo, Kata; Salopek-Rabatić, Jasminka

    2013-01-01

    The treatment goals for glaucoma are lowering the intraocular pressure and preservation of vision. Topical hypotensive drops are the standard form of therapy which is often associated with some symptoms of toxicity, ocular inflammation, allergy, or ocular surface disease (OSD). OSD is a common comorbidity in glaucoma patients, and its prevalence with glaucoma increases with age. Use of topical treatment could additionally increase symptoms of OSD mostly due to preservatives added to multidose medication bottles used to reduce the risk of microbial contamination. This toxicity has been particularly associated with BAK, the most commonly used preservative which damages conjunctival and corneal epithelial cells and significantly aggravates OSD symptoms. OSD adversely affects patients' quality of life causing discomfort and problems with vision which in turn may result in noncompliance, lack of adherence, and eventually visual impairment. In the management of glaucoma patients OSD symptoms should not be overlooked. If they are present, topical glaucoma treatment should be adapted by decreasing the amount of drops instilled daily, using BAK-free or preservative-free medication and lubricants if necessary. Awareness of the presence and importance of OSD will in turn improve patients' adherence and compliance and thus ultimately the preservation of long-term vision.

  15. How Ocular Surface Disease Impacts the Glaucoma Treatment Outcome

    Science.gov (United States)

    Kaštelan, Snježana; Tomić, Martina; Metež Soldo, Kata; Salopek-Rabatić, Jasminka

    2013-01-01

    The treatment goals for glaucoma are lowering the intraocular pressure and preservation of vision. Topical hypotensive drops are the standard form of therapy which is often associated with some symptoms of toxicity, ocular inflammation, allergy, or ocular surface disease (OSD). OSD is a common comorbidity in glaucoma patients, and its prevalence with glaucoma increases with age. Use of topical treatment could additionally increase symptoms of OSD mostly due to preservatives added to multidose medication bottles used to reduce the risk of microbial contamination. This toxicity has been particularly associated with BAK, the most commonly used preservative which damages conjunctival and corneal epithelial cells and significantly aggravates OSD symptoms. OSD adversely affects patients' quality of life causing discomfort and problems with vision which in turn may result in noncompliance, lack of adherence, and eventually visual impairment. In the management of glaucoma patients OSD symptoms should not be overlooked. If they are present, topical glaucoma treatment should be adapted by decreasing the amount of drops instilled daily, using BAK-free or preservative-free medication and lubricants if necessary. Awareness of the presence and importance of OSD will in turn improve patients' adherence and compliance and thus ultimately the preservation of long-term vision. PMID:24224176

  16. How Ocular Surface Disease Impacts the Glaucoma Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Snježana Kaštelan

    2013-01-01

    Full Text Available The treatment goals for glaucoma are lowering the intraocular pressure and preservation of vision. Topical hypotensive drops are the standard form of therapy which is often associated with some symptoms of toxicity, ocular inflammation, allergy, or ocular surface disease (OSD. OSD is a common comorbidity in glaucoma patients, and its prevalence with glaucoma increases with age. Use of topical treatment could additionally increase symptoms of OSD mostly due to preservatives added to multidose medication bottles used to reduce the risk of microbial contamination. This toxicity has been particularly associated with BAK, the most commonly used preservative which damages conjunctival and corneal epithelial cells and significantly aggravates OSD symptoms. OSD adversely affects patients’ quality of life causing discomfort and problems with vision which in turn may result in noncompliance, lack of adherence, and eventually visual impairment. In the management of glaucoma patients OSD symptoms should not be overlooked. If they are present, topical glaucoma treatment should be adapted by decreasing the amount of drops instilled daily, using BAK-free or preservative-free medication and lubricants if necessary. Awareness of the presence and importance of OSD will in turn improve patients' adherence and compliance and thus ultimately the preservation of long-term vision.

  17. Friction surface cladding: development of a solid state cladding process

    NARCIS (Netherlands)

    Stelt, van der Adrianus Anton

    2014-01-01

    Many industries including automotive, aerospace, electronics, shipbuilding, offshore, railway and heavy equipment employ surface modification technologies to change the surface properties of a manufactured product. Often, the surface is covered (coated) with a dissimilar clad layer for this purpose

  18. Water-wettable polypropylene fibers by facile surface treatment based on soy proteins.

    Science.gov (United States)

    Salas, Carlos; Genzer, Jan; Lucia, Lucian A; Hubbe, Martin A; Rojas, Orlando J

    2013-07-24

    Modification of the wetting behavior of hydrophobic surfaces is essential in a variety of materials, including textiles and membranes that require control of fluid interactions, adhesion, transport processes, sensing, etc. This investigation examines the enhancement of wettability of an important class of textile materials, viz., polypropylene (PP) fibers, by surface adsorption of different proteins from soybeans, including soy flour, isolate,glycinin, and β-conglycinin. Detailed investigations of soy adsorption from aqueous solution (pH 7.4, 25 °C) on polypropylene thin films is carried out using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). A significant amount of protein adsorbs onto the PP surfaces primarily due to hydrophobic interactions. We establish that adsorption of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA) onto PP surfaces prior to the protein deposition dramatically enhances its adsorption. The adsorption of proteins from native (PBS buffer, pH 7.4, 25 °C) and denatured conditions (PBS buffer, pH 7.4, 95 °C) onto DODA-treated PP leads to a high coverage of the proteins on the PP surface as confirmed by a significant improvement in water wettability. A shift in the contact angle from 128° to completely wettable surfaces (≈0°) is observed and confirmed by imaging experiments conducted with fluorescence tags. Furthermore, the results from wicking tests indicate that hydrophobic PP nonwovens absorb a significant amount of water after protein treatment, i.e., the PP-modified surfaces become completely hydrophilic.

  19. COST ESTIMATION MODELS FOR DRINKING WATER TREATMENT UNIT PROCESSES

    Science.gov (United States)

    Cost models for unit processes typically utilized in a conventional water treatment plant and in package treatment plant technology are compiled in this paper. The cost curves are represented as a function of specified design parameters and are categorized into four major catego...

  20. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2016-01-01

    Full Text Available Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was used to improve hydrophobicity of membranes. Hydrophilic membranes showed higher affinity to attach plasma particles compared to hydrophobic membranes.

  1. Treatment of surfaces with low-energy electrons

    Science.gov (United States)

    Frank, L.; Mikmeková, E.; Lejeune, M.

    2017-06-01

    Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  2. Processing and properties of electrodeposited layered surface coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    1998-01-01

    clacks and spalls off early on. For thick, non-compliant coatings, much thicker coatings can be formed. Fracture resistance must be considered in relation to both specimen and loading geometries. Since the inherent bending moment causes a maximum tensile stress at the coating surface, the loading......Hard chromium, produced by conventional dir ect curl ent (DC) electrodeposition, cannot be deposited to thicknesses gl enter than about 5 mu m because of the buildup of processing stresses which cause channel cracks in the coating. Much thicker chromium coatings map be produced by depositing...... a layered structure using alternate DC plating and periodic current reversal (PR). Such layering produces a through thickness stepped gradient in residual stresses. Most importantly a bending moment develops in the coating whenever the substrate is compliant. For thin, compliant substrates, the coating...

  3. Applications of Time-Reversal Processing for Planetary Surface Communications

    Science.gov (United States)

    Barton, Richard J.

    2007-01-01

    Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks

  4. Influence of surface coverage on the chemical desorption process

    CERN Document Server

    Marco, Minissale

    2014-01-01

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O$_2$) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80 $\\%$ at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-...

  5. The Amazon River reversal explained by tectonic and surface processes

    Science.gov (United States)

    Sacek, V.

    2014-12-01

    The drainage pattern in Amazonia was expressively modified during the mountain building of central and northern Andes. In Early Miocene, the fluvial systems in western Amazonia flowed to the foreland basins and northward to the Caribbean. By Late Miocene the drainage reversal occurred and formed the transcontinental Amazon River, connecting the Andes and the equatorial Atlantic margin. This event is recorded in the stratigraphic evolution of the Foz do Amazonas Basin by the onset of Andean-derived sedimentation. Additionally, an abrupt increase in sedimentation rate after the reversal occurred in the Foz do Amazonas Basin. Based on three-dimensional numerical models that couple surface processes, flexural isostasy and crustal thickening due to orogeny, I concluded that the Miocene drainage reversal can be explained by the flexural and surface processes response to the Andes formation with no need to invoke dynamic topography induced by mantle convection, as previously proposed. I observed that the instant of drainage reversal is directly linked to the rate of crustal thickening in the orogeny, the rate of erosion and, mainly, the efficiency of sediment transport. Moreover, the numerical experiments were able to predict the increase in sedimentation rate in the Amazon fan after the drainage reversal of the Amazon River as observed in the Late Miocene-Pliocene sedimentary record. However, the present numerical model fails to fully reproduce the evolution of the Pebas system, a megawetland in western Amazonia that preceded the drainage reversal. Therefore, further investigation is necessary to evaluate the mechanisms that generated and sustained the Pebas system.

  6. The influence of milling-burnishing successive and simultaneous processes on the surface roughness

    Science.gov (United States)

    Grigoraş, C. C.; Brabie, G.; Chirita, B.

    2016-08-01

    The present techniques do not offer the possibility for milling and burnishing at the same time. The novelty of this study is the development of a new tool and tool holder that allows this processes to take place simultaneous. Magnesium alloys have a wide range of usages in industry; in the past years they seem to be a promising solution to classic implants. Improvements in fatigue and tensile strength need to be made. Heat treatments are difficult to implement, so the solution is a mechanical treatment. The burnishing process offers very good results, but it has difficulties in simultaneous machining with the milling process. Thereby a hydraulic roller burnishing tool and a special tool holder was manufactured to solve this issue. The combined process was carried out on a CNC milling machine. This study seeks to highlight the influence of the milling-burnishing process parameter on the surface roughness in the case of magnesium alloy AZ31B-F. Parameters like speed and feed of cut, burnishing pressure and depth where taken into consideration. It was noted that with the increase of the feed, speed, pressure and depth of burnishing the general percentage improvement of the surface roughness was higher.

  7. Surface Treatment for Improving Sulfidation Resistance of Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    2001-03-09

    The purpose of the cooperative research and development agreement (CRADA) between ABB Combustion Engineering, Inc. and the Oak Ridge National Laboratory (ORNL) was to develop improved, longer life, and corrosion resistance surfaces for fossil power system components for use primarily in sulfidizing environments. Four surface protection techniques were to be explored. These included diffusion process, weld overlay, hot-isostatic processing, and various spraying methods. The work was to focus on Fe{sub 3} Al-based iron aluminide to increase the component life. The successful completion of the CRADA would have required the achievement of the following four goals: (1) fabrication development, (2) characterization and possibly modification of the alloy to optimize its manufacturability and environmental resistance, (3) testing and evaluation of the specimens, and (4) fabrication and testing of prototype parts. Because of lack of active participation from the participant, this CRADA did not achieve all of its goals and was terminated prematurely. Work carried out at ORNL on the CRADA is described in this report.

  8. Modeling and Understanding BOD Removal Processes in Free-Water Surface Constructed Wetlands

    Science.gov (United States)

    Deng, Z.

    2016-12-01

    Free-water surface constructed wetlands have proven to be effective systems for removal of various pollutants in wastewater and agricultural drainage water. Modeling tools are needed for understanding the processes and mechanisms responsible for the removal of pollutants and for the design of new constructed wetlands. This paper presents a new model for mimicking the processes and mechanisms controlling the removal of BOD (biochemical oxygen demand) in free-water surface constructed wetlands. The processes and mechanisms, simulated in the model, include advection, dispersion, diffusion, monod kinetics of bacterial growth, water gains (via precipitation) and losses (evaporation and seepage) and mass exchange between water column and root layers of a wetland. A novel feature of the new model is the incorporation of a dynamic diffusive root-zone. Sensitivity analysis of the model input vaiables indicates that the BOD removal in free water surface constructed wetlands is most sensitive to the biological removal process of BOD in the root zone, controlled by acetic acid and anaerobic bacteria in root zone, and the flow velocity (controlling mean hydraulic residence time) and organic carbon in the water column. The application of the new model is demonstrated through two case studies involving two distinct constructed wetlands with one (Gustine Wetland) for treatment of secondary wastewater located in the USA and another (Lake Manzala Engineered Wetland) for treatment of agricultural drainage water in Egypt. The model is relatively simple yet effective, as evidenced by the high coefficient of determination of 0.73 - 0.99 for the Gustine Wetland and 0.98 for Manzala Wetland. The model is a reliable and efficient tool for designing constructed wetlands and for understanding effects of various processes and mechanisms on the treatment efficiency of wastewater in constructed wetlands.

  9. Effect of magnetic iron oxide nanoparticles in surface water treatment: trace minerals and microbes.

    Science.gov (United States)

    Lakshmanan, Ramnath; Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao, Gunaratna K

    2013-02-01

    The existing water treatment process often uses chemicals, which is of high health and environmental concern. The present study focused on the efficiency of microemulsion prepared magnetic iron oxide nanoparticles (ME-MIONs) and protein-functionalized nanoparticles (MOCP+ME-MIONs) in water treatment. Their influence on mineral ions and microorganisms present in the surface water from lake Brunnsviken and Örlången, Sweden were investigated. Ion analysis of water samples before and after treatment with nanoparticles was performed. Microbial content was analyzed by colony forming units (CFU/ml). The results impart that ME-MIONs could reduce the water turbidity even in low turbid water samples. Reduction of microbial content (98%) was observed at 37°C and more than 90% reduction was seen at RT and 30 °C when compared to untreated samples from lake Örlången. The investigated surface water treatment method with ME-MIONs was not significantly affecting the mineral ion composition, which implies their potential complement in the existing treatment process.

  10. NUMERICAL MODELLING OF FREE-SURFACE FLOWS WITH BOTTOM AND SURFACE-LAYER PRESSURE TREATMENT

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; JIN Sheng; LIU Gang

    2009-01-01

    A new non-hydrostatic numerical model with the three-dimensional Navier-Stokes equations on structured grids was constructed and discussed. The algorithm is based upon a staggered finite difference Crank-Nicholson scheme on a Cartesian grid. The eddy viscosity coefficient was calculated by the efficient k-ε turbulence model. A new surface-layer non-hydrostatic treatment and a local cell bottom treatment were introduced so that the three-dimensional model is fully non-hydrostatic and is free of any hydrostatic assumption. The developed model is second-order accuracy in both time and space when semi-implicit coefficient is set to 0.5. The validity of the present solution algorithm was demonstrated from its application to the three-dimension channel flow and the wave propagation over a submerged bar problems.

  11. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    Science.gov (United States)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  12. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  13. Study on composite surface treatment of 38CrMoAl steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a new composite surface treatment technology of electric brush plating Ni-W alloy and nitrocarburizing composite process of 38CrMoAl steel has been studied .The properties, microstructure and phase composition of the surface layer of 38CrMoAl steel are examined by optical microscopy , scanning electron microscope (SEM) and X-ray diffraction . The experiment on the wear resistance of surface layer is carried out . The effect of the thickness of electric brush plating of Ni-W alloy and the holding time of nitrocarburizing on the properties and the microstructure of surface layer are studied .The results show that good metallurgical bonding is transformed from mechanical bonding in electric brush plating deposits with 38CrMoAl steel; the components of surface deposit microstructure are Ni-base phase with less disperse WC,WN particles . The wear resistance of surface layer of 38CrMoAl steel treated by the composite process has increased 8 times compared with that by nitrocarburizing .The optimum electric brush plating thickness is 20μm , and the optimum holding time of nitrocarburizing is 80 min at 540℃.

  14. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bulutsuz, A. G., E-mail: asligunaya@gmail.com [Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, İstanbul (Turkey); Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr [Adnan Menderes University, Faculty of Engineering, Department of Mechanical Engineering, Aytepe, 09010, Aydin (Turkey); Durakbasa, M. N., E-mail: durakbasa@gmx.at [Department of Interchangeable Manufacturing and Industrial Metrology, Institute for Production Engineering and Laser Technology, Vienna University of Technology, Karlsplatz 13/3113 A-1040 Wien (Austria); Katiboglu, A. B., E-mail: abkatiboglu@hotmail.com [Istanbul University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Istanbul (Turkey)

    2015-03-30

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in

  15. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    Science.gov (United States)

    Bulutsuz, A. G.; Demircioglu, P.; Bogrekci, I.; Durakbasa, M. N.; Katiboglu, A. B.

    2015-03-01

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface

  16. Predicting Future Clinical Adjustment from Treatment Outcome and Process Variables.

    Science.gov (United States)

    Patterson, G. R.; Forgatch, Marion S.

    1995-01-01

    Issues related to the use of outcome and process data from the treatment of antisocial children to predict future childhood adjustment were examined through a study of 69 children. Data supported the hypothesis that measures of processes thought to produce changes in child behavior would serve to predict future adjustment. (SLD)

  17. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air%Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    杨国清; 张冠军; 张文元

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  18. Surface treatment on polyethylenimine interlayer to improve inverted OLED performance

    Science.gov (United States)

    Wei, Chang-Ting; Zhuang, Jin-Yong; Chen, Ya-Li; Zhang, Dong-Yu; Su, Wen-Ming; Cui, Zheng

    2016-10-01

    Polyethylenimine (PEI) interlayer rinsing with different solvents for inverted organic light emitting diodes (OLEDs) is systematically studied in this paper. In comparison with the pristine one, the maximum current efficiency (CE max) and power efficiency (PE max) are enhanced by 21% and 22% for the device rinsing by ethylene glycol monomethyl ether (EEA). Little effect is found on the work function of the PEI interlayer rinsed by deionized water (DI), ethanol (EtOH), and EEA. On the other hand, the surface morphologies of PEI through different solvent treatments are quite different. Our results indicates that the surface morphology is the key to improving the device performance for IOLED as the work function of PEI keeps stable. Project supported by the National Key Basic Research Project of China (Grant No. 2015CB351901), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09020201), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2013206), the National Natural Science Foundation of China (Grant No. 21402233), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2012631 and BK20140387).

  19. Switchable hydrophobic/hydrophilic surface of electrospun poly (L-lactide) membranes obtained by CF4 microwave plasma treatment

    Science.gov (United States)

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2015-02-01

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF4 microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF4 plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF4 plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ∼0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF4 plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  20. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  1. Fate of antibiotics during municipal water recycling treatment processes.

    Science.gov (United States)

    Le-Minh, N; Khan, S J; Drewes, J E; Stuetz, R M

    2010-08-01

    Municipal water recycling processes are potential human and environmental exposure routes for low concentrations of persistent antibiotics. While the implications of such exposure scenarios are unknown, concerns have been raised regarding the possibility that continuous discharge of antibiotics to the environment may facilitate the development or proliferation of resistant strains of bacteria. As potable and non-potable water recycling schemes are continuously developed, it is imperative to improve our understanding of the fate of antibiotics during conventional and advanced wastewater treatment processes leading to high-quality water reclamation. This review collates existing knowledge with the aim of providing new insight to the influence of a wide range of treatment processes to the ultimate fate of antibiotics during conventional and advanced wastewater treatment. Although conventional biological wastewater treatment processes are effective for the removal of some antibiotics, many have been reported to occur at 10-1000 ng L(-1) concentrations in secondary treated effluents. These include beta-lactams, sulfonamides, trimethoprim, macrolides, fluoroquinolones, and tetracyclines. Tertiary and advanced treatment processes may be required to fully manage environmental and human exposure to these contaminants in water recycling schemes. The effectiveness of a range of processes including tertiary media filtration, ozonation, chlorination, UV irradiation, activated carbon adsorption, and NF/RO filtration has been reviewed and, where possible, semi-quantitative estimations of antibiotics removals have been provided.

  2. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    OpenAIRE

    CORNELIA DIANA HERTIA; ANCA ELENA GURZAU; MARIA ILONA SZASZ

    2011-01-01

    This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very...

  3. Treatment of cadmium dust with two-stage leaching process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The treatment of cadmium dust with a two-stage leaching process was investigated to replace the existing sulphation roast-leaching processes. The process parameters in the first stage leaching were basically similar to the neutralleaching in zinc hydrometallurgy. The effects of process parameters in the second stage leaching on the extraction of zincand cadmium were mainly studied. The experimental results indicated that zinc and cadmium could be efficiently recoveredfrom the cadmium dust by two-stage leaching process. The extraction percentages of zinc and cadmium in two stage leach-ing reached 95% and 88% respectively under the optimum conditions. The total extraction percentage of Zn and Cdreached 94%.

  4. Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics.

    Science.gov (United States)

    Harcuba, Petr; Bačáková, Lucie; Stráský, Josef; Bačáková, Markéta; Novotná, Katarína; Janeček, Miloš

    2012-03-01

    This study investigated the properties of Ti-6Al-4V alloy after surface treatment by the electric discharge machining (EDM) process. The EDM process with high peak currents proved to induce surface macro-roughness and to cause chemical changes to the surface. Evaluations were made of the mechanical properties by means of tensile tests, and of surface roughness for different peak currents of the EDM process. The EDM process with peak current of 29 A was found to induce sufficient surface roughness, and to have a low adverse effect on tensile properties. The chemical changes were studied by scanning electron microscopy equipped with an energy dispersive X-ray analyser (EDX). The surface of the benchmark samples was obtained by plasma-spraying a titanium dioxide coating. An investigation of the biocompatibility of the surface-treated Ti-6Al-4V samples in cultures of human osteoblast-like MG 63 cells revealed that the samples modified by EDM provided better substrates for the adhesion, growth and viability of MG 63 cells than the TiO2 coated surface. Thus, EDM treatment can be considered as a promising surface modification to orthopaedic implants, in which good integration with the surrounding bone tissue is required.

  5. Plasma treatments of wool fiber surface for microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Boo, Jin-Hyo, E-mail: jhboo@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Yun, Sang H., E-mail: shy@kth.se [Institute of Basic Science, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of)

    2015-09-15

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For this reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.

  6. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Carran, Richard S.; Ghosh, Arun, E-mail: Arun.Ghosh@agresearch.co.nz; Dyer, Jolon M.

    2013-12-15

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na{sup +} and Ca{sup 2+} exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  7. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    Science.gov (United States)

    Carran, Richard S.; Ghosh, Arun; Dyer, Jolon M.

    2013-12-01

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na+ and Ca2+ exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  8. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    Science.gov (United States)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  9. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment

    Science.gov (United States)

    Wang, Hao; Wang, Jianxiong; Hong, Lei; Tan, Yew Heng; Tan, Chuan Seng; Rusli

    2016-06-01

    SiNW/PEDOT:PSS hybrid solar cells are fabricated on 10.6-μm-thick crystalline Si thin films. Cells with Si nanowires (SiNWs) of different lengths fabricated using the metal-catalyzed electroless etching (MCEE) technique have been investigated. A surface treatment process using oxygen plasma has been applied to improve the surface quality of the SiNWs, and the optimized cell with 0.7-μm-long SiNWs achieved a power conversion efficiency (PCE) of 7.83 %. The surface treatment process is found to remove surface defects and passivate the SiNWs and substantially improve the average open circuit voltage from 0.461 to 0.562 V for the optimized cell. The light harvesting capability of the SiNWs has also been investigated theoretically using optical simulation. It is found that the inherent randomness of the MCEE SiNWs, in terms of their diameter and spacing, accounts for the excellent light harvesting capability. In comparison, periodic SiNWs of comparable dimensions have been shown to exhibit much poorer trapping and absorption of light.

  10. Evaluation of Wastewater Treatment of Detergent Industry Using Coagulation Procession Pilot Scale

    Directory of Open Access Journals (Sweden)

    MR Shahmansouri

    2005-04-01

    Full Text Available Introduction: Surfactant or surface active agents are slightly soluble in water and cause foaming in waste treatment plants and also in the surface waters into which the waste effluent is discharged. During aeration of wastewater, these compounds collect on the surface of the water bubbles and create some problems in waste treatment. Methods: In this study, surfactant, turbidity and COD in the industrial wastewater of the company, Paksan was studied. Study was done at pH ranging between 2 and 13 in a pilot scale process. Results: The results showed that ferric chloride has higher efficiency in removal and it is possible to decrease the surfactant, turbidity and COD Conclusion: The efficiency of ferric chloride in coagulation process for removal of surfactant, turbidity and COD from industrial wastewater is better than ALUM, Lime and Ferric Sulfate,

  11. Surface treatment to improve corrosion resistance of A1 plate heat exchangers

    Institute of Scientific and Technical Information of China (English)

    Jong-Soon KIM; Tae-Ho KANG; In-Kwan KIM

    2009-01-01

    The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3-5, 2.0-9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.

  12. Carbon fiber resin matrix interphase: effect of carbon fiber surface treatment on composite performance

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, S.; Megerdigian, C.; Papalia, R.

    1985-04-01

    Carbon fibers are supplied by various manufacturers with a predetermined level of surface treatment and matrix compatible sizings. Surface treatment of the carbon fiber increases the active oxygen content, the polarity and the total free surface energy of the fiber surface. This study is directed toward determining the effect of varying carbon fiber surface treatment on the composite performance of thermoset matrix resins. The effect of varying fiber surface treatment on performance of a promising proprietary sizing is also presented. 6 references, 11 figures.

  13. FY 1998 annual report on the development of plasma-aided surface treatment processes by in-situ controlling (second year); 1997 nendo in-situ seigyo ni yoru plasma riyo hyohi shori process no kaihatsu seika hokokusho (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This R and D project is aimed at stable production of high-quality, important machine members, which are difficult to sufficiently achieve the required properties by a single material, by carburization while minimizing use of expensive alloy metals, where high-temperature carburizing time is reduced by a plasma-aided system to save energy, and, at the same time, the conventional oil-hardening system is replaced by a He gas cooling/recycling system to solve the environmental problems involved in the former. The exhaust gases released from the plasma-aided system are adequately treated to prevent the problems caused thereby. The conditions of the plasma itself and treated surfaces are sensed in-situ, and the data are fed back to the process controlling system, to keep the treated object stable and high in quality, while minimizing energy consumption. The FY 1998 efforts were directed to studies on methods for sensing the plasma and treated surfaces, and specifications of a mini-plant for the demonstration tests, and to collection of characteristic data for development of some new products to be produced. (NEDO)

  14. Surface treatment method for cladding tube of LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Yoshitaka; Matsumoto, Kunio; Ito, Kenji.

    1994-06-07

    Upon surface finishing by polishing, shot peening or blasting is applied on the outer surface of a cladding tube to eliminate orientation of residual stresses on the surface layer in order to eliminate residual stresses formed on the outer surface in the circumferential direction. This can suppress occurrence of cracks in oxide membranes formed on the outer surface to suppress development of corrosion on the outer surface irrespective of the ingredient composition of fuel cladding tube made of zircaloy. (T.M.).

  15. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hooseok, E-mail: hooseok.lee@gmail.com; Ohsawa, Isamu; Takahashi, Jun

    2015-02-15

    Highlights: • Plasma treatment was used to improve the adhesion property between the recycled CF and polymer matrix. • In order to evaluate the adhesion between plasma treated recycled CF and polymer, micro droplet test was conducted. • The interfacial shear strength and the interfacial adhesion of recycled carbon fiber increased. - Abstract: We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  16. Comparison of hole surface finishing processes with roller burnishing method applied in copper materials

    OpenAIRE

    Adnan AKKURT; Kurt, Abdullah; Ahmet ÖZDEMİR; ŞEKER, Ulvi

    2014-01-01

    Surface finishing processes such as drilling, turning, reaming, grinding, honing and roller burnishing etc. are widely used in manufacturing as hole surface finishing process. In addition to the characteristics of hole such as the surface roughness, the surface hardness and the wear resistance, the circularity and cylindricality of hole are also effective on the performance of hole. In this paper, it is presented that different hole surface finishing processes were applied to the samples made...

  17. Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning.

    Science.gov (United States)

    Bokrantz, Rasmus

    2013-06-07

    We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained.

  18. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  19. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  20. Research of Tool Durability in Surface Plastic Deformation Processing by Burnishing of Steel Without Metalworking Fluids

    Science.gov (United States)

    Grigoriev, S. N.; Bobrovskij, N. M.; Melnikov, P. A.; Bobrovskij, I. N.

    2017-05-01

    Modern vector of development of machining technologies aimed at the transition to environmentally safe technologies - “green” technologies. The concept of “green technology” includes a set of signs of knowledge intended for practical use (“technology”). One of the ways to improve the quality of production is the use of surface plastic deformation (SPD) processing methods. The advantage of the SPD is a capability to combine effects of finishing and strengthening treatment. The SPD processing can replace operations: fine turning, grinding or polishing. The SPD is a forceful contact impact of indentor on workpiece’s surface in condition of their relative motion. It is difficult to implement the core technology of the SPD (burnishing, roller burnishing, etc.) while maintaining core technological advantages without the use of lubricating and cooling technology (metalworking fluids, MWF). The “green” SPD technology was developed by the authors for dry processing and has not such shortcomings. When processing with SPD without use of MWF requirements for tool’s durability is most significant, especially in the conditions of mass production. It is important to determine the period of durability of tool at the design stage of the technological process with the purpose of wastage preventing. This paper represents the results of durability research of natural and synthetic diamonds (polycrystalline diamond - ASPK) as well as precision of polycrystalline superabrasive tools made of dense boron nitride (DBN) during SPD processing without application of MWF.

  1. Microstructural Evolution of Surface Layer of TWIP Steel Deformed by Mechanical Attrition Treatment

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attri- tion treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the de- formation layer. Microstructural characteristics of the surface at the TWIP steel SMATed for 90 min were observed and analyzed by optical microscope, x-ray diffraction, transmission and high-resolution electron microscope. The re- sults show that the orientation of austenite grains weakens, and a-martensite transformation occurs during SMAT. During the process of SMAT, the deformation twins generate and divide the austenite grains firstly~ then a-martens- ite transformation occurs beside and between the twin bundles~ after that the martensite and austenite grains rotate to accommodate deformation, and the orientations of martensite and between martensite and residual austenite increase; lastly the randomly oriented and uniform-sized nanocrystallir~e layers are formed under continuous deformation.

  2. Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment.

    Science.gov (United States)

    Köhler, Stephan J; Lavonen, Elin; Keucken, Alexander; Schmitt-Kopplin, Philippe; Spanjer, Tom; Persson, Kenneth

    2016-02-01

    Rising organic matter concentrations in surface waters in many Nordic countries require current drinking water treatment processes to be adapted. Accordingly, the use of a novel nanofiltration (NF) membrane was studied during a nine month period in pilot scale at a large drinking water treatment plant in Stockholm, Sweden. A chemically resistant hollow-fibre NF membrane was fed with full scale process water from a rapid sand filter after aluminum sulfate coagulation. The combined coagulation and NF process removed more than 90% of the incoming lake water dissolved organic carbon (DOC) (8.7 mg C L(-1)), and 96% of the absorbance at 254 nm (A254) (0.28 cm(-1) incoming absorbance). Including granulated active carbon GAC) filter, the complete pilot plant treatment process we observed decreases in DOC concentration (8.7-0.5 mg C L(-1)), SUVA (3.1-1.7 mg(-1) L m(-1)), and the average nominal molecular mass (670-440 Da). Meanwhile, water hardness was practically unaffected (iron concentrations were low (samples. Given the recommended limit of 4 mg L(-1) for chemical oxygen demand (COD) for Swedish drinking water, coagulation will need to be supplemented with one or more treatment steps irrespective whether climate change will lead to drier or wetter conditions in order to maintain sufficient DOC removal with the current increasing concentrations in raw waters.

  3. Comparative tensile strength study of the adhesion improvement of PTFE by UV photon assisted surface processing

    Science.gov (United States)

    Hopp, B.; Geretovszky, Zs.; Bertóti, I.; Boyd, I. W.

    2002-01-01

    Poly(tetrafluoroethylene) (PTFE) is notable for its non-adhesive and non-reactive properties. A number of technologies can potentially benefit from the application of PTFE, but these characteristics restrict the ability to structuring its surface. In this paper, we present results on two ultraviolet photon assisted treatments of PTFE. The originally poor adhesion was significantly improved by both 172 nm excimer lamp and 193 nm excimer laser assisted surface treatments. While Xe2∗ lamp irradiation, applied in a modest vacuum environment, was sufficient by itself to improve adhesion, the ArF laser process was only effective when the irradiated interface was in contact with 1,2-diaminoethane photoreagent. It was found that the tensile strength of an epoxy resin glued interface created on treated surfaces depended strongly on the applied number of laser pulses and lamp irradiation time. Laser treatment caused fast tensile strength increase during the first 50-500 pulses, while after this it saturates slowly at about 5.5 MPa in the 500-2500 pulse domain. The excimer lamp irradiation resulted in a maximum tensile strength of approximately 10 MPa after 2 min irradiation time which reduced to about 65% of the peak value at longer times.

  4. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; R. Honaker; B. K. Parekh

    2007-09-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral and coal processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a significant improvement of the service life.

  5. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Craig A. Blue

    2006-07-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a 2 times improvement of the service life.

  6. Publications of the Western Earth Surface Processes Team, 1999

    Science.gov (United States)

    Stone, Paul; Powell, Charles L.

    2000-01-01

    The Western Earth Surfaces Processes Team (WESPT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth- science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 1999 as well as additional 1997 and 1998 publications that were not included in the previous list (USGS Open-file Report 99-302). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects.

  7. 40 CFR 63.134 - Process wastewater provisions-surface impoundments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-surface... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.134 Process wastewater provisions—surface impoundments. (a) For each surface impoundment that receives, manages,...

  8. Use of Hansen Solubility Parameters in Fuel Treatment Processes

    Science.gov (United States)

    2014-03-17

    Charts 3. DATES COVERED (From - To) Jan 2014- Mar 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House Use of Hansen Solubility Parameters in...distribution is unlimited. AFRL Public Affairs Clearance # USE OF HANSEN SOLUBILITY PARAMETERS IN FUEL TREATMENT PROCESSES 17 March 2014 Andrew J...Treatment Needs – Hansen Solubility Parameters • Dyes – Experimental HSP Determination – Extrapolation to Other Dyes • Predictions for Extraction Fluids

  9. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Keegan, Alexandra [Microbiology Research, Australian Water Quality Centre, South Australian Water Corporation, Adelaide (Australia)

    2012-01-15

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g{sub silica}. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10{sup 2} and 10{sup 4} cfu/mL.

  10. Therapeutic eyelids hygiene in the algorithms of prevention and treatment of ocular surface diseases

    Directory of Open Access Journals (Sweden)

    V. N. Trubilin

    2016-01-01

    Full Text Available When acute inflammation in anterior eye segment of a forward piece of an eye was stopped, ophthalmologists face a problem of absence of acute inflammation signs and at the same time complaints to the remain discomfort feelings. It causes dissatisfaction from the treatment. The complaints are typically caused by disturbance of tears productions. No accidental that the new group of diseases was allocated — the diseases of the ocular surface. Ocular surface is a difficult biologic system, including epithelium of the conjunctiva, cornea and limb, as well as the area costal margin eyelid and meibomian gland ducts. Pathological processes in conjunctiva, cornea and eyelids are linked with tears production. Ophthalmologists prescribes tears substitutions, providing short-term relief to patients. However, in respect that the lipid component of the tear film plays the key role in the preservation of its stability, eyelids hygiene is the basis for the treatment of dry eye associated with ocular surface diseases. Eyelids hygiene provides normal functioning of glands, restores the metabolic processes in skin and ensures the formation of a complete tear film. Protection of eyelids, especially the marginal edge from aggressive environmental agents, infections and parasites and is the basis for the prevention and treatment of blepharitis and dry eye syndrome. The most common clinical situations and algorithms of their treatment and prevention of dysfunction of the meibomian glands; demodectic blepharitis; seborrheic blepharitis; staphylococcal blepharitis; allergic blepharitis; barley and chalazion are discussed in the article. The prevention keratoconjunctival xerosis (before and postoperative period, caused by contact lenses, computer vision syndrome, remission after acute conjunctiva and cornea inflammation is also presented. The first part of the article presents the treatment and prevention algorithms for dysfunction of the meibomian glands, as well as

  11. Electrochemical processes for in-situ treatment of contaminated soils. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.P.

    1998-06-01

    'This research project is to develop electrochemical processes for in-situ treatment of contaminated soils. Specifically, it is to study electrokinetic (EK) and electro-Fento (EF) processes and to integrate these processes for the treatment of soils containing mixed contaminants. The objectives are: (1) To study important parameters controlling the mobilization and the transport of selected organics and metals in soils by the electrokinetic (EK) process. Factors to be studied include field strength, pH, ionic strength, soil washing agents, types of organic and metal contaminants, and soil surface properties such as cation exchange capacity(CEC), soil organic content, soil moisture content, soil composition, and surface charge. (2) To study the important factors governing the oxidation of selected organic contaminants by the electro-Fenton (EF) process. Parameters such as pH, surface area and the configuration of working electrode, oxygen concentration, ferrous ion, and temperature that may affect the performance of the EF process will be investigated. (3) To understand the mechanism of the oxidation of selected organic contaminants by the electro-Fenton oxidation process.'

  12. Feed Composition for Sodium-Bearing Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.

    2000-10-30

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  13. Innovations in wastewater treatment: the moving bed biofilm process.

    Science.gov (United States)

    Odegaard, Hallvard

    2006-01-01

    This paper describes the moving bed biofilm reactor (MBBR) and presents applications of wastewater treatment processes in which this reactor is used. The MBBR processes have been extensively used for BOD/COD-removal, as well as for nitrification and denitrification in municipal and industrial wastewater treatment. This paper focuses on the municipal applications. The most frequent process combinations are presented and discussed. Basic design data obtained through research, as well as data from practical operation of various plants, are presented. It is demonstrated that the MBBR may be used in an extremely compact high-rate process (treatment. Most European plants require P-removal and performance data from plants combining MBBR and chemical precipitation is presented. Likewise, data from plants in Italy and Switzerland that are implementing nitrification in addition to secondary treatment are presented. The results from three Norwegian plants that are using the so-called combined denitrification MBBR process are discussed. Nitrification rates as high as 1.2 g NH4-N/m2 d at complete nitrification were demonstrated in practical operation at low temperatures (11 degrees C), while denitrification rates were as high as 3.5g NO3-Nequiv./m2.d. Depending on the extent of pretreatment, the total HRT of the MBBR for N-removal will be in the range of 3 to 5 h.

  14. Plastic deformation to enhance plasma-assisted nitriding: On surface contamination induced by Surface Mechanical Attrition Treatment

    Science.gov (United States)

    Samih, Youssef; Novelli, Marc; Thiriet, Tony; Bolle, Bernard; Allain, Nathalie; Fundenberger, Jean-Jacques; Marcos, Grégory; Czerwiec, Thierry; Grosdidier, Thierry

    2014-08-01

    The Surface Mechanical Attrition Treatment is a recent technique leading to the formation of nanostructured layers by the repeated action of impacting balls. While several communications have revealed possible contamination of the SMATed surfaces, the nature of this surface contamination was analyzed in the present contribution for the treatment of an AISI 316L stainless steel. It is shown, by a combination of Transmission Electron Microscopy and Glow Discharge - Optical Emission Spectrometry, that the surface was alloyed with Ti, Al and V coming from the sonotrode that is used to move the balls as well as Zr coming from the zirshot® balls themselves.

  15. Electron treatment of wood pulp for the viscose process

    Science.gov (United States)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  16. Investigation of Contact Fatigue of High Strength Steel Gears Subjected to Surface Treatment

    Science.gov (United States)

    Dimitrov, L.; Michalopoulos, D.; Apostolopoulos, Ch. Alk.; Neshkov, T. D.

    2009-10-01

    In this paper the contact fatigue resistance of gearwheel teeth, subjected to shot-peening treatment, was investigated experimentally and analytically. The main objective was the evaluation and prediction of fatigue crack initiation, propagation, direction, and rate. A specially designed experimental rig was used to test a number of spur gears with the following characteristics: (a) unhardened, thermally untreated unpeened surfaces, (b) thermally treated unpeened surfaces, (c) unhardened peened surfaces, and (d) thermally treated peened surfaces. The theoretical model assumed initiation and propagation of surface cracks of gears operating in the elastohydrodynamic lubrication regime while loading was due to simultaneous rolling and sliding. Finite element modeling was used for the calculation of the stress field at the gear teeth. Comparison of the experimental and analytical results showed considerable improvement in the contact fatigue strength of thermally treated gear teeth and especially those that underwent shot peening, which increased surface durability. The residual stresses induced by shot peening are mainly effective in stopping microcrack propagation. When shot peening is applied on thermally untreated gear teeth surface, it increases the contact fatigue life of the material by 17% at 7 × 105 loading cycles. If shot peening is applied on carburized gear teeth surfaces, it increases the surface fatigue life by approximately 8% at 106 cycles. Contact fatigue and eventual pitting are treated as a normal consequence of the operation of machine elements. To study this failure process different types of testing machines have been designed. The purpose of this paper is the presentation and evaluation of a new design experimental rig for studying contact fatigue damage of gear teeth subjected to different load patterns.

  17. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites.

  18. Analytical modelling for ultrasonic surface mechanical attrition treatment

    Directory of Open Access Journals (Sweden)

    Guan-Rong Huang

    2015-07-01

    Full Text Available The grain refinement, gradient structure, fatigue limit, hardness, and tensile strength of metallic materials can be effectively enhanced by ultrasonic surface mechanical attrition treatment (SMAT, however, never before has SMAT been treated with rigorous analytical modelling such as the connection among the input energy and power and resultant temperature of metallic materials subjected to SMAT. Therefore, a systematic SMAT model is actually needed. In this article, we have calculated the averaged speed, duration time of a cycle, kinetic energy and kinetic energy loss of flying balls in SMAT for structural metallic materials. The connection among the quantities such as the frequency and amplitude of attrition ultrasonic vibration motor, the diameter, mass and density of balls, the sample mass, and the height of chamber have been considered and modelled in details. And we have introduced the one-dimensional heat equation with heat source within uniform-distributed depth in estimating the temperature distribution and heat energy of sample. In this approach, there exists a condition for the frequency of flying balls reaching a steady speed. With these known quantities, we can estimate the strain rate, hardness, and grain size of sample.

  19. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Science.gov (United States)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping

    2014-03-01

    Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  20. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  1. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  2. Influence of Heat Treatment on the Surface Structure of 6082 Al Alloys

    Science.gov (United States)

    Bayat, N.; Carlberg, T.

    2017-10-01

    The β-Al5FeSi intermetallic phase and coarse Mg2Si particles have negative effects on extrudability and workability of 6xxx Al alloys billets. To achieve extruded products with a high surface quality, the as-cast billets are heat-treated before extrusion. During heat treatment, the undesired intermetallic particles, i.e., β-AlFeSi platelets are transformed to rounded α-Al(FeMn)Si intermetallic phases. Although the heat treatment of the bulk areas of the 6xxx Al alloys has been the focus of many previous studies, the process of phase transformation at the very surface has not been paid the same attention. In this study, microstructures of a homogenized billet of a 6082 alloy at the area very close to the surface were investigated. By comparing the X-ray diffraction patterns (XRD) of heat-treated samples as a function of different holding times, the gradual phase transformations could be followed, and using GDOES and map analysis by EDX, the alloying elemental redistribution was analyzed. Partial remelting and porosity growth was detected, and transformation rates were faster than in bulk material and from what is known from industrial processes.

  3. Digital image processing and analysis for activated sludge wastewater treatment.

    Science.gov (United States)

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  4. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping, E-mail: jipingwanghz@gmail.com

    2014-03-01

    Graphical abstract: - Highlights: • We used a simple and easy way to measure the enzyme activity. • We studied the mechanism by characterizing the chemical changes in the surface of fabric. • We studied the advantages in surface wettability, fiber integrity and mechanical performance of cutinase treated fabrics. • Cutinase pretreated fibers exhibited much improved fabric wicking and better fiber integrity comparing to alkali treated ones. • Cutinase pretreatment technology promotes energy conservation and emission reduction. - Abstract: Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  5. Surface roughness of Ti6Al4V after heat treatment evaluated by artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Altug, Mehmet [Inonu Univ., Malataya (Turkey). Dept. of Machine and Metal Technologies; Erdem, Mehmet; Bozkir, Oguz [Inonu Univ., Malataya (Turkey); Ozay, Cetin [Univ. of Firat Elazig (Turkey). Faculty of Tech. Education

    2016-05-01

    The study examines how, using wire electrical discharge machining (WEDM), the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4V are changed as a result of heat treatment and the effect they have on machinability. Scanning electron microscope (SEM), optical microscope and X-ray diffraction (XRD) examinations were performed to determine various characteristics and additionally related microhardness and conductivity measurements were conducted. L{sub 18} Taquchi test design was performed with three levels and six different parameters to determine the effect of such alterations on its machinability using WEDM and post-processing surface roughness (Ra) values were determined. Micro-changes were ensured successfully by using heat treatments. Results obtained with the optimization technique of artificial neural network (ANN) presented minimum surface roughness. Values obtained by using response surface method along with this equation were completely comparable with those achieved in the experiments. The best surface roughness value was obtained from sample D which had a tempered martensite structure.

  6. Surface evolution of polycarbonate/polyethylene terephthalate blends induced by thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    Licciardello, A.; Auditore, A.; Samperi, F.; Puglisi, C

    2003-01-15

    Bisphenol-A polycarbonate (PC) and polyethyleneterephthalate (PET) blends are known to undergo, upon thermal treatment (melt mixing), exchange reactions leading to the formation of copolymers having a final structure that is also affected by consecutive reactions involving CO{sub 2} and ethylene carbonate losses. In this work we followed the evolution of the surface composition of this system during the melt mixing at 270 deg. C, both with and without catalysts, by means of time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The static SIMS spectra obtained at different treatment times show the appearance of peaks related to newly formed structures and also the modification of the relative intensities of peaks characteristic of both the initial constituents of the blend. From the variation of the relative intensities of peaks related to the bisphenol-A unit of PC and to the phthalate structure of PET, it is shown that after the first stages of melt mixing the surface is PC enriched and that with the progressive formation of a random copolymer the phthalate units increase their concentration at the surface of the system. Hence, as final result of the melt mixing process, the surface composition tends to reflect the relative amount of the repeating units in the bulk.

  7. Surface evolution of polycarbonate/polyethylene terephthalate blends induced by thermal treatments

    Science.gov (United States)

    Licciardello, A.; Auditore, A.; Samperi, F.; Puglisi, C.

    2003-01-01

    Bisphenol-A polycarbonate (PC) and polyethyleneterephthalate (PET) blends are known to undergo, upon thermal treatment (melt mixing), exchange reactions leading to the formation of copolymers having a final structure that is also affected by consecutive reactions involving CO 2 and ethylene carbonate losses. In this work we followed the evolution of the surface composition of this system during the melt mixing at 270 °C, both with and without catalysts, by means of time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The static SIMS spectra obtained at different treatment times show the appearance of peaks related to newly formed structures and also the modification of the relative intensities of peaks characteristic of both the initial constituents of the blend. From the variation of the relative intensities of peaks related to the bisphenol-A unit of PC and to the phthalate structure of PET, it is shown that after the first stages of melt mixing the surface is PC enriched and that with the progressive formation of a random copolymer the phthalate units increase their concentration at the surface of the system. Hence, as final result of the melt mixing process, the surface composition tends to reflect the relative amount of the repeating units in the bulk.

  8. Status of surface treatment in endosseous implant: A literary overview

    Directory of Open Access Journals (Sweden)

    Gupta Ankur

    2010-01-01

    Full Text Available The attachment of cells to titanium surfaces is an important phenomenon in the area of clinical implant dentistry. A major consideration in designing implants has been to produce surfaces that promote desirable responses in the cells and tissues. To achieve these requirements, the titanium implant surface can be modified in various ways. This review mainly focuses on the surface topography of dental implants currently in use, emphasizing the association of reported variables with biological outcome.

  9. Innovative soil treatment process design for removal of trivalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, J.H. [Air Force, Wright-Patterson AFB, OH (United States). Aeronautical Systems Center; Durkin, M.E. [Hughes Missile Systems Co., Tucson, AZ (United States)

    1997-12-31

    A soil treatment process has been developed as part of a US Air Force environmental compliance project at Air Force Plant 44, Tucson, AZ for treating soil contaminated with heavy metals including trivalent chromium, cadmium, copper, and nickel. The process was designed to treat a total of 133,000 tons of soil in a 400 ton per day facility. Features of the soil treatment process include physical treatment and separation, and a chemical treatment process of the remaining fines using a hypochlorite leach allowing chromium to be solubilized at a high pH. After treating, fines are washed in three stage countercurrent thickeners and chromium hydroxide cake is recovered as a final produce from the leach solution. Treatability studies were conducted, laboratory and a pilot plant was built. Process design criteria and flow sheet, material balances, as well as preliminary equipment selection and sizing for the facility have been completed. Facility was designed for the removal of Cr at a concentration of an average of 1230 mg/kg from the soil and meeting a risk based clean-closure limit of 400 mg/kg of Cr. Capital costs for the 400 tpd plant were estimated at 9.6 million with an operating and maintenance cost of $54 per ton As process is most economic for large quantities of soil with relatively low concentrations of contaminants, it was not used in final closure when the estimated volume of contaminated soil removed dropped to 65,000 tons and concentration of chromium increased up to 4000 mg/kg. However, the process could have application in situations where economics and location warrant.

  10. Thermophilic anaerobic waste water treatment, temperature aspects and process stability.

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.Experiments were conducted to study the suitability of two types of seed material to start a

  11. Feasibility of electrochemical oxidation process for treatment of saline wastewater

    Directory of Open Access Journals (Sweden)

    Kavoos Dindarloo

    2015-09-01

    Full Text Available Background: High concentration of salt makes biological treatment impossible due to bacterial plasmolysis. The present research studies the process of electrochemical oxidation efficiency and optimal levels as important factors affecting pH, salt concentration, reaction time and applied voltage. Methods: The sample included graphite electrodes with specifications of 2.5 cm diameter and 15 cm height using a reactor with an optimum capacity of 1 L. Sixty samples were obtained with the aid of the experiments carried out in triplicates for each factor at 5 different levels. The entire experiments were performed based on standard methods for water and waste water treatments. Results: Analysis of variance carried out on effect of pH, salt concentration, reaction time and flow intensity in elimination of chemical oxygen demand (COD showed that they are significant factors affecting this process and reduce COD with a coefficient interval of 95% and test power of 80%. Scheffe test showed that at optimal level, a reaction time of 1 hour, 10 g/L concentration, pH = 9 and 15 V electrical potential difference were obtained. Conclusion: Waste waters containing salt may contribute to the electro-oxidation process due to its cations and anions. Therefore, the process of electrochemical oxidation with graphite electrodes could be a proper strategy for the treatment of saline wastewater where biological treatment is not possible.

  12. Thermophilic anaerobic wastewater treatment : temperature aspects and process stability

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.

    Experiments were conducted to study the suitability of two types of seed

  13. Trickling Filters. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Richwine, Reynold D.

    The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…

  14. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  15. Thin film surface processing by ultrashort laser pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Workum, M.; Theelen, M.; Zeman, M.; Wehrspohn, R.; Gombert, A.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed las

  16. Thin film surface processing by ultrashort laser pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Romer, G.R.B.E.; Huis in 't Veld, A.J.; Workum, M.J.; Theelen, M.J.; Zeman, M.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed las

  17. Heat treatment process optimization for face gearsbased on deformation and residual stress control

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-zhong; LAN Zhou‡; HOU Liang-wei; ZHAO Hong-pu; ZHONG Yang

    2015-01-01

    In this paper, based on the principle of heat transfer and thermal elastic-plastic theory, the heat treatment process optimization scheme for face gearsis proposed according to the structural characteristics oftheface gear and material properties of 12Cr2Ni4 steel.To simulate the effect of carburizing and quenching process on tooth deformation and residual stress distribution,aheat treatment analysis model of face gearsis established, and the microstructure, stress and deformation of face gear teeth changing with time are analyzed. The simulation results show that face gear tooth hardness increases, tooth surface residual compressive stress increases and tooth deformation decreases after heat treatment process optimization.It is beneficialto improvingthe fatigue strength and performance of face gears.

  18. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  19. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  20. Bacteriophages-potential for application in wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Withey, S. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Cartmell, E. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)]. E-mail: e.cartmell@cranfield.ac.uk; Avery, L.M. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Stephenson, T. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

    2005-03-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction.

  1. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay

    2004-01-01

    This paper describes the implementation of a simulation benchmark for studying the influence of control strategy implementations on combined nitrogen and phosphorus removal processes in a biological wastewater treatment plant. The presented simulation benchmark plant and its performance criteria...... are to a large extent based on the already existing nitrogen removal simulation benchmark. The paper illustrates and motivates the selection of the treatment plant lay-out, the selection of the biological process model, the development of realistic influent disturbance scenarios for dry, rain and storm weather...... conditions respectively, the definition of performance indexes that include the phosphorus removal processes, and the selection of a suitable operating point for the plant. Two control loops were implemented: one for dissolved oxygen control using the oxygen transfer coefficient K(L)a as manipulated variable...

  2. Treatment of gasoline-contaminated waters by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tiburtius, Elaine Regina Lopes [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba, PR (Brazil); Peralta-Zamora, Patricio [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba, PR (Brazil)]. E-mail: zamora@quimica.ufpr.br; Emmel, Alexandre [Centro Integrado de Tecnologia e Educacao Profissional, 81310-010 Curitiba, PR (Brazil)

    2005-11-11

    In this study, the efficiency of advanced oxidative processes (AOPs) was investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX) and gasoline-contaminated waters. The results indicated that BTX can be effectively oxidized by near UV-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolic intermediates at reaction times of about 30 min. Preliminary investigations using water contaminated by gasoline suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species. Heterogeneous photocatalysis and H{sub 2}O{sub 2}/UV system show lower degradation efficiency, probably due to the heterogeneous character of the TiO{sub 2}-mediated system and lost of photonic efficiency of the H{sub 2}O{sub 2}/UV system in the presence of highly colored intermediated.

  3. Effects of surface treatment with coupling agents of PVDF-HFP fibers on the improvement of the adhesion characteristics on PDMS

    Science.gov (United States)

    Kwon, O. M.; See, S. J.; Kim, S. S.; Hwang, H. Y.

    2014-12-01

    Surface treatment of polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) fibers was conducted with coupling agents such as epoxy silane, amino silane, and titanate to improve the adhesion characteristics of PVDF-HFP fibers and polydimethylsiloxane (PDMS). The adhesion strength was largest when 4 wt% amino silane was used for surface treatment, showing a 250% improvement compared to the untreated case. Surface roughening and shrinking of the PVDF-HFP fibers were observed after surface treatment, but no chemical bonding occurred between the PVDF-HFP fibers and the coupling agents. It was thus concluded that the improvement of the adhesion characteristics of the PVDF-HFP fibers and PDMS was caused by the physical bonding between them due to the surface treatment with coupling agents. In addition, for the surface roughening mechanism, amino silane infiltration into the PVDF-HFP fibers during the surface treatment, followed by extraction during the drying process, was suggested.

  4. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding.

    Science.gov (United States)

    Proust, Gwénaëlle; Retraint, Delphine; Chemkhi, Mahdi; Roos, Arjen; Demangel, Clemence

    2015-08-01

    Austenitic 316L stainless steel can be used for orthopedic implants due to its biocompatibility and high corrosion resistance. Its range of applications in this field could be broadened by improving its wear and friction properties. Surface properties can be modified through surface hardening treatments. The effects of such treatments on the microstructure of the alloy were investigated here. Surface Mechanical Attrition Treatment (SMAT) is a surface treatment that enhances mechanical properties of the material surface by creating a thin nanocrystalline layer. After SMAT, some specimens underwent a plasma nitriding process to further enhance their surface properties. Using electron backscatter diffraction, transmission Kikuchi diffraction, energy dispersive spectroscopy, and transmission electron microscopy, the microstructural evolution of the stainless steel after these different surface treatments was characterized. Microstructural features investigated include thickness of the nanocrystalline layer, size of the grains within the nanocrystalline layer, and depth of diffusion of nitrogen atoms within the material.

  5. Fretting of AISI 9310 and selected fretting resistant surface treatments

    Science.gov (United States)

    Bill, R. C.

    1977-01-01

    Fretting wear experiments were conducted with uncoated AISI 9310 mating surfaces, and with combinations incorporating a selected coating to one of the mating surfaces. Wear measurements and SEM observations indicated that surface fatigue, as made evident by spallation and surface crack formation, is an important mechanism in promoting fretting wear to uncoated 9310. Increasing humidity resulted in accelerated fretting, and a very noticeable difference in nature of the fretting debris. Of the coatings evaluated, aluminum bronze with a polyester additive was most effective at reducing wear and minimizing fretting damage to the mating uncoated surface, by means of a selflubricating film that developed on the fretting surfaces. Chromium plate performed as an effective protective coating, itself resisting fretting and not accelerating damage to the uncoated surface.

  6. Influence of the Surface Layer when the CMT Process Is Used for Welding Steel Sheets Treated by Nitrooxidation

    Directory of Open Access Journals (Sweden)

    I. Michalec

    2012-01-01

    Full Text Available Nitrooxidation is a non-conventional surface treatment method that can provide significantly improved mechanical properties as well as corrosion resistance. However, the surface layer is a major problem during the welding process, and welding specialists face many problems regarding the weldability of steel sheets. This paper deals with the properties of a nitrooxidized surface layer, and evaluates ways of welding steel sheets treated by nitrooxidation using a Cold Metal Transfer (CMT process. The limited heat input and the controlled metal transfer, which are considered as the main advantage of the CMT process, have a negative impact on weld joint quality. An excessive amount of porosity is observed,probably due to the high content of nitrogen and oxygen in the surface layer of the material and the fast cooling rate of the weld pool.

  7. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2016-10-01

    Full Text Available Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316, surface-textured 316 (ST-316, and duplex-treated 316 (DT-316 in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  8. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel.

    Science.gov (United States)

    Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin

    2016-10-27

    Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si₃N₄ balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  9. Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces

    Science.gov (United States)

    Bhosle, Sachin M.; Friedrich, Craig R.

    2017-10-01

    The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.

  10. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  11. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y. [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  12. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Gabriela Albara Lando

    2017-07-01

    Full Text Available Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR, scanning electron microscopy (SEM, and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  13. The Effect of Anodic Surface Treatment on the Oxidation of Catechols at Ultrasmall Carbon Ring Electrodes

    Science.gov (United States)

    1991-07-09

    selectivity. A model of the surface formed following anodic oxidation is consistent with previous models involving both surface cleanliness and carbon...involving both surface cleanliness and carbon structure orientation. 2 INTRODUCTION Because of the vast electroanalytical utility of carbon electrodes...of the electron transfer rate following treatment are a function of the surface cleanliness and the orientation of the carbon structure

  14. Boric Acid as an Accelerator of Cerium Surface Treatment on Aluminum

    Directory of Open Access Journals (Sweden)

    K. Cruz-Hernández

    2014-01-01

    Full Text Available Aluminum pieces are often used in various industrial processes like automotive and aerospace manufacturing, as well as in ornamental applications, so it is necessary to develop processes to protect these materials, processes that can be industrialized to protect the aluminum as well or better than chromate treatments. The purpose of this research is to evaluate boric acid as an accelerator by optimizing its concentration in cerium conversion coatings (CeCC with 10-minute immersion time with a concentration of 0.1 g L−1 over aluminum to protect it. The evaluation will be carried out by measuring anticorrosion properties with electrochemical techniques (polarization resistance, Rp, polarization curves, PC, and electrochemical impedance spectroscopy, EIS in NaCl 3.5% wt. aqueous solution and surface characterization with scanning electron microscopy (SEM.

  15. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma:Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    Atsushi KUWABARA; Shin-ichi KURODA; Hitoshi KUBOTA

    2007-01-01

    The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed.The change of the surface property over time,in comparison with low pressure oxygen (O2) plasma treatment,is examined.As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement.However,when the atmospheric pressure plasma was used for PP(polypropylene),it produced remarkable hydrophilic effects.

  16. Processing and characterization of PMMA/PI composites reinforced with surface functionalized hexagonal boron nitride

    Science.gov (United States)

    Mittal, Garima; Rhee, Kyong Yop; Park, Soo Jin

    2017-09-01

    Poly(methyl methacrylate) (PMMA) is acknowledged as a conventional polymer matrix because of its light weight, low friction, optical clarity, and environmental stability, with properties including UV resistance and moisture resistance. In the present study, PMMA/polyimide (PI)/hexagonal boron nitride (hBN) composites were processed by incorporating PI and hBN powder into the PMMA matrix. To augment the dispersion, the surfaces of hBN particles were functionalized with 3-aminopropyltriethoxysilane (3-APTS), which serves as a coupling agent. Two cases of composites were considered: one with as-received hBN and another one with silanized hBN. For validation of changes after silane treatment, X-ray diffraction, and Fourier transform infra-red were performed. The changes in morphology after surface treatment were analyzed through field-emission scanning electron microscope and high-resolution transmission electron microscope. The effects of hBN functionalization on the thermal properties of the composites were analyzed by thermo-gravimetric analysis. The tribological properties of the composites were studied by friction and wear tests and the morphology of the wear track was investigated using a surface profilometer and field-emission scanning electron microscope. The outcomes of these investigations indicated that the composite with silanized hBN exhibited superior tribological properties in comparison to the composites with as-received hBN.

  17. The Condition of Silica Sand Grains Surface Subjected to Reclamation Treatment

    Directory of Open Access Journals (Sweden)

    Łucarz, M.

    2006-01-01

    Full Text Available The results of investigations are concerned on evaluation of new silica sand grains surface condition after mechanical reclamation treatment as well as on the conditions of reclaimed sand grains surface subjected to thermal and thermo-mechanical reclamation processes. The purpose of research was to answer the question how the applied methods have influenced the surface condition of reclaimed sand grains which was tested by means of bending strength determination of sand samples prepared with resin binder and reclaimed sand. The immediate aim of the research was to explain the mechanism of impurities cleaning on the sand grains surface after thermal reclamation, when the sand is used several times in preparation of a foundry mixture, and to determine what effect these impurities may have on the technological properties of the ready sand mixture. The task of the additionally applied mechanical reclamation was to remove the accumulated inorganic compounds from the sand grains surface and confirm if further improvement of the reclaim quality is possible.

  18. Raman Study on Pompeii Potteries: The Role of Calcium Hydroxide on the Surface Treatment

    Directory of Open Access Journals (Sweden)

    Daniele Chiriu

    2014-01-01

    Full Text Available Pottery samples from the Pompeii archaeological site were investigated by IR Raman spectroscopy and EDAX measurements. The analysis of the Raman spectra of the surfaces reveals the presence calcium hydroxide (peak at about 780 cm−1 while the calcium carbonate is totally absent. The comparative studies on the carbonation effect of the surfaces were performed on laboratory grown samples of calcium hydroxide. The samples were treated at high temperature and exposed to different ambient conditions, and the analysis suggests that the original surfaces of Roman pottery were scattered by calcium hydroxide (limewash before the cooking process in the furnace. The result of this surface treatment not only permits a vitrification of the surfaces but also seems to reduce the content of CO2 in the furnace atmosphere and then obtain a more oxidant ambient during the cooking of the pottery. These results give new insights on the real degree of knowledge of the Romans about the art of ceramics and more generally about chemistry and technologies.

  19. RECONSTRUCTIVE MICROSURGERY IN THE TREATMENT OF SURFACE FORMS OF CALCANEal OSTEOMYELITIS

    Directory of Open Access Journals (Sweden)

    E. S. Tsybul’

    2016-01-01

    Full Text Available One of the most common complications associated with the treatment of calcaneus fracturesis, a necrosis of the edges of the surgical wound and as a result – chronic nonhealing ulcers of the heel region and osteomyelitis of the calcaneus. In the structure of skeletal lesions osteomyelitic chronic osteomyelitis of the calcaneus occurs in 3.1–14.8% of cases, and in relation to the bones of the foot – up to 51%. At the same time after open fractures of the total incidence of deep infection from soft tissue even higher than that for the surface (12.2% vs. 9.6%. The traditional approach to the treatment of osteomyelitis of the calcaneus is often accompanied by poor performance with recurrent osteomyelitis process and highsubsequent disability of working age.Objective: to identify opportunities and assess the effectiveness of the use of reconstructive microsurgery techniques in the treatment of patients with superficial forms of osteomyelitis of the calcaneus, accompanied by the presence of soft tissue defect.Materials and мethods.The results of treatment of 28 patients with superficial forms of osteomyelitis of the calcaneus, which in the period from 2006 to 2013 in RNIITO them. R.R.Vredena were performed reconstructive plastic surgery using microsurgical techniques. Defects covering tissues were located on the sole (20 and back-side surfaces (8 of the calcaneus. Scope of interventions included the radical surgical treatment of osteomyelitis focus, marginal resection of the affected heel bone and tissue replacement of defect cover flap with axial blood supply.Results. With the localization of the defect cover tissues to non-reference surface of the heel region was carried out free plastic ray skin-fascial flap (9 cases. When the location of the defect on the plantar surface of the heel region favored medial plantar flap (10 cases. However, the presence of scarring and damage to the medial plantar artery was performed

  20. Electron beam processed plasticized epoxy coatings for surface protection

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Mervat S. [National Center for Radiation Research and Technology, Nasr City (Egypt); Mohamed, Heba A., E-mail: hebaamohamed@gmail.com [National Research Center, Dokki (Egypt); Kandile, Nadia G. [University College for Girls, Ain Shams University (Egypt); Said, Hossam M.; Mohamed, Issa M. [National Center for Radiation Research and Technology, Nasr City (Egypt)

    2011-10-17

    Highlights: {center_dot} Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass{sup -1} irradiation dose showed the best adhesion and passed bending tests. {center_dot} The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. {center_dot} The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass{sup -1}) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass{sup -1} irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion

  1. Studies of surface processes of electrocatalytic reduction of CO2 on Pt(210), Pt(310) and Pt(510)

    Institute of Scientific and Technical Information of China (English)

    FAN; ChunJie; FAN; YouJun; ZHEN; ChunHua; ZHENG; QingWei; SUN; ShiGang

    2007-01-01

    Surface processes of CO2 reduction on Pt(210), Pt(310), and Pt(510) electrodes were studied by cyclic voltammetry. Different surface structures of these platinum single crystal electrodes were obtained by various treatment conditions. The experimental results illustrated that the electrocatalytic activity of Pt single crystal electrodes towards CO2 reduction is decreased in an order of Pt(210)>Pt(310)>Pt(510), i.e., with the decrease of (110) step density on well-defined surfaces. When the surfaces were reconstructed due to oxygen adsorption, the catalytic activity of all the three electrodes has been enhanced to a certain extent. Although the activity order remains unchanged, the electrocatalytic activity has been enhanced more significantly as the density of (110) step sites is more intensive on the Pt single crystal surface. It has revealed that the more open the surface structure is, the more active the Pt single crystal electrode will be, and the easier for the electrode to be transformed into a surface structure that exhibits higher activity under external inductions. However, the relatively ordered surfaces of Pt single crystal electrode are comparatively stable under the same external inductions. The present study has gained knowledge on the interaction between CO2 and Pt single crystal electrode surfaces at a microscopic level, and thrown new insight into understanding the surface processes of electrocatalytic reduction of CO2.

  2. Manufacture of functional surfaces through combined application of tool manufacturing processes and Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Arentoft, Mogens; Grønbæk, J.

    2012-01-01

    The tool surface topography is often a key parameter in the tribological performance of modern metal forming tools. A new generation of multifunctional surfaces is achieved by combination of conventional tool manufacturing processes with a novel Robot Assisted Polishing process. This novel surface...

  3. The Use of ‘In Process' Monitoring Equipment in Heat Treatment Today

    Institute of Scientific and Technical Information of China (English)

    Dave Plester

    2004-01-01

    This paper looks at how in-process temperature monitoring systems are being increasingly used in heat treatment applications such as surface hardening, annealing, normalizing, tempering etc. We look at the basic equipment required to successfully monitor from within a furnace and how developments such as RF transmission have enhanced the effectiveness of profiling trials to the point where on line adjustments to furnace conditions can be seen and analyzed in real time. We examine how continuous processes can benefit from this type of monitoring and also how routine operations such as furnace surveying in batch furnaces can benefit greatly from in-process monitoring. Advances in software are also considered, showing how packages are now designed to speed up the processing of data in day to day heat treatment operations.

  4. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  5. Triangle geometry processing for surface modeling and cartesian grid generation

    Science.gov (United States)

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  6. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Directory of Open Access Journals (Sweden)

    Willy Zorzi

    2012-08-01

    Full Text Available This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions.

  7. Optimization of metal working fluids treatment using calcium chloride by response surface methodology

    Directory of Open Access Journals (Sweden)

    HA. Jamali

    2016-11-01

    Full Text Available Background: Extensive use of metal working fluids degrades their chemical composition. They should be treated using a safe method. Chemical coagulation-flocculation process is one the treatment methods. Objective: The aim of this study was to optimize the coagulation-flocculation process using calcium chloride in metal working fluids treatment. Methods: This laboratory based study was performed in School of Health affiliated to Qazvin University of Medical Sciences in 2014. Using calcium chloride and a six-compartment jar, the efficiency of coagulation-flocculation process was assessed for removal of chemical oxygen demand (COD and turbidity and amount of released oil. Central composite design (CCD and response surface methodology (RSM were applied to optimize the treatment operation parameters (pH and dosage of coagulant. Quadratic models were developed for calculation of the three responses (COD, turbidity, and released oil. Findings: The optimum condition for coagulation-flocculation process was seen after treatment with 4.2 g/L calcium chloride at pH 3.71 in which COD and turbidity removal efficiency were 93% and 96.9%, respectively and the amount of released oil was 31.8 ml. The level of desirability was 91.2%. The values of laboratory study were in good agreement with the values predicted by the model. Conclusion: Metal working fluids treatment with calcium chloride was efficient in the removal of pollution parameters. Dosage of calcium chloride was similar to the conventional coagulants such as Alum, but its efficiency was higher.

  8. Exploring molecular changes at the surface of polypropylene after accelerated thermomolecular adhesion treatments.

    Science.gov (United States)

    Awaja, Firas; Gilbert, Michael; Kelly, Georgina; Fox, Bronwyn; Brynolf, Russell; Pigram, Paul J

    2010-05-01

    A central composite rotatable design (CCRD) method was used to investigate the performance of the accelerated thermomolecular adhesion process (ATmaP), at different operating conditions. ATmaP is a modified flame-treatment process that features the injection of a coupling agent into the flame to impart a tailored molecular surface chemistry on the work piece. In this study, the surface properties of treated polypropylene were evaluated using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). All samples showed a significant increase in the relative concentration of oxygen (up to 12.2%) and nitrogen (up to 2.4%) at the surface in comparison with the untreated sample (0.7% oxygen and no detectable nitrogen) as measured by XPS. ToF-SIMS and principal components analysis (PCA) showed that ATmaP induced multiple reactions at the polypropylene surface such as chain scission, oxidation, nitration, condensation, and molecular loss, as indicated by changes in the relative intensities of the hydrocarbon (C(3)H(7)(+), C(3)H(5)(+), C(4)H(7)(+), and C(5)H(9)(+)), nitrogen and oxygen-containing secondary ions (C(2)H(3)O(+), C(3)H(8)N(+), C(2)H(5)NO(+), C(3)H(6)NO(+), and C(3)H(7)NO(+)). The increase in relative intensity of the nitrogen oxide ions (C(2)H(5)NO(+) and C(3)H(7)NO(+)) correlates with the process of incorporating oxides of nitrogen into the surface as a result of the injection of the ATmaP coupling agent.

  9. Predicting the residual aluminum level in water treatment process

    OpenAIRE

    J. Tomperi; M. Pelo; K. Leiviskä

    2012-01-01

    In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP) was analyzed and the residual aluminum in drinking water was predicted usin...

  10. Predicting the residual aluminum level in water treatment process

    OpenAIRE

    J. Tomperi; M. Pelo; K. Leiviskä

    2013-01-01

    In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease. Thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP) was analyzed and the residual aluminum in drinking water was predicted usi...

  11. [Women's experiences and care practices in the cancer treatment process].

    Science.gov (United States)

    Oliveira, Pricilla Emmanuelly; Guimarães, Sílvia Maria Ferreira

    2015-07-01

    This article seeks to understand the viewpoint of cancer patients about the disease process and the therapeutic procedures that they experience. Cancer treatments provoke a series of physical and emotional consequences in patients. Thus, patients undergo a restructuring of life and establish mechanisms to "take care of themselves." The methodology used was an ethnographic approach through interviews, field notes and participant observation. The ethnographic approach revealed how these women being given conventional treatment in a given hospital create shared care technologies based on sociability.

  12. Effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ping [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China) and Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Institute of Aeronautical Engineering, Shenyang 110034 (China)], E-mail: chenping_898@126.com; Zhang Chengshuang; Zhang Xiangyi [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China); Wang Baichen; Li Wei [Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Institute of Aeronautical Engineering, Shenyang 110034 (China); Lei Qingquan [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)

    2008-12-30

    The effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fibers were investigated. Surface chemical composition, surface roughness and surface morphologies of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. Surface free energy of the fibers was characterized by dynamic contact angle analysis (DCAA). The results indicated that the oxygen plasma treatment introduced some polar groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The polar groups and surface free energy of PBO fibers were significantly improved by the oxygen plasma treatment when the plasma treatment power was lower than 200 W. However, these two parameters degraded as the plasma treatment power went up to 300 and 400 W. PBO fibers were notably roughened by the oxygen plasma treatment. Surface morphologies of the fibers became more complicated, and surface roughness of the fibers enhanced almost linearly with the plasma treatment power increasing.

  13. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  14. Corrosion prevention of magnesium surfaces via surface conversion treatments using ionic liquids

    Science.gov (United States)

    Qu, Jun; Luo, Huimin

    2016-09-06

    A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.

  15. Heuristic analysis of brackishwater treatment by reverse osmosis process

    OpenAIRE

    Ahmed, S

    1990-01-01

    Treatment of brackish water and sea water with the help of reverse osmosis process is feasible and a viable solution to meet the fresh water deficiency in an arid region. Total dissolved solids can be reduced to a level acceptable for drinking water. High purity water for industrial uses can also be obtained with the application of the RO process. Useful materials may also be recovered from the reject water. RO plants of various sizes (both large and small) have been in operation successfully...

  16. Visualization of the laser treatment processes of materials by a brightness amplifier based on a copper laser

    Science.gov (United States)

    Prokoshev, Valerii G.; Klimovskii, Ivan I.; Galkin, Arkadii F.; Abramov, Dmitrii V.; Arakelian, Sergei M.

    1997-04-01

    Reported is the observation of laser treatment processes of materials by the brightness amplifier based upon the copper laser. Provided is an experimental investigation of melting stainless steel under the laser radiation. Real time monitored is the process of surface heating, melting, spreading a melting boundary and the progress of turbulent movement in the melting container.

  17. Special wettable nanostructured copper mesh achieved by a facile hot water treatment process

    Science.gov (United States)

    Saadi, Nawzat S.; Hassan, Laylan B.; Brozak, Matt; Karabacak, Tansel

    2017-09-01

    In this research, a special wettable copper mesh with superhydrophobicity and superoleophilicity properties is reported using a low-cost, eco-friendly, rapid, and scalable synthesis method. Hot water treatment (HWT) method is used to integrate the micro-textured copper mesh surface with a nanoscale roughness to achieve a hierarchical micro-nano structured surface. The surface energy of the nanoscale roughened copper mesh reduced by coating the hot water treated mesh with polymer ligands containing thiol or fluorine functional groups of low energy. Surface morphology characterization showed the formation of copper oxide nanostructures on the mesh surface by hot water process performed at 95 °C and under a low dissolved oxygen condition. X-ray diffraction patterns reveal the development of stable, uniformly distributed, and compactly arranged, cubic and plate-like nanostructures of cuprous oxide (Cu2O) on the copper mesh surface. The surface wettability of the as-prepared copper mesh was assessed by contact angle (CA) measurement for water and several oils and organic solvents. CA values showed the formation of special wettable copper mesh surface with superhydrophobic property with water contact angle of about 157° and superoleophilic property with oil contact angle as low as 0°. In addition, the effect of the mesh’s geometry on the wetting property was examined through correlations between wire diameter, pore size, and optimal values for the highest water CA.

  18. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  19. New chromate-free passivation treatments for zinc, zinc alloy, and zinc-containing coatings and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C. J. E.; King, J. E.; Wright, D. G.; Erricker, S. L.; Wilcox, G.; Treacy, G.; Hovestad, A.; Woodhead, T.; Buckland, J.; Lindsey, L.; Eruli, M.; Koelewijn, H.; Shropshire, I. [Defence Evaluation and Research Agency, Farnborough, Hampshire (United Kingdom)

    2001-07-01

    Results of a series of experiments to develop chromate-free treatments which provide the same level of corrosion protection and promote adhesion of surface coatings and paint films are discussed. The initial phase of the project identified two different treatments which prompted the investigation of pH, temperature and immersion time, as part of the effort to optimize the processes. When subjected to accelerated corrosion tests, one of the two processes (the PTA process) compared favourably with conventional chromate filming when applied to electrodeposited zinc-nickel coatings. Further investigation revealed that the process also works effectively on brass and nickel substrates and provides an appropriate substrate for the application of lacquer. Development of an effective treatment for zinc coatings, particularly hot dip galvanized zinc, is in progress. This paper discusses the results of toxicological and environmental studies conducted in conjunction with the two processes and reviews lessons learned and opportunities for exploiting the findings. 5 refs., 6 tabs.

  20. Influence of steel composition and plastic deformation on the surface properties induced by low temperature thermochemical processing

    DEFF Research Database (Denmark)

    Bottoli, Federico

    “PressPerfect” Project was to create a methodology to predict the performance of high quality stainless steels after forming and finishing treatments. The Ph.D. Project focused on the optimization of low-temperature thermochemical processes on severalstainless steel classes used for the surface treatment of industrial......Low-temperature thermochemical surface hardening by nitriding, carburizing and nitrocarburizing is used to improve the performance of stainless steels with respect to wear, fatigue and corrosion resistance.The dissolution of nitrogen and/or carbon atoms in the materials surface leads...... to the formation of a supersaturated solid solution known as expanded austenite, or S-Phase. Expanded austenite is characterized by high hardness, up to 1400 Vickers, and high compressive stresses in the surface region, which result in improved wear and fatigue resistance of the components. Along...

  1. Effect of multipath laser shock processing on microhardness, surface roughness, and wear resistance of 2024-T3 Al alloy.

    Science.gov (United States)

    Kadhim, Abdulhadi; Salim, Evan T; Fayadh, Saeed M; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2014-01-01

    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.

  2. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    Science.gov (United States)

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  3. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  4. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Stráský, Josef, E-mail: josef.strasky@gmail.com [Charles University, Department of Physics of Materials (Czech Republic); Havlíková, Jana; Bačáková, Lucie [Institute of Physiology, Academy of Sciences of the Czech Republic (Czech Republic); Harcuba, Petr [Charles University, Department of Physics of Materials (Czech Republic); Mhaede, Mansour [Clausthal University of Technology, Institute of Materials Science and Engineering (Germany); Faculty of Engineering, Zagazig University (Egypt); Janeček, Miloš [Charles University, Department of Physics of Materials (Czech Republic)

    2013-09-15

    Presented work aims at multi-method characterization of combined surface treatment of Ti–6Al–4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  5. Revised sampling campaigns to provide sludge for treatment process testing

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN, C.A.

    1999-02-18

    The purpose of this document is to review the impact to the sludge sampling campaigns planned for FY 1999 given the recent decision to delete any further sludge sampling in the K West Basin. Requirements for Sludge sample material for Sludge treatment process testing are reviewed. Options are discussed for obtaining the volume sample material required and an optimized plan for obtaining this sludge is summarized.

  6. Influence of Alkali Treatment on the Surface Area of Aluminium Dross

    Directory of Open Access Journals (Sweden)

    N. S. Ahmad Zauzi

    2016-01-01

    Full Text Available Aluminium dross is an industrial waste from aluminium refining industry and classified as toxic substances. However, the disposal of dross as a waste is a burden to aluminium manufacturer industries due to its negative effects to the ecosystem, surface, and ground water. Therefore the purpose of this study is to evaluate the influence of sodium hydroxide (NaOH on the surface area and pore size of aluminium dross. There were 3 stages in the treatment activities, which were leaching, precipitation, and calcination process. The optimum result from this study was the surface area of aluminium dross increases from 10.1 m2/g up to 80.0 m2/g at 40°C, 1% NaOH, and 15-minute reaction time. Thus, aluminium dross has a potential to be converted into other useful material such as catalyst and absorbent. The benefit of this research is that the hazardous industrial waste can be turned into wealth to be used in other applications such as in catalytic activities and absorber in waste water treatment. Further investigation on the physicochemical of aluminium dross with different acid or alkali should be conducted to get deeper understanding on the aluminium dross as a catalyst-type material.

  7. Finite element analysis on influence of implant surface treatments, connection and bone types.

    Science.gov (United States)

    Santiago Junior, Joel Ferreira; Verri, Fellippo Ramos; Almeida, Daniel Augusto de Faria; de Souza Batista, Victor Eduardo; Lemos, Cleidiel Aparecido Araujo; Pellizzer, Eduardo Piza

    2016-06-01

    The aim of this study is to assess the effect of different dental implant designs, bone type, loading, and surface treatment on the stress distribution around the implant by using the 3D finite-element method. Twelve 3D models were developed with Invesalius 3.0, Rhinoceros 4.0, and Solidworks 2010 software. The analysis was processed using the FEMAP 10.2 and NeiNastran 10.0 software. The applied oblique forces were 200 N and 100 N. The results were analyzed using maps of maximum principal stress and bone microstrain. Statistical analysis was performed using ANOVA and Tukey's test. The results showed that the Morse taper design was most efficient in terms of its distribution of stresses (p0.05). The different bone types did not show a significant difference in the stress/strain distribution (p>0.05). The surface treatment increased areas of stress concentration under axial loading (p<0.05) and increased areas of microstrain under axial and oblique loading (p<0.05) on the cortical bone. The Morse taper design behaved better biomechanically in relation to the bone tissue. The treated surface increased areas of stress and strain on the cortical bone tissue.

  8. New Sensor Concepts for Enhancing Heat Treatment Processes and Analysis

    Institute of Scientific and Technical Information of China (English)

    Jay I. Frankel

    2004-01-01

    The need for developing accurate quenching models requires an extensive experimental database that includes surface heat flux characterization. Quantification of the quenching process permits i) the development of high-quality heat treated products, ii) the evaluation of new quenchants and quenchant systems, and iii) the evaluation of quenchant quality over usage time. The surface heat transfer coefficient (or heat flux) is rarely measured, calculated or modeled in sufficient detail for real scientific use. Many single-thermocouple based probes are designed for the purpose of measuring the cooling power of a liquid quenchant or for monitoring quenchant quality. Lumped based probes are sufficient for these types of applications. However, the lack of sufficient distributed detail impedes the development of future high-quality heat-treated products. Frankel and his coworkers are developing a new family of transient thermal-rate sensors that will improve both diagnostic and real-time analyzes in heat transfer studies. Analyzes have been performed indicating that there exists a novel,thermal-rate sensor hierarchy that stabilizes predictions when used with analysis. This concept can be used for investigating both (i) direct surface heat transfer effects, and (ii) projective surface analysis based on embedded sensors. This new sensor family includes the ability to measure temperature, T; heat flux, q"; and their temporal derivatives, i.e., dT/dt, d2T/dt2 and dq"/dt.

  9. Superhydrophilic surface treatment for thin film NiTi vascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Youngjae, E-mail: yjchun@ucla.edu [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 32-135, Engineering IV, Los Angeles, CA 90095 (United States); Levi, Daniel S., E-mail: dlevi@ucla.edu [Pediatric Cardiology, Mattel Children' s Hospital, UCLA, B2-427, 10833 Le Conte Avenue, Los Angeles, CA 90095-1743 (United States); Mohanchandra, K.P., E-mail: kpmohan@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 32-135, Engineering IV, Los Angeles, CA 90095 (United States); Carman, Gregory P., E-mail: carman@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 38-137M, Engineering IV, Los Angeles, CA 90095 (United States)

    2009-10-15

    A variety of surface treatment methods were evaluated to modify the hydrophilic nature of thin film nitinol (NiTi). It has been suggested that increasing hydrophilicity reduces the prevalence of platelet adhesion and thrombosis in the vascular system. In this study, thin film NiTi was treated with three pretreatments cleaning, buffered oxide etchant (BOE), and BOE/nitric acid (HNO{sub 3}), followed by one surface treatment. The three surface treatment studied were UV irradiation, thermal treatment, or hydrogen peroxide. Two surface treatments, i.e., thermal at 600 deg. C for 30 min and 30% hydrogen peroxide treatment for 15 h, produced superhydrophilic surfaces, i.e., wetting angle = 0 deg. However, the superhydrophilic surface produced by the thermal treatment also embrittled the thin film due to the relative thickness of the oxide grown. Long term studies in air showed that all surface treatments trend toward hydrophobic natures. However, storage of the surface treated thin film NiTi in Deionized (DI) water preserved even the superhydrophilic surfaces indefinitely.

  10. Surface properties of low alloy steel treated by plasma nitrocarburizing prior to laser quenching process

    Science.gov (United States)

    Wang, Y. X.; Yan, M. F.; Li, B.; Guo, L. X.; Zhang, C. S.; Zhang, Y. X.; Bai, B.; Chen, L.; Long, Z.; Li, R. W.

    2015-04-01

    Laser quenching (LQ) technique is used as a part of duplex treatments to improve the thickness and hardness of the surface layers of steels. The present study is to investigate the surface properties of low alloy steel treated by plasma nitrocarburizing (PNC) prior to a laser quenching process (PNC+LQ). The microstructure and properties of PNC+LQ layer determined are compared with those obtained by PNC and LQ processes. OM, XRD, SEM and EDS analyses are utilized for microstructure observation, phases identification, morphology observation and chemical composition detection, respectively. Microhardness tester and pin-on-disc tribometer are used to investigate the mechanical properties of the modified layers. Laser quenching of plasma nitrocarburized (PNC+LQ) steel results in much improved thickness and hardness of the modified layer in comparison with the PNC or LQ treated specimens. The mechanism is that the introduction of trace of nitrogen decreases the eutectoid point, that is, the transformation hardened region is enlarged under the same temperature distribution. Moreover, the layer treated by PNC+LQ process exhibits enhanced wear resistance, due to the lubrication effect and optimized impact toughness, which is contributed to the formation of oxide film consisting of low nitrogen compound (FeN0.076) and iron oxidation (mainly of Fe3O4).

  11. Geothermal injection treatment: process chemistry, field experiences, and design options

    Energy Technology Data Exchange (ETDEWEB)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  12. Water recycle treatment system for use in metal processing

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, D.E.; Dando, T.J.

    1976-08-10

    A water recycle treatment system is described comprising two main treatment sub-systems for treatment of contaminated water from a plurality of concentrated solutions and rinse baths to separate out the impurities therein. A first sub-system treats less concentrated solutions used for the rinse baths by channeling the flow therefrom to a first neutralizing tank which provides for pH control to produce a mixed output solution having a substantially constant pH factor, which is filtered to remove gross particles, the filtered solution being cooled in a holding tank and passed through a reverse osmosis process and carbon bed to produce clean water. The second sub-system treats highly concentrated solutions obtained from a plurality of chemical processes, mixes them in a second neutralizing tank which is utilized to produce a substantially constant pH output, which is fed to an evaporator to precipitate the metals and salts in sludge and also forms a water vapor output. The reverse osmosis waste is fed back into the second neutralizing tank and processed as noted above.

  13. Surface light scattering: integrated technology and signal processing

    DEFF Research Database (Denmark)

    Lading, L.; Dam-Hansen, C.; Rasmussen, E.

    1997-01-01

    The miniaturization of surface-scattering instruments for measuring viscoelastic properties is investigated. The concepts are based on the use of holographic optical elements and integrated optics. Compact forms of optics that provide the necessary spatial and angular selections are devised. Four...

  14. Modeling the impact of solid surfaces in thermal degradation processes

    NARCIS (Netherlands)

    Tuma, Christian; Laino, Teodoro; Martin, Elyette; Stolz, Steffen; Curioni, Alessandro

    2013-01-01

    First-principles simulations are carried out to generate reaction profiles for the initial steps of the thermal decomposition of glycerol, propylene glycol, and triacetin over the surfaces of pseudo-amorphous carbon and silica, crystalline zirconia [001], and crystalline alumina (0001).

  15. The characteristic of unsaturated polyester resin wettability toward glass fiber orientation, density and surface treatment

    Directory of Open Access Journals (Sweden)

    Saputra Asep H.

    2017-01-01

    Full Text Available Wettability of composite is one of key to increase mechanical properties of composite that affected by structure of reinforcement and type of resin used. Therefore, this research focused on the effect of orientation, density and surface treatment on fiber to the characteristic of composite’s wettability, which is observed by contact angle and wetting time. The fiber used in this research is fiberglass, and the method for contact angle measurement is direct observation from the camera recorder and the data record will be processed and analyzed by using image processing method. The result for those variations can be obtained from the relation of variations toward contact angle and wetting time. According to result of research, fiber with orientation 45°/45° gives lower contact angle but longer wetting time than fiber with orientation 0°/90°. For orientation 45°/45°, the differences in wetting time is 15 second longer than orientation 0°/90°. In case of fiber density, the sheet with fiber density of 900 has 7 second faster for wetting time than sheet with fiber density of 1250. The surface treatment with NaOH 5% can accelerate the wetting time until 10 second.

  16. Earthquake rupture process recreated from a natural fault surface

    Science.gov (United States)

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  17. Earthquake rupture process recreated from a natural fault surface

    Science.gov (United States)

    Parsons, Tom; Minasian, Diane L.

    2015-11-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3-D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M ~ 1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, although we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties and suggest that larger ruptures might begin and end in a similar way, although the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude-dependent phenomenon and could vary with each subsequent rupture.

  18. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  19. A review of greywater characteristics and treatment processes.

    Science.gov (United States)

    Boyjoo, Yash; Pareek, Vishnu K; Ang, Ming

    2013-01-01

    This paper presents a comprehensive literature review of different characteristics of greywater (GW) and current treatment methods. GW is domestic wastewater excluding toilet waste and can be classified as either low-load GW (excluding kitchen and laundry GW) or high-load GW (including kitchen and/or laundry). This review provides information on the quantity of GW produced, its constituents (macro and micro), existing guidelines for wastewater reuse, current treatment methods (from storage to disinfection) as well as related costs and environmental impacts. Moreover some successful examples from various countries around the world are examined. The current preferred treatments for GW use physical and biological/natural systems. Recently, chemical systems like coagulation, adsorption and advanced oxidation processes (AOPs) have been considered and have been successful for low to moderate strength GW. The presence of xenobiotic organic compounds (XOC), which are hazardous micropollutants in GW, is emphasised. Since conventional treatments are not efficient at removing XOC, it is recommended that future studies look at chemical treatment, especially AOPs that have been found to be successful at mineralising recalcitrant organic compounds in wastewater.

  20. Surface Treatment of Polypropylene Films Using Homogeneous DBD Plasma at Atmospheric Pressure in Air%Surface Treatment of Polypropylene Films Using Homogeneous DBD Plasma at Atmospheric Pressure in Air

    Institute of Scientific and Technical Information of China (English)

    FANG Zhi; CAI Ling-ling; LEI Xiao; QIU Yu-chang; Kuffel Edmund

    2011-01-01

    The homogeneous dielectric barrier discharge (DBD) in atmospheric air is most favorable for polymer sur- face modification due to the low cost of operation and the ability of ambient on-line continuous uniform processing. In this paper, polypropylene (PP) films are treated using a homogeneous DBD plasma in atmospheric air. The surface properties of PP films are studied using contact angle and surface energy measurement, scanning electron microscopy (SEM) and Fourier trailsformed infrared spectroscopy (FTIR), and the aging effect after treatment when the treated materials are exposed to open air is also studied, with the modification mechanism being discussed. It is demonstrated that non thermal plasmas generated by homogeneous DBD in atmospheric air is an effective way to enhance the surface properties of PP films. After the pIasma treatment, the surface of PP film is etched, and oxygen-containing polar groups are introduced into the surface. These two processes can induce a remarkable decrease in water contact angle and a remarkable increase in surface energy, and the surface properties of PP films are improved accordingly.

  1. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    Science.gov (United States)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  2. Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials.

    Science.gov (United States)

    Sánchez-Martín, J; Beltrán-Heredia, J; Solera-Hernández, C

    2010-10-01

    A new tannin-based coagulant-flocculant (Tanfloc) was tested for water treatment at a pilot plant level. Four types of water sample were treated: surface water (collected from a river), and municipal, textile industry (simulated by a 100 mg L(-1) aqueous solution of an acid dye), and laundry (simulated by a 50 mg L(-1) aqueous solution of an anionic surfactant) wastewaters. The pilot plant process consisted of coagulation, sedimentation, and filtration. The experiments were carried out with an average coagulant dosage of 92.2 mg L(-1) (except in the case of the surface water for which the dosage was 2 mg L(-1)). The efficacy of the water purification was notable in every case: total turbidity removal in the surface water and municipal wastewater, about 95% dye removal in the case of the textile industry wastewater, and about 80% surfactant removal in the laundry wastewater. Filtration improved the removal of suspended solids, both flocs and turbidity, and slightly improved the process as a whole. The efficiency of Tanfloc in these pilot studies was similar to or even better than that obtained in batch trials.

  3. Bioinspired Surface Treatments for Improved Decontamination: Commercial Products

    Science.gov (United States)

    2017-07-28

    surface. The safety data sheet for the product declares the content to be petroleum lubricating oils (C15 to C30) and ethylene glycol methyl ether...damage leading to restoration of the finish. The safety data sheet lists carnauba wax and ethylene glycol as components. This product was selected... products increased wetting angles for water and ethylene glycol with an associated reduction in geometric surface energy. The coatings did not yield

  4. Effect of Laser Surface Treatment on the Corrosion Behavior of FeCrAl-Coated TZM Alloy

    Directory of Open Access Journals (Sweden)

    Jeong-Min Kim

    2016-01-01

    Full Text Available The current study involves the coating of Titanium-Zirconium-Molybdenum (TZM alloy with FeCrAl through plasma thermal spraying which proved effective in improving the oxidation resistance of the substrate. A post-laser surface melting treatment further enhanced the surface protection of the TZM alloy. Oxidation tests conducted at 1100 °C in air indicated that some Mo oxides were formed at the surface but a relatively small amount of weight reduction was observed for FeCrAl-coated TZM alloys up to 60 min of treatment. The post-laser surface treatment following the plasma thermal spray process apparently delayed the severe oxidation process and surface spalling of the alloy. It was suggested that the slow reduction in weight in the post-laser-treated specimen was related to fewer defects in the coating layer. It was also found that a surface reaction layer formed through the diffusion of Fe into the Mo alloy substrate at high temperature. The layer mainly consisted of Fe-saturated Mo and FeMo intermetallic compounds. In order to observe the corrosion behavior of the laser-treated alloy in 3.5% NaCl solution, electrochemical characteristics were also investigated. A proposed equivalent circuit model for the specimen indicated localized corrosion of coated alloy with some permeable defects in the coating layer.

  5. Atomic-level imaging, processing and characterization of semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  6. Atomic-level imaging, processing and characterization of semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, Lawrence L. (Lakewood, CO)

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  7. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended...... in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25 degreesC and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 10(8) CFU/ml were much lower in a laminar flow system...... (modified Robbins device) (reaching 10(2) CFU/cm(2)) than in a batch system (reaching 10(7) CFU/cm(2)), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were...

  8. Microstructure, Hardness and Impact Toughness of Heat-Treated Nanodispersed Surface and Friction Stir-Processed Aluminum Alloy AA7075

    Science.gov (United States)

    Refat, M.; Elashery, A.; Toschi, S.; Ahmed, M. M. Z.; Morri, A.; El-Mahallawi, I.; Ceschini, L.

    2016-11-01

    Friction stir processing (FSP) is a recent surface engineering processing technique that is gaining wide recognition for manufacturing nanodispersed surface composites, which are of high specific strength, hardness and resistance to wear and corrosion. Herein, four-pass FSP was applied on aluminum alloy 7075 (AA7075-O) with and without the addition of alumina nanoparticles (Al2O3) of average size 40 nm. All FSP parameters were constant at 40 mm/min transverse speed, 500 rpm and tilt angle of 3°. FSP rotation direction was reversed every other pass. The friction stir-processed materials were sectioned and solution treated at 515 °C for 1.5 h, followed by age hardening at 120 °C for 12, 24, 36, 48 and 60 h. The effect of heat treatment regimes on microstructure, hardness and toughness was examined, as well as the fracture mode. The new friction stir-processed surfaces without and with nanodispersion showed enhancement in the hardness of the surface of the AA7075-O material (65 HV) to almost a double (100 and 140 HV) after four-pass FSP (before heat treatment) without and with incorporating nanoalumina particles, respectively. After 48-h aging at 120 °C, a significant enhancement in impact toughness was achieved for both the friction stir-processed without and with nanodispersion (181 and 134 J, respectively), compared to the reference material AA7075 in T6 condition (104 J).

  9. Atmospheric mercury accumulation and washoff processes on impervious urban surfaces

    Science.gov (United States)

    Eckley, C.S.; Branfireun, B.; Diamond, M.; Van Metre, P.C.; Heitmuller, F.

    2008-01-01

    The deposition and transport of mercury (Hg) has been studied extensively in rural environments but is less understood in urbanized catchments, where elevated atmospheric Hg concentrations and impervious surfaces may efficiently deliver Hg to waterways in stormwater runoff. We determined the rate at which atmospheric Hg accumulates on windows, identified the importance of washoff in removing accumulated Hg, and measured atmospheric Hg concentrations to help understand the relationship between deposition and surface accumulation. The main study location was Toronto, Ontario. Similar samples were also collected from Austin, Texas for comparison of Hg accumulation between cities. Windows provided a good sampling surface because they are ubiquitous in urban environments and are easy to clean/blank allowing the assessment of contemporary Hg accumulation. Hg Accumulation rates were spatially variable ranging from 0.82 to 2.7 ng m-2 d-1 in Toronto and showed similar variability in Austin. The highest accumulation rate in Toronto was at the city center and was 5?? higher than the rural comparison site (0.58 ng m-2 d-1). The atmospheric total gaseous mercury (TGM) concentrations were less than 2?? higher between the rural and urban locations (1.7 ?? 0.3 and 2.7 ?? 1.1 ng m-3, respectively). The atmospheric particulate bound fraction (HgP), however, was more than 3?? higher between the rural and urban sites, which may have contributed to the higher urban Hg accumulation rates. Windows exposed to precipitation had 73 ?? 9% lower accumulation rates than windows sheltered from precipitation. Runoff collected from simulated rain events confirmed that most Hg accumulated on windows was easily removed and that most of the Hg in washoff was HgP. Our results indicate that the Hg flux from urban catchments will respond rapidly to changes in atmospheric concentrations due to the mobilization of the majority of the surface accumulated Hg during precipitation events. ?? 2008 Elsevier

  10. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment

    Science.gov (United States)

    Wei, Jianqiang; Meyer, Christian

    2014-01-01

    As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.

  11. Treatment of PDMS surfaces using pulsed DBD plasmas: comparing the use of different gases and its influence on adhesion

    CERN Document Server

    Nascimento, Fellype do; Machida, Munemasa; Parada, Sergio

    2015-01-01

    In this work we present some results of the treatment of polydimethylsiloxane (PDMS) surfaces using pulsed dielectric barrier discharge plasmas. The results of plasma treatment using different gases to produce the plasmas (argon, argon plus water, helium, helium plus water, nitrogen and nitrogen plus water) were compared testing the adhesion between two PDMS samples for each kind of plasma. We also studied the water contact angle in function of plasma process time of PDMS surfaces with each kind of plasma. The plasmas were characterized by optical emission spectroscopy to identify the emitting species and determine plasma temperatures through comparison with emission spectra simulations. Measurements of power delivered to the plasmas were also performed. Plasmas of all gases are good enough for surface treatment with long exposure time. But when only a few discharges are applied the best choice is the helium plasma.

  12. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    FANG Zhi; QIU Yuchang; WANG Hui; E. KUFFEL

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.

  13. Microbe-surface interactions in biofouling and biocorrosion processes.

    Science.gov (United States)

    Beech, Iwona B; Sunner, Jan A; Hiraoka, Kenzo

    2005-09-01

    The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.

  14. Application of response surface methodology in process parameters ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... and its concentrations in industrial effluents vary greatly from 2.8 to 6,800 mg/l depending on the source. Fenton ... populations in municipal wastewater treatment (Guo and ... The slow rate of reaction in biological systems has.

  15. Preliminary Investigation of Surface Treatments to Enhance the Wear Resistance of 60-Nitinol

    Science.gov (United States)

    Stanford, Malcolm K.

    2016-01-01

    The use of protective surface treatments on 60-Nitinol (60wt%Ni-40wt%Ti) was studied. Various nitriding techniques as well as a (Ti, Al)N coating were evaluated visually, microscopically, and by hardness and scratch testing. The chemical composition of the surface treatments was investigated by x-ray techniques. The results indicate that very hard (greater than 1,000 HK) and adherent surface layers can be produced on 60-Nitinol. Further work is needed to determine the tribological properties of these surface treatments in relevant operating environments.

  16. The alkaline pre-filming process of the RWCU piping surface

    Energy Technology Data Exchange (ETDEWEB)

    Kao, D-Y.; Wen, T-J., E-mail: dahyukao@iner.gov.tw [Atomic Energy Council, Inst. of Nuclear Energy Research, Lungtan Taoyuan, Taiwan (China); Fong, C., E-mail: clinton@itri.org.tw [Industrial Technology Research Inst., Chutung, Hsinchu (China); Lu, J-H., E-mail: u879864@taipower.com.tw [Taiwan Power Co., Lungmen Nuclear Power Plant, Gongliao Township, Taipei County (China)

    2010-07-01

    The radiation dose rate on a BWR can cause great damage to operators and their maintenances working quality, so it is very important to lower it. The RWCU of a BWR primary system has the highest radiation dose rate and deposition of an active corrosion product because of: continually cleaning the reactor water and the repeated, acute change of temperature. The Lungmen NPP was built as an advanced BWR (ABWR) system. All new ABWRs in Japan, such as Kashiwazaki-Kariwa NPP units K6 and K7, Hamaoka NPP unit H5, and Shika NPP unit2, were given in passivation treatment in the stage of nuclear heating or flow-induced vibration (FIV) testing before each plant's initial start up. The conditions of alkaline pre-filming process include: pH, dissolve oxygen (DO) and temperature. This project had been decided by the results of earlier water loop testing. Three kinds of specimens including stainless steel AISI SS316L and carbon steel SA106 GrB, SA333 Gr6 were put into the autoclave located at a bypass system during the process of passivation treatment. The materials of these specimens have been used in RWCU piping, and during the alkaline pre-filming process they were monitored by AC impedances and electrochemical corrosion potential (ECP). Their surface analyses including SEM, EDS, ESCA and SIMS data were obtained from the initial test, and obtained every six months thereafter. From the SEM plot of first issue it was found that the specimens' surface of all three different materials presented excellent levels of oxidized pellets. They are almost completely packed, for both large and small granules, and the porosity is less than 40%. The deposition tests of cobalt ion were also completed. The material of stainless steel was nearly not affected through the passive process. However, carbon steel could reduce about 30% to 50% of deposited cobalt ion. This result follows the conclusion of Hatch Company. Based on the nominal cost of radiation protection, i.e. 10000 USD

  17. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    Science.gov (United States)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  18. Surface science in hernioplasty: The role of plasma treatments

    Science.gov (United States)

    Nisticò, Roberto; Magnacca, Giuliana; Martorana, Selanna

    2017-10-01

    The aim of this review is to clarify the importance of surface modifications induced in biomaterials for hernia-repair application. Starting from the pioneering experiences involving proto-materials as ancient prosthesis, a historical excursus between the biomaterials used in hernioplasty was realized. Subsequently, after the revolutionary discovery of stereoregular polymerization followed by the PP application in the biomedical field performed by the surgeon F. Usher, a comparative study on different hernia-repair meshes available was realized in order to better understand all the outstanding problems and possible future developments. Furthermore, since many unsolved problems on prosthetic devices implantation are linked to phenomena occurring at the interface between the biomaterials surface and the body fluids, the importance of surface science in hernioplasty was highlighted and case studies of new surface-modified generations of prosthesis presented. The results discussed in the following evidence how the surface study are becoming increasingly important for a proper knowledge of issues related to the interaction between the living matter and the artificial prostheses.

  19. INVESTIGATION OF SURFACE AND BULK PROCESSES IN MG-BASED ALLOYS DURING HYDROGEN ABSORPTION

    Directory of Open Access Journals (Sweden)

    Balázs Vehovszky

    2012-09-01

    Full Text Available Different Mg-based alloys were tailored and prepared to investigate the surface and bulk processes during hydrogen absorption. Volumetric-, resistance-, XRD-, optical-, and mass measurements were carried out. Heat treatment experiments showed that the short-term thermal stability limits (during heating up at 5 K/min of the amorphous samples were between 125-175 ° C, while long-term stability (during 24h heat treatment is always lower – between 80 and 150°C. Nanocrystalline alloys were stable up to 300°C. Hydrogen absorption measurements were executed between 25 and 300°C. Pd-containing alloys were found to be the fastest absorbers, and 200°C was the optimal temperature regarding absorption rate. Etching the samples previously in HF solution enhances absorption by inducing surface cracking. This phenomenon was thoroughly examined by optical microscopy. The effect of hydrogen on the crystallization properties of MgNiPd sample was determined via in-situ resistance measurements.

  20. Investigation of Surface and Bulk Processes in Mg-based Alloys during Hydrogen Absorption

    Directory of Open Access Journals (Sweden)

    Balázs Vehovszky

    2012-09-01

    Full Text Available Different Mg-based alloys were tailored and prepared to investigate the surface and bulk processes during hydrogen