WorldWideScience

Sample records for surface transportation noise

  1. Potential problems with environmental sound barriers when used in mitigating surface transportation noise.

    Science.gov (United States)

    Arenas, Jorge P

    2008-11-01

    The public, increasingly well-informed about the problem of excessive noise, is taking actions for the development of new transport infrastructure projects and improvement of existing infrastructure. In addition, many countries have implemented mandatory Environmental Impact Assessment procedures. As a result, the construction of sound barriers has become a common measure, which can be used by an agency to mitigate potentially significant noise impacts. A sound barrier, eventually, will become part of the surrounding landscape and could be a cause of impact for ecosystems, the road users and those who live alongside the road. Basically, this article discusses these potential effects in the context of environmental assessment procedures. In addition, results of a pilot survey conducted at a residential area affected by the construction of a barrier are presented. Although most residents felt that sleeping conditions improved after the barrier was built, most important negative reactions are the loss of sunlight and visual impact.

  2. Low noise road surfaces

    OpenAIRE

    Bolčina, Matjaž

    2014-01-01

    Noise is everywhere. Noise is a sound that makes people stressful and irritate. It often couses sleep disorders and also health problems like different cardiovascular disorders, hearing loss…In most cases traffic noise is the most disturbing. There are different ways to prevent people from traffic noise like building noise barriers and insulation of facades. However noise barriers and insulation of facades do not prevent noise formation, but are lowering existing noise. Another disadvantage i...

  3. Noise-induced quantum transport

    OpenAIRE

    Ghosh, Pulak Kumar; Barik, Debashis; Ray, Deb Shankar

    2004-01-01

    We analyze the problem of directed quantum transport induced by external exponentially correlated telegraphic noise. In addition to quantum nature of the heat bath, nonlinearity of the periodic system potential brings in quantum contribution. We observe that quantization, in general, enhances classical current at low temperature, while the differences become insignificant at higher temperature. Interplay of quantum diffusion and quantum correction to system potential is analyzed for various r...

  4. Brownian Ratchets: Transport Controlled by Thermal Noise

    Science.gov (United States)

    Kula, J.; Czernik, T.; Łuczka, J.

    1998-02-01

    We analyze directed transport of overdamped Brownian particles in a 1D spatially periodic potential that are subjected to both zero-mean thermal equilibrium Nyquist noise and zero-mean exponentially correlated dichotomous fluctuations. We show that particles can reverse the direction of average motion upon a variation of noise parameters if two fundamental symmetries, namely, the reflection symmetry of the spatial periodic structure, and the statistical symmetry of dichotomous fluctuations, are broken. There is a critical thermal noise intensity Dc, or equivalently a critical temperature Tc, at which the mean velocity of particles is zero. Below Tc and above Tc particles move in opposite directions. At fixed temperature, there is a region of noise parameters in which particles of different linear size are transported in opposite directions.

  5. Noise suppression in surface microseismic data

    Science.gov (United States)

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth S.; Davidson, Michael

    2012-01-01

    We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform. We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform.

  6. Surface tension effects in breaking wave noise.

    Science.gov (United States)

    Deane, Grant B

    2012-08-01

    The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m s(-1) for wind speeds less than 10 m s(-1) and typical values of surfactant film pressure within sea slicks.

  7. Noise Prevents Singularities in Linear Transport Equations

    OpenAIRE

    Fedrizzi, Ennio; Flandoli, Franco

    2012-01-01

    A stochastic linear transport equation with multiplicative noise is considered and the question of no-blow-up is investigated. The drift is assumed only integrable to a certain power. Opposite to the deterministic case where smooth initial conditions may develop discontinuities, we prove that a certain Sobolev degree of regularity is maintained, which implies H\\"older continuity of solutions. The proof is based on a careful analysis of the associated stochastic flow of characteristics.

  8. Hydrodynamic Noise and Surface Compliance.

    Science.gov (United States)

    1982-09-08

    Lighthill, 3,4 Ffowcs-Wiiliams, 5-7 and Morse and Ingard .8 Ffowcs-Williams’ 7 excellent review identifies five distinctly different theoretical...Williams, "Hydrodynamic Noise," Annual Review of Fluid Mechanics (Annual Reviews, Palo Alto, CA), vol. 1, 1969, pp. 197-222. 8. P. Morse and K. V. Ingard

  9. Ultra Low Noise Poroelastic Road Surfaces

    Directory of Open Access Journals (Sweden)

    Jerzy A. Ejsmont

    2016-04-01

    Full Text Available Noise is one of the most important environmental problems related to road traffic. During the last decades, the noise emitted by the engines and powertrains of vehicles was greatly reduced and tires became a clearly dominant noise source. The article describes the concept of low noise poroelastic road surfaces that are composed of mineral and rubber aggregate bound by polyurethane resin. Those surfaces have a porous structure and are much more flexible than standard asphalt or cement concrete pavements due to high content of rubber aggregate and elastic binder. Measurements performed in several European countries indicate that such surfaces decrease tire/road noise between 7 dB and 12 dB with respect to reference surfaces such as dense asphalt concrete or stone matrix asphalt. Furthermore, poroelastic road surfaces ascertain the rolling resistance of car tires, which is comparable to classic pavements. One of the unforeseen properties of the poroelastic road surfaces is their ability to decrease the risks related to car fires with fuel spills. The article presents the road and laboratory results of noise, rolling resistance, and fire tests performed on a few types of poroelastic road surfaces.

  10. Transportation noise exposure and children's health and cognition

    NARCIS (Netherlands)

    Kempen, E.E.M.M. van

    2008-01-01

    This thesis focuses on the effects of transportation noise on children. Children are suspected of being more susceptible to noise exposure. There is a lack of source-specific exposure-response relations describing the association between noise exposure and specific health and cognitive outcomes in c

  11. Transport for a System with Additive Temporal-Spatial Noise

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Hui; HAN Yin-Xia; CHEN Shi-Gang

    2004-01-01

    In this paper, we study the transport of the system with the additive temporal-spatial noise, by two models, i.e., a spatial asymmetry model and a spatial symmetry model. The study shows that the correlation of the additive noise with the space and the spatial asymmetry are ingredients for the transport.

  12. Polarization of electric field noise near metallic surfaces

    CERN Document Server

    Schindler, Philipp; Daniilidis, Nikos; Häffner, Hartmut

    2015-01-01

    Electric field noise in proximity to metallic surfaces is a poorly understood phenomenon that appears in different areas of physics. Trapped ion quantum information processors are particular susceptible to this noise, leading to motional decoherence which ultimately limits the fidelity of quantum operations. On the other hand they present an ideal tool to study this effect, opening new possibilities in surface science. In this work we analyze and measure the polarization of the noise field in a micro-fabricated ion trap for various noise sources. We find that technical noise sources and noise emanating directly from the surface give rise to different degrees of polarization which allows us to differentiate between the two noise sources. Based on this, we demonstrate a method to infer the magnitude of surface noise in the presence of technical noise.

  13. Applying intelligent transport systems to manage noise impacts

    NARCIS (Netherlands)

    Wilmink, I.R.; Vonk, T.

    2015-01-01

    This contribution discusses how traffic management, and many other measures that can be categorised as Intelligent Transport Systems (ITS, i.e. all traffic and transport measures that use ICT) can help reduce noise levels by influencing mobility choices and driving behaviour. Several examples of suc

  14. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    Science.gov (United States)

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  15. Probing surface electric field noise with a single ion

    CERN Document Server

    Daniilidis, N; Bolloten, G; Ramm, M; Ransford, A; Ulin-Avila, E; Talukdar, I; Häffner, H

    2013-01-01

    We report room-temperature electric field noise measurements combined with in-situ surface characterization and cleaning of a microfabricated ion trap. We used a single-ion electric field noise sensor in combination with surface cleaning and analysis tools, to investigate the relationship between electric field noise from metal surfaces in vacuum and the composition of the surface. These experiments were performed in a novel setup that integrates ion trapping capabilities with surface analysis tools. We find that surface cleaning of an aluminum-copper surface significantly reduces the level of electric field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The post-cleaning noise levels are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap.

  16. Quantum noise theory for phonon transport through nanostructures

    Science.gov (United States)

    Wan, Li; Huang, Yunmi; Huang, Changcheng

    2017-04-01

    We have developed a quantum noise approach to study the phonon transport through nanostructures. The nanostructures acting as phonon channels are attached to two phonon reservoirs. And the temperature drop between the two reservoirs drives the phonon transport through the channels. We have derived a quantum Langevin equation(QLE) to describe the phonon transport with the quantum noise originated from the thermal fluctuation of the reservoirs. Within the Markov approximation, the QLE is used to get the thermal conductivity κ of the nanostructures and the finite size effect of the κ then is studied. In this study, the advantage of the quantum noise approach lays on the fact that no any local temperature needs to be defined for the nanostructures in its non-equilibrium state.

  17. Transport driven by spatially modulated noise in a periodic tube

    Energy Technology Data Exchange (ETDEWEB)

    Ai Baoquan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering and Laboratory of Photonic Information Technology, South China Normal University, 510006 Guangzhou (China); Liu Lianggang [The Faculty of Information Technology, Macau University of Science and Technology, Macao (China)

    2007-07-04

    This paper investigates a three-dimensional periodic tube driven by spatially modulated Gaussian white noise. We derive an analytical expression for the net current by introducing entropic barriers. It is found that the phase shift between the entirely symmetric tube and noise modulation can break the symmetry of the generalized potential and induce directed transport. The sign of the current is determined by the phase shift. The current is a peaked function of the bottleneck radius. The interplay between the asymmetric tube and noise modulation can also induce a net current.

  18. Transport for System with Three-Value Poissonian Noise

    Institute of Scientific and Technical Information of China (English)

    HAN Yin-Xia; LI Jing-Hui; CHEN Shi-Gang

    2004-01-01

    The transport of the overdamped Brownian particles in a spatially periodic potential subject to the three value Poissonian noise in the stationary state is considered. We show that for the spatially periodic potential, no matter whether it is asymmetric, or is symmetric, flux can be induced. But the mechanism is different. The former is the common action of broken reflection symmetry and transition among three-value Poissonian noise in a cyclic way; the latter is single behavior of transition among three-value Poissonian noise in a cyclic way.

  19. Asymmetric transportation induced by thermal noise at the nanoscale

    Institute of Scientific and Technical Information of China (English)

    WAN RongZheng; HU Jun; FANG HaiPing

    2012-01-01

    Based on a simple model,we theoretically show that asymmetric transportation is possible in nanoscale systems experiencing thermal noise without the presence of external fluctuations.The key to this theoretical advance is that the correlation lengths of the thermal fluctuations become significantly long for nanoscale systems.This differs from macroscopic systems in which the thermal noises are usually treated as white noise.Our observation does not violate the second law of thermodynamics,since at the nanoscale,extra energy is required to keep the asymmetric structure against thermal fluctuations.

  20. Transport for System with Three-Value Poissonian Noise

    Institute of Scientific and Technical Information of China (English)

    HANYin-Xia; LIJing-Hui; CHENShi-Gang

    2004-01-01

    The transport of the overdamped Brownian particles in a spatially periodic potential subject to the three-value Poissonian noise in the stationary state is considered. We show that for the spatially periodic potential, no matter whether it is asymmetric, or is symmetric, flux can be induced. But the mechanism is different. The former is the common action of broken reflection symmetry and transition among three-value Poissonian noise in a cyclic way; the latter is single behavior of transition among three-value Poissonian noise in a cyclic way.

  1. A Semiconductor Device Noise Model: A Deterministic Approach to Semiconductor Device Current Noise for Semiclassical Transport

    Science.gov (United States)

    Noaman, B. A.; Korman, C. E.

    2009-04-01

    In this paper, we present a deterministic approach to calculate terminal current noise characteristics in semiconductor devices in the framework of semiclassical transport based on the spherical harmonics of the Boltzmann Transport Equation. The model relies on the solution of the Boltzmann equation in the frequency domain with special initial and boundary conditions. The terminal current fluctuation is directly related to scattering without the additional Langevin noise term added to the calculation. Simulation results are presented for the terminal current spectral density for a 1-D n+nn+ structure due to elastic-acoustic and intervally scattering.

  2. Tyre - Road Noise, Surface Characteristics and Material Properties

    NARCIS (Netherlands)

    Li, M.

    2013-01-01

    Noise levels due to road traffic have reached intolerable high levels in and around many urban areas all around the world. Because of health reasons and reasons of well- being these noise levels have to be reduced. The noise produced from the interaction between the rolling tyre and road surface is

  3. Multidisciplinary design optimization of low-noise transport aircraft

    Science.gov (United States)

    Leifsson, Leifur Thor

    The objective of this research is to examine how to design low-noise transport aircraft using Multidisciplinary Design Optimization (MDO). The subject is approached by designing for low-noise both implicitly and explicitly. The explicit design approach involves optimizing an aircraft while explicitly constraining the noise level. An MDO framework capable of optimizing both a cantilever wing and a Strut-Braced-Wing (SBW) aircraft was developed. The objective is to design aircraft for low-airframe-noise at the approach conditions and quantify the change in weight and performance with respect to a traditionally designed aircraft. The results show that reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large performance and weight penalty. Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction. Another study showed that the trailing-edge flap can be eliminated, as well as all the noise associated with that device, without incurring a significant weight and performance penalty. Lastly, an airframe noise analysis showed that a SBW aircraft with short fuselage-mounted landing gear could have a similar or potentially a lower airframe noise level than a comparable cantilever wing aircraft. The implicit design approach involves selecting a configuration that supports a low-noise operation, and optimizing for performance. In this study a Blended-Wing-Body (BWB) transport aircraft, with a conventional and a distributed propulsion system, was optimized for minimum take-off gross weight. The effects of distributed propulsion were studied using an MDO framework previously developed at Virginia Tech. The results show that more than two thirds of the theoretical savings of distributed propulsion are required for the BWB designs with a distributed propulsion system to have comparable gross weight as those with a conventional propulsion system. Therefore

  4. Noise Evaluation Technique Based on Surface Pressure

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2012-01-01

    In this chapter the relevant theory for the understanding of TE noise modeling is collected. It contains the acoustic formulations of [31] and [57]. Both give a relation for the far field sound pressure in dependence of the frequency wave number spectral density of the pressure on the airfoil...

  5. Developing an Empirical Model for Jet-Surface Interaction Noise

    Science.gov (United States)

    Brown, Clifford A.

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  6. Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors.

    Science.gov (United States)

    Lee, B; Chen, Y; Fu, D; Yi, H T; Czelen, K; Najafov, H; Podzorov, V

    2013-12-01

    Fundamental studies of intrinsic charge transport properties of organic semiconductors are often hindered by charge traps associated with static disorder present even in optimized single-crystal devices. Here, we report a method of surface functionalization using an inert non-conjugated polymer, perfluoropolyether (PFPE), deposited at the surface of organic molecular crystals, which results in accumulation of mobile holes and a 'trap healing' effect at the crystal/PFPE interface. As a consequence, a remarkable ultralow-noise, trp-free conduction regime characterized by intrinsic mobility and transport anisotropy emerges in organic single crystals, and Hall effect measurements with an unprecedented signal-to-noise ratio are demonstrated. This general method to convert trap-dominated organic semiconductors to intrinsic systems may enable the determination of intrinsic transport parameters with high accuracy and make Hall effect measurements in molecular crystals ubiquitous.

  7. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...

  8. FLOW NOISE MEASUREMENT OF SURFACE SHIP WITH TOWED MODEL

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article, a new acoustic test technique using towed model was introduced to study flow noise caused by a surface ship. The project of model test was be properly designed for acoustic signal collecting and with the help of appropriate data processing method different kinds of acoustic sources could be successfully identified. A lot of work about fuid noise could be carried on with the towed model, and the noise corresponding to low frequency which is especially interested for its long distance radiating with small attenuation could also be studied in this way.

  9. An effective noise-suppression technique for surface microseismic data

    Science.gov (United States)

    Forghani-Arani, Farnoush; Willis, Mark; Haines, Seth S.; Batzle, Mike; Behura, Jyoti; Davidson, Michael

    2013-01-01

    The presence of strong surface-wave noise in surface microseismic data may decrease the utility of these data. We implement a technique, based on the distinct characteristics that microseismic signal and noise show in the τ‐p domain, to suppress surface-wave noise in microseismic data. Because most microseismic source mechanisms are deviatoric, preprocessing is necessary to correct for the nonuniform radiation pattern prior to transforming the data to the τ‐p domain. We employ a scanning approach, similar to semblance analysis, to test all possible double-couple orientations to determine an estimated orientation that best accounts for the polarity pattern of any microseismic events. We then correct the polarity of the data traces according to this pattern, prior to conducting signal-noise separation in the τ‐p domain. We apply our noise-suppression technique to two surface passive-seismic data sets from different acquisition surveys. The first data set includes a synthetic microseismic event added to field passive noise recorded by an areal receiver array distributed over a Barnett Formation reservoir undergoing hydraulic fracturing. The second data set is field microseismic data recorded by receivers arranged in a star-shaped array, over a Bakken Shale reservoir during a hydraulic-fracturing process. Our technique significantly improves the signal-to-noise ratios of the microseismic events and preserves the waveforms at the individual traces. We illustrate that the enhancement in signal-to-noise ratio also results in improved imaging of the microseismic hypocenter.

  10. Relationship of Transportation Noise and Annoyance for Two Metropolitan Cities in Korea: Population Based Study.

    Science.gov (United States)

    Sung, Joo Hyun; Lee, Jiho; Park, Sang Jin; Sim, Chang Sun

    2016-01-01

    Transportation noise is known to have negative impact on both public health and life quality. This study evaluated the relationship between transportation noise and annoyance levels, and also the difference of annoyance levels in two metropolitan cities based on epidemiologic surveys. Two thousand adult subjects living in Seoul and Ulsan were enrolled by stratified random sampling on the basis of noise maps from July 2015 to January 2016. Individual annoyance in accordance with transportation noise levels in two metropolitan cities were surveyed using an 11-point visual analog scale questionnaire. The results show that transportation noise level was significantly correlated with annoyance in both cities. Logistic regression analysis revealed that the risk of being 'highly annoyed' increased with noise level (Ldn, day-night average sound level) in both cities. After adjusting for age, residence period, sociodemographic factors (sex, education, marriage, income, alcohol, smoking, and exercise) and noise sensitivity, the risk of being 'highly annoyed' was increased with noise levels in both cities. In comparison to those of areas with noise levels below 55 dBA, the adjusted odds ratios of 'highly annoyed' for areas with 55-65 dBA and over 65 dBA were 2.056 (95% confidence interval [CI] 1.225-3.450), 3.519 (95% CI 1.982-6.246) in Seoul and 1.022 (95% CI 0.585-1.785), 1.704 (95% CI 1.005-2.889) in Ulsan, respectively. Based on the results of a population study, we showed that transportation noise levels were significantly associated with annoyance in adults. However, there were some differences between the two cities. In this study, there were differences in transportation noise between the two cities. Seoul has complex noise (traffic and aircraft), compared to single road traffic noise in Ulsan. Therefore, single and complex transportation noise may have different effects on annoyance levels.

  11. Complex inductance, excess noise, and surface magnetism in dc SQUIDs.

    Science.gov (United States)

    Sendelbach, S; Hover, D; Mück, M; McDermott, R

    2009-09-11

    We have characterized the complex inductance of dc SQUIDs cooled to millikelvin temperatures. The SQUID inductance displays a rich, history-dependent structure as a function of temperature, with fluctuations of order 1 fH. At a fixed temperature, the SQUID inductance fluctuates with a 1/f power spectrum; the inductance noise is highly correlated with the conventional 1/f flux noise. The data are interpreted in terms of the reconfiguration of clusters of surface spins, with correlated fluctuations of effective magnetic moments and relaxation times.

  12. Surface transport in plasma-balls

    CERN Document Server

    Armas, Jay; Kundu, Nilay

    2015-01-01

    We study the surface transport properties of stationary localized configurations of relativistic fluids to the first two non-trivial orders in a derivative expansion. By demanding that these finite lumps of relativistic fluid are described by a thermal partition function with arbitrary stationary background metric and gauge fields, we are able to find several constraints among surface transport coefficients. At leading order, besides recovering the surface thermodynamics, we obtain a generalization of the Young-Laplace equation for relativistic fluid surfaces, by considering a temperature dependence in the surface tension, which is further generalized in the context of superfluids. At the next order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent bulk transport coefficients previously known, a generic localized configuration is characterized by 3 additional surface transport coefficients, one of which may be identified with the surface modulus of rigidity. Finally, as an applic...

  13. Capacity constrained blue-noise sampling on surfaces

    KAUST Repository

    Zhang, Sen

    2015-11-27

    We present a novel method for high-quality blue-noise sampling on mesh surfaces with prescribed cell-sizes for the underlying tessellation (capacity constraint). Unlike the previous surface sampling approach that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using an interleaving optimization framework. We further extend this framework to handle multi-capacity constraints. We compare our approach with several state-of-the-art methods and demonstrate that our results are superior to previous work in terms of preserving the capacity constraints.

  14. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  15. Temporal step fluctuations on a conductor surface: electromigration force, surface resistivity and low-frequency noise

    Science.gov (United States)

    Williams, E. D.; Bondarchuk, O.; Tao, C. G.; Yan, W.; Cullen, W. G.; Rous, P. J.; Bole, T.

    2007-10-01

    Scattering of charge carriers from surface structures will become an increasing factor in the resistivity as the structure decreases in size to the nanoscale. The effects of scattering at the most basic surface defect, a kink in a step edge, are here analyzed using the continuum step model. Using a Langevin analysis, it has been shown that the electromigration force on the atoms at the step edge causes changes in the temporal evolution of the step-edge. For an electromigration force acting perpendicular to the average step edge and mass-transport dominated by step-edge diffusion, significant deviations from the usual t1/4 scaling of the displacement correlation function occur dependent on a critical time τ and the direction of the force relative to the step edge (i.e. uphill or downhill). Experimental observations of step fluctuations on Ag(111) show the predicted changes among step fluctuations without current, and with current in the up- and down-hill directions for a current density of order 105 A cm-2. The results yield the magnitude of the electromigration force acting on kinked sites at the step-edge. This in turn yields the contribution of the fluctuating steps to the surface resistivity, which exceeds 1% of the bulk resistivity as wire diameters decrease below 10s of nanometres. The temporal fluctuations of kink density can thus also be related to resistivity noise. Relating the known fluctuation spectrum of the step displacements to fluctuations in their lengths, the corresponding resistivity noise is predicted to show spectral signatures of ~f-1/2 for step fluctuations governed by random attachment/detachment, and ~f-3/4 for step fluctuations governed by step-edge diffusion.

  16. Vacancy Transport and Interactions on Metal Surfaces

    Science.gov (United States)

    2014-03-06

    AFRL-OSR-VA-TR-2013-0317 VACANCY TRANSPORT AND INTERACTIONS ON METAL SURFACES Gert Ehrlich UNIVERSITY OF ILLINOIS CHAMPAIGN Final Report 03/06/2014...30, 2012 Gert Ehrlich , PI Abstract This proposal is a study of vacancy transport and vacancy interaction on metal surfaces. Adatom self...Trembułowicz, Gert Ehrlich , Grażyna Antczak,Surface diffusion of gold on quasihexagonal-reconstructed Au(100) ,Physical Review B 84 (2011) 245445-1

  17. Effects of transportation noise and attitudes on noise annoyance and task performance

    NARCIS (Netherlands)

    White, K.; Meeter, M.; Bronkhorst, A.

    2012-01-01

    In this study, effects on task performance and annoyance by aircraft and road traffic noise and attitudes towards these noise sources were addressed in a lab-setting. On day 1 of the study, participants performed a 3-back working memory task in silence and with noise samples played over a headphone

  18. Performance of a commercial transport under typical MLS noise environment

    Science.gov (United States)

    Ho, J. K.

    1986-01-01

    The performance of a 747-200 automatic flight control system (AFCS) subjected to typical Microwave Landing System (MLS) noise is discussed. The performance is then compared with the results from a previous study which had a B747 AFCS subjected to the MLS standards and recommended practices (SARPS) maximum allowable noise. A glide slope control run with Instrument Landing System (ILS) noise is also conducted. Finally, a linear covariance analysis is presented.

  19. Measuring of noise and wearing of quiet surfaces

    OpenAIRE

    Raitanen, Nina

    2005-01-01

    When using surfaces with special qualities, there is a need for tools to assess these qualities. Two methods, SPB (Statistical Pass-by) and CPX (Close Proximity), have been used for testing the noise properties of the surfaces in the other countries. Both of these methods had to be modified to suit the Finnish environment. SPBmod-method adheres to the ISO-standard quite closely. It was decided that heavy vehicles are not included in the test, as stipulated in the standard. The normalisation s...

  20. Empennage Noise Shielding Benefits for an Open Rotor Transport

    Science.gov (United States)

    Berton, Jeffrey J.

    2012-01-01

    NASA sets aggressive, strategic, civil aircraft performance and environmental goals and develops ambitious technology roadmaps to guide its research efforts. NASA has adopted a phased approach for community noise reduction of civil aircraft. While the goal of the near-term first phase focuses primarily on source noise reduction, the goal of the second phase relies heavily on presumed architecture changes of future aircraft. The departure from conventional airplane configurations to designs that incorporate some type of propulsion noise shielding is anticipated to provide an additional 10 cumulative EPNdB of noise reduction. One candidate propulsion system for these advanced aircraft is the open rotor engine. In some planned applications, twin open rotor propulsors are located on the aft fuselage, with the vehicle s empennage shielding some of their acoustic signature from observers on the ground. This study focuses on predicting the noise certification benefits of a notional open rotor aircraft with tail structures shielding a portion of the rotor noise. The measured noise of an open rotor test article--collected with and without an acoustic barrier wall--is the basis of the prediction. The results are used to help validate NASA s reliance on acoustic shielding to achieve the second phase of its community noise reduction goals. The noise measurements are also compared to a popular empirical diffraction correlation often used at NASA to predict acoustic shielding.

  1. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder

    Science.gov (United States)

    León-Montiel, Roberto de J.; Quiroz-Juárez, Mario A.; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L.; Moya-Cessa, Héctor M.; Torres, Juan P.; Aragón, José L.

    2015-01-01

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed. PMID:26610864

  2. Surface transport in plasma-balls

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Bhattacharya, Jyotirmoy [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Kundu, Nilay [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211019 (India)

    2016-06-06

    We study the surface transport properties of stationary localized configurations of relativistic fluids to the first two non-trivial orders in a derivative expansion. By demanding that these finite lumps of relativistic fluid are described by a thermal partition function with arbitrary stationary background metric and gauge fields, we are able to find several constraints among surface transport coefficients. At leading order, besides recovering the surface thermodynamics, we obtain a generalization of the Young-Laplace equation for relativistic fluid surfaces, by considering a temperature dependence in the surface tension, which is further generalized in the context of superfluids. At the next order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent bulk transport coefficients previously known, a generic localized configuration is characterized by 3 additional surface transport coefficients, one of which may be identified with the surface modulus of rigidity. Finally, as an application, we study the effect of temperature dependence of surface tension on some explicit examples of localized fluid configurations, which are dual to certain non-trivial black hole solutions via the AdS/CFT correspondence.

  3. Surface transport in plasma-balls

    Science.gov (United States)

    Armas, Jay; Bhattacharya, Jyotirmoy; Kundu, Nilay

    2016-06-01

    We study the surface transport properties of stationary localized configurations of relativistic fluids to the first two non-trivial orders in a derivative expansion. By demanding that these finite lumps of relativistic fluid are described by a thermal partition function with arbitrary stationary background metric and gauge fields, we are able to find several constraints among surface transport coefficients. At leading order, besides recovering the surface thermodynamics, we obtain a generalization of the Young-Laplace equation for relativistic fluid surfaces, by considering a temperature dependence in the surface tension, which is further generalized in the context of superfluids. At the next order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent bulk transport coefficients previously known, a generic localized configuration is characterized by 3 additional surface transport coefficients, one of which may be identified with the surface modulus of rigidity. Finally, as an application, we study the effect of temperature dependence of surface tension on some explicit examples of localized fluid configurations, which are dual to certain non-trivial black hole solutions via the AdS/CFT correspondence.

  4. Performance of PRD Welled Surfaces in T Shape Noise Barriers for Controlling Environmental Noise

    Directory of Open Access Journals (Sweden)

    S Momen Bellah

    2010-07-01

    Full Text Available "n "n "nBackgrounds and Objectives: There is a considerable notice in the use of noise barriers in recent years. Noise barriers as a control noise solution can increase the insertion loss to protect receivers. This paper presents the results of an investigation about the acoustic efficiency of primitive root sequence diffuser (PRD on environmental single T-shape barrier."nMaterials and Methods: A 2D boundary element method (BEM is used to predict the insertion loss of the tested barriers. The results of rigid and with quadratic residue diffuser (QRD coverage are also predicted for comparison."nResults: It is found that decreasing the design frequency of PRD shifts the frequency effects towards lower frequencies, and therefore the overall A-weighted insertion loss is improved. It is also found that using wire mesh with reasonably efficient resistivity on the top surface of PRD improves the efficiency of the reactive barriers; however utilizing wire meshes with flow resistivity higher than specific acoustic impedance of air on the PRD top of a diffuser barrier significantly reduces the performance of the barrier within the frequency bandwidth of the diffuser. The performance of PRD covered T-shape barrier at 200 Hz was found to be higher than that of its equivalent QRD barriers in both the far field and areas close to the ground. The amount of improvement compared made by PRD barrier compared with its equivalent rigid barrier at far field is about 2 to 3 dB, while this improvement relative to barrier model .QR4. can reach up to 4- 6 dB."nConclusion: Employing PRD on the top surface of T-shape barrier is found to improve the performance of barriers compared with using rigid and QRD coverage at the examined receiver locations.

  5. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    Science.gov (United States)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  6. Biased transportations in a spatially asymmetric system at the nano-scale under thermal noise

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Under the theory of ratchet effect for mesoand macro-scale systems, the additional perturbation with a long time correlation and the breaking of spatial inversion symmetry are two main ingredients to bring unidirected transportations. With the help of a simple model system, we show that a spatially asymmetric system of the nano-scale length may induce biased transportations under thermal noise.

  7. Consideration of environmental noise effects in transportation planning by governmental entities

    Science.gov (United States)

    Mayo, L. H.

    1975-01-01

    Environmental concerns are reviewed with respect to major transportation systems: the interstate highway system and commercial air transportation. The type of planning that was done for interstate highway systems is described, and the shift in social value emphasis that has become apparent since the interstate system was authorized is considered. Other topics discussed include the constitutional framework for the allocation of governmental power with respect to transportation systems planning, governmental assessment of the aircraft noise problem, and evaluating the social benefit of noise abatement.

  8. Aspheric surface testing by irradiance transport equation

    Science.gov (United States)

    Shomali, Ramin; Darudi, Ahmad; Nasiri, Sadollah; Asgharsharghi Bonab, Armir

    2010-10-01

    In this paper a method for aspheric surface testing is presented. The method is based on solving the Irradiance Transport Equation (ITE).The accuracy of ITE normally depends on the amount of the pick to valley of the phase distribution. This subject is investigated by a simulation procedure.

  9. Magnetic Flux Transport at the Solar Surface

    CERN Document Server

    Jiang, J; Cameron, R H; Solanki, S K; Gizon, L; Upton, L

    2014-01-01

    After emerging to the solar surface, the Sun's magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows -- differential rotation, meridional circulation, granular, supergranular flows, and active region inflows -- determine the evolution of the field (now taken to be purely radial). In this paper, we...

  10. INFLUENCE OF SEDIMENT TRANSPORT ON ARMORED SURFACES

    Institute of Scientific and Technical Information of China (English)

    Katinka KOLL; Andreas DITTRICH

    2001-01-01

    Laboratory experiments have been carried out to study the characteristics of sediment transport in steep streams. The question is discussed wether an armoured surfaces is destroyed due to the transport of material, because additional impulses are acting on it, or the layer is sheltered by the transported material, because a part of the stream power is used to move the material. According to the results of the presented experiments, in which the influence of the feeding rate and the feeding duration have been investigated, transported material reaching an armoured river section from upstream always remobilzes bed material, which is immobile under clear water flow conditions. To decide if a static armour layer is either destroyed or not, two simple criteria were chosen: oneconsidering the grain-size distribution of the eroded bed material, and another, which referes to the amount of eroded bed material.

  11. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  12. Efficiency of transport in periodic potentials: dichotomous noise contra deterministic force

    Science.gov (United States)

    Spiechowicz, J.; Łuczka, J.; Machura, L.

    2016-05-01

    We study the transport of an inertial Brownian particle moving in a symmetric and periodic one-dimensional potential, and subjected to both a symmetric, unbiased external harmonic force as well as biased dichotomic noise η (t) also known as a random telegraph signal or a two state continuous-time Markov process. In doing so, we concentrate on the previously reported regime (Spiechowicz et al 2014 Phys. Rev. E 90 032104) for which non-negative biased noise η (t) in the form of generalized white Poissonian noise can induce anomalous transport processes similar to those generated by a deterministic constant force F= but significantly more effective than F, i.e. the particle moves much faster, the velocity fluctuations are noticeably reduced and the transport efficiency is enhanced several times. Here, we confirm this result for the case of dichotomous fluctuations which, in contrast to white Poissonian noise, can assume positive as well as negative values and examine the role of thermal noise in the observed phenomenon. We focus our attention on the impact of bidirectionality of dichotomous fluctuations and reveal that the effect of nonequilibrium noise enhanced efficiency is still detectable. This result may explain transport phenomena occurring in strongly fluctuating environments of both physical and biological origin. Our predictions can be corroborated experimentally by use of a setup that consists of a resistively and capacitively shunted Josephson junction.

  13. Analysis of Electrical Transport and Noise Mechanisms in Amorphous Silicon

    Science.gov (United States)

    2015-11-23

    made for electrical measurements. Samples from the wafer were die-attached onto ceramic carriers and wire-bonded for temperature dependent electrical...and results A schematic of the noise measurements is shown in Figure 27. The sample is mounted on a copper block...states commonly associated with dangling bonds as well as tail states in the valence and conduction bands could contribute to the non-active B doping

  14. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    Science.gov (United States)

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  15. Surface Recombination Noise in InAs/GaSb Superlattice Photodiodes

    Science.gov (United States)

    Tansel, Tunay; Kutluer, Kutlu; Muti, Abdullah; Salihoglu, Ömer; Aydinli, Atila; Turan, Rasit

    2013-03-01

    The standard Schottky noise approach alone is not sufficient to describe the noise mechanism in an InAs/GaSb superlattice photodetector at reverse negative bias. The additional noise identified appears at surface activation energies below 60 meV and is inversely proportional to the reverse bias. In order to satisfactorily explain the experimental data, we hereby propose the existence of a surface recombination noise that is a function of both the frequency and bias. The calculated noise characteristics indeed show good agreement with the experimental data.

  16. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  17. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  18. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  19. EIA BASED COMPARATIVE URBAN TRAFFIC NOISE ANALYSIS BETWEEN OPERATIONAL AND UNDER CONSTRUCTION PHASE PUBLIC TRANSPORT CORRIDOR

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Mishra

    2014-09-01

    Full Text Available Delhi has a population of 16.75 million and is increasing at a rapid rate. This increase in population has enhanced the need for public transport. In Delhi, this need for public transport is served mainly by buses, auto rickshaws, a rapid transit system, taxis and suburban railways. Delhi has one of the highest road densities in India. Buses are the most popular means of transport catering to about 60% of the total demand. In order to meet the transport demand in Delhi, the State and the Union government started the construction of a mass rapid transit system, including the Delhi Metro. By the application of various data and public response, the paper accentuates the qualitative discussion on impacts of mass rapid transit system (MRTS corridor on land use and social aspects of lives of residents and road users. It also proposes certain mitigating measures for that meticulous condition. The analysis and survey outcome explain about the exceeded level of noise level as compared to CPCB standards. The share of public transport in total noise pollution is smaller than private but still exceeds the standards. Such problem demands the design of noise barrier along the corridor to curb the noise pollution.

  20. All-optical cavity-based simulator of noise-assisted transport

    CERN Document Server

    Viciani, Silvia; Bellini, Marco; Caruso, Filippo

    2015-01-01

    Recent theoretical and experimental efforts have shown the remarkable and counter-intuitive role of noise in enhancing the transport efficiency of complex systems. Here, we realize simple, scalable, and controllable optical fiber cavity networks that allow us to simulate the performance of transport networks for different conditions of interference, dephasing and disorder. In particular, we experimentally demonstrate that the transport efficiency reaches a maximum when varying the external dephasing noise, i.e. a bell-like shape behavior that had been predicted only theoretically. These optical platforms are very promising simulators of transport phenomena, and could be used, in particular, to design and test optimal topologies of artificial light-harvesting structures for future solar energy technologies.

  1. Noise Characteristics of EarthScope Transportable Array Posthole Sensor Emplacements in Alaska and Canada

    Science.gov (United States)

    Aderhold, K.; Frassetto, A.; Busby, R. W.; Enders, M.; Bierma, R. M.; Miner, J.; Woodward, R.

    2016-12-01

    From 2011 to 2015, IRIS has built or upgraded 67 broadband seismic stations in Alaska and western Canada as part of the EarthScope Transportable Array (TA) program. An additional 72 stations will be completed by the fall of 2016. Nearly all use new posthole seismometers, emplaced at 3 m depth in cased holes within fractured bedrock outcrops, permafrost, or soil. Based on initial tests in Alaska, New Mexico, and California, this emplacement technique was chosen to streamline logistics in challenging, remote conditions as well as optimize station performance. A versatile drill capable of operating with a hammer bit or auger was developed specifically for the TA and is light enough to be transported by helicopter in a single load. The drilling system is ideal for TA deployment logistics in Alaska, but could be adapted to many regional or permanent network operations because it is easily transported on a flatbed truck and manuevered into tight working locations. The TA will complete another 73 installations in 2017 and operate the full network of 268 real-time stations through at least 2019. The removal of some TA stations is planned for 2020, but upgrades to existing stations are permanent contributions to these networks. The TA stations are a proof of concept for a new approach to emplacement of seismometers across a large network and will enable high-quality scientific research as well as advances in hazard monitoring. To evaluate the new and upgraded stations, we use probability density functions of hourly power spectral density computed by the IRIS DMC MUSTANG metric service for the continuous data recorded through 2016. Our results show that the noise performance of TA postholes in Alaska and Canada show significant improvement over the tank vaults of the lower-48 TA. With an ideal posthole drilled into bedrock or permafrost, noise levels can approach the quality of GSN stations particularly on the horizontal channels at long periods [>70 seconds]. Stations also

  2. Noise suppression in surface microseismic data by τ-p transform

    Science.gov (United States)

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael

    2013-01-01

    Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.

  3. On the relationship between wheel and rail surface roughness and rolling noise

    NARCIS (Netherlands)

    Thompson, D.J.

    1996-01-01

    Theoretical models linking rolling noise and surface roughness have been available for some 20 years. For even longer, the qualitative link has been acknowledged between the presence of visible corrugation on rail or wheel surfaces and increased noise generation. This roughness, or undulation in the

  4. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    Science.gov (United States)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  5. 29 CFR 1926.902 - Surface transportation of explosives.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Surface transportation of explosives. 1926.902 Section 1926... Explosives § 1926.902 Surface transportation of explosives. (a) Transportation of explosives shall meet the... Carriers. (b) Motor vehicles or conveyances transporting explosives shall only be driven by, and be in the...

  6. RESEARCH ON DISTURBED MECHANISM OF THERMAL NOISES OF THE SURFACE IN ABRUPT GEOTHERMAL ANOMALY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Geothermal anomaly as a physical phenomenon of an active and latent volcanic area would be well recognized, and abrupt geothermal anomaly should also be understood. However, in practical work, thermal infrared remote sensing techniques are frequently used to monitor geothermal flows of the earth. But then, except for this type of thermal source in the surface thermal field, there still exist a lot of noises in the area where the abrupt geothermal anomaly is generated. By Analyzing the reason, we find that it is brought about by the non-boundless projectioncharacteristics of objects.These noises may be divided into two classes: system noises and random noises. If disturbednoises have comparative stable time sequence law and space sequence law, the noises are called system noises. And because system noises have a certain law, it is easy toremove the noises. On the contrary, if disturbed noises have not law oftime sequence and space sequence, the noises are called random noises. The random noises have the character of non-linearity, uncertainty and indeterminism. For this case, this paper discusses the disturbed mechanism of these noises as well as how to remove them.

  7. Review of measured vibration and noise environments experienced by passengers in aircraft and in ground transportation systems

    Science.gov (United States)

    Stephens, D. G.

    1975-01-01

    Measured vibration and interior noise data are presented for a number of air and surface vehicles. Consideration is given to the importance of direction effects; of vehicle operations such as take-off, cruise, and landing; and of measurement location on the level and frequency of the measurements. Various physical measurement units or descriptors are used to quantify and compare the data. Results suggest the range of vibration and noise associated with a particular mode of transportation and illustrate the comparative levels in terms of each of the descriptors. Collectively, the results form a data base which may be useful in assessing the ride of existing or future systems relative to vehicles in current operation.

  8. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    Science.gov (United States)

    Podboy, Gary

    2012-01-01

    Subsonic jets are relatively simple. The peak noise source location gradually moves upstream toward the nozzle as frequency increases. 2) Supersonic jets are more complicated. The peak noise source location moves downstream as frequency increases through a BBSN hump. 3) In both subsonic and supersonic jets the peak noise source location corresponding to a given frequency of noise moves downstream as jet Mach number increases. 4) The noise generated at a given frequency in a BBSN hump is generated by a small number of shocks, not from all the shocks at the same time. 5) Single microphone spectrum levels decrease when the noise source locations measured with the phased array are blocked by a shielding surface. This consistency validates the phased array data and the stationary monopole source model used to process it. 6) Reflecting surface data illustrate that the law of reflection must be satisfied for noise to reflect off a surface toward an observer. Depending on the relative locations of the jet, the surface and the observer only some of the jet noise sources may satisfy this requirement. 7) The low frequency noise created when a jet flow impinges on a surface comes primarily from the trailing edge regardless of the axial extent impacted by the flow.

  9. Detection of three-dimensional surfaces from optic flow: the effects of noise.

    Science.gov (United States)

    Andersen, G J; Wuestefeld, A P

    1993-09-01

    Previous research (Andersen, 1989) has suggested that the recovery of 3-D shape from nonsmooth optic flow (motion transparency) can be performed by segregating surfaces according to the distributions of velocities present in the flow field. Five experiments were conducted to examine this hypothesis in a surface detection paradigm and to determine the limitations of human observers to detect 3-D surfaces in the presence of noise. Two display types were examined: a flow field that simulated a surface corrugated in depth and a flow field that simulated a random volume. In addition, two types of noise were examined: a distribution of noise velocities that overlapped or did not overlap the velocity distribution that defined the surface. Corrugation frequency and surface density were also examined. Detection performance increased with decreasing corrugation frequency, decreasing noise density, and decreasing surface density. Overall, the subjects demonstrated remarkable tolerance to the presence of noise and, for some conditions, could discriminate surface from random conditions when noise density was twice the surface density. Discrimination accuracy was greater for the nonoverlapping than for the overlapping noise, providing support for an analysis based on the distribution of velocities.

  10. Optimum Climb to Cruise Noise Trajectories for the High Speed Civil Transport

    Science.gov (United States)

    Berton, Jeffrey J.

    2003-01-01

    By entraining large quantities of ambient air into advanced ejector nozzles, the jet noise of the proposed High Speed Civil Transport (HSCT) is expected to be reduced to levels acceptable for airport-vicinity noise certification. Away from the airport, however, this entrained air is shut off and the engines are powered up from their cutback levels to provide better thrust for the climb to cruise altitude. Unsuppressed jet noise levels propagating to the ground far from the airport are expected to be high. Complicating this problem is the HSCT's relative noise level with respect to the subsonic commercial fleet of 2010, which is expected to be much quieter than it is today after the retirement of older, louder, domestic stage II aircraft by the year 2000. In this study, the classic energy state approximation theory is extended to calculate trajectories that minimize the climb to cruise noise of the HSCT. The optimizer dynamically chooses the optimal altitude velocity trajectory, the engine power setting, and whether the ejector should be stowed or deployed with respect to practical aircraft climb constraints and noise limits.

  11. Surface Wave Attenuation in the Tibetan Plateau from Ambient Noise

    Science.gov (United States)

    2015-08-31

    points that are kept and points that are windowed out. 2) Select a window length for ATF. 3) Calculus RMS amplitude of ALL traces for that time window...and site factors from ambient noise, C. R. Geoscience, 343, pp. 615-622, doi :10.1016/j.crte.2011.07.001, 2011. Weaver, R.L., On the retrieval of...attenuation and site amplifications from ambient noise on linear arrays: further numerical simulations, Geophys. J. Int., 193, 3, pp. 1644-1657, DOI

  12. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  13. A Noise and Emissions Assessment of the N3-X Transport

    Science.gov (United States)

    Berton, Jeffrey J.; Haller, William J.

    2014-01-01

    Analytical predictions of certification noise and exhaust emissions for NASA's N3-X - a notional, hybrid wingbody airplane - are presented in this paper. The N3-X is a 300-passenger concept transport propelled by an array of fans distributed spanwise near the trailing edge of the wingbody. These fans are driven by electric motors deriving power from twin generators driven by turboshaft engines. Turboelectric distributed hybrid propulsion has the potential to dramatically increase the propulsive efficiency of aircraft. The noise and exhaust emission estimates presented here are generated using NASA's conceptual design systems analysis tools with several key modifications to accommodate this unconventional architecture. These tools predict certification noise and the emissions of oxides of nitrogen by leveraging data generated from a recent analysis of the N3-X propulsion system.

  14. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Science.gov (United States)

    Shi, Pengqin; Hu, Menghan; Ying, Yaofeng; Jin, Jinshuang

    2016-09-01

    Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  15. Blood pressure of urban school children in relation to road-traffic noise, traffic density and presence of public transport.

    Science.gov (United States)

    Paunovic, Katarina; Belojevic, Goran; Jakovljevic, Branko

    2013-01-01

    The aim of the study was to investigate the relationship between noise levels, traffic density and the presence of public transport and children's blood pressure. Another aim was to assess the applicability of public transport as a proxy indicator of noise exposure. A cross-sectional study involved 1113 children aged 7-11 years from a central municipality in Belgrade. Equivalent noise levels were measured in front of all schools and in the middle of all streets. Traffic density was defined as number of light and heavy vehicles per hour. The number of public transport vehicles was calculated from official timetables. Children's addresses were matched with noise levels and transport maps. A physician measured blood pressure with the sphygmomanometer. Children attending schools with public transport running nearby had by 1.3 mmHg higher systolic pressure than did children from schools without public transport. This relationship was independent from children's age, gender, and body mass index, family history of hypertension, some dwelling characteristics, and lifestyle habits. The association between diastolic pressure and public transport was statistically insignificant. The study indicated a possible positive association between the presence of public transport in the vicinity of schools with systolic blood pressure in 7-11 year-old schoolchildren. The presence of public transport may serve as an auxiliary indicator of noise exposure in undeveloped countries with limited capacities for noise measurement or modeling.

  16. Jet-Surface Interaction Noise from High-Aspect Ratio Nozzles: Test Summary

    Science.gov (United States)

    Brown, Clifford; Podboy, Gary

    2017-01-01

    Noise and flow data have been acquired for a 16:1 aspect ratio rectangular nozzle exhausting near a simple surface at the NASA Glenn Research Center as part of an ongoing effort to understand, model, and predict the noise produced by current and future concept aircraft employing a tightly integrated engine airframe designs. The particular concept under consideration in this experiment is a blended-wing-body airframe powered by a series of electric fans exhausting through slot nozzle over an aft deck. The exhaust Mach number and surface length were parametrically varied during the test. Far-field noise data were acquired for all nozzle surface geometries and exhaust flow conditions. Phased-array noise source localization data and in-flow pressure data were also acquired for a subset of the isolated (no surface) and surface configurations; these measurements provide data that have proven useful for modeling the jet-surface interaction noise source and the surface effect on the jet-mixing noise in round jets. A summary of the nozzle surface geometry, flow conditions tested, and data collected are presented.

  17. Characterizing Surface Transport Barriers in the South China Sea

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Characterizing Surface Transport Barriers in the South...in mathematical methods for detecting key Lagrangian transport structures in velocity field data sets for spatially complex, time- dependent, ocean...surface flows. Such transport structures are typically not inherently obvious in snapshots of the Eulerian velocity field and require analysis

  18. Ambient Noise and Surface Wave Dissipation in the Ocean

    Science.gov (United States)

    1993-06-21

    movie camem snhozed with the soundtrack , Bmane & Cato (1988) 3 found that the noise bunst detected by a hydrophone cm.rVonded to the bubble formation at...I where 0 is the solid angle, B(G) is the beam pattem of the hydrophone and S(Q) is the sound source pattern. 3 I 202 Visa, - - - - - - - - - - film

  19. Highly-efficient noise-assisted energy transport in classical oscillator systems

    CERN Document Server

    León-Montiel, R de J

    2013-01-01

    Photosynthesis is a biological process that involves the highly-efficient transport of energy captured from the sun to a reaction center, where conversion into useful biochemical energy takes place. Even though one can always use a quantum perspective to describe any physical process, since everything follows the laws of Quantum Mechanics, is the use of quantum theory imperative to explain this high efficiency? Several theoretical studies suggest that the high efficiency can only be understood as a result of the interplay between the quantum coherent evolution of the photosynthetic system, and noise introduced by its surrounding environment. Notwithstanding, we show here that noise-assisted highly-efficient energy transport can be found as well in purely classical systems; therefore, we might conclude that high efficiency energy transfer in photosynthetic systems could also be anticipated by classical models, without the need to resorting to quantum effects. Strikingly, the wider scope of applicability of the...

  20. Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect

    Science.gov (United States)

    Schumer, Rina; Taloni, Alessandro; Furbish, David Jon

    2017-03-01

    Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.

  1. Ambient Noise Surface Wave Tomography for Geotechnical Monitoring Using "Large N" Distributed Acoustic Sensing

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Martin, E. R.; Wagner, A. M.; Robertson, M.; Bjella, K.; Gelvin, A.; Ulrich, C.; Wu, Y.; Freifeld, B. M.; Daley, T. M.; Dou, S.

    2015-12-01

    Surface wave tomography using ambient noise sources has found broad application at the regional scale but has not been adopted fully for geotechnical applications despite the abundance of noise sources in this context. The recent development of Distributed Acoustic Sensing (DAS) provides a clear path for inexpensively recording high spatial resolution (survey as well as direct-push data on ice content. We also compare vintages of ambient noise DAS data to evaluate the short-term repeatability of the technique in the face of changing noise environments. The resulting dataset demonstrates the utility of using DAS for real-time shear-modulus monitoring in support of critical infrastructure.

  2. Minimum Climb to Cruise Noise Trajectories Modeled for the High Speed Civil Transport

    Science.gov (United States)

    Berton, Jeffrey J.

    1998-01-01

    The proposed U.S. High Speed Civil Transport (HSCT) will revolutionize commercial air travel by providing economical supersonic passenger service to destinations worldwide. Unlike the high-bypass turbofan engines that propel today's subsonic airliners, HSCT engines will have much higher jet exhaust speeds. Jet noise, caused by the turbulent mixing of high-speed exhaust with the surrounding air, poses a significant challenge for HSCT engine designers. To resolve this challenge, engineers have designed advanced mixer rejector nozzles that reduce HSCT jet noise to airport noise certification levels by entraining and mixing large quantities of ambient air with the engines' jet streams. Although this works well during the first several minutes of flight, far away from the airport, as the HSCT gains speed and climbs, poor ejector inlet recovery and ejector ram drag contribute to poor thrust, making it advantageous to turn off the ejector. Doing so prematurely, however, can cause unacceptable noise levels to propagate to the ground, even when the aircraft is many miles from the airport. This situation lends itself ideally to optimization, where the aircraft trajectory, throttle setting, and ejector setting can be varied (subject to practical aircraft constraints) to minimize the noise propagated to the ground. A method was developed at the NASA Lewis Research Center that employs a variation of the classic energy state approximation: a trajectory analysis technique historically used to minimize climb time or fuel burned in many aircraft problems. To minimize the noise on the ground at any given throttle setting, high aircraft altitudes are desirable; but the HSCT may either climb quickly to high altitudes using a high, noisy throttle setting or climb more slowly at a lower, quieter throttle setting. An optimizer has been programmed into NASA's existing aircraft and noise analysis codes to balance these options by dynamically choosing the best altitude-velocity path and

  3. Robust active noise control in the loadmaster area of a military transport aircraft.

    Science.gov (United States)

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.

  4. Modeling nonlinear errors in surface electromyography due to baseline noise: a new methodology.

    Science.gov (United States)

    Law, Laura Frey; Krishnan, Chandramouli; Avin, Keith

    2011-01-01

    The surface electromyographic (EMG) signal is often contaminated by some degree of baseline noise. It is customary for scientists to subtract baseline noise from the measured EMG signal prior to further analyses based on the assumption that baseline noise adds linearly to the observed EMG signal. The stochastic nature of both the baseline and EMG signal, however, may invalidate this assumption. Alternately, "true" EMG signals may be either minimally or nonlinearly affected by baseline noise. This information is particularly relevant at low contraction intensities when signal-to-noise ratios (SNR) may be lowest. Thus, the purpose of this simulation study was to investigate the influence of varying levels of baseline noise (approximately 2-40% maximum EMG amplitude) on mean EMG burst amplitude and to assess the best means to account for signal noise. The simulations indicated baseline noise had minimal effects on mean EMG activity for maximum contractions, but increased nonlinearly with increasing noise levels and decreasing signal amplitudes. Thus, the simple baseline noise subtraction resulted in substantial error when estimating mean activity during low intensity EMG bursts. Conversely, correcting EMG signal as a nonlinear function of both baseline and measured signal amplitude provided highly accurate estimates of EMG amplitude. This novel nonlinear error modeling approach has potential implications for EMG signal processing, particularly when assessing co-activation of antagonist muscles or small amplitude contractions where the SNR can be low.

  5. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope.

    Science.gov (United States)

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application.

  6. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    Science.gov (United States)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  7. Sensor Emplacement Techniques and Seismic Noise Analysis for USArray Transportable Array Seismic Stations

    Science.gov (United States)

    Frassetto, A.; Busby, R. W.; Hafner, K.; Woodward, R.; Sauter, A.

    2013-12-01

    In preparation for the upcoming deployment of EarthScope's USArray Transportable Array (TA) in Alaska, the National Science Foundation (NSF) has supported exploratory work on seismic station design, sensor emplacement, and communication concepts appropriate for this challenging high-latitude environment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and in the lower-48 of the U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the weight of the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the state. We will review the methods used for directly emplacing broadband seismometers in comparison to the current methods used for the lower-48 TA. These new methods primarily focus on using a portable drill to make a bored hole three to five meters, beneath the active layer of the permafrost, or by coring 1-2 meters deep into surface bedrock. Both methods are logistically effective in preliminary trials. Subsequent station performance has been assessed quantitatively using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations can sometimes exceed that of the quietest TA stations in the lower-48, particularly horizontal components at long periods. A

  8. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats

    National Research Council Canada - National Science Library

    Castelhano-Carlos, M J; Baumans, V

    2009-01-01

    ... stressor, the animal's wellbeing is threatened. This review article summarizes several published studies on the impact of environmental factors such as light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats...

  9. Symmetry based frequency domain processing to remove harmonic noise from surface nuclear magnetic resonance measurements

    Science.gov (United States)

    Hein, Annette; Larsen, Jakob Juul; Parsekian, Andrew D.

    2017-02-01

    Surface nuclear magnetic resonance (NMR) is a unique geophysical method due to its direct sensitivity to water. A key limitation to overcome is the difficulty of making surface NMR measurements in environments with anthropogenic electromagnetic noise, particularly constant frequency sources such as powerlines. Here we present a method of removing harmonic noise by utilizing frequency domain symmetry of surface NMR signals to reconstruct portions of the spectrum corrupted by frequency-domain noise peaks. This method supplements the existing NMR processing workflow and is applicable after despiking, coherent noise cancellation, and stacking. The symmetry based correction is simple, grounded in mathematical theory describing NMR signals, does not introduce errors into the data set, and requires no prior knowledge about the harmonics. Modelling and field examples show that symmetry based noise removal reduces the effects of harmonics. In one modelling example, symmetry based noise removal improved signal-to-noise ratio in the data by 10 per cent. This improvement had noticeable effects on inversion parameters including water content and the decay constant T2*. Within water content profiles, aquifer boundaries and water content are more accurate after harmonics are removed. Fewer spurious water content spikes appear within aquifers, which is especially useful for resolving multilayered structures. Within T2* profiles, estimates are more accurate after harmonics are removed, especially in the lower half of profiles.

  10. Noise and Vibration Mitigation for Rail Transportation Systems : Proceedings of the 10th International Workshop on RailwayNoise

    CERN Document Server

    Gautier, Pierre-Etienne; Hanson, Carl; Hemsworth, Brian; Nelson, James; Schulte-Werning, Burkhard; Thompson, David; Vos, Paul

    2012-01-01

    This volume contains the contributions to the 10th International Workshop on Railway Noise, held October 18–22, 2010, in Nagahama, Japan, organized by the Railway Technical Research Institute (RTRI), Japan. With 11 sessions and 3 poster sessions, the workshop featured presentations by international leaders in the field of railway noise and vibration. All subjects relating to 1. prospects, legal regulation, and perception; 2. wheel and rail noise; 3. structure-borne noise and squeal noise; 4. ground-borne vibration; 5. aerodynamic noise and micro-pressure waves from tunnel portals; 6. interior noise and sound barriers; and 7. prediction, measurements, and monitoring are addressed here. This book is a useful “state-of-the-art” reference for scientists and engineers involved in solving environmental problems of railways.

  11. Highly Efficient Noise-Assisted Energy Transport in Classical Oscillator Systems

    Science.gov (United States)

    León-Montiel, R. de J.; Torres, Juan P.

    2013-05-01

    Photosynthesis is a biological process that involves the highly efficient transport of energy captured from the Sun to a reaction center, where conversion into useful biochemical energy takes place. Using a quantum description, Rebentrost et al. [New J. Phys. 11, 033003 (2009)] and Plenio and Huelga [New J. Phys. 10, 113019 (2008)] have explained this high efficiency as the result of the interplay between the quantum coherent evolution of the photosynthetic system and noise introduced by its surrounding environment. Even though one can always use a quantum perspective to describe any physical process, since everything follows the laws of quantum mechanics, is the use of quantum theory imperative to explain this high efficiency? Recently, it has been shown by Eisfeld and Briggs [Phys. Rev. E 85, 046118 (2012)] that a purely classical model can be used to explain main aspects of the energy transfer in photosynthetic systems. Using this approach, we demonstrate explicitly here that highly efficient noise-assisted energy transport can be found as well in purely classical systems. The wider scope of applicability of the enhancement of energy transfer assisted by noise might open new ways for developing new technologies aimed at enhancing the efficiency of a myriad of energy transfer systems, from information channels in microelectronic circuits to long-distance high-voltage electrical lines.

  12. Lévy-noise-induced transport in a rough triple-well potential

    Science.gov (United States)

    Li, Yongge; Xu, Yong; Kurths, Jürgen; Yue, Xiaole

    2016-10-01

    Rough energy landscape and noisy environment are two common features in many subjects, such as protein folding. Due to the wide findings of bursting or spiking phenomenon in biology science, small diffusions mixing large jumps are adopted to model the noisy environment that can be properly described by Lévy noise. We combine the Lévy noise with the rough energy landscape, modeled by a potential function superimposed by a fast oscillating function, and study the transport of a particle in a rough triple-well potential excited by Lévy noise, rather than only small perturbations. The probabilities of a particle staying in the middle well are considered under different amplitudes of roughness to find out how roughness affects the steady-state probability density function. Variations in the mean first passage time from the middle well to the right well have been investigated with respect to Lévy parameters and amplitudes of the roughness. In addition, we have examined the influences of roughness on the splitting probabilities of the first escape from the middle well. We uncover that the roughness can enhance significantly the first escape of a particle from the middle well, especially for different skewness parameters, but weak differences are found for stability index and noise intensity on the probabilities a particle staying in the middle well and splitting probability to the right.

  13. Correlation of Low-Frequency Noise to the Dynamic Properties of the Sensing Surface in Electrolytes.

    Science.gov (United States)

    Zhang, Da; Solomon, Paul; Zhang, Shi-Li; Zhang, Zhen

    2017-08-25

    Low-frequency noise (LFN) is of significant implications in ion sensing. As a primary component of LFN for ion sensing in electrolytes, the solid/liquid interfacial noise remains poorly explored especially regarding its relation to the surface binding/debinding dynamic properties. Here, we employ impedance spectroscopy to systematically characterize this specific noise component for its correlation to the dynamic properties of surface protonation (i.e., hydrogen binding) and deprotonation (i.e., hydrogen debinding) processes. This correlation is facilitated by applying our recently developed interfacial impedance model to ultrathin TiO2 layers grown by means of atomic layer deposition (ALD) on a TiN metallic electrode. With an excellent fitting of the measured noise power density spectra by the model for the studied TiO2 layers, we are able to extract several characteristic dynamic parameters for the TiO2 sensing surface. The observed increase of noise with TiO2 ALD cycles can be well accounted for with an increased average binding site density. This study provides insights into how detailed surface properties may affect the noise performance of an ion sensor operating in electrolytes.

  14. Transport, shot noise, and topology in AC-driven dimer arrays

    Science.gov (United States)

    Niklas, Michael; Benito, Mónica; Kohler, Sigmund; Platero, Gloria

    2016-11-01

    We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.

  15. Transport, shot noise, and topology in AC-driven dimer arrays.

    Science.gov (United States)

    Niklas, Michael; Benito, Mónica; Kohler, Sigmund; Platero, Gloria

    2016-11-11

    We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.

  16. Investigation of surface magnetic noise by shallow spins in diamond.

    Science.gov (United States)

    Rosskopf, T; Dussaux, A; Ohashi, K; Loretz, M; Schirhagl, R; Watanabe, H; Shikata, S; Itoh, K M; Degen, C L

    2014-04-11

    We present measurements of spin relaxation times (T1, T1ρ, T2) on very shallow (≲5  nm) nitrogen-vacancy centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30 times compared to bulk values, indicating the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01-0.1μB/nm2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples and chemical surface terminations. A low temperature measurement further confirms that fluctuations are thermally activated. The data support the atomistic picture where impurities are associated with the top carbon layers, and not with terminating surface atoms or adsorbate molecules. The low spin density implies that the presence of a single surface impurity is sufficient to cause spin relaxation of a shallow nitrogen-vacancy center.

  17. Appearance of Spatial-Temporal Noise in Super-conducting Junction and Its Effect on Transport of Electron Pairs

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Hui

    2007-01-01

    Transport of electron pairs in super-conducting junction with spatial-temporal noise is investigated.We show that the spatial-temporal noise can produce the current of the electron pairs,which stems from a symmetry breaking of the system induced by the correlation of the spatial-temporal noise with the phase difference.It is found that there is a positive current for the electron pairs,exhibiting a peak with increasing the values of some parameters of the noises.The results provide a theoretical foundation for the further investigation of the super-conducting junction.

  18. Stochastic resonance in surface catalytic oxidation of carbon monoxide induced by colored noise

    Institute of Scientific and Technical Information of China (English)

    GONG Yubing; HOU Zhonghuai; XIN Houwen

    2004-01-01

    The dynamical behavior of surface catalytic oxidation reaction of Pt(110)/CO+O2modulated by colored noise, under the condition of specific temperature, has been investigated when the partial pressure of CO gas is near the supercritical Hopf bifurcation point. By computer simulation the oscillation and stochastic resonance induced by colored noise are observed. The influences of the intensity and correlation time of colored noise on stochastic resonance are discussed. The range of sensitivity of the system to the environmental fluctuation is analyzed.

  19. Lagrangian Transport Through Surfaces in Volume-Preserving Flows

    CERN Document Server

    Karrasch, Daniel

    2015-01-01

    Advective transport of scalar quantities through surfaces is of fundamental importance in many scientific applications. From the Eulerian perspective of the surface it can be quantified by the well-known integral of the flux density. The recent development of highly accurate semi-Lagrangian methods for solving scalar conservation laws and of Lagrangian approaches to coherent structures in turbulent (geophysical) fluid flows necessitate a new approach to transport from the (Lagrangian) material perspective. We present a Lagrangian framework for calculating transport of conserved quantities through a given surface in $n$-dimensional, fully aperiodic, volume-preserving flows. Our approach does not involve any dynamical assumptions on the surface or its boundary.

  20. 76 FR 50312 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Science.gov (United States)

    2011-08-12

    ... transportation safety planning strategies for surface transportation systems and improvements; (5) Improving... Federal Highway Administration Surface Transportation Environment and Planning Cooperative Research...-LU) established the Surface Transportation Environment and Planning Cooperative Research Program...

  1. Investigation of Surface Magnetic Noise by Shallow Spins in Diamond

    OpenAIRE

    2014-01-01

    We present measurements of spin relaxation times (T1, T1ρ, T2) on very shallow (≲5  nm) nitrogen-vacancy centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30 times compared to bulk values, indicating the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01–0.1μB/nm2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples and chemical...

  2. Surface wave tomography of Europe from ambient seismic noise

    Science.gov (United States)

    Lu, Yang; Stehly, Laurent; Paul, Anne

    2017-04-01

    We present a European scale high-resolution 3-D shear wave velocity model derived from ambient seismic noise tomography. In this study, we collect 4 years of continuous seismic recordings from 1293 stations across much of the European region (10˚W-35˚E, 30˚N-75˚N), which yields more than 0.8 million virtual station pairs. This data set compiles records from 67 seismic networks, both permanent and temporary from the EIDA (European Integrated Data Archive). Rayleigh wave group velocity are measured at each station pair using the multiple-filter analysis technique. Group velocity maps are estimated through a linearized tomographic inversion algorithm at period from 5s to 100s. Adaptive parameterization is used to accommodate heterogeneity in data coverage. We then apply a two-step data-driven inversion method to obtain the shear wave velocity model. The two steps refer to a Monte Carlo inversion to build the starting model, followed by a linearized inversion for further improvement. Finally, Moho depth (and its uncertainty) are determined over most of our study region by identifying and analysing sharp velocity discontinuities (and sharpness). The resulting velocity model shows good agreement with main geological features and previous geophyical studies. Moho depth coincides well with that obtained from active seismic experiments. A focus on the Greater Alpine region (covered by the AlpArray seismic network) displays a clear crustal thinning that follows the arcuate shape of the Alps from the southern French Massif Central to southern Germany.

  3. Nonlinear Transport In Gases, Traps And Surfaces

    Science.gov (United States)

    Šuvakov, M.; Marjanovic, S.

    2010-07-01

    We will present our numerical study of three different charge transport processes and we will compare properties, specially the nonlinearity, of these processes. First process is electron transport in gases in swarm regime. We used well tested Monte Carlo techique to investigate kinetic phenomena such as negative diferencial conductivity (NDC) or negative apsolute mobility (NAM). We explain these phenomena analysing the spatial profiles of the swarm and collision events. In the second part we will apply the same technique on positron transport to obtain the same level of understanding of positron transport as has been achieved for electrons. The influence of positronium formation, non-conservative process, is much larger than any comparable effects in electron transport due to attachment and/or ionisation. As a result several new phenomena have been observed, such as NDC for the bulk drift velocity. Additionaly, the same Monte Carlo technique is used for modeling and optimisation of Surko like positron traps in different geometries and field configurations. Third process we studied is the charge transport under voltage bias via single-electron tunnelings through the junctions between metallic particles on nanoparticle films. We show how the regular nanoparticle array and topologically inhomogeneous nanonetworks affect the charge transport. We find long-range correlations in the time series of charge fluctuation at individual nanoparticles and of flow along the junctions within the network. These correlations explain the occurrence of a large non-linearity in the simulated and experimentally measured current-voltage characteristics and non-Gaussian fluctuations of the current at the electrode.

  4. An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects

    Science.gov (United States)

    Brown, Cliff

    2015-01-01

    An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.

  5. Proper orthogonal decomposition and wavelet methods for noise reduction in particle-based transport calculations

    Science.gov (United States)

    Nguyen van Ye, Romain; Del-Castillo-Negrete, Diego; Spong, D.; Hirshman, S.; Farge, M.

    2008-11-01

    A limitation of particle-based transport calculations is the noise due to limited statistical sampling. Thus, a key element for the success of these calculations is the development of efficient denoising methods. Here we discuss denoising techniques based on Proper Orthogonal Decomposition (POD) and Wavelet Decomposition (WD). The goal is the reconstruction of smooth (denoised) particle distribution functions from discrete particle data obtained from Monte Carlo simulations. In 2-D, the POD method is based on low rank truncations of the singular value decomposition of the data. For 3-D we propose the use of a generalized low rank approximation of matrices technique. The WD denoising is based on the thresholding of empirical wavelet coefficients [Donoho et al., 1996]. The methods are illustrated and tested with Monte-Carlo particle simulation data of plasma collisional relaxation including pitch angle and energy scattering. As an application we consider guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. The proposed noise reduction methods allow to achieve high levels of smoothness in the particle distribution function using significantly less particles in the computations.

  6. Oil droplet self-transportation on oleophobic surfaces

    Science.gov (United States)

    Li, Juan; Qin, Qi Hang; Shah, Ali; Ras, Robin H. A.; Tian, Xuelin; Jokinen, Ville

    2016-01-01

    Directional liquid transportation is important for a variety of biological processes and technical applications. Although surface engineering through asymmetric chemical modification or geometrical patterning facilitates effective liquid manipulation and enables water droplet self-transportation on synthetic surfaces, self-transportation of oil droplets poses a major challenge because of their low surface tension. We report oil droplet self-transportation on oleophobic surfaces that are microtextured with radial arrays of undercut stripes. More significantly, we observe three modes of oil motion on various sample surfaces, namely, inward transportation, pinned, and outward spreading, which can be switched by the structure parameters, including stripe intersection angle and width. Accompanying theoretical modeling provides an in-depth mechanistic understanding of the structure–droplet motion relationship. Finally, we reveal how to optimize the texture parameters to maximize oil droplet self-transportation capability and demonstrate spontaneous droplet movement for liquids down to a surface tension of 22.4 mN/m. The surfaces presented here open up new avenues for power-free liquid transportation and oil contamination self-removal applications in various analytical and fluidic devices. PMID:27386574

  7. Development of a quantitative methodology to assess the impacts of urban transport interventions and related noise on well-being.

    Science.gov (United States)

    Braubach, Matthias; Tobollik, Myriam; Mudu, Pierpaolo; Hiscock, Rosemary; Chapizanis, Dimitris; Sarigiannis, Denis A; Keuken, Menno; Perez, Laura; Martuzzi, Marco

    2015-05-26

    Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU) project "Urban Reduction of Greenhouse Gas Emissions in China and Europe" (URGENCHE) explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki) linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution.

  8. Jet transport noise - A comparison of predicted and measured noise for ILS and two-segment approaches

    Science.gov (United States)

    White, K. C.; Bourquin, K. R.

    1974-01-01

    Centerline noise measured during standard ILS and two-segment approaches in DC-8-61 aircraft were compared with noise predicted for these procedures using an existing noise prediction technique. Measured data is considered to be in good agreement with predicted data. Ninety EPNdB sideline locations were calculated from flight data obtained during two-segment approaches and were compared with predicted 90 EPNdB contours that were computed using three different models for excess ground attenuation and a contour with no correction for ground attenuation. The contour not corrected for ground attenuation was in better agreement with the measured data.

  9. Understanding Astrophysical Noise from Stellar Surface Magneto-Convection

    CERN Document Server

    Cegla, H M; Shelyag, S; Mathioudakis, M

    2014-01-01

    To obtain cm/s precision, stellar surface magneto-convection must be disentangled from observed radial velocities (RVs). In order to understand and remove the convective signature, we create Sun-as-a-star model observations based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star model observations, we find several line characteristics are correlated with the induced RV shifts. The aim of this campaign is to feed directly into future high precision RV studies, such as the search for habitable, rocky worlds, with forthcoming spectrographs such as ESPRESSO.

  10. Comparison of alternative concepts for lunar surface transportation

    Science.gov (United States)

    Apel, Uwe

    The lunar surface transportation system is a key element in lunar development. The decision which means of conveyance should be preferred depends on a lot of influencing factors such as transportation requirements, physical boundary conditions and economics. Starting with a systematic approach to define and structure the problem, a model to compare alternative transportation systems has been built. From the pool of possible means of conveyance, chemical rockets, electric cars, maglev-trains and mass-drivers have been chosen as candidates for investigation. With these candidates five different surface transportation systems were defined. For a reference lunar development scenario the systems were compared on the basis of a cost-to-benefit ratio. Preliminary results indicate that under the assumption that LH2 could be produced on lunar surface, LOX/LH2 propulsed "Hoppers" seem very attractive up to medium transportation demands. For large amounts of bulk cargo, mass driver transportation seems to have advantages, and electric cars should be used for all transportation tasks if the transportation demand is high. Maglev-trains seem to be competitive only for very large transportation demand and long life cycles.

  11. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient a...

  12. A semi-empirical airfoil stall noise model based on surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2017-01-01

    This work is concerned with the experimental study of airfoil stall and the modelling of stall noise. Using pressure taps and high-frequency surface pressure microphones flush-mounted on airfoils measured in wind tunnels and on an operating wind turbine blade, the characteristics of stall are ana...

  13. Borehole cylindrical noise during hole-surface and hole-hole resistivity measurements

    Science.gov (United States)

    Osiensky, James L.; Nimmer, Robin; Binley, Andrew M.

    2004-04-01

    Drilled boreholes generally are the only feasible means to access the subsurface for the emplacement of downhole electrodes for most hole-hole and hole-surface resistivity experiments. However, the very existence of the borehole itself creates the potential for significant noise due to the inevitable conductivity contrast that develops between the borehole walls and the formation. Borehole cylindrical noise develops whenever a current source is placed in a drilled borehole. Borehole geometries may range from nearly perfect cylinders to highly, irregular, rugose holes in consolidated rock, to relatively minor, collapsed, disturbed zones in caving sediments. Boreholes in non-caving formations generally are filled with artificial, conductive materials to afford crucial, electrical continuity between downhole electrodes and the borehole walls. Filled boreholes form cylindrically shaped heterogeneities that create significant noise due to preferential current flow up and down the conductive columns. Selected conditions are simulated with a finite difference model to illustrate the significance of borehole cylindrical noise on hole-hole and hole-surface mise-à-la-masse electrical potentials near a current electrode. Mise-à-la-masse electrical potentials measured during a field tracer experiment also are presented. These measurements are used to illustrate significant errors may develop in the interpretation of apparent resistivity estimates out to a distance of several meters from the current source if borehole cylindrical noise is not recognized and accounted for in the analysis of electrical potential data.

  14. A semiconductor device noise model: integration of Poisson type stochastic ohmic contact conditions with semiclassical transport

    Science.gov (United States)

    Noaman, B. A.; Korman, C. E.; Piazza, A. J.

    2007-06-01

    In this paper we show an approach to couple two stochastic processes to describe the dynamics of independent carriers in semiconductor devices: the launch time of carriers from the contacts is described by independent Poisson launch processes, and the stochastic motion of carriers due to scattering inside the device is described by inhomogeneous Poisson type Markov processes according to the semiclassical transport theory. The coupling of the Poisson type stochastic launch process to the semiclassical dynamics will be shown, and the resulting Ohmic contact boundary conditions will be derived. For proof of concept, an expression for the autocovariance for terminal current noise for one point contact will be shown which can be easily extended to a real semiconductor device with multiple contacts.

  15. Surface-micromachined 1MHz oscillator with low-noise Pierce configuration

    Energy Technology Data Exchange (ETDEWEB)

    Roessig, T.A.; Howe, R.T.; Pisano, A.P. [Univ. of California, Berkeley, CA (United States); Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States)

    1998-06-01

    A prototype high frequency tuning fork oscillator has been fabricated and tested in an integrated surface micromachining technology. The amplifier circuitry uses a capacitive current detection method, which offers superior noise performance over previous resistive methods. The prototype device has an output frequency of 1.022 MHz and exhibits a noise floor of {minus}88 dBc/Hz at a distance of 500 Hz from the carrier. The dominant source of frequency instability is the nonlinearity introduced by the use of parallel plate actuation.

  16. Vertical Transport of Subwavelength Localized Surface Electromagnetic Modes

    CERN Document Server

    Gao, Fei; Zhang, Youming; Shi, Xihang; Yang, Zhaoju; Zhang, Baile

    2015-01-01

    Transport of subwavelength electromagnetic (EM) energy has been achieved through near-field coupling of highly confined surface EM modes supported by plasmonic nanoparticles, in a configuration usually staying on a two-dimensional (2D) substrate. Vertical transport of similar modes along the third dimension, on the other hand, can bring more flexibility in designs of functional photonic devices, but this phenomenon has not been observed in reality. In this paper, designer (or spoof) surface plasmon resonators (plasmonic meta-atoms) are stacked in the direction vertical to their individual planes in demonstrating vertical transport of subwavelength localized surface EM modes. Dispersion relation of this vertical transport is determined from coupled mode theory and is verified with near-field transmission spectrum and field mapping with a microwave near-field scanning stage. This work extends the near-field coupled resonator optical waveguide (CROW) theory into the vertical direction, and may find applications ...

  17. Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations

    Science.gov (United States)

    Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael

    2014-01-01

    Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.

  18. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  19. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  20. Theoretical signal-to-noise ratio of a slotted surface coil for magnetic resonance imaging

    CERN Document Server

    Ocegueda, K; Solis, S E; Rodriguez, A O

    2011-01-01

    The analytical expression for the signal-to-noise ratio of a slotted surface coil with an arbitrary number of slots was derived using the quasi-static approach. This surface coil based on the vane-type magnetron tube. To study the coil perfomance, the theoretical signal-to-noise ratio predictions of this coil design were computed using a different number of slots. Results were also compared with theoretical results obtained for a circular coil with similar dimensions. It can be appreciated that slotted surface coil performance improves as the number of coils increases and, outperformed the circular-shaped coil. This makes it a good candidate for other MRI applications involving coil array techniques.

  1. Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project

    Science.gov (United States)

    Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton

    2017-01-01

    The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.

  2. Studying Polymer Transport on Soft and Hard Surfaces

    Science.gov (United States)

    Kumar, Sanat

    2007-03-01

    We have employed experiments and simulations to understand the factors controlling the transport of polymers on surfaces. From an experimental viewpoint we have focused on the transport of DNA (single stranded) on lipid bilayers. We show that this behavior is slaved to the mobility of the lipids. More surprisingly, it appears that the transport of molecules adsorbed on surfaces follows the same dependence on lipid mobility as for molecules incorporated into the lipid layer. The ability to control this surface diffusion through the introduction of posts or varying the strength of adsorption (by the use of an AC field normal to the surfaces) will also be studied. Theoretically we have used molecular dynamics simulations of a polymer chain of length N dissolved in explicit solvent and adsorbed as a pancake at the solid-liquid interface to discriminate between respective influences on surface diffusion of hydrodynamics and adsorption energetics. Only for analytically-smooth surfaces do we observe a strong influence of hydrodynamics; the polymer lateral diffusion constant, D, scales as D 1/N^3/4, more weakly than for implicit solvent. For atomistic surface corrugation with uniform surface chemical makeup, D 1/N instead. This suggests that while we can understand the results for diffusion on lipid surfaces, more recent experimental observations of stronger N dependence for diffusion on hard solid surfaces originate not in hydrodynamic interactions but in spatially patchy energetic interactions.

  3. Noise generation in the solid Earth, oceans, and atmosphere, from non-linear interacting surface gravity waves in finite depth

    CERN Document Server

    Ardhuin, Fabrice

    2012-01-01

    Oceanic observations, even in very deep water, and atmospheric pressure or seismic records, from anywhere on Earth, contain noise with dominant periods between 3 and 10 seconds, that can be related to surface gravity waves in the oceans. This noise is consistent with a dominant source explained by a nonlinear wave-wave interaction mechanism, and takes the form of surface gravity waves, acoustic or seismic waves. Previous theoretical works on seismic noise focused on surface (Rayleigh) waves, and did not consider finite depth effects on the generating wave kinematics. These finite depth effects are introduced here, which requires the consideration of the direct wave-induced pressure at the ocean bottom, a contribution previously overlooked in the context of seismic noise. That contribution can lead to a considerable reduction of the seismic noise source, which is particularly relevant for noise periods larger than 10 s. The theory is applied to acoustic waves in the atmosphere, extending previous theories that...

  4. Transport and noise properties of a normal metal-superconductor-normal metal junction with mixed singlet and chiral triplet pairings

    Science.gov (United States)

    Paul, Ganesh C.; Dutta, Paramita; Saha, Arijit

    2017-01-01

    We study transport and zero frequency shot noise properties of a normal metal-superconductor-normal metal (NSN) junction, with the superconductor having mixed singlet and chiral triplet pairings. We show that in the subgapped regime when the chiral triplet pairing amplitude dominates over that of the singlet, a resonance phenomena emerges out at zero energy where all the quantum mechanical scattering probabilities acquire a value of 0.25. At the resonance, crossed Andreev reflection mediating through such junction, acquires a zero energy peak. This reflects as a zero energy peak in the conductance as well depending on the doping concentration. We also investigate shot noise for this system and show that shot noise cross-correlation is negative in the subgapped regime when the triplet pairing dominates over the singlet one. The latter is in sharp contrast to the positive shot noise obtained when the singlet pairing is the dominating one.

  5. Do Aging and Tactile Noise Stimulation Affect Responses to Support Surface Translations in Healthy Adults?

    Directory of Open Access Journals (Sweden)

    Marius Dettmer

    2016-01-01

    Full Text Available Appropriate neuromuscular responses to support surface perturbations are crucial to prevent falls, but aging-related anatomical and physiological changes affect the appropriateness and efficiency of such responses. Low-level noise application to sensory receptors has shown to be effective for postural improvement in a variety of different balance tasks, but it is unknown whether this intervention may have value for improvement of corrective postural responses. Ten healthy younger and ten healthy older adults were exposed to sudden backward translations of the support surface. Low-level noise (mechanical vibration to the foot soles was added during random trials and temporal (response latency and spatial characteristics (maximum center-of-pressure excursion and anterior-posterior path length of postural responses were assessed. Mixed-model ANOVA was applied for analysis of postural response differences based on age and vibration condition. Age affected postural response characteristics, but older adults were well able to maintain balance when exposed to a postural perturbation. Low-level noise application did not affect any postural outcomes. Healthy aging affects some specific measures of postural stability, and in high-functioning older individuals, a low-level noise intervention may not be valuable. More research is needed to investigate if recurring fallers and neuropathy patients could benefit from the intervention in postural perturbation tasks.

  6. A semi-empirical airfoil stall noise model based on surface pressure measurements

    Science.gov (United States)

    Bertagnolio, Franck; Madsen, Helge Aa.; Fischer, Andreas; Bak, Christian

    2017-01-01

    This work is concerned with the experimental study of airfoil stall and the modelling of stall noise. Using pressure taps and high-frequency surface pressure microphones flush-mounted on airfoils measured in wind tunnels and on an operating wind turbine blade, the characteristics of stall are analyzed. This study shows that the main quantities of interest, namely convection velocity, spatial correlation and surface pressure spectra, can be scaled highlighting the universal nature of stall independently of airfoil shapes and flow conditions, although within a certain range of experimental conditions. Two main regimes for the scaling of the correlation lengths and the surface pressure spectra, depending on the Reynolds number of the flow, can be distinguished. These results are used to develop a model for the surface pressure spectra within the detached flow region valid for Reynolds numbers ranging from 1 ×106 to 6 ×106. Subsequently, this model is used to derive a model for stall noise. Modelled noise spectra are compared with experimental data measured in anechoic wind tunnels with reasonably satisfactory agreement.

  7. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  8. Spatial distribution of the intensity noise of a vertical-cavity surface-emitting semiconductor laser.

    Science.gov (United States)

    Bramati, A; Hermier, J P; Khoury, A Z; Giacobino, E; Schnitzer, P; Michalzik, R; Ebeling, K J; Poizat, J P; Grangier, P

    1999-07-01

    We studied anticorrelated quantum fluctuations between the TEM(00) and the TEM(01) transverse modes of a vertical-cavity surface-emitting semiconductor laser by measuring the transverse spatial distribution of the laser beam intensity noise. Our experimental results are found to be in good agreement with the predictions of a phenomenological model that accounts for quantum correlations between transverse modes in a light beam.

  9. Detection of a milling-induced surface damage by the magnetic Barkhausen noise

    Science.gov (United States)

    Stupakov, A.; Neslušan, M.; Perevertov, O.

    2016-07-01

    The potential of the magnetic Barkhausen noise method for a non-destructive evaluation of the steel surface damage cased by milling was comprehensively investigated. A typical bearing steel was heat treated to three different hardnesses and then machined using the cutting tools with different degrees of the flank wear. The magnetic low-frequency measurements with a high reading depth were performed using a unique laboratory system providing a full control of the magnetization process. The high-frequency measurements were performed using a commercial Rollscan device. To study the induced magnetic anisotropy, the measurements were performed in two magnetization directions. In the feeding direction, the Barkhausen noise profiles showed a second high-field peak ascribed to an induced hardened surface layer, a so-called white layer. The most reliable results were obtained with the controlled waveform of the surface magnetic field measured directly by Hall sensors. In the perpendicular rotation direction, formation of the preferentially oriented matrix resulted in an enormously high Barkhausen noise activity. Based on these results, new magnetic parameters were proposed for the non-destructive evaluation of the white layer formation.

  10. Surface Wave Tomography of South China Sea from Ambient Seismic Noise and Two-station Measurements

    Science.gov (United States)

    Liang, W.-T.; Gung, Y.-C.

    2012-04-01

    We have taken the cross-correlation of seismic ambient noise technique as well as the two-station method to analyze the velocity structure in the South China Sea region. The dataset used in this study includes broadband waveforms recorded at the Taiwan BATS (Broadband Array in Taiwan for Seismology), Japan OHP (Ocean Hemisphere Project), Malaysia and Vietnam seismic networks. We remove the instrument response from daily data and filter the waveform with various frequency bands according to the length of each station-pair. Then we apply the commonly used 1-bit normalization to minimize the effect of earthquakes, instrumental irregularities, and non-stationary noise sources near to the stations. With the derived daily cross correlation function (CCF), we are able to examine the timing quality for each station-pair. We then obtain the surface Rayleigh wave dispersion curves from the stacked CCF for each station-pair. To cover the longer period band in the dispersion curves, we adopt the two-station method to compute both the group and phase velocities of surface waves. A new surface wave tomography based on ambient seismic noise study and traditional two-station technique has been achieved in this study. Raypaths that travel through the Central basin present higher velocity, which is in agreement with the idea of thin crust. On the other hand, the slower velocity between Taiwan and Northern Luzon, Philippine is mainly due to a thick accretionary prism above the Manila trench.

  11. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  12. Surface hall effect and nonlocal transport in SmB₆: evidence for surface conduction.

    Science.gov (United States)

    Kim, D J; Thomas, S; Grant, T; Botimer, J; Fisk, Z; Xia, Jing

    2013-11-06

    A topological insulator (TI) is an unusual quantum state in which the insulating bulk is topologically distinct from vacuum, resulting in a unique metallic surface that is robust against time-reversal invariant perturbations. The surface transport, however, remains difficult to isolate from the bulk conduction in most existing TI crystals (particularly Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃) due to impurity caused bulk conduction. We report in large crystals of topological Kondo insulator (TKI) candidate material SmB₆ the thickness-independent surface Hall effects and non-local transport, which persist after various surface perturbations. These results serve as proof that at low temperatures SmB₆ has a metallic surface that surrounds an insulating bulk, paving the way for transport studies of the surface state in this proposed TKI material.

  13. Experimentation Toward the Analysis of Gear Noise Sources Controlled by Sliding Friction and Surface Roughness

    Science.gov (United States)

    Asnani, Vivake M.

    2004-01-01

    In helicopters and other rotorcraft, the gearbox is a major source of noise and vibration (N&V). The two N&V excitation mechanisms are the relative displacements between mating gears (transmission errors) and the friction associated with sliding between gear teeth. Historically, transmission errors have been minimized via improved manufacturing accuracies and tooth modifications. Yet, at high torque loads, noise levels are still relatively high though transmission errors might be somewhat minimal. This suggests that sliding friction is indeed a dominant noise source for high power density rotorcraft gearboxes. In reality, friction source mechanism is associated with surface roughness, lubrication regime properties, time-varying friction forces/torques and gear-mesh interface dynamics. Currently, the nature of these mechanisms is not well understood, while there is a definite need for analytical tools that incorporate sliding resistance and surface roughness, and predict their effects on the vibro- acoustic behavior of gears. Toward this end, an experiment was conducted to collect sound and vibration data on the NASA Glenn Gear-Noise Rig. Three iterations of the experiment were accomplished: Iteration 1 tested a baseline set of gears to establish a benchmark. Iteration 2 used a gear-set with low surface asperities to reduce the sliding friction excitation. Iteration 3 incorporated low viscosity oil with the baseline set of gears to examine the effect of lubrication. The results from this experiment will contribute to a two year project in collaboration with the Ohio State University to develop the necessary mathematical and computer models for analyzing geared systems and explain key physical phenomena seen in experiments. Given the importance of sliding friction in the gear dynamic and vibro-acoustic behavior of rotorcraft gearboxes, there is considerable potential for research & developmental activities. Better models and understanding will lead to quiet and

  14. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: first-principles calculations and experiments

    CERN Document Server

    Kim, E; Hite, D A; McKay, K S; Pappas, D P; Weck, P F; Sadeghpour, H

    2016-01-01

    The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.

  15. 75 FR 38605 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Science.gov (United States)

    2010-07-02

    ... research to address congestion reduction efforts; (4) Developing transportation safety planning strategies... Federal Highway Administration Surface Transportation Environment and Planning Cooperative Research...-LU) established the Surface Transportation Environment and Planning Cooperative Research Program...

  16. Directional transport of impinging capillary jet on wettability engineered surfaces

    Science.gov (United States)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  17. Modeling marine surface microplastic transport to assess optimal removal locations

    NARCIS (Netherlands)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics f

  18. Modeling marine surface microplastic transport to assess optimal removal locations

    NARCIS (Netherlands)

    Sherman, Peter; Van Sebille, Erik|info:eu-repo/dai/nl/304831921

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics

  19. Barents Sea heat – transport, storage and surface fluxes

    Directory of Open Access Journals (Sweden)

    Ø. Skagseth

    2009-07-01

    Full Text Available Sensitivity of the Barents Sea to variation in ocean heat transport and surface fluxes is explored using a 1-D column model. Mean monthly ocean transport and atmospheric forcing are synthesised and force model results that reproduce the observed winter convection and surface warming and freshening well. Model results are compared to existing estimates of the ocean to air heat fluxes and horizontally averaged profiles for the southern and northern Barents Sea. Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production. The northern Barents Sea, the major part of the area, receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss in the north, the balance is achieved by long wave loss removing most of the solar heating, and the model also suggests a positive sensible heat gain. During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. Despite large changes the Barents Sea heat loss remains robust, the temperature adjusts, and the yearly cycle remains. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport probably leads to a spreading of warm water further north.

  20. STM tip-mediated mass transport on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.S.N. [College of Physical Science and Technology, Shenyang Normal University, Huanghe Street 253, Shenyang 110034 (China); Huang, R.Z., E-mail: renzhonghuang@synu.edu.cn [College of Physical Science and Technology, Shenyang Normal University, Huanghe Street 253, Shenyang 110034 (China); Gao, T.F. [College of Physical Science and Technology, Shenyang Normal University, Huanghe Street 253, Shenyang 110034 (China); Zhang, R.J. [School of Information Science and Engineering, Fudan University, Handan Road 220, Shanghai 200433 (China); Wang, Y.M. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-02-01

    Highlights: • Tip-induced atomic motion of Co atoms embedded in the Cu (0 0 1) surface in the presence of vacancies. • Interlayer mass transport at the island edge is found to depend strongly on the tip height and the lateral distance from the tip. • The jumping and the Ehrlich–Schwoebel (E–S) diffusion barrier can be reduced by tip manipulation. - Abstract: Atomic-scale simulations are performed to study atomic motion on Cu surfaces to illustrate the effect of the scanning tunneling microscopy tip on mass transport (MT) in the surfaces and on top of the Co island in heteroepitaxial Co/Cu(0 0 1) and Co/Cu(1 1 1) systems. First we investigate tip-induced atomic motion of Co atoms embedded in the Cu(0 0 1) surface at zero bias voltage. With the help of the tip, the Co atom in the surface can freely diffuse toward its nearby vacancy site. So-called vacancy mechanism is used to interpret this phenomenon. Then tip-mediated atomic motion of Co adatoms on the Co islands supported by a Cu(1 1 1) surface is studied. It is revealed that the tip has a significant effect on the diffusion of adatoms on the islands and interlayer mass transport at the island edge. Interlayer mass transport at the island edge is found to depend strongly on the tip height and the lateral distance from the tip. By calculating the diffusion barriers, it is found that the jumping diffusion barrier on the island can be zero by the tip vertical manipulation while the Ehrlich–Schwoebel diffusion barrier at the island edge can be reduced by the tip lateral manipulation. Thus, the quality of thin films can be improved by controlling MT in and/or on the surface.

  1. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  2. Computerized Design and Generation of Low-noise Helical Gears with Modified Surface Topology

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.; Lu, J.; Handschuh, R. F.

    1994-01-01

    An approach for design and generation of low-noise helical gears with localized bearing contact is proposed. The approach is applied to double circular arc helical gears and modified involute helical gears. The reduction of noise and vibration is achieved by application of a predesigned parabolic function of transmission errors that is able to absorb a discontinuous linear function of transmission errors caused by misalignment. The localization of the bearing contact is achieved by the mismatch of pinion-gear tooth surfaces. Computerized simulation of meshing and contact of the designed gears demonstrated that the proposed approach will produce a pair of gears that has a parabolic transmission error function even when misalignment is present. Numerical examples for illustration of the developed approach are given.

  3. A geometric Model for the Spatial Correlation of an Acoustic Vector Field in Surface-generated Noise

    Institute of Scientific and Technical Information of China (English)

    Yiwang Huang; Qunyan Ren; Ting Li

    2012-01-01

    Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated,with directional noise sources uniformly distributed on the ocean surface.In the evaluation of particle velocity,plane wave approximation was applied to each incident ray.Due to the equivalence of the sound source correlation property and its directivity,solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source.As a typical horizontally stratified media,surface noise in a perfect waveguide was investigated.Correlation coefficients given by normal mode and geometric models show satisfactory agreement.Also,the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient,while that of the surface noise in semi-infinitely homogeneous space is zero.

  4. Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  5. Quantum Transport and Surface Scattering in Magnetic Metallic Film

    Institute of Scientific and Technical Information of China (English)

    HU Yin; DONG Zheng-Chao

    2008-01-01

    Taking into account the quantum size effect and the spin dependence of the electronic band structure,and including the spin dependence of the scattering from bulk impurities and two different sets of surface roughness,we present a theory on the electronic transport in magnetic film,in which the average autocorrelation function (ACF) for surface roughness is described by a Gaussion model.Our result shows that the conductivity is a sensitive function of surface roughness and exchange energy.It is also found that in the thin film limit and in the lower-order approximation of the surface scattering,the total conductivity is given by a sum of conductivities of all the subbands and the two spin channels,for each subband and each spin channel the scattering rates due to the impurities and two surfaces are additive.

  6. Numerical and experimental studies of hydraulic noise induced by surface dipole sources in a centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    刘厚林; 戴菡葳; 丁剑; 谈明高; 王勇; 黄浩钦

    2016-01-01

    The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. Firstly, the unsteady flow in the pump is solved based on the large eddy simulation method and the pressure pulsations on the four different surfaces are obtained. The four surfaces include the volute surface, the discharge pipe surface, the inner surface of the pump cavity, and the interfaces between the impeller and the stationary parts as well as the outer surface of the impeller. Then, the software Sysnoise is employed to interpolate the pressure fluctuations onto the corresponding surfaces of the acoustic model. The Fast Fourier Transform with a Hanning window is used to analyze the pressure fluctuations and transform them into the surface dipole sources. The direct boundary element method is applied to calculate the noise radiated from the dipole sources. And the predicted sound pressure level is compared with the experi- mental data. The results show that the pressure fluctuations on the discharge pipe surface and the outer surface of the impeller have little effect on the acoustic simulation results. The pressure pulsations on the inner surface of the pump cavity play an important role in the internal flow and the acoustic simulation. The acoustic calculating error can be reduced by about 7% through considering the effect of the pump cavity. The sound pressure distributions show that the sound pressure level increases with the growing flow rate, with the largest magnitude at the tongue zone.

  7. Roughness distribution of multiple hit and long surface diffusion length noise reduced discrete growth models

    Science.gov (United States)

    Disrattakit, P.; Chanphana, R.; Chatraphorn, P.

    2016-11-01

    Conventionally, the universality class of a discrete growth model is identified via the scaling of interface width. This method requires large-scale simulations to minimize finite-size effects on the results. The multiple hit noise reduction techniques (m > 1 NRT) and the long surface diffusion length noise reduction techniques (ℓ > 1 NRT) have been used to promote the asymptotic behaviors of the growth models. Lately, an alternative method involving comparison of roughness distribution in the steady state has been proposed. In this work, the roughness distribution of the (2 +1)-dimensional Das Sarma-Tamborenea (DT), Wolf-Villain (WV), and Larger Curvature (LC) models, with and without NRTs, are calculated in order to investigate effects of the NRTs on the roughness distribution. Additionally, effective growth exponents of the noise reduced (2 +1)-dimensional DT, WV and LC models are also calculated. Our results indicate that the NRTs affect the interface width both in the growth and the saturation regimes. In the steady state, the NRTs do not seem to have any impact on the roughness distribution of the DT model, but it significantly changes the roughness distribution of the WV and LC models to the normal distribution curves.

  8. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    Science.gov (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  9. Band bending and electrical transport at chemically modified silicon surfaces

    Science.gov (United States)

    Lopinski, Greg; Ward, Tim; Hul'Ko, Oleksa; Boukherroub, Rabah

    2002-03-01

    High resolution electron energy loss spectroscopy (HREELS) and electrical transport measurements have been used to investigate how various chemical modifications give rise to band bending and alter the conductivity of Si(111) surfaces. HREELS is a sensitive probe of band bending through observations of the low frequency free carrier plasmon mode. For hydrogen terminated surfaces, prepared by the standard etch in ammonium flouride, HREELS measurements on both n and n+ substrates are consistent with nearly flat bands. Chlorination of these surfaces results in substantial upward band bending due to the strong electron withdrawing nature of the chlorine, driving the surface into inversion. The presence of this inversion layer on high resistivity n-type samples is observed through a substantial enhancement of the surface conductivity (relative to the H-terminated surface), as well as through broadening of the quasi-elastic peak in the HREELS measurements. We have also begun to examine organically modified silicon surfaces, prepared by various wet chemical reactions with the H-terminated surface. Decyl modified Si(111) surfaces are seen to exhibit a small degree of band bending, attributed to extrinsic defect states cause by a small degree of oxidation accompanying the modification reaction. The prospects of using conductivity as an in-situ monitor of the rate of these reactions will be discussed.

  10. The role of annoyance in the relation between transportation noise and children's health and cognition

    NARCIS (Netherlands)

    Kempen, E. van; Kamp, I. van; Nilsson, M.; Lammers, J.; Emmen, H.; Clark, C.; Stansfeld, S.

    2010-01-01

    On the basis of this study it cannot be ruled out that the appraisal of the noise affects the association between air and road traffic noise exposure and children's health and cognition. However, the conclusion is limited due to the relatively small group of annoyed children, which may have

  11. The role of annoyance in the relation between transportation noise and children's health and cognition

    NARCIS (Netherlands)

    Kempen, E. van; Kamp, I. van; Nilsson, M.; Lammers, J.; Emmen, H.; Clark, C.; Stansfeld, S.

    2010-01-01

    On the basis of this study it cannot be ruled out that the appraisal of the noise affects the association between air and road traffic noise exposure and children's health and cognition. However, the conclusion is limited due to the relatively small group of annoyed children, which may have influenc

  12. Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2014-06-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

  13. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments

    Science.gov (United States)

    Kim, E.; Safavi-Naini, A.; Hite, D. A.; McKay, K. S.; Pappas, D. P.; Weck, P. F.; Sadeghpour, H. R.

    2017-03-01

    The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, predicts a noise spectrum, in accordance with the measured values.

  14. Surface Diffusion Effect on Gas Transport in Nanoporous Materials

    Science.gov (United States)

    Hori, Takuma; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2016-11-01

    Polymer electrolyte fuel cells are one of the promising candidates for power sources of electric vehicles. For further improvement of their efficiency in high current density operation, a better understanding of oxygen flow inside the cells, which have micro- or nanoporous structures, is necessary. Molecular simulations such as the direct simulation of Monte Carlo (DSMC) are necessary to elucidate flow phenomena in micro- or nanostructures since the Knudsen number is close to unity. Our previous report showed that the oxygen diffusion resistance in porous structures with a characteristic pore size of 100 nm calculated by DSMC agrees well with that measured experimentally. On the other hand, when it comes to the transport in structures with much smaller pore sizes, it is expected that the surface diffusion has a significant impact on gas transport because of their higher specific surface area. Here we present the calculation of gas transport in porous structures with considering surface diffusion. The numerical porous structure models utilized in our simulations are constructed from three-dimensional imaging of materials. The effect of the distance of random walk on the total diffusion resistance in the structures is discussed. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Development Organization (NEDO).

  15. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    Science.gov (United States)

    Dippold, Vance F. III; Friedlander, David

    2017-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of

  16. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter

    2016-04-01

    Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.

  17. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  18. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes.

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M; Christiansen, Silke H; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained.

  19. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  20. Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements

    Science.gov (United States)

    Matthey, Renaud; Mitev, Valentin

    2005-03-01

    Laser radar (lidar) application may require an instrument with compact size, long life of the components, low consumption and eye-safety. One possibility to achieve these features is to use a continuous-wave (cw) diode laser as lidar transmitter. A practical way to perform range-resolved measurements with a cw laser diode is the pseudo-random noise (PRN) modulation. This paper presents a compact PRN-cw lidar, using a 370-mW cw diode laser and an APD as detector. Daytime measurements of cloud base and topographic surface are demonstrated with the PRN-cw lidar technique, where the range detection exceeds 2 km. The detection of the topographic surface is performed with integration time of some tens of milliseconds during daytime and some tens of microseconds during night-time.

  1. Jet transport energy management for minimum fuel consumption and noise impact in the terminal area

    Science.gov (United States)

    Bull, J. S.; Foster, J. D.

    1974-01-01

    Significant reductions in both noise and fuel consumption can be gained through careful tailoring of approach flightpath and airspeed profile, and the point at which the landing gear and flaps are lowered. For example, the noise problem has been successfully attacked in recent years with development of the 'two-segment' approach, which brings the aircraft in at a steeper angle initially, thereby achieving noise reduction through lower thrust settings and higher altitudes. A further reduction in noise and a significant reduction in fuel consumption can be achieved with the 'decelerating approach' concept. In this case, the approach is initiated at high airspeed and in a drag configuration that allows for low thrust. The landing flaps are then lowered at the appropriate time so that the airspeed slowly decelerates to V sub r at touchdown. The decelerating approach concept can be applied to constant glideslope flightpaths or segmented flightpaths such as the two-segment approach.

  2. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

    National Research Council Canada - National Science Library

    Kolkowitz, S; Safira, A; High, A. A; Devlin, R. C; Choi, S; Unterreithmeier, Q. P; Patterson, D; Zibrov, A. S; Manucharyan, V. E; Park, H; Lukin, M. D

    2015-01-01

    .... These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films...

  3. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Ongel, Aybike, E-mail: aybike.ongel@eng.bahcesehir.edu.tr [Bahcesehir University, Department of Civil Engineering, Istanbul 34353 (Turkey); Sezgin, Fatih, E-mail: fatih.sezgin@ibb.gov.tr [Istanbul Metropolitan Municipality, Environmental Protection Agency, Istanbul 34169 (Turkey)

    2016-01-15

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.

  4. Influence of laser scanner range measurement noise on the quantification of rock surface roughness

    Science.gov (United States)

    Khoshelham, Kourosh; Altundag, Dogan

    2010-05-01

    The roughness of rock surfaces is traditionally measured by using manual tools such as carpenter's comp and compass and disc clinometers. The manual measurements are limited to small samples at accessible parts of the rock. Terrestrial laser scanning is an attractive alternative measurement technique, which offers large coverage, high resolution, and the ability to reach inaccessible high rock faces. The application of laser scanning to the study of rock surface roughness faces a major challenge: the inherent range imprecision hinders the quantification of roughness parameters. In practice, when roughness is in millimeter scale it is often lost in the range measurement noise. The parameters derived from the data, therefore, reflect noise rather than the actual roughness of the surface. In this paper, we investigate the influence of laser scanner range measurement noise on the quantification of rock surfaces roughness. We show that measurement noise leads to the overestimation of roughness parameters. We also demonstrate the application of wavelet de-noising method to eliminating noise from laser scanner data and deriving realistic roughness parameters. A slightly metamorphosed limestone rock in the east bank of the Meuse River in southern Belgium was scanned with a Faro LS880 terrestrial laser scanner. The scanner was positioned at approximately 5 meters distance to the rock surface, and operated at the highest possible angular resolution, i.e. 0.009 degrees. The resulting point cloud contained about 1.2 million points on the rock surface with a point-spacing of 1 mm on average. According to the technical specifications of the laser scanner, the nominal range precision at a perpendicular incidence angle, which was roughly the case in our scan, is between 0.7 mm and 5.2 mm respectively for objects of 90% and 10% reflectivity at a distance of 10 m. To serve as reference roughness data were also collected manually along three profiles on the rock surface by using a

  5. Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves

    Science.gov (United States)

    Luo, J. T.; Geraldi, N. R.; Guan, J. H.; McHale, G.; Wells, G. G.; Fu, Y. Q.

    2017-01-01

    On a solid surface, a droplet of liquid will stick due to the capillary adhesion, and this causes low droplet mobility. To reduce contact line pinning, surface chemistry can be coupled to micro- and/or nanostructures to create superhydrophobic surfaces on which a droplet balls up into an almost spherical shape, thus, minimizing the contact area. Recent progress in soft matter has now led to alternative lubricant-impregnated surfaces capable of almost zero contact line pinning and high droplet mobility without causing droplets to ball up and minimize the contact area. Here we report an approach to surface-acoustic-wave- (SAW) actuated droplet transportation enabled using such a surface. These surfaces maintain the contact area required for efficient energy and momentum transfer of the wave energy into the droplet while achieving high droplet mobility and a large footprint, therefore, reducing the threshold power required to induce droplet motion. In our approach, we use a slippery layer of lubricating oil infused into a self-assembled porous hydrophobic layer, which is significantly thinner than the SAW wavelength, and avoid damping of the wave. We find a significant reduction (up to 85%) in the threshold power for droplet transportation compared to that using a conventional surface-treatment method. Moreover, unlike droplets on superhydrophobic surfaces, where interaction with the SAW induces a transition from a Cassie-Baxter state to a Wenzel state, the droplets on our liquid-impregnated surfaces remain in a mobile state after interaction with the SAW.

  6. Neurobehavioral effects of transportation noise in primary schoolchildren: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Lammers Jan

    2010-06-01

    Full Text Available Abstract Background Due to shortcomings in the design, no source-specific exposure-effect relations are as yet available describing the effects of noise on children's cognitive performance. This paper reports on a study investigating the effects of aircraft and road traffic noise exposure on the cognitive performance of primary schoolchildren in both the home and the school setting. Methods Participants were 553 children (age 9-11 years attending 24 primary schools around Schiphol Amsterdam Airport. Cognitive performance was measured by the Neurobehavioral Evaluation System (NES, and a set of paper-and-pencil tests. Multilevel regression analyses were applied to estimate the association between noise exposure and cognitive performance, accounting for demographic and school related confounders. Results Effects of school noise exposure were observed in the more difficult parts of the Switching Attention Test (SAT: children attending schools with higher road or aircraft noise levels made significantly more errors. The correlational pattern and factor structure of the data indicate that the coherence between the neurobehavioral tests and paper-and-pencil tests is high. Conclusions Based on this study and previous scientific literature it can be concluded that performance on simple tasks is less susceptible to the effects of noise than performance on more complex tasks.

  7. Transport and noise properties of Si nanowire channels with different lengths before and after gamma radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Vitusevich, Svetlana; Pud, Sergii; Sydoruk, Viktor; Offenhäusser, Andreas [Peter Grünberg Institute, Forschungszentrum Jülich (Germany); Petrychuk, Mykhailo [Taras Shevchenko National University, Kiev (Ukraine); Danilchenko, Boris [Institute of Physics, NASU, Kiev (Ukraine)

    2013-12-04

    The transport properties of Si nanowire (NW) structures fabricated on the basis of silicon on insulator (SOI) wafers were studied using noise spectroscopy before and after treatment with small doses of gamma radiation. The total resistance obtained from the I-V characteristics of Si NW structures scaled perfectly with length. Normalized flicker noise demonstrated 1/L{sup 2} dependence, which is a characteristic of dominant noise contribution from near-contact regions. The behavior changed to 1/L dependence after a small dose (1×10{sup 4} Gy) of gamma radiation treatment. Comparison of the random telegraph signal (RTS) noise parameters in the samples with small lengths before and after the treatment revealed a decrease in RTS amplitude and a shift to a lower frequency range after gamma irradiation. These results confirmed that the main changes in the samples were related to strain relaxation near-contact regions. In addition, such treatment resulted in a considerable decrease in the scattering data of device parameters.

  8. Experimental investigation of the surface pressure field for prediction of trailing edge noise of wind turbine aerofoils

    DEFF Research Database (Denmark)

    Fischer, Andreas; Aagaard Madsen, Helge; Bertagnolio, Franck

    2015-01-01

    This paper concerns the characterisation of turbulent boundary layer trailing edge noise by measuring the surface pressure field. Two aerofoils typically used at the outer blade section of modern MW wind turbines were tested in an anechoic wind tunnel for Reynolds numbers ranging from 1 million...... used as input to the model. There was a factor of 2 as difference between the two models. The prediction of the far field trailing edge noise with one model was in excellent agreement with the microphone array measurements in a frequency range of 500-2000 Hz. This opens up the possibility...... to 1.9 million and angles of attack ranging from −10° to 14°. The emitted trailing noise from the aerofoils was measured with a microphone array at a distance of 1.6 m away from the aerofoil. The two-dimensional surface pressure field, which is considered the source of the emitted trailing edge noise...

  9. Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface

    Science.gov (United States)

    Niiya, Hirofumi; Nishimura, Kouichi

    2017-05-01

    We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from 10-5 to 10 m above the flat surface. The numerical results are as follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below 10 cm and gradual wind response above 10 cm. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below 100 µm remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above 300 µm is less than the wind speed, whereas that below 300 µm exceeds the wind speed because of descending particles. (v) The particle diameter increases with height in the saltation layer, and the relationship is expressed as a power function. Through comparisons with the previously reported random-flight model, we find a crucial problem that empirical splash functions cannot reproduce particle dynamics at a relatively high wind speed.

  10. Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface

    CERN Document Server

    Niiya, Hirofumi

    2016-01-01

    We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from $10^{-5} \\hspace{0.5 ex} \\mathrm{m}$ to $10 \\hspace{0.5 ex} \\mathrm{m}$ above the flat surface. The numerical results are s follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below $10 \\hspace{0.5 ex} \\mathrm{cm}$ and gradual wind response above $10 \\hspace{0.5 ex} \\mathrm{cm}$. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below $100 \\hspace{0.5 ex} \\mu\\mathrm{m}$ remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above $300 \\hspace{0.5 ex} \\mu\\mathrm{m}$ is less than the wind speed, whereas that below $300 \\hspace{0.5 ex} \\mu\\mathrm...

  11. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-01-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role. PMID:27098939

  12. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  13. TRANSPORT OF BICOMPONENT CONTAMINANT IN FREE-SURFACE WETLAND FLOW

    Institute of Scientific and Technical Information of China (English)

    CHEN Bin; ZENG Li; WU Yi-hong; JI Ping; ZHAO Yi-jun

    2012-01-01

    This paper presents a theoretical analysis of a pulsed bicomponent contaminant emission into a free-surface wetland flow.The basic equations are for the bicomponent contaminant transport in the wetland flow under the combined action of advection,mass dispersion,and ecological reaction at the phase averaged scale.The effect of the ecological reaction is separated from the hydrodynamic effect via a set of widely used transforms.The analytical solution for the evolution of the depth-averaged concentration is rigorously derived,with a limiting case covering the known solution for the single component contaminant transport.It is found that the depth-averaged species concentration of the bicomponent contaminant can approach an equilibrium state determined by the distribution coefficient.

  14. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  15. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.

    Science.gov (United States)

    Chin, A W; Huelga, S F; Plenio, M B

    2012-08-13

    The quantum dynamics of transport networks in the presence of noisy environments has recently received renewed attention with the discovery of long-lived coherences in different photosynthetic complexes. This experimental evidence has raised two fundamental questions: firstly, what are the mechanisms supporting long-lived coherences; and, secondly, how can we assess the possible functional role that the interplay of noise and quantum coherence might play in the seemingly optimal operation of biological systems under natural conditions? Here, we review recent results, illuminate them by means of two paradigmatic systems (the Fenna-Matthew-Olson complex and the light-harvesting complex LHII) and present new progress on both questions.

  16. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian;

    2015-01-01

    The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush......-mounted relative to the blade surface. The measurements of surface pressure spectra are compared with the results of two engineering models for trailing edge noise and for turbulent inflow noise. The measured pressure fluctuations are related to the local inflow angle and are also compared to measurements...

  17. Identification of surface wave higher modes using a methodology based on seismic noise and coda waves

    Science.gov (United States)

    Rivet, Diane; Campillo, Michel; Sanchez-Sesma, Francisco; Shapiro, Nikolaï M.; Singh, Shri Krishna

    2015-11-01

    Dispersion analysis of Rayleigh waves is performed to assess the velocity of complex structures such as sedimentary basins. At short periods several modes of the Rayleigh waves are often exited. To perform a reliable inversion of the velocity structure an identification of these modes is thus required. We propose a novel method to identify the modes of surface waves. We use the spectral ratio of the ground velocity for the horizontal components over the vertical component (H/V) measured on seismic coda. We then compare the observed values with the theoretical H/V ratio for velocity models deduced from surface wave dispersion when assuming a particular mode. We first invert the Rayleigh wave measurements retrieved from ambient noise cross-correlation with the assumptions that (1) the fundamental mode and (2) the first overtone are excited. Then we use these different velocity models to predict theoretical spectral ratios of the ground velocity for the horizontal components over the vertical component (H/V). These H/V ratios are computed under the hypothesis of equipartition of a diffuse field in a layered medium. Finally we discriminate between fundamental and higher modes by comparing the theoretical H/V ratio with the H/V ratio measured on seismic coda. In an application, we reconstruct Rayleigh waves from cross-correlations of ambient seismic noise recorded at seven broad-band stations in the Valley of Mexico. For paths within the soft quaternary sediments basin, the maximum energy is observed at velocities higher than expected for the fundamental mode. We identify that the dominant mode is the first higher mode, which suggests the importance of higher modes as the main vectors of energy in such complex structures.

  18. Hydrodynamic Noise and Surface Compliance--An Overview of the Naval Underwater Systems Center IR/IED Program

    Science.gov (United States)

    2015-05-21

    34 COATING WAS BASICALLY A VERSION OF A " DOLPHIN -LIKE" SURFACE DEVISED TO EXTEND KRAMER’S WELL KNOWN DRAG REDUCTION INVESTIGATIONS INTO THE FLOW NOISE...EVEN DESCRIBED IN WHICH A DOLPHIN WAS INSTRUMENTED WITH FLUSH PRESSURE TRANSDUCERS. HOWEVER, NO DATA WERE GIVEN. ONE OF THE LATEST EXPERIMENTS...OBTAINED USING A LASER DOPPLER VELOCIMETER. FINALLY LASER HOLOGRAPHY OR LASER SURFACE SLOPE MEASUREMENTS WILL BE UTILIZED TO CHARACTERIZE THE SURFACE

  19. Modeling marine surface microplastic transport to assess optimal removal locations

    Science.gov (United States)

    Sherman, Peter; van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres.

  20. Association between transportation noise and cardiovascular disease: A meta-analysis of cross-sectional studies among adult populations from 1980 to 2010

    Directory of Open Access Journals (Sweden)

    Dibyendu Banerjee

    2014-01-01

    Full Text Available Background: It is hypothesized that exposure to transportation noise is associated with an increased risk of cardiovascular disease among adult population. The present study further explores this association in the light of new findings. The objective of this study was to perform a meta-analysis of studies reported during the last 3 decades on the association of transportation noise exposure with cardiovascular disease endpoints among adult population in cross-sectional studies. Materials and Methods: Relative risks were pooled from 12 studies by using an inverse-variance weighted fixed-effects model. The cardiovascular health outcomes included ischemic heart disease, myocardial infraction, angina pectoris, electrocardiogram-ischemia and cardiovascular medication. Results: The pooled risk estimate (95% confidence interval of 1.04 (0.96-1.12, shows a positive but nonsignificant association. The sensitivity analysis, conducted by excluding studies one by one, resulted in a positive and significant risk estimate. Contrary to the earlier meta-analysis, this study observed heterogeneity among subgroups and produced significant positive results to show that there exists an association between air traffic noise exposure and cardiovascular disease. It was also observed that the risk of cardiovascular disease due to exposure to transportation noise has increase to significant levels over the last 30 years. Conclusion: It can be concluded that though the association between transportation noise exposure and cardiovascular disease is evident, but not at a significant level. This study although provides evidence that air traffic noise is a serious cause of concern.

  1. Ab initio transport across bismuth selenide surface barriers

    KAUST Repository

    Narayan, Awadhesh

    2014-11-24

    © 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.

  2. Ternary Complexation on Bacterial Surfaces: Implications for Subsurface Anion Transport

    Science.gov (United States)

    Maclean, L. C.; Higginbottom, C. M.; Fowle, D. A.

    2002-12-01

    The physical, chemical, and biological controls on contaminant mobilities in aquatic ecosystems must be determined to establish the threat that contamination poses to the environment. Quantitative models of contaminant mobilities are required as a prerequisite to guide remediation efforts and to prioritize the potential hazard to the ecosystem of each contaminated site. It is well established that mineral surface adsorption is an important control on contaminant mobilities, and many studies have utilized thermodynamics to quantify metal/organic adsorption in order to yield predictive models of contaminant transport. However, these models of contaminant transport may not be representative of the reactions which control contaminant mobilities as most mineral surfaces are coated with organic acids, bacteria, and extracellular polymers. Numerous laboratory studies have demonstrated that bacterial cell walls have a high affinity for binding metal cations, and field studies indicate that a significant proportion of bacteria cells and associated extracellular matrices are coated with small scale hydrous metal oxides. The small size of bacteria, and in many cases the nanoscale of their associated mineral phases, suggests these bacteria-mineral composites may represent a large proportion of surface area exposed to fluid flow. Therefore, due to the affinity of bacterial cell walls for cations and biominerals, bacteria may also have a significant impact on anionic contaminant mobility in many natural systems. The extent of metal-bacteria adsorption reactions varies drastically as a function of pH and solution chemistry. Current adsorption models have focused on the interactions of positively charged metal cations with bacterial surfaces, however in many oxidizing environments metals such as Cr exist as anions or anionic complexes. We have studied the ability of non-metabolizing cells of the bacterial species Bacillus subtilis and Shewanella putrifaciens to adsorb aqueous Cr

  3. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Vrkoslavová, Lucie; Louda, Petr [Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (Czech Republic); Malec, Jiři [Department of Analytic Services, PCS s.r.o. (Czech Republic)

    2014-02-18

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  4. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    Science.gov (United States)

    Vrkoslavová, Lucie; Louda, Petr; Malec, Jiři

    2014-02-01

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  5. Assessment of health impacts and policy options in relation to transport noise

    NARCIS (Netherlands)

    Staatsen BAM; Nijland HA; van Kempem EMM; de Hollander AEM; Franssen AEM; van Kamp I; MGO

    2004-01-01

    This paper has been drafted within the framework of a joint international project (Austria, France, Malta, Sweden, Switzerland and the Netherlands). The aim of this project is to describe the state of the art on transport related health impacts, highlight (if possible) costs and benefits, identify

  6. Surface-wave tomography of Ireland and surroundings using ambient noise and teleseismic data

    Science.gov (United States)

    Bonadio, Raffaele; Arroucau, Pierre; Lebedev, Sergei; Meier, Thomas; Schaeffer, Andrew; Licciardi, Andrea; Piana Agostinetti, Nicola

    2016-04-01

    Ireland's geology is dominated by northeast-southwest structural trends and suture zones, mostly inferred from geological mapping and a few active source seismic experiments. However, their geometry and extent at depth and their continuity across the Irish Sea are still poorly known. Important questions also remain unanswered regarding the thickness and bulk properties of the sedimentary cover at the regional scale, the deformation and flow of the deep crust during the formation of Ireland, the thickness of Ireland's lithosphere today, and the thermal structure and dynamics of the asthenosphere beneath Ireland. In this work, we take advantage of abundant, newly available broadband data from temporary array deployments and permanent seismic networks in Ireland and Great Britain to produce high-resolution models of seismic velocity structure and anisotropy of the lithosphere. We combine Rayleigh and Love phase velocity measurements from waveform cross-correlation using both ambient noise and teleseismic data in order to produce high-quality dispersion curves for periods ranging from 1 to 300 s. The phase velocity measurement procedures are adapted from Meier et al.[2], Lebedev et al.[1] and Soomro et al.[3] and are automated in order to deal with the large amount of data and ensure consistency and reproducibility. For the nearly 200 stations used in this study, we obtain a very large number of dispersion curves from both ambient noise and teleseimic data. Dispersion measurements are then inverted in a tomographic procedure for surface-wave phase velocity maps in a very broad period range. The maps constrain the 3D seismic-velocity structure of the crust and upper mantle underlying Ireland and the Irish Sea. {9} Lebedev, S., T. Meier, R. D. van der Hilst. Asthenospheric flow and origin of volcanism in the Baikal Rift area, Earth Planet. Sci. Lett., 249, 415-424, 2006. Meier, T., K. Dietrich, B. Stockhert, H.P. Harjes, One-dimensional models of shear wave velocity for

  7. Electronic transport in thermoelectric Yb z Co 4 Sb 12 skutterudite thin films studied by resistance noise spectroscopy

    Science.gov (United States)

    Lonsky, M.; Heinz, S.; Daniel, M. V.; Albrecht, M.; Müller, J.

    2016-10-01

    Skutterudites CoSb3 are considered interesting candidates for thermoelectric applications, because the filling of guest atoms into the cage-like structure has the potential to improve its thermoelectric properties by an increased phonon scattering, which reduces the thermal conductivity. This, however, requires that a high electrical conductivity is maintained. In this study, we performed resistivity, Hall effect, and fluctuation spectroscopy measurements on polycrystalline thin films of semiconducting Yb z Co 4 Sb 12 with 0 < z < 0.27 . Our aim is to better understand the conventional dc electronic transport but also the low-frequency dynamical properties of the charge carriers. The electronic properties are highly sensitive to the filling factor z as well as other parameters, e.g., the Sb content. The resistivity can be described by Mott variable range hopping at low temperatures. A large 1/f noise level suggests an influence of the granularity of the polycrystalline thin films. By analyzing the 1/f-noise and two-level fluctuations, which are abundant for filled samples annealed at 500 °C, we are able to determine the energy distribution of the relevant electronic switching processes. A likely explanation for the observed low-frequency dynamics is capture/emission processes of impurities with a broad distribution within the energy gap.

  8. Coherence and Decoherence in Biological Systems: Principles of Noise Assisted Transport and the Origin of Long-lived Coherences

    CERN Document Server

    Chin, A W; Plenio, M B

    2012-01-01

    The quantum dynamics of transport networks in the presence of noisy environments have recently received renewed attention with the discovery of long-lived coherences in different photosynthetic complexes. This experimental evidence has raised two fundamental questions: Firstly, what are the mechanisms supporting long-lived coherences and secondly, how can we assess the possible functional role that the interplay of noise and quantum coherence might play in the seemingly optimal operation of biological systems under natural conditions? Here we review recent results, illuminate them at the hand of two paradigmatic systems, the Fenna-Matthew-Olson (FMO) complex and the light harvesting complex LHII, and present new progress on both questions. In particular we introduce the concept of the phonon antennae and discuss the possible microscopic origin or long-lived electronic coherences.

  9. An algorithm for the estimation of the signal-to-noise ratio in surface myoelectric signals generated during cyclic movements.

    Science.gov (United States)

    Agostini, Valentina; Knaflitz, Marco

    2012-01-01

    In many applications requiring the study of the surface myoelectric signal (SMES) acquired in dynamic conditions, it is essential to have a quantitative evaluation of the quality of the collected signals. When the activation pattern of a muscle has to be obtained by means of single- or double-threshold statistical detectors, the background noise level e (noise) of the signal is a necessary input parameter. Moreover, the detection strategy of double-threshold detectors may be properly tuned when the SNR and the duty cycle (DC) of the signal are known. The aim of this paper is to present an algorithm for the estimation of e (noise), SNR, and DC of an SMES collected during cyclic movements. The algorithm is validated on synthetic signals with statistical properties similar to those of SMES, as well as on more than 100 real signals.

  10. Comparison of Ambient Noise From Two Station Designs, Evaluating USArray's Transportable and Flexible Arrays in the Pacific Northwest

    Science.gov (United States)

    Pfeifer, M.; Alvarez, M.; Woodward, R.; Yang, Z.

    2009-12-01

    The USArray program within the National Science Foundation-funded Earthscope program is comprised of two portable broadband seismic projects; the Transportable Array (TA), and the Flexible Array (FA). The TA consists of 400 stations occupy locations within the United States on a nominal 70 km spacing for a period of approximately 24 months. As a network, these TA stations roll from west to east so that within 10 years the entire lower 48 states will have been occupied by the TA network. As a complementary component of USArray, the FA pool of instruments is comprised of 1200 active-source, 120 short-period and 326 broadband portable stations. These instruments are used by Principal Investigator-driven studies which focus on geologic targets within the TA footprint. Currently the TA network is transitioning from the Rocky Mountains into the Great Plains. The FA currently has four experiments installed. In this study we quantify the overall performance of these two tandem networks using a controlled set of continuous recordings in Western Washington. We compare the background noise levels between the standard deep TA and shallow FA broadband sensor vault system. We use McNamara’s probability density function (PDF) analysis as the basis of the comparison. We combine the network wide PDF’s of each network for a period of over 600 days of contemporaneous recordings. Preliminary analysis using data from 28 TA stations in western Washington and 47 nearby FA stations from the CAFE experiment (Abers, et al. Eos Trans. AGU 88(52), Fall Meet. Suppl. S43D-07), show that the TA stations are quieter at periods below 20 seconds by about 12 dB on the horizontal components. The vertical components for both the TA and FA are equivalent for periods below 5 seconds. At higher frequencies (> 2 Hz), however, the FA shallower vault is quieter by approximately 10 dB on both the vertical and horizontal components. The question addressed is, what is contributing to the difference in

  11. Correspondence behavior of classical and quantum dissipative directed transport via thermal noise

    Science.gov (United States)

    Carlo, Gabriel G.; Ermann, Leonardo; Rivas, Alejandro M. F.; Spina, María E.

    2016-04-01

    We systematically study several classical-quantum correspondence properties of the dissipative modified kicked rotator, a paradigmatic ratchet model. We explore the behavior of the asymptotic currents for finite ℏeff values in a wide range of the parameter space. We find that the correspondence between the classical currents with thermal noise providing fluctuations of size ℏeff and the quantum ones without it is very good in general with the exception of specific regions. We systematically consider the spectra of the corresponding classical Perron-Frobenius operators and quantum superoperators. By means of an average distance between the classical and quantum sets of eigenvalues we find that the correspondence is unexpectedly quite uniform. This apparent contradiction is solved with the help of the Weyl-Wigner distributions of the equilibrium eigenvectors, which reveal the key role of quantum effects by showing surviving coherences in the asymptotic states.

  12. 36 CFR 13.460 - Use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

    Science.gov (United States)

    2010-07-01

    ... transportation in accordance with 43 CFR 36.11(c), (d), (e), and (g). ..., motorboats, dog teams, and other means of surface transportation traditionally employed by local rural... of snowmobiles, motorboats, dog teams, and other means of surface transportation...

  13. Modeling sheet-flow sand transport under progressive surface waves

    NARCIS (Netherlands)

    Kranenburg, W.M.

    2013-01-01

    In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels. Howeve

  14. Surface trap mediated electronic transport in biofunctionalized silicon nanowires

    Science.gov (United States)

    Puppo, F.; Traversa, F. L.; Di Ventra, M.; De Micheli, G.; Carrara, S.

    2016-08-01

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.

  15. Surface diffusion of a Brownian particle subjected to an external harmonic noise

    Science.gov (United States)

    Bai, Zhan-Wu; Ding, Li-Ping

    2017-05-01

    Langevin simulation is performed to investigate the diffusion coefficient of a Brownian particle subjected to an external harmonic noise in a two-dimensional coupled periodic potential. Resonant diffusion phenomenon is observed as a result of the coupling between the central frequency of the spectral density of the harmonic noise and the frequency of the potential well bottom. The diffusion coefficient presents approximately linear functions of the strengths of the internal and external noises for low values of the strengths, these functions can be understood by the local linearization approximation of the potential force. The damping coefficient dependence of the diffusion coefficient in lower damping is well fitted by a negative power function, as an internal Gaussian white noise case does, but with a power whose absolute value is larger than 1.

  16. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 2: Pacific Basin, August 1980. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, F.A.

    1980-08-01

    Noise control measures at the international airports of Hawaii, New Zealand, Australia, Hong Kong, Japan, and Singapore were studied. Factors in noise control, such as government structure are examined. The increasing power of environmental agencies vis-a-vis aviation departments is noted. The following methods of dealing with aircraft noise are examined by type of control: noise at the source control noise emmission controls, zoning, building codes, subsidies for relocation, insulation, loss in property values, and for TV, radio and telephone interference and noise-related landing charges.

  17. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NARCIS (Netherlands)

    Bhattacharjee, S.; Opstal, van E.J.; Alink, G.M.; Marcelis, A.T.M.; Zuilhof, H.; Rietjens, I.M.C.M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/s

  18. Predicting Solar Cycle 25 using Surface Flux Transport Model

    Science.gov (United States)

    Imada, Shinsuke; Iijima, Haruhisa; Hotta, Hideyuki; Shiota, Daiko; Kusano, Kanya

    2017-08-01

    It is thought that the longer-term variations of the solar activity may affect the Earth’s climate. Therefore, predicting the next solar cycle is crucial for the forecast of the “solar-terrestrial environment”. To build prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar activity is intensively discussed. Because we can determine the polar magnetic field at the solar minimum roughly 3 years before the next solar maximum, we may discuss the next solar cycle 3years before. Further, the longer term (~5 years) prediction might be achieved by estimating the polar magnetic field with the Surface Flux Transport (SFT) model. Now, we are developing a prediction scheme by SFT model as a part of the PSTEP (Project for Solar-Terrestrial Environment Prediction) and adapting to the Cycle 25 prediction. The predicted polar field strength of Cycle 24/25 minimum is several tens of percent smaller than Cycle 23/24 minimum. The result suggests that the amplitude of Cycle 25 is weaker than the current cycle. We also try to obtain the meridional flow, differential rotation, and turbulent diffusivity from recent modern observations (Hinode and Solar Dynamics Observatory). These parameters will be used in the SFT models to predict the polar magnetic fields strength at the solar minimum. In this presentation, we will explain the outline of our strategy to predict the next solar cycle and discuss the initial results for Cycle 25 prediction.

  19. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 1: Europe, July 1980. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, F.A.

    1980-07-01

    The development and implementation of aircraft noise control regulations in various European states are described. The countries include the United Kingdom, France, Switzerland, Federal Republic of Germany, Sweden, Denmark, and the Netherlands. Topics discussed include noise monitoring, airport curfews, land use planning, and the government structure for noise regulation.

  20. Laboratory studies of aeolian sediment transport processes on planetary surfaces

    Science.gov (United States)

    Rasmussen, Keld R.; Valance, Alexandre; Merrison, Jonathan

    2015-09-01

    , but not all, older or recent wind tunnel observations. Similarly some measurements performed with uniform sand samples having grain diameters of the order of 0.25-0.40 mm indicate that ripple spacing depends on friction velocity in a similar way as particle jump length. The observations are thus in agreement with a recent ripple model that link the typical jump length to ripple spacing. A possible explanation for contradictory observations in some experiments may be that long observation sequences are required in order to assure that equilibrium exists between ripple geometry and wind flow. Quantitative understanding of saltation characteristics on Mars still lacks important elements. Based upon image analysis and numerical predictions, aeolian ripples have been thought to consist of relatively large grains (diameter > 0.6 mm) and that saltation occurs at high wind speeds (> 26 m/s) involving trajectories that are significantly longer than those on Earth (by a factor of 10-100). However, this is not supported by recent observations from the surface of Mars, which shows that active ripples in their geometry and composition have characteristics compatible with those of terrestrial ripples (Sullivan et al., 2008). Also the highest average wind speeds on Mars have been measured to be terrestrial conditions electric fields typically observed are not intense enough to significantly affect sand transport rates while little is known in the case of extra-terrestrial environments.

  1. Development of a SMA-Based Slat-Cove Filler for Reduction of Aeroacoustic Noise Associated With Transport-Class Aircraft Wings

    Science.gov (United States)

    Turner, Travis L.; Kidd, Reggie T.; Hartl, Darren J.; Scholten, William D.

    2013-01-01

    Airframe noise is a significant part of the overall noise produced by typical, transport-class aircraft during the approach and landing phases of flight. Leading-edge slat noise is a prominent source of airframe noise. The concept of a slat-cove filler was proposed in previous work as an effective means of mitigating slat noise. Bench-top models were deployed at 75% scale to study the feasibility of producing a functioning slat-cove filler. Initial results from several concepts led to a more-focused effort investigating a deformable structure based upon pseudoelastic SMA materials. The structure stows in the cavity between the slat and main wing during cruise and deploys simultaneously with the slat to guide the aerodynamic flow suitably for low noise. A qualitative parametric study of SMA-enabled, slat-cove filler designs was performed on the bench-top. Computational models were developed and analyses were performed to assess the displacement response under representative aerodynamic load. The bench-top and computational results provide significant insight into design trades and an optimal design.

  2. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    CERN Document Server

    Shocron, Amit N

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.

  3. Surface electronic transport measurements: A micro multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas

    2014-01-01

    setup, but the terminology used and data analysis were also ameliorated in order to simplify the interpretation of the results. We used the mentioned technique in the following projects: • The electronic transport dimensionality of epitaxial grahene grown on SiC is detected and important physical......This work is mostly focused on the study of electronic transport properties of two-dimensional materials, in particular graphene and topological insulators. To study these, we have improved a unique micro multi-point probe instrument used to perform transport measurements. Not only the experimental...... a direct measurement of the surface electronic transport on a bulk topological insulator. The surface state conductivity and mobility are obtained. Apart from transport properties, we also investigate the atomic structure of the Bi2Se3(111) surface via surface x-ray diraction and low-energy electron...

  4. Determination of Rayleigh wave ellipticity across the Earthscope Transportable Array using single-station and array-based processing of ambient seismic noise

    Science.gov (United States)

    Workman, Eli; Lin, Fan-Chi; Koper, Keith D.

    2017-01-01

    We present a single station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 s the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 s, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher (˜2 per cent) and significantly higher (>20 per cent), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e. Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves and tilt noise.

  5. Intensity- and phase-noise correlations in a dual-frequency vertical-external-cavity surface-emitting laser operating at telecom wavelength

    Science.gov (United States)

    De, Syamsundar; Baili, Ghaya; Bouchoule, Sophie; Alouini, Mehdi; Bretenaker, Fabien

    2015-05-01

    The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the correlation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency beat note generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also depends on how the spatially separated laser modes of the DF-VECSEL intercept the noise from a multimode fiber-coupled laser diode used for pumping both the laser modes. To this aim, a specific experiment is reported which aims at measuring the correlations between different spatial regions of the pump beam. The experimental results are in excellent agreement with a theoretical model based on modified rate equations.

  6. The Effect of Spherical Surface on Noise Suppression of a Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Md. Tawhidul Islam Khan; Kunisato Seto; Zhixiang Xu; H. Ohta

    2003-01-01

    Experiments were carried out to eliminate the screech tone generated from a supersonic jet.Compressed air was passed through a circular convergent nozzle preceded by a straight tube of same diameter. In order to reduce the jet screech a spherical reflector was used and placed at the nozzle exit. The placement of the spherical reflector at the nozzle exit controlled the location of the image source as well as minimized the sound pressure at the nozzle exit.The weak sound pressure did not excite the unstable disturbance at the exit.Thus the loop of the feedback mechanism could not be accomplished and the jet screech was eliminated. The technique of screech reduction with a flat plate was also examined and compared with the present method. A good and effective performance in canceling the screech component by the new method was found by the investigation. Experimental results indicate that the new system suppresses not only the screech tones but also the broadband noise components and reduces the overall noise of the jet flow. The spherical reflector was found very effective in reducing overall sound pressure level in the upstream region of the nozzle compared to a flat plate. The proposed spherical reflector can, accordingly, protect the upstream noise propagation.

  7. Investigation of local tunneling current noise spectra on the silicon crystal surfaces by means of STM/STS

    Energy Technology Data Exchange (ETDEWEB)

    Mantsevich, V. N., E-mail: vmantsev@spmlab.phys.msu.su; Maslova, N. S. [Moscow State University, Department of Physics (Russian Federation); Cao, G. Y. [Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics (China)

    2015-08-15

    We report on a careful analysis of the local tunneling conductivity by means of ultra-high vacuum scanning tunneling microscopy/spectroscopy (STM/STS) technique in the vicinity of low-dimensional structures on the Si(111)–(7 × 7) and Si(110)–(16 × 2) surfaces. The power-law exponent α of low-frequency tunneling current noise spectra is investigated for different values of the tunneling contact parameters: relaxation rates, the localized state coupling, and the tunneling barrier width and height.

  8. Aeolian transport in the field: A comparison of the effects of different surface treatments

    Science.gov (United States)

    Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin

    2012-05-01

    Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.

  9. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G.; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  10. Rail environmental impact: energy consumption and noise pollution assessment of different transport modes connecting Big Ben (London, UK and Eiffel Tower (Paris, FR

    Directory of Open Access Journals (Sweden)

    Roberto PALACIN

    2014-10-01

    Full Text Available This paper is set within the framework of the RailNewcastle Summer School program 2014 run by Newcastle University. It attempts to explore the sustainability credentials of railways when compared with other transport modes connecting central London with central Paris, two of Europe’s largest metropolis. Specifically, the study compares the energy consumption and noise pollution of a rail-only travel option with two other alternatives using a combination of public transport modes. The analysis includes defining the regulatory framework, sourcing and aggregating energy consumption from a number of references as well as creating noise maps for key nodes using validated tools available. The results suggest that the rail-only option has the best performance of the three options in terms of energy consumption while a bus-coach-metro combination seems to have lower noise levels than the rest. Assumptions due to lack of meaningful data made in the calculation of underground rail services are thought to have influence on the lower than expected performance of rails systems in terms of noise. The authors conclude that considering the combined outcomes of both assessments, the rail-only option is the preferred choice from a sustainability credentials perspective.

  11. Vehicle Emission Inspection and Maintenance (I/M) Provision in the Fixing America’s Surface Transportation (FAST) Act

    Science.gov (United States)

    This document is a memorandum regarding Vehicle Emission Inspection and Maintenance (I/M) Provision in Fixing America's Surface Transportation (FAST) Act, which provides long-term funding certainty for surface transportation infrastructure planning

  12. On Limiting Behavior of Contaminant Transport Models in Coupled Surface and Groundwater Flows

    Directory of Open Access Journals (Sweden)

    Vincent J. Ervin

    2015-11-01

    Full Text Available There has been a surge of work on models for coupling surface-water with groundwater flows which is at its core the Stokes-Darcy problem. The resulting (Stokes-Darcy fluid velocity is important because the flow transports contaminants. The analysis of models including the transport of contaminants has, however, focused on a quasi-static Stokes-Darcy model. Herein we consider the fully evolutionary system including contaminant transport and analyze its quasi-static limits.

  13. Serotonin-induced down-regulation of cell surface serotonin transporter

    DEFF Research Database (Denmark)

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    The serotonin transporter (SERT) terminates serotonergic signaling and enables refilling of synaptic vesicles by mediating reuptake of serotonin (5-HT) released into the synaptic cleft. The molecular and cellular mechanisms controlling SERT activity and surface expression are not fully understood...

  14. 75 FR 9638 - Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report

    Science.gov (United States)

    2010-03-03

    ...; 49 CFR 1.48. Issued on: February 23, 2010. Victor M. Mendez, Administrator. Surface Transportation... Chapter 25 references FHWA Order 6640.2 FHWA Actions to address Environmental Justice in minority and...

  15. Spatial Correlation of Surface-Generated Noise in a Stratified Ocean

    Science.gov (United States)

    1980-10-01

    can express the I appropriately aistributed in space. Therefore, the cross- spectral density function of the noise field as source function is s(r’, t... spectral density function depends on frequency. (P.(r-Z)=f d r’S,(r)G(r,r’,z,z), (5) Since g and g* depend on the magnitude of 17, but not its...with the re-Ma lem, satisfies the Helmholtz equation suit that the cross- spectral density function takes the (V2.k 2 )G(r,r’z,z’)=-(l/r)8(r-r’)8(z-z

  16. Transport Rate of Surface Erosion by the Hydrodynamics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The coherence and exposure degree are used in analyzing initiation of slope sediment.The initial ve- locity is built by using a critical roiling model.A transport rate formula of slope erosion is established using the Meyer-Peter model.The formula is tested by experiment and agrees well but the errors are big when the flow discharge and rain intensity are smaller.

  17. Enhanced Thermal Transport of Surfaces with Superhydrophobic Coatings

    Science.gov (United States)

    2015-07-01

    Deposition 4 3. Results/ Analysis 5 4. Conclusion 7 5. References 8 Distribution List 9 iv List of Figures Fig. 1 Contact angle...by measuring the contact angle (σ) formed between a droplet of liquid and the surface (Fig. 1). Qualitatively , surfaces with a water contact angle...several seconds and dried with filtered nitrogen. The samples were then immersed in 0.01-M aqueous solution of silver nitrate for 20 s. The deposition

  18. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer

    Directory of Open Access Journals (Sweden)

    C. Wegner

    2012-09-01

    Full Text Available Sediment transport dynamics were studied during ice-free conditions under different atmospheric circulation regimes on the Laptev Sea shelf (Siberian Arctic. To study the interannual variability of suspended particulate matter (SPM dynamics and their coupling with the variability in surface river water distribution on the Laptev Sea detailed oceanographic, optical (turbidity and Ocean Color satellite data, and hydrochemical (nutrients, SPM, stable oxygen isotopes process studies were carried out continuously during the summers of 2007 and 2008. Thus, for the first time SPM and nutrient variations on the Laptev Sea shelf under different atmospheric forcing and the implications for the turbidity and transparency of the water column can be presented.

    The data indicate a clear link between different surface distributions of riverine waters and the SPM transport dynamics within the entire water column. The summer of 2007 was dominated by shoreward winds and an eastward transport of riverine surface waters. The surface SPM concentration on the south-eastern inner shelf was elevated, which led to decreased transmissivity and increased light absorption. Surface SPM concentrations in the Central and Northern Laptev Sea were comparatively low. However, the SPM transport and concentration within the bottom nepheloid layer increased considerably on the entire eastern shelf. The summer of 2008 was dominated by offshore-winds and northwards transport of the river plume. The surface SPM transport was enhanced and extended onto the mid-shelf whereas the bottom SPM transport and concentration was diminished. This study suggests that the SPM concentration and transport in both, the surface and bottom nepheloid layers, are associated with the distribution of riverine surface waters which are linked to the atmospheric circulation patterns over the Laptev Sea and the adjacent Arctic Ocean during open water season. A continuing trend toward shoreward winds

  19. An Extension to a Filter Implementation of Local Quadratic Surface for Image Noise Estimation

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    1999-01-01

    Based on regression analysis this paper gives a description for simple image filter design. Specifically 3x3 filter implementations of a quadratic surface, residuals from this surface, gradients and the Laplacian are given. For the residual a 5x5 filter is given also. It is shown that the 3x3...

  20. Hydrogen mediated transport of Sn to Ru film surface

    NARCIS (Netherlands)

    Faradzhev, N.; Sidorkin, V.

    2009-01-01

    The authors report on the interaction of atomic hydrogen with Sn and thin Ru film at room temperature. The study is done using a combination of photoelectron and low energy ion scattering spectroscopies as well as scanning electron microscopy. The adsorption of hydrogen on a Sn surface leads to the

  1. Hydrogen mediated transport of Sn to Ru film surface

    NARCIS (Netherlands)

    Faradzhev, N.; Sidorkin, V.

    2009-01-01

    The authors report on the interaction of atomic hydrogen with Sn and thin Ru film at room temperature. The study is done using a combination of photoelectron and low energy ion scattering spectroscopies as well as scanning electron microscopy. The adsorption of hydrogen on a Sn surface leads to the

  2. Transport mechanism of an initially spherical droplet on a combined hydrophilic/hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kwon, Young Hoo [Dept. of Mechanical Engineering, Kookmin University, Seoul (Korea, Republic of)

    2015-11-15

    Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

  3. Phase noise analysis of a 10-GHz optical injection-locked vertical-cavity surface-emitting laser-based optoelectronic oscillator

    Science.gov (United States)

    Coronel, Juan; Varón, Margarita; Rissons, Angélique

    2016-09-01

    The optical injection locking (OIL) technique is proposed to reduce the phase noise of a carrier generated for a vertical-cavity surface-emitting laser (VCSEL)-based optoelectronic oscillator. The OIL technique permits the enhancement of the VCSEL direct modulation bandwidth as well as the stabilization of the optical noise of the laser. A 2-km delay line, 10-GHz optical injection-locked VCSEL-based optoelectronic oscillator (OILVBO) was implemented. The internal noise sources of the optoelectronic oscillator components were characterized and analyzed to understand the noise conversion of the system into phase noise in the oscillator carrier. The implemented OILVBO phase noise was -105.7 dBc/Hz at 10 kHz from the carrier; this value agrees well with the performed simulated analysis. From the computed and measured phase noise curves, it is possible to infer the noise processes that take place inside the OILVBO. As a second measurement of the oscillation quality, a time-domain analysis was done through the Allan's standard deviation measurement, reported for first time for an optoelectronic oscillator using the OIL technique.

  4. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  5. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    Science.gov (United States)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  6. Fluid dynamics and noise in bacterial cell—cell and cell—surface scattering

    National Research Council Canada - National Science Library

    Knut Drescher; Jörn Dunkel; Luis H. Cisneros; Sujoy Ganguly; Raymond E. Goldstein

    2011-01-01

    .... While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell—cell and cell—surface scattering...

  7. Electrical transport properties of graphene on SiO2 with specific surface structures

    OpenAIRE

    Nagashio, K.; Yamashita, T; Nishimura, T.; K. Kita; Toriumi, A.

    2011-01-01

    The mobility of graphene transferred on a SiO2/Si substrate is limited to ~10,000 cm2/Vs. Without understanding the graphene/SiO2 interaction, it is difficult to improve the electrical transport properties. Although surface structures on SiO2 such as silanol and siloxane groups are recognized, the relation between the surface treatment of SiO2 and graphene characteristics has not yet been elucidated. This paper discusses the electrical transport properties of graphene on specific surface stru...

  8. Noise composed of multiplication of two dichotomous noises

    Institute of Scientific and Technical Information of China (English)

    Li Jing-Hui

    2008-01-01

    In this paper, we introduce a noise which is composed of multiplication of two dichotomous noises, and derive the probability density and the statistical properties of this noise. The obtained results can help study the resonant activation phenomenon, the phenomenon of stochastic resonance, the transport of particles, and the nonequilibrium (phase) transition for the systems driven by this noise.

  9. Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes

    Science.gov (United States)

    Fasano, Matteo; Humplik, Thomas; Bevilacqua, Alessio; Tsapatsis, Michael; Chiavazzo, Eliodoro; Wang, Evelyn N.; Asinari, Pietro

    2016-10-01

    A comprehensive understanding of molecular transport within nanoporous materials remains elusive in a broad variety of engineering and biomedical applications. Here, experiments and atomistic simulations are synergically used to elucidate the non-trivial interplay between nanopore hydrophilicity and surface barriers on the overall water transport through zeolite crystals. At these nanometre-length scales, these results highlight the dominating effect of surface imperfections with reduced permeability on the overall water transport. A simple diffusion resistance model is shown to be sufficient to capture the effects of both intracrystalline and surface diffusion resistances, thus properly linking simulation to experimental evidence. This work suggests that future experimental work should focus on eliminating/overcoming these surface imperfections, which promise an order of magnitude improvement in permeability.

  10. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  11. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  12. Evaluation of the carburized surface of steels with Magnetic Barkhausen Noise; Avaliacao de superficie cementada de acos com efeito Barkhausen

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M.F. de; Santos, R.; Silva, F.S. da; Ribeiro, S.B.; Lins, J.F.C., E-mail: mcampos@metal.eeimvr.uff.b [Universidade Federal Fluminense (PUVR/UFF), Volta Redonda, RJ (Brazil). Polo Universitario de Volta Redonda; Franco, F.A.; Padovese, L.R. [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica

    2010-07-01

    Steels with different carbon content, 0.11%C and 0.48%C were submitted to a heat treatment for carburization in the surface. The samples were analyzed in the conditions: normalized, only carburized and carburized and quenched as received. The Magnetic Barkhausen Noise (MBN) was measured in all samples. A better understanding of the relation between microstructure and MBN is of large interest for nondestructive characterization. X-ray diffraction (XRD) has revealed large peak broadening for the samples carburized and quenched, which have martensite. This is due to the high density of dislocations and high internal stress in the martensite. It is also found that the MBN peaks are quite distinct for the samples with martensite, which present nanocrystalline structure. When martensite is present, domain rotation occurs more significantly, reducing the permeability and the MBN envelope signal intensity. MBN is a suitable method for non-destructive evaluation of the quality of the carburization process. (author)

  13. Ricci Curvature on Polyhedral Surfaces via Optimal Transportation

    Directory of Open Access Journals (Sweden)

    Benoît Loisel

    2014-03-01

    Full Text Available The problem of correctly defining geometric objects, such as the curvature, is a hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to a wide category of measured metric spaces, in particular to graphs. He named it coarse Ricci curvature because it coincides, up to some given factor, with the classical Ricci curvature, when the space is a smooth manifold. Lin, Lu and Yau and Jost and Liu have used and extended this notion for graphs, giving estimates for the curvature and, hence, the diameter, in terms of the combinatorics. In this paper, we describe a method for computing the coarse Ricci curvature and give sharper results, in the specific, but crucial case of polyhedral surfaces.

  14. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Directory of Open Access Journals (Sweden)

    K. Yi

    2017-07-01

    Full Text Available The response of surface ozone (O3 concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM. Idealized, spatially uniform sea surface temperature (SST anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage

  15. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Science.gov (United States)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST

  16. Layering of surface snow and firn at Kohnen Station, Antarctica: Noise or seasonal signal?

    Science.gov (United States)

    Laepple, Thomas; Hörhold, Maria; Münch, Thomas; Freitag, Johannes; Wegner, Anna; Kipfstuhl, Sepp

    2016-10-01

    The density of firn is an important property for monitoring and modeling the ice sheets as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data. On the other hand, high-resolution density measurements on firn cores in Antarctica and Greenland show no clear seasonal cycle in the top few meters. A major caveat of most existing snow-pit and firn-core-based studies is that they represent one vertical profile from a laterally heterogeneous density field. To overcome this, we created an extensive data set of horizontal and vertical density data at Kohnen Station, Dronning Maud Land, on the East Antarctic Plateau. We drilled and analyzed three 90 m long firn cores as well as 143 one-meter-long vertical profiles from two elongated snow trenches to obtain a two-dimensional view of the density variations. The analysis of the 45 m wide and 1 m deep density fields reveals a seasonal cycle in density. However, the seasonality is overprinted by strong stratigraphic noise, making it invisible when analyzing single firn cores. Our density data set extends the view from the local ice core perspective to a hundred meter scale and thus supports linking spatially integrating methods such as radar and seismic studies to ice and firn cores.

  17. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin Univ., Seoul (Korea, Republic of)

    2014-03-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems.

  18. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    Science.gov (United States)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  19. A noise-resistant ADSA-PH algorithm for superhydrophobic surface's static contact angle evaluation

    Science.gov (United States)

    Xu, Z. N.

    2017-03-01

    The blur around the contact points significantly decreases the evaluated static contact angle for superhydrophobic surface which is clearly presented in the paper. To improve the accuracy in the evaluated static contact angle for superhydrophobic surface, an accurate static contact angle algorithm, namely ADSA-PH (axisymmetric drop shape analysis-profile and height), is proposed. It discards the extracted drop edge points close to the contact points and makes use of the residual points and the drop height to determine the static contact angle. The contact angle errors caused by the blur close to the contact points are significantly reduced. The classical ADSA-P algorithm, the modified selected-plane method and the proposed algorithm are used to evaluate static contact angle. The results validate the proposed algorithm. The accuracy in the evaluated contact angle increases with increasing image resolution. To reduce the error caused by a limitation of image resolution, the minimum allowable image resolutions are presented.

  20. Analysis and models of pre-injection surface seismic array noise recorded at the Aquistore carbon storage site

    Science.gov (United States)

    Birnie, Claire; Chambers, Kit; Angus, Doug; Stork, Anna L.

    2016-08-01

    Noise is a persistent feature in seismic data and so poses challenges in extracting increased accuracy in seismic images and physical interpretation of the subsurface. In this paper, we analyse passive seismic data from the Aquistore carbon capture and storage pilot project permanent seismic array to characterise, classify and model seismic noise. We perform noise analysis for a three-month subset of passive seismic data from the array and provide conclusive evidence that the noise field is not white, stationary, or Gaussian; characteristics commonly yet erroneously assumed in most conventional noise models. We introduce a novel noise modelling method that provides a significantly more accurate characterisation of real seismic noise compared to conventional methods, which is quantified using the Mann-Whitney-White statistical test. This method is based on a statistical covariance modelling approach created through the modelling of individual noise signals. The identification of individual noise signals, broadly classified as stationary, pseudo-stationary and non-stationary, provides a basis on which to build an appropriate spatial and temporal noise field model. Furthermore, we have developed a workflow to incorporate realistic noise models within synthetic seismic data sets providing an opportunity to test and analyse detection and imaging algorithms under realistic noise conditions.

  1. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China

    Science.gov (United States)

    Li, Xiaoyuan; Liu, Junfeng; Mauzerall, Denise L.; Emmons, Louisa K.; Walters, Stacy; Horowitz, Larry W.; Tao, Shu

    2014-11-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  2. Effects of trans-Eurasian transport of anthropogenic pollutants on surface ozone concentrations over China

    Science.gov (United States)

    Liu, J.; Li, X.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Guo, Y.; Tao, S.

    2015-12-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies as well as a fully-tagged approach, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  3. Light-Driven Transport of a Liquid Marble with and against Surface Flows.

    Science.gov (United States)

    Kavokine, Nikita; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Bickel, Thomas; Baigl, Damien

    2016-09-01

    Liquid marbles, that is, liquid drops coated by a hydrophobic powder, do not wet any solid or liquid substrate, making their transport and manipulation both highly desirable and challenging. Herein, we describe the light-driven transport of floating liquid marbles and emphasize a surprising motion behavior. Liquid marbles are deposited on a water solution containing photosensitive surfactants. Irradiation of the solution generates photoreversible Marangoni flows that transport the liquid marbles toward UV light and away from blue light when the thickness of the liquid substrate is large enough (Marangoni regime). Below a critical thickness, the liquid marbles move in the opposite direction to that of the surface flow at a speed increasing with decreasing liquid thickness (anti-Marangoni). We demonstrate that the anti-Marangoni motion is driven by the free surface deformation, which propels the non-wetting marble against the surface flow. We call this behavior "slide effect".

  4. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  5. Continuous directional water transport on the peristome surface of Nepenthes alata

    Science.gov (United States)

    Chen, Huawei; Zhang, Pengfei; Zhang, Liwen; Liu, Hongliang; Jiang, Ying; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2016-04-01

    Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the ‘peristome’—the rim of the pitcher—because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic ‘design’ principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications.

  6. Tunable Surface Hydrophobicity and Fluid Transport through Nanoporous Membranes

    Science.gov (United States)

    Ostrowski, Joseph H. J.

    There are more than three billion people across the globe that struggle to obtain clean drinkable water. One of the most promising avenues for generating potable water is through reverse osmosis and nanofiltration. Both solutions require a semipermeable membrane that prohibits passage of unwanted solute particles but allows passage of the solvent. Atomically thin two-dimensional membranes based on porous graphene show great promise as semipermeable materials, but modeling fluid flow on length scales between the microscopic (nanometer and smaller) and macroscopic (micron and larger) regimes presents formidable challenges. This thesis explores both equilibrium and nonequilibrium aspects of this problem and develops new methodology for simulating systems away from thermal equilibrium. First, we hypothesize that there is a wetting penalty for water as it tries to breach a sheet of graphene that should be naturally hydrophobic. By using equilibrium molecular dynamics simulations, we show that the hydrophobicity depends sensitively on the degree of electrical doping, offering an opportunity to tune the hydrophobic effect of graphene using small amounts of doping. The wetting contact angle, a measure of hydrophobicity, changes dramatically with the voltage applied to single layer graphene. We find that the sensitivity of the hydrophobic effect to voltage depends not on hydrogen bonding motifs at the interface between graphene and water, but instead on a phenomenon known as electrowetting. The theory of electrowetting predicts that the difference in surface tensions that defines the contact angle is quartic in the voltage, rather than quadratic, as it would be in bilayer graphene or in a two-dimensional metal. To explore the nonequilibrium aspects of fluid passage through atomically thin membranes, we developed a molecular dynamics methodology for simulating fluid flow at constant flux based on Gauss's principle of least constraint. This method develops microscopic

  7. Experimental investigation and calibration of surface pressure modeling for trailing edge noise

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2011-01-01

    The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient...... increases. This model is modified by introducing anisotropy in the definition of the vertical velocity component spectrum across the boundary layer. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient...... and by tuning the anisotropy factor, experimental results can be closely reproduced by the modified model....

  8. Corresponding-states principle and its practice thermodynamic, transport and surface properties of fluids

    CERN Document Server

    Xiang, Hong Wei

    2005-01-01

    The corresponding-states principle helps the understanding and calculating of thermodynamic, transport, and surface properties of substances in various states, required by our modern lifestyle. The Corresponding-States Principle and its Practice: Thermodynamic, Transport and Surface Properties of Fluids describes the origins and applications of the principle from a universal point of view with comparisons to experimental data where possible. It uses the universal theory to explain present theories. Emphasis is on the properties of pure systems, and the corresponding-states theory can also be e

  9. A simple approach to fabricate the rose petal-like hierarchical surfaces for droplet transportation

    Science.gov (United States)

    Yuan, Chao; Huang, Mengyu; Yu, Xingjian; Ma, Yupu; Luo, Xiaobing

    2016-11-01

    Precise transportation of liquid microdroplets is a great challenge in the microfluidic field. A sticky superhydrophobic surface with a high static contact angle (CA) and a large contact angle hysteresis (CAH) is recognized as the favorable tool to deal with the challenging job. Some approaches have been proposed to fabricate such surface, such as mimicing the dual-scale hierarchical structure of a natural material, like rose petal. However, the available approaches normally require multiple processing steps or are carried out with great expense. In this study, we report a straightforward and inexpensive method for fabricating the sticky superhydrophobic surfaces. The fabrication relies on electroless galvanic deposition to coat the copper substrates with a textured layer of silver. The whole fabrication process is carried out under ambient conditions by using conventional laboratory materials and equipments, and generally take less than 15 min. Despite the simplicity of this fabrication method, the rose petal-like hierarchical structures and the corresponding sticky superhydrophobic wetting properties were well achieved on the artificial surfaces. For instance, the surface with a deposition time of 10 s exhibits the superhydrophobity with a CA of 151.5°, and the effective stickiness with a CAH of 56.5°. The prepared sticky superhydrophobic surfaces are finally shown in the application of droplet transportation, in which the surface acts as a mechanical hand to grasp and transport the water droplet.

  10. Advanced computer technology - An aspect of the Terminal Configured Vehicle program. [air transportation capacity, productivity, all-weather reliability and noise reduction improvements

    Science.gov (United States)

    Berkstresser, B. K.

    1975-01-01

    NASA is conducting a Terminal Configured Vehicle program to provide improvements in the air transportation system such as increased system capacity and productivity, increased all-weather reliability, and reduced noise. A typical jet transport has been equipped with highly flexible digital display and automatic control equipment to study operational techniques for conventional takeoff and landing aircraft. The present airborne computer capability of this aircraft employs a multiple computer simple redundancy concept. The next step is to proceed from this concept to a reconfigurable computer system which can degrade gracefully in the event of a failure, adjust critical computations to remaining capacity, and reorder itself, in the case of transients, to the highest order of redundancy and reliability.

  11. Numerical modelling of ground-borne noise and vibration in buildings due to surface rail traffic

    Science.gov (United States)

    Fiala, P.; Degrande, G.; Augusztinovicz, F.

    2007-04-01

    This paper deals with the numerical computation of the structural and acoustic response of a building to an incoming wave field generated by high-speed surface railway traffic. The source model consists of a moving vehicle on a longitudinally invariant track, coupled to a layered ground modelled with a boundary element formulation. The receiver model is based on a substructuring formulation and consists of a boundary element model of the soil and a finite element model of the structure. The acoustic response of the building's rooms is computed by means of a spectral finite element formulation. The paper investigates the structural and acoustic response of a multi-story portal frame office building up to a frequency of 150 Hz to the passage of a Thalys high-speed train at constant velocity. The isolation performance of three different vibration countermeasures: a floating-floor, a room-in-room, and base-isolation, are examined.

  12. Probing the electronic transport on the reconstructed Au/Ge(001 surface

    Directory of Open Access Journals (Sweden)

    Franciszek Krok

    2014-09-01

    Full Text Available By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001-c(8 × 2-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons.

  13. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  14. Formulation Effects and the Off-target Transport of Pyrethroid Insecticides from Urban Hard Surfaces

    OpenAIRE

    2010-01-01

    Controlled rainfall experiments utilizing drop forming rainfall simulators were conducted to study various factors contributing to off-target transport of off-the-shelf formulated pyrethroid insecticides from concrete surfaces. Factors evaluated included active ingredient, product formulation, time between application and rainfall (set time), and rainfall intensity. As much as 60% and as little as 0.8% of pyrethroid applied could be recovered in surface runoff depending primarily on product f...

  15. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    Science.gov (United States)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-11-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.

  16. Lithosphere/Asthenosphere Structure beneath the Mendocino Triple Junction from the Analysis of Surface Wave, Ambient Noise, and Receiver Functions

    Science.gov (United States)

    Liu, K.; Zhai, Y.; Levander, A.; Porritt, R. W.; Allen, R. M.; Schmandt, B.; Humphreys, E.; O'Driscoll, L.

    2010-12-01

    We have developed a 3-D shear velocity model using finite-frequency Rayleigh wave phase velocity dispersion, PdS receiver functions, and ambient noise tomography to better understand the complex lithosphere/asthenosphere structures in the Mendocino Triple Junction (MTJ) region. Using approximately 100 events (July 2007-December 2008) recorded by the stations of the Flexible Array Mendocino Experiment (FAME), the USArray Transportable Array (TA) network, and the Berkeley Digital Seismograph network, we have obtained the phase velocities (20-100s) from the finite-frequency Rayleigh wave tomography, which agrees well with the ambient noise tomography results (7-40 s, Porritt & Allen, 2010) in the overlapping period range. We subsequently inverted for a 3-D Vs model on a 0.25°x0.25° grid from the combined dispersion datasets, constrained by interface depths from the PdS receiver functions (Zhai & Levander, 2010). The resulting crustal and upper mantle Vs model (~150 km) reveals strong lateral heterogeneity in the subduction and transform regimes of the Mendocino Triple Junction region where the Gorda, Pacific, and North American plates intersect. The subducting Gorda slab is well-imaged as an eastward-dipping high-velocity anomaly to ~100 km depth. At the same depth to the east we observe a large-scale low velocity zone, which is the mantle wedge beneath the North American Plate. The southern edge of the Gorda plate (SEDGE) is imaged at 80-100 km depth and is in excellent agreement with measurements made from PdS receiver functions, body-wave tomography (Schmandt & Humphreys, 2010; Obrebski et al., 2010), and active source studies. At depths greater than 80 km, we interpret low velocities under the Cascadia subduction zone as the asthenosphere below the Gorda plate, in agreement with measured LAB depths from RFs. South of the SEDGE shallow strong low-velocities appear beneath the transform region, which we interpret as the asthenosphere in the slab-gap region left by

  17. Mass Transport in a Thin Layer of Bi-Viscous Mud Under Surface Waves

    Institute of Scientific and Technical Information of China (English)

    NG Chiu-on; FU Sau-chung; BAI Yu-chuan(白玉川)

    2002-01-01

    The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluidStokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-appliedstresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers areapplied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numeri-cally. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of theflow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i. e., oppo-site to wave propagation) for a certain range of yield stress.

  18. Ambipolar surface state transport in nonmetallic stoichiometric Bi2Se3 crystals

    Science.gov (United States)

    Syers, Paul; Paglione, Johnpierre

    2017-01-01

    Achieving true bulk insulating behavior in Bi2Se3 , the archetypal topological insulator with a simplistic one-band electronic structure and sizable band gap, has been prohibited by a well-known self-doping effect caused by selenium vacancies, whose extra electrons shift the chemical potential into the bulk conduction band. We report a synthesis method for achieving stoichiometric Bi2Se3 crystals that exhibit nonmetallic behavior in electrical transport down to low temperatures. Hall-effect measurements indicate the presence of both electron- and holelike carriers, with the latter identified with surface state conduction and the achievement of ambipolar transport in bulk Bi2Se3 crystals without gating techniques. With carrier mobilities surpassing the highest values yet reported for topological surface states in this material, the achievement of ambipolar transport via upward band bending is found to provide a key method to advancing the potential of this material for future study and applications.

  19. Mass transport in a thin layer of power-law mud under surface waves

    Science.gov (United States)

    Liu, Jie; Bai, Yuchuan; Xu, Dong

    2017-02-01

    The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.

  20. Nonadiabaticity and single-electron transport driven by surface acoustic waves

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Niu, Q.; Pustilnik, M.

    1999-01-01

    Single-electron transport driven by surface acoustic waves (SAW) through a narrow constriction, formed in a two-dimensional electron gas, is studied theoretically. Due to long-range Coulomb interaction, the tunneling coupling between the electron gas and the moving minimum of the SAW...

  1. Ambient Noise Surface Wave Tomography of the volcanic systems of eastern Iceland

    Science.gov (United States)

    Green, R. G.; Priestley, K. F.; White, R. S.

    2015-12-01

    The Vatnajökull region of central-east Iceland lies above the head of the Iceland mantle plume where the crust is thickest due to enhanced melt supply. As a result the region contains a high density of volcanic rift systems, with six large subglacial central volcanoes. Due to the ice cover, the geological structure of the area and the location of past eruptions are poorly known. Imaging of the crustal velocity heterogeneities beneath the ice sheet aims to reveal much in terms of the structure of these volcanic plumbing systems. Mapping of significant velocity changes through time may also be indicative of movement of melt around the central volcanoes; one of which (Bárðarbunga) experienced a major rifting event in August 2014 (Sigmundsson et al. Nature 2015, Green et al. Nature Geosci. 2015). We present results from tomographic imaging of the volcanic systems in the region, using continuous data from a local broadband seismic network in central-east Iceland which provides excellent ray path coverage of the volcanic systems. This is supplemented by data from the HOTSPOT and ICEMELT experiments and the permanent monitoring stations of the Icelandic Meteorological Office. We process the continuous data following Benson et al. 2007 and automatic frequency-time analysis (FTAN) routines are used to extract more than 9000 dispersion measurements. We then generate Rayleigh wave group velocity maps which we present here. We find low velocity regions beneath the Vatnajökull icecap which are bounded by the surface expression of the volcanic rift systems. The lower velocities also extend north-west to the volcanic system under the Hofsjökull ice cap, and northwards towards Askja and the volcanic systems of the northern volcanic zone. We also produce locations and focal mechanisms of earthquakes caused by magmatic and hydrothermal activity to correlate structure with the activity of the volcanic systems.

  2. Quantum transport and two-parameter scaling at the surface of a weak topological insulator.

    Science.gov (United States)

    Mong, Roger S K; Bardarson, Jens H; Moore, Joel E

    2012-02-17

    Weak topological insulators have an even number of Dirac cones in their surface spectrum and are thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the presence of disorder alone will not localize the surface states; rather, the presence of a time-reversal symmetric mass term is required for localization. Through numerical simulations, we show that in the absence of the mass term the surface always flow to a stable metallic phase and the conductivity obeys a one-parameter scaling relation, just as in the case of a strong topological insulator surface. With the inclusion of the mass, the transport properties of the surface of a weak topological insulator follow a two-parameter scaling form.

  3. Solute transport predicts scaling of surface reaction rates in porous media: Applications to silicate weathering

    CERN Document Server

    Hunt, Allen G; Ghanbarian, Behzad

    2013-01-01

    We apply our theory of conservative solute transport, based on concepts from percolation theory, directly and without modification to reactive solute transport. This theory has previously been shown to predict the observed range of dispersivity values for conservative solute transport over ten orders of magnitude of length scale. We now show that the temporal dependence derived for the solute velocity accurately predicts the time-dependence for the weathering of silicate minerals over nine orders of magnitude of time scale, while its predicted length dependence agrees with data obtained for reaction rates over five orders of magnitude of length scale. In both cases, it is possible to unify lab and field results. Thus, net reaction rates appear to be limited by solute transport velocities. We suggest the possible relevance of our results to landscape evolution of the earth's terrestrial surface.

  4. Reliable transport through a microfabricated X-junction surface-electrode ion trap

    Science.gov (United States)

    Wright, Kenneth; Amini, Jason M.; Faircloth, Daniel L.; Volin, Curtis; Doret, S. Charles; Hayden, Harley; Pai, C.-S.; Landgren, David W.; Denison, Douglas; Killian, Tyler; Slusher, Richart E.; Harter, Alexa W.

    2013-03-01

    We report the design, fabrication and characterization of a microfabricated surface-electrode ion trap that supports controlled transport through the two-dimensional intersection of linear trapping zones arranged in a 90° cross. The trap is fabricated with very large scalable integration techniques which are compatible with scaling to a large quantum information processor. The shape of the radio-frequency electrodes is optimized with a genetic algorithm to reduce axial pseudopotential barriers and minimize ion heating during transport. Seventy-eight independent dc control electrodes enable fine control of the trapping potentials. We demonstrate reliable ion transport between junction legs and determine the rate of ion loss due to transport. Doppler-cooled ions survive more than 105 round-trip transits between junction legs without loss and more than 65 consecutive round trips without laser cooling.

  5. Heating and ion transport in a Y-junction surface-electrode trap

    CERN Document Server

    Shu, G; Volin, C; Buikema, A; Nichols, C S; Stick, D; Brown, Kenneth R

    2014-01-01

    We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heating background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To reliably measure heating in this range, we compare the experimental sideband envelope, including up to fourth-order sidebands, to a theoretical model. The sideband envelope method allows us to cover the intermediate heating range inaccessible to the first-order sideband and Doppler recooling methods. We conclude that quantum information processing in this ion trap will likely require sympathetic cooling in order to support high fidelity gates after junction transport.

  6. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... microscopy. Measurements on Si(111) surfaces in ultrahigh vacuum reveal that the Si(111)-root 3x root3-Ag structure induced by a monolayer of Ag atoms has a four-point resistance two orders of magnitude lower than that of the Si(111)-7x7 clean surface. We attribute this remarkable difference to direct...

  7. Quantum transport in the surface states of epitaxial Bi(111) thin films

    Science.gov (United States)

    Zhu, Kai; Wu, Lin; Gong, Xinxin; Xiao, Shunhao; Jin, Xiaofeng

    2016-09-01

    Although bulk Bi is a prototypical semimetal with a topologically trivial electronic band structure, we show by various quantum transport measurements that epitaxial Bi(111) thin films have unexpected and nontrivial properties. Not only the top and the bottom but also the side surfaces of epitaxial Bi(111) thin films are always robustly metallic while the interior has already become insulating. We identify the coupling between the top and the bottom surface states that drives the two originally independent surface conducting channels into a single connected one. The properties of Bi(111) thin films realized could lead to promising applications in spintronics.

  8. Rapid transport from the surface to wells in fractured rock: a unique infiltration tracer experiment.

    Science.gov (United States)

    Levison, Jana K; Novakowski, Kent S

    2012-04-01

    A unique infiltration tracer experiment was performed whereby a fluorescent dye was applied to the land surface in an agricultural field, near Perth, Ontario, Canada, to simulate the transport of solutes to two pumped monitoring wells drilled into the granitic gneiss aquifer. This experiment, interpreted using the discrete-fracture capability of the numerical model HydroGeoSphere, showed that solute transport from the surface through thin soil (less than 2m) to wells in fractured bedrock can be extremely rapid (on the order of hours). Also, it was demonstrated that maximum concentrations of contaminants originating from the ground surface will not necessarily be the highest in the shallow aquifer horizon. These are important considerations for both private and government-owned drinking water systems that draw water from shallow fractured bedrock aquifers. This research illustrates the extreme importance of protecting drinking water at the source.

  9. Transport of particles by surface waves: a modification of the classical bouncer model

    Energy Technology Data Exchange (ETDEWEB)

    Ragulskis, M [Department of Mathematical Research in Systems, Kaunas University of Technology, Studentu 50-222, 51638 Kaunas (Lithuania); Sanjuan, M A F [Nonlinear Dynamics and Chaos Group, Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)], E-mail: minvydas.ragulskis@ktu.lt, E-mail: miguel.sanjuan@urjc.es

    2008-08-15

    We consider a ball under the influence of gravity on a platform. A propagating surface wave travels on the surface of the platform, while the platform remains motionless. This is a modification of the classical bouncing ball problem and describes the transport of particles by surface waves. Phase and velocity maps cannot be expressed in an explicit form owing to implicit formulations, and no formal analytical analysis is possible. Numerical analysis shows that the transition to chaos is produced via a period doubling route, which is a common property for classical bouncers. The bouncing process can be sensitive to the initial conditions, which can build the ground for control techniques that can dramatically increase the effectiveness of particle transport in practical applications.

  10. The Effect of Surface Roughness on Fluid Configuration and Solute Transport in Unsaturated Porous Media

    Science.gov (United States)

    Kibbey, T. C.

    2013-12-01

    When describing the configuration of water in unsaturated media, a distinction is often made between water that is held by capillary forces between grains (capillary water), and water associated with adsorbed films on solid surfaces (film water). The objective of this work was to better understand the nature of the water associated with solid surfaces, with emphasis on understanding the configuration of water on rough natural surfaces. Stereoscopic SEM was used to determine elevation maps on a range of different natural solid surfaces. A computational technique was then developed to calculate the configuration of water on the surfaces as a function of capillary pressure. Calculations of fluid configurations show that, except at extremely high capillary pressures, fluid configuration is dominated by bridging of surface roughness features, even for extremely smooth surfaces. Results suggest that true adsorbed films are likely extremely rare in the environment except under near-dry, ultra-high capillary pressure conditions. This result has significant implications for understanding fate and transport within the unsaturated zone. Preliminary simulations exploring the impact on transport will be discussed.

  11. Surface Effect on Oil Transportation in Nanochannel: a Molecular Dynamics Study.

    Science.gov (United States)

    Zheng, Haixia; Du, Yonggang; Xue, Qingzhong; Zhu, Lei; Li, Xiaofang; Lu, Shuangfang; Jin, Yakang

    2017-12-01

    In this work, we investigate the dynamics mechanism of oil transportation in nanochannel using molecular dynamics simulations. It is demonstrated that the interaction between oil molecules and nanochannel has a great effect on the transportation properties of oil in nanochannel. Because of different interactions between oil molecules and channel, the center of mass (COM) displacement of oil in a 6-nm channel is over 30 times larger than that in a 2-nm channel, and the diffusion coefficient of oil molecules at the center of a 6-nm channel is almost two times more than that near the channel surface. Besides, it is found that polarity of oil molecules has the effect on impeding oil transportation, because the electrostatic interaction between polar oil molecules and channel is far larger than that between nonpolar oil molecules and channel. In addition, channel component is found to play an important role in oil transportation in nanochannel, for example, the COM displacement of oil in gold channel is very few due to great interaction between oil and gold substrate. It is also found that nano-sized roughness of channel surface greatly influences the speed and flow pattern of oil. Our findings would contribute to revealing the mechanism of oil transportation in nanochannels and therefore are very important for design of oil extraction in nanochannels.

  12. Influence of enterococcal surface protein (esp) on the transport of Enterococcus faecium within saturated quartz sands.

    Science.gov (United States)

    Johanson, Jennifer J; Feriancikova, Lucia; Xu, Shangping

    2012-02-07

    Enterococcus was selected by US EPA as a Gram-positive indicator microorganism for groundwater fecal contamination. It was recently reported that enterococcal surface protein (esp) was more prevalent in Enterococcus from human sources than in Enterococcus from nonhuman sources and esp could potentially be used as a source tracking tool for fecal contamination (Scott et al., 2005). In this research, we performed laboratory column transport experiments to investigate the transport of Enterococcus faecium within saturated quartz sands. Particularly, we used a wild type strain (E1162) and a mutant (E1162Δesp) to examine the influence of esp on the transport behavior of E. faecium. Our results showed that esp could significantly enhance the attachment of E. faecium cells onto the surface of silica sands and thus lower the mobility of E. faecium within sand packs. Cell surface properties (e.g., zeta potential) were determined and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was applied to explain the effects of esp on the retention of E. faecium. Overall, our results suggested that E. faecium strains with esp could display lower mobility within saturated sand packs than E. faecium strains without esp. The disparity in the transport behavior of E. faecium with and without esp could limit the effectiveness of esp as a source tracking tool within the groundwater system.

  13. Electrical Transport and Low-Frequency Noise in Chemical Vapor Deposited Single-Layer MoS2 Devices

    Science.gov (United States)

    2014-03-18

    noise in graphene devices [18–20], and lately on MoS2 FETs [21]. Particularly for MoS2 devices, there exists a lack of understanding of the dominant...methods Monolayer MoS2 films were grown directly on a SiO2 -coated (285 nm) Si substrate using the procedure described in detail by Najmaei et al [24...passivated and etched devices, respectively. In the case of graphene devices, several groups have reported SID/IDS2 in the range of 10−9 Hz−1 to 10−7 Hz−1 at

  14. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered......The electrical properties of semiconductor surfaces have played a decisive role in one of the most important discoveries of the last century, transistors. In the 1940s, the concept of surface states-new electron energy levels characteristic of the surface atoms-was instrumental in the fabrication...... of the first point-contact transistors, and led to the successful fabrication of field-effect transistors. However, to this day, one property of semiconductor surface states remains poorly understood, both theoretically and experimentally. That is the conduction of electrons or holes directly through...

  15. Magnetically Controlled Electronic Transport Properties of a Ferromagnetic Junction on the Surface of a Topological Insulator

    Science.gov (United States)

    Liu, Zheng-Qin; Wang, Rui-Qiang; Deng, Ming-Xun; Hu, Liang-Bin

    2015-06-01

    We have investigated the transport properties of the Dirac fermions through a ferromagnetic barrier junction on the surface of a strong topological insulator. The current-voltage characteristic curve and the tunneling conductance are calculated theoretically. Two interesting transport features are predicted: observable negative differential conductances and linear conductances tunable from unit to nearly zero. These features can be magnetically manipulated simply by changing the spacial orientation of the magnetization. Our results may contribute to the development of high-speed switching and functional applications or electrically controlled magnetization switching. Supported by National Natural Science Foundation of China under Grant Nos. 11174088, 11175067, 11274124

  16. Measurements of wind friction speeds over lava surfaces and assessment of sediment transport

    Science.gov (United States)

    Greeley, Ronald; Iversen, James D.

    1987-01-01

    Wind velocity profiles were obtained over alluvial plains, lava flows, and a cinder cone in the Mojave Desert to determine the wind shear and the potential for particle transport. It was found that aerodynamic roughness for winds increases nearly a factor of 5 as flow crosses from the alluvium to the lava surface, resulting in wind shear that is 21 percent greater. Thus, wind erosion and sand flux may be substantially enhanced over the lava field. Moreover, wind flow turbulence is enhanced in the wake of the cinder cone, which also increases erosion and sediment transportation by the wind.

  17. A controlled field pilot for testing near surface CO2 detection techniques and transport models

    Science.gov (United States)

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.; Nehrir, A.; Humphries, S.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, Thomas; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2009-01-01

    A field facility has been developed to allow controlled studies of near surface CO2 transport and detection technologies. The key component of the facility is a shallow, slotted horizontal well divided into six zones. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects. A wide variety of detection techniques were deployed by collaborators from 6 national labs, 2 universities, EPRI, and the USGS. Additionally, modeling of CO2 transport and concentrations in the saturated soil and in the vadose zone was conducted. An overview of these results will be presented. ?? 2009 Elsevier Ltd. All rights reserved.

  18. The Kuroshio Transport East of Taiwan and the Sea Surface Height Anomaly from the Interior Ocean

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU Qinyu; JIA Yinglai

    2004-01-01

    The relationship between the Kuroshio transport to the east of Taiwan and the SSHA(Sea Surface Height Anomaly)field is studied based on the World Ocean Circulation Experiment(WOCE)PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA(Map of Sea Level Anomaly)products merged with the ERS and TOPEX/POSEIDON(T/P)data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream(22°-24°, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.

  19. Predicting uncertainty in sediment transport and landscape evolution - the influence of initial surface conditions

    Science.gov (United States)

    Hancock, G. R.; Coulthard, T. J.; Lowry, J. B. C.

    2016-05-01

    Numerical landscape evolution models were initially developed to examine natural catchment hydrology and geomorphology and have become a common tool to examine geomorphic behaviour over a range of time and space scales. These models all use a digital elevation model (DEM) as a representation of the landscape surface and a significant issue is the quality and resolution of this surface. Here we focus on how subtle perturbations or roughness on the DEM surface can produce alternative model results. This study is carried out by randomly varying the elevations of the DEM surface and examining the effect on sediment transport rates and geomorphology for a proposed rehabilitation design for a post-mining landscape using multiple landscape realisations with increasing magnitudes of random changes. We show that an increasing magnitude of random surface variability does not appear to have any significant effect on sediment transport over millennial time scales. However, the random surface variability greatly changes the temporal pattern or delivery of sediment output. A significant finding is that all simulations at the end of the 10,000 year modelled period are geomorphologically similar and present a geomorphological equifinality. However, the individual patterns of erosion and deposition were different for repeat simulations with a different sequence of random perturbations. The alternative positions of random perturbations strongly influence local patterns of hillslope erosion and evolution together with the pattern and behaviour of deposition. The findings demonstrate the complex feedbacks that occur even within a simple modelled system.

  20. Enhanced Hydrogen Transport over Palladium Ultrathin Films through Surface Nanostructure Engineering.

    Science.gov (United States)

    Abate, Salvatore; Giorgianni, Gianfranco; Gentiluomo, Serena; Centi, Gabriele; Perathoner, Siglinda

    2015-11-01

    Palladium ultrathin films (around 2 μm) with different surface nanostructures are characterized by TEM, SEM, AFM, and temperature programmed reduction (TPR), and evaluated in terms of H2 permeability and H2-N2 separation. A change in the characteristics of Pd seeds by controlled oxidation-reduction treatments produces films with the same thickness, but different surface and bulk nanostructure. In particular, the films have finer and more homogeneous Pd grains, which results in lower surface roughness. Although all samples show high permeo-selectivity to H2 , the samples with finer grains exhibit enhanced permeance and lower activation energy for H2 transport. The analysis of the data suggests that grain boundaries between the Pd grains at the surface favor H2 transfer from surface to subsurface. Thus, the surface nanostructure plays a relevant role in enhancing the transport of H2 over the Pd ultrathin film, which is an important aspect to develop improved membranes that function at low temperatures and toward new integrated process architectures in H2 and syngas production with enhanced sustainability.

  1. Evaluating noise abatement measures using strategic noise maps

    NARCIS (Netherlands)

    Borst, H.C.; Miedema, H.M.E.; Laan, W.P.N. van der; Lohman, W.J.A.

    2006-01-01

    Noise annoyance due to transportation is widespread in industrialized countries and in urban areas in the developing countries. The European Noise Directive (END) requires an assessment of the noise situation as well as the formulation of action plans for the reduction of the number of people

  2. Evaluating noise abatement measures using strategic noise maps

    NARCIS (Netherlands)

    Borst, H.C.; Miedema, H.M.E.; Laan, W.P.N. van der; Lohman, W.J.A.

    2006-01-01

    Noise annoyance due to transportation is widespread in industrialized countries and in urban areas in the developing countries. The European Noise Directive (END) requires an assessment of the noise situation as well as the formulation of action plans for the reduction of the number of people harmfu

  3. Narrow band noise as a model of time-dependent accelerations - Study of the stability of a fluid surface in a microgravity environment

    Science.gov (United States)

    Casademunt, Jaume; Zhang, Wenbin; Vinals, Jorge; Sekerka, Robert F.

    1993-01-01

    We introduce a stochastic model to analyze in quantitative detail the effect of the high frequency components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion. The residual acceleration field is modeled as a narrow band noise characterized by three independent parameters: its intensity G squared, a dominant frequency Omega, and a characteristic spectral width tau exp -1. The white noise limit corresponds to Omega tau goes to O, with G squared tau finite, and the limit of a periodic g-jitter (or deterministic limit) can be recovered for Omega tau goes to infinity, G squared finite. The analysis of the response of a fluid surface subjected to a fluctuating gravitational field leads to the stochastic Mathieu equation driven by both additive and multiplicative noise. We discuss the stability of the solutions of this equation in the two limits of white noise and deterministic forcing, and in the general case of narrow band noise. The results are then applied to typical microgravity conditions.

  4. Thermally driven transverse transports and magnetic dynamics on a topological surface capped with a ferromagnet strip

    Science.gov (United States)

    Deng, Ming-Xun; Zhong, Ming; Zheng, Shi-Han; Qiu, Jian-Ming; Yang, Mou; Wang, Rui-Qiang

    2016-02-01

    We theoretically study thermally driven transport of the Dirac fermions on the surface of a topological insulator capped with a ferromagnet strip. The generation and manipulation of anomalous Hall and Nernst effects are analyzed, in which the in-plane magnetization of the ferromagnet film is found to take a decisive role. This scenario is distinct from that modulated by Berry phase where the in-plane magnetization is independent. We further discuss the thermal spin-transfer torque as a backaction of the thermoelectric transports on the magnetization and calculate the dynamics of the anomalous Hall and Nernst effects self-consistently. It is found that the magnitude of the long-time steady Hall and Nernst conductance is determined by competition between the magnetic anisotropy and current-induced effective anisotropy. These results open up a possibility of magnetically controlling the transverse thermoelectric transports or thermally manipulating the magnet switching.

  5. Reliable transport through a microfabricated X-junction surface-electrode ion trap

    CERN Document Server

    Wright, Kenneth; Faircloth, Daniel L; Volin, Curtis; Doret, S Charles; Hayden, Harley; Pai, C-S; Landgren, David W; Denison, Douglas; Killian, Tyler; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    We report the design, fabrication, and characterization of a microfabricated surface-electrode ion trap that supports controlled transport through the two-dimensional intersection of linear trapping zones arranged in a ninety-degree cross. The trap is fabricated with very-large-scalable-integration (VLSI) techniques which are compatible with scaling to a larger quantum information processor. The shape of the radio-frequency (RF) electrodes is optimized with a genetic algorithm to minimize axial pseudopotential barriers and to minimize ion heating during transport. Seventy-eight independent DC control electrodes enable fine control of the trapping potentials. We demonstrate reliable ion transport between junction legs, trapping of ion chains with nearly-equal spacing in one of the trap's linear sections, and merging and splitting ions from these chains. Doppler-cooled ions survive more than 10^5 round-trip transits between junction legs without loss and more than sixty-five consecutive round trips without lase...

  6. Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport.

    Science.gov (United States)

    Hartmann, Nicolai F; Pramanik, Rajib; Dowgiallo, Anne-Marie; Ihly, Rachelle; Blackburn, Jeffrey L; Doorn, Stephen K

    2016-12-27

    Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. Here, we present the results of a combined pump-probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. Pump-probe measurements suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. The open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements.

  7. Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Nicolai F.; Pramanik, Rajib; Dowgiallo, Anne-Marie; Ihly, Rachelle; Blackburn, Jeffrey L.; Doorn, Stephen K.

    2016-12-27

    Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. Here, we present the results of a combined pump-probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. Pump-probe measurements suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. The open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements.

  8. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.

    Science.gov (United States)

    Neogi, Sanghamitra; Reparaz, J Sebastian; Pereira, Luiz Felipe C; Graczykowski, Bartlomiej; Wagner, Markus R; Sledzinska, Marianna; Shchepetov, Andrey; Prunnila, Mika; Ahopelto, Jouni; Sotomayor-Torres, Clivia M; Donadio, Davide

    2015-04-28

    A detailed understanding of the connections of fabrication and processing to structural and thermal properties of low-dimensional nanostructures is essential to design materials and devices for phononics, nanoscale thermal management, and thermoelectric applications. Silicon provides an ideal platform to study the relations between structure and heat transport since its thermal conductivity can be tuned over 2 orders of magnitude by nanostructuring. Combining realistic atomistic modeling and experiments, we unravel the origin of the thermal conductivity reduction in ultrathin suspended silicon membranes, down to a thickness of 4 nm. Heat transport is mostly controlled by surface scattering: rough layers of native oxide at surfaces limit the mean free path of thermal phonons below 100 nm. Removing the oxide layers by chemical processing allows us to tune the thermal conductivity over 1 order of magnitude. Our results guide materials design for future phononic applications, setting the length scale at which nanostructuring affects thermal phonons most effectively.

  9. New efficient optimal mass transport approach for single freeform surface design

    CERN Document Server

    Bösel, Christoph

    2015-01-01

    We present a new optimal mass transport approach for the design of a continuous single freeform surface for collimated beams. By applying the law of reflection/refraction and the well-known integrability condition, it is shown that the design process in a small angle approximation can be decoupled into the calculation of a raymapping by optimal mass transport methods and the subsequent construction of the freeform surface by a steady linear advection equation. It is shown that the solution of this linear advection equation can be obtained by a decomposition into two dimensional subproblems and solving these by standard integrals. The efficiency of the method is demonstrated by applying it to two challenging design examples.

  10. Taking advantage of reduced droplet-surface interaction to optimize transport of bioanalytes in digital microfluidics.

    Science.gov (United States)

    Freire, Sergio L S; Thorne, Nathaniel; Wutkowski, Michael; Dao, Selina

    2014-11-10

    Digital microfluidics (DMF), a technique for manipulation of droplets, is a promising alternative for the development of "lab-on-a-chip" platforms. Often, droplet motion relies on the wetting of a surface, directly associated with the application of an electric field; surface interactions, however, make motion dependent on droplet contents, limiting the breadth of applications of the technique. Some alternatives have been presented to minimize this dependence. However, they rely on the addition of extra chemical species to the droplet or its surroundings, which could potentially interact with droplet moieties. Addressing this challenge, our group recently developed Field-DW devices to allow the transport of cells and proteins in DMF, without extra additives. Here, the protocol for device fabrication and operation is provided, including the electronic interface for motion control. We also continue the studies with the devices, showing that multicellular, relatively large, model organisms can also be transported, arguably unaffected by the electric fields required for device operation.

  11. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Science.gov (United States)

    Umeda, Minoru; Katagiri, Mitsuhiko; Shironita, Sayoko; Nagayama, Norio

    2016-12-01

    This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor's technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  12. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min, E-mail: sjhanmin@nju.edu.cn

    2014-07-18

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field.

  13. Density wave like transport anomalies in surface doped Na2IrO3

    Directory of Open Access Journals (Sweden)

    Kavita Mehlawat

    2017-05-01

    Full Text Available We report that the surface conductivity of Na2IrO3 crystal is extremely tunable by high energy Ar plasma etching and can be tuned from insulating to metallic with increasing etching time. Temperature dependent electrical transport for the metallic samples show signatures of first order phase transitions which are consistent with charge or spin density wave like phase transitions predicted recently. Additionally, grazing-incidence small-angle x-ray scattering (GISAXS reveal that the room temperature surface structure of Na2IrO3 does not change after plasma etching.

  14. Surface and transport properties of Cu-Sn-Ti liquid alloys

    Institute of Scientific and Technical Information of China (English)

    R. Novakovic; E. Ricci; S. Amore; T. Lanata

    2006-01-01

    The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and Sn-Ti subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattce theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys.

  15. Stochastic model for photoinduced surface relief grating formation through molecular transport in polymer films.

    Energy Technology Data Exchange (ETDEWEB)

    Juan, M.; Plain, J.; Bachelot, R.; Royer, P.; Gray, S. K.; Wiederrecht, G. P.; Univ. de Technologie de Troyes

    2008-09-01

    We use a stochastic model to study photoinduced surface relief grating (SRG) formation due to molecular transport in azobenzene polymer films. The model is shown to reproduce the essential experimental features of SRG formation. In particular, it predicts SRG formation under both p and s polarizations, and the double peaked topographies that can occur at early times of the process. The evolving molecular positions and orientations during exposure are also followed, providing a useful mechanistic picture of SRG dynamics.

  16. Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign

    Science.gov (United States)

    Toups, Larry; Brown, Kendall; Hoffman, Stephen J.

    2015-01-01

    This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.

  17. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  18. Impact of lux gene insertion on bacterial surface properties and transport.

    Science.gov (United States)

    Chen, Gang; Srinivasa Ranga, Vijay Penagonda; Mao, Yongjun; Chen, Kevin; Qiao, Hanzi

    2008-03-01

    Genetic markers have been in popular use for tracing microbial movement in the environment. However, the impact of genetic marker insertion on microbial surface properties and consequent transport is often ignored. For this research, we investigated the impact of luminescence-based genetic marker insertion on bacterial surface properties and transport. Typical Gram-positive bacterial strains of Lactobacillus casei, Streptococcus mitis and Micrococcus luteus were used as model bacterial strains in this research. We manipulated gene transfer to observe the impact of lux gene insertion on bacterial surface properties based on contact angle measurements, and we conducted column experiments to evaluate the impact of lux gene insertion on bacterial transport. After lux gene insertion, bacterial interactions with the porous media increased, demonstrating stronger deposition potential in the porous media. Accordingly, retention of the daughter strains increased. Lux gene insertion also resulted in an increase in bacterial dispersion and equilibrium adsorption in the porous media. The bacterial deposition coefficient was found to correlate with the free energy of interactions between bacteria and the porous media.

  19. Passive scalar transport to and from the surface of a Pocillopora coral colony

    Science.gov (United States)

    Hossain, Md Monir; Staples, Anne

    2016-11-01

    Three-dimensional simulations of flow through a single Pocillopora coral colony were performed to examine the interaction between the flow conditions and scalar transport near a coral colony. With corals currently undergoing a third global bleaching event, a fuller understanding of the transport of nutrients, weak temperature gradients, and other passive scalars to and from the coral polyp tissue is more important than ever. The complex geometry of a coral colony poses a significant challenge for numerical simulation. To simplify grid generation and minimize computational cost, the immersed boundary method was implemented. Large eddy simulation was chosen as the framework to capture the turbulent flow field in the range of realistic Reynolds numbers of 5,000 to 30,000 and turbulent Schmidt numbers of up to 1,000. Both uniform and oscillatory flows through the colony were investigated. Significant differences were found between the cases when the scalar originated at the edge of the flow domain and was transported into the colony, versus when the scalar originated on the surface of the colony and was transported away from the coral. The domain-to-colony transport rates were found to be orders of magnitude higher than the colony-to-domain rates.

  20. A field study of colloid transport in surface and subsurface flows

    Science.gov (United States)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.

  1. Work Plan for: "Investigation of Noise, Durability, Permeability and Friction Performance Trends for Asphaltic Pavement Surface Types," PPRC Strategic Plan Item 4.16

    OpenAIRE

    Harvey, John T

    2005-01-01

    The central purpose of this research is to support the Caltrans Quiet Pavement Pilot Program. The research conforms with FHWA guidance provided to State DOTs that conduct tire/pavement noise research. The broader purpose of this research is to support the Caltrans Quieter Pavements Road Map and Work Plan, with goals and objectives that address quiet as well as permeable asphalt surfaces for pavements. Results from this research will identify best practice for selecting asphaltic surf...

  2. A physically-based integrated numerical model for flow, upland erosion, and contaminant transport in surface-subsurface systems

    Institute of Scientific and Technical Information of China (English)

    HE ZhiGuo; WU WeiMing

    2009-01-01

    This paper presents a physically-based integrated hydrologic model that can simulate the rain-fall-induced 2D surface water flow, 3D variably saturated subsurface flow, upland soil erosion and transport, and contaminant transport in the surface-subsurface system of a watershed.The model couples surface and subsurface flows based on the assumption of continuity conditions of pressure head and exchange flux at the ground, considering infiltration and evapotranspiration.The upland rill/interrill soil erosion and transport are simulated using a non-equilibrium transport model.Con-taminant transport in the integrated surface and subsurface domains is simulated using advec-tion-diffusion equations with mass changes due to sediment sorption and desorption and exchanges between two domains due to infiltration, diffusion, and bed change.The model requires no special treatments at the interface of upland areas and streams and is suitable for wetland areas and agricul-tural watersheds with shallow streams.

  3. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Delpeche-Ellmann, Nicole; Mingelaitė, Toma; Soomere, Tarmo

    2017-07-01

    We employ in-situ surface drifters and satellite derived sea surface temperature data to examine the impact that an upwelling event may have on mixing and Lagrangian transport of surrounding surface waters. The test area is located near the southern coast of the Gulf of Finland where easterly winds are known to trigger intense coastal upwellings. The analysis is based on the comparison of motions of three drifters that follow the currents in the uppermost layer with a thickness of 2 m with MODIS-based sea surface temperature data and high-quality open sea wind time series. The presence of an upwelling event superseded the classic Ekman-type drift of the surface layer and considerably slowed down the average speed of surface currents in the region affected by the upwelled cold water jet and its filaments. The drifters tended to stay amidst the surrounding surface waters. The properties of mixing were evaluated using the daily rate of temperature change along several transects. The upwelled cooler water largely kept its identity during almost the entire duration of the upwelling event. Intense mixing started at a later stage of the upwelling and continued after the end of the event when the winds that have driven the entire process began to subside.

  4. 3D shallow structures in the Baogutu area, Karamay, determined by eikonal tomography of short-period ambient noise surface waves

    Science.gov (United States)

    Xu, Hongrui; Luo, Yinhe; Chen, Chao; Xu, Yixian

    2016-06-01

    Eikonal tomography based on ambient noise data is one of the most effective methods to reveal shallow earth structures. By tracking surface wave phase fronts, constructing travel time surfaces, and computing the gradients of travel time surfaces to generate phase velocity maps, eikonal tomography avoids the ray tracing and matrix construction and inversion in the traditional surface wave tomography methods. In this study, we collect continuous ambient noise data recorded by a dense seismic array in Karamay, Xinjiang to construct a 3D model of shallow structures using eikonal tomography. The seismic array consists of 35 stations with shortest interstation distance close to 1 km. 890 empirical surface wave Green's functions (EGFs) between each station pair are retrieved by cross-correlating one or two months of continuous ambient noise data. From these EGFs, surface wave travel times in the frequency range of 1.8 to 4.0 Hz are measured by a frequency-time analysis technique (FTAN). Then, eikonal tomography is adopted to construct Rayleigh wave phase velocity maps and estimate the phase velocity uncertainties. Finally, we invert the obtained phase velocity dispersion curves for 1D shear velocity profiles and then assemble these 1D profiles to construct a 3D shear velocity model. Major velocity features of our 3D model are correlated well with the known geological features. A shallow east-west velocity discontinuity is observed, which clearly reflects the lithological change between Baogutu formation (C1b) and Xibeikulasi formation (C1x) of lower Carboniferous system. Low shear velocities are observed beneath the location of porphyry copper deposit (V), possibly related to stockwork fracture and hydrothermal brecciation developed during the intrusion of deep magma in forming the deposit.

  5. Airfoil Self-Noise - Investigation with Particle Image Velocimetry

    NARCIS (Netherlands)

    Pröbsting, S.

    2015-01-01

    Noise generated aerodynamically by the airflow over a lifting surface is often of concern for applications as diverse as air and ground transportation, heating, ventilation, air-conditioning systems, and wind turbines. The thesis describes the application of advanced optical flow measurements techni

  6. Far field effects of complex noise barrier reflections

    NARCIS (Netherlands)

    Lutgendorf, D.; Wessels, P.W.; Eerden, F.J.M. van den; Roo, F. de

    2012-01-01

    Within the EU FP7 QUIESST project, QUIeting the Environment for a Sustainable Surface Transport, a test method is being developed for the reflectivity of noise barriers. The method needs to account for a complex shape of barriers and the use of various types of absorbing materials. The performance o

  7. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.

    2015-08-19

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  8. Emergent Conformal Symmetry and Geometric Transport Properties of Quantum Hall States on Singular Surfaces

    Science.gov (United States)

    Can, T.; Chiu, Y. H.; Laskin, M.; Wiegmann, P.

    2016-12-01

    We study quantum Hall states on surfaces with conical singularities. We show that the electronic fluid at the cone tip possesses an intrinsic angular momentum, which is due solely to the gravitational anomaly. We also show that quantum Hall states behave as conformal primaries near singular points, with a conformal dimension equal to the angular momentum. Finally, we argue that the gravitational anomaly and conformal dimension determine the fine structure of the electronic density at the conical point. The singularities emerge as quasiparticles with spin and exchange statistics arising from adiabatically braiding conical singularities. Thus, the gravitational anomaly, which appears as a finite size correction on smooth surfaces, dominates geometric transport on singular surfaces.

  9. A real-time de-noising method applied for transient and weak biomolecular interaction analysis in surface plasmon resonance biosensing

    Science.gov (United States)

    Zhan, Shuyue; Shi, Chunfei; Ou, Huichao; Song, Hong; Wang, Xiaoping

    2016-03-01

    Surface plasmon resonance (SPR) biosensing technology will likely become a type of label-free technology for transient and weak biomolecular interaction analysis (BIA); however, it needs some improvement with regard to high-speed and high-resolution measurement. We studied a type of real-time de-noising (RD) data processing method for SPR sensorgrams based on moving average; it can immediately distinguish ultra-weak signals during the process of experiment, and can display a low-noise sensorgram in real time. A flow injection analysis experiment and a CM5 sensorchip affinity experiment are designed to evaluate the characteristics of the RD method. High noise suppression ability and low signal distortion risks of the RD method have been proved. The RD method does not significantly distort signals of the sensorgram in the molecular affinity experiment, and K D values of the RD method essentially coincide with those of the raw sensorgram with a higher signal-to-noise ratio (SNR). Meanwhile, by the RD method denoising the sensorgram with an ultralow SNR that is closer to the condition of the transient and weak molecular interactions, the kinetic constant can be more accurately analyzed, whereas it cannot be realized for the raw sensorgram. The crucial function and significance of the RD method are primarily embodied in the measurement limit of SPR sensing.

  10. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  11. Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo HE; Gokmen TAYFUR; Qi-hua RAN; Hao-xuan WENG

    2013-01-01

    Pollutant transport in overland flow over surfaces with spatially varying microtopography,roughness,and infiltration was investigated using the diffusion wave equation and transport rate-based equation.The finite volume method in space and an implicit backward difference scheme in time were employed in the numerical solution of the 2D governing equations.The developed model was first tested against an analytical solution and an experimental study involving overland flow and the associated pollutant transport,subsequently a series of numerical tests were carried out.Non-point source pollution was investigated under spatially varying microtopography,roughness,and infiltration.The simulation results showed that microtopography and roughness were the dominant factors causing significant spatial variations in solute concentration.When the spatially varying microtopography was replaced by a smooth surface,the result was an overestimation of the solute rate at the outlet of the upland.On the other hand,when the spatially varying roughness was replaced by the average roughness and spatially varying infiltration rate by the average infiltration rate,the pollutant discharge at the outlet of the upland was not significantly affected.The numerical results further showed that one cannot ignore the spatial variations of slope and roughness when investigating the local pollutant concentration distribution.

  12. The Fate and Transport of Glyphosate and AMPA into Surface Waters of Agricultural Watersheds

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2010-12-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops, but is particularly heavily used on crops which are genetically modified to be glyphosate tolerant: predominately soybeans, corn, potatoes, and cotton. Glyphosate is used extensively in almost all agricultural areas of the United States, and annual application has increased from less than 10,000 Mg in 1992 to more than 80,000 Mg in 2007. The greatest areal use is in the Midwest where glyphosate is applied on genetically modified corn and soybeans. Although use is increasing, the characterization of glyphosate transport on the watershed scale is lacking. Glyphosate, and its degradate AMPA [aminomethylphosphoric acid], was frequently detected in the surface waters of four agricultural watersheds. The load as a percent of use of glyphosate ranged from 0.009 to 0.86 percent and can be related to three factors: source strength, hydrology, and flowpath. Glyphosate use within a watershed results in some occurrence in surface water at the part per billion level; however watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  13. Transport and dispersion of pollutants in surface impoundments: a finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.

  14. Preliminary Assessment of Mercury Atmosphere-Surface Exchange Parameterizations for Incorporation into Chemical Transport Models

    Science.gov (United States)

    Khan, T.; Agnan, Y.; Obrist, D.; Selin, N. E.; Urban, N. R.; Wu, S.; Perlinger, J. A.

    2015-12-01

    Inadequate representation of process-based mechanisms of exchange behavior of elemental mercury (Hg0) and decoupled treatment of deposition and emission are two major limitations of parameterizations of atmosphere-surface exchange flux commonly incorporated into chemical transport models (CTMs). Of nineteen CTMs for Hg0 exchange we reviewed (ten global, nine regional), eight global and seven regional models have decoupled treatment of Hg0 deposition and emission, two global models include no parameterization to account for emission, and the remaining two regional models include coupled deposition and emission parameterizations (i.e., net atmosphere-surface exchange). The performance of atmosphere-surface exchange parameterizations in CTMs depends on parameterization uncertainty (in terms of both accuracy and precision) and feasibility of implementation. We provide a comparison of the performance of three available parameterizations of net atmosphere-surface exchange. To evaluate parameterization accuracy, we compare predicted exchange fluxes to field measurements conducted over a variety of surfaces compiled in a recently developed global database of terrestrial Hg0 surface-atmosphere exchange flux measurements. To assess precision, we estimate the sensitivity of predicted fluxes to the imprecision in parameter input values, and compare this sensitivity to that derived from analysis of the global Hg0 flux database. Feasibility of implementation is evaluated according to the availability of input parameters, computational requirements, and the adequacy of uncertainty representation. Based on this assessment, we provide suggestions for improved treatment of Hg0 net exchange processes in CTMs.

  15. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    CERN Document Server

    Matsuoka, Seikichi; Kanno, Ryutaro; Sugama, Hideo

    2015-01-01

    In evaluating neoclassical transport by radially-local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport are investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight $\\delta f$ Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas $\\rm \\textbf{1}$, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transpo...

  16. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography

    Science.gov (United States)

    Bao, X.; Song, X.; Li, J.

    2016-12-01

    We present a new high-resolution shear-velocity model of the lithosphere (down to about 160 km) beneath China using Rayleigh-wave tomography. We combined ambient noise and earthquake data recorded at 1316 seismic stations, the largest number used for the region to date. More than 700,000 dispersion curves were measured to generate group and phase velocity maps at periods of 10-140s. The resolution of our model is significantly improved over previous models with about 1-2°in eastern China and 2-3°in western China. We also derived models of the study region for crustal thickness and averaged S velocities for upper and mid-lower crust and uppermost mantle. These models reveal important lithospheric features beneath China and provide a fundamental data set for understanding continental dynamics and evolution. Different geological units show distinct features in the Moho depth, lithospheric thickness, and shear velocity. In particular, the North China Craton (NCC) lithosphere shows strong east-west structural variations with thin and low-velocity lithosphere in eastern NCC and thick and high-velocity lithosphere beneath western NCC and the lithosphere of the Ordos Block seems to have undergone strong erosion. The results support the progressive destruction of the NCC lithosphere from east to west at least partly caused by the thermal-chemical erosion of the cratonic lithosphere from the asthenosphere. Another pronounced feature of our model is the strong lateral variations of the mantle lithosphere beneath the Tibetan Plateau (TP). The Indian lithosphere beneath the TP shows variable northward advancement with nearly flat subduction in western and eastern TP and steep subduction in central TP with evidence for the tearing of Indian lithosphere beneath central TP, which may be important for the riftings at the surface in Himalayas and southern TP. The low-velocity zone in northern TP shows strong correlation with the region of the mid-Miocene to Quaternary potassic

  17. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  18. The effects of surface aging on nanoparticle fate and transport in natural and engineered porous media

    Science.gov (United States)

    Mittelman, Anjuliee M.

    Nanomaterials will be subjected to various surface transformations in the environment and within water and wastewater treatment systems. A comprehensive understanding of the fate and transport behavior of "aged" nanomaterials in both natural and engineered porous media is required in order to accurately quantify ecological and human health risks. This research sought to (1) evaluate the impact of ultraviolet (UV) light aging on nanoparticle transport in water-saturated porous media; and (2) assess the effects of influent water quality on silver nanoparticle retention and dissolution in ceramic water filters. Additionally, the value of quartz crystal microbalance (QCM-D) data in nanoparticle fate and transport studies was evaluated by comparing deposition behavior in complementary QCM-D and sand columns experiments. Silver (nAg) and iron oxide nanoparticles exposed to UV light were up to 50% more strongly retained in porous media compared with freshly prepared suspensions due to less negative surface charge and larger aggregate sizes. UV-aged nAg were more prone to dissolution in sand columns, resulting in effluent Ag+ concentrations as high as 1.2 mg/L. In ceramic water filters, dissolution and cation exchange processes controlled silver release into treated water. The use of acidic, high salinity, or high hardness water accelerated oxidative dissolution of the silver coating and resulted in effluent silver concentrations 5-10 times above international drinking water guidelines. Results support the recommendation for a regular filter replacement or silver re-application schedule to ensure ongoing efficacy. Taken in concert, these research findings suggest that oxidative aging of nanomaterial surfaces (either through exposure to UV light or aggressive water chemistries) will alter the fate of nanomaterials in the environment and may decrease the effective lifetime of devices which utilize nanotechnology. Corresponding QCM-D and column experiments revealed that

  19. Electrostatic potential variation on the flux surface and its impact on impurity transport

    CERN Document Server

    García-Regaña, J M; Turkin, Y; Kleiber, R; Helander, P; Maaßberg, H; Alonso, J A; Velasco, J L

    2015-01-01

    The particle transport of impurities in magnetically confined plasmas under some conditions does not find, neither quantitatively nor qualitatively, a satisfactory theory-based explanation. This compromise the successful realization of thermo-nuclear fusion for energy production since its accumulation is known to be one of the causes that leads to the plasma breakdown. In standard reactor-relevant conditions this accumulation is in most stellarators intrinsic to the lack of toroidal symmetry, that leads to the neoclassical electric field to point radially inwards. This statement, that the standard theory allows to formulate, has been contradicted by some experiments that showed weaker or no accumulation under such conditions \\cite{Ida_pop_16_056111_2009, Yoshinuma_nf_49_062002_2009}. The charge state of the impurities makes its transport more sensitive to the electric fields. Thus, the short length scale turbulent electrostatic potential or its long wave-length variation on the flux surface $\\Phi_{1}$ -- that...

  20. Phosphorus transport with runoff of simulated rainfall from purple-soil cropland of different surface conditions

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; ZHANG Jin-zhong; ZHU Bo; ZHOU Pei; MIAO Chi-yuan; WANG Tao

    2008-01-01

    We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces, respectively. Each type of land was tested under a simulated moderate rainfall of 0.33 mm/min, a downfall of 0.90 mm/min, and a rainstorm of 1.86 mm/min. Runoff dynamics and changes in the export amount of phosphorus are influenced by the rainfall intensity, the slope and surface conditions of cropland. The vegetation diverts rain water from the surface into soil and helps the formation of a subsurface runoff, but has little influence on runoff process at the same sloping degree. Vegetated soil has a smaller phosphorous loss, particularly much less in the particulate form. A heavier rainfall flushes away more phosphorous. Rainwater percolating soil carries more dissolved phosphorous than particulate phosphorous. Understanding the patterns of phosphorous transport under various conditions from purple soil in the middle of Sichuan basin is helpful for developing countermeasures against non-point-source pollution resulting in the eutrophication of water bodies in this region that could, if not controlled properly, deteriorate the water quality of the Three Gorges Reservoir.

  1. A propagating ATPase gradient drives transport of surface-confined cellular cargo.

    Science.gov (United States)

    Vecchiarelli, Anthony G; Neuman, Keir C; Mizuuchi, Kiyoshi

    2014-04-01

    The faithful segregation of duplicated genetic material into daughter cells is critical to all organisms. In many bacteria, the segregation of chromosomes involves transport of "centromere-like" loci over the main body of the chromosome, the nucleoid, mediated by a two-protein partition system: a nonspecific DNA-binding ATPase, ParA, and an ATPase stimulator, ParB, which binds to the centromere-like loci. These systems have previously been proposed to function through a filament-based mechanism, analogous to actin- or microtubule-based movement. Here, we reconstituted the F-plasmid partition system using a DNA-carpeted flow cell as an artificial nucleoid surface and magnetic beads coated with plasmid partition complexes as surface-confined cargo. This minimal system recapitulated directed cargo motion driven by a surface ATPase gradient that propagated with the cargo. The dynamics are consistent with a diffusion-ratchet model, whereby the cargo dynamically establishes, and interacts with, a concentration gradient of the ATPase. A chemophoresis force ensues as the cargo perpetually chases the ATPase gradient, allowing the cargo to essentially "surf" the nucleoid on a continuously traveling wave of the ATPase. Demonstration of this non-filament-based motility mechanism in a biological context establishes a distinct class of motor system used for the transport and positioning of large cellular cargo.

  2. Rayleigh surface waves, phonon mode conversion, and thermal transport in nanostructures

    Science.gov (United States)

    Maurer, Leon; Knezevic, Irena

    We study the effects of phonon mode conversion and Rayleigh (surface) waves on thermal transport in nanostructures. We present a technique to calculate thermal conductivity in the elastic-solid approximation: a finite-difference time-domain (FDTD) solution of the elastic or scalar wave equations combined with the Green-Kubo formula. The technique is similar to an equilibrium molecular dynamics simulation, captures phonon wave behavior, and scales well to nanostructures that are too large to simulate with many other techniques. By imposing fixed or free boundary conditions, we can selectively turn off mode conversion and Rayleigh waves to study their effects. In the example case of graphenelike nanoribbons with rough edges, we find that mode conversion among bulk modes has little effect on thermal transport, but that conversion between bulk and Rayleigh waves can significantly reduce thermal conductivity. With increasing surface disorder, Rayleigh waves readily become trapped by the disorder and draw energy away from the propagating bulk modes, which lowers thermal conductivity. We discuss the implications on the accuracy of popular phonon-surface scattering models that stem from scalar wave equations and cannot capture mode conversion to Rayleigh waves.

  3. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    Science.gov (United States)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  4. Large scale reactive transport of nitrate across the surface water divide

    Science.gov (United States)

    Kortunov, E.; Lu, C.; Amos, R.; Grathwohl, P.

    2016-12-01

    Groundwater pollution caused by agricultural and atmospheric inputs is a pressing issue in environmental management worldwide. Various researchers have studied different aspects of nitrate contamination since the substantial increase of the agriculture pollution in the second half of the 20th century. This study addresses large scale reactive solute transport in a typical Germany hilly landscapes in a transect crossing 2 valleys: River Neckar and Ammer. The numerical model was constructed compromising a 2-D cross-section accounting for typical fractured mudstones and unconsolidated sediments. Flow modelling showed that the groundwater divide significantly deviates from the surface water divide providing conditions for inter-valley flow and transport. Reactive transport modelling of redox-sensitive solutes (e.g. agriculture nitrate and natural sulfate, DOC, ammonium) with MIN3P was used to elucidate source of nitrate in aquifers and rivers. Since both floodplains, in the Ammer and Neckar valley contain Holocene sediments relatively high in organic carbon, agricultural nitrate is reduced therein and does not reach the groundwater. However, nitrate applied in the hillslopes underlain by fractured oxidized mudrock is transported to the high yield sand and gravel aquifer in the Neckar valley. Therefore, the model predicts that nitrate in the Neckar valley comes, to a large extent, from the neighboring Ammer valley. Moreover, nitrate observed in the rivers and drains in the Ammer valley is very likely geogenic since frequent peat layers there release ammonium which is oxidized as it enters the surface water. Such findings are relevant for land and water quality management.

  5. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    Science.gov (United States)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  6. Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays.

    Science.gov (United States)

    Shigaki, Francirose; Sharpley, Andrew; Prochnow, Luis Ignacio

    2007-02-01

    Phosphorus runoff from agricultural fields amended with mineral fertilizers and manures has been linked to freshwater eutrophication. A rainfall simulation study was conducted to evaluate the effects of different rainfall intensities and P sources differing in water soluble P (WSP) concentration on P transport in runoff from soil trays packed with a Berks loam and grassed with annual ryegrass (Lolium multiflorum Lam.). Triple superphosphate (TSP; 79% WSP), low-grade super single phosphate (LGSSP; 50% WSP), North Carolina rock phosphate (NCRP; 0.5% WSP) and swine manure (SM; 70% WSP), were broadcast (100 kg total P ha-1) and rainfall applied at 25, 50 and 75 mm h-1 1, 7, 21, and 56 days after P source application. The concentration of dissolved reactive (DRP), particulate (PP), and total P (TP) was significantly (Prunoff with a rainfall intensity of 75 than 25 mm h-1 for all P sources. Further, runoff DRP increased as P source WSP increased, with runoff from a 50 mm h-1 rain 1 day after source application having a DRP concentration of 0.25 mg L-1 for NCRP and 28.21 mg L-1 for TSP. In contrast, the proportion of runoff TP as PP was greater with low (39% PP for NCRP) than high WSP sources (4% PP for TSP) averaged for all rainfall intensities. The increased PP transport is attributed to the detachment and transport of undissolved P source particles during runoff. These results show that P source water solubility and rainfall intensity can influence P transport in runoff, which is important in evaluating the long-term risks of P source application on P transport in surface runoff.

  7. Improved signal-to-noise ratio performance in magnetic resonance imaging by using a multilayered surface coil array--a simulation study.

    Science.gov (United States)

    Liang, Dandan; Hui, Hon Tat; Yeo, Tat Soon

    2013-05-01

    A multilayered surface coil array for magnetic resonance imaging with an improved signal-to-noise ratio (SNR) performance is introduced and investigated by a simulation study. By using an effective decoupling method, the strong mutual coupling effect between the coil layers can be accurately removed, leading to a coherent combination of the signals of the individual coils. This results in a much stronger received signal power which increases with the number of coil layers in the array. This, together with a smaller rate of increase of noise power with the number of coil layers, leads to a net increase in the SNR of array output with the number of coil layers in the array. Rigorous numerical simulation examples have been carried out to confirm and verify the performance of the new array.

  8. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Garcia, Javier [Grupo Interdisciplinar de Sistemas Complejos (GISC) and School of Mathematical Sciences and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4 (Ireland); Cuerno, Rodolfo [Departamento de Matematicas and GISC, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes (Spain); Castro, Mario [GISC and Grupo de Dinamica No Lineal (DNL), Escuela Tecnica Superior de IngenierIa (ICAI), Universidad Pontificia Comillas de Madrid, E-28015 Madrid (Spain)], E-mail: javiermunozgarcia@gmail.com, E-mail: cuerno@math.uc3m.es, E-mail: mariocastro73@gmail.com

    2009-06-03

    Continuum models have proved their applicability to describe nanopatterns produced by ion-beam sputtering of amorphous or amorphizable targets at low and medium energies. Here we pursue the recently introduced 'hydrodynamic approach' in the cases of bombardment at normal incidence, or of oblique incidence onto rotating targets, known to lead to self-organized arrangements of nanodots. Our approach stresses the dynamical roles of material (defect) transport at the target surface and of local redeposition. By applying results previously derived for arbitrary angles of incidence, we derive effective evolution equations for these geometries of incidence, which are then numerically studied. Moreover, we show that within our model these equations are identical (albeit with different coefficients) in both cases, provided surface tension is isotropic in the target. We thus account for the common dynamics for both types of incidence conditions, namely formation of dots with short-range order and long-wavelength disorder, and an intermediate coarsening of dot features that improves the local order of the patterns. We provide for the first time approximate analytical predictions for the dependence of stationary dot features (amplitude and wavelength) on phenomenological parameters, that improve upon previous linear estimates. Finally, our theoretical results are discussed in terms of experimental data.

  9. Extracting near-surface QL between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece

    Science.gov (United States)

    Haendel, A.; Ohrnberger, M.; Krüger, F.

    2016-11-01

    Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings Love wave arrivals on the transverse component and on Love wave quality factors QL. The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient γ and QL can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area.

  10. A charge transport study in diamond, surface passivated by high-k dielectric oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kovi, Kiran Kumar, E-mail: KiranKumar.Kovi@angstrom.uu.se; Majdi, Saman; Gabrysch, Markus; Isberg, Jan [Division for Electricity, Department of Engineering Sciences, Box 534, Uppsala University, Uppsala SE-751 21 (Sweden)

    2014-11-17

    The recent progress in the growth of high-quality single-crystalline diamond films has sparked interest in the realization of efficient diamond power electronic devices. However, finding a suitable passivation is essential to improve the reliability and electrical performance of devices. In the current work, high-k dielectric materials such as aluminum oxide and hafnium oxide were deposited by atomic layer deposition on intrinsic diamond as a surface passivation layer. The hole transport properties in the diamond films were evaluated and compared to unpassivated films using the lateral time-of-flight technique. An enhancement of the near surface hole mobility in diamond films of up to 27% is observed when using aluminum oxide passivation.

  11. A Controlled Field Pilot for Testing Near Surface CO2 Detection Techniques and Transport Models

    Science.gov (United States)

    Spangler, L. H.; Dobeck, L.

    2007-12-01

    A field facility has been developed to allow controlled studies of near surface CO2transport and detection technologies. The key component of the facility is a shallow horizontal, well slotted over 70m of its length and divided into seven zones via packers with mass flow control in each individual zone. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects and those design parameters will be discussed. A wide variety of detection techniques were deployed by collaborators from Los Alamos National Lab, Lawrence Berkeley National Lab, the National Energy Technology Lab, Pacific Northwest National Lab, Lawrence Livermore National Lab and West Virginia University. Techniques included eddy covariance, soil gas measurements, hyperspectral imaging for plant stress detection, differential absorption LIDAR (both free space atmospheric and below surface soil gas), tracer studies, water sampling, stable isotope studies, and soil flux chambers. An overview of these results will be presented.

  12. Observed and modeled surface Lagrangian transport between coastal regions in the Adriatic Sea with implications for marine protected areas

    Science.gov (United States)

    Carlson, Daniel F.; Griffa, Annalisa; Zambianchi, Enrico; Suaria, Giuseppe; Corgnati, Lorenzo; Magaldi, Marcello G.; Poulain, Pierre-Marie; Russo, Aniello; Bellomo, Lucio; Mantovani, Carlo; Celentano, Paolo; Molcard, Anne; Borghini, Mireno

    2016-04-01

    Surface drifters and virtual particles are used to investigate transport between seven coastal regions in the central and southern Adriatic Sea to estimate the degree to which these regions function as a network. Alongshore coastal currents and cyclonic gyres are the primary circulation features that connected regions in the Adriatic Sea. The historical drifter observations span 25 years and, thus, provide estimates of transport between regions realized by the mean surface circulation. The virtual particle trajectories and a dedicated drifter experiment show that southeasterly Sirocco winds can drive eastward cross-Adriatic transport from the Italian coast near the Gargano Promontory to the Dalmatian Islands in Croatia. Southeasterly winds disrupt alongshore transport on the west coast. Northwesterly Mistral winds enhanced east-to-west transport and resulted in stronger southeastward coastal currents in the western Adriatic current (WAC) and export to the northern Ionian Sea. The central Italian regions showed strong connections from north to south, likely realized by alongshore transport in the WAC. Alongshore, downstream transport was weaker on the east coast, likely due to the more complex topography introduced by the Dalmatian Islands of Croatia. Cross-Adriatic connection percentages were higher for east-to-west transport. Cross-Adriatic transport, in general, occurred via the cyclonic sub-gyres, with westward (eastward) transport observed in the northern (southern) arms of the central and southern gyres.

  13. Bulk and surface electron transport in topological insulator candidate YbB{sub 6-δ}

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, Vladimir V.; Demishev, Sergey V.; Sluchanko, Nikolay E. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Bozhko, Alexey D.; Bogach, Alexey V.; Semeno, Alexey V.; Voronov, Valeriy V. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Dukhnenko, Anatoliy V.; Filipov, Volodimir B.; Shitsevalova, Natalya Yu. [Frantsevich Institute for Problems of Materials Science NAS, Krzhyzhanovsky str. 3, 03680, Kiev (Ukraine); Kondrin, Mikhail V. [Vereshchagin Institute of High Pressure Physics of RAS, 142190, Troitsk, Moscow (Russian Federation); Kuznetsov, Alexey V.; Sannikov, Ilia I. [National Research Nuclear University ' ' MEPhI' ' , Kashirskoe Shosse 31, 115409, Moscow (Russian Federation)

    2016-04-15

    We report the study of transport and magnetic properties of the YbB{sub 6-δ}single crystals grown by inductive zone melting. A strong disparity in the low temperature resistivity, Seebeck and Hall coefficients is established for the samples with the different level of boron deficiency. The effective parameters of the charge transport in YbB{sub 6-δ} are shown to depend on the concentration of intrinsic defects, which is estimated to range from 0.09% to 0.6%. The pronounced variation of Hall mobility μ{sub H} found for bulk holes is induced by the decrease of transport relaxation time from τ ∼ 7.7 fs for YbB{sub 5.994} to τ ∼ 2.2 fs for YbB{sub 5.96}. An extra contribution to conductivity from electrons with μ{sub H}∼ -1000 cm{sup 2} V{sup -1} s{sup -1} and the very low concentration n /n{sub Yb}∼ 10{sup -6} discovered below 20 K for all the single crystals under investigation is suggested to arise from the surface electron states appeared in the inversion layer due to the band bending. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    Science.gov (United States)

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  15. Methodologies for Removing/Desorbing and Transporting Particles from Surfaces to Instrumentation

    Science.gov (United States)

    Miller, Carla J.; Cespedes, Ernesto R.

    2012-12-01

    Explosive trace detection (ETD) continues to be a key technology supporting the fight against terrorist bombing threats. Very selective and sensitive ETD instruments have been developed to detect explosive threats concealed on personnel, in vehicles, in luggage, and in cargo containers, as well as for forensic analysis (e.g. post blast inspection, bomb-maker identification, etc.) in a broad range of homeland security, law enforcement, and military applications. A number of recent studies have highlighted the fact that significant improvements in ETD systems' capabilities will be achieved, not by increasing the selectivity/sensitivity of the sensors, but by improved techniques for particle/vapor sampling, pre-concentration, and transport to the sensors. This review article represents a compilation of studies focused on characterizing the adhesive properties of explosive particles, the methodologies for removing/desorbing these particles from a range of surfaces, and approaches for transporting them to the instrument. The objectives of this review are to summarize fundamental work in explosive particle characterization, to describe experimental work performed in harvesting and transport of these particles, and to highlight those approaches that indicate high potential for improving ETD capabilities.

  16. Influence of near-surface blisters on deuterium transport in tungsten

    Science.gov (United States)

    Bauer, J.; Schwarz-Selinger, T.; Schmid, K.; Balden, M.; Manhard, A.; von Toussaint, U.

    2017-08-01

    The effect of near-surface blisters on deuterium transport in tungsten is studied by means of nuclear reaction analysis (NRA) and scanning electron microscopy (SEM). Gentle deuterium plasma loading of different durations and subsequent NRA depth profiling is performed in heavily pre-blistered and unblistered areas on self-damaged tungsten samples. Comparison of the deuterium depth profiles reveals a considerable reduction of the deuterium transport into the bulk due to the presence of near-surface blisters. SEM and NRA results identify the enhanced re-emission of deuterium from the sample due to open blisters as the underlying mechanism, which reduces the deuterium flux into the bulk. Based on a simple analytical hydrogen retention model, the re-emitted deuterium flux by open blisters is determined to be 80% of the implanted deuterium flux in the present conducted experiment. In addition, the deuterium flux into the bulk is reduced by 60% compared to the unblistered case. Hence the presence of blisters is not a general disadvantage in the context of retention, but can be beneficial in slowing down the build up of a certain hydrogen inventory and in reducing the permeation flux.

  17. Oceanic transport of surface meltwater from the southern Greenland ice sheet

    Science.gov (United States)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-07-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamics and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  18. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface.

  19. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    Science.gov (United States)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  20. Factors contributing to the off-target transport of pyrethroid insecticides from urban surfaces.

    Science.gov (United States)

    Jorgenson, Brant C; Wissel-Tyson, Christopher; Young, Thomas M

    2012-08-01

    Pyrethroid insecticides used in urban and suburban contexts have been found in urban creek sediments and associated with toxicity in aquatic bioassays. The objectives of this study were to evaluate the main factors contributing to the off-target transport of pyrethroid insecticides from surfaces typical of residential landscapes. Controlled rainfall simulations over concrete, bare soil, and turf plots treated individually with pyrethroid insecticides in a suspension concentrate, an emulsifiable concentrate, or a granule formulation were conducted at different rainfall intensities and different product set-time intervals. Pyrethroid mass washoff varied by several orders of magnitude between experimental treatments. Suspension concentrate product application to concrete yielded significantly greater washoff than any other treatment; granule product application to turf yielded the least washoff. Fractional losses at 10 L of runoff ranged from 25.9 to 0.011% of pyrethroid mass applied, and 10 L nominal mass losses ranged from 3970 to 0.18 μg. Mass washoff depended principally on formulation and surface type combination and, to a lesser degree, on set-time interval and rainfall intensity. Treatment effects were analyzed by ANOVA on main factors of formulation, surface type, and set time. Factor effects were not purely additive; a significant interaction between formulation and surface type was noted.

  1. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M.; Van Eeckhout, E. [Los Alamos National Lab., NM (United States); David, N.A. [Environmental Res., Inst. of Michigan, Santa Fe, NM (United States); Irvine, J.M. [Environmental Res. Inst. of Michigan, Arlington, VA (United States)

    1995-10-01

    During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

  2. The Signature Sequence Region of the Human Drug Transporter Organic Anion Transporting Polypeptide 1B1 Is Important for Protein Surface Expression

    Directory of Open Access Journals (Sweden)

    Jennina Taylor-Wells

    2014-01-01

    Full Text Available The organic anion transporting polypeptides (OATPs encompass a family of membrane transport proteins responsible for the uptake of xenobiotic compounds. Human organic anion transporting polypeptide 1B1 (OATP1B1 mediates the uptake of clinically relevant compounds such as statins and chemotherapeutic agents into hepatocytes, playing an important role in drug delivery and detoxification. The OATPs have a putative 12-transmembrane domain topology and a highly conserved signature sequence (human OATP1B1: DSRWVGAWWLNFL, spanning the extracellular loop 3/TM6 boundary. The presence of three conserved tryptophan residues at the TM interface suggests a structural role for the sequence. This was investigated by site-directed mutagenesis of selected amino acids within the sequence D251E, W254F, W258/259F, and N261A. Transport was measured using the substrate estrone-3-sulfate and surface expression detected by luminometry and confocal microscopy, facilitated by an extracellular FLAG epitope. Uptake of estrone-3-sulfate and the surface expression of D251E, W254F, and W258/259F were both significantly reduced from the wild type OATP1B1-FLAG in transfected HEK293T cells. Confocal microscopy revealed that protein was produced but was retained intracellularly. The uptake and expression of N261A were not significantly different. The reduction in surface expression and intracellular protein retention indicates a structural and/or membrane localization role for these signature sequence residues in the human drug transporter OATP1B1.

  3. The Signature Sequence Region of the Human Drug Transporter Organic Anion Transporting Polypeptide 1B1 Is Important for Protein Surface Expression.

    Science.gov (United States)

    Taylor-Wells, Jennina; Meredith, David

    2014-01-01

    The organic anion transporting polypeptides (OATPs) encompass a family of membrane transport proteins responsible for the uptake of xenobiotic compounds. Human organic anion transporting polypeptide 1B1 (OATP1B1) mediates the uptake of clinically relevant compounds such as statins and chemotherapeutic agents into hepatocytes, playing an important role in drug delivery and detoxification. The OATPs have a putative 12-transmembrane domain topology and a highly conserved signature sequence (human OATP1B1: DSRWVGAWWLNFL), spanning the extracellular loop 3/TM6 boundary. The presence of three conserved tryptophan residues at the TM interface suggests a structural role for the sequence. This was investigated by site-directed mutagenesis of selected amino acids within the sequence D251E, W254F, W258/259F, and N261A. Transport was measured using the substrate estrone-3-sulfate and surface expression detected by luminometry and confocal microscopy, facilitated by an extracellular FLAG epitope. Uptake of estrone-3-sulfate and the surface expression of D251E, W254F, and W258/259F were both significantly reduced from the wild type OATP1B1-FLAG in transfected HEK293T cells. Confocal microscopy revealed that protein was produced but was retained intracellularly. The uptake and expression of N261A were not significantly different. The reduction in surface expression and intracellular protein retention indicates a structural and/or membrane localization role for these signature sequence residues in the human drug transporter OATP1B1.

  4. A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array

    Science.gov (United States)

    Roux, Philippe; Moreau, Ludovic; Lecointre, Albanne; Hillers, Gregor; Campillo, Michel; Ben-Zion, Yehuda; Zigone, Dimitri; Vernon, Frank

    2016-08-01

    We present a new technique for deriving detailed information on seismic velocities of the subsurface material from continuous ambient noise recorded by spatially dense seismic arrays. This method uses iterative double beamforming between various subarrays to extract surface wave contributions from the ambient-noise data in complex environments with unfavourable noise-source distributions. The iterative double beamforming extraction makes it possible to retrieve large amounts of Rayleigh wave traveltime information in a wide frequency band. The method is applied to data recorded by a highly dense Nodal array with 1108 vertical geophones, centred on the damage zone of the Clark branch of the San Jacinto Fault Zone south of Anza, California. The array covers a region of ˜650 × 700 m2, with instrument spacing of 10-30 m, and continuous recording at 500 samples s-1 over 30 d in 2014. Using this iterative double beamforming on subarrays of 25 sensors and cross-correlations between all of the station pairs, we separate surface waves from body waves that are abundant in the raw cross-correlation data. Focusing solely on surface waves, maps of traveltimes are obtained at different frequencies with unprecedented accuracy at each point of a 15-m-spacing grid. Group velocity inversions at 2-4 Hz reveal depth and lateral variations in the structural properties within and around the San Jacinto Fault Zone in the study area. This method can be used over wider frequency ranges and can be combined with other imaging techniques, such as eikonal tomography, to provide unprecedented detailed structural images of the subsurface material.

  5. No-Loss Transportation of Water Droplets by Patterning a Desired Hydrophobic Path on a Superhydrophobic Surface.

    Science.gov (United States)

    Hu, Haibao; Yu, Sixiao; Song, Dong

    2016-07-26

    The directional transportation of droplets on solid surfaces is essential in a wide range of engineering applications. It is convenient to guide liquid droplets in a given direction by utilizing the gradient of wettability, by which the binding forces can be produced. In contrast to the mass-loss transportation of a droplet moving along hydrophilic paths on a horizontal superhydrophobic surface, we present no-loss transportation by fabricating a hydrophobic path on the same surface under tangential wind. In experimental exploration and theoretical analysis, the conditions of no-loss transportation of a droplet are mainly considered. We demonstrate that the lower (or upper) critical wind velocity, under which the droplet starts on the path (or is derailed from the path), is determined by the width of the path, the length of the contact area in the direction parallel to the path, the drift angle between the path and the wind direction, and the surface wettability of the pattern. Meanwhile, the no-loss transportation of water droplets along the desired path zigzagging on a superhydrophobic surface can be achieved steadily under appropriate conditions. We anticipate that such robust no-loss transportation will find an extensive range of applications.

  6. A statistical assessment of seismic models of the U.S. continental crust using Bayesian inversion of ambient noise surface wave dispersion data

    Science.gov (United States)

    Olugboji, T. M.; Lekic, V.; McDonough, W.

    2017-07-01

    We present a new approach for evaluating existing crustal models using ambient noise data sets and its associated uncertainties. We use a transdimensional hierarchical Bayesian inversion approach to invert ambient noise surface wave phase dispersion maps for Love and Rayleigh waves using measurements obtained from Ekström (2014). Spatiospectral analysis shows that our results are comparable to a linear least squares inverse approach (except at higher harmonic degrees), but the procedure has additional advantages: (1) it yields an autoadaptive parameterization that follows Earth structure without making restricting assumptions on model resolution (regularization or damping) and data errors; (2) it can recover non-Gaussian phase velocity probability distributions while quantifying the sources of uncertainties in the data measurements and modeling procedure; and (3) it enables statistical assessments of different crustal models (e.g., CRUST1.0, LITHO1.0, and NACr14) using variable resolution residual and standard deviation maps estimated from the ensemble. These assessments show that in the stable old crust of the Archean, the misfits are statistically negligible, requiring no significant update to crustal models from the ambient noise data set. In other regions of the U.S., significant updates to regionalization and crustal structure are expected especially in the shallow sedimentary basins and the tectonically active regions, where the differences between model predictions and data are statistically significant.

  7. Optimization Design of Highway Noise Barriers Based on Response Surface Methodology%采用响应曲面分析的声屏障优化设计

    Institute of Scientific and Technical Information of China (English)

    张林; 殷承启; 仝凯; 胡婕

    2012-01-01

    The Box-Behnken design and response surface method were applied to optimize the parameters of noise barriers. The height, length and initial stake of noise barrier were studied as arguments, while the insertion loss of three sound-sensitive points, construction cost as variables. Quadratic equation models were developed to express the functional relationship between arguments and variables. Optimization parameters of noise barrier were obtained by Minitab analysis, basing on the goals of acoustic environmental standard in sensitive area, as well as minimization of construction cost.%采用响应曲面法和Box-Behnken设计优化声屏障设计参数.以声屏障设计高度、长度、起点桩号为考察自变量,以声屏障对敏感区域内三处受声点理论插入损失、工程造价为考察因变量,构建多元二次回归模型考察因变量与自变量间的函数关系.设定以敏感区域内声环境质量达标、工程造价最低为优化目标,利用Minitab软件优化分析得到声屏障最优设计参数.

  8. Noise-Enabled Optical Ratchets

    CERN Document Server

    León-Montiel, Roberto de J

    2016-01-01

    In this work we demonstrate single microparticle transport enabled by noise in a one dimensional optical lattice with periodic symmetric potentials and a small constant external force. The one dimensional lattice is implemented by six focused beams with holographic optical tweezers, where a microparticle is trapped in three dimensions. Transport initiates when dynamical disorder is added to the diffracted laser power at each trap ($\\pm 30\\%$) at a fixed frequency (0 to 35 Hz), while the direction of motion is set by the constant external force. We find that transport is only achieved within a narrow noise frequency range, which is consistent with simulations, and the predicted behavior and observations of noise-induced energy transport in quantum and classical systems. To our knowledge this is the first direct observation of noise-assisted transport in a colloidal system.

  9. A Study of Transport and Impact Strength of Fukushima Nuclear Pollutants in the North Pacific Surface

    Institute of Scientific and Technical Information of China (English)

    FU Hongli; LI Wei; ZHANG Xuefeng; HAN Guijun; WANG Xidong; WU Xinrong; ZHANG Lianxin

    2014-01-01

    Based on the statistics of surface drifter data of 1979-2011 and the simulation of nuclear pollutant particulate move-ments simulated using high quality ocean reanalysis surface current dataset, the transport pathways and impact strength of Fuku-shima nuclear pollutants in the North Pacific have been estimated. The particulates are used to increase the sampling size and en-hance the representativeness of statistical results. The trajectories of the drifters and particulates are first examined to identify typical drifting pathways. The results show that there are three types of transport paths for nuclear pollutants at the surface: 1) most pollutant particles move eastward and are carried by the Kuroshio and Kuroshio-extension currents and reach the east side of the North Pacific after about 3.2-3.9 years;2) some particles travel with the subtropical circulation branch and reach the east coast of China after about 1.6 years according to one drifter trajectory and about 3.6 years according to particulate trajectories;3) a little of them travel with local, small scale circulations and reach the east coast of China after about 1.3-1.8 years. Based on the par-ticulates, the impact strength of nuclear pollutants at these time scales can be estimated according to the temporal variations of relative concentration combined with the radioactive decay rate. For example, Cesium-137, carried by the strong North Pacific current, mainly accumulates in the eastern North Pacific and its impact strength is 4%of the initial level at the originating Fuku-shima area after 4 years. Due to local eddies, Cesium-137 in the western North Pacific is 1%of the initial pollutant level after 1.5 years and continuously increases to 3%after 4 years. The vertical movement of radioactive pollutants is not taken into account in the present study, and the estimation accuracy would be improved by considering three-dimensional flows.

  10. Transport and fate of nitrate at the ground-water/surface-water interface

    Science.gov (United States)

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  11. Surface runoff from manured cropping systems assessed by the paired-watershed method, part 1: P, N, and sediment transport

    Science.gov (United States)

    Transport of P, N, and sediment via runoff from crop fields can contribute to degradation of surface waters. We established a paired-watershed study in central Wisconsin to evaluate surface runoff losses of nutrients, sediment, and pathogens from different manure/crop/tillage management systems for ...

  12. High resolution imaging of vadose zone transport using surface and crosswell ground penetrating radar methods

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kenneth H.; Kowalsky, Mike B.; Peterson, John E.

    2002-11-05

    To effectively clean up many contaminated sites there is a need for information on heterogeneities at scales ranging from one centimeter to tens of meters, as these features can alter contaminant transport significantly. At the Department of Energy's Hanford, Washington site heterogeneities of interest can range from localized phenomena such as silt or gravel lenses, fractures, clastic dikes, to large-scale lithologic discontinuities. In the vadose zone it is critical to understand the parameters controlling flow. These features have been suspected of leading to funneling and fingering, additional physical mechanisms that could alter and possibly accelerate the transport of contaminants to underlying groundwater. For example, it has been observed from the studies to date that over relatively short distances there are heterogeneities in the physical structure of the porous medium and structural differences between repacked soil cores and the field site from which the materials initially came (Raymond and Shdo, 1966). Analysis of cores taken from the vadose zone (i.e., soil surface to water table) has been useful in identifying localized zones of contamination. Unfortunately, these analyses are sparse (limited to a few boreholes) and extremely expensive. The high levels of radioactivity at many of the contaminated sites increase drilling and sample costs and analysis time. Cost of drilling and core analysis for the SX tank farm has exceeded $1M per borehole (50 meter deep) for sampling. The inability to track highly mobile species through the vadose zone highlights an important need: the need for methods to describe the complete vadose zone plume and to determine processes controlling accelerated contamination of groundwater at Hanford. A combination of surface and crosswell (i.e. borehole) geophysical measurements is one means to provide this information. The main questions addressed with the radar methods in this study are: (1) What parts of the vadose zone

  13. Onsager heat of transport of carbon dioxide at the surface of aqueous ammonia: The remarkable effect of carbamate formation

    Science.gov (United States)

    Packwood, Daniel M.; Phillips, Leon F.

    2010-11-01

    The Onsager heat of transport Q∗ has been measured for CO 2 at the surface of aqueous ammonia. The heat of transport incorporates the enthalpy of reaction of gaseous CO 2 with ammonia, adsorbed on the liquid surface, to form adsorbed ammonium carbamate, with the result that -Q∗ has the unusually large value of 180 kJ mol -1. Measurement of Q∗ for transfer of a reactive species through a surfactant monolayer is proposed as a new method of studying reactions at liquid and quasi-liquid surfaces.

  14. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.

    Science.gov (United States)

    Zharov, Ilya; Khabibullin, Amir

    2014-02-18

    Nanoporous membranes are important for the study of the transport of small molecules and macromolecules through confined spaces and in applications ranging from separation of biomacromolecules and pharmaceuticals to sensing and controlled release of drugs. For many of these applications, chemists need to gate the ionic and molecular flux through the nanopores, which in turn depends on the ability to control the nanopore geometry and surface chemistry. Most commonly used nanoporous membrane materials are based on polymers. However, the nanostructure of polymeric membranes is not well-defined, and their surface is hard to modify. Inorganic nanoporous materials are attractive alternatives for polymers in the preparation of nanoporous membranes. In this Account, we describe the preparation and surface modification of inorganic nanoporous films and membranes self-assembled from silica colloidal spheres. These spheres form colloidal crystals with close-packed face centered cubic lattices upon vertical deposition from colloidal solutions. Silica colloidal crystals contain ordered arrays of interconnected three dimensional voids, which function as nanopores. We can prepare silica colloidal crystals as supported thin films on various flat solid surfaces or obtain free-standing silica colloidal membranes by sintering the colloidal crystals above 1000 °C. Unmodified silica colloidal membranes are capable of size-selective separation of macromolecules, and we can surface-modify them in a well-defined and controlled manner with small molecules and polymers. For the surface modification with small molecules, we use silanol chemistry. We grow polymer brushes with narrow molecular weight distribution and controlled length on the colloidal nanopore surface using atom transfer radical polymerization or ring-opening polymerization. We can control the flux in the resulting surface-modified nanoporous films and membranes by pH and ionic strength, temperature, light, and small molecule

  15. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes.

    Science.gov (United States)

    Tagliazucchi, Mario; Rabin, Yitzhak; Szleifer, Igal

    2013-10-22

    This work reports a comprehensive theoretical study of the transport-rectification properties of cylindrical nanopores with neutral inner walls and chemically modified outer membrane. The chemical species on the two outer sides of the membrane have charges of opposite sign and can be either surface-confined species (i.e., surface charges) or polyelectrolyte brushes. The advantage of this design over other types of rectifying nanopores is that it requires controlling the composition of the outer walls of the pore (which are easy to access) rather than the inner walls, thus simplifying the fabrication process. Ion-current rectification in nanopores with charged outer walls is ascribed to applied-potential-induced changes in the ionic concentration within the pore. The rectification efficiency is studied as a function of pore length, radius, surface charge and bulk electrolyte concentration. An analytical model is derived for the case of surface-confined charges that predicts the current-potential curves in very good agreement with the numerical calculations. Neutral nanopores with polyelectrolyte-modified outer walls have two distinct advantages compared to surface-charged systems: (i) they exhibit higher rectification factors due to the large charge density immobilized by the polyelectrolyte brushes, and (ii) the applied potential deforms the polyelectrolyte chains toward the oppositely charged electrode. This deformation brings the polyelectrolyte brushes into the pore in the low conductivity state and expels them from the pore in the high conductivity regime. Calculations of the potentials of mean-force suggest that the applied-field-induced conformational changes can be used to control the translocation of cargoes larger than ions, such as proteins and nanoparticles.

  16. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  17. Numerical investigation of tandem-cylinder aerodynamic noise and its control with application to airframe noise

    Science.gov (United States)

    Eltaweel, Ahmed

    Prediction and reduction of airframe noise are critically important to the development of quieter civil transport aircraft. The key to noise reduction is a full understanding of the underlying noise source mechanisms. In this study, tandem cylinders in cross-flow as an idealization of a complex aircraft landing gear configuration are considered to investigate the noise generation and its reduction by flow control using single dielectric barrier discharge plasma actuators. The flow over tandem cylinders at ReD = 22, 000 with and without plasma actuation is computed using large-eddy simulation. The plasma effect is modeled as a body force obtained from a semi-empirical model. The flow statistics and surface pressure frequency spectra show excellent agreement with previous experimental measurements. For acoustic calculations, a boundary-element method is implemented to solve the convected Lighthill equation. The solution method is validated in a number of benchmark problems including flows over a cylinder, a rod-airfoil configuration, and a sphere. With validated flow field and acoustic solver, acoustic analysis is performed for the tandem-cylinder configuration to extend the experimental results and understand the mechanisms of noise generation and its control. Without flow control, the acoustic field is dominated by the interaction between the downstream cylinder and the upstream wake. Through suppression of vortex shedding from the upstream cylinder, the interaction noise is reduced drastically by the plasma flow control, and the vortex-shedding noise from the downstream cylinder becomes equally important. At a free-stream Mach number of 0.2, the peak sound pressure level is reduced by approximately 16 dB. This suggests the viability of plasma actuation for active control of airframe noise. The numerical investigation is extended to the noise from a realistic landing gear experimental model. Coarse-mesh computations are performed, and preliminary results are

  18. Mass Transport in Surface Diffusion of van der Waals Bonded Systems: Boosted by Rotations?

    Science.gov (United States)

    Hedgeland, Holly; Sacchi, Marco; Singh, Pratap; McIntosh, Andrew J; Jardine, Andrew P; Alexandrowicz, Gil; Ward, David J; Jenkins, Stephen J; Allison, William; Ellis, John

    2016-12-01

    Mass transport at a surface is a key factor in heterogeneous catalysis. The rate is determined by excitation across a translational barrier and depends on the energy landscape and the coupling to the thermal bath of the surface. Here we use helium spin-echo spectroscopy to track the microscopic motion of benzene adsorbed on Cu(001) at low coverage (θ ∼ 0.07 ML). Specifically, our combined experimental and computational data determine both the absolute rate and mechanism of the molecular motion. The observed rate is significantly higher by a factor of 3.0 ± 0.1 than is possible in a conventional, point-particle model and can be understood only by including additional molecular (rotational) coordinates. We argue that the effect can be described as an entropic contribution that enhances the population of molecules in the transition state. The process is generally relevant to molecular systems and illustrates the importance of the pre-exponential factor alongside the activation barrier in studies of surface kinetics.

  19. Orf virus interferes with MHC class I surface expression by targeting vesicular transport and Golgi

    Directory of Open Access Journals (Sweden)

    Rohde Jörg

    2012-07-01

    Full Text Available Abstract Background The Orf virus (ORFV, a zoonotic Parapoxvirus, causes pustular skin lesions in small ruminants (goat and sheep. Intriguingly, ORFV can repeatedly infect its host, despite the induction of a specific immunity. These immune modulating and immune evading properties are still unexplained. Results Here, we describe that ORFV infection of permissive cells impairs the intracellular transport of MHC class I molecules (MHC I as a result of structural disruption and fragmentation of the Golgi apparatus. Depending on the duration of infection, we observed a pronounced co-localization of MHC I and COP-I vesicular structures as well as a reduction of MHC I surface expression of up to 50%. These subversion processes are associated with early ORFV gene expression and are accompanied by disturbed carbohydrate trimming of post-ER MHC I. The MHC I population remaining on the cell surface shows an extended half-life, an effect that might be partially controlled also by late ORFV genes. Conclusions The presented data demonstrate that ORFV down-regulates MHC I surface expression in infected cells by targeting the late vesicular export machinery and the structure and function of the Golgi apparatus, which might aid to escape cellular immune recognition.

  20. Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch

    Directory of Open Access Journals (Sweden)

    A. D. Griffiths

    2014-07-01

    Full Text Available Atmospheric composition measurements at Jungfraujoch are affected intermittently by thermally-driven (anabatic mountain winds as well as by other vertical transport mechanisms. Using radon-222 observations, and a new analysis method, we quantify the land surface influence hour-by-hour and detect the presence of anabatic winds on a daily basis. During 2010–2011, anabatic winds occurred on roughly 40% of days, but only from April–September. Anabatic wind days were associated with warmer air temperatures over a large fraction of Europe and with a shift in airmass properties. Shifts were evident even when comparing the same radon concentrations, a proxy for land-surface influence. Aerosol washout, when quantified as a function of rain-rate using a radon normalisation technique, was also influenced by anabatic winds being more pronounced on non-anabatic days. Excluding the influence of anabatic winds, however, did not lead to a better definition of the unperturbed aerosol background than a definition based on radon alone, supporting the use of a radon threshold to identify periods with weak land-surface influence.

  1. Formulation effects and the off-target transport of pyrethroid insecticides from urban hard surfaces.

    Science.gov (United States)

    Jorgenson, Brant C; Young, Thomas M

    2010-07-01

    Controlled rainfall experiments utilizing drop-forming rainfall simulators were conducted to study various factors contributing to off-target transport of off-the-shelf formulated pyrethroid insecticides from concrete surfaces. Factors evaluated included active ingredient, product formulation, time between application and rainfall (set time), and rainfall intensity. As much as 60% and as little as 0.8% of pyrethroid applied could be recovered in surface runoff depending primarily on product formulation, and to a lesser extent on product set time. Resulting wash-off profiles during one-hour storm simulations could be categorized based on formulation, with formulations utilizing emulsifying surfactants rather than organic solvents resulting in unique wash-off profiles with overall higher wash-off efficiency. These higher wash-off efficiency profiles were qualitatively replicated by applying formulation-free neat pyrethroid in the presence of independently applied linear alkyl benzene sulfonate (LAS) surfactant, suggesting that the surfactant component of some formulated products may be influential in pyrethroid wash-off from urban hard surfaces.

  2. Transport and scavenging of Pu in surface waters of the Southern Hemisphere Oceans

    DEFF Research Database (Denmark)

    Gastaud, J.; Povinec, P.P.; Aoyama, M.

    2011-01-01

    The distribution of 239Pu in Atlantic and Indian Ocean waters about four decades after their main injection from atmospheric nuclear weapons tests is discussed. Recent data obtained in the framework of the SHOTS (Southern Hemisphere Ocean Tracer Studies) projects are evaluated and compared...... with previous investigations. Seawater samples were collected during the round the globe BEAGLE2003 (Blue Ocean Global Expedition) along the 30°S transect in the Atlantic and the 20°S transect in the Indian Ocean. The results indicate transport of surface waters labelled with 239Pu from the western North...... Pacific via the Indonesian Seas to the South Indian Ocean and then to the South Atlantic Ocean. Along the whole BEAGLE2003 sampling route, the Atlantic Ocean has the lowest 239Pu content due to its particle scavenging on the long way from the western North Pacific. On the other hand, concentrations...

  3. Using Contaminant Transport Modeling to Determine Historical Discharges at the Surface

    Science.gov (United States)

    Fogwell, T. W.

    2013-12-01

    When it is determined that a contaminated site needs to be remediated, the issue of who is going to pay for that remediation is an immediate concern. This means that there needs to be a determination of who the responsible parties are for the existing contamination. Seldom is it the case that records have been made and kept of the surface contaminant discharges. In many cases it is possible to determine the relative amount of contaminant discharge at the surface of the various responsible parties by employing a careful analysis of the history of contaminant transport through the surface, through the vadose zone, and within the saturated zone. The process begins with the development of a dynamic conceptual site model that takes into account the important features of the transport of the contaminants through the vadose zone and in the groundwater. The parameters for this model can be derived from flow data available for the site. The resulting contaminant transport model is a composite of the vadose zone transport model, together with the saturated zone (groundwater) flow model. Any calibration of the model should be carefully employed in order to avoid using information about the conclusions of the relative discharge amounts of the responsible parties in determining the calibrated parameters. Determination of the leading edge of the plume is an important first step. It is associated with the first discharges from the surface of the site. If there were several discharging parties at the same time, then it is important to establish a chemical or isotopic signature of the chemicals that were discharged. The time duration of the first discharger needs to be determined as accurately as possible in order to establish the appropriate characterization of the leading portion of the resulting plume in the groundwater. The information about the first discharger and the resulting part of the plume associated with this discharger serves as a basis for the determination of the

  4. Can Surface Flux Transport Account for the Weak Polar Field in Cycle 23?

    Science.gov (United States)

    Jiang, Jie; Cameron, Robert H.; Schmitt, Dieter; Schüssler, Manfred

    2013-06-01

    To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.

  5. Can surface flux transport account for the weak polar field in cycle 23?

    CERN Document Server

    Jiang, Jie; Schmitt, Dieter; Schuessler, Manfred

    2011-01-01

    To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.

  6. Simulation of soluble waste transport and buildup in surface waters using tracers

    Science.gov (United States)

    Kilpatrick, F.A.

    1993-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges. The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals dealing with dye tracing by emphasizing the expanded use of data from time-of-travel studies.

  7. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    Science.gov (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  8. From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea.

    Science.gov (United States)

    Katija, Kakani; Choy, C Anela; Sherlock, Rob E; Sherman, Alana D; Robison, Bruce H

    2017-08-01

    Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus "houses" to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column.

  9. Surface Flux Transport and the Evolution of the Sun's Polar Fields

    Science.gov (United States)

    Wang, Y.-M.

    2017-09-01

    The evolution of the polar fields occupies a central place in flux transport (Babcock-Leighton) models of the solar cycle. We discuss the relationship between surface flux transport and polar field evolution, focusing on two main issues: the latitudinal profile of the meridional flow and the axial tilts of active regions. Recent helioseismic observations indicate that the poleward flow speed peaks at much lower latitudes than inferred from magnetic feature tracking, which includes the effect of supergranular diffusion and thus does not represent the actual bulk flow. Employing idealized simulations, we demonstrate that flow profiles that peak at mid latitudes give rise to overly strong and concentrated polar fields. We discuss the differences between magnetic and white-light measurements of tilt angles, noting the large uncertainties inherent in the sunspot group measurements and their tendency to underestimate the actual tilts. We find no clear evidence for systematic cycle-to-cycle variations in Joy's law during cycles 21-23. Finally, based on the observed evolution of the Sun's axial dipole component and polar fields up to the end of 2015, we predict that cycle 25 will be similar in amplitude to cycle 24.

  10. Simulación de ruido de tránsito automotor como herramienta para el rediseño de rutas de transporte público colectivo en el municipio de Medellín Simulation of road traffic noise as a tool for redesigning public transport routes in the municipality of Medellín

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Echeverri

    2011-01-01

    Full Text Available Este artículo presenta parte de los resultados del estudio "Metodología de rediseño de rutas de transporte público colectivo complementarias al sistema integrado de transporte en el Valle de Aburrá", realizado y financiado por las universidades de Medellín y San Buenaventura. Se enfoca en la simulación del ruido de tránsito automotor como una herramienta de análisis para la toma de decisiones en la conversión de algunas rutas radiales de transporte colectivo público a rutas diametrales o de flujo de cuenca a cuenca en la ciudad de Medellín. Se elaboró un mapa de ruido de las vías en un sector seleccionado del centro de la ciudad, y se aplicó software de predicción de ruido ambiental para obtener los niveles de contaminación acústica existente y pronosticado con la implementación del rediseño de rutas de transporte público.This article presents part of the study results "methodology to redesign public transport complementary routes to integrated transport system in the Aburrá Valley" held and funded by the Universities of Medellin and San Buenaventura. It focuses on the simulation of road traffic noise as a tool of analysis for decision making in the conversion of some radial routes of public bus transportation to transverse routes or migration to other basins in the city of Medellin. Noise maps for streets in the downtown have been made by application of software for prediction of noise environmental for evaluating existing noise levels and for predicted ones in case of the implementation of the study for redesign public transport routes.

  11. Transport and retention of phosphorus in surface water in an urban slum area

    Science.gov (United States)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.

    2013-08-01

    The transport of excessive phosphorus (P) discharged from unsewered informal settlements (slums) due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2). Samples were analyzed for orthophosphate (PO4-P), particulate P (PP), total P (TP) and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36-144 mg L-1), HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9). High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.

  12. Transport and retention of phosphorus in surface water in an urban slum area

    Directory of Open Access Journals (Sweden)

    P. M. Nyenje

    2013-08-01

    Full Text Available The transport of excessive phosphorus (P discharged from unsewered informal settlements (slums due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2. Samples were analyzed for orthophosphate (PO4-P, particulate P (PP, total P (TP and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36–144 mg L-1, HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9. High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.

  13. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  14. Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes: novel mechanism for selective activation of GLUT1 glucose transporters.

    Science.gov (United States)

    Shimizu, Y; Satoh, S; Yano, H; Minokoshi, Y; Cushman, S W; Shimazu, T

    1998-01-01

    Glucose transport into rat brown adipocytes has been shown to be stimulated directly by the sympathetic neurotransmitter, noradrenaline, without a significant increase in the protein content of either GLUT1 or GLUT4 glucose transporter in the plasma membrane [Shimizu, Kielar, Minokoshi and Shimazu (1996) Biochem. J. 314, 485-490]. In the present study, we labelled the exofacial glucose-binding sites of GLUT1 and GLUT4 with a membrane-impermeant photoaffinity reagent, 2-N-[4-(1-azitrifluoroethyl)benzoyl]-[2-3H]1,3-bis- (D-mannos-4-yloxy)-2-propylamine (ATB-[3H]BMPA), to determine which isoform is responsible for the noradrenaline-induced increase in glucose transport into intact brown adipocytes in culture. Insulin stimulated the rate of hexose transport by increasing ATB-[3H]BMPA-labelled cell-surface GLUT4. In contrast, the noradrenaline-induced increase in glucose transport was not accompanied by an increased ATB-[3H]BMPA labelling of GLUT4, nor with an increased amount of GLUT4 in the plasma membrane fraction as assessed by Western blotting, indicating that noradrenaline does not promote the translocation of GLUT4. However, noradrenaline induced an increase in photoaffinity labelling of cell-surface GLUT1 without an apparent increase in the immunoreactive GLUT1 protein in the plasma membrane. This is suggestive of an increased affinity of GLUT1 for the ligand. In fact, the Ki value of non-radioactive ATB-BMPA for 2-deoxy-D-glucose uptake was significantly decreased after treatment of the cells with noradrenaline. The increased photoaffinity labelling of GLUT1 and increased glucose transport caused by noradrenaline were inhibited by a cAMP antagonist, cAMP-S Rp-isomer. These results demonstrate that noradrenaline stimulates glucose transport in brown adipocytes by enhancing the functional activity of GLUT1 through a cAMP-dependent mechanism. PMID:9461536

  15. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  16. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn C.

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  17. Theoretical investigation of the electronic structure and quantum transport in the graphene-C(111) diamond surface system.

    Science.gov (United States)

    Selli, Daniele; Baburin, Igor; Leoni, Stefano; Zhu, Zhen; Tománek, David; Seifert, Gotthard

    2013-10-30

    We investigate the interaction of a graphene monolayer with the C(111) diamond surface using ab initio density functional theory. To accommodate the lattice mismatch between graphene and diamond, the overlayer deforms into a wavy structure that binds strongly to the diamond substrate. The detached ridges of the wavy graphene overlayer behave electronically as free-standing polyacetylene chains with delocalized π electrons, separated by regions containing only sp(3) carbon atoms covalently bonded to the (111) diamond surface. We performed quantum transport calculations for different geometries of the system to study how the buckling of the graphene layer and the associated bonding to the diamond substrate affect the transport properties. The system displays high carrier mobility along the ridges and a wide transport gap in the direction normal to the ridges. These intriguing, strongly anisotropic transport properties qualify the hybrid graphene-diamond system as a viable candidate for electronic nanodevices.

  18. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface

    Directory of Open Access Journals (Sweden)

    Sorina Claudia Popescu

    2012-04-01

    Full Text Available Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the plasma membrane.

  19. Noise of sliding rough contact

    Science.gov (United States)

    Le Bot, Alain

    2017-01-01

    This article is a discussion about the origin of friction noise produced when rubbing solids having rough surfaces. We show that noise emerges from numerous impacts into the contact between antagonist asperities of surfaces. Prediction of sound sources reduces to a statistical problem of contact mechanics. On the other hand, contact is also responsible of dissipation of vibration. This leads to the paradoxical result that the noise may not be proportional to the number of sources.

  20. Transport of Dirac fermions on the surface of strong topological insulator and graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Arijit

    2012-06-14

    In this dissertation I study electronic transport through Dirac Fermions on the surface of strong topological insulator and graphene. I start by reviewing the physics of topological insulator and graphene and the low energy effective theory for the electronic states of the surface of a 3D strong topological insulator and graphene. Using this theory the electronic structure of the surface states of strong topological insulators of geometries with large surface to bulk ratio like nanowire and thin film are obtained. Then the energy spectrum and the spin-parity structure of the eigenstates for a finite size topological insulator quantum dot of the shape of a nanotube are considered. Numerical calculations show that even at the lowest energy scales, the ''spin-surface locking'' is broken, that is, the spin direction in a topologically protected surface mode is not locked to the surface. The calculations also show the existence of ''zero-momentum'' modes, and sub-gap states localized near the ''caps'' of the dot. Both the energy spectrum and the spin texture of the eigenstates are basically reproduced from an analytical surface Dirac fermion description. The results are compared to microscopic calculations using a tight-binding model for a strong topological insulator in a finite-length nanowire geometry, which shows qualitative similarity. Then, a theoretical study of electron-phonon scattering effects in thin films made of a strong topological insulator is presented. Phonons are modeled by isotropic elastic continuum theory with stress-free boundary conditions, and the interaction with the helical surface Dirac fermions is mediated by the deformation potential. The temperature-dependent electrical resistivity ρ(T) and the quasi-particle decay rate Γ(T) observable in photo-emission are computed numerically. The low and high-temperature power laws for both quantities are obtained analytically. Detailed

  1. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    Directory of Open Access Journals (Sweden)

    Eva Gulikova

    2008-06-01

    Full Text Available Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust

  2. Transport Barkhausen-like noise in uniaxially pressed Bi{sub 1.65}Pb{sub 0.35}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}}ceramic samples

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fornaris, I. [Departamento de Ciencias Basicas, Universidad de Granma, Apdo. 21, P.O. Box 85100, Bayamo (Cuba); Govea-Alcaide, E. [Departamento de Fisica, Universidad de Oriente, Patricio Lumumba s/n, P.O. Box 90500, Santiago de Cuba (Cuba); Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil); Alberteris-Campos, M. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP (Brazil); Mune, P. [Departamento de Fisica, Universidad de Oriente, Patricio Lumumba s/n, P.O. Box 90500, Santiago de Cuba (Cuba); Jardim, R.F., E-mail: rjardim@if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

    2010-08-01

    We report on the detection of the transport Barkhausen-like noise (TBN) in polycrystalline samples of Bi{sub 1.65}Pb{sub 0.35}Sr{sub 2}Ca{sub 2} Cu{sub 3}O{sub 10+{delta}}(Bi-2223) which were subjected to different uniaxial compacting pressures. The transport Barkhausen-like noise was measured when the sample was subjected to an ac triangular-shape magnetic field (f {approx} 1 Hz) with maximum amplitude B{sub max} {approx} 5.5 mT, in order to avoid the flux penetration within the superconducting grains. Analysis of the TBN signal, measured for several values of excitation current density, indicated that the applied magnetic field in which the noise signal first appears, B{sub a}(t{sub i}), is closely related to the magnetic-flux pinning capability of the material. The combined results are consistent with the existence of three different superconducting levels within the samples: (i) the superconducting grains; (ii) the superconducting clusters; and (iii) the weak-links. We finally argue that TBN measurements constitute a powerful tool for probing features of the intergranular transport properties in polycrystalline samples of high-T{sub c} superconductors.

  3. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge.

    Science.gov (United States)

    Bannunah, Azzah M; Vllasaliu, Driton; Lord, Jennie; Stolnik, Snjezana

    2014-12-01

    This study investigated the effect of nanoparticle size (50 and 100 nm) and surface charge on their interaction with Caco-2 monolayers as a model of the intestinal epithelium, including cell internalization pathways and the level of transepithelial transport. Initially, toxicity assays showed that cell viability and cell membrane integrity were dependent on the surface charge and applied mass, number, and total surface area of nanoparticles, as tested in two epithelial cell lines, colon carcinoma Caco-2 and airway Calu-3. This also identified suitable nanoparticle concentrations for subsequent cell uptake experiments. Nanoparticle application at doses below half maximal effective concentration (EC₅₀) revealed that the transport efficiency (ratio of transport to cell uptake) across Caco-2 cell monolayers is significantly higher for negatively charged nanoparticles compared to their positively charged counterparts (of similar size), despite the higher level of internalization of positively charged systems. Cell internalization pathways were hence probed using a panel of pharmacological inhibitors aiming to establish whether the discrepancy in transport efficiency is due to different uptake and transport pathways. Vesicular trans-monolayer transport for both positively and negatively charged nanoparticles was confirmed via inhibition of dynamin (by dynasore) and microtubule network (via nocodazole), which significantly reduced the transport of both nanoparticle systems. For positively charged nanoparticles a significant decrease in internalization and transport (46% and 37%, respectively) occurred in the presence of a clathrin pathway inhibitor (chlorpromazine), macropinocytosis inhibition (42%; achieved by 5-(N-ethyl-N-isopropyi)-amiloride), and under cholesterol depletion (38%; via methyl-β-cyclodextrin), but remained unaffected by the inhibition of lipid raft associated uptake (caveolae) by genistein. On the contrary, the most prominent reduction in

  4. Thermal transport study across interface “nanostructured solid surface / fluid” by photoacoustic technique

    Science.gov (United States)

    Voitenko, K.; Isaiev, M.; Pastushenko, A.; Andrusenko, D.; Kuzmich, A.; Lysenko, V.; Burbelo, R.

    2017-01-01

    In the paper the experimental study of heat transport across the interface “porous silicon/liquid” by photoacoustic technique is reported. Two cases with and without liquid covering of porous silicon surface were considered. Thermal perturbations were excited at the surface of porous silicon as a result of absorption of the light with modulated intensity. The resulting thermal-elastic stresses arising in the system were registered with piezoelectric transducer. The amplitude-frequency dependencies of the voltage on the piezoelectric electrodes were measured. The presence of the liquid film leads to decreasing of the amplitude of photoacoustic signal as a result of the thermal energy evacuation from the porous silicon into the liquid. The experimental dependencies were fitted with the results of simulation that takes into account heat fluxes separation at the porous silicon/liquid interface. With the presented method one can precisely measure heat fluxes transferred from the solid into contacting fluid. Moreover, the presented approach can be easily adopted for the thermal conductivity study of the different nanofluids as well as thermal resistance at the interface nanostructured solid/fluid.

  5. Surface States Transport in Topological Insulator Bi_{0.83}Sb_{0.17} Nanowires

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Huber, T. E.; Ansermet, J.-P.

    2016-12-01

    We investigate the transport properties of topological insulator (TI) Bi_{0.83}Sb_{0.17} nanowires. Single-crystal nanowire samples with diameters ranging from 75 nm to 1.1 μ m are prepared using high frequency liquid phase casting in a glass capillary; cylindrical single crystals with (10bar{1}1) orientation along the wire axis are produced. Bi_{0.83}Sb_{0.17} is a narrow-gap semiconductor with an energy gap at the L point of the Brillouin zone, Δ E = 21 meV. The resistance of the samples increases with decreasing temperature, but a decrease in resistance is observed at low temperatures. This effect is a clear manifestation of TI properties (i.e., the presence of a highly conducting zone on the TI surface). When the diameter of the nanowire decreases, the energy gap Δ E grows as 1 / d (for diameter d = 1.1 μ m and d =75 nm Δ E = 21 and 45 meV, respectively), which proves the presence of the quantum size effect in these samples. We investigate the magnetoresistance of Bi_{0.83}Sb_{0.17} nanowires at various magnetic field orientations. Shubnikov-de Haas oscillations are observed in Bi_{0.83}Sb_{0.17} nanowires at T = 1.5 K, demonstrating the existence of high mobility (μ_S = 26{,}700-47{,}000 cm^2V^{-1}s^{-1}) two-dimensional (2D) carriers in the surface areas of the nanowires, which are nearly perpendicular to the C_3 axis. From the linear dependence of the nanowire conductance on nanowire diameter at T = 4.2 K, the square resistance R_sq of the surface states of the nanowires is obtained (R_sq =70 Ohm).

  6. Phonon transport in silicon nanowires: The reduced group velocity and surface-roughness scattering

    Science.gov (United States)

    Zhu, Liyan; Li, Baowen; Li, Wu

    2016-09-01

    Using a linear-scaling Kubo simulation approach, we have quantitatively investigated the effects of confinement and surface roughness on phonon transport in silicon nanowires (SiNWs) as thick as 55 nm in diameter R . The confinement effect leads to significant reduction of phonon group velocity v in SiNWs compared to bulk silicon except at extremely low phonon frequencies f , which very likely persists in SiNWs several hundreds of nanometers thick, suggesting the inapplicability of bulk properties, including anharmonic phonon scattering, to SiNWs. For instance, the velocity can be reduced by more than 30% for phonons with f >4.5 THz in 55-nm-thick nanowires. In rough SiNWs Casimir's limit, which is valid in confined macroscopic systems, can underestimate the surface scattering by more than one order of magnitude. For a roughness profile with Lorentzian correlation characterized by root-mean-square roughness σ and correlation length Lr, the frequency-dependent phonon diffusivity D follows power-law dependences D ∝Rασ-βLrγ , where α ˜2 and β ˜1 . On average, γ increases from 0 to 0.5 as R /σ increases. The mean free path and the phonon lifetime essentially follow the same power-law dependences. These dependences are in striking contrast to Casimir's limit, i.e., D ˜v R /3 , and manifest the dominant role of the change in the number of atoms due to roughness. The thermal conductivity κ can vary by one order of magnitude with varying σ and Lr in SiNWs, and increasing σ and shortening Lr can efficiently lower κ below Casimir's limit by one order of magnitude. Our work provides different insights to understand the ultralow thermal conductivity of SiNWs reported experimentally and guidance to manipulate κ via surface roughness engineering.

  7. Numerical simulation of tyre/road noise

    NARCIS (Netherlands)

    Schutte, Jan Henk

    2011-01-01

    In modern society, traffic noise has become an important issue for mental health. A significant contributor to this noise pollution is exterior tyre/road noise, which is caused by the interaction between tyre and road surface and. In order to reduce tyre/road noise at the source, accurate numerical

  8. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    Science.gov (United States)

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  9. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  10. FET noise studies

    Science.gov (United States)

    Pucel, R. A.

    1981-03-01

    The GaAs FET oscillator is an alternative device for voltage-controlled oscillator (VCO) applications because of its inherent wide-band electronic tunability, the variety of operating modes possible such as common source, common gate, etc., and the ease of circuit design. However, it has one major drawback, namely, its high near-carrier 1/f noise which makes it unsuitable for many applications, such as radar systems. This report describes the progress made during the report period in understanding the physical mechanisms responsible for this noise. During this period, an extensive experimental study was made of the 1/f noise properties of a variety of oscillators constructed of FET chips fabricated under controlled conditions. Using in-house grown epitaxial wafers, FET's were fabricated from both buffered and unbuffered active layers, with and without epitaxially grown contact layers, and with and without surface passivation. The experimental results show a good correlation between the trap-generated 1/f baseband noise and the near-carrier 1/f FM noise. The primary sources of the noise are presumed to be either deep traps within the depletion layer under the gate or surface states at the gate-semiconductor interface, probably the latter. An improvement of the order of 10 dB in the near carrier FM noise level is obtained when a buffer layer separates the active layer from the substrate. Optical experiments indicated an electron trap level approximately 0.41 eV below the conduction band. A noise model was devised to explain the modulation process for upconverting baseband 1/f noise to the carrier band by depletion layer modulation.

  11. Application of divided convective-dispersive transport model to simulate conservative transport processes in planted horizontal sub-surface flow constructed wetlands.

    Science.gov (United States)

    Dittrich, Ernő; Klincsik, Mihály

    2015-11-01

    We have created a divided convective-dispersive transport (D-CDT) model that can be used to provide an accurate simulation of conservative transport processes in planted horizontal sub-surface flow constructed wetlands filled with coarse gravel (HSFCW-C). This model makes a fitted response curve from the sum of two independent CDT curves, which show the contributions of the main and side streams. The analytical solutions of both CDT curves are inverse Gaussian distribution functions. We used Fréchet distribution to provide a fast optimization mathematical procedure. As a result of our detailed analysis, we concluded that the most important role in the fast upward part of the tracer response curve is played by the main stream, with high porous velocity and dispersion. This gives the first inverse Gaussian distribution function. The side stream shows slower transport processes in the micro-porous system, and this shows the impact of back-mixing and dead zones, too. The significance of this new model is that it can simulate transport processes in this kind of systems more accurately than the conventionally used convective-dispersive transport (CDT) model. The calculated velocity and dispersion coefficients with the D-CDT model gave differences of 24-54% (of velocity) and 22-308% (of dispersion coeff.) from the conventional CDT model, and were closer to actual hydraulic behaviour.

  12. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    Science.gov (United States)

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  13. Contributions of regional and intercontinental transport to surface ozone in Tokyo

    Science.gov (United States)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-04-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  14. Contributions of regional and intercontinental transport to surface ozone in the Tokyo area

    Science.gov (United States)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-08-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  15. A Double-Ring Algorithm for Modeling Solar Active Regions: Unifying Kinematic Dynamo Models and Surface Flux-Transport Simulations

    CERN Document Server

    Muñoz-Jaramillo, Andrés; Martens, Petrus C H; Yeates, Anthony R

    2010-01-01

    The emergence of tilted bipolar active regions and the dispersal of their flux, mediated via processes such as diffusion, differential rotation and meridional circulation is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed $\\alpha$-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on active region eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations we first show that an axisymmetric formulation -- which is usually invoked in kinematic dynamo models -- can reasonably approximate the surface flux dy...

  16. Existing Noise Level at Railway Stations in Malaysia

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Railway transportation known as one of the most environmental friendly transportation mode. However, the significance problems of railway transportation are noise pollution and negatively impact the wellbeing of the whole community. Unfortunately, there has been lack of public awareness about the noise level produce by the railway transportation in Malaysia. This study investigates the noise level produced by railway transportation in Malaysia specifically by Keretapi Tanah Melayu Berhad (KTMB. Methods of collecting existing noise level at railway stations in Malaysia are briefly discussed in this study. The finding indicates that the noise level produced by the railway transportation in Malaysia which is by KTMB is considered as dangerous to human being and also exceed the noise limit that has been assigned by Department of Environment Ministry of Natural Resources and Environment of Malaysia. A better noise barrier and improved material should be developed to mitigate the existing noise level produced by railway transportations in Malaysia.

  17. Transport and fate of hexachlorocyclohexanes in the oceanic air and surface seawater

    Directory of Open Access Journals (Sweden)

    Z. Xie

    2011-06-01

    Full Text Available Hexachlorocyclohexanes (HCHs are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (α-, γ- and β-HCH in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. ΣHCHs concentrations (the sum of α-, γ- and β-HCH in the lower atmosphere ranged from 11.8 to 36.9 pg m−3 (mean: 26.6 ± 11.0 pg m−3 in the Northern Hemisphere (NH, and from 1.5 to 4.0 pg m−3 (mean: 2.8 ± 1.1 pg m−3 in the Southern Hemisphere (SH, respectively. Water concentrations were: α-HCH 0.33–46.8 pg l−1, γ-HCH 0.02–33.2 pg l−1 and β-HCH 0.11–2 pg l−1. HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold condensation and less interhemispheric mixing process. In comparison to concentrations measured in 1987–1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2–3 orders of magnitude. Air-water exchange gradients suggested net deposition for α-HCH (mean: 3759 pg m−2 day−1 and γ-HCH (mean: 1987 pg m−2 day−1, whereas β-HCH varied between equilibrium (volatilization: <0–12 pg m−2 day−1 and net deposition (range: 6–687 pg m−2 day−1, indicating a multi-hopper transport behavior. Climate change may significantly accelerate the releasing process of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains and drive long-range transport from sources to deposition in the

  18. The effects of surface functionalization on rheology, structure and transport properties of nanocomposites

    Science.gov (United States)

    Ranka, Moulik A.

    In this thesis, the effects of surface functionalization using hydrophobic silanes on properties of nanocomposites comprising 42 nm silica particles suspended in a melt of polyethylene-glycol (PEG) are studied using rheological, static and dynamic x-ray scattering studies. The nanocomposites are studied in the low molecular weight unentangled (PEG-400) and high molecular weight entangled (PEG-20000) regimes. We find no differences in the properties of the bare and silanized particles in the low volume fraction regime up to where the interparticle separation distance h > 6Rg. In the region of 6Rg > h > 3Rg (5Rg > h > 3Rg, in case of entangled melts), we find substantial differences in the rheological, structure and transport properties when comparing the bare and silanized particles. In the unentangled melts, we observe up to four orders of magnitude drop in the viscosity of the composites at the highest levels of silanization and observe shear thinning behavior that is unlike what is universally seen for hard spheres. For the entangled melts, a yield stress is observed for the silanized particles that is absent in the case of the bare particles and there is a divergence in the elastic modulus in comparison to bare particles. We observe an anomalous speed up in the density relaxations and an associated maxima in structure properties in the case of unentangled melts which has been reported previously for particles experiencing soft repulsive potentials. A clear reentrant behavior in structure and transport properties is observed for bare particles in the entangled melts that have been previously reported for particles interacting with soft repulsive potentials such as square shoulder and ramp potentials. In the silanized systems, the density relaxation times although lower than bare particles, is ii unaffected by increasing volume fraction up to h ~ 3Rg and is decoupled from the structure properties which are non-monotonic similar to bare particles. In the region of

  19. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    Science.gov (United States)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-06-01

    The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  20. S-wave velocities down to 1 km below the Peteroa volcano, Argentina, obtained from surface waves retrieved by means of ambient-noise seismic interferometry

    Science.gov (United States)

    Lepore, Simone; Gomez, Martin; Draganov, Deyan

    2015-04-01

    The main force driving the tectonics in South America is the subduction of the Nazca Plate below the South American plate. The subduction process generated numerous volcanoes in both Chile and Argentina, of which the majority is concentrated along the Chilean Argentine border. The recent explosive eruptions of some volcanoescaused concern of the population in both countries. At the beginning of 2012, a large temporary array was installed in the Malargüe region, Mendoza, Argentina, with the purpose of imaging the subsurface and monitoring the tectonic activity. The array was deployed until the end of 2012 to record continuously ambient noise and the local, regional, and global seismicity. It consisted of 38 seismic stations divided in two sub arrays, namely the PV array of six stations located on the east flank of the Peteroa volcano, and the T array of thirty two stations spread out on a plateau just north east of the town of Malargüe. Here,the focus will be on the PV array, which has a patch-like shape. Due to the intra-station distances, we chose to use for surface-wave retrieval the bands 0.8 Hz ÷ 4.0 Hz, 10 Hz ÷ 25 Hz. At the investigated area, most of the year there is little anthropogenic noise, which normally dominates frequencies above 1 Hz, meaning that the selected frequency bands can be used for surface-wave retrieval from noise. Using beamforming, we showed that for these bands, the noise is illuminating the stations from the west. This means that a correct surface-wave arrivals can be retrieved for station pairs oriented in that direction. Because of this, we used for retrieval only such station pairs. We cross-correlated the recordings on the vertical components and retrieved Rayleigh waves. By manual picking, we estimated for both bands velocity dispersion curves from the retrieved surface-wave arrivals. The curves were then inverted to obtain the velocity structure under the stations. The obtained S wave velocity depth profiles for the 10 Hz

  1. Fate of Uranium During Transport Across the Groundwater-Surface Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Peter R. [Princeton Univ., NJ (United States); Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-30

    Discharge of contaminated groundwater to surface waters is of concern at many DOE facilities. For example, at F-Area and TNX-Area on the Savannah River Site, contaminated groundwater, including uranium, is already discharging into natural wetlands. It is at this interface where contaminants come into contact with the biosphere. These this research addressed a critical knowledge gap focusing on the geochemistry of uranium (or for that matter, any redox-active contaminant) in wetland systems. Understanding the interactions between hydrological, microbial, and chemical processes will make it possible to provide a more accurate conceptual and quantitative understanding of radionuclide fate and transport under these unique conditions. Understanding these processes will permit better long-term management and the necessary technical justification for invoking Monitored Natural Attenuation of contaminated wetland areas. Specifically, this research did provide new insights on how plant-induced alterations to the sediment biogeochemical processes affect the key uranium reducing microorganisms, the uranium reduction, its spatial distribution, the speciation of the immobilized uranium, and its long-term stability. This was achieved by conducting laboratory mesocosm wetland experiments as well as field measurements at the SRNL. Results have shown that uranium can be immobilized in wetland systems. To a degree some of the soluble U(VI) was reduced to insoluble U(IV), but the majority of the immobilized U was incorporated into iron oxyhydroxides that precipitated onto the root surfaces of wetland plants. This U was immobilized mostly as U(VI). Because it was immobilized in its oxidized form, results showed that dry spells, resulting in the lowering of the water table and the exposure of the U to oxic conditions, did not result in U remobilization.

  2. Campylobacter fetus surface layer proteins are transported by a type I secretion system.

    Science.gov (United States)

    Thompson, S A; Shedd, O L; Ray, K C; Beins, M H; Jorgensen, J P; Blaser, M J

    1998-12-01

    The virulence of Campylobacter fetus, a bacterial pathogen of ungulates and humans, is mediated in part by the presence of a paracrystalline surface layer (S-layer) that confers serum resistance. The subunits of the S-layer are S-layer proteins (SLPs) that are secreted in the absence of an N-terminal signal sequence and attach to either type A or B C. fetus lipopolysaccharide in a serospecific manner. Antigenic variation of multiple SLPs (encoded by sapA homologs) of type A strain 23D occurs by inversion of a promoter-containing DNA element flanked by two sapA homologs. Cloning and sequencing of the entire 6.2-kb invertible region from C. fetus 23D revealed a probable 5.6-kb operon of four overlapping genes (sapCDEF, with sizes of 1,035, 1,752, 1,284, and 1,302 bp, respectively) transcribed in the opposite direction from sapA. The four genes also were present in the invertible region of type B strain 84-107 and were virtually identical to their counterparts in the type A strain. Although SapC had no database homologies, SapD, SapE, and SapF had predicted amino acid homologies with type I protein secretion systems (typified by Escherichia coli HlyBD/TolC or Erwinia chrysanthemi PrtDEF) that utilize C-terminal secretion signals to mediate the secretion of hemolysins, leukotoxins, or proteases from other bacterial species. Analysis of the C termini of four C. fetus SLPs revealed conserved structures that are potential secretion signals. A C. fetus sapD mutant neither produced nor secreted SLPs. E. coli expressing C. fetus sapA and sapCDEF secreted SapA, indicating that the sapCDEF genes are sufficient for SLP secretion. C. fetus SLPs therefore are transported to the cell surface by a type I secretion system.

  3. Effects of Quantum Noise on Quantum Clock Synchronization

    Institute of Scientific and Technical Information of China (English)

    谢端; 彭进业

    2012-01-01

    In laboratory environment, the channel apparatus will generate particular dominant quantum noise. The noise then will give rise to some errors during synchronization. In this work, the accuracies of one qubit transport protocol and entangled states transport protocol in the presence of noise have been studied. With the help of three important and familiar noise models, the quantum noise will degrade the accuracy has been proved. Due to the influence of quantum noise, the accuracy of entangled qubits decrease faster than that of one qubit. The entangled states will improve the accuracy in noise-free channel, and will degrade the accuracy in noise channel.

  4. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  5. 50 CFR 36.12 - Use of snowmobiles, motorboats, dog teams and other means of surface transportation traditionally...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Use of snowmobiles, motorboats, dog teams... Subsistence Uses § 36.12 Use of snowmobiles, motorboats, dog teams and other means of surface transportation... provision of subchapter C of title 50 CFR the use of snowmobiles, motorboats, dog teams and other means...

  6. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and domes

  7. Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis

    NARCIS (Netherlands)

    Meysman, F.J.R.; Middelburg, J.J.; Herman, P.M.J.; Heip, C.H.R.

    2003-01-01

    The MEDIA (Modelling Early DIAgenesis) software package comprises a flexible and extensible software system that provides problem-solving assistance for simulating 1D reactive transport in surface sediments. MEDIA allows multiple diagenetic models to be built by extending a model template with new m

  8. Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface

    CERN Document Server

    Haendel, S; Wiles, T P; Hopkins, S A; Cornish, S L

    2011-01-01

    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of $^{85}$Rb and $^{87}$Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum (UHV). To maintain excellent optical access to the region surrounding the surface magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally we demonstrate the loading of a hybrid optical-magnetic trap with $^{87}$Rb and the creation of Bose-Einstein condensates via forced evaporative cooling ...

  9. Estrogen transport in surface runoff from agricultural fields treated with two different application methods of dairy manure

    Science.gov (United States)

    While the land-application of animal manure provides many benefits, concerns exist regarding the subsequent transport of hormones and potential effects on aquatic ecosystems. This study compares two methods of dairy manure application, surface broadcasting and shallow disk injection, on the fate and...

  10. Effect of 200 MeV Ag ion irradiation on pink noise and magneto-transport properties of La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, R.J. [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110 067 (India); Department of Physics, University of Pune, Pune 411 007 (India); Kumar, Ravi [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110 067 (India)]. E-mail: ranade@nsc.ernet.in; Husain, Shahid [Department of Physics, Aligarh Muslim University, Aligarh 202 002 (India); Srivastava, J.P. [Department of Physics, Aligarh Muslim University, Aligarh 202 002 (India); Malik, S.K. [Tata Institute of Fundamental Research, Mumbai 400 005 (India); Patil, S.I. [Department of Physics, University of Pune, Pune 411 007 (India)

    2006-03-15

    Pulsed laser deposited thin films of electron doped La{sub 0.7}Ce{sub 0.3}MnO{sub 3} have been irradiated with 200 MeV Ag ions at different fluence values. The irradiation driven alteration on the pink noise (1/f noise), electrical and magneto-transport properties have been investigated. It is observed that the irradiation fluence adjusts the metal-insulator transition temperature, the magnetic field response to the resistance and the noise values. These parameters may assist in tuning these materials for applications. The film irradiated with the lower fluence value of 5 x 10{sup 1} ions/cm{sup 2} enhances the performance at room temperature. However, the film irradiated at higher fluence values manipulates these functionalities at lower temperature regime. The normalized noise values in the irradiated films are higher in ferromagnetic regime than in the paramagnetic regime. The observations have been explained on the basis of effects of the presence of swift heavy ion irradiation induced strain and defects.

  11. 14 CFR 36.103 - Noise limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise limits. 36.103 Section 36.103... Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes compliance... greater than the Stage 3 noise limit prescribed in section B36.5(c) of appendix B of this part. (c)...

  12. 14 CFR 36.801 - Noise measurement.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary,...

  13. Stratification, Sediment Transport, and the Early Wet Surface of Meridiani Planum

    Science.gov (United States)

    Grotzinger, J. P.; Athena Science Team

    2004-12-01

    the spectral gap in the size distribution of eolian dunes and ripples. A further clue to the likely subaqueous origin for Eagle cross-laminae is provided by their festoon geometry which requires that the reconstructed ripples have three-dimensional geometry defined by highly sinuous crestlines. In terrestrial settings such bedforms are known only to develop in subaqueous, subcritical flows, with velocities of less than one meter per second. On Mars, the initiation of subaqueous sediment movement is expected to occur at velocities lower than on earth, by a factor of 1.34. With respect to length scales, such as bedform dimensions, the scaling factor turns out to have the opposite sense so that, given dynamically similar flows, ripples on Mars might be larger by a factor of 1.34. Neither of these rescaling effects influences the interpretation that cm-scale, festoon cross-lamination at Eagle crater most probably requires sediment transport in subaqueous, low-velocity flows across the Meridiani plains. The assemblage of primary facies recorded at Eagle crater is most consistent with an environment characterized by episodic inundation by surface water to shallow depths, followed by evaporation, and exposure and desiccation. Terrestrial analogs for such a suite of facies and surface processes include small interdune depressions, playa lakes, and sabkhas adjacent to marginal seaways. All rover observations indicate that the evaporite-bearing cross-bedded unit extends at least on the order of 1 km though MOC and THEMIS data suggest it extends much further.

  14. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions

    Science.gov (United States)

    Asano, Kimiyuki; Iwata, Tomotaka; Sekiguchi, Haruko; Somei, Kazuhiro; Miyakoshi, Ken; Aoi, Shin; Kunugi, Takashi

    2017-08-01

    Inter-station cross-correlation functions estimated using continuous ambient noise or microtremor records were used to extract the seismic wave propagation characteristics of the Osaka sedimentary basin, Japan. Temporary continuous observations were conducted at 15 sites in the Osaka basin between 2011 and 2013. The data were analyzed using seismic interferometry. The target period range was 2-8 s. Cross-correlations between all of the possible station pairs were calculated and stacked to produce a year-long data set, and Rayleigh wave signals in the vertical and radial components and Love wave signals in the transverse component were identified from the results. Simulation of inter-station Green's functions using the finite difference method was conducted to check the performance of the current three-dimensional velocity structure model. The measured time lag between the observed and theoretical Green's functions was less than 2 s for most station pairs, which is less than the wave period of interest in the target frequency range. Group velocity tomography was applied to group delay times estimated by means of multiple filter analysis. The estimated group velocities for longer periods of 5-8 s exhibited spatial variation within the basin, which is consistent with the bedrock depth distribution; however, the group velocities for shorter periods of 2-3 s were almost constant over the studied area. The waveform and group velocity information obtained by seismic interferometry analysis can be useful for future reconstruction of a three-dimensional velocity structure model in the Osaka basin.[Figure not available: see fulltext.

  15. Upscaling of the specific surface area for reactive transport modelling in fractured rock

    Science.gov (United States)

    Cvetkovic, Vladimir

    2014-05-01

    The impact of flow heterogeneity on chemical transport from single to multiple fractures, is investigated. The emphasis is on the dynamic nature of the specific surface area (SSA) due to heterogeneity of the flow, relative to a purely geometrical definition. It is shown how to account for SSA as a random variable in modelling multi-component reactions. The flow-dependent SSA is interpreted probabilistically, following inert tracer particles along individual fractures. Upscaling to a fracture network is proposed as a time-domain random walk based on the statistics of SSA for single fractures. Statistics of SSA are investigated for three correlation structures of transmissivity, one classical multi-gaussian, and two non-Gaussian. The coefficient of variation of single fracture SSA decreases monotonously with the distance over the fracture length; the CV of the upscaled SSA reduces further such that after ca 20 fractures it is under 0.1 for a disconnected field, and around 0.2 for connected and multi-gaussian fields. This implies that after 10-20 fractures, uncertainty in SSA is significantly reduced, justifying the use of an effective value. A conservative, lower bound for the dimensionless upscaled effective SSA was found to be 1, suitable for all heterogeneity structures, assuming the cubic hydraulic law applicable.

  16. EHD-driven mass transport enhancement in surface dielectric barrier discharges

    Science.gov (United States)

    Taglioli, M.; Shaw, A.; Wright, A.; FitzPatrick, B.; Neretti, G.; Seri, P.; Borghi, C. A.; Iza, F.

    2016-12-01

    Surface dielectric barrier discharges (S-DBDs) have received renewed attention in recent years for their potential application in emerging biomedical, environmental and agricultural applications. In most of these applications, the plasma is not in direct contact with the substrate being treated and the transport of reactive species from the plasma to the substrate is typically assumed to be controlled by diffusion. Here, we demonstrate that generally this is not the case and that electrohydrodynamic (EHD) forces can produce jets that enhance the delivery of these species, thereby influencing the efficacy of the S-DBD device. In particular, we have studied the degradation of potassium indigotrisulfonate solutions exposed to S-DBDs generated in devices with annular electrodes of diameters varying between 10 mm and 50 mm. All the devices were driven at constant linear power density (watts per cm of plasma length) and although local plasma properties remained the same in all the devices, a three-fold efficacy enhancement was observed for devices of diameter ~30 mm due to EHD effects.

  17. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  18. A Versatile Lifting Device for Lunar Surface Payload Handling, Inspection & Regolith Transport Operations

    Science.gov (United States)

    Doggett, William; Dorsey, John; Collins, Tim; King, Bruce; Mikulas, Martin

    2008-01-01

    Devices for lifting and transporting payloads and material are critical for efficient Earth-based construction operations. Devices with similar functionality will be needed to support lunar-outpost construction, servicing, inspection, regolith excavation, grading and payload placement. Past studies have proposed that only a few carefully selected devices are required for a lunar outpost. One particular set of operations involves lifting and manipulating payloads in the 100 kg to 3,000 kg range, which are too large or massive to be handled by unassisted astronauts. This paper will review historical devices used for payload handling in space and on earth to derive a set of desirable features for a device that can be used on planetary surfaces. Next, an innovative concept for a lifting device is introduced, which includes many of the desirable features. The versatility of the device is discussed, including its application to lander unloading, servicing, inspection, regolith excavation and site preparation. Approximate rules, which can be used to size the device for specific payload mass and reach requirements, are provided. Finally, details of a test-bed implementation of the innovative concept, which will be used to validate the structural design and develop operational procedures, is provided.

  19. Surface Evolution of the Sun's Magnetic Field: A Historical Review of the Flux-Transport Mechanism

    Directory of Open Access Journals (Sweden)

    Sheeley Jr. Neil R.

    2005-10-01

    Full Text Available This paper reviews our attempts to understand the transport of magnetic flux on the Sun from the Babcock and Leighton models to the recent revisions that are being used to simulate the field over many sunspot cycles. In these models, the flux originates in sunspot groups and spreads outward on the surface via supergranular diffusion; the expanding patterns become sheared by differential rotation, and the remnants are carried poleward by meridional flow. The net result of all of the flux eruptions during a sunspot cycle is to replace the initial polar fields with new fields of opposite polarity. A central issue in this process is the role of meridional flow, whose relatively low speed is near the limit of detection with Doppler techniques. A compelling feature of Leighton’s original model was that it reversed the polar fields without the need for meridional flow. Now, we think that meridional flow is central to the reversal and to the dynamo itself.

  20. Geocenter motion due to surface mass transport from GRACE satellite data

    Science.gov (United States)

    Riva, R. E. M.; van der Wal, W.; Lavallée, D. A.; Hashemi Farahani, H.; Ditmar, P.

    2012-04-01

    Measurements of mass redistribution from satellite gravimetry are insensitive to geocenter motions. However, geocenter motions can be constrained by satellite gravity data alone if we partition mass changes between land and oceans, under the assumption that the ocean is passive (i.e., in gravitational equilibrium with the land load and the solid earth). Here, we make use of 8 years (2003-2010) of optimally filtered monthly GRACE-based solutions produced at TU Delft to determine changes in the land load and the corresponding geocenter motion, through an iterative procedure. We pay particular attention to correcting for signal leakage caused by the limited spatial resolution of GRACE. We also investigate how the choice of a model of glacial isostatic adjustment (GIA) affects the estimated geocenter motion trend due to present-day surface mass transport. Finally, we separate the contribution of ice masses from that of land hydrology and show how they have a different sensitivity to the chosen GIA model and observational time-span.

  1. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  2. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  3. GPS based surface displacements – a proxy for discharge and sediment transport from the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    B. Hasholt

    2014-07-01

    Full Text Available The elastic respond of the Earth's surface to mass changes has been measured with Global Positioning System (GPS. Mass loss as accumulated runoff and sediment transport from a 10 000 km2 segment of the Greenland Ice Sheet (GrIS correlated very well (R2 = 0.83 with GPS measured uplift. Accumulated winter precipitation correlated fairly well with surface depression (R2 = 0.69. The relationships are based on seven years of runoff and sediment transport observations from the Watson River (2007–2013, winter precipitation from Kangerlussuaq Airport and GPS observations at Kellyville. GPS recordings of surface subsidence and uplift from 1996–2013 are used to calculate 18 years time series of annual runoff, sediment and solute transport and winter precipitation. Runoff and related transport of sediment and solutes increase over the period, while winter precipitation (land depression tends to decrease. Based on the entire GPS record (1996–2013, it is shown that until 2005–2006 the mass balance of this segment of the GrIS was rather stable – since then there has been an increasing loss of mass, culminating in 2012.

  4. Resistivity and low-frequency noise characteristics of epoxy-carbon composites

    Science.gov (United States)

    PralgauskaitÄ--, Sandra; Matukas, Jonas; Tretjak, Marina; Macutkevic, Jan; Banys, Juras; Selskis, Algirdas; Cataldo, Antonino; Micciulla, Federico; Bellucci, Stefano; Fierro, Vanessa; Celzard, Alain

    2017-03-01

    Noise and electrical transport properties of composites based on epoxy resin filled with various carbon inclusions (single-walled carbon nanotubes, high surface area carbon black, and exfoliated graphite) were investigated in depth. The temperature dependence of resistivity shows that Mott's hopping and tunneling between conductive carbon particles dominate the charge carrier transport at low temperature, whereas a positive temperature coefficient effect occurs at higher temperature. Low-frequency noise spectra of the investigated materials comprise 1/fα type components. The noise level is the highest for composites close to the percolation threshold. The percolation threshold value of the system also strongly impacts both the temperature dependence of the noise level and the resistivity. Close to the percolation threshold, the noise level increases due to the carrier tunneling throughout the polymer matrix and decreases due to the rapid expansion of the polymer matrix. In contrast, the latter has almost no influence on the noise level far above the percolation threshold, and the small kink in the temperature dependence of the noise level indicates a crossover between tunneling and thermally activated electron transport mechanisms.

  5. Adapting directives on noise emission reduction in fisheries and marine transport.Its impact on the economy; Adaptacion de las directivas sobre reduccion de emisiones acusticas en la pesca y transporte maritimo. Su impacto en la economia

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Palomo, P.

    2012-07-01

    The environmental impact assessment of a vessel requires the introduction of a new indicator called Noise and Vibration Full Signature. This indicator includes: N and V on board, noise radiated to harbour and underwater radiated noise. The last one has became not only the most remarkable novelty but also the biggest technical challenge to be solved. This manuscript details the technical-economical, also in terms of feasibility, consequences which this environmental policy will imply in the european marine sector. As a counterpoint, it is detailed the success of the spanish marine sector in the shipbuilding of silent vessels. (Author)

  6. Clay mineral distribution in surface sediments of the South China Sea and its significance for in sediment sources and transport

    Institute of Scientific and Technical Information of China (English)

    刘建国; 陈木宏; 陈忠; 颜文

    2010-01-01

    Clay minerals of surface sediments in the South China Sea (SCS) are analyzed with X-ray diffraction, and their transport is explored with a grain size trend analysis (GSTA) model. Results show that clay mineral types in various sedimentary environments have different sediment sources and transport routes. Sediments in the northern SCS (north of 20°N) between the southwest of Taiwan Island and the outer mouth of the Pearl River have high contents of illite and chlorite, which are derived mainly from sediment...

  7. Transport and deposition of nitrogen oxides and ozone in the atmospheric surface layer

    Science.gov (United States)

    Li, Yongxian

    Tropospheric ozone is an important photochemical air pollutant, which increases respiratory-related diseases, decreases crop yields, and causes other environmental problems. This research has focused on the measurement of soil biogenic emissions of nitric oxide (NO), one of the precursors for ozone formation, from intensively managed soils in the Southeast US, and examined the transport and deposition of NOx (NO + NO2) and ozone in the atmospheric surface layer, and the effects of NO emissions and its chemical reactions on ozone flux and deposition to the earth's surface. Emissions of nitric oxide were measured from an intensively managed agricultural soil, in the lower coastal plain of North Carolina (near Plymouth, NC), using a dynamic chamber technique. Measurements of soil NO emissions in several crop canopies were conducted at four different sites in North Carolina during late spring and summer of 1994-1996. The turbulent fluxes of NO2 and O3 at 5 m and 10 m above the ground were measured using the eddy-correlation technique near Plymouth, NC during late spring of 1995 and summer of 1996, concurrent with measurements of soil NO emissions using the dynamic chamber system. Soil NO emission from within the corn field was high averaging approximately 35 ng N/m2/s during the measurement period of 1995. In another study, vertical measurements of ozone were made on a 610 m tall tower located 15 km Southeast of Raleigh, NC during the summers of 1993-1997, as part of an effort by the State of North Carolina to develop a State Implementation Plan (SIP) for ozone control in the Raleigh Metropolitan Statistical Area. A strong correlation was observed between the nighttime and early morning ozone concentrations in the residual layer (CR) above the NBL and the maximum ground level concentration (C o max) the following afternoon. Based on this correlation, an empirical regression equation (Co max = 27.67*exp(0.016 CR)) was developed for predicting maximum ground level ozone

  8. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2015-03-01

    Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous

  9. Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers.

    Science.gov (United States)

    Steen Redeker, Erik; Eersels, Kasper; Akkermans, Onno; Royakkers, Jeroen; Dyson, Simba; Nurekeyeva, Kunya; Ferrando, Beniamino; Cornelis, Peter; Peeters, Marloes; Wagner, Patrick; Diliën, Hanne; van Grinsven, Bart; Cleij, Thomas Jan

    2017-05-12

    This paper introduces a novel bacterial identification assay based on thermal wave analysis through surface-imprinted polymers (SIPs). Aluminum chips are coated with SIPs, serving as synthetic cell receptors that have been combined previously with the heat-transfer method (HTM) for the selective detection of bacteria. In this work, the concept of bacterial identification is extended toward the detection of nine different bacterial species. In addition, a novel sensing approach, thermal wave transport analysis (TWTA), is introduced, which analyzes the propagation of a thermal wave through a functional interface. The results presented here demonstrate that bacterial rebinding to the SIP layer resulted in a measurable phase shift in the propagated wave, which is most pronounced at a frequency of 0.03 Hz. In this way, the sensor is able to selectively distinguish between the different bacterial species used in this study. Furthermore, a dose-response curve was constructed to determine a limit of detection of 1 × 10(4) CFU mL(-1), indicating that TWTA is advantageous over HTM in terms of sensitivity and response time. Additionally, the limit of selectivity of the sensor was tested in a mixed bacterial solution, containing the target species in the presence of a 99-fold excess of competitor species. Finally, a first application for the sensor in terms of infection diagnosis is presented, revealing that the platform is able to detect bacteria in clinically relevant concentrations as low as 3 × 10(4) CFU mL(-1) in spiked urine samples.

  10. Noise Pollution

    Science.gov (United States)

    ... Search Clean Air Act Overview Share Facebook Twitter Google+ Pinterest Contact Us Clean Air Act Title IV - ... noises in the community (from your neighbor, boom cars, lawn equipment, etc.) and from commercial businesses (factory, ...

  11. Baseline measurement of the noise generated by a short-to-medium range jet transport flying standard ILS approaches and level flyovers

    Science.gov (United States)

    Hastings, E. C., Jr.; Shanks, R. E.; Mueller, A. W.

    1975-01-01

    The results of baseline noise flight tests are presented. Data are given for a point 1.85 kilometers (1.0 nautical mile) from the runway threshold, and experimental results of level flyover noise at altitudes of 122 meters (400 feet) and 610 meters (2,000 feet) are also shown for several different power levels. The experimental data are compared with data from other sources and reasonable agreement is noted. A description of the test technique, instrumentation, and data analysis methods is included.

  12. Interagency Symposium on University Research in Transportation Noise (2nd) Held at North Carolina State Univ., Raleigh on June 5-7, 1974. Book of Proceedings, Volume I

    Science.gov (United States)

    1974-06-01

    DIRECTIONAL PATTERN OF BLONN FLAP NOISE AT lf/D-3.75. x/o-5.75, Y/D-2.0 DIFFERENT FLAP LENGTH. H-.W, X/D-5.75, Y/D-2.0. »•• 0 dB FIB . 5A OVERALL...Coward, U.E., Hoshheiser, R.M., Kazin, S.B. and Knott , P.R., "Fan/Compressor Noise Research," Rept« No. FAA-RD-71-85. Vole. I,Il,III,Ma7

  13. Kinesin-5/Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface

    Science.gov (United States)

    Villeneuve, Julien; van Galen, Josse; Cruz-Garcia, David; Tagaya, Mitsuo

    2013-01-01

    Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface. PMID:23857769

  14. 高架轨道交通噪声的分析与控制技术研究%Analysis and reduction techniques for noise of lifted railway transportation

    Institute of Scientific and Technical Information of China (English)

    蒋伟康; 张海滨; 严莉

    2012-01-01

    Railway transportation can be considered as the first public transportation system in big cities, but it generates noise that may pollute the environment along railway line. The analysis, prediction and reduction of the noise become key techniques in building urban lifted railway transportation lines. The sound level and radiation pattern of the noise torn the trains running on Shanghai No. 9 urban railway are investigated by microphone arrays, and the contribution of each 1/3 octave spectrum is evaluated. The relations of equivalent sound power level with train speed are obtained via analyzing experimental results. A model is suggested to predict the noise radiation from urban lifted railway as the train is considered to be a linear source in uniform motion. The monopole models and dipolar models are employed for analyzing the pass-by noise of urban railway trains. The models are verified by the data measured along the lifted railway area, and the applicability of the model in different cases is studied. It is shown that the model can be used to predict the noise radiated from lifted railway transportation. Finally, a new kind of dynamic absorber damping track and acoustic barriers between tracks are recommended, and with which the effects of noise reduction in engineering are demonstrated.%轨道交通是大城市公共交通方式的首选,其产生的噪声可能污染沿线地区的环境,高架轨道交通噪声的分析、预测和控制成为建造高架轨道交通必须解决的问题.首先用传声器阵列分析了上海轨道交通9号线列车噪声级沿高度的指向性,研究了各1/3倍频程对总噪声的贡献量,归纳了列车等效声功率级与列车速度的关系.然后建立了一套适用于高架轨道交通噪声辐射的预测模型,将列车视作一个移动的均匀线声源,采用单极子和偶极子传播模型拟合轻轨列车的通过噪声,并用高架轨道交通线附近的测量数据,验证了不同测点情形下

  15. Surface electronic transport measurements: A micro multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas

    2014-01-01

    This work is mostly focused on the study of electronic transport properties of two-dimensional materials, in particular graphene and topological insulators. To study these, we have improved a unique micro multi-point probe instrument used to perform transport measurements. Not only the experimental...

  16. Transport of temperature and humidity variance and covariance in the marine surface layer

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Højstrup, J.

    1998-01-01

    In this paper we address the budget of potential temperature T and moisture mixing ratio q variances as well as the q - T covariance budget. We focus on the vertical transport and study the quantities contained in these terms. Estimates of transport terms are rare and to the best of our knowledge...

  17. Design of noise barrier inspection system for high-speed railway

    Science.gov (United States)

    Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim

    2016-10-01

    The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.

  18. THE POSSIBILITY OF REDUCING THE IMPACT OF TRAFFIC NOISE ON THE PERSON IN THE PASSENGER CARS OF A RAILWAY TRANSPORT IS THE METHOD, BASED ON THE MASKING EFFECT

    Directory of Open Access Journals (Sweden)

    S. V. Shmakov

    2008-01-01

    Full Text Available The problem of reduction of the long-term traffic noise effect on the person in coach passenger spaces is examined. The method of solving the problem is offered. The corresponding calculations and analysis of results are performed. The functional diagram on technical realization of this method is proposed.

  19. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-wei [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Chong-jun; Feng, Chun; Yu, Guang-hua [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhou, Zhongfu [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2015-08-15

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.

  20. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W J [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  1. Improvement of vibration and noise by applying analysis technology. Analytical study of surface sound radiation from automobile exhaust system. Kaiseki gijutsu wo oyoshita shindo-soon no kaizen. Haikikankei hoshaon no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, I.; Yoshihara, Y.; Yahagi, H. (Toyota Motor Co. Ltd., Aichi (Japan))

    1994-06-01

    The reduction of the noise from the automobile exhaust system is not only an important task for raising the quality of the products but also an important task for solving the noise pollution, and studies and analysis have been conducted for this purpose. However concerning the noise radiated from the surface of the exhaust system (surface sound radiation) although measures such as increasing the thickness of some boards, adding ribs or adopting laminated structure have been taken, there are few reports systematically analyzing and studying the generation phenomena. In this paper, the influences of the structure of various parts of the exhaust system on the surface sound radiation are studied and analyzed through real machine tests and finite-element method, etc. The results of the study show that the reflection behavior of pressure pulsation and wall stiffness in the pipes are good indicators for prediction of the radiated noise level. As the surface sound radiation from the exhaust system is generated in a very complicated situation including a lot of nonlinear phenomena, there are still many problems such as the disorder of the gas flow, treatment of the shock waves and the radiation characteristics from the walls, etc. remaining to be solved. 9 refs., 15 figs.

  2. On the Sensitivity of Atmospheric Model Implied Ocean Heat Transport to the Dominant Terms of the Surface Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, P J

    2004-11-03

    The oceanic meridional heat transport (T{sub o}) implied by an atmospheric General Circulation Model (GCM) can help evaluate a model's readiness for coupling with an ocean GCM. In this study we examine the T{sub o} from benchmark experiments of the Atmospheric Model Intercomparison Project, and evaluate the sensitivity of T{sub o} to the dominant terms of the surface energy balance. The implied global ocean TO in the Southern Hemisphere of many models is equatorward, contrary to most observationally-based estimates. By constructing a hybrid (model corrected by observations) T{sub o}, an earlier study demonstrated that the implied heat transport is critically sensitive to the simulated shortwave cloud radiative effects, which have been argued to be principally responsible for the Southern Hemisphere problem. Systematic evaluation of one model in a later study suggested that the implied T{sub o} could be equally as sensitive to a model's ocean surface latent heat flux. In this study we revisit the problem with more recent simulations, making use of estimates of ocean surface fluxes to construct two additional hybrid calculations. The results of the present study demonstrate that indeed the implied T{sub o} of an atmospheric model is very sensitive to problems in not only the surface net shortwave, but the latent heat flux as well. Many models underestimate the shortwave radiation reaching the surface in the low latitudes, and overestimate the latent heat flux in the same region. The additional hybrid transport calculations introduced here could become useful model diagnostic tests as estimates of implied ocean surface fluxes are improved.

  3. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G

    2010-04-01

    We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.

  4. Accurate testing of aspheric surfaces using the transport of intensity equation by properly selecting the defocusing distance.

    Science.gov (United States)

    Soltani, Peyman; Darudi, Ahmad; Nehmetallah, George; Moradi, Ali Reza; Amiri, Javad

    2016-12-10

    In the last decade, the transport of intensity has been increasingly used in microscopy, wavefront sensing, and metrology. In this study, we verify by simulation and experiment the use of the transport of intensity equation (TIE) in the accurate testing of optical aspheric surfaces. Guided by simulation results and assuming that the experimental setup parameters and the conic constants are known, one can estimate an appropriate defocusing distance Δz that leads to an accurate solution of the TIE. In this paper, this method is verified through the construction of a non-nulled experiment for testing the 2D profile of an aspheric surface. The theoretical method and experimental results are compared to validate the results. Finally, to validate the TIE methodology, the phase distribution obtained by TIE is compared with the phase distribution obtained by a Shack-Hartmann sensor.

  5. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...... because of the occurrence of redox gradients, strongly reductive conditions and high biological activity. In order to meet the expectations of the EU Water Framework Directive, an evaluation of the impact of such plumes on surface water is needed. The aim of this work is to develop a groundwater transport...... number of geochemical processes, allows the simulation of soil geochemical transformations when microbial by-products are released to surface water, and the consideration of non-linear feedbacks on bacterial growth and pollutant transformations. Sensitivity analysis is performed through Monte Carlo...

  6. Exposure to road traffic and railway noise and associations with blood pressure and self-reported hypertension: a cohort study

    DEFF Research Database (Denmark)

    Sorensen, Mette; Hvidberg, Martin; Hoffmann, Barbara

    2011-01-01

    Epidemiological studies suggest that long-term exposure to transport noise increases the risk for cardiovascular disorders. The effect of transport noise on blood pressure and hypertension is uncertain.......Epidemiological studies suggest that long-term exposure to transport noise increases the risk for cardiovascular disorders. The effect of transport noise on blood pressure and hypertension is uncertain....

  7. Effect of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    OpenAIRE

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultra-relativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface tran...

  8. Control of start-up and dynamic braking of conveyors used for downhill transport in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Rosseger, A.; Borczyk, Z.; Kwater, M. (POLTEGOR Instytut, Wroclaw (Poland))

    1992-04-01

    Presents the structure of a microprocessor-aided control system for conveyors used in surface mines for downhill transport. Control of motor start-up and braking is performed in 8 speed stages. Permissible starting time duration is taken into consideration. The procedure of direct current braking is described. The microprocessor activates emergency braking by disc brakes if direct current braking is not sufficient. The system was implemented on four conveyors and has been used successfully since 1990.

  9. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B.

    Science.gov (United States)

    Meng, Yan; Zhao, Chunyan; Zhang, Xuexin; Zhao, Huashan; Guo, Lirong; Lü, Bin; Zhao, Xuejian; Yang, Baoxue

    2009-05-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 +/- 4.2), (45.5 +/- 6.9) and (43.8 +/- 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 +/- 2.9), (38.7 +/- 5.6) and (38.2 +/- 7.3) ms, PUT-B null mice (52 w old). The amplitude of action potential and V (max) decreased significantly in UT-B null mice ((92.17 +/- 10.56) and (101.89 +/- 9.54) mV/s) vs those in wild-type mice (vs (110.51 +/- 10.38) and (109.53 +/- 10.64) mV/s, PUT-B null mice ((123.83 +/- 11.17) and (195.43 +/- 16.41) ms) vs that in wild-type mice ((108.27 +/- 10.85) and (171.00 +/- 15.53) ms, PUT-B null mice (-8.80 +/- 0.92) nA vs that in wild-type mice ((-5.98 +/- 1.07) nA, PUT-B deletion causes progressive heart block in mice.

  10. The associations between noise sensitivity, reported physical and mental health, perceived environmental quality, and noise annoyance

    Directory of Open Access Journals (Sweden)

    Dirk Schreckenberg

    2010-01-01

    Full Text Available One hundred and ninety residents around Frankfurt Airport (46% female; 17-80 years were interviewed concerning noise annoyance due to transportation noise (aircraft, road traffic, perceived mental and physical health, perceived environmental quality, and noise sensitivity. The aim of the analyses was to test whether noise sensitivity reflects partly general environmental sensitivity and is associated with an elevated susceptibility for the perception of mental and physical health. In this study, the reported physical and mental health variables were not associated with noise exposure but with noise annoyance, and were interpreted to reflect nonspecific codeterminants of annoyance rather than noise effects. Noise sensitivity was found to influence total noise annoyance and aircraft noise annoyance but to a lesser degree annoyance due to road traffic noise. Noise sensitivity was associated with reported physical health, but not with reported mental health. Noise-sensitive persons reported poorer environmental quality in their residential area than less sensitive persons in particular with regard to air traffic (including the facets noise, pollution, and contaminations and quietness. Other aspects of the perceived quality of the environment were scarcely associated with noise sensitivity. This indicates that noise sensitivity is more specific and a reliable predictor of responses to noise from the dominant source (in this case air traffic rather than a predictor of the individual perception of the environmental quality in general.

  11. The associations between noise sensitivity, reported physical and mental health, perceived environmental quality, and noise annoyance.

    Science.gov (United States)

    Schreckenberg, Dirk; Griefahn, Barbara; Meis, Markus

    2010-01-01

    One hundred and ninety residents around Frankfurt Airport (46% female; 17-80 years) were interviewed concerning noise annoyance due to transportation noise (aircraft, road traffic), perceived mental and physical health, perceived environmental quality, and noise sensitivity. The aim of the analyses was to test whether noise sensitivity reflects partly general environmental sensitivity and is associated with an elevated susceptibility for the perception of mental and physical health. In this study, the reported physical and mental health variables were not associated with noise exposure but with noise annoyance, and were interpreted to reflect nonspecific codeterminants of annoyance rather than noise effects. Noise sensitivity was found to influence total noise annoyance and aircraft noise annoyance but to a lesser degree annoyance due to road traffic noise. Noise sensitivity was associated with reported physical health, but not with reported mental health. Noise-sensitive persons reported poorer environmental quality in their residential area than less sensitive persons in particular with regard to air traffic (including the facets noise, pollution, and contaminations) and quietness. Other aspects of the perceived quality of the environment were scarcely associated with noise sensitivity. This indicates that noise sensitivity is more specific and a reliable predictor of responses to noise from the dominant source (in this case air traffic) rather than a predictor of the individual perception of the environmental quality in general.

  12. A review of rapid transport of pesticides from sloping farmland to surface waters: Processes and mitigation strategies

    Institute of Scientific and Technical Information of China (English)

    Xiangyu Tang; Bo Zhu; Hidetaka Katou

    2012-01-01

    Pesticides applied to sloping farmland may lead to surface water contamination through rapid transport processes as influenced by the complex topography and high spatial variability of soil properties and land use in hilly or mountainous regions.However,the fate of pesticides applied to sloping farmland has not been sufficiently elucidated.This article reviews the current understanding of pesticide transport from sloping farmland to surface water.It examines overland flow and subsurface lateral flow in areas where surface soil is underlain by impervious subsoil or rocks and tile drains.It stresses the importance of quantifying and modeling the contributions of various pathways to rapid pesticide loss at catchment and regional scales.Such models could be used in scenario studies for evaluating the effectiveness of possible mitigation strategies such as constructing vegetated strips,depressions,wetlands and drainage ditches,and implementing good agricultural practices.Field monitoring studies should also be conducted to calibrate and validate the transport models as well as biophysical-economic models,to optimize mitigation measures in areas dominated by sloping farmland.

  13. Coupled Soil Water and Heat Transport Near the Land Surface in Arid and Semiarid Regions - Multi-Domain Modeling

    Science.gov (United States)

    Mohanty, Binayak; Yang, Zhenlei

    2016-04-01

    Understanding and simulating coupled water and heat transfer appropriately in the shallow subsurface is of vital significance for accurate prediction of soil evaporation that would improve the coupling between land surface and atmosphere, which consequently could enhance the reliability of weather as well as climate forecast. The theory of Philip and de Vries (1957), accounting for water vapor diffusion only, was considered physically incomplete and consequently extended and improved by several researchers by explicitly taking water vapor convection, dispersion or air flow into account. It is generally believed that the soil moisture is usually low in the near surface layer under highly transient field conditions, particularly in arid and semiarid regions, and that accurate characterization of water vapor transport is critical when modeling simultaneous water and heat transport in the shallow field soils. The first objective of this study is thus mainly to test existing coupled water and heat transport theories and to develop reasonable and simplified numerical models using field experimental data collected under semi-arid and arid hydro-climatic conditions. In addition, more complex multi-domain models are developed for ubiquitous heterogeneous terrestrial surfaces such as horizontal textural contrasts or structured heterogeneity including macropores (fractures, cracks, root channels, etc.). This would make coupled water and heat transfer models applicable in such non-homogeneous soils more meaningful and enhance the skill of land-atmosphere interaction models at a larger context.

  14. In Situ Determination of the Transport Properties of Near-Surface Concrete Using AC Impedance Spectroscopy Techniques

    Directory of Open Access Journals (Sweden)

    Lipeng Wu

    2016-01-01

    Full Text Available The durability of existing concrete structures has increasingly attracted widespread attention in recent years. The phenomenon of performance degradation is often associated with the intrusion of hazardous ions from outside. As the first barrier to external substances intrusion, the near-surface concrete plays an important role in durability. So the performance of in-service concrete structures often depends on the transport properties of the near-surface concrete. Accordingly, information on service conditions and life prediction can be obtained by testing these transport properties. In this paper, an in situ method for chloride ion diffusion coefficient determination is proposed based on the relationship between the alternating current impedance spectroscopy parameters and the chloride ion diffusion coefficient. By a rational design, the new method can synthetically reflect the transport properties of near-surface concrete and is not affected by the presence of the reinforcing bar. In addition, the experimental results show that the method is in good agreement with “PERMIT” migration test which has been widely used. The proposed method is less time consuming and nondestructive and has good reproducibility.

  15. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus

    DEFF Research Database (Denmark)

    Lauritzen, Fredrik; Heuser, Kjell; de Lanerolle, Nihal C

    2012-01-01

    Emerging evidence points to monocarboxylates as key players in the pathophysiology of temporal lobe epilepsy (TLE) with hippocampal sclerosis (mesial temporal lobe epilepsy, MTLE). Monocarboxylate transporters (MCTs) 1 and 2, which are abundantly present on brain endothelial cells and perivascular...

  16. Transport of ultracold neutrons through a mirror system with surface roughness as a velocity filter

    CERN Document Server

    Chizhova, L A; Jenke, T; Cronenberg, G; Geltenbort, P; Abele, H; Burgdörfer, J

    2012-01-01

    We perform classical Monte Carlo simulations of ultracold neutron transport through an absorbing-reflecting mirror system in the Earth's gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a velocity filter for ultracold neutrons. The range of velocities selected is controlled by geometric parameters of the wave guide. Possible applications include investigations of transport and scattering dynamics in confined systems.

  17. 49 CFR 227.113 - Noise operational controls.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational controls at any sound level to reduce exposures to levels below those required by Table A-1 of appendix A...

  18. A Two-Phase Cooling Loop for Fission Surface Power Waste Heat Transport Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current lunar-based Fission Surface Power (FSP) Systems that will support sustained surface outposts consist of a nuclear reactor with power converters, whose waste...

  19. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    Science.gov (United States)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-09-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

  20. Tandem Cylinder Noise Predictions

    Science.gov (United States)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  1. A physically-based integrated numerical model for flow,upland erosion,and contaminant transport in surface-subsurface systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents a physically-based integrated hydrologic model that can simulate the rain-fall-induced 2D surface water flow, 3D variably saturated subsurface flow, upland soil erosion and transport, and contaminant transport in the surface-subsurface system of a watershed. The model couples surface and subsurface flows based on the assumption of continuity conditions of pressure head and exchange flux at the ground, considering infiltration and evapotranspiration. The upland rill/interrill soil erosion and transport are simulated using a non-equilibrium transport model. Contaminant transport in the integrated surface and subsurface domains is simulated using advection-diffusion equations with mass changes due to sediment sorption and desorption and exchanges between two domains due to infiltration, diffusion, and bed change. The model requires no special treatments at the interface of upland areas and streams and is suitable for wetland areas and agricultural watersheds with shallow streams.

  2. Transport signatures of surface potentials on three-dimensional topological insulators

    Science.gov (United States)

    Roy, Sthitadhi; Das, Sourin

    2016-02-01

    The spin-momentum-locked nature of the robust surface states of three-dimensional topological insulators (3D TIs) makes them promising candidates for spintronics applications. Surface potentials which respect time-reversal symmetry can exist at the surface between a 3D TI and the trivial vacuum. These potentials can distort the spin texture of the surface states while retaining their gapless nature. In this work, the effect of all such surface potentials on the spin textures is studied. Since a tunnel magnetoresistance signal carries the information of the spin texture, it is proposed that spin-polarized tunneling of electrons to a 3D TI surface can be used to uniquely identify the surface potentials and quantitatively characterize them.

  3. From Soil to Surface Water: a Meta-Analysis of Catchment-Scale Organic Matter Production and Transport

    Science.gov (United States)

    Gabor, R. S.; Brooks, P. D.; Perdrial, J. N.

    2015-12-01

    Organic matter plays a fundamental role in the ecology and biogeochemistry of many ecosystems, from soils to headwater streams to oceans. In most catchments, the terrestrial environment is the dominant source of organic matter for the aquatic system, and thus DOM represents a fundamental linkage between soil and surface water. With trends of increasing DOC concentrations observed in many areas of the world, there is growing interest in identifying which factors drive DOM concentration and chemistry. Studies of systems ranging from tropical rainforests to boreal landscapes have identified many catchment characteristics that co-vary with DOM concentration and chemistry. These include climate elements such as solar radiation and precipitation patterns, chemical measurements such as sulfate or chloride concentration, and land use impacts such as percent agriculture. The question of which catchment characteristics actually control DOM can be broken down into two parts: which factors control the production of mobile DOM and what drives DOM transport from the terrestrial to the aquatic system. Here we review studies covering a range of ecosystems, scales, and measurement techniques, to categorize the major state factors that drive catchment controls of aquatic organic matter. Specifically, we identify three major transport vectors that vary both in their timing of DOM transport to surface water and the propensity for DOM originating from terrestrial source areas to be modified during transport. We use this three vector conceptual model of transport to group catchments and identify reproducible signatures of DOM export with varying levels of disturbance. By developing a generalized conceptual model of catchment-scale controls on aquatic organic matter, we can predict how dissolved organic matter will respond to environmental change. This knowledge can then help guide best management practices.

  4. Physically Damped Noise Canceling Hydrophone

    Science.gov (United States)

    2016-06-24

    300075 1 of 10 PHYSICALLY DAMPED NOISE CANCELING HYDROPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...transducer with an electromechanical driver comprising a plurality of single crystal piezoelectric elements joined to an inner surface and arranged to form...an electromechanical stack assembly. Each single crystal piezoelectric element has a surface, an opposite surface, and a Attorney Docket No

  5. T tubules and surface membranes provide equally effective pathways of carbonic anhydrase-facilitated lactic acid transport in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Janine Hallerdei

    Full Text Available We have studied lactic acid transport in the fast mouse extensor digitorum longus muscles (EDL by intracellular and cell surface pH microelectrodes. The role of membrane-bound carbonic anhydrases (CA of EDL in lactic acid transport was investigated by measuring lactate flux in muscles from wildtype, CAIV-, CAIX- and CAXIV-single ko, CAIV-CAXIV double ko and CAIV-CAIX-CAXIV-triple ko mice. This was complemented by immunocytochemical studies of the subcellular localization of CAIV, CAIX and CAXIV in mouse EDL. We find that CAXIV and CAIX single ko EDL exhibit markedly but not maximally reduced lactate fluxes, whereas triple ko and double ko EDL show maximal or near-maximal inhibition of CA-dependent lactate flux. Interpretation of the flux measurements in the light of the immunocytochemical results leads to the following conclusions. CAXIV, which is homogeneously distributed across the surface membrane of EDL fibers, facilitates lactic acid transport across this membrane. CAIX, which is associated only with T tubular membranes, facilitates lactic acid transport across the T tubule membrane. The removal of lactic acid from the lumen of T tubuli towards the interstitial space involves a CO2-HCO3- diffusional shuttle that is maintained cooperatively by CAIX within the T tubule and, besides CAXIV, by the CAIV, which is strategically located at the opening of the T tubules. The data suggest that about half the CA-dependent muscular lactate flux occurs across the surface membrane, while the other half occurs across the membranes of the T tubuli.

  6. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Science.gov (United States)

    Lee, Hae Ri; Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won; Lee, Kwan-Young; Oh, Si Hyoung

    2017-01-01

    Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO4 and LiMg0.5Mn1.5O4 layers on the surface of LiAl0.1Mn1.9O4. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  7. Detection of Multiple Innervation Zones from Multi-Channel Surface EMG Recordings with Low Signal-to-Noise Ratio Using Graph-Cut Segmentation

    Science.gov (United States)

    Farahi, Morteza; Rojas, Monica; Mañanas, Miguel Angel; Farina, Dario

    2016-01-01

    Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed

  8. 微表处高噪声形成机理及其多支点降噪模型%Mechanism of High Noise at Micro-surfacing and Multi-support Denoising Model

    Institute of Scientific and Technical Information of China (English)

    李志栋; 黄晓明; 陈广秀; 刘玉恒; 许涛

    2012-01-01

    为降低微表处交通噪声,增加行车舒适性,通过4条高速、2条城市道路2 a内不同时间施工的微表处噪声进行调查,从原材料、级配、设计、施工、路面纹理结构及其与轮胎宏观构造波长关系、胎/面接触等方面进行了研究.研究表明:微表处车内噪声随使用时间延长而降低,随车速增加、构造深度减小而增强;车外噪声则随时间延长、车速增加而增强,随构造深度增加而减小;通过增加7 mm筛孔及其支撑点集料含量,建立了微表处多支点降噪模型及其降噪判据,提出了低噪声微表处级配,使微表处表面的路表构造波长由传统级配的17 mm缩短到10 mm,车内、车外噪声平均降低3 ~4 dB.%To reduce micro-surfacing noise, improve riding comfort, first, the micro-surfacing noise of four highways and two urban roads constructed in two years were surveyed. Then, the influencing factors such as material, gradation, design, construction, texture structure of pavement, relation between texture and vibration mechanical wavelength of the tyre, and contact of tyre/pavement were researched. It shows that ( 1) vehicle interior noise from micro-surfacing reduces with increasing of service time, and it increases with vehicle speed increases and texture depth reduces; (2) vehicle exterior noise increases with service time and vehicle speed increases, and it reduces with texture depth increases. The multi-support denoising model of micro-surfacing and denoising criteria were established, and denoising micro-surfacing gradation was recommended. By increasing the 7 mm sieve pores and content of the aggregate at supports, the texture wavelength of micro-surfacing was reduced to 10 mm from conventional 17 mm, thus, the vehicle interior noise and vehicle exterior noise from micro-surfacing could be reduced 3-4 Db.

  9. Transport properties of iron-porphyrin molecule sandwiched between Au surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Hisashi [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); CMSC, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: KONDO.Hisashi@nims.go.jp; Kino, Hiori; Nara, Jun [CMSC, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ohno, Takahisa [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); CMSC, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); MANA, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2008-09-30

    The transport properties of an iron-porphyrin molecule sandwiched between Au(1 1 1) electrodes are investigated using the non-equilibrium Green's function method based on the density functional theory, and in particular, the dependence on a terminal-atom position is studied. We consider four models for terminal-atom positions. It is found that the transport properties of the junction system are very sensitive to a terminal-atom position. We also find that the contribution of the d-orbitals of the Fe atom to the transport properties around the Fermi energy strongly changes, depending on a terminal-atom position. From these results, we propose a suitable terminal-atom position for the molecular sensor discussed in the other paper.

  10. Comparison of Ising spin glass noise to flux and inductance noise in SQUIDs.

    Science.gov (United States)

    Chen, Zhi; Yu, Clare C

    2010-06-18

    Recent experiments implicate spins on the surface of metals as the source of flux and inductance noise in SQUIDs. We present Monte Carlo simulations of 2D and 3D Ising spin glasses that produce magnetization noise S(M) consistent with flux noise. At low frequencies S(M) is a maximum at the critical temperature T(C) in three dimensions, implying that flux noise should be a maximum at T(C). The second spectra of the magnetization noise and the noise in the susceptibility are consistent with experimentally measured SQUID inductance noise.

  11. Pseudospin-valve effect on transport in junctions of three-dimensional topological insulator surfaces

    Science.gov (United States)

    Roy, Sthitadhi; Roychowdhury, Krishanu; Das, Sourin

    2016-07-01

    We show that the surface states of pristine 3D topological insulators (TIs) are analogs of ferromagnetic half metals due to complete polarization of an emergent momentum independent pseudospin (SU(2)) degree of freedom on the surface. To put this claim on firm footing, we present results for TI surfaces perpendicular to the crystal growth axis, which clearly show that the tunneling conductance between two such TI surfaces of the same TI material is dominated by this half metallic behavior leading to physics reminiscent of a spin-valve. Further using the generalized tunnel magnetoresistance derived in this work we also study the tunneling current between arbitrary TI surfaces. We also perform a comprehensive study of the effect of all possible surface potentials allowed by time reversal symmetry on this spin-valve effect and show that it is robust against most of such potentials.

  12. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    Institute of Scientific and Technical Information of China (English)

    MENG Yan; ZHAO ChunYan; ZHANG XueXin; ZHAO HuaShan; GUO LiRong; Lü Bin; ZHAO XueJian; YANG BaoXue

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead Ⅱ) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by float-ing microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5±4.2), (45.5±6.9) and (43.8±7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6±2.9), (38.7±5.6) and (38.2±7.3) ms, P<0.05). The atrial ventricular heart block type Ⅱ and Ⅲ only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17±10.56) and (101.89±9.54) mV/s) vs those in wild-type mice (vs (110.51±10.38) and (109.53±10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83±11.17) and (195.43±16.41) ms) vs that in wild-type mice ((108.27±10.85) and (171.00±15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80±0.92) nA vs that in wild-type mice ((-5.98±1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  13. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 ± 4.2), (45.5 ± 6.9) and (43.8 ± 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 ± 2.9), (38.7 ± 5.6) and (38.2 ± 7.3) ms, P<0.05). The atrial ventricular heart block type II and III only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17 ± 10.56) and (101.89 ± 9.54) mV/s) vs those in wild-type mice (vs (110.51 ± 10.38) and (109.53 ± 10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83 ± 11.17) and (195.43 ± 16.41) ms) vs that in wild-type mice ((108.27 ± 10.85) and (171.00 ± 15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80 ± 0.92) nA vs that in wild-type mice ((-5.98 ± 1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  14. Distributions of clay minerals in surface sediments of the middle Bay of Bengal: Source and transport pattern

    Science.gov (United States)

    Li, Jingrui; Liu, Shengfa; Shi, Xuefa; Feng, Xiuli; Fang, Xisheng; Cao, Peng; Sun, Xingquan; Wenxing, Ye; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2017-08-01

    The clay mineral contents in 110 surface sediment samples collected from the middle of the Bay of Bengal were analyzed by X-ray diffraction (XRD) to investigate the provenance and transport patterns. The illite content was highest, followed by chlorite, kaolinite and then smectite, with average weight percent distributions of 52%, 22%, 14% and 12%, respectively. Illite and chlorite had similar distribution pattern, with higher contents in the northern and central areas and lower contents in the southern area, whereas smectite showed the opposite distribution pattern. Kaolinite show no obvious higher or lower areas and the southern ;belt; was one of the highest content areas. Based on the spatial distribution characteristics and cluster analysis results, the study area can be classified into two provinces. Province I covers the southwestern area and contains high concentrations of illite and smectite sediments. Province II covers most sites and is also characterized by high concentrations of illite, but the weight percent of smectite is only half of that of province I. According to a quantitative estimate using end-member clay minerals contents, the relative contributions from the Himalayan source and the Indian source are 63% and 37% on average, respectively. Integrative analysis indicates that the hydrodynamic environment in the study area, especially the turbidity and surface monsoonal circulation, plays an important role in the spatial distribution and dispersal of the clay fraction in the sediments. The sediments in province I are mainly from the Indian source transported by the East Indian Coastal Current (EICC) and the surface monsoon circulation with minor contributions from the Himalayan source while the sediments in province II are mainly from the Himalayan source transported by turbidity and surface monsoonal circulation with little contribution from Indian river materials.

  15. Decadal Arctic surface atmosphere/ocean heat budgets and mass transport estimates from several atmospheric and oceanic reanalyses

    Science.gov (United States)

    Chepurin, gennaday; Carton, James

    2017-04-01

    The Arctic is undergoing dramatic changes associated with the loss of seasonal and permanent ice pack. By exposing the surface ocean to the atmosphere these changes dramatically increase surface exchange processes. In contrast, increases in freshwater and heat input decreases turbulent exchanges within the ocean. In this study we present results from an examination of changing ocean heat flux, storage, and transport during the 36 year period 1980-2015. To identify changes in the surface atmosphere we examine three atmospheric reanalyses: MERRA2, ERA-I, and JRA55. Significant differences in fluxes from these reanalyses arise due to the representation of clouds and water vapor. These differences provide an indication of the uncertainties in the historical record. Next we turn to the Simple Ocean Data Assimilation version 3 (SODA3) global ocean/sea ice reanalysis system to allow us to infer the full ocean circulation from the limited set of historical record of ocean observations. SODA3 has 10 km horizontal resolution in the Arctic and assimilates the full suite of historical marine temperature and salinity observations. To account for the uncertainties in atmospheric forcing, we repeat our analysis with each of the three atmospheric reanalyses. In the first part of the talk we review the climatological seasonal surface fluxes resulting from our reanalysis system, modified for consistency with the ocean observations, and the limits of what we can learn from the historical record. Next we compare the seasonal hydrography, heat, and mass transports with direct estimates from moorings. Finally we examine the impact on the Arctic climate of the changes in sea ice cover and variability and trends of ocean/sea ice heat storage and transport and their contributions to changes in the seasonal stratification of the Arctic Ocean.

  16. Research on the characteristics of noise source on heading face and noise propagation in mine laneway

    Institute of Scientific and Technical Information of China (English)

    PENG You-duo; XIE Wei-hua; XIE Zhi-yong; PENG Chang-qing; YIN Xi

    2012-01-01

    Based on the complexity and dynamic random analysis of machine noise source in mine heading face,this article established the noise pressure mathematical model of noise propagation in mine laneway of different noise sources,carried out noise propagation numerical simulation in long space,and revealed noise propagation law of more radiated noise sources in the mine roadway.The results show that,under conditions that the total noise power is always the same,regardless of point source,surface noise source,or body noise source,the corresponding noise attenuation trend along the mine laneway and attenuation curve shape are basically the same.However,the attenuation velocity corresponding to complex stereo noise source is slower than single point source and the noise pressure value is higher than the single point source.The actual noise of measured values is close to the theoretical value or,say,there is little error for complex stereo noise source,whereas the error to single point source and surface noise is higher,respectively.

  17. Lagrangian study of surface transport in the Kuroshio Extension area based on simulation of propagation of Fukushima-derived radionuclides

    CERN Document Server

    Prants, S V; Uleysky, M Yu

    2013-01-01

    Lagrangian approach is applied to study near-surface large-scale transport in the Kuroshio Extension area using a simulation with synthetic particles advected by AVISO altimetric velocity field. A material line technique is applied to find the origin of water masses in cold-core cyclonic rings pinched off from the jet in summer 2011. Tracking and Lagrangian maps provide the evidence of cross-jet transport. Fukushima derived caesium isotopes are used as Lagrangian tracers to study transport and mixing in the area a few months after the March of 2011 tsunami that caused a heavy damage of the Fukushima nuclear power plant (FNPP). Tracking maps are computed to trace the origin of water parcels with measured levels of Cs-134 and Cs-137 concentrations collected in two R/V cruises in June and July 2011 in the large area of the Northwest Pacific. It is shown that Lagrangian simulation is useful to finding the surface areas that are potentially dangerous due to the risk of radioactive contamination. The results of sim...

  18. Transport Properties and Surface Morphology Correlated Studies on Graphene Formed by Si Desorption of 6H-SiC

    Science.gov (United States)

    Roach, William; Beringer, Douglas; Skuza, Jonathan; Clavero, Cesar; Lukaszew, Rosa Alejandra

    2009-11-01

    Interest in graphene, a single layer of carbon atoms arranged in a hexagonal lattice, has increased in recent years due to exciting characteristics such as its predicted high mobility [1]. However, developing a method to produce graphene that is easily integrated into existing fabrication processes has proved difficult thus far. One promising method is high temperature annealing of 6H-SiC such that Si desorption occurs [2], although this method leads to graphene that exhibits lower mobility than predicted [3]. Thus, we have investigated the relationship between different growth conditions (i.e. annealing time and temperature), the resulting surface morphology and the transport properties of graphene films produced using this method. Raman spectroscopy, atomic force microscopy, and Van der Pauw Hall mobility measurements have been used to correlate the surface morphology to transport properties of graphene formed on SiC. Understanding the effect of growth conditions on the resulting transport properties will help optimize the fabrication of graphene for use in the next generation of electronic devices and other applications. [1] Novoselov et al., Science 306, 666 (2004). [2] C. Berger et al., J. Phys. Chem. B 108, 19912 (2004). [3] G. Gu et al., Appl. Phys. Lett. 90, 253507 (2007).

  19. Transonic unsteady airloads on an energy efficient transport wing with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.; Cunningham, H. J.

    1980-01-01

    An aspect ratio 10.8 supercritical wing with oscillating control surfaces is described. The wing is instrumental with 252 static orifices and 164 in situ dynamic pressure transducers for studying the effects of control surface deflection on steady and unsteady pressures at transonic speeds. Results from initial wind tunnel tests conducted in the Langley Transonic Dynamics Tunnel are discussed. Unsteady pressure results are presented for two trailing edge control surfaces oscillating separately at the design Mach number of 0.78. Some experimental results are compared with analytical results obtained by using linear lifting surface theory.

  20. Molecular dynamics study on mechanism of preformed particle gel transporting through nanopores: Surface chemistry and heterogeneity

    Science.gov (United States)

    Cui, Peng; Zhang, Heng; Ma, Ying; Hao, Qingquan; Liu, Gang; Sun, Jichao; Yuan, Shiling

    2017-10-01

    The translocation behavior of preformed particle gel (PPG) in porous media is crucial for its application in enhanced oil recovery. By means of non-equilibrium molecular dynamics simulation, the translocation mechanism of PPG confined in different silica nanopores were investigated. The influence of surface chemistry and chemical heterogeneity of silica nanopore on the translocation process was revealed. As the degree of surface hydroxylation increases and the heterogeneity decreases, the pulling force needed to drive PPG decreases. We infer that the nanopore's surface (i.e. surface chemistry and heterogeneity) affects the translocation of PPG indirectly by forming different hydration layers.

  1. Climatology of wintertime long-distance transport of surface-layer air masses arriving urban Beijing in 2001-2012

    Science.gov (United States)

    Chen, Bin; Xiang-De, XU

    2017-02-01

    In this study, the FLEXPART-WRF coupled modeling system is used to conduct 12-year Lagrangian modeling over Beijing, China, for the winters of 2001-2012. Based on large trajectory tracking ensembles, the long-range air transport properties, in terms of geographic source regions within the atmospheric planetary boundary layer (PBL) and large-scale ventilation, and its association with air quality levels were quantified from a climatological perspective. The results show the following: (1) The air masses residing in the near-surface layer over Beijing potentially originate from broader atmospheric boundary-layer regions, which cover vast areas with the backward tracking time elapsed. However, atmospheric transport from northeastern China and, to a lesser extent, from the surrounding regions of Beijing is important. (2) The evolution of air quality over Beijing is negatively correlated with large-scale ventilation conditions, particularly at a synoptic timescale. Thus, the simple but robust backward-trajectory ventilation (BV) index defined in this study could facilitate operational forecasting of severe air pollution events. (3) By comparison, the relatively short-range transport occurring over transport timescales of less than 3 days from southern and southeastern Beijing and its surrounding areas plays a vital role in the formation of severe air pollution events during the wintertime. (4) Additionally, an interannual trend analysis suggests that the geographic sources and ventilation conditions also changed, at least over the last decade, corresponding to the strength variability of the winter East Asian monsoon.

  2. Plasma Fairings for Quieting Aircraft Landing Gear Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A major component of airframe noise for commercial transport aircraft is the deployed landing gear. The noise from the gear originates due to complex, unsteady bluff...

  3. Increasing the number and signal-to-noise ratio of OBS traces with supervirtual refraction interferometry and free-surface multiples

    KAUST Repository

    Bharadwaj, P.

    2013-01-10

    The theory of supervirtual interferometry is modified so that free-surface related multiple refractions can be used to enhance the signal-to-noise ratio (SNR) of primary refraction events by a factor proportional to√Ns, where Ns is the number of post-critical sources for a specified refraction multiple. We also show that refraction multiples can be transformed into primary refraction events recorded at virtual hydrophones located between the actual hydrophones. Thus, data recorded by a coarse sampling of ocean bottom seismic (OBS) stations can be transformed, in principle, into a virtual survey with P times more OBS stations, where P is the order of the visible free-surface related multiple refractions. The key assumption is that the refraction arrivals are those of head waves, not pure diving waves. The effectiveness of this method is validated with both synthetic OBS data and an OBS data set recorded offshore from Taiwan. Results show the successful reconstruction of far-offset traces out to a source-receiver offset of 120 km. The primary supervirtual traces increase the number of pickable first arrivals from approximately 1600 to more than 3100 for a subset of the OBS data set where the source is only on one side of the recording stations. In addition, the head waves associated with the first-order free-surface refraction multiples allow for the creation of six new common receiver gathers recorded at virtual OBS station located about half way between the actual OBS stations. This doubles the number of OBS stations compared to the original survey and increases the total number of pickable traces from approximately 1600 to more than 6200. In summary, our results with the OBS data demonstrate that refraction interferometry can sometimes more than quadruple the number of usable traces, increase the source-receiver offsets, fill in the receiver line with a denser distribution of OBS stations, and provide more reliable picking of first arrivals. Apotential liability

  4. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 1: Traffic Noise Measurement and Abatement Techniques

    Directory of Open Access Journals (Sweden)

    MD Ohiduzzaman

    2016-08-01

    Full Text Available Noise pollution due to highway traffic has drawn the attention of transportation agencies worldwide. Noise pollution is an irritant to residents, especially in urban areas near roads with high traffic volume. In addition to its adverse effects on the quality of life, traffic noise can induce stress that could lead to sleep disturbance and anxiety. Traditionally, noise barrier walls have been used for highways to mitigate traffic noise. However, using barrier walls as a noise abatement measure has proven to be very expensive. In addition to the cost, noise barrier walls are not always effective because they must break the line of sight to work properly, which is not always possible in case of intersections or driveways. Therefore, researchers especially from Europe and USA have been very proactive to reduce the noise at source. A number of research studies show traffic noise can be reduced by using an alternative surface type or changing texture of the pavement while complying with other requirements of sustainability, i.e., safety, structural durability, construction and maintenance costs. This paper presents a comprehensive review of the research conducted on this subject. A review of the tire-pavement noise generation and amplification mechanism, various traffic noise measurement methods and correlation among these methods, in addition to the abatement techniques used by various agencies to reduce pavement noise, is also presented.

  5. Stability and transport of graphene oxide nanoparticles in groundwater and surface water

    Science.gov (United States)

    A transport study investigating the effects of natural organic matter (NOM) in the presence of monovalent (KCl) and divalent (CaCl2) salts was performed in a packed bed column. The electrophoretic mobility (EPM) and effective diameter of the graphene oxide nanoparticles (GONPs) were measured as a fu...

  6. Solute Transport of Negatively Charged Contrast Agents Across Articular Surface of Injured Cartilage.

    Science.gov (United States)

    Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M

    2017-04-01

    Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.

  7. 77 FR 10599 - Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report

    Science.gov (United States)

    2012-02-22

    ...) Interviews with staff indicated a large staff turnover in certain Districts. The loss of experienced staff... agency staff at the U.S. Army Corps of Engineers, the U.S. Fish and Wildlife Service (FWS), the National... Transportation Systems Center; U.S. FWS. During the onsite audit, the audit team interviewed more than 60 staff...

  8. Single-electron transport driven by surface acoustic waves: Moving quantum dots versus short barriers

    DEFF Research Database (Denmark)

    Utko, Pawel; Hansen, Jørn Bindslev; Lindelof, Poul Erik;

    2007-01-01

    We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or t...

  9. Flexible Surface Hopping Approach to Model the Crossover from Hopping to Band-like Transport in Organic Crystals.

    Science.gov (United States)

    Wang, Linjun; Beljonne, David

    2013-06-06

    Two distinct pictures are usually evoked when modeling charge transport in organic crystals, that is, band and hopping models, the signature of which is conveyed by a characteristic temperature dependence of mobility. Here, we present a novel flexible surface hopping approach compliant with general Hamiltonians that is able to grasp the crossover from hopping to band-like transport regimes. This approach is applied to solve a one-dimensional mixed quantum-classical model and to calculate the temperature dependence of charge mobility along with the degree of charge spatial localization. It is found that the roles of both local and nonlocal electron-phonon couplings strongly depend on the intrinsic charge localization strength.

  10. Effect of Surface-optical Phonons on the Charge Transport in Wrap-gated Semiconducting Nanowire Field-effect Transistors

    Science.gov (United States)

    Konar, Aniruddha; Fang, Tian; Jena, Debdeep

    2010-03-01

    Surface phonons (SO-phonons) arise at the boundary of two different dielectric mediums. Though the effect of electron-surface phonon scattering on low-filed charge transport has been studied extensively for thin Si-MOSFET [1] and graphene [2], its effect on the 1D nanowire devices has not studied so far. Vibrating diploes in polar gate-dielectric induces a time-varying potential inside the nanowires. The frequencies of these time-varying fields have been calculated by implementing electrostatic boundary conditions at different interfaces of nanowire-dielectric-metal system. Our calculation shows that the electron-SO phonon interaction strength decays exponentially from the gate-nanowire interface towards the nanowire axis. Electron-SO phonon scattering rate has been calculated using Boltzmann transport equation under relaxation time approximation. We find that for thin nanowires (radius 1-20 nm), electron-SO phonon scattering rate is comparable to other dominant scattering mechanisms (such as impurity and bulk optical phonon scatterings) and reduces carrier mobility significantly. Calculating surface-phonon limited mobility of Si nanowires on various available common dielectrics, we have predicted the optimum choice of gate-dielectrics for nanowire-based electronic devices. [4pt] [1] M. V. Fischetti et. al J. Appl. Phys. 90 4581 (2001). [0pt] [2] A. Konar et. al. arXiv: 0902.0819.

  11. Transition of the Slab Geometry at the Eastern End of the Trans-Mexican Volcanic Belt from Ambient Noise and Earthquake Surface Waves

    Science.gov (United States)

    Castillo, J.; Clayton, R. W.; Spica, Z.; Perez-Campos, X.

    2016-12-01

    The Trans-Mexican Volcanic Belt (TMVB) is one of the largest continental volcanic arcs on the North America plate, spanning 1200 km in central Mexico. Its diversity in volcanic style and non-parallel orientation with the trench are explained by along-strike variations in the subduction parameters of the Rivera and Cocos plates. However, the abrupt termination of the TMVB on its eastern end with the Pico de Orizaba volcano is puzzling as the transition of the Cocos flat-slab geometry to normal subduction appears to be smooth through this region. There is evidence that a tear in the slab is developing, but it is unclear how this feature can support the unusually large topographic gradient. Here, we use 6-70 s surface waves from ambient-noise cross-correlations, correlations of coda of cross-correlations, and earthquake data, to image the shear wave velocity structure to a depth of 150 km. The structures observed in the proposed velocity model are in agreement with the major tectonic features of the region. Low velocities correlate well with the active volcanos of the TMVB and the Veracruz Basin whereas high velocities coincide with the southern end of the Sierra Madre Oriental mountain range. Large velocity contrasts for the upper crust also show strong correspondence with the tectonostratigraphic terrane boundaries. A strong negative velocity perturbation that transitions to positive at 30 km depth and continues with a NE-SW orientation beneath Los Tuxtlas volcanic field is imaged and suggested to be related to the anomalous south-west dipping structure that has been evidenced by previous receiver function studies.

  12. Core/Combustor Noise - Research Overview

    Science.gov (United States)

    Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  13. Turbulent momentum transport due to the beating between different tokamak flux surface shaping effects

    CERN Document Server

    Ball, Justin

    2016-01-01

    Introducing up-down asymmetry into the tokamak magnetic equilibria appears to be a feasible method to drive fast intrinsic toroidal rotation in future large devices. In this paper we investigate how the intrinsic momentum transport generated by up-down asymmetric shaping scales with the mode number of the shaping effects. Making use the gyrokinetic tilting symmetry (Ball et al (2016) Plasma Phys. Control. Fusion 58 045023), we study the effect of envelopes created by the beating of different high-order shaping effects. This reveals that the presence of an envelope can change the scaling of the momentum flux from exponentially small in the limit of large shaping mode number to just polynomially small. This enhancement of the momentum transport requires the envelope to be both up-down asymmetric and have a spatial scale on the order of the minor radius.

  14. Plasmonic Hot Electron Transport Driven Site-Specific Surface-Chemistry with Nanoscale Spatial Resolution

    CERN Document Server

    Cortés, Emiliano; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2016-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nanometre resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot carrier transport from...

  15. Turbulent momentum transport due to the beating between different tokamak flux surface shaping effects

    Science.gov (United States)

    Ball, Justin; Parra, Felix I.

    2017-02-01

    Introducing up-down asymmetry into the tokamak magnetic equilibria appears to be a feasible method to drive fast intrinsic toroidal rotation in future large devices. In this paper we investigate how the intrinsic momentum transport generated by up-down asymmetric shaping scales with the mode number of the shaping effects. Making use the gyrokinetic tilting symmetry (Ball et al 2016 Plasma Phys. Control. Fusion 58 045023), we study the effect of envelopes created by the beating of different high-order shaping effects. This reveals that the presence of an envelope can change the scaling of the momentum flux from exponentially small in the limit of large shaping mode number to just polynomially small. This enhancement of the momentum transport requires the envelope to be both up-down asymmetric and have a spatial scale on the order of the minor radius.

  16. Can clouds enhance long-range transport of low volatile, ionizable and surface-active chemicals?

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2011-01-01

    Atmospheric partitioning and transport of low volatile organic compounds is strongly influenced by the presence of water (e.g. clouds) and its deposition velocity (e.g. rainfall, snow). It was identified that the assumption of continuous rainfall underestimates the residence time and the transport...... substances. A modified version of the regional multimedia activity model for ionics MAMI, including twolayered atmosphere with atmospheric boundary layer (ABL) and lower/middle troposphere (LMT), interface partitioning, intermittent rainfall and variable cloud coverage was applied to a selection of ten low...... were run for a constant emission to the atmospheric boundary layer to identify key model inputs. The degradation rate, the duration of dry and wet periods and the parameters describing air-water bulk partitioning (KAW and T) and ionization (pKa and pH) determine the residence time in the ABL...

  17. New York state high-speed surface transportation study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    In 1990, New York State Governor Mario M. Cuomo created an interagency task force under the leadership of Lt. Governor Stan Lundine to investigate the potential of high speed ground transportation (HSGT) systems. Building on information from previous agency activities, including consultant efforts contracted by the New York State Energy Research and Development Authority (NYSERDA), the New York State Thruway Authority (NYSTA), and in-house analyses performed by New York State Department of Transportation (NYSDOT), the task force focused on the corridor between New York City and the Niagara Frontier. In December 1991, NYSERDA issued a contract for a study of high speed ground transportation options for New York State. The study`s objective was to assess potential rights-of-way, ridership, energy and environmental impacts, economic benefits, capital, operating, and maintenance costs, and financial viability of HSGT systems. This study builds upon and supplements previous and on-going HSGT activities conducted by the members of the interagency task force. These activities include: Maglev Technical and Economic Feasibility Study (NYSERDA); Maglev Demonstration Site Investigation (NYSTA); and New York/Massachusetts High Speed Ground Transportation Study (NYSDOT). This study is intended to verify and refine previous information and analyses and provide supplemental information and insights to be used in determining if additional investigation and activities involving HSGT are desirable for New York State. This study evaluates HSGT technologies capable of speeds significantly higher than those achieved with the present rail system. Three HSGT categories are used in this study: incremental rail improvement, very high-speed rail, and Maglev.

  18. GPS based surface displacements – a proxy for discharge and sediment transport from the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Hasholt, Bent; Khan, Shfaqat Abbas; Mikkelsen, Andreas Bech

    2014-01-01

    The elastic respond of the Earth’s surface to mass changes has been measured with Global Positioning System (GPS). Mass loss as accumulated runoff and sediment transport from a 10000 km2 segment of the Greenland Ice Sheet (GrIS) correlated very well (R2=0.83) with GPS measured uplift. Accumulated....... Based on the entire GPS record (1996–2013), it is shown that until 2005–2006 the mass balance of this segment of the GrIS was rather stable – since then there has been an increasing loss of mass, culminating in 2012....

  19. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de [Amphos 21 Consulting S.L., Barcelona (Spain)

    2013-02-15

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of {sup 135}Cs, {sup 59}Ni, {sup 230}Th and {sup 226}Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a

  20. Solution processed deposition of electron transport layers on perovskite crystal surface-A modeling based study

    Science.gov (United States)

    Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik

    2017-02-01

    The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.