WorldWideScience

Sample records for surface transportation noise

  1. Measurements techniques for transportation noise

    International Nuclear Information System (INIS)

    Brambilla, G.

    2001-01-01

    The noise from transport systems (roads, railways and aircraft) are increasing more and more both in space and in time and, therefore, they are still the major factor responsible for environmental noise pollution. The population exposed to transport noise is also increasing, and the corresponding health effects on people (i.e. annoyance and sleep disturbance) become more severe. Due to this current situation international and national legislation has been issued and implemented to reduce the harmful effects of such noise. This paper describes the techniques prescribed by recent Italian legislation to measure road, railway and aircraft noise. (author)

  2. Noise Considerations for V/STOL Transports

    Science.gov (United States)

    Kenyon, George C.

    1968-01-01

    Noise consideration may well be as important a factor in future aircraft concept selection as such economic factors as operating cost and profitability. The impact of noise on some of the design and operational aspects of future V/STOL transports is examined in detail, including consideration of configuration, attitude-control system, lift system, and terminal flight pattern. Extended vertical rise of VTOL aircraft as a method of limiting the intense noise exposure to the terminal area is shown to be only partially effective as well as costly. Comparisons are made of noise contours for conceptual V/STOL transports for several PNdB criteria. The variation in extent of affected area with configuration and criterion emphasizes the importance of establishing an "acceptable" noise level for "city-center" operation.

  3. Noise Costs from Road Transport

    Science.gov (United States)

    Margorínová, Martina; Trojanová, Mária; Decký, Martin; Remišová, Eva

    2018-06-01

    Building and improving road infrastructure in Slovakia is currently influenced by the amount of state funding. Therefore, it is necessary to determine the effectiveness of each proposed solution of road project, which is based on life-cycle costs. Besides capital costs, social costs are also important, which valued the negative impacts due to road construction and operation on road users, the environment, and the population living in the affected area. Some components of social costs have shortcomings in quantifying and valuating, which need to be resolved. The one of important components which affects human health and the value of an area, and have some shortcomings are noise costs. Improvement of this component will lead to more accurate valuation of economic efficiency of roads.

  4. Ultra Low Noise Poroelastic Road Surfaces

    Directory of Open Access Journals (Sweden)

    Jerzy A. Ejsmont

    2016-04-01

    Full Text Available Noise is one of the most important environmental problems related to road traffic. During the last decades, the noise emitted by the engines and powertrains of vehicles was greatly reduced and tires became a clearly dominant noise source. The article describes the concept of low noise poroelastic road surfaces that are composed of mineral and rubber aggregate bound by polyurethane resin. Those surfaces have a porous structure and are much more flexible than standard asphalt or cement concrete pavements due to high content of rubber aggregate and elastic binder. Measurements performed in several European countries indicate that such surfaces decrease tire/road noise between 7 dB and 12 dB with respect to reference surfaces such as dense asphalt concrete or stone matrix asphalt. Furthermore, poroelastic road surfaces ascertain the rolling resistance of car tires, which is comparable to classic pavements. One of the unforeseen properties of the poroelastic road surfaces is their ability to decrease the risks related to car fires with fuel spills. The article presents the road and laboratory results of noise, rolling resistance, and fire tests performed on a few types of poroelastic road surfaces.

  5. Transportation noise exposure and children's health and cognition

    NARCIS (Netherlands)

    Kempen, E.E.M.M. van

    2008-01-01

    This thesis focuses on the effects of transportation noise on children. Children are suspected of being more susceptible to noise exposure. There is a lack of source-specific exposure-response relations describing the association between noise exposure and specific health and cognitive outcomes in

  6. New solution for transport and industrial noise protection through reflective noise barriers

    Directory of Open Access Journals (Sweden)

    Kralov Ivan

    2017-01-01

    Full Text Available A new solution for protection of transportation and industrial noise through reflective noise barriers is proposed and investigated in this study. The new solution combines the advantages of the known barriers and has its own advantages in addition. The preliminary results show a very good level of noise reduction for this type of barriers.

  7. Fan Noise for a Concept Commercial Supersonic Transport

    Science.gov (United States)

    Stephens, David

    2017-01-01

    NASA is currently studying a commercial supersonic transport (CST) aircraft that could carry 35+ passengers at Mach 1.6+ with a 4000+nm range. The aircraft should also meet environmental goals for sonic boom, airport noise and emissions at cruise. With respect to airport noise, considerable effort has been put into predicting the noise due to the jet exhaust. This report describes an internal NASA effort to consider the contribution of fan noise to the overall engine noise of this class of aircraft.

  8. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    Science.gov (United States)

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  9. Bedload transport from spectral analysis of seismic noise near rivers

    Science.gov (United States)

    Hsu, L.; Finnegan, N. J.; Brodsky, E. E.

    2010-12-01

    Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or

  10. Applying intelligent transport systems to manage noise impacts

    NARCIS (Netherlands)

    Wilmink, I.R.; Vonk, T.

    2015-01-01

    This contribution discusses how traffic management, and many other measures that can be categorised as Intelligent Transport Systems (ITS, i.e. all traffic and transport measures that use ICT) can help reduce noise levels by influencing mobility choices and driving behaviour. Several examples of

  11. Simulation of noise-assisted transport via optical cavity networks

    International Nuclear Information System (INIS)

    Caruso, Filippo; Plenio, Martin B.; Spagnolo, Nicolo; Vitelli, Chiara; Sciarrino, Fabio

    2011-01-01

    Recently, the presence of noise has been found to play a key role in assisting the transport of energy and information in complex quantum networks and even in biomolecular systems. Here we propose an experimentally realizable optical network scheme for the demonstration of the basic mechanisms underlying noise-assisted transport. The proposed system consists of a network of coupled quantum-optical cavities, injected with a single photon, whose transmission efficiency can be measured. Introducing dephasing in the photon path, this system exhibits a characteristic enhancement of the transport efficiency that can be observed with presently available technology.

  12. Surface Transportation Security Priority Assessment

    Science.gov (United States)

    2010-03-01

    intercity buses), and pipelines, and related infrastructure (including roads and highways), that are within the territory of the United States...Modernizing the information technology infrastructure used to vet the identity of travelers and transportation workers  Using terrorist databases to...examination of persons travelling , surface transportation modes tend to operate in a much more open environment, making it difficult to screen workers

  13. Noise And Charge Transport In Carbon Nanotube Devices

    Science.gov (United States)

    Reza, Shahed; Huynh, Quyen T.; Bosman, Gijs; Sippel, Jennifer; Rinzler, Andrew G.

    2005-11-01

    The charge transport and noise properties of three terminal, gated devices containing multiple, single wall, metallic and semiconductor carbon nanotubes have been measured as a function of gate and drain bias at 300K. Using pulsed bias the metallic tubes could be burned sequentially enabling the separation of measured conductance and low frequency excess noise into metallic and semiconductor contributions. The relative low frequency excess noise of the metallic tubes was about a factor 100 lower than that of the semiconductor tubes, whereas the conductance of the metallic tubes was significantly higher (10 to 50 times) than that of the semiconductor tubes.

  14. Shot noise as a probe of spin-polarized transport through single atoms

    DEFF Research Database (Denmark)

    Burtzlaff, Andreas; Weismann, Alexander; Brandbyge, Mads

    2015-01-01

    Single atoms on Au(111) surfaces have been contacted with the Au tip of a low temperature scanning tunneling microscope. The shot noise of the current through these contacts has been measured up to frequencies of 120 kHz and Fano factors have been determined to characterize the transport channels...

  15. New Jersey Micro-Surface Pavement Noise Evaluation

    OpenAIRE

    Hencken, John; Haas, Edwin; Tulanowski, Michael; Bennert, Thomas

    2015-01-01

    New Jersey DOT is evaluating pavement preservation types for interstate resurfacing as a method to increase network pavement life cycles within depressed budgetary limits. Despite the economic benefits for micro-surface there is concern for the noise quality and pavement noise levels, which will become a significant issue to a greater population as the application increases over an increased area of lane miles throughout the state. Pavement noise research has been conducted on in-service pave...

  16. Capacity constrained blue-noise sampling on surfaces

    KAUST Repository

    Zhang, Sen; Guo, Jianwei; Zhang, Hui; Jia, Xiaohong; Yan, Dongming; Yong, Junhai; Wonka, Peter

    2015-01-01

    regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using

  17. Open noise barriers based on sonic crystals. Advances in noise control in transport infraestructures

    Energy Technology Data Exchange (ETDEWEB)

    Peiro Torres, M.P.; Redondo Pastor, J.; Bravo Plana-Sala, J.M.; Sanchez Perez, J.V.

    2016-07-01

    Noise control is an environmental problem of first magnitude nowadays. In this work, we present a new concept of acoustic screen designed to control the specific noise generated by transport infrastructures, based on new materials called sonic crystals. These materials are formed by arrangements of acoustic scatterers in air, and provide a new and different mechanism in the fight against noise from those of the classical screens. This mechanism is usually called multiple scattering and is due to their structuring in addition to their physical properties. Due to the separation between scatterers, these barriers are transparent to air and water allowing a reduction on their foundations. Tests carried out in a wind tunnel show a reduction of 42% in the overturning momentum compared to classical barriers. The acoustical performance of these barriers is shown in this work, explaining the new characteristics provided in the control of noise. Finally, an example of these barriers is presented and classified according to acoustic standardization tests. The acoustic barrier reported in this work provides a high technological solution in the field of noise control. (Author)

  18. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong...

  19. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  20. Probing Surface Electric Field Noise with a Single Ion

    Science.gov (United States)

    2013-07-30

    potentials is housed inside a Faraday cage providing more than 40 dB of attenuation for electromagnetic fields in the range of frequencies between 200...and measuring the ion quantum state [16]. Thus, by measuring the effect of electric field noise on the motional quantum state of the ion, one can probe...understand these effects . In summary, we have probed the electric field noise near an aluminum-copper surface at room temperature using a single trapped ion

  1. Analysis and suppression of passive noise in surface microseismic data

    Science.gov (United States)

    Forghani-Arani, Farnoush

    Surface microseismic surveys are gaining popularity in monitoring the hydraulic fracturing process. The effectiveness of these surveys, however, is strongly dependent on the signal-to-noise ratio of the acquired data. Cultural and industrial noise generated during hydraulic fracturing operations usually dominate the data, thereby decreasing the effectiveness of using these data in identifying and locating microseismic events. Hence, noise suppression is a critical step in surface microseismic monitoring. In this thesis, I focus on two important aspects in using surface-recorded microseismic seismic data: first, I take advantage of the unwanted surface noise to understand the characteristics of these noise and extract information about the propagation medium from the noise; second, I propose effective techniques to suppress the surface noise while preserving the waveforms that contain information about the source of microseisms. Automated event identification on passive seismic data using only a few receivers is challenging especially when the record lengths span over long durations of time. I introduce an automatic event identification algorithm that is designed specifically for detecting events in passive data acquired with a small number of receivers. I demonstrate that the conventional STA/LTA (Short-term Average/Long-term Average) algorithm is not sufficiently effective in event detection in the common case of low signal-to-noise ratio. With a cross-correlation based method as an extension of the STA/LTA algorithm, even low signal-to-noise events (that were not detectable with conventional STA/LTA) were revealed. Surface microseismic data contains surface-waves (generated primarily from hydraulic fracturing activities) and body-waves in the form of microseismic events. It is challenging to analyze the surface-waves on the recorded data directly because of the randomness of their source and their unknown source signatures. I use seismic interferometry to extract

  2. Ultrahigh Error Threshold for Surface Codes with Biased Noise

    Science.gov (United States)

    Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.

    2018-02-01

    We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.

  3. Demographic and attitudinal factors that modify annoyance from transportation noise

    NARCIS (Netherlands)

    Miedema, H.M.E.; Vos, H.

    1999-01-01

    The effect of demographic variables (sex, age, education level, occupational status, size of household, homeownership, dependency on the noise source, and use of the noise source) and two attitudinal variables (noise sensitivity and fear of the noise source) on noise annoyance is investigated. It is

  4. Capacity constrained blue-noise sampling on surfaces

    KAUST Repository

    Zhang, Sen

    2015-11-27

    We present a novel method for high-quality blue-noise sampling on mesh surfaces with prescribed cell-sizes for the underlying tessellation (capacity constraint). Unlike the previous surface sampling approach that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using an interleaving optimization framework. We further extend this framework to handle multi-capacity constraints. We compare our approach with several state-of-the-art methods and demonstrate that our results are superior to previous work in terms of preserving the capacity constraints.

  5. Transportation noise and exposed population of an urban area in the Republic of Korea.

    Science.gov (United States)

    Ko, Joon Hee; Chang, Seo Il; Kim, Minho; Holt, James B; Seong, Jeong C

    2011-02-01

    Using noise prediction models, we explored the transportation noise levels of Youngdeungpo-gu, an urbanized area of Seoul Metropolitan City in the Republic of Korea. In addition, we estimated the population exposed to transportation noise levels and determined how many people are vulnerable to noise levels that would cause serious annoyance and sleep disturbance. Compared with the World Health Organization [WHO] recommended levels, the daytime and nighttime transportation noise levels were still high enough to have the two psychosocial effects on people when considering the recommended levels of the World Health Organization (WHO; 55 decibels [dB[A

  6. Temporal step fluctuations on a conductor surface: electromigration force, surface resistivity and low-frequency noise

    International Nuclear Information System (INIS)

    Williams, E D; Bondarchuk, O; Tao, C G; Yan, W; Cullen, W G; Rous, P J; Bole, T

    2007-01-01

    Scattering of charge carriers from surface structures will become an increasing factor in the resistivity as the structure decreases in size to the nanoscale. The effects of scattering at the most basic surface defect, a kink in a step edge, are here analyzed using the continuum step model. Using a Langevin analysis, it has been shown that the electromigration force on the atoms at the step edge causes changes in the temporal evolution of the step-edge. For an electromigration force acting perpendicular to the average step edge and mass-transport dominated by step-edge diffusion, significant deviations from the usual t 1/4 scaling of the displacement correlation function occur dependent on a critical time τ and the direction of the force relative to the step edge (i.e. uphill or downhill). Experimental observations of step fluctuations on Ag(111) show the predicted changes among step fluctuations without current, and with current in the up- and down-hill directions for a current density of order 10 5 A cm -2 . The results yield the magnitude of the electromigration force acting on kinked sites at the step-edge. This in turn yields the contribution of the fluctuating steps to the surface resistivity, which exceeds 1% of the bulk resistivity as wire diameters decrease below 10s of nanometres. The temporal fluctuations of kink density can thus also be related to resistivity noise. Relating the known fluctuation spectrum of the step displacements to fluctuations in their lengths, the corresponding resistivity noise is predicted to show spectral signatures of ∼f -1/2 for step fluctuations governed by random attachment/detachment, and ∼f -3/4 for step fluctuations governed by step-edge diffusion

  7. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  8. Research of noise emission sources in railway transport and effective ways of their reduction

    Directory of Open Access Journals (Sweden)

    Zvolenský Peter

    2017-01-01

    Full Text Available In the EU conditions attention is systematically paid to noise reduction on the railways. Because TSI rules systematically tighten limits for noise emissions from railway vehicles, noise research must be addressed by all Member States, as the main technical solutions for railway vehicles and construction technological aspects of railway operations can result in lower noise exposure of affected areas or objects. The paper focuses on theoretical investigation of sources and paths of sound propagation, possibilities of noise reduction both on vehicles and by infrastructure and experimental measurements of the situation in transport practice. Methodology for reducing railway noise around tracks has been presented, too.

  9. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  10. Surface transport in plasma-balls

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Bhattacharya, Jyotirmoy [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Kundu, Nilay [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211019 (India)

    2016-06-06

    We study the surface transport properties of stationary localized configurations of relativistic fluids to the first two non-trivial orders in a derivative expansion. By demanding that these finite lumps of relativistic fluid are described by a thermal partition function with arbitrary stationary background metric and gauge fields, we are able to find several constraints among surface transport coefficients. At leading order, besides recovering the surface thermodynamics, we obtain a generalization of the Young-Laplace equation for relativistic fluid surfaces, by considering a temperature dependence in the surface tension, which is further generalized in the context of superfluids. At the next order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent bulk transport coefficients previously known, a generic localized configuration is characterized by 3 additional surface transport coefficients, one of which may be identified with the surface modulus of rigidity. Finally, as an application, we study the effect of temperature dependence of surface tension on some explicit examples of localized fluid configurations, which are dual to certain non-trivial black hole solutions via the AdS/CFT correspondence.

  11. High Friction Surface Treatments, Transportation Research Synthesis

    Science.gov (United States)

    2018-03-01

    MnDOT and local transportation agencies in Minnesota are considering the use of a high friction surface treatment (HFST) as a safety strategy. HFST is used as a spot pavement surfacing treatment in locations with high friction demand (for example, cr...

  12. WHO Environmental Noise Guidelines for the European Region: A Systematic Review of Transport Noise Interventions and Their Impacts on Health.

    Science.gov (United States)

    Brown, Alan Lex; van Kamp, Irene

    2017-08-03

    This paper describes a systematic review (1980-2014) of evidence on effects of transport noise interventions on human health. The sources are road traffic, railways, and air traffic. Health outcomes include sleep disturbance, annoyance, cognitive impairment of children and cardiovascular diseases. A conceptual framework to classify noise interventions and health effects was developed. Evidence was thinly spread across source types, outcomes, and intervention types. Further, diverse intervention study designs, methods of analyses, exposure levels, and changes in exposure do not allow a meta-analysis of the association between changes in noise level and health outcomes, and risk of bias in most studies was high. However, 43 individual transport noise intervention studies were examined (33 road traffic; 7 air traffic; 3 rail) as to whether the intervention was associated with a change in health outcome. Results showed that many of the interventions were associated with changes in health outcomes irrespective of the source type, the outcome or intervention type (source, path or infrastructure). For road traffic sources and the annoyance outcome, the expected effect-size can be estimated from an appropriate exposure-response function, though the change in annoyance in most studies was larger than could be expected based on noise level change.

  13. A Health-Based Metric for Evaluating the Effectiveness of Noise Barrier Mitigation Associated With Transport Infrastructure Noise

    Directory of Open Access Journals (Sweden)

    Geoffrey P Prendergast

    2017-01-01

    Full Text Available Introduction: This study examines the use of the number of night-time sleep disturbances as a health-based metric to assess the cost effectiveness of rail noise mitigation strategies for situations, wherein high-intensity noises dominate such as freight train pass-bys and wheel squeal. Materials and Methods: Twenty residential properties adjacent to the existing and proposed rail tracks in a noise catchment area of the Epping to Thornleigh Third Track project were used as a case study. Awakening probabilities were calculated for individual’s awakening 1, 3 and 5 times a night when subjected to 10 independent freight train pass-by noise events using internal maximum sound pressure levels (LAFmax. Results: Awakenings were predicted using a random intercept multivariate logistic regression model. With source mitigation in place, the majority of the residents were still predicted to be awoken at least once per night (median 88.0%, although substantial reductions in the median probabilities of awakening three and five times per night from 50.9 to 29.4% and 9.2 to 2.7%, respectively, were predicted. This resulted in a cost-effective estimate of 7.6–8.8 less people being awoken at least three times per night per A$1 million spent on noise barriers. Conclusion: The study demonstrates that an easily understood metric can be readily used to assist making decisions related to noise mitigation for large-scale transport projects.

  14. Type of activity and order of experimental conditions affect noise annoyance by identifiable and unidentifiable transportation noise.

    Science.gov (United States)

    White, Kim; Bronkhorst, Adelbert W; Meeter, Martijn

    2018-04-01

    Previous studies have shown that identifiability of sound sources influence noise annoyance levels. The aim of the present experiment was to additionally study the effects of actively performing a task versus a less active pastime on noise annoyance. This was done by asking participants to perform a task (task condition) or read a magazine of their choice (no-task condition), while listening to identifiable and unidentifiable samples of transportation noise at varying sound exposure levels (55-85 ASEL). Annoyance was higher for identifiable samples (recordings) than for unidentifiable transformed samples (with equal spectral energy and envelope). Although there was no main effect of activity type on noise annoyance, for the transformed samples, an interaction was found between activity type and sound exposure levels: annoyance started lower in the no-task condition, but rose more steeply with ascending exposure levels than was the case during task performance (large effect). When assessing order effects, it was found that annoyance was higher when the task condition came first, especially for lower sound exposure levels (large effects). It is therefore concluded that the type of activity and the condition order do influence noise annoyance but in interaction with exposure levels, the type of noise and habituation.

  15. Analysis of community response to transportation noise a quarter century after Schultz (1978)

    Science.gov (United States)

    Fidell, Sanford

    2003-10-01

    Transportation noise is a vexing and intrinsically controversial problem that has plagued societies since the beginnings of urban civilization. A function relating cumulative noise exposure to the prevalence of noise-induced annoyance [T. J. Schultz, ``Synthesis of social surveys on noise annoyance,'' J. Acoust. Soc. Am. 64, 377-405 (1978)] is the foundation for contemporary analyses of transportation noise effects on communities. The expenditures of billions of dollars in airplane ticket and fuel taxes for the construction of an airport infrastructure and for the mitigation of noise impacts in the United States are governed by policies ostensibly supported by a successor to Schultz's original ``synthesis'' curve. Many have grown so comfortable with the last quarter century's paradigm for transportation noise assessment and regulation, however, that they have lost sight of its underpinnings and limitations. A review of the historical and modern states of the art identifies persistent unresolved problems in the prediction and explanation of community response to transportation noise that are not fully addressed by descriptive dosage-effect analysis.

  16. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  17. Influence of changes in surface layer properties on tire/pavement noise

    NARCIS (Netherlands)

    Li, M.; Van Keulen, W.; Ceylan, H.; Van de Ven, M.F.C.; Molenaar, A.A.A.

    2013-01-01

    This paper investigates changes in tire/pavement noise caused by variations in the road surface characteristics. This research is based on the analysis of noise and surface characteristics collected from sections with 25 mm thickness thin layer surfacings in the Netherlands. Investigations are first

  18. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  19. Noise Pollution Aspects of Barge, Railroad, and Truck Transportation,

    Science.gov (United States)

    1975-04-01

    dBA Trolley 88 dBA 82 dBA 78 dBA 72 dBA Truck 87 dBA 81 dBA 76 dBA 74 dBA Bus 81 dBA 76 dBA 72 dBA 68 dBA Automobile 78 dBA 74 dBA 65 dBA 63 dBA I NO...Environmlent~al Prot~ect~ion Agency, Background Document/linvironment~al Explanat~ion f~or Proposed Int~erstate Rail Carriler Noise Emission Regulat~ions (1974...2). By way of comparison only 0.1 percent automobiles produced this noise level at 70 miles per hour (Figure E-1). Bus and motorcycle noise levels (at

  20. Aspheric surface testing by irradiance transport equation

    Science.gov (United States)

    Shomali, Ramin; Darudi, Ahmad; Nasiri, Sadollah; Asgharsharghi Bonab, Armir

    2010-10-01

    In this paper a method for aspheric surface testing is presented. The method is based on solving the Irradiance Transport Equation (ITE).The accuracy of ITE normally depends on the amount of the pick to valley of the phase distribution. This subject is investigated by a simulation procedure.

  1. Efficiency of transport in periodic potentials: dichotomous noise contra deterministic force

    Science.gov (United States)

    Spiechowicz, J.; Łuczka, J.; Machura, L.

    2016-05-01

    We study the transport of an inertial Brownian particle moving in a symmetric and periodic one-dimensional potential, and subjected to both a symmetric, unbiased external harmonic force as well as biased dichotomic noise η (t) also known as a random telegraph signal or a two state continuous-time Markov process. In doing so, we concentrate on the previously reported regime (Spiechowicz et al 2014 Phys. Rev. E 90 032104) for which non-negative biased noise η (t) in the form of generalized white Poissonian noise can induce anomalous transport processes similar to those generated by a deterministic constant force F= but significantly more effective than F, i.e. the particle moves much faster, the velocity fluctuations are noticeably reduced and the transport efficiency is enhanced several times. Here, we confirm this result for the case of dichotomous fluctuations which, in contrast to white Poissonian noise, can assume positive as well as negative values and examine the role of thermal noise in the observed phenomenon. We focus our attention on the impact of bidirectionality of dichotomous fluctuations and reveal that the effect of nonequilibrium noise enhanced efficiency is still detectable. This result may explain transport phenomena occurring in strongly fluctuating environments of both physical and biological origin. Our predictions can be corroborated experimentally by use of a setup that consists of a resistively and capacitively shunted Josephson junction.

  2. Noise suppression in surface microseismic data by τ-p transform

    Science.gov (United States)

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael

    2013-01-01

    Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.

  3. Improved surface?wave retrieval from ambient seismic noise by multi?dimensional deconvolution

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Ruigrok, E.N.; Van der Neut, J.R.; Draganov, D.S.

    2011-01-01

    The methodology of surface?wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface?wave Green's function. A point?spread function, derived from the

  4. Turbulent transport in the atmospheric surface layer

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2012-04-01

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to ∼3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect of

  5. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  6. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  7. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study).

    Science.gov (United States)

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP.

  8. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study

    Directory of Open Access Journals (Sweden)

    Julie Méline

    2015-01-01

    Full Text Available Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP, diastolic blood pressure (DBP, and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI: +0.12, +2.60 for 65-80 dB(A vs 30-45 dB(A] and DBP [+1.07 (95% CI: +0.28, +1.86], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP.

  9. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren.

    Science.gov (United States)

    van Kempen, Elise; Fischer, Paul; Janssen, Nicole; Houthuijs, Danny; van Kamp, Irene; Stansfeld, Stephen; Cassee, Flemming

    2012-05-01

    Children living close to roads are exposed to both traffic noise and traffic-related air pollution. There are indications that both exposures affect cognitive functioning. So far, the effects of both exposures have only been investigated separately. To investigate the relationship between air pollution and transportation noise on the cognitive performance of primary schoolchildren in both the home and school setting. Data acquired within RANCH from 553 children (aged 9-11 years) from 24 primary schools were analysed using multilevel modelling with adjustment for a range of socio-economic and life-style factors. Exposure to NO(2) (which is in urban areas an indicator for traffic-related air pollution) at school was statistically significantly associated with a decrease in the memory span length measured during DMST (χ(2)=6.8, df=1, p=0.01). This remained after additional adjustment for transportation noise. Statistically significant associations were observed between road and air traffic noise exposure at school and the number of errors made during the 'arrow' (χ(2)=7.5, df=1, p=0.006) and 'switch' (χ(2)=4.8, df=1, p=0.028) conditions of the SAT. This remained after adjustment for NO(2). No effects of air pollution exposure or transportation noise exposure at home were observed. Combined exposure of air pollution and road traffic noise had a significant effect on the reaction times measured during the SRTT and the 'block' and the 'arrow' conditions of the SAT. Our results provide some support that prolonged exposure to traffic-related air pollution as well as to noise adversely affects cognitive functioning. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Electron transport and noise spectroscopy in organic magnetic tunnel junctions with PTCDA and Alq3 barriers

    Science.gov (United States)

    Martinez, Isidoro; Cascales, Juan Pedro; Hong, Jhen-Yong; Lin, Minn-Tsong; Prezioso, Mirko; Riminucci, Alberto; Dediu, Valentin A.; Aliev, Farkhad G.

    2016-10-01

    The possible influence of internal barrier dynamics on spin, charge transport and their fluctuations in organic spintronics remains poorly understood. Here we present investigation of the electron transport and low frequency noise at temperatures down to 0.3K in magnetic tunnel junctions with an organic PTCDA barriers with thickness up to 5 nm in the tunneling regime and with 200 nm thick Alq3 barrier in the hopping regime. We observed high tunneling magneto-resistance at low temperatures (15-40%) and spin dependent super-poissonian shot noise in organic magnetic tunnel junctions (OMTJs) with PTCDA. The Fano factor exceeds 1.5-2 values which could be caused by interfacial states controlled by spin dependent bunching in the tunneling events through the molecules.1 The bias dependence of the low frequency noise in OMTJs with PTCDA barriers which includes both 1/f and random telegraph noise activated at specific biases will also be discussed. On the other hand, the organic junctions with ferromagnetic electrodes and thick Alq3 barriers present sub-poissonian shot noise which depends on the temperature, indicative of variable range hopping.

  11. Numerical simulation of viscous flow and hydrodynamic noise in surface ship

    Directory of Open Access Journals (Sweden)

    YU Han

    2017-12-01

    Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.

  12. Mapping nanoscale effects of localized noise-source activities on photoconductive charge transports in polymer-blend films

    Science.gov (United States)

    Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun

    2018-05-01

    We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.

  13. A Noise and Emissions Assessment of the N3-X Transport

    Science.gov (United States)

    Berton, Jeffrey J.; Haller, William J.

    2014-01-01

    Analytical predictions of certification noise and exhaust emissions for NASA's N3-X - a notional, hybrid wingbody airplane - are presented in this paper. The N3-X is a 300-passenger concept transport propelled by an array of fans distributed spanwise near the trailing edge of the wingbody. These fans are driven by electric motors deriving power from twin generators driven by turboshaft engines. Turboelectric distributed hybrid propulsion has the potential to dramatically increase the propulsive efficiency of aircraft. The noise and exhaust emission estimates presented here are generated using NASA's conceptual design systems analysis tools with several key modifications to accommodate this unconventional architecture. These tools predict certification noise and the emissions of oxides of nitrogen by leveraging data generated from a recent analysis of the N3-X propulsion system.

  14. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  15. Blood pressure of urban school children in relation to road-traffic noise, traffic density and presence of public transport.

    Science.gov (United States)

    Paunovic, Katarina; Belojevic, Goran; Jakovljevic, Branko

    2013-01-01

    The aim of the study was to investigate the relationship between noise levels, traffic density and the presence of public transport and children's blood pressure. Another aim was to assess the applicability of public transport as a proxy indicator of noise exposure. A cross-sectional study involved 1113 children aged 7-11 years from a central municipality in Belgrade. Equivalent noise levels were measured in front of all schools and in the middle of all streets. Traffic density was defined as number of light and heavy vehicles per hour. The number of public transport vehicles was calculated from official timetables. Children's addresses were matched with noise levels and transport maps. A physician measured blood pressure with the sphygmomanometer. Children attending schools with public transport running nearby had by 1.3 mmHg higher systolic pressure than did children from schools without public transport. This relationship was independent from children's age, gender, and body mass index, family history of hypertension, some dwelling characteristics, and lifestyle habits. The association between diastolic pressure and public transport was statistically insignificant. The study indicated a possible positive association between the presence of public transport in the vicinity of schools with systolic blood pressure in 7-11 year-old schoolchildren. The presence of public transport may serve as an auxiliary indicator of noise exposure in undeveloped countries with limited capacities for noise measurement or modeling.

  16. A sensitivity-based approach to optimize the surface treatment of a low-height tramway noise barrier

    Science.gov (United States)

    Jolibois, Alexandre

    Transportation noise has become a main nuisance in urban areas, in the industrialized world and across the world, to the point that according to the World Health Organization 65% of the European population is exposed to excessive noise and 20% to night-time levels that may harm their health. There is therefore a need to find new ways to mitigate transportation noise in urban areas. In this work, a possible device to achieve this goal is studied: a low-height noise barrier. It consists of a barrier typically less than one meter high placed close to the source, designed to decrease significantly the noise level for nearby pedestrians and cyclists. A numerical method which optimizes the surface treatment of a low-height barrier in order to increase its insertion loss is presented. Tramway noise barriers are especially studied since the noise sources are in this case close to the ground and would be attenuated more by the barrier. The acoustic behavior of the surface treatment is modeled via its admittance. It can be itself described by a few parameters (flow resistivity, geometrical dimensions...), which can then be optimized. It is proposed to couple porous layers and micro-perforated panel (MPP) resonators in order to take advantage of their different acoustic properties. Moreover, the optimization is achieved using a sensitivity-based method, since in this framework the gradient of the attenuation can be evaluated accurately and efficiently. Several shapes are considered: half-cylinder, quarter-cylinder, straight wall, T-shape and square shape. In the case of a half-cylindrical geometry, a semi-analytical solution for the sound field in terms of a series of cylindrical waves is derived, which simplifies the sensitivity calculation and optimization process. The boundary element method (BEM) is used to evaluate the attenuation for the remaining shapes, and in this case the sensitivity is evaluated using the adjoint state approach. For all considered geometries, it is

  17. An Extension to a Filter Implementation of Local Quadratic Surface for Image Noise Estimation

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    1999-01-01

    Based on regression analysis this paper gives a description for simple image filter design. Specifically 3x3 filter implementations of a quadratic surface, residuals from this surface, gradients and the Laplacian are given. For the residual a 5x5 filter is given also. It is shown that the 3x3......) it is concluded that if striping is to be considered as a part of the noise, the residual from a 3x3 median filter seems best. If we are interested in a salt-and-pepper noise estimator the proposed extension to the 3x3 filter for the residual from a quadratic surface seems best. Simple statistics...

  18. Detection of a milling-induced surface damage by the magnetic Barkhausen noise

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Alexandr; Neslušan, M.; Perevertov, Oleksiy

    2016-01-01

    Roč. 410, Jul (2016), 198-209 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Barkhausen noise * surface field measurement * magnetization waveformcontrol * hard turning * surface integrity Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.630, year: 2016

  19. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  20. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  1. Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution

    Science.gov (United States)

    Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan

    2011-01-01

    The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.

  2. Noise and Vibration Mitigation for Rail Transportation Systems : Proceedings of the 10th International Workshop on RailwayNoise

    CERN Document Server

    Gautier, Pierre-Etienne; Hanson, Carl; Hemsworth, Brian; Nelson, James; Schulte-Werning, Burkhard; Thompson, David; Vos, Paul

    2012-01-01

    This volume contains the contributions to the 10th International Workshop on Railway Noise, held October 18–22, 2010, in Nagahama, Japan, organized by the Railway Technical Research Institute (RTRI), Japan. With 11 sessions and 3 poster sessions, the workshop featured presentations by international leaders in the field of railway noise and vibration. All subjects relating to 1. prospects, legal regulation, and perception; 2. wheel and rail noise; 3. structure-borne noise and squeal noise; 4. ground-borne vibration; 5. aerodynamic noise and micro-pressure waves from tunnel portals; 6. interior noise and sound barriers; and 7. prediction, measurements, and monitoring are addressed here. This book is a useful “state-of-the-art” reference for scientists and engineers involved in solving environmental problems of railways.

  3. Lévy-noise-induced transport in a rough triple-well potential.

    Science.gov (United States)

    Li, Yongge; Xu, Yong; Kurths, Jürgen; Yue, Xiaole

    2016-10-01

    Rough energy landscape and noisy environment are two common features in many subjects, such as protein folding. Due to the wide findings of bursting or spiking phenomenon in biology science, small diffusions mixing large jumps are adopted to model the noisy environment that can be properly described by Lévy noise. We combine the Lévy noise with the rough energy landscape, modeled by a potential function superimposed by a fast oscillating function, and study the transport of a particle in a rough triple-well potential excited by Lévy noise, rather than only small perturbations. The probabilities of a particle staying in the middle well are considered under different amplitudes of roughness to find out how roughness affects the steady-state probability density function. Variations in the mean first passage time from the middle well to the right well have been investigated with respect to Lévy parameters and amplitudes of the roughness. In addition, we have examined the influences of roughness on the splitting probabilities of the first escape from the middle well. We uncover that the roughness can enhance significantly the first escape of a particle from the middle well, especially for different skewness parameters, but weak differences are found for stability index and noise intensity on the probabilities a particle staying in the middle well and splitting probability to the right.

  4. Transport, shot noise, and topology in AC-driven dimer arrays

    Science.gov (United States)

    Niklas, Michael; Benito, Mónica; Kohler, Sigmund; Platero, Gloria

    2016-11-01

    We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.

  5. Web-based Traffic Noise Control Support System for Sustainable Transportation

    Science.gov (United States)

    Fan, Lisa; Dai, Liming; Li, Anson

    Traffic noise is considered as one of the major pollutions that will affect our communities in the future. This paper presents a framework of web-based traffic noise control support system (WTNCSS) for a sustainable transportation. WTNCSS is to provide the decision makers, engineers and publics a platform to efficiently access the information, and effectively making decisions related to traffic control. The system is based on a Service Oriented Architecture (SOA) which takes the advantages of the convenience of World Wide Web system with the data format of XML. The whole system is divided into different modules such as the prediction module, ontology-based expert module and dynamic online survey module. Each module of the system provides a distinct information service to the decision support center through the HTTP protocol.

  6. Stabilization of Barkhausen noise readings by controlling a surface field waveform

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Oleksandr

    2014-01-01

    Roč. 25, č. 1 (2014), s. 1-8 ISSN 0957-0233 R&D Projects: GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : magnetic Barkhausen noise * surface field measurement * digital feedback control * non-destructive testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.433, year: 2014

  7. Directed transport in a periodic tube driven by asymmetric unbiased forces coexisting with spatially modulated noises

    International Nuclear Information System (INIS)

    Li Fengguo; Ai Baoquan

    2011-01-01

    Graphical abstract: The current J as a function of the phase shift φ and ε at a = 1/2π, b = 0.5/2π, k B T = 0.5, α = 0.1, and F 0 = 0.5. Highlights: → Unbiased forces and spatially modulated white noises affect the current. → In the adiabatic limit, the analytical expression of directed current is obtained. → Their competition will induce current reversals. → For negative asymmetric parameters of the force, there exists an optimum parameter. → The current increases monotonously for positive asymmetric parameters. - Abstract: Transport of Brownian particles in a symmetrically periodic tube is investigated in the presence of asymmetric unbiased external forces and spatially modulated Gaussian white noises. In the adiabatic limit, we obtain the analytical expression of the directed current. It is found that the temporal asymmetry can break thermodynamic equilibrium and induce a net current. Their competition between the temporal asymmetry force and the phase shift between the noise modulation and the tube shape will induce some peculiar phenomena, for example, current reversals. The current changes with the phase shift in the form of the sine function. For negative asymmetric parameters of the force, there exists an optimum parameter at which the current takes its maximum value. However, the current increases monotonously for positive asymmetric parameters.

  8. Development of a Quantitative Methodology to Assess the Impacts of Urban Transport Interventions and Related Noise on Well-Being

    Directory of Open Access Journals (Sweden)

    Matthias Braubach

    2015-05-01

    Full Text Available Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU project “Urban Reduction of Greenhouse Gas Emissions in China and Europe” (URGENCHE explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution.

  9. Development of a quantitative methodology to assess the impacts of urban transport interventions and related noise on well-being.

    Science.gov (United States)

    Braubach, Matthias; Tobollik, Myriam; Mudu, Pierpaolo; Hiscock, Rosemary; Chapizanis, Dimitris; Sarigiannis, Denis A; Keuken, Menno; Perez, Laura; Martuzzi, Marco

    2015-05-26

    Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU) project "Urban Reduction of Greenhouse Gas Emissions in China and Europe" (URGENCHE) explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki) linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution.

  10. Transport Powder and Liquid Samples by Surface Acoustic Waves

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  11. Noise Pollution

    Science.gov (United States)

    ... Regulated by EPA EPA or a designated Federal agency regulates noise sources, such as rail and motor carriers, low noise emission products, construction equipment, transport equipment, trucks, motorcycles, and the labeling of hearing ...

  12. Conflict simulation for surface transport systems

    International Nuclear Information System (INIS)

    Keeton, S.C.; De Laquil, P. III.

    1977-07-01

    An important element in the analysis of transportation safeguards systems is the determination of the outcome of an armed attack against the system. Such information is necessary to understand relationships among the various defender tactics, weapons systems, and adversary attributes. A battle model, SABRES, which can simulate safeguards engagements is under development. This paper briefly describes the first phase of SABRES and presents some examples of its capabilities

  13. Activity-Dependent Regulation of Surface Glucose Transporter-3

    OpenAIRE

    Ferreira, Jainne M.; Burnett, Arthur L.; Rameau, Gerald A.

    2011-01-01

    Glucose transporter 3 (GLUT3) is the main facilitative glucose transporter in neurons. Glucose provides neurons with a critical energy source for neuronal activity. However, the mechanism by which neuronal activity controls glucose influx via GLUT3 is unknown. We investigated the influence of synaptic stimulation on GLUT3 surface expression and glucose import in primary cultured cortical and hippocampal neurons. Synaptic activity increased surface expression of GLUT3 leading to an elevation o...

  14. Do Aging and Tactile Noise Stimulation Affect Responses to Support Surface Translations in Healthy Adults?

    Directory of Open Access Journals (Sweden)

    Marius Dettmer

    2016-01-01

    Full Text Available Appropriate neuromuscular responses to support surface perturbations are crucial to prevent falls, but aging-related anatomical and physiological changes affect the appropriateness and efficiency of such responses. Low-level noise application to sensory receptors has shown to be effective for postural improvement in a variety of different balance tasks, but it is unknown whether this intervention may have value for improvement of corrective postural responses. Ten healthy younger and ten healthy older adults were exposed to sudden backward translations of the support surface. Low-level noise (mechanical vibration to the foot soles was added during random trials and temporal (response latency and spatial characteristics (maximum center-of-pressure excursion and anterior-posterior path length of postural responses were assessed. Mixed-model ANOVA was applied for analysis of postural response differences based on age and vibration condition. Age affected postural response characteristics, but older adults were well able to maintain balance when exposed to a postural perturbation. Low-level noise application did not affect any postural outcomes. Healthy aging affects some specific measures of postural stability, and in high-functioning older individuals, a low-level noise intervention may not be valuable. More research is needed to investigate if recurring fallers and neuropathy patients could benefit from the intervention in postural perturbation tasks.

  15. Surface Aging Effect on Tire/Pavement Noise Medium-Term Evolution in a Medium-Size City

    Directory of Open Access Journals (Sweden)

    Víctor F. Vázquez

    2018-05-01

    Full Text Available This paper presents the geo-referenced acoustical results obtained throughout the close proximity noise (CPX technique carried out on different urban sections included within the 2017 strategic noise mapping (Directive 2002/49/CE in Ciudad Real, a Spanish medium-sized city. The employed methodology quantifies the tire/pavement noise generated in the contact between the tire and the surface of the studied sections. Measurements were carried out in different research campaigns between 2008 and 2015 (medium-term evolution. They give valuable information about the pavement-aging effect on its surface characteristics. Throughout these years, the acoustic situation of these sections has worsened mainly due to surface damage and higher mean profile depth (MPD values, although the performance does not follow the same pattern in every section. The relationships between measured tire/pavement noise and theoretical environmental noise, just due to the geometric spreading of sound energy, is also studied in order to elaborate a simple rolling noise mapping and to assess the environmental noise evolution. Traffic noise plays the main role in the noise registered within the assessed sections, therefore, CPX assessment could be used by local authorities to take decisions regarding urban planning and traffic management, with the aim of reducing noise exposure from traffic.

  16. Long-term exposure to transportation noise and air pollution in relation to incident diabetes in the SAPALDIA study.

    Science.gov (United States)

    Eze, Ikenna C; Foraster, Maria; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Imboden, Medea; von Eckardstein, Arnold; Schindler, Christian; Brink, Mark; Cajochen, Christian; Wunderli, Jean-Marc; Röösli, Martin; Probst-Hensch, Nicole

    2017-08-01

    Epidemiological studies have inconsistently linked transportation noise and air pollution (AP) with diabetes risk. Most studies have considered single noise sources and/or AP, but none has investigated their mutually independent contributions to diabetes risk. We investigated 2631 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), without diabetes in 2002 and without change of residence between 2002 and 2011. Using questionnaire and biomarker data, incident diabetes cases were identified in 2011. Noise and AP exposures in 2001 were assigned to participants' residences (annual average road, railway or aircraft noise level during day-evening-night (Lden), total night number of noise events, intermittency ratio (temporal variation as proportion of event-based noise level over total noise level) and nitrogen dioxide (NO2) levels. We applied mixed Poisson regression to estimate the relative risk (RR) of diabetes and their 95% confidence intervals (CI) in mutually-adjusted models. Diabetes incidence was 4.2%. Median [interquartile range (IQR)] road, railway, aircraft noise and NO2 were 54 (10) dB, 32 (11) dB, 30 (12) dB and 21 (15) μg/m3, respectively. Lden road and aircraft were associated with incident diabetes (respective RR: 1.35; 95% CI: 1.02-1.78 and 1.86; 95% CI: 0.96-3.59 per IQR) independently of Lden railway and NO2 (which were not associated with diabetes risk) in mutually adjusted models. We observed stronger effects of Lden road among participants reporting poor sleep quality or sleeping with open windows. Transportation noise may be more relevant than AP in the development of diabetes, potentially acting through noise-induced sleep disturbances. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  17. Detection of a milling-induced surface damage by the magnetic Barkhausen noise

    Science.gov (United States)

    Stupakov, A.; Neslušan, M.; Perevertov, O.

    2016-07-01

    The potential of the magnetic Barkhausen noise method for a non-destructive evaluation of the steel surface damage cased by milling was comprehensively investigated. A typical bearing steel was heat treated to three different hardnesses and then machined using the cutting tools with different degrees of the flank wear. The magnetic low-frequency measurements with a high reading depth were performed using a unique laboratory system providing a full control of the magnetization process. The high-frequency measurements were performed using a commercial Rollscan device. To study the induced magnetic anisotropy, the measurements were performed in two magnetization directions. In the feeding direction, the Barkhausen noise profiles showed a second high-field peak ascribed to an induced hardened surface layer, a so-called white layer. The most reliable results were obtained with the controlled waveform of the surface magnetic field measured directly by Hall sensors. In the perpendicular rotation direction, formation of the preferentially oriented matrix resulted in an enormously high Barkhausen noise activity. Based on these results, new magnetic parameters were proposed for the non-destructive evaluation of the white layer formation.

  18. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  19. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  20. Surface trapping phenomena in thermionic emission generating l/f noise

    International Nuclear Information System (INIS)

    Stepanescu, A.

    1975-01-01

    A general expression of the power spectrum of''flicker noise'', involving stochastic trapping phenomena and calculated on the basis of a two parameter model, is applied in the case of thermoionic emission from cathode surface. The fluctuation of the work function over the cathode surface is interpreted as being due to a trapping process of foreign atoms by the cathode. Taking into account the very physical nature of the trapping mechanism, under self-consistent assumptions, a 1/f power spectrum is obtained in a certain range of frequency. The two parameter model removes some discrepancies involved in the preceding theories. (author)

  1. Modeling marine surface microplastic transport to assess optimal removal locations

    OpenAIRE

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the ...

  2. Assessment of an action against environmental noise: Acoustic durability of a pavement surface with crumb rubber.

    Science.gov (United States)

    Vázquez, V F; Luong, J; Bueno, M; Terán, F; Paje, S E

    2016-01-15

    Environmental noise is a worldwide problem that has an adverse effect in the quality of life of urban population. Some work has shown that there is a correlation between environmental noise and health issues as sleep disturbance or annoyance. This study presents the time evolution of a test track fabricated with an asphalt mixture with 20% of crumb rubber by weight of bitumen, added by the wet process. A complete surface characterization has been performed by determining tire/pavement sound levels, road texture profiles, in-situ dynamic stiffness and sound absorption of compacted and extracted sample cores. Two measurement campaigns were performed: just after mixture laying and after 3 years in service. This study confirms that the use of crumb rubber as a modifier of bituminous binders (CRMB) can improve the pavement characteristics: gap-graded mixtures with crumb rubber can be used in the action plans as urban rehabilitation measure to fight noise pollution. However, this noise reduction seems to decrease with age at a rate of approximately 0.15 dB(A) per year. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project

    Science.gov (United States)

    Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton

    2017-01-01

    The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.

  4. Report of the National Surface Transportation Policy and Revenue Study Commission : transportation for tomorrow.

    Science.gov (United States)

    2007-11-01

    President Dwight D. Eisenhower had the foresight : to understand how a system of Interstate highways : would transform the Nation. If there was ever a : time to take a similarly daring look at a broadened : surface transportation network, it is now! ...

  5. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  6. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghui; Cheong, Cheolung [Pusan Nat’l Univ., Busan (Korea, Republic of); Heo Seung [Korea Aerospace Industries, Sacheon (Korea, Republic of); Kim, Tae-Hoon; Jung, Jiwon [LG Electronics, Seoul (Korea, Republic of)

    2017-03-15

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  7. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    International Nuclear Information System (INIS)

    Shin, Donghui; Cheong, Cheolung; Heo Seung; Kim, Tae-Hoon; Jung, Jiwon

    2017-01-01

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  8. Surface assisted electric transport in Ag2S thin films

    International Nuclear Information System (INIS)

    Karashanova, D.; Starbov, N.

    2006-01-01

    Electric transport measurements of thickness-dependent electronic and ionic conductivity of epitaxial Ag 2 S films are used to split both kinds of conductivity into bulk and surface components. The established considerable electronic and ionic surface conductances demonstrate unambiguously the co-existance of electronic and ionic space charge regions in the vicinity of silver sulfide free surface oriented along the zone axes [1-bar 01-bar ]. The parameters of both space charge layers - surface potential, thickness of the space charge region and concentration of the surface compensating charges, are calculated. It is estimated that for intrinsic silver sulfide, the effective surface potential of (1-bar 01-bar ) Ag 2 S surface is negative, its value being about -610mV at 400K

  9. Distance scaling of electric-field noise in a surface-electrode ion trap

    Science.gov (United States)

    Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.

    2018-02-01

    We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.

  10. The influence of fast neutron irradiation on the noise properties of silicon surface-barrier detectors

    International Nuclear Information System (INIS)

    Dabrowski, W.; Korbel, K.

    1988-01-01

    The susceptibility to the fast neutron irradiation of silicon surface-barrier detectors has been investigated. It was shown that the 1/f-noise decreases substantially with increasing fluence in the range from 10 10 n/cm 2 to 10 11 n/cm 2 . The deterioration of the detector performance is caused mainly by the positively-charged defects induced by the radiation. The critical value of the neutron fluence, at which the detector performance begins to be worsened was also determined. 5 refs., 5 figs. (author)

  11. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient...... along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer...

  12. Modeling marine surface microplastic transport to assess optimal removal locations

    NARCIS (Netherlands)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics

  13. Ab initio transport across bismuth selenide surface barriers

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Droghetti, Andrea; Sanvito, Stefano

    2014-01-01

    © 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results

  14. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  15. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  16. Sand Transport under Highly Turbulent Airflow on a Beach Surface

    Science.gov (United States)

    Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.

    2012-04-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity

  17. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter

    2016-04-01

    Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.

  18. Skeletonized inversion of surface wave: Active source versus controlled noise comparison

    KAUST Repository

    Li, Jing; Hanafy, Sherif

    2016-01-01

    We have developed a skeletonized inversion method that inverts the S-wave velocity distribution from surface-wave dispersion curves. Instead of attempting to fit every wiggle in the surface waves with predicted data, it only inverts the picked dispersion curve, thereby mitigating the problem of getting stuck in a local minimum. We have applied this method to a synthetic model and seismic field data from Qademah fault, located at the western side of Saudi Arabia. For comparison, we have performed dispersion analysis for an active and controlled noise source seismic data that had some receivers in common with the passive array. The active and passive data show good agreement in the dispersive characteristics. Our results demonstrated that skeletonized inversion can obtain reliable 1D and 2D S-wave velocity models for our geologic setting. A limitation is that we need to build layered initial model to calculate the Jacobian matrix, which is time consuming.

  19. Skeletonized inversion of surface wave: Active source versus controlled noise comparison

    KAUST Repository

    Li, Jing

    2016-07-14

    We have developed a skeletonized inversion method that inverts the S-wave velocity distribution from surface-wave dispersion curves. Instead of attempting to fit every wiggle in the surface waves with predicted data, it only inverts the picked dispersion curve, thereby mitigating the problem of getting stuck in a local minimum. We have applied this method to a synthetic model and seismic field data from Qademah fault, located at the western side of Saudi Arabia. For comparison, we have performed dispersion analysis for an active and controlled noise source seismic data that had some receivers in common with the passive array. The active and passive data show good agreement in the dispersive characteristics. Our results demonstrated that skeletonized inversion can obtain reliable 1D and 2D S-wave velocity models for our geologic setting. A limitation is that we need to build layered initial model to calculate the Jacobian matrix, which is time consuming.

  20. Solute transport across the articular surface of injured cartilage.

    Science.gov (United States)

    Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M

    2013-07-15

    Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  2. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    Science.gov (United States)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger

  3. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    Science.gov (United States)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind

  4. Noise-induced phase space transport in two-dimensional Hamiltonian systems.

    Science.gov (United States)

    Pogorelov, I V; Kandrup, H E

    1999-08-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.

  5. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    International Nuclear Information System (INIS)

    Ongel, Aybike; Sezgin, Fatih

    2016-01-01

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.

  6. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Ongel, Aybike, E-mail: aybike.ongel@eng.bahcesehir.edu.tr [Bahcesehir University, Department of Civil Engineering, Istanbul 34353 (Turkey); Sezgin, Fatih, E-mail: fatih.sezgin@ibb.gov.tr [Istanbul Metropolitan Municipality, Environmental Protection Agency, Istanbul 34169 (Turkey)

    2016-01-15

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.

  7. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  8. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2015-01-01

    The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... and trailing edge noise, recognized to be the two main sources of noise from wind turbines, this work contributes to a more detailed insight into noise from wind turbines. The study comprises analysis and interpretation of measurement data that were acquired during an experimental campaign involving a 2 MW...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...

  9. Time-Dependent Liquid Transport on a Biomimetic Topological Surface.

    Science.gov (United States)

    Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei

    2018-05-02

    Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.

  10. Realizing modeling and mapping tools to study the upsurge of noise pollution as a result of open-cast mining and transportation activities.

    Science.gov (United States)

    Lokhande, Satish K; Jain, Mohindra C; Dhawale, Satyajeet A; Gautam, Rakesh; Bodhe, Ghanshyam L

    2018-01-01

    In open-cast mines, noise pollution has become a serious concern due to the extreme use of heavy earth moving machinery (HEMM). This study is focused to measure and assess the effects of the existing noise levels of major operational mines in the Keonjhar, Sundergadh, and Mayurbhanj districts of Odisha, India. The transportation noise levels were also considered in this study, which was predicted using the modified Federal Highway Administration (FHWA) model. It was observed that noise induced by HEMM such as rock breakers, jackhammers, dumpers, and excavators, blasting noise in the mining terrain, as well as associated transportation noise became a major source of annoyance to the habitants living in proximity to the mines. The noise produced by mechanized mining operations was observed between 74.3 and 115.2 dB(A), and its impact on residential areas was observed between 49.4 and 58.9 dB(A). In addition, the noise contour maps of sound level dispersion were demonstrated with the utilization of advanced noise prediction software tools for better understanding. Finally, the predicted values at residential zone and traffic noise are correlated with observed values, and the coefficient of determination, R 2 , was calculated to be 0.6891 and 0.5967, respectively.

  11. Noise-induced phase space transport in two-dimensional Hamiltonian systems

    International Nuclear Information System (INIS)

    Pogorelov, I.V.; Kandrup, H.E.

    1999-01-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which open-quotes stickyclose quotes chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become open-quotes unstuckclose quotes much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation. copyright 1999 The American Physical Society

  12. Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface

    Science.gov (United States)

    Niiya, Hirofumi; Nishimura, Kouichi

    2017-05-01

    We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from 10-5 to 10 m above the flat surface. The numerical results are as follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below 10 cm and gradual wind response above 10 cm. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below 100 µm remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above 300 µm is less than the wind speed, whereas that below 300 µm exceeds the wind speed because of descending particles. (v) The particle diameter increases with height in the saltation layer, and the relationship is expressed as a power function. Through comparisons with the previously reported random-flight model, we find a crucial problem that empirical splash functions cannot reproduce particle dynamics at a relatively high wind speed.

  13. Performance Assessment of Low-Noise Road Surfaces in the Leopoldo Project: Comparison and Validation of Different Measurement Methods

    Directory of Open Access Journals (Sweden)

    Gaetano Licitra

    2015-01-01

    Full Text Available In almost all urban contexts and in many extra-urban conurbations, where road traffic is the main noise pollution source, the use of barriers is not allowed. In these cases, low-noise road surfaces are the most used mitigation action together with traffic flow reduction. Selecting the optimal surface is only the first problem that the public administration has to face. In the second place, it has to consider the issue of assessing the efficacy of the mitigation action. The purpose of the LEOPOLDO project was to improve the knowledge in the design and the characterization of low-noise road surfaces, producing guidelines helpful to the public administrations. Several experimental road surfaces were tested. Moreover, several measurement methods were implemented aiming to select those that are suitable for a correct assessment of the pavement performances laid as mitigation planning. In this paper, the experience gained in the LEOPOLDO project will be described, focusing on both the measurement methods adopted to assess the performance of a low-noise road surface and the criteria by which the experimental results have to be evaluated, presenting a comparison of the obtained results and their monitoring along time.

  14. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  15. Surface detection performance evaluation of pseudo-random noise continuous wave laser radar

    Science.gov (United States)

    Mitev, Valentin; Matthey, Renaud; Pereira do Carmo, Joao

    2017-11-01

    A number of space missions (including in the ESA Exploration Programme) foreseen a use of laser radar sensor (or lidar) for determination of range between spacecrafts or between spacecraft and ground surface (altimetry). Such sensors need to be compact, robust and power efficient, at the same time with high detection performance. These requirements can be achieved with a Pseudo-Random Noise continuous wave lidar (PRN cw lidar). Previous studies have pointed to the advantages of this lidar with respect to space missions, but they also identified its limitations in high optical background. The progress of the lasers and the detectors in the near IR spectral range requires a re-evaluation of the PRN cw lidar potential. Here we address the performances of this lidar for surface detection (altimetry) in planetary missions. The evaluation is based on the following system configuration: (i) A cw fiber amplifier as lidar transmitter. The seeding laser exhibits a single-frequency spectral line, with subsequent amplitude modulation. The fiber amplifier allows high output power level, keeping the spectral characteristics and the modulation of the seeding light input. (ii) An avalanche photodiode in photon counting detection; (iii) Measurement scenarios representative for Earth, Mercury and Mars.

  16. Years of life lost and morbidity cases attributable to transportation noise and air pollution: A comparative health risk assessment for Switzerland in 2010.

    Science.gov (United States)

    Vienneau, Danielle; Perez, Laura; Schindler, Christian; Lieb, Christoph; Sommer, Heini; Probst-Hensch, Nicole; Künzli, Nino; Röösli, Martin

    2015-08-01

    There is growing evidence that chronic exposure to transportation related noise and air pollution affects human health. However, health burden to a country of these two pollutants have been rarely compared. As an input for external cost quantification, we estimated the cardiorespiratory health burden from transportation related noise and air pollution in Switzerland, incorporating the most recent findings related to the health effects of noise. Spatially resolved noise and air pollution models for the year 2010 were derived for road, rail and aircraft sources. Average day-evening-night sound level (Lden) and particulate matter (PM10) were selected as indicators, and population-weighted exposures derived by transportation source. Cause-specific exposure-response functions were derived from a meta-analysis for noise and literature review for PM10. Years of life lost (YLL) were calculated using life table methods; population attributable fraction was used for deriving attributable cases for hospitalisations, respiratory illnesses, visits to general practitioners and restricted activity days. The mean population weighted exposure above a threshold of 48dB(A) was 8.74dB(A), 1.89dB(A) and 0.37dB(A) for road, rail and aircraft noise. Corresponding mean exposure contributions were 4.4, 0.54, 0.12μg/m(3) for PM10. We estimated that in 2010 in Switzerland transportation caused 6000 and 14,000 YLL from noise and air pollution exposure, respectively. While there were a total of 8700 cardiorespiratory hospital days attributed to air pollution exposure, estimated burden due to noise alone amounted to 22,500 hospital days. YLL due to transportation related pollution in Switzerland is dominated by air pollution from road traffic, whereas consequences for morbidity and indicators of quality of life are dominated by noise. In terms of total external costs the burden of noise equals that of air pollution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Association of Long-Term Exposure to Transportation Noise and Traffic-Related Air Pollution with the Incidence of Diabetes: A Prospective Cohort Study.

    Science.gov (United States)

    Clark, Charlotte; Sbihi, Hind; Tamburic, Lillian; Brauer, Michael; Frank, Lawrence D; Davies, Hugh W

    2017-08-31

    Evidence for an association between transportation noise and cardiovascular disease has increased; however, few studies have examined metabolic outcomes such as diabetes or accounted for environmental coexposures such as air pollution, greenness, or walkability. Because diabetes prevalence is increasing and may be on the causal pathway between noise and cardiovascular disease, we examined the influence of long-term residential transportation noise exposure and traffic-related air pollution on the incidence of diabetes using a population-based cohort in British Columbia, Canada. We examined the influence of transportation noise exposure over a 5-y period (1994-1998) on incident diabetes cases in a population-based prospective cohort study (n=380,738) of metropolitan Vancouver (BC) residents who were 45-85 y old, with 4-y of follow-up (1999-2002). Annual average transportation noise (Lden), air pollution [black carbon, particulate matter with aerodynamic diameter Transportation noise was associated with the incidence of diabetes [interquartile range (IQR) increase, 6.8 A-weighted decibels (dBA); OR=1.08 (95% CI: 1.05, 1.10)]. This association remained after adjustment for environmental coexposures including traffic-related air pollutants, greenness, and neighborhood walkability. After adjustment for coexposure to noise, traffic-related air pollutants were not associated with the incidence of diabetes, whereas greenness was protective. We found a positive association between residential transportation noise and diabetes, adding to the growing body of evidence that noise pollution exposure may be independently linked to metabolic health and should be considered when developing public health interventions. https://doi.org/10.1289/EHP1279.

  18. Contribution of diffuser surfaces to efficiency of tilted T shape parallel highway noise barriers

    Directory of Open Access Journals (Sweden)

    N. Javid Rouzi

    2009-04-01

    Full Text Available Background and aimsThe paper presents the results of an investigation on the acoustic  performance of tilted profile parallel barriers with quadratic residue diffuser tops and faces.MethodsA2D boundary element method (BEM is used to predict the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface and faces of all tilted profile parallel barrier models introduced here is found to  improve the efficiency of barriers compared with rigid equivalent parallel barrier at the examined  receiver positions.Results Applying a QRD with frequency design of 400 Hz on 5 degrees tilted parallel barrier  improves the overall performance of its equivalent rigid barrier by 1.8 dB(A. Increase the treated surfaces with reactive elements shifts the effective performance toward lower frequencies. It is  found that by tilting the barriers from 0 to 10 degrees in parallel set up, the degradation effects in  parallel barriers is reduced but the absorption effect of fibrous materials and also diffusivity of thequadratic residue diffuser is reduced significantly. In this case all the designed barriers have better  performance with 10 degrees tilting in parallel set up.ConclusionThe most economic traffic noise parallel barrier, which produces significantly  high performance, is achieved by covering the top surface of the barrier closed to the receiver by  just a QRD with frequency design of 400 Hz and tilting angle of 10 degrees. The average Aweighted  insertion loss in this barrier is predicted to be 16.3 dB (A.

  19. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  20. Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport.

    Science.gov (United States)

    Kamra, Akashdeep; Belzig, Wolfgang

    2016-04-08

    The magnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent conductor (N). Such F|N bilayers have become basic building blocks in a wide variety of spin-based devices. We evaluate the shot noise of the spin current traversing the F|N interface when F is subjected to a coherent microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency, and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin transfer, which results from quasiparticles with effective spin ℏ^{*}=ℏ(1+δ). For typical ferromagnetic thin films, δ∼1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.

  1. Modeling marine surface microplastic transport to assess optimal removal locations

    Science.gov (United States)

    Sherman, Peter; van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres.

  2. Directional mass transport in an atmospheric pressure surface barrier discharge.

    Science.gov (United States)

    Dickenson, A; Morabit, Y; Hasan, M I; Walsh, J L

    2017-10-25

    In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.

  3. Modeling marine surface microplastic transport to assess optimal removal locations

    International Nuclear Information System (INIS)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres. (letter)

  4. User's manual for the Noise 1 area computer program for transportation noise prediction : report under project entitled "area computer model for transportation noise prediction : phase 1 : adaptation of MICNOISE".

    Science.gov (United States)

    1975-01-01

    It was found that the coordinates of the highways required for Noise 1 could be supplied on punched cards by the Photogrammetry Section of the Department. In preparing data for contour plotting, it was found advisable to divide the area into sectors,...

  5. Surface-wave tomography of Ireland and surroundings using ambient noise and teleseismic data

    Science.gov (United States)

    Bonadio, Raffaele; Arroucau, Pierre; Lebedev, Sergei; Meier, Thomas; Schaeffer, Andrew; Licciardi, Andrea; Piana Agostinetti, Nicola

    2016-04-01

    Ireland's geology is dominated by northeast-southwest structural trends and suture zones, mostly inferred from geological mapping and a few active source seismic experiments. However, their geometry and extent at depth and their continuity across the Irish Sea are still poorly known. Important questions also remain unanswered regarding the thickness and bulk properties of the sedimentary cover at the regional scale, the deformation and flow of the deep crust during the formation of Ireland, the thickness of Ireland's lithosphere today, and the thermal structure and dynamics of the asthenosphere beneath Ireland. In this work, we take advantage of abundant, newly available broadband data from temporary array deployments and permanent seismic networks in Ireland and Great Britain to produce high-resolution models of seismic velocity structure and anisotropy of the lithosphere. We combine Rayleigh and Love phase velocity measurements from waveform cross-correlation using both ambient noise and teleseismic data in order to produce high-quality dispersion curves for periods ranging from 1 to 300 s. The phase velocity measurement procedures are adapted from Meier et al.[2], Lebedev et al.[1] and Soomro et al.[3] and are automated in order to deal with the large amount of data and ensure consistency and reproducibility. For the nearly 200 stations used in this study, we obtain a very large number of dispersion curves from both ambient noise and teleseimic data. Dispersion measurements are then inverted in a tomographic procedure for surface-wave phase velocity maps in a very broad period range. The maps constrain the 3D seismic-velocity structure of the crust and upper mantle underlying Ireland and the Irish Sea. {9} Lebedev, S., T. Meier, R. D. van der Hilst. Asthenospheric flow and origin of volcanism in the Baikal Rift area, Earth Planet. Sci. Lett., 249, 415-424, 2006. Meier, T., K. Dietrich, B. Stockhert, H.P. Harjes, One-dimensional models of shear wave velocity for

  6. An application of reactor noise techniques to neutron transport problems in a random medium

    International Nuclear Information System (INIS)

    Sahni, D.C.

    1989-01-01

    Neutron transport problems in a random medium are considered by defining a joint Markov process describing the fluctuations of one neutron population and the random changes in the medium. Backward Chapman-Kolmogorov equations are derived which yield an adjoint transport equation for the average neutron density. It is shown that this average density also satisfied the direct transport equation as given by the phenomenological model. (author)

  7. Ab initio transport across bismuth selenide surface barriers

    KAUST Repository

    Narayan, Awadhesh

    2014-11-24

    © 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.

  8. Simulating complex noise barrier reflections

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Lutgendorf, D.; Roo, F. de

    2011-01-01

    Within the EU FP7 QUIESST project, QUIeting the Environment for a Sustainable Surface Transport, a test method is being developed for the reflectivity of noise barriers. The method needs to account for a complex shape of barriers and the use of various types of absorbing materials. The performance

  9. Transport on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Vargiamidis, V.; Vasilopoulos, P.

    2014-01-01

    We study theoretically dc and ac transport on the surface of a three-dimensional topological insulator when its time-reversal symmetry is broken. Starting with a Kubo formula, we derive an explicit expression for the dc Hall conductivity, valid for finite temperatures. At zero temperature this expression gives the dc half-quantum Hall conductivity, provided the Fermi level lies in the gap. Corrections when the Fermi level is outside the gap and scattering by impurities are quantified. The longitudinal conductivity is also examined. At finite frequencies, we find a modified Drude term in σ xx (ω) and logarithmic, frequency-dependent corrections in σ yx (ω). The ac Hall conductivity exhibits a robust logarithmic singularity for excitation energies equal to the gapwidth. For these energies, we also find that the power spectrum, which is pertinent to optical experiments, exhibits drastic increase. The Hall conductivity remains almost unaffected for temperatures up to approximately 300 K

  10. RIVER-RAD, Radionuclide Transport in Surface Waters

    International Nuclear Information System (INIS)

    1996-01-01

    1 - Description of program or function: RIVER-RAD assesses the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. 2 - Method of solution: A compartmental linear transfer model is used in RIVER-RAD. The river system model in the code is divided into reaches (compartments) of equal size, each with a sediment compartment below it. The movement of radionuclides is represented by a series of transfers between the reaches, and between the water and sediment compartments of each reach. Within each reach (for both the water and sediment compartments), the radionuclides are assumed to be uniformly mixed. Upward volatilization is allowed from the water compartment, and the transfer of radionuclides between the reaches is determined by the flow rate of the river. Settling and resuspension velocities determine the transfer of absorbed radionuclides between the water and sediment compartments. Radioactive decay and decay-product buildup are incorporated into all transport calculations for all radionuclide chains specified by the user. Each nuclide may have unique input and removal rates. Volatilization and radiological decay are considered as linear rate constants in the model. 3 - Restrictions on the complexity of the problem: None noted

  11. Research showcase, winter 2014 : reducing traffic noise impacts, university transportation centers, advanced prismatic sheeting.

    Science.gov (United States)

    2014-01-01

    This issue of Research Showcase features articles on two successful research efforts, one on quiet : pavements and the other on the bene ts of prismatic sign sheeting, and an article on university : transportation center participation in Florida.

  12. Development of tire road noise chassis-dynamometer simulator. Effect of ISO surface replica model pad on tire road noise; Shisakushita tire romen soon shiken`yo jissha daijo simulator ni tsuite. ISO romen mogi pad wo sochakushita koka ni kansuru kisoteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Murakami, T; Ogata, S; Sakamoto, I [Traffic Safety and Nuisance Research Inst., Tokyo (Japan)

    1997-10-01

    As a new test facility to clarify noise reduction method of tire road noise, Tire Road Noise Chassis-Dynamometer Simulator was developed. ISO surface replica pads made by copying the texture of ISO surface were attached on the roller surface of this system to simulate tire road noise. This paper described the specifications and characteristics of this system, and the effects of ISO surface replica pads on tire noise measurement by comparing the sound intensity in horizontal plane of tire noise measured in this system with that measured in a single drum tester with safety walk surface. 4 refs., 10 figs., 1 tab.

  13. 3D Crust and Uppermost Mantle Structure beneath Tian Shan Region from ambient noise and earthquake surface waves

    Science.gov (United States)

    Xiao, X.; Wen, L.

    2017-12-01

    As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.

  14. Effect of burst and recombination models for Monte Carlo transport of interacting carriers in a-Se x-ray detectors on Swank noise

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuan, E-mail: yuan.fang@fda.hhs.gov [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002 and Department of Electrical and Computer Engineering, The University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Karim, Karim S. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Badano, Aldo [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002 (United States)

    2014-01-15

    Purpose: The authors describe the modification to a previously developed Monte Carlo model of semiconductor direct x-ray detector required for studying the effect of burst and recombination algorithms on detector performance. This work provides insight into the effect of different charge generation models for a-Se detectors on Swank noise and recombination fraction. Methods: The proposed burst and recombination models are implemented in the Monte Carlo simulation package, ARTEMIS, developed byFang et al. [“Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se,” Med. Phys. 39(1), 308–319 (2012)]. The burst model generates a cloud of electron-hole pairs based on electron velocity, energy deposition, and material parameters distributed within a spherical uniform volume (SUV) or on a spherical surface area (SSA). A simple first-hit (FH) and a more detailed but computationally expensive nearest-neighbor (NN) recombination algorithms are also described and compared. Results: Simulated recombination fractions for a single electron-hole pair show good agreement with Onsager model for a wide range of electric field, thermalization distance, and temperature. The recombination fraction and Swank noise exhibit a dependence on the burst model for generation of many electron-hole pairs from a single x ray. The Swank noise decreased for the SSA compared to the SUV model at 4 V/μm, while the recombination fraction decreased for SSA compared to the SUV model at 30 V/μm. The NN and FH recombination results were comparable. Conclusions: Results obtained with the ARTEMIS Monte Carlo transport model incorporating drift and diffusion are validated with the Onsager model for a single electron-hole pair as a function of electric field, thermalization distance, and temperature. For x-ray interactions, the authors demonstrate that the choice of burst model can affect the simulation results for the generation

  15. Effect of burst and recombination models for Monte Carlo transport of interacting carriers in a-Se x-ray detectors on Swank noise

    International Nuclear Information System (INIS)

    Fang, Yuan; Karim, Karim S.; Badano, Aldo

    2014-01-01

    Purpose: The authors describe the modification to a previously developed Monte Carlo model of semiconductor direct x-ray detector required for studying the effect of burst and recombination algorithms on detector performance. This work provides insight into the effect of different charge generation models for a-Se detectors on Swank noise and recombination fraction. Methods: The proposed burst and recombination models are implemented in the Monte Carlo simulation package, ARTEMIS, developed byFang et al. [“Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se,” Med. Phys. 39(1), 308–319 (2012)]. The burst model generates a cloud of electron-hole pairs based on electron velocity, energy deposition, and material parameters distributed within a spherical uniform volume (SUV) or on a spherical surface area (SSA). A simple first-hit (FH) and a more detailed but computationally expensive nearest-neighbor (NN) recombination algorithms are also described and compared. Results: Simulated recombination fractions for a single electron-hole pair show good agreement with Onsager model for a wide range of electric field, thermalization distance, and temperature. The recombination fraction and Swank noise exhibit a dependence on the burst model for generation of many electron-hole pairs from a single x ray. The Swank noise decreased for the SSA compared to the SUV model at 4 V/μm, while the recombination fraction decreased for SSA compared to the SUV model at 30 V/μm. The NN and FH recombination results were comparable. Conclusions: Results obtained with the ARTEMIS Monte Carlo transport model incorporating drift and diffusion are validated with the Onsager model for a single electron-hole pair as a function of electric field, thermalization distance, and temperature. For x-ray interactions, the authors demonstrate that the choice of burst model can affect the simulation results for the generation

  16. Assessment of health impacts and policy options in relation to transport noise

    NARCIS (Netherlands)

    Staatsen BAM; Nijland HA; van Kempem EMM; de Hollander AEM; Franssen AEM; van Kamp I; MGO

    2004-01-01

    This paper has been drafted within the framework of a joint international project (Austria, France, Malta, Sweden, Switzerland and the Netherlands). The aim of this project is to describe the state of the art on transport related health impacts, highlight (if possible) costs and benefits, identify

  17. Risk Assessment for Public Health from Transportation Noise (on the example of the city of Belgorod)

    Science.gov (United States)

    Semeykin, A. Yu

    2018-01-01

    In this paper, an assessment, modelling and calculation of risks for the health of the population of the Southern district of Belgorod was carried out. The study included acoustic calculations carried out on the territory of the assessment within the boundaries of the settlement area of the rectangle with the square 6.72 km2, where about 80000 residents live. As a result of computational and instrumental data 4 zones with different levels of potential chronic acoustic impact on the population were allocated. With the use of mathematical models of risk the trend of the formation of moderate and high risk was determined in certain areas within the boundaries of the territory. It is shown that 65% of the residents of the district live in conditions of moderate health risks and about 9% - in conditions of a high risk of developing health disorders from the effects of noise (disorders of the nervous system, hearing and the cardiovascular system).

  18. Neoclassical transport coefficients for tokamaks with bean-shaped flux surfaces

    International Nuclear Information System (INIS)

    Chang, C.S.; Kaye, S.M.

    1990-11-01

    Simple analytic representations of the neoclassical transport coefficients for indented flux surfaces are presented. It is shown that a transport coefficient for an indented flux surface can be expressed in terms of a linear combination of the previously known transport coefficients for two nonindented flux surfaces. Numerical calculations based on actual equilibria from the PBX-M tokamak indicate that, even for modestly indented flux surfaces, the ion neoclassical thermal transport can be over a factor of two smaller than in a circular plasma with the same midplane radius or with the equivalent areas. 6 refs., 5 figs., 1 tab

  19. 29 CFR 1926.902 - Surface transportation of explosives.

    Science.gov (United States)

    2010-07-01

    ... electric) shall not be transported in the same vehicle with other explosives. (e) Vehicles used for... prevent contact with containers of explosives. (h) Every motor vehicle or conveyance used for transporting... Carriers. (b) Motor vehicles or conveyances transporting explosives shall only be driven by, and be in the...

  20. Modeling sheet-flow sand transport under progressive surface waves

    NARCIS (Netherlands)

    Kranenburg, Wouter

    2013-01-01

    In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels.

  1. Shot noise limit of the optical 3D measurement methods for smooth surfaces

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Pech, Miroslav

    2016-01-01

    Roč. 27, č. 3 (2016), 1-7, č. článku 035205. ISSN 0957-0233 R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : measurement uncertainty * shot noise * 3D measurement * interferometry Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.585, year: 2016

  2. Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.

    Science.gov (United States)

    Dent, Kevin

    2010-01-01

    In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.

  3. Tyre noise predictions from computed road surface texture induced contact pressure; Romen no outotsu ni kiinsuru sesshoku atsuryoku ni yoru tire soon no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, T. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    1999-07-01

    A method for tire/road noise prediction is studied based on the result of road surface profile measurement (horizontal direction measurement interval 3mm, horizontal direction measurement accuracy 8{mu}m, distance measured 1655m, using a laser-aided profile meter). The obtained road surface profile is used for the calculation of contact pressure that occurs between the tire tread and road surface (using the 2-dimensional calculation model of Clapp et al.). For the examination of the relationship between the contact pressure and generated noise, tire noise is measured using a microphone array provided near the tire circumference. The frequency spectral ratio between the generated noise and contact pressure is determined as a transmission function. It may be said that the transmission function is unique to the tire, not dependent on the road surface profile. The road surface profile is determined by use of the transmission function, and this enables the prediction of the noise from the tire. Noises were measured on several kinds of road surfaces different in coarseness for a passenger car and truck, and the values from these actual measurements are compared with the predicted values, and then it is found that the prediction model is valid. (NEDO)

  4. Novel processing of Barkhausen noise signal for assessment of residual stress in surface ground components exhibiting poor magnetic response

    International Nuclear Information System (INIS)

    Vashista, M.; Paul, S.

    2011-01-01

    The Barkhausen Noise Analysis (BNA) technique has been utilised to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal and two newly proposed parameters, namely 'count' and 'event', have been shown to correlate linearly with the residual stress upon grinding, with judicious choice of user defined 'threshold', even when the micro-magnetic response of the work material is poor. In the present study, residual stress induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with unhardened bearing steel for benchmarking. Moreover, similar correlation has been established, when primarily compressive stress is induced upon high speed grinding using cBN wheel with moderately deep cut suppressing the micro-magnetic response from the ground medium carbon steel as the work material. - Highlights: → The problem of work materials exhibiting poor BN response and poor Barkhausen Noise response is identified. → A novel signal processing strategy is introduced to address the issue of poor micro-magnetic response of some ferromagnetic material. → Potential of newly introduced BN parameters has been studied. → These two BN parameters exhibited linear correlation with residual stress for work material with poor micro-magnetic response.

  5. Characterizing Surface Transport Barriers in the South China Sea

    Science.gov (United States)

    2015-09-30

    to a coral reef system flow, rigorously identifying hyperbolic and elliptic flow structures. 2 RESULTS The FTLE approach was found to be...quite robust in the face of noise and discretization, lending more weight to it being potentially widely applicable to the interpretation of HF Radar...included in real world applications (Allshouse et al. 2015). Figure 3: The impact of windage on a hypothetical tracer release event of Ningaloo Reef

  6. The Influence of Geography and Geology on Seismic Background Noise Levels Across the United States as Revealed by the Transportable Array

    Science.gov (United States)

    Anthony, R. E.; Ringler, A. T.; Holland, A. A.; Wilson, D. C.

    2017-12-01

    The EarthScope USArray Transportable Array (TA) has now covered the US with 3-component broadband seismometers at approximately 70 km station spacing and deployment durations of approximately 2 years. This unprecedented coverage, combined with high-quality and near homogenous installation techniques, offers a novel dataset in which to characterize spatially varying levels of background seismic noise across the United States. We present background noise maps in period bands of interest to earthquake and imaging seismology across the US (lower 48 states and Alaska). Early results from the contiguous 48 states demonstrate that ambient noise levels within the body wave period band (1-5 s) vary by > 20 dB (rel. 1 (m/s2)2/Hz) with the highest noise levels occurring at stations located within sedimentary basins and lowest within the mountain ranges of the Western US. Additionally, stations around the Great Lakes observe heightened noise levels in this band beyond the aforementioned basin amplification. We attribute this observation to local swell activity in the Great Lakes generating short-period microseism signals. This suggests that lake-generated microseisms may be a significant source of noise for Alaskan deployments situated in close proximity to lakes to facilitate float plane access. We further investigate how basin amplification and short-period lake microseism signals may noticeably impact detection and signal-to-noise of teleseismic body wave signals during certain time periods. At longer-periods (> 20 s), we generally observe larger noise levels on the horizontal components of stations situated in basins or on soft sediment, likely caused by locally induced tilt of the sensor. We will present similar analysis from the initial Alaska TA dataset to quantitatively assess how utilization of posthole sensors affects signal-to-noise for the long-period horizontal wavefield.

  7. Applications of geographic information systems (GIS) for highway traffic noise analysis : case studies of select transportation agencies

    Science.gov (United States)

    2012-11-30

    Noise from highway traffic can be pervasive in areas near roadways. How and to what extent noise travels is strongly influenced by geospatial features such as terrain and elevation. Thus geographic information systems (GIS), which enable users to mor...

  8. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  9. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  10. E-comparisons: A new approach to round robin tests for environmental noise assessment in transport infrastructures

    NARCIS (Netherlands)

    Asensio, C.; Pavón, I.; Pagan Munoz, R.; Crocker, M.

    The increasing importance of pollutant noise has led to the creation of many new noise testing laboratories in recent years. For this reason and due to the legal implications that noise reporting may have, it is necessary to create procedures intended to guarantee the quality of the testing and its

  11. UHV-cluster-tool for fabrication of thin film structures and transport- and noise properties of YBa2Cu3O7-δ grain boundary-SQUIDs

    International Nuclear Information System (INIS)

    Back, Christoph

    2007-01-01

    A UHV-thin-film-deposition system for the fabrication of thin film structures of metals and oxides was designed and optimized. For oxide materials, Pulsed Laser Deposition (PLD) was implemented. Epitaxial thin film growth can be analyzed during the PLD process by high-pressure RHEED (Reflection High-Energy Electron Diffraction). Furthermore layer-by-layer growth can be triggered by Pulsed Laser Intervall Deposition (PLiD). Heteroepitaxial multilayers can be fabricated automatically. Metal thin films can be grown by planar magnetron sputtering and by electron beam evaporation. Furthermore the system contains an rf-plasma source for surface cleaning and Ion Beam Etching (IBE). The three different deposition techniques are located in separate vacuum chambers which are connected by a central handling chamber allowing to combine all these processes in-situ. Furthermore superconducting quantum interference devices (SQUIDs) were fabricated out of epitaxially grown high-temperature superconducting YBa 2 Cu 3 O 7 -films on bicrystals. The SQUIDs were structured using a combined process of ion milling and chemical wet etching. By this combined etching process, edge signals that appear during imaging of flux quanta by low temperature scanning microscopy can be avoided. The transport- and noise properties of the SQUIDs were investigated. (orig.)

  12. Air transport pilots' information priorities for surface moving maps

    Science.gov (United States)

    2003-10-13

    The use of a surface map display for operations on or near the airport surface (taxi out, takeoff, final approach and landing, taxi in) is expected to enhance safety. There is a lack of research, however, detailing how the airport surface should be d...

  13. Low-frequency Electronic Transport Noise in La2-xBaxCuO4 Nanowires

    Science.gov (United States)

    Weis, Adam; Xin, Yizhou; van Harlingen, Dale

    2013-03-01

    In the pseudogap regime, high temperature superconductors often exhibit electronic structure, such as charge stripes. Charge stripes pinned to disorder have been predicted to contribute to low-frequency resistance fluctuations when sample dimensions are comparable to the size of stripe domains (Carlson, 2006). We are extending our previous studies of resistance fluctuations in YBa2Cu3O7-δ (Bonetti, 2004; Caplan, 2010) to thin films of La-based cuprates expected to have a more stable stripe phase, particularly in the regime near 1/8-filling. We present measurements of the low-frequency electronic transport in La2-xBaxCuO4 nanowires fabricated by pulsed laser deposition and lithographic techniques. We discuss temperature dependence of the power spectral density and its relevance to correlated electron phases above Tc. This research was supported by the DOE-DMS under grant DE-FG02-07ER46453, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

  14. Transport properties of high-temperature superconductors: Surface vs bulk effect

    International Nuclear Information System (INIS)

    Burlachkov, L.; Koshelev, A.E.; Vinokur, V.M.

    1996-01-01

    We investigate surface-related transport properties of high-temperature superconductors. We find the mean vortex velocity under applied transport current determined by the activation energies for vortex penetration and exit through the Bean-Livingston barrier. We determine the current distribution between the surfaces of superconductor and the field and current dependencies of the transport activation energies. For a three-dimensional superconductor the transport activation energy, U s 3D , is found to decrease with the external field, H, and transport current, J, as U s 3D ∝H -1/2 and U s 3D ∝J -1/2 , respectively. In the quasi-two-dimensional compounds, U s 2D decays logarithmically with field and current. The interplay between the surface and the bulk contributions to the transport properties, such as current-voltage characteristics, is discussed. copyright 1996 The American Physical Society

  15. Surface electronic transport measurements: A micro multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas

    2014-01-01

    This work is mostly focused on the study of electronic transport properties of two-dimensional materials, in particular graphene and topological insulators. To study these, we have improved a unique micro multi-point probe instrument used to perform transport measurements. Not only the experimental...... quantities are extracted, such as conductivity, carrier density and carrier mobility. • A method to insulate electrically epitaxial graphene grown on metals, based on a stepwise intercalation methodology, is developed and transport measurements are performed in order to test the insulation. • We show...... a direct measurement of the surface electronic transport on a bulk topological insulator. The surface state conductivity and mobility are obtained. Apart from transport properties, we also investigate the atomic structure of the Bi2Se3(111) surface via surface x-ray diraction and low-energy electron...

  16. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  17. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  18. Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films

    International Nuclear Information System (INIS)

    Li Long-Long; Xu Wen

    2015-01-01

    We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi 2 Se 3 at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi 2 Se 3 -based TITFs as high-performance TE materials and devices. (paper)

  19. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  20. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    Science.gov (United States)

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  1. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton; Dimitrakopoulos, Georgios; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions

  2. Serotonin-induced down-regulation of cell surface serotonin transporter

    DEFF Research Database (Denmark)

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    The serotonin transporter (SERT) terminates serotonergic signaling and enables refilling of synaptic vesicles by mediating reuptake of serotonin (5-HT) released into the synaptic cleft. The molecular and cellular mechanisms controlling SERT activity and surface expression are not fully understood...

  3. High-speed surface transportation corridor : a conceptual framework, final report.

    Science.gov (United States)

    2009-10-08

    Efficient transportation is indispensable for economic growth and prosperity. In this study we propose the development of a high-speed surface corridor and compatible vehicles. We present a conceptual framework for this corridor and vehicle. This pro...

  4. Rail environmental impact: energy consumption and noise pollution assessment of different transport modes connecting Big Ben (London, UK and Eiffel Tower (Paris, FR

    Directory of Open Access Journals (Sweden)

    Roberto PALACIN

    2014-10-01

    Full Text Available This paper is set within the framework of the RailNewcastle Summer School program 2014 run by Newcastle University. It attempts to explore the sustainability credentials of railways when compared with other transport modes connecting central London with central Paris, two of Europe’s largest metropolis. Specifically, the study compares the energy consumption and noise pollution of a rail-only travel option with two other alternatives using a combination of public transport modes. The analysis includes defining the regulatory framework, sourcing and aggregating energy consumption from a number of references as well as creating noise maps for key nodes using validated tools available. The results suggest that the rail-only option has the best performance of the three options in terms of energy consumption while a bus-coach-metro combination seems to have lower noise levels than the rest. Assumptions due to lack of meaningful data made in the calculation of underground rail services are thought to have influence on the lower than expected performance of rails systems in terms of noise. The authors conclude that considering the combined outcomes of both assessments, the rail-only option is the preferred choice from a sustainability credentials perspective.

  5. Hydrological model for the transport of radioisotope in surface water

    International Nuclear Information System (INIS)

    Adoboah, E.K.

    2011-01-01

    The use of radioisotopes has gained grounds in Ghana as a result of the numerous benefits that could be derived from it. In Ghana, radioisotope materials are used for various purposes in a number of institutions. However, improper disposal of the waste poses threat to the environment. To evaluate the environmental impact of radioisotope pollution, mathematical models play a major role in predicting the pollution level in any medium. This study is concerned with the hydrological model for the transport of radioactive material in the river. The model was composed by employing partial differential equations, describing relevant physical processes evolution (water level, velocities and dissolved substances concentrations) that occurs in water bodies. The mass conservation and momentum laws, state equation and state transport equations are equation system basis. The explicit central difference scheme in space and a forward difference method in time were used for the evaluation of the generalized transport equation, the Advection-Dispersion Equation. A Matlab code was developed to predict the concentration of the radioactive contaminant at any particular time along the river and in a reservoir. The model was able to simulate accurately the various levels of radionuclide concentration changes in the flowing rivers as the flows are augmented by tributary inflows. (au)

  6. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... transport through surface states, which is not observed on the macroscopic scale, presumably due to scattering at atomic steps. (C) 2000 American Institute of Physics....

  7. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer

    Directory of Open Access Journals (Sweden)

    C. Wegner

    2013-02-01

    Full Text Available Sediment transport dynamics were studied during ice-free conditions under different atmospheric circulation regimes on the Laptev Sea shelf (Siberian Arctic. To study the interannual variability of suspended particulate matter (SPM dynamics and their coupling with the variability in surface river water distribution on the Laptev Sea shelf, detailed oceanographic, optical (turbidity and Ocean Color satellite data, and hydrochemical (nutrients, SPM, stable oxygen isotopes process studies were carried out continuously during the summers of 2007 and 2008. Thus, for the first time SPM and nutrient variations on the Laptev Sea shelf under different atmospheric forcing and the implications for the turbidity and transparency of the water column can be presented.

    The data indicate a clear link between different surface distributions of riverine waters and the SPM transport dynamics within the entire water column. The summer of 2007 was dominated by shoreward winds and an eastward transport of riverine surface waters. The surface SPM concentration on the southeastern inner shelf was elevated, which led to decreased transmissivity and increased light absorption. Surface SPM concentrations in the central and northern Laptev Sea were comparatively low. However, the SPM transport and concentration within the bottom nepheloid layer increased considerably on the entire eastern shelf. The summer of 2008 was dominated by offshore winds and northward transport of the river plume. The surface SPM transport was enhanced and extended onto the mid-shelf, whereas the bottom SPM transport and concentration was diminished. This study suggests that the SPM concentration and transport, in both the surface and bottom nepheloid layers, are associated with the distribution of riverine surface waters which are linked to the atmospheric circulation patterns over the Laptev Sea and the adjacent Arctic Ocean during the open water season. A continuing trend toward

  8. 36 CFR 13.460 - Use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

    Science.gov (United States)

    2010-07-01

    ..., motorboats, dog teams, and other means of surface transportation traditionally employed by local rural... of snowmobiles, motorboats, dog teams, and other means of surface transportation traditionally... this chapter, the use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

  9. Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations

    NARCIS (Netherlands)

    Schrama, E.J.O.; Wouters, B.; Lavallée, D.A.

    2007-01-01

    The Gravity Recovery and Climate Experiment (GRACE) product used for this study consists of 43 monthly potential coefficient sets released by the GRACE science team which are used to generate surface mass thickness grids expressed as equivalent water heights (EQWHs). We optimized both the smoothing

  10. Noise-Robust Monitoring of Lombard Speech Using a Wireless Neck-surface Accelerometer and Microphone

    Science.gov (United States)

    2017-08-20

    simultaneously powered via USB and battery. The system contains a small receiver that is equipped with the same Bluetooth module as the transmitter (BC127...G. R., “Subglottal impedance-based inverse filtering of voiced sounds using neck surface acceleration,” IEEE Trans. Audio Speech Lang. Processing

  11. How wear affects road surface texture and its impact on tire/road noise

    OpenAIRE

    Siebert, Doreen

    2017-01-01

    Mechanical pavement wear in the Nordic countries is essentially influenced by the use of studded tires during long winter seasons. The abrasive effect of the studded tires is the cause of significant damage on the pavement and a contributor to rutting. In addition, the mechanical aggregate removal due to the studded tires is the reason for significant changes in the road surface texture. At traditional dense asphalt pavements, the mechanical wear is initiated by the abrasion of the mortar, wh...

  12. Transport mechanism of an initially spherical droplet on a combined hydrophilic/hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kwon, Young Hoo [Dept. of Mechanical Engineering, Kookmin University, Seoul (Korea, Republic of)

    2015-11-15

    Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

  13. Transport and diffusion on crystalline surfaces under external forces

    International Nuclear Information System (INIS)

    Lindenberg, Katja; Lacasta, A M; Sancho, J M; Romero, A H

    2005-01-01

    We present a numerical study of classical particles obeying a Langevin equation and moving on a solid crystalline surface under an external force that may either be constant or modulated by periodic oscillations. We focus on the particle drift velocity and diffusion. The roles of friction and equilibrium thermal fluctuations are studied for two nonlinear dynamical regimes corresponding to low and to high but finite friction. We identify a number of resonances and antiresonances, and provide phenomenological interpretations of the observed behaviour

  14. Transport of oxytetracycline, chlortetracycline, and ivermectin in surface runoff from irrigated pasture.

    Science.gov (United States)

    Bair, Daniel A; Popova, Ina E; Tate, Kenneth W; Parikh, Sanjai J

    2017-09-02

    The transport of oxytetracycline, chlortetracycline, and ivermectin from manure was assessed via surface runoff on irrigated pasture. Surface runoff plots in the Sierra Foothills of Northern California were used to evaluate the effects of irrigation water application rates, pharmaceutical application conditions, vegetative cover, and vegetative filter strip length on the pharmaceutical discharge in surface runoff. Experiments were designed to permit the maximum potential transport of pharmaceuticals to surface runoff water, which included pre-irrigation to saturate soil, trimming grass where manure was applied, and laying a continuous manure strip perpendicular to the flow of water. However, due to high sorption of the pharmaceuticals to manure and soil, less than 0.1% of applied pharmaceuticals were detected in runoff water. Results demonstrated an increase of pharmaceutical transport in surface runoff with increased pharmaceutical concentration in manure, the concentration of pharmaceuticals in runoff water remained constant with increased irrigation flow rate, and no appreciable decrease in pharmaceutical runoff was produced with the vegetative filter strip length increased from 30.5 to 91.5 cm. Most of the applied pharmaceuticals were retained in the manure or within the upper 5 cm of soil directly beneath the manure application sites. As this study evaluated conditions for high transport potential, the data suggest that the risk for significant chlortetracycline, oxytetracycline, and ivermectin transport to surface water from cattle manure on irrigated pasture is low.

  15. The transport characteristics of passing fast ions produced by nonlocal overlapping of drift island surfaces and magnetic island surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jinjia; Gong, Xueyu, E-mail: gongxueyu-usc@163.com; Xiang, Dong; Huang, Qianhong [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Yu, Jun [School of Mathematics and Physics, University of South China, Hengyang 421001 (China)

    2016-08-15

    The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word “nonlocal” denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the “local” represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses. There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al., Nucl. Fusion 47, L10 (2007)].

  16. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  17. Surface wave tomography across the Sorgenfrei-Tornquist Zone, SW Scandinavia, using ambient noise and earthquake data

    Science.gov (United States)

    Köhler, Andreas; Maupin, Valérie; Balling, Niels

    2015-10-01

    We produce a S-wave velocity model of the crust and upper mantle around the Sorgenfrei-Tornquist Zone, southern Scandinavia, by analysing ambient seismic noise and earthquake recordings on temporary and permanent regional network stations. In a first step, we perform tomographical inversion of surface wave dispersion data from seismic noise to obtain Rayleigh and Love wave phase-velocity maps from 3 to about 30 s period. Local dispersion curves are then combined with regionally averaged surface wave velocities from earthquake data measured between 15 and about 100 s period. Dispersion curves are jointly inverted for a 3-D model of the S-wave velocity and radial velocity anisotropy by using a combined Monte Carlo and linearized inversion approach. Results reveal significant crustal as well as uppermost mantle velocity variations at all depth levels. Upper crustal structural variations are mainly controlled by the thick sedimentary Danish Basin with both low S-wave velocities and high anisotropy. Despite of the known limited capability of surface wave inversion to constrain interface depths and model parameter trade-offs, obtained Moho depths are in good agreement with previous studies in the region. Marked crustal thinning is clearly revealed beneath the Danish Basin with a narrow transition to the thicker crust in Swedish shield areas. Despite very different crustal and morphological structures, Denmark and southern Norway both have similar well-defined upper-mantle low-velocity zones, interpreted as asthenosphere, starting a depth of about 100 km. Compared with southern Sweden, showing high upper-mantle velocities, characteristic for shields, velocities are reduced by 0.30-0.40 km s-1 (6-8 per cent) at the depth levels of 140-200 km and radial anisotropy of 2-4 per cent is observed. Our study confirms the importance of the Sorgenfrei-Tornquist Zone, as a very deep structural boundary, separating old, thick, cratonic Baltica lithosphere in southern Sweden from

  18. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Science.gov (United States)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST

  19. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Directory of Open Access Journals (Sweden)

    K. Yi

    2017-07-01

    Full Text Available The response of surface ozone (O3 concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM. Idealized, spatially uniform sea surface temperature (SST anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage

  20. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings

    Science.gov (United States)

    Sippl, C.; Kennett, B. L. N.; Tkalčić, H.; Gessner, K.; Spaggiari, C. V.

    2017-09-01

    Group and phase velocity maps in the period range 2-20 s for the Proterozoic east Albany-Fraser Orogen, Western Australia, are extracted from ambient seismic noise recorded with the 70-station ALFREX array. This 2 yr temporary installation provided detailed coverage across the orogen and the edge of the Neoarchean Yilgarn Craton, a region where no passive seismic studies of this scale have occurred to date. The surface wave velocities are rather high overall (>3 km s-1 nearly everywhere), as expected for exposed Proterozoic basement rocks. No clear signature of the transition between Yilgarn Craton and Albany-Fraser Orogen is observed, but several strong anomalies corresponding to more local geological features were obtained. A prominent, NE-elongated high-velocity anomaly in the northern part of the array is coincident with a Bouguer gravity high caused by the upper crustal metamorphic rocks of the Fraser Zone. This feature disappears towards longer periods, which hints at an exclusively upper crustal origin for this anomaly. Further east, the limestones of the Cenozoic Eucla Basin are clearly imaged as a pronounced low-velocity zone at short periods, but the prevalence of low velocities to periods of ≥5 s implies that the uppermost basement in this area is likewise slow. At longer periods, slightly above-average surface wave velocities are imaged below the Eucla Basin.

  1. Cellular automaton model for hydrogen transport dynamics through metallic surface

    International Nuclear Information System (INIS)

    Shimura, K.; Yamaguchi, K.; Terai, T.; Yamawaki, M.

    2002-01-01

    Hydrogen re-emission and re-combination at the surface of first wall materials are a crucial issue for the understanding of the fuel recycling and for the tritium inventory in plasma facing materials. It is know to be difficult to model the transient behaviour of those processes due to their complex time-transient nature. However, cellular automata (CA) are powerful tools to model such complex systems because of their nature of discreteness in both dependent and independent variables. Then the system can be represented by the fully local interactions between cells. For that reason, complex physical and chemical systems can be described by fairly simple manner. In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in CA. Thermal desorption is simulated with this model and the comparison with the theory of rate processes is performed to identify the validity of this model. The overall results show that this model is reasonable to express the desorption kinetics

  2. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  3. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Science.gov (United States)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  4. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    International Nuclear Information System (INIS)

    Bhattacharjee, Sourav; Opstal, Edward J. van; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size ∼45 nm) and polystyrene nanoparticles (PSNPs/size ∼50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  5. Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators

    Science.gov (United States)

    Peng, Xingyue

    As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.

  6. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  7. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  8. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    International Nuclear Information System (INIS)

    Nagao, Yuki; Kubo, Takahiro

    2014-01-01

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system

  9. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  10. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    Science.gov (United States)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  11. Modeling and analysis of surface roughness effects on sputtering, reflection, and sputtered particle transport

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ruzic, D.N.

    1990-01-01

    The microstructure of the redeposited surface in tokamaks may affect sputtering and reflection properties and subsequent particle transport. This subject has been studied numerically using coupled models/codes for near-surface plasma particle kinetic transport (WBC code) and rough surface sputtering (fractal-TRIM). The coupled codes provide an overall Monte Carlo calculation of the sputtering cascade resulting from an initial flux of hydrogen ions. Beryllium, carbon, and tungsten surfaces are analyzed for typical high recycling, oblique magnetic field, divertor conditions. Significant variations in computed sputtering rates are found with surface roughness. Beryllium exhibits high D-T and self-sputtering coefficients for the plasma regime studied (T e = 30-75 eV). Carbon and tungsten sputtering is significantly lower. 9 refs., 6 figs., 1 tab

  12. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  13. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces

    International Nuclear Information System (INIS)

    Myong, Hyon Kook

    2014-01-01

    A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems

  14. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  15. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  16. Task-specific noise exposure during manual concrete surface grinding in enclosed areas-influence of operation variables and dust control methods.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Ames, April L; Milz, Sheryl A; Akbar-Khanzadeh, Mahboubeh

    2013-01-01

    Noise exposure is a distinct hazard during hand-held concrete grinding activities, and its assessment is challenging because of the many variables involved. Noise dosimeters were used to examine the extent of personal noise exposure while concrete grinding was performed with a variety of grinder sizes, types, accessories, and available dust control methods. Noise monitoring was conducted in an enclosed area covering 52 task-specific grinding sessions lasting from 6 to 72 minutes. Noise levels, either in minute average noise level (Lavg, dBA) or in minute peak (dBC), during concrete grinding were significantly (P grinding cup wheel (blade) sizes of 4-inch (100 mm), 5-inch (125 mm) and 6-inch (150 mm), and surface orientation (horizontal, inclined). Overall, minute Lavg during grinding was 97.0 ± 3.3 (mean ± SD), ranging from 87.9 to 113. The levels of minute Lavg during uncontrolled grinding (98.9 ± 5.2) or wet-grinding (98.5 ± 2.7) were significantly higher than those during local exhaust ventilation (LEV) grinding (96.2 ± 2.8). A 6-inch grinding cup wheel generated significantly higher noise levels (98.7 ± 2.8) than 5-inch (96.3 ± 3.2) or 4-inch (95.3 ± 3.5) cup wheels. The minute peak noise levels (dBC) during grinding was 113 ± 5.2 ranging from 104 to 153. The minute peak noise levels during uncontrolled grinding (119 ± 10.2) were significantly higher than those during wet-grinding (115 ± 4.5) and LEV-grinding (112 ± 3.4). A 6-inch grinding cup wheel generated significantly higher minute peak noise levels (115 ± 5.3) than 5-inch (112 ± 4.5) or 4-inch (111 ± 5.4) cup wheels. Assuming an 8-hour work shift, the results indicated that noise exposure levels during concrete grinding in enclosed areas exceeded the recommended permissible exposure limits and workers should be protected by engineering control methods, safe work practices, and/or personal protective devices.

  17. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    Science.gov (United States)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  18. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    Science.gov (United States)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  19. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes – A flume experiment

    NARCIS (Netherlands)

    Bento, Célia P.M.; Commelin, Meindert C.; Baartman, Jantiene E.M.; Yang, Xiaomei; Peters, Piet; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2018-01-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with “seeding lines on the contour” (T2) were tested in a rainfall

  20. Effect of surface roughness scattering on the transport properties of a 2DEG

    International Nuclear Information System (INIS)

    Yarar, Z.

    2004-01-01

    In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for various auto-correlation functions. Gaussian, exponential and Lorentzian auto-correlation functions are used to represent surface roughness. Poisson and Schrodinger equations are solved self consistently at the hetero interface to find the energy levels, the wave functions corresponding to each level and electron concentrations at each level. Using these wave functions and the auto-correlation functions mentioned above, the scattering rates due to surface roughness are calculated. Scattering rates resulting from acoustic and optical phonons are also calculated. These rates are used to study the transport properties of the two dimensional electrons using ensemble Monte Carlo method at various temperatures. Emphasis is given to the effect of surface roughness scattering on the transport properties of the electrons

  1. An Eulerian two-phase flow model for sediment transport under realistic surface waves

    Science.gov (United States)

    Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.

    2017-12-01

    Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.

  2. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    International Nuclear Information System (INIS)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-01-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning. (paper)

  3. The influence of surface roughness on volatile transport on the Moon

    Science.gov (United States)

    Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2018-01-01

    The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.

  4. Hydrogen isotope transport across tungsten surfaces exposed to a fusion relevant He ion fluence

    Science.gov (United States)

    Baldwin, M. J.; Doerner, R. P.

    2017-07-01

    Tungsten targets are exposed to controlled sequences of D2 and He, and He and D2 plasma in the Pisces-A linear plasma device, with a view to studying the outward and inward transport of D across a He implanted surface, using thermal desorption mass spectrometry. Differences in transport are interpreted from changes in peak desorption temperature and amplitude for D2 release, compared against that of control targets exposed to just D2 plasma. Desorption data are modeled with Tmap-7 to infer the nature by which He leads to the ‘reduced inventory’ effect for H isotope uptake. A dual segment (surface-30 nm, bulk) W Tmap-7 model is developed, that simulates both plasma exposure and thermal desorption. Good agreement between desorption data and model is found for D2 release from control targets provided that the implanted flux is reduced, similar to that reported by others. For He affected release, the H isotope transport properties of the surface segment are adjusted away from control target bulk values during the computation. Modeling that examines outward D transport through the He implanted layer suggests that a permeation barrier is active, but bubble induced porosity is insufficient to fully explain the barrier strength. Moderately increased diffusional migration energy in the model over the He affected region, however, gives a barrier strength consistent with experiment. The same model, applied to inward transport, predicts the reduced inventory effect, but a further reduction in the implanted D flux is necessary for precise agreement.

  5. Shear flow generation and transport barrier formation on rational surface current sheets in tokamaks

    International Nuclear Information System (INIS)

    Wang Xiaogang; Xiao Chijie; Wang Jiaqi

    2009-01-01

    Full text: A thin current sheet with a magnetic field component in the same direction can form the electrical field perpendicularly pointing to the sheet, therefore an ExB flow with a strong shear across the current sheet. An electrical potential well is also found on the rational surface of RFP as well as the neutral sheet of the magnetotail with the E-field pointing to the rational (neutral) surface. Theoretically, a current singularity is found to be formed on the rational surface in ideal MHD. It is then very likely that the sheet current on the rational surfaces will generate the electrical potential well in its vicinity so the electrical field pointing to the sheet. It results in an ExB flow with a strong shear in the immediate neighborhood of the rational surface. It may be the cause of the transport barrier often seen near the low (m, n) rational surfaces with MHD signals. (author)

  6. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered...

  7. Experimental research on free-surface vortices as transport mechanism in wastewater sumps

    NARCIS (Netherlands)

    Clemens, F.H.L.R.; Duinmeijer, S.P.A.

    2016-01-01

    Sumps of wastewater pumping station can experience problems due the formation of (solid) floating layers of fat and scum as a result of insufficient current guidelines for sump design with respect to transport of floating debris. To complimentary the guidelines, the use of free-surface vortices is

  8. Design data sheets Near-Surface Test Facility Bottom Loading Transporter (BLT): Title 1

    International Nuclear Information System (INIS)

    Young, G.M.

    1979-01-01

    This document is an accumulation of all the Design Data Sheets relative to the handling equipment in the transporter for the Near-Surface Test Facility. The Data Sheets are in ascending numerical order. Each Data Sheet, regardless of the number of pages, shall stand by itself within this document

  9. Nonadiabaticity and single-electron transport driven by surface acoustic waves

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Niu, Q.; Pustilnik, M.

    1999-01-01

    Single-electron transport driven by surface acoustic waves (SAW) through a narrow constriction, formed in a two-dimensional electron gas, is studied theoretically. Due to long-range Coulomb interaction, the tunneling coupling between the electron gas and the moving minimum of the SAW...

  10. Effect of nonequipotentiality of magnetic surfaces on the transport processes in a tokamak

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.; Shasharina, S.G.

    1987-01-01

    The effect of deflection of equipotential from the magnetic surfaces on the transport processes in a tokamak is considered. The values of radial and poloidal electric fields are determined self-consistently, particle and heat fluxes are calculated with regard to these fields. It is shown that in some cases the effect of the poloidal electric field on the current values is very substantial

  11. 75 FR 75532 - Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report

    Science.gov (United States)

    2010-12-03

    ...] Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report AGENCY: Federal Highway... participating in the Pilot Program, 23 U.S.C. 327(g) mandates semiannual audits during each of the first 2 years of State participation. This notice announces and solicits comments on the fifth audit report for the...

  12. 76 FR 5237 - Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report

    Science.gov (United States)

    2011-01-28

    ...] Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report AGENCY: Federal Highway... participating in the Pilot Program, 23 U.S.C. 327(g) mandates semiannual audits during each of the first 2 years of State participation. This final report presents the findings from the fifth FHWA audit of the...

  13. 77 FR 26355 - Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report

    Science.gov (United States)

    2012-05-03

    ...] Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report AGENCY: Federal Highway... participating in the Pilot Program, 23 U.S.C. 327(g) mandates semiannual audits during each of the first 2 years of State participation. This final report presents the findings from the sixth FHWA audit of the...

  14. Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air

    Science.gov (United States)

    Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos

    2013-01-01

    The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104

  15. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  16. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    Science.gov (United States)

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  17. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    Science.gov (United States)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  18. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  19. Transport of particles by surface waves: a modification of the classical bouncer model

    International Nuclear Information System (INIS)

    Ragulskis, M; Sanjuan, M A F

    2008-01-01

    We consider a ball under the influence of gravity on a platform. A propagating surface wave travels on the surface of the platform, while the platform remains motionless. This is a modification of the classical bouncing ball problem and describes the transport of particles by surface waves. Phase and velocity maps cannot be expressed in an explicit form owing to implicit formulations, and no formal analytical analysis is possible. Numerical analysis shows that the transition to chaos is produced via a period doubling route, which is a common property for classical bouncers. The bouncing process can be sensitive to the initial conditions, which can build the ground for control techniques that can dramatically increase the effectiveness of particle transport in practical applications

  20. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1988-09-01

    The concept of a geological barrier to radionuclide migration from theoretical radioactive waste repositories has drawn attention to the physico-chemical properties of clays, which are traditionally regarded as retarding media. This report addresses the different mechanisms of transport of radionuclides through clay and in particular focuses on the surface diffusion movement of sorbed cations. The relative contributory importance of the different transport mechanisms is governed by the pore size distributions and interconnections within the clay fabric. Surface diffusion data in the literature have been from experiments using compacted montmorillonite and biotite gneiss. A possible programme of laboratory work is outlined, based on diffusion experiments, which describes the way of measuring the effect of surface diffusion more accurately in clays, mudstones and shales. (author)

  1. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    Science.gov (United States)

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Surface Effect on Oil Transportation in Nanochannel: a Molecular Dynamics Study.

    Science.gov (United States)

    Zheng, Haixia; Du, Yonggang; Xue, Qingzhong; Zhu, Lei; Li, Xiaofang; Lu, Shuangfang; Jin, Yakang

    2017-12-01

    In this work, we investigate the dynamics mechanism of oil transportation in nanochannel using molecular dynamics simulations. It is demonstrated that the interaction between oil molecules and nanochannel has a great effect on the transportation properties of oil in nanochannel. Because of different interactions between oil molecules and channel, the center of mass (COM) displacement of oil in a 6-nm channel is over 30 times larger than that in a 2-nm channel, and the diffusion coefficient of oil molecules at the center of a 6-nm channel is almost two times more than that near the channel surface. Besides, it is found that polarity of oil molecules has the effect on impeding oil transportation, because the electrostatic interaction between polar oil molecules and channel is far larger than that between nonpolar oil molecules and channel. In addition, channel component is found to play an important role in oil transportation in nanochannel, for example, the COM displacement of oil in gold channel is very few due to great interaction between oil and gold substrate. It is also found that nano-sized roughness of channel surface greatly influences the speed and flow pattern of oil. Our findings would contribute to revealing the mechanism of oil transportation in nanochannels and therefore are very important for design of oil extraction in nanochannels.

  3. Evaluating noise abatement measures using strategic noise maps

    NARCIS (Netherlands)

    Borst, H.C.; Miedema, H.M.E.; Laan, W.P.N. van der; Lohman, W.J.A.

    2006-01-01

    Noise annoyance due to transportation is widespread in industrialized countries and in urban areas in the developing countries. The European Noise Directive (END) requires an assessment of the noise situation as well as the formulation of action plans for the reduction of the number of people

  4. 78 FR 19355 - Noise Exposure Map Notice: Receipt of Noise Compatibility Program and Request for Review

    Science.gov (United States)

    2013-03-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Noise Exposure Map Notice: Receipt of Noise Compatibility Program and Request for Review AGENCY: Federal Aviation Administration, DOT. ACTION: Notice. SUMMARY: The Federal Aviation Administration (FAA) announces its determination that the noise...

  5. Technical noise supplement : TeNS : a technical supplement to the Traffic Noise Analysis Protocol.

    Science.gov (United States)

    1998-10-01

    The purpose of this Technical Noise Supplement (TeNS) is to provide technical background : information on transportation-related noise in general and highway traffic noise in : particular. It is designed to elaborate on technical concepts and procedu...

  6. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  7. Technology and human purpose: the problem of solids transport on the Earth's surface

    Science.gov (United States)

    Haff, P. K.

    2012-11-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property

  8. Exploring a potential energy surface by machine learning for characterizing atomic transport

    Science.gov (United States)

    Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro

    2018-03-01

    We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

  9. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1989-01-01

    Research into the properties of clays as barrier materials for nuclear waste disposal has led to the realization that they have important transport properties which are relatively insignificant in most other geological materials. Sorption has always been regarded as a purely retarding mechanism, but laboratory experiments over the past decade have indicated that surface diffusion of sorbed cations is a potentially significant transport mechanism in both compacted montmorillonite, and biotite gneiss. The present desk study about these issues was part of the CEC coordinated project Mirage-Second phase, research area Natural analogues

  10. Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator

    Directory of Open Access Journals (Sweden)

    Christoph Brüne

    2014-12-01

    Full Text Available We report magnetotransport studies on a gated strained HgTe device. This material is a three-dimensional topological insulator and exclusively shows surface-state transport. Remarkably, the Landau-level dispersion and the accuracy of the Hall quantization remain unchanged over a wide density range (3×10^{11}  cm^{−2}transport is surface-state dominated, where bulk transport would have been expected to coexist already. Moreover, the density dependence of the Dirac-type quantum Hall effect allows us to identify the contributions from the individual surfaces. A k·p model can describe the experiments but only when assuming a steep band bending across the regions where the topological surface states are contained. This steep potential originates from the specific screening properties of Dirac systems and causes the gate voltage to influence the position of the Dirac points rather than that of the Fermi level.

  11. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Matsuoka, Seikichi; Satake, Shinsuke; Kanno, Ryutaro; Sugama, Hideo

    2015-01-01

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E r . The peaked behavior of the neoclassical radial fluxes around E r  =   0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account

  12. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp [Research Organization for Information Science and Technology, 6F Kimec-Center Build., 1-5-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 (Japan); Satake, Shinsuke; Kanno, Ryutaro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sugama, Hideo [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2015-07-15

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub  }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.

  13. Low frequency noise and electrical transport properties of pseudomorphic Si/Si1-xGex heterostructures

    International Nuclear Information System (INIS)

    Prest, Martin James

    2001-01-01

    . Low frequency (1/f) electrical noise measurements were performed in the linear region of operation for the above devices. 1/f noise was found to be about a decade lower in SiGe devices than in a Si control, with the greatest noise reduction for strong inversion. A number fluctuation model with a variation in the oxide trap density provided the best explanation of the observed results. Oxide trap densities determined from noise measurements were found to fall at the band edge towards mid-gap in accordance with the common 'U-shaped' distribution of trap states. Lower noise in SiGe devices was attributed to the valence band offset which caused a displacement of the Fermi level towards mid-gap, where the density of trap states is lower, resulting in lower noise. (author)

  14. Aircraft Noise Reduction Subproject Overview

    Science.gov (United States)

    Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.

    2016-01-01

    The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.

  15. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    International Nuclear Information System (INIS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-01-01

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field

  16. Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors.

    Science.gov (United States)

    Zhou, Shujun; Tang, Qingxin; Tian, Hongkun; Zhao, Xiaoli; Tong, Yanhong; Barlow, Stephen; Marder, Seth R; Liu, Yichun

    2018-05-09

    The understanding of the characteristics of gate dielectric that leads to optimized carrier transport remains controversial, and the conventional studies applied organic semiconductor thin films, which introduces the effect of dielectric on the growth of the deposited semiconductor thin films and hence only can explore the indirect effects. Here, we introduce pregrown organic single crystals to eliminate the indirect effect (semiconductor growth) in the conventional studies and to undertake an investigation of the direct effect of dielectric on carrier transport. It is shown that the matching of the polar and dispersive components of surface energy between semiconductor and dielectric is favorable for higher mobility. This new empirical finding may show the direct relationship between dielectric and carrier transport for the optimized mobility of organic field-effect transistors and hence show a promising potential for the development of next-generation high-performance organic electronic devices.

  17. U. K. surface passenger transport sector. Energy consumption and policy options for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Maltby, D; Monteath, I G; Lawler, K A

    1978-12-01

    Forecasts of U.K. energy consumption in this sector for four future scenarios based on different economic growth rates, energy prices, and energy conservation policies, show that by the year 2000, private transport will probably account for 76-94% of total energy consumption in surface passenger transport. A 33% increase in the average miles-per-gallon fuel consumption through technological improvements in private vehicles, conversion of private vehicles to diesel oil, additional fuel taxation equivalent to 25 or 50% fuel price increase, a 10% reduction in average car engine size (encouraged by taxation), and changes in public transport technology offer energy savings of about 20, 5-10, 6.3 or 12.5, 2-4, and 2%, respectively. There is considerable uncertainty about the outcome of these options.

  18. Internal transport barrier triggering by rational magnetic flux surfaces in tokamaks

    International Nuclear Information System (INIS)

    Joffrin, E.; Challis, C.D.; Conway, G.D.

    2003-01-01

    The formation of Internal Transport Barriers (ITBs) has been experimentally associated with the presence of rational q-surfaces in both JET and ASDEX Upgrade. The triggering mechanisms are related to the occurrence of magneto-hydrodynamic (MHD) instabilities such as mode coupling or fishbone activity. These events could locally modify the poloidal velocity and increase transiently the shearing rate to values comparable to the linear growth rate of ITG modes. For JET reversed magnetic shear scenarios, ITB emergence occurs preferentially when the minimum q reaches an integer value. In this case, transport effects localised in the vicinity of zero magnetic shear and close to rational q values may also contribute to the formation of ITBs.The role of rational q surfaces on ITB triggering stresses the importance of q profile control for advanced tokamak scenario and could contribute to lower substantially the access power to these scenarios in next step facilities. (author)

  19. Internal transport barrier triggering by rational magnetic flux surfaces in tokamaks

    International Nuclear Information System (INIS)

    Joffrin, E.; Challis, C.D.; Conway, G.D.

    2003-01-01

    The formation of internal transport barriers (ITBs) has been experimentally associated with the presence of rational q surfaces in both JET and ASDEX Upgrade. The triggering mechanisms are related to the occurrence of magneto-hydrodynamic (MHD) instabilities such as mode coupling and fishbone activity. These events could locally modify the poloidal velocity and increase transiently the shearing rate to values comparable with the linear growth rate of ion temperature gradient modes. For JET reversed magnetic shear scenarios, ITB emergence occurs preferentially when the minimum q reaches an integral value. In this case, transport effects localized in the vicinity of zero magnetic shear and close to rational q values may be at the origin of ITB formation. The role of rational q surfaces in ITB triggering stresses the importance of q profile control for an advanced tokamak scenario and could assist in substantially lowering the access power to these scenarios in next step facilities. (author)

  20. Internal Transport Barrier triggering by rational magnetic flux surfaces in tokamaks

    International Nuclear Information System (INIS)

    Joffrin, E.H.

    2002-01-01

    The formation of Internal Transport Barriers (ITBs) has been experimentally associated with the presence of rational q-surfaces in both JET and ASDEX Upgrade. The triggering mechanisms are related to the occurrence of magneto-hydrodynamic (MHD) instabilities such as mode coupling or fishbone activity. These events could locally modify the poloidal velocity and increase transiently the shearing rate to values comparable to the linear growth rate of ITG modes. For reversed magnetic shear scenario, ITB emergence occurs preferentially when the minimum q reaches an integer value. In this case, transport effects localised in the vicinity of zero magnetic shear and close to rational q values may also contribute to the formation of ITBs. The role of rational q surfaces on ITB triggering stresses the importance of q profile control for advanced tokamak scenario and could contribute to lower substantially the access power to these scenarios in next step facilities. (author)

  1. Taking advantage of reduced droplet-surface interaction to optimize transport of bioanalytes in digital microfluidics.

    Science.gov (United States)

    Freire, Sergio L S; Thorne, Nathaniel; Wutkowski, Michael; Dao, Selina

    2014-11-10

    Digital microfluidics (DMF), a technique for manipulation of droplets, is a promising alternative for the development of "lab-on-a-chip" platforms. Often, droplet motion relies on the wetting of a surface, directly associated with the application of an electric field; surface interactions, however, make motion dependent on droplet contents, limiting the breadth of applications of the technique. Some alternatives have been presented to minimize this dependence. However, they rely on the addition of extra chemical species to the droplet or its surroundings, which could potentially interact with droplet moieties. Addressing this challenge, our group recently developed Field-DW devices to allow the transport of cells and proteins in DMF, without extra additives. Here, the protocol for device fabrication and operation is provided, including the electronic interface for motion control. We also continue the studies with the devices, showing that multicellular, relatively large, model organisms can also be transported, arguably unaffected by the electric fields required for device operation.

  2. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  3. Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign

    Science.gov (United States)

    Toups, Larry; Brown, Kendall; Hoffman, Stephen J.

    2015-01-01

    This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.

  4. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model

    Science.gov (United States)

    Fraser, Annemarie; Chan Miller, Christopher; Palmer, Paul I.; Deutscher, Nicholas M.; Jones, Nicholas B.; Griffith, David W. T.

    2011-10-01

    We investigate the Australian methane budget from 2005-2008 using the GEOS-Chem 3D chemistry transport model, focusing on the relative contribution of emissions from different sectors and the influence of long-range transport. To evaluate the model, we use in situ surface measurements of methane, methane dry air column average (XCH4) from ground-based Fourier transform spectrometers (FTSs), and train-borne surface concentration measurements from an in situ FTS along the north-south continental transect. We use gravity anomaly data from Gravity Recovery and Climate Experiment to describe the spatial and temporal distribution of wetland emissions and scale it to a prior emission estimate, which better describes observed atmospheric methane variability at tropical latitudes. The clean air sites of Cape Ferguson and Cape Grim are the least affected by local emissions, while Wollongong, located in the populated southeast with regional coal mining, samples the most locally polluted air masses (2.5% of the total air mass versus Asia, accounting for ˜25% of the change in surface concentration above background. At Cape Ferguson and Cape Grim, emissions from ruminant animals are the largest source of methane above background, at approximately 20% and 30%, respectively, of the surface concentration. At Wollongong, emissions from coal mining are the largest source above background representing 60% of the surface concentration. The train data provide an effective way of observing transitions between urban, desert, and tropical landscapes.

  5. Resolution and robustness to noise of the sensitivity-based method for microwave imaging with data acquired on cylindrical surfaces

    International Nuclear Information System (INIS)

    Zhang, Yifan; Tu, Sheng; Amineh, Reza K; Nikolova, Natalia K

    2012-01-01

    The spatial resolution limit of a Jacobian-based microwave imaging algorithm and its robustness to noise are evaluated. The focus here is on tomographic systems where the wideband data are acquired with a vertically scanned circular sensor array and at each scanning step a 2D image is reconstructed in the plane of the sensor array. The theoretical resolution is obtained as one-half of the maximum-frequency wavelength with far-zone data and about two-thirds of the array radius with near-zone data. Validation examples are given using analytical electromagnetic models. The algorithm is shown to be robust to noise when the response data are corrupted by Gaussian white noise. (paper)

  6. System safety engineering in the development of advanced surface transportation vehicles

    Science.gov (United States)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  7. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO

  8. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.

    2015-08-19

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  9. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.; AlTheyab, Abdullah; Schuster, Gerard T.

    2015-01-01

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  10. Far field effects of complex noise barrier reflections

    NARCIS (Netherlands)

    Lutgendorf, D.; Wessels, P.W.; Eerden, F.J.M. van den; Roo, F. de

    2012-01-01

    Within the EU FP7 QUIESST project, QUIeting the Environment for a Sustainable Surface Transport, a test method is being developed for the reflectivity of noise barriers. The method needs to account for a complex shape of barriers and the use of various types of absorbing materials. The performance

  11. Transport of lincomycin to surface and ground water from manure-amended cropland.

    Science.gov (United States)

    Kuchta, Sandra L; Cessna, Allan J; Elliott, Jane A; Peru, Kerry M; Headley, John V

    2009-01-01

    Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.

  12. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport.

    Science.gov (United States)

    Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan

    2018-02-22

    We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.

  14. Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping

    International Nuclear Information System (INIS)

    Taylor, Christopher D.; Scott Lillard, R.

    2009-01-01

    Density functional theory was applied to the initial steps of uranium hydriding: surface phenomena, absorption, bulk transport and trapping. H adsorbs exothermically to the (0 0 1) surface, yet H absorption into the bulk is endothermic, with off-center octahedral absorption having the lowest absorption energy of 0.39 eV, relative to molecular H 2 . H absorption in interstitial sites causes a local softening of the bulk modulus. Diffusion of H in unstrained α-U has a barrier of 0.6 eV. The energy of H absorption adjacent to the chemical impurities C, S, Si was lowered by an amount proportional to the size of the impurity atom, and the resulting lattice strain Si > S > C. Thus, impurities may promote hydriding by providing surfaces or prestrained zones for H uptake.

  15. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    Science.gov (United States)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  16. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  17. Morphological, Chemical Surface, and Diffusive Transport Characterizations of a Nanoporous Alumina Membrane

    Directory of Open Access Journals (Sweden)

    María I. Vázquez

    2015-12-01

    Full Text Available Synthesis of a nanoporous alumina membrane (NPAM by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM micrographs and X-Ray Photoelectron Spectroscopy (XPS spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length. These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na+ and Cl−, respectively were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

  18. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  19. Transport and dispersion of pollutants in surface impoundments: a finite element model

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied

  20. Transport and dispersion of pollutants in surface impoundments: a finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.

  1. Electronic structure and transport on the surface of topological insulator attached to an electromagnetic superlattice

    International Nuclear Information System (INIS)

    Wang Haiyan; Chen Xiongwen; Zhou Xiaoying; Zhang Lebo; Zhou Guanghui

    2012-01-01

    We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional (3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in antiparallel alignment is larger than that in parallel alignment, which stems to the energy band structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently, there is only small incident angle transport in the higher energy region when the system is modulated mainly by the higher electric barriers. We further find that the spatial distribution of the spin polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed direction in the transmitting region. The results may provide a further understanding of the nature of 3D TI surface states, and may be useful in the design of topological insulator-based electronic devices such as collimating electron beam.

  2. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport

    Science.gov (United States)

    Xiao, Ke; Cui, Can; Wang, Peng; Lin, Ping; Qiang, Yaping; Xu, Lingbo; Xie, Jiangsheng; Yang, Zhengrui; Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2018-02-01

    In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.

  3. The effects of surface aging on nanoparticle fate and transport in natural and engineered porous media

    Science.gov (United States)

    Mittelman, Anjuliee M.

    Nanomaterials will be subjected to various surface transformations in the environment and within water and wastewater treatment systems. A comprehensive understanding of the fate and transport behavior of "aged" nanomaterials in both natural and engineered porous media is required in order to accurately quantify ecological and human health risks. This research sought to (1) evaluate the impact of ultraviolet (UV) light aging on nanoparticle transport in water-saturated porous media; and (2) assess the effects of influent water quality on silver nanoparticle retention and dissolution in ceramic water filters. Additionally, the value of quartz crystal microbalance (QCM-D) data in nanoparticle fate and transport studies was evaluated by comparing deposition behavior in complementary QCM-D and sand columns experiments. Silver (nAg) and iron oxide nanoparticles exposed to UV light were up to 50% more strongly retained in porous media compared with freshly prepared suspensions due to less negative surface charge and larger aggregate sizes. UV-aged nAg were more prone to dissolution in sand columns, resulting in effluent Ag+ concentrations as high as 1.2 mg/L. In ceramic water filters, dissolution and cation exchange processes controlled silver release into treated water. The use of acidic, high salinity, or high hardness water accelerated oxidative dissolution of the silver coating and resulted in effluent silver concentrations 5-10 times above international drinking water guidelines. Results support the recommendation for a regular filter replacement or silver re-application schedule to ensure ongoing efficacy. Taken in concert, these research findings suggest that oxidative aging of nanomaterial surfaces (either through exposure to UV light or aggressive water chemistries) will alter the fate of nanomaterials in the environment and may decrease the effective lifetime of devices which utilize nanotechnology. Corresponding QCM-D and column experiments revealed that

  4. Joint inversion of teleseismic P waveforms and surface-wave group velocities from ambient seismic noise in the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Plomerová, Jaroslava; Babuška, Vladislav

    2012-01-01

    Roč. 56, č. 1 (2012), s. 107-140 ISSN 0039-3169 R&D Projects: GA ČR GA205/07/1088; GA AV ČR IAA300120709; GA MŠk LM2010008 Institutional research plan: CEZ:AV0Z30120515 Keywords : receiver function * seismic noise * joint inversion * Bohemian Massif * velocity structure Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  5. Heat transport and surface heat transfer with helium in rotating channels

    International Nuclear Information System (INIS)

    Schnapper, C.

    1978-06-01

    Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de

  6. Systematic study of transport via surface and bulk states in Bi2Te3 topological insulator

    Science.gov (United States)

    de Castro, S.; Peres, M. L.; Chitta, V. A.; Gratens, X.; Soares, D. A. W.; Fornari, C. I.; Rappl, P. H. O.; Abramof, E.; Oliveira, N. F., Jr.

    2016-07-01

    We performed magnetoresistance measurements on Bi2Te3 thin film in the temperature range of T = 1.2-4.0 K and for magnetic fields up to 2 T. The curves exhibited anomalous behavior for temperatures below 4.0 K. Different temperature intervals revealed electrical transport through different conductive channels with clear signatures of weak antilocalization. The magnetoresistance curves were explained using the Hikami-Larkin-Nagaoka model and the 2D Dirac modified model. The comparison between the parameters obtained from the two models revealed the transport via topological surface states and bulk states. In addition, a superconductive like transition is observed for the lowest temperatures and we suggest that this effect can be originated from the misfit dislocations caused by strain, giving rise to a superconductive channel between the interface of the film and the substrate.

  7. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Science.gov (United States)

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  8. Role of low-order rational surfaces in transport barrier formation on the Large Helical Device

    International Nuclear Information System (INIS)

    Toi, K.; Tanaka, K.; Watanabe, F.

    2010-11-01

    In the Large Helical Device, edge transport barrier (ETB) was formed by H-mode transition near the low-order rational surfaces, that is, at the ι/2π=1 resonant layer (ι/2π: the rotational transform) in outward-shifted plasmas of R ax =3.9m (R ax : the magnetic axis position in the vacuum field), and the ι/2π=2 resonant layer in inward-shifted plasmas of R ax =3.6m. The ι/2π=1 and 2 resonant layers reside in the stochastic field region existing just outside the last closed magnetic surface (LCFS). In the outward-shifted plasmas, H-modes without edge localized modes (ELM-free H-modes) followed by giant ELMs were obtained, while H-modes with high frequency and low amplitude ELMs were obtained in the inward-shifted plasmas. A new type of barrier formation induced by TAE bursts was observed in the plasmas of R ax =3.6m, where the transport barrier is formed near the ι/2π=1 surface locates inside LCFS. (author)

  9. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets

    International Nuclear Information System (INIS)

    Munoz-Garcia, Javier; Cuerno, Rodolfo; Castro, Mario

    2009-01-01

    Continuum models have proved their applicability to describe nanopatterns produced by ion-beam sputtering of amorphous or amorphizable targets at low and medium energies. Here we pursue the recently introduced 'hydrodynamic approach' in the cases of bombardment at normal incidence, or of oblique incidence onto rotating targets, known to lead to self-organized arrangements of nanodots. Our approach stresses the dynamical roles of material (defect) transport at the target surface and of local redeposition. By applying results previously derived for arbitrary angles of incidence, we derive effective evolution equations for these geometries of incidence, which are then numerically studied. Moreover, we show that within our model these equations are identical (albeit with different coefficients) in both cases, provided surface tension is isotropic in the target. We thus account for the common dynamics for both types of incidence conditions, namely formation of dots with short-range order and long-wavelength disorder, and an intermediate coarsening of dot features that improves the local order of the patterns. We provide for the first time approximate analytical predictions for the dependence of stationary dot features (amplitude and wavelength) on phenomenological parameters, that improve upon previous linear estimates. Finally, our theoretical results are discussed in terms of experimental data.

  10. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.

    Science.gov (United States)

    Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N

    2015-03-01

    The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    Science.gov (United States)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  12. High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves

    Science.gov (United States)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh

    2012-01-01

    A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger

  13. A Modular, Reusable Latch and Decking System for Securing Payloads During Launch and Planetary Surface Transport

    Science.gov (United States)

    Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce D.; Mikulas, Martin M.

    2011-01-01

    Efficient handling of payloads destined for a planetary surface, such as the moon or mars, requires robust systems to secure the payloads during transport on the ground, in space and on the planetary surface. In addition, mechanisms to release the payloads need to be reliable to ensure successful transfer from one vehicle to another. An efficient payload handling strategy must also consider the devices available to support payload handling. Cranes used for overhead lifting are common to all phases of payload handling on Earth. Similarly, both recent and past studies have demonstrated that devices with comparable functionality will be needed to support lunar outpost operations. A first generation test-bed of a new high performance device that provides the capabilities of both a crane and a robotic manipulator, the Lunar Surface Manipulation System (LSMS), has been designed, built and field tested and is available for use in evaluating a system to secure payloads to transportation vehicles. A payload handling approach must address all phases of payload management including: ground transportation, launch, planetary transfer and installation in the final system. In addition, storage may be required during any phase of operations. Each of these phases requires the payload to be lifted and secured to a vehicle, transported, released and lifted in preparation for the next transportation or storage phase. A critical component of a successful payload handling approach is a latch and associated carrier system. The latch and carrier system should minimize requirements on the: payload, carrier support structure and payload handling devices as well as be able to accommodate a wide range of payload sizes. In addition, the latch should; be small and lightweight, support a method to apply preload, be reusable, integrate into a minimal set of hard-points and have manual interfaces to actuate the latch should a problem occur. A latching system which meets these requirements has been

  14. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Erents, K.

    2002-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Both constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes, but below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  15. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, Carlos; Pedrosa, Maria A.; Erents, Kevin

    2001-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. The plasma conditions where this has been observed are clearly below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  16. Thermal noise due to surface-charge effects within the Debye layer of endogenous structures in dendrites.

    Science.gov (United States)

    Poznanski, Roman R

    2010-02-01

    An assumption commonly used in cable theory is revised by taking into account electrical amplification due to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell's equations under assumptions: (i) the electric-field polarization is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasielectrostatic conditions; and (iv) homogeneous medium with constant conductivity and permittivity. The generalized cable equation is identical to Barenblatt's equation arising in the theory of infiltration in fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation solution is derived in terms of a Green's function in order to describe the dynamics of free charge within the Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative term is explicitly evaluated for small values of time to predict how the slowly fluctuating (in submillisecond range) electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential. It was found that capacitive effects are almost negligible for cables with electrotonic lengths L>0.5 , contributes up to 10% of the signal for cables with electrotonic lengths in the range between 0.25noise due to

  17. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    Science.gov (United States)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  18. Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications

    International Nuclear Information System (INIS)

    Sun, Xihe; Souier, Tewfik; Chiesa, Matteo; Vassallo, Anthony

    2014-01-01

    Due to their high electrical conductivity and corrosion resistance, carbon nanotube (MWNT)-high density polyethylene (HDPE) composites are potential candidates to replace traditional activated carbon electrodes for the next generation of fuel-cells, super capacitors and flow batteries. Electrochemical impedance spectroscopy (EIS) is employed to separate the surface conduction from bulk conduction in 15% HDPE-MWNT and 19% carbon black (CB)-HDPE composites for zinc-bromine flow battery electrodes. While exhibiting superior bulk conductivity, the interfacial conductivity of MWNT-filled composites is lower than that of CB-filled composites. High resolution conductive atomic force microscopy (C-AFM) imaging and current-voltage (I-V) spectroscopy were employed to investigate the sub-surface electronic transport of the composite. Unlike the CB-composite, the fraction of conducting MWNTs near the surface is very low compared to their volume fraction. In addition, the non-linear I-V curves reveal the presence of a tunneling junction between the tip and the polymer-coated MWNTs. The tunneling resistance is as high as 1 GΩ, which strongly affects the electronic/electrochemical transfer at the interface of the electrolyte and the surface of the composite, which is evident in the voltammetric and EIS observations

  19. Spreading of 137 C in the Goiania urban area by resuspension and transport of surface soil

    International Nuclear Information System (INIS)

    Rio, Monica Pires do; Amaral, Eliana

    2002-01-01

    The resuspension of surface soil was considered the mechanism responsible by the spreading of 137 Cs after the Goiania accident, which affected an urban area of about 1 km 2 . Studies on the transport of 137 Cs associated to the surface soil were performed in a house located at 57 th Street, close to the main focus of contamination, from 05/89 to 07/00. Periodically, samples of surface soil and soil profile were collected at the house yards and street dust sampling at representative locations was performed in order to know the extension of the contamination in the city. The soil profile samples have shown the low mobility of 137 Cs in deep layers of the soil, although a slight long-term decrease of the 137 Cs activity concentration in the surface soil were observed. The 137 Cs activity concentration in the street dust samples also decrease with time, suggesting a natural dilution of the contamination in those samples; higher values were only found in few locations close to the foci of primary deposition and no additional spreading of the radionuclide is expected to occur from that area. Street dust sampling is a suitable method to assess the spreading of caesium in urban environment. (author)

  20. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    Science.gov (United States)

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  1. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    Science.gov (United States)

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  2. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  3. Transport of surface engineered polyamidoamine (PAMAM) dendrimers across IPEC-J2 cell monolayers.

    Science.gov (United States)

    Pisal, Dipak S; Yellepeddi, Venkata K; Kumar, Ajay; Palakurthi, Srinath

    2008-11-01

    The aim of our study was to prepare arginine-and ornithine-conjugated Polyamidoamine (PAMAM) dendrimers and study their permeability across IPEC-J2 cell monolayers, a new intestinal cell line model for drug absorption studies. Arginine and ornithine were conjugated to the amine terminals of the PAMAM(G4) dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (P(app)) for the PAMAM dendrimers increased by conjugating the dendrimers with both of these polyamines. The enhancement in permeability was dependent on the dendrimer concentration and duration of incubation. Correlation between monolayer permeability and the decrease in transepithelial electrical resistance (TEER) with the PAMAM dendrimers and the polyamine-conjugated dendrimers suggests that paracellular transport is one of the mechanisms of transport across the epithelial cells. Cytotoxicity of these surface-modified dendrimers was evaluated in IPEC-J2 cells by MTT (methylthiazoletetrazolium) assay. Arginine-conjugated dendrimers were insignificantly more toxic than PAMAM dendrimer as well as ornithine-conjugated dendrimers. Though investigations on the possible involvement of other transport mechanisms are in progress, results of the present study suggest the potential of dendrimer-polyamine conjugates as the carriers for antigen/drug delivery through the oral mucosa.

  4. Bulk and surface electron transport in topological insulator candidate YbB{sub 6-δ}

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, Vladimir V.; Demishev, Sergey V.; Sluchanko, Nikolay E. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Bozhko, Alexey D.; Bogach, Alexey V.; Semeno, Alexey V.; Voronov, Valeriy V. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Dukhnenko, Anatoliy V.; Filipov, Volodimir B.; Shitsevalova, Natalya Yu. [Frantsevich Institute for Problems of Materials Science NAS, Krzhyzhanovsky str. 3, 03680, Kiev (Ukraine); Kondrin, Mikhail V. [Vereshchagin Institute of High Pressure Physics of RAS, 142190, Troitsk, Moscow (Russian Federation); Kuznetsov, Alexey V.; Sannikov, Ilia I. [National Research Nuclear University ' ' MEPhI' ' , Kashirskoe Shosse 31, 115409, Moscow (Russian Federation)

    2016-04-15

    We report the study of transport and magnetic properties of the YbB{sub 6-δ}single crystals grown by inductive zone melting. A strong disparity in the low temperature resistivity, Seebeck and Hall coefficients is established for the samples with the different level of boron deficiency. The effective parameters of the charge transport in YbB{sub 6-δ} are shown to depend on the concentration of intrinsic defects, which is estimated to range from 0.09% to 0.6%. The pronounced variation of Hall mobility μ{sub H} found for bulk holes is induced by the decrease of transport relaxation time from τ ∼ 7.7 fs for YbB{sub 5.994} to τ ∼ 2.2 fs for YbB{sub 5.96}. An extra contribution to conductivity from electrons with μ{sub H}∼ -1000 cm{sup 2} V{sup -1} s{sup -1} and the very low concentration n /n{sub Yb}∼ 10{sup -6} discovered below 20 K for all the single crystals under investigation is suggested to arise from the surface electron states appeared in the inversion layer due to the band bending. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  6. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    Science.gov (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  7. Transport and retention of strontium in surface-modified quartz sand with different wettability

    International Nuclear Information System (INIS)

    Yifei Li; Shuaihui Tian; Tianwei Qian

    2011-01-01

    Instead of radioactive 90 Sr, common strontium chloride was used to simulate the migration of radioactive strontium chloride in surface hydroxylated, silanized, and common quartz sand. The sorption and retardation characteristics of strontium (Sr 2+ ) in these surface modified quartz sands were studied by batch tests and column experiments. The equilibrium sorption data for Sr 2+ on different wettability sands were described by the Langmuir and Freundlich isotherm models, and the Langmuir model has been found to provide better correlation for hydrophilic sand. The breakthrough curves (BTCs) of Sr 2+ in these media were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region mobile-immobile model (TRM) using a nonlinear least square curve-fitting program CXTFIT. The TRM model showed better fit to the measured BTCs of Sr 2+ , and the parameters of the fraction of mobile water indicated that significant preferential flow effected the non-equilibrium transport of Sr 2+ . Although TRM model could not fit the Sr 2+ BTCs very well, the parameter estimated by TRM model may be more reliable than those obtained from batch experiments because the transport of Sr 2+ in these kind of sand is non-equilibrium processes. (author)

  8. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    Science.gov (United States)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  9. Health initiatives to target obesity in surface transport industries: Review and implications for action

    Directory of Open Access Journals (Sweden)

    Anjum Naweed

    2015-06-01

    Full Text Available Lifestyle-related chronic diseases pose a considerable burden to the individual and the wider society, with correspondingly negative effects on industry. Obesity is a particular problem for the Australasian road and rail industries where it is associated with specific cardiac and fatigue-related safety risks, and levels are higher than those found in the general population. Despite this recognition, and the introduction of National Standards, very little consensus exists regarding approaches to preventative health for surface transport workers. A review of evidence regarding effective health promotion initiatives is urgently needed to inform best practice in this cohort. This review draws together research informing the scope and effectiveness of health promotion programs, initiatives and interventions targeting overweight and obesity in safety critical surface transport domains including the truck, bus and rail industries. A number of health interventions demonstrated measurable successes, including incentivising, peer mentoring, verbal counselling, development of personalised health profiles, and offer of healthier on-site food choices – some of which also resulted in sizeable return on investment over the long term.

  10. Interannual Variations of Surface Currents and Transports in the Sicily Channel Derived From Coastal Altimetry

    Science.gov (United States)

    Jebri, Fatma; Zakardjian, Bruno; Birol, Florence; Bouffard, Jérôme; Jullion, Loïc.; Sammari, Cherif

    2017-11-01

    A 20 year coastal altimetry data set (X-TRACK) is used, for the first time, to gain insight into the long-term interannual variations of the surface circulation in the Sicily Channel. First, a spectral along with a time/space diagram analysis are applied to the monthly means. They reveal a regionally coherent current patterns from track to track with a marked interannual variability that is unequally shared between the Atlantic Tunisian Current and Atlantic Ionian Stream inflows in the Sicily Channel and the Bifurcation Tyrrhenian Current outflow northeast of Sicily. Second, an empirical altimetry-based transport-like technique is proposed to quantify volume budgets inside the closed boxes formed by the crossing of the altimetry tracks and coastlines over the study area. A set of hydrographic measurements is used to validate the method. The inferred altimetry transports give a well-balanced mean eastward Atlantic Waters baroclinic flow of 0.4 Sv and standard deviations of 0.2 Sv on a yearly basis throughout the Sicily Channel and toward the Ionian Sea, which is fairly coherent with those found in the literature. Furthermore, the analysis allows to quantify the intrusions of Atlantic Waters over the Tunisian Shelf (0.12 ± 0.1 Sv) and highlights two main modes of variability of the main surface waters path over the Sicily Channel through the Bifurcation Atlantic Tunisian Current and Atlantic Ionian Stream systems. Some physical mechanisms are finally discussed with regards to changes in the observed currents and transports.

  11. Community noise

    Science.gov (United States)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  12. Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?

    Science.gov (United States)

    Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.

    2017-12-01

    The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.

  13. Surface contamination of spent fuel convoys - resumption of transport in France

    International Nuclear Information System (INIS)

    Pertuis, V.

    2000-01-01

    In France, 1998 was marked by the transport of spent fuel from EDF plants being suspended and then resumed. From the time the first inspections were carried out by the Nuclear Installations Safety Directorate (NISD), in charge of monitoring radioactive and fissile material for civil use since June 1997, surface contamination was found in a high percentage of packages and/or wagons containing spent fuel. The different expert appraisals showed that this had no consequences for the health of the public or of workers. Aiming at the resumption of transport, EDF and Cogema presented to the safety authority a plan of action including an increase in monitoring (number of points and cross-checking by SGS Qualitest), more widespread observance of good practices resulting from analyses by EDF and conclusions of its nuclear inspectorate, and an improvement in radiological cleanliness in the area where casks were loaded. During the inspections carried out at EDF plants, the NISD verified the application of this plan. Several observations were, nevertheless, made regarding maintenance of equipment, failure to apply procedures on a corporate level and the traceability of certain operations. The measures taken to sufficiently inform the public were applied. The NISD is continuing its monitoring actions to ensure that all EDF plants adopt best practices. However, the overall clean-up of EDF plants is a long-term operation. Finally, the NISD is continuing its monitoring of the different stages of spent fuel transport as well as other types of transport of radioactive materials associated with nuclear activities. (author)

  14. GPS based surface displacements – a proxy for discharge and sediment transport from the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Hasholt, Bent; Khan, Shfaqat Abbas; Mikkelsen, Andreas Bech

    2014-01-01

    winter precipitation correlated fairly well with surface depression (R2=0.69). The relationships are based on seven years of runoff and sediment transport observations from the Watson River (2007–2013), winter precipitation from Kangerlussuaq Airport and GPS observations at Kellyville. GPS recordings...... of surface subsidence and uplift from 1996–2013 are used to calculate 18 years time series of annual runoff, sediment and solute transport and 10 winter precipitation. Runoff and related transport of sediment and solutes increase over the period, while winter precipitation (land depression) tends to decrease......The elastic respond of the Earth’s surface to mass changes has been measured with Global Positioning System (GPS). Mass loss as accumulated runoff and sediment transport from a 10000 km2 segment of the Greenland Ice Sheet (GrIS) correlated very well (R2=0.83) with GPS measured uplift. Accumulated...

  15. Impact of the Topological Surface State on the Thermoelectric Transport in Sb2Te3 Thin Films.

    Science.gov (United States)

    Hinsche, Nicki F; Zastrow, Sebastian; Gooth, Johannes; Pudewill, Laurens; Zierold, Robert; Rittweger, Florian; Rauch, Tomáš; Henk, Jürgen; Nielsch, Kornelius; Mertig, Ingrid

    2015-04-28

    Ab initio electronic structure calculations based on density functional theory and tight-binding methods for the thermoelectric properties of p-type Sb2Te3 films are presented. The thickness-dependent electrical conductivity and the thermopower are computed in the diffusive limit of transport based on the Boltzmann equation. Contributions of the bulk and the surface to the transport coefficients are separated, which enables to identify a clear impact of the topological surface state on the thermoelectric properties. When the charge carrier concentration is tuned, a crossover between a surface-state-dominant and a Fuchs-Sondheimer transport regime is achieved. The calculations are corroborated by thermoelectric transport measurements on Sb2Te3 films grown by atomic layer deposition.

  16. A nonlinear analysis of the transport Barkhausen-like noise measured in (Bi,Pb)2Sr2Ca2Cu3O10+δ superconductors

    Science.gov (United States)

    García-Fornaris, I.; Millán, H.; Jardim, R. F.; Govea-Alcaide, E.

    2013-06-01

    We investigated the transport Barkhausen-like noise (TBN) by using nonlinear time series analysis. TBN signals were measured in (Bi,Pb)2Sr2Ca2Cu3O10+δ ceramic samples subjected to different uniaxial compacting pressures (UCP). These samples display similar intragranular properties but different intergranular features. We found positive Lyapunov exponents in all samples, λm≥0.062, indicating the nonlinear dynamics of the experimental TBN signals. It was also observed higher values of the embedding dimension, m >9, and the Kaplan-Yorke dimension, DKY>2.9. Between samples, the behavior of λm and DKY with increasing excitation current is quite different. Such a behavior is explained in terms of changes in the microstructure associated with the UCP. In addition, determinism tests indicated that the TBN masked determinist components, as inferred by |k →| values larger than 0.70 in most of the cases. Evidence on the existence of empirical attractors by reconstructing the phase spaces has been also found. All obtained results are useful indicators of the interplay between the uniaxial compacting pressure, differences in the microstructure of the samples, and the TBN signal dynamics.

  17. Connecting meteorology to surface transport in aeolian landscapes: Peering into the boundary layer with Doppler lidar

    Science.gov (United States)

    Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.

    2017-12-01

    Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the

  18. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  19. Orf virus interferes with MHC class I surface expression by targeting vesicular transport and Golgi

    Directory of Open Access Journals (Sweden)

    Rohde Jörg

    2012-07-01

    Full Text Available Abstract Background The Orf virus (ORFV, a zoonotic Parapoxvirus, causes pustular skin lesions in small ruminants (goat and sheep. Intriguingly, ORFV can repeatedly infect its host, despite the induction of a specific immunity. These immune modulating and immune evading properties are still unexplained. Results Here, we describe that ORFV infection of permissive cells impairs the intracellular transport of MHC class I molecules (MHC I as a result of structural disruption and fragmentation of the Golgi apparatus. Depending on the duration of infection, we observed a pronounced co-localization of MHC I and COP-I vesicular structures as well as a reduction of MHC I surface expression of up to 50%. These subversion processes are associated with early ORFV gene expression and are accompanied by disturbed carbohydrate trimming of post-ER MHC I. The MHC I population remaining on the cell surface shows an extended half-life, an effect that might be partially controlled also by late ORFV genes. Conclusions The presented data demonstrate that ORFV down-regulates MHC I surface expression in infected cells by targeting the late vesicular export machinery and the structure and function of the Golgi apparatus, which might aid to escape cellular immune recognition.

  20. A dynamic isotope power system for Space Exploration Initiative surface transport systems

    International Nuclear Information System (INIS)

    Hunt, M.E.; Harty, R.B.; Cataldo, R.

    1992-03-01

    The Dynamic Isotope Power System (DIPS) Demonstration Program, sponsored by the U.S. Department of Energy with support funding from NASA, is currently focused on the development of a standardized 2.5-kWe portable generator for multiple applications on the lunar or Martian surface. A variety of remote and mobile potential applications have been identified by NASA, including surface rovers for both short- and extended-duration missions, remote power to science packages, and backup to central base power. Recent work focused on refining the 2.5-kWe design and emphasizing the compatibility of the system with potential surface transport systems. Work included an evaluation of the design to ensure compatibility with the Martian atmosphere while imposing only a minor mass penalty on lunar operations. Additional work included a study performed to compare the DIPS with regenerative fuel cell systems for lunar mobile and remote power systems. Power requirements were reviewed and a modular system chosen for the comparison. 4 refs

  1. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  2. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu, E-mail: yu.sun@xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yilun [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Xuefeng; Zhai, Zhi [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Fei [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yijun [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)

    2017-06-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  3. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-01-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  4. Transport and scavenging of Pu in surface waters of the Southern Hemisphere Oceans

    DEFF Research Database (Denmark)

    Gastaud, J.; Povinec, P.P.; Aoyama, M.

    2011-01-01

    The distribution of 239Pu in Atlantic and Indian Ocean waters about four decades after their main injection from atmospheric nuclear weapons tests is discussed. Recent data obtained in the framework of the SHOTS (Southern Hemisphere Ocean Tracer Studies) projects are evaluated and compared...... with previous investigations. Seawater samples were collected during the round the globe BEAGLE2003 (Blue Ocean Global Expedition) along the 30°S transect in the Atlantic and the 20°S transect in the Indian Ocean. The results indicate transport of surface waters labelled with 239Pu from the western North...... Pacific via the Indonesian Seas to the South Indian Ocean and then to the South Atlantic Ocean. Along the whole BEAGLE2003 sampling route, the Atlantic Ocean has the lowest 239Pu content due to its particle scavenging on the long way from the western North Pacific. On the other hand, concentrations...

  5. Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch

    International Nuclear Information System (INIS)

    Griffiths, A.D.; Chambers, S.D.; Williams, A.G.; Conen, F.; Zimmermann, L.

    2014-01-01

    Atmospheric composition measurements at Jungfraujoch are affected intermittently by boundary-layer air which is brought to the station by processes including thermally driven (anabatic) mountain winds. Using observations of radon-222, and a new objective analysis method, we quantify the land-surface influence at Jungfraujoch hour by hour and detect the presence of anabatic winds on a daily basis. During 2010-2011, anabatic winds occurred on 40% of days, but only from April to September. Anabatic wind days were associated with warmer air temperatures over a large fraction of Europe and with a shift in air-mass properties, even when comparing days with a similar mean radon concentration. Excluding days with anabatic winds, however, did not lead to a better definition of the unperturbed aerosol background than a definition based on radon alone. This implies that a radon threshold reliably excludes local influences from both anabatic and non-anabatic vertical-transport processes.

  6. Radionuclide transport from near-surface repository for radioactive waste - The unsaturated zone approach

    Energy Technology Data Exchange (ETDEWEB)

    Jakimaviciute-Maseliene, V. [Vilnius University (Lithuania); Mazeika, J. [Nature Research Centre (Lithuania); Motiejunas, S. [Radioactive Waste Management Agency (Lithuania)

    2014-07-01

    About 100 000 m{sup 3} of solid conditioned Low and Intermediate Level Waste (LILW), generated during operation and decommissioning of the Ignalina nuclear power plant (INPP), are to be disposed of in a near-surface repository (NSR) - a 'hill'-type repository with reinforced concrete vaults and with engineered and natural barriers. The northeastern Lithuania and the environment of the INPP in particular were recognized as the areas most suitable for a near-surface repository (Stabatiske Site). The engineered barriers of the repository consist of concrete cells surrounded by clay-based material of low permeability with about the same isolating capacity in all directions. The clay materials must be effectively compactable so that required hydraulic conductivity is reached. The Lithuanian Triassic clay turned out to be sufficiently rich in smectites and was proposed as main candidate for sealing of the repository. When the concrete vaults are filled, the repository cover will be constructed. The surface of the mound will be planted with grass. In this study a computer code FEFLOW 5.0 was applied for simulating the transport of the most mobile radionuclides ({sup 3}H, {sup 14}C, {sup 59}Ni and {sup 94}Nb) with moisture through an unsaturated vault of the near-surface repository in Stabatiske Site. The HYDRUS-1D analysis was used to assess the radionuclide transport in the repository and to estimate initial activity concentrations of radionuclides transported from the cemented waste matrix. Radionuclide release from the vault in the unsaturated conditions after closure of the repository and consequent contaminant plume transport has been assessed taking into account site-specific natural and engineering conditions and based on a normal evolution scenario. The highest peak radionuclide activity concentrations were estimated applying the FEFLOW code. The highest value of {sup 14}C activity concentration(about 1.3x10{sup 8} Bq/m{sup 3}) at the groundwater table

  7. Conceptual and Numerical Modeling of Radionuclide Transport and Retention in Near-Surface Systems

    International Nuclear Information System (INIS)

    Pique, Angels; Arcos, David; Grandia, Fidel; Molinero, Jorge; Duro, Lara; Berglund, Sten

    2013-01-01

    Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases

  8. Surface Water Transport for the F/H Area Seepage Basins Groundwater Program

    International Nuclear Information System (INIS)

    Chen, Kuo-Fu.

    1995-01-01

    The contribution of the F- and H-Area Seepage Basins (FHSBs) tritium releases to the tritium concentration in the Savannah River are presented in this report. WASP5 was used to simulate surface water transport for tritium releases from the FHSBs. The WASP5 model was qualified with the 1993 tritium measurements at US Highway 301. The tritium concentrations in Fourmile Branch and the Savannah River were calculated for tritium releases from FHSBs. The calculated tritium concentrations above normal environmental background in the Savannah River, resulting from FHSBs releases, drop from 1.25 pCi/ml (<10% of EPA Drinking Water Guide) in 1995 to 0.0056 pCi/ml in 2045

  9. Using Contaminant Transport Modeling to Determine Historical Discharges at the Surface

    Science.gov (United States)

    Fogwell, T. W.

    2013-12-01

    When it is determined that a contaminated site needs to be remediated, the issue of who is going to pay for that remediation is an immediate concern. This means that there needs to be a determination of who the responsible parties are for the existing contamination. Seldom is it the case that records have been made and kept of the surface contaminant discharges. In many cases it is possible to determine the relative amount of contaminant discharge at the surface of the various responsible parties by employing a careful analysis of the history of contaminant transport through the surface, through the vadose zone, and within the saturated zone. The process begins with the development of a dynamic conceptual site model that takes into account the important features of the transport of the contaminants through the vadose zone and in the groundwater. The parameters for this model can be derived from flow data available for the site. The resulting contaminant transport model is a composite of the vadose zone transport model, together with the saturated zone (groundwater) flow model. Any calibration of the model should be carefully employed in order to avoid using information about the conclusions of the relative discharge amounts of the responsible parties in determining the calibrated parameters. Determination of the leading edge of the plume is an important first step. It is associated with the first discharges from the surface of the site. If there were several discharging parties at the same time, then it is important to establish a chemical or isotopic signature of the chemicals that were discharged. The time duration of the first discharger needs to be determined as accurately as possible in order to establish the appropriate characterization of the leading portion of the resulting plume in the groundwater. The information about the first discharger and the resulting part of the plume associated with this discharger serves as a basis for the determination of the

  10. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  11. From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea

    Science.gov (United States)

    Katija, Kakani; Choy, C. Anela; Sherlock, Rob E.; Sherman, Alana D.; Robison, Bruce H.

    2017-01-01

    Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus “houses” to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column. PMID:28835922

  12. Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6

    Directory of Open Access Journals (Sweden)

    Riki Kawaguchi

    2015-08-01

    Full Text Available Vitamin A has biological functions as diverse as sensing light for vision, regulating stem cell differentiation, maintaining epithelial integrity, promoting immune competency, regulating learning and memory, and acting as a key developmental morphogen. Vitamin A derivatives have also been used in treating human diseases. If vitamin A is considered a drug that everyone needs to take to survive, evolution has come up with a natural drug delivery system that combines sustained release with precise and controlled delivery to the cells or tissues that depend on it. This “drug delivery system” is mediated by plasma retinol binding protein (RBP, the principle and specific vitamin A carrier protein in the blood, and STRA6, the cell-surface receptor for RBP that mediates cellular vitamin A uptake. The mechanism by which the RBP receptor absorbs vitamin A from the blood is distinct from other known cellular uptake mechanisms. This review summarizes recent progress in elucidating the fundamental molecular mechanism mediated by the RBP receptor and multiple newly discovered catalytic activities of this receptor, and compares this transport system with retinoid transport independent of RBP/STRA6. How to target this new type of transmembrane receptor using small molecules in treating diseases is also discussed.

  13. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  14. Transport and retention of phosphorus in surface water in an urban slum area

    Science.gov (United States)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.

    2013-08-01

    The transport of excessive phosphorus (P) discharged from unsewered informal settlements (slums) due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2). Samples were analyzed for orthophosphate (PO4-P), particulate P (PP), total P (TP) and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36-144 mg L-1), HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9). High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.

  15. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  16. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  17. Control of Ambipolar Transport in SnO Thin-Film Transistors by Back-Channel Surface Passivation for High Performance Complementary-like Inverters.

    Science.gov (United States)

    Luo, Hao; Liang, Lingyan; Cao, Hongtao; Dai, Mingzhi; Lu, Yicheng; Wang, Mei

    2015-08-12

    For ultrathin semiconductor channels, the surface and interface nature are vital and often dominate the bulk properties to govern the field-effect behaviors. High-performance thin-film transistors (TFTs) rely on the well-defined interface between the channel and gate dielectric, featuring negligible charge trap states and high-speed carrier transport with minimum carrier scattering characters. The passivation process on the back-channel surface of the bottom-gate TFTs is indispensable for suppressing the surface states and blocking the interactions between the semiconductor channel and the surrounding atmosphere. We report a dielectric layer for passivation of the back-channel surface of 20 nm thick tin monoxide (SnO) TFTs to achieve ambipolar operation and complementary metal oxide semiconductor (CMOS) like logic devices. This chemical passivation reduces the subgap states of the ultrathin channel, which offers an opportunity to facilitate the Fermi level shifting upward upon changing the polarity of the gate voltage. With the advent of n-type inversion along with the pristine p-type conduction, it is now possible to realize ambipolar operation using only one channel layer. The CMOS-like logic inverters based on ambipolar SnO TFTs were also demonstrated. Large inverter voltage gains (>100) in combination with wide noise margins are achieved due to high and balanced electron and hole mobilities. The passivation also improves the long-term stability of the devices. The ability to simultaneously achieve field-effect inversion, electrical stability, and logic function in those devices can open up possibilities for the conventional back-channel surface passivation in the CMOS-like electronics.

  18. Current reversal in a continuously periodic system driven by an additive noise and a multiplicative noise

    International Nuclear Information System (INIS)

    Wang Canjun; Chen Shibo; Mei Dongcheng

    2006-01-01

    We study the noise-induce transport and current reversal of Brownian particles in a continuously periodic potential driven by cross correlation between a multiplicative white noise and an additive white noise. We find that directed motion of the Brownian particles can be induced by the correlation between the additive noise and the multiplicative noise. The current reversal and the direction of the current is controlled by the values of the intensity (λ) of the correlated noises and a dimensionless parameter R (R=α/D, D is the intensity of multiplicative noise and α is the intensity of additive noise)

  19. Transport of Dirac fermions on the surface of strong topological insulator and graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Arijit

    2012-06-14

    In this dissertation I study electronic transport through Dirac Fermions on the surface of strong topological insulator and graphene. I start by reviewing the physics of topological insulator and graphene and the low energy effective theory for the electronic states of the surface of a 3D strong topological insulator and graphene. Using this theory the electronic structure of the surface states of strong topological insulators of geometries with large surface to bulk ratio like nanowire and thin film are obtained. Then the energy spectrum and the spin-parity structure of the eigenstates for a finite size topological insulator quantum dot of the shape of a nanotube are considered. Numerical calculations show that even at the lowest energy scales, the ''spin-surface locking'' is broken, that is, the spin direction in a topologically protected surface mode is not locked to the surface. The calculations also show the existence of ''zero-momentum'' modes, and sub-gap states localized near the ''caps'' of the dot. Both the energy spectrum and the spin texture of the eigenstates are basically reproduced from an analytical surface Dirac fermion description. The results are compared to microscopic calculations using a tight-binding model for a strong topological insulator in a finite-length nanowire geometry, which shows qualitative similarity. Then, a theoretical study of electron-phonon scattering effects in thin films made of a strong topological insulator is presented. Phonons are modeled by isotropic elastic continuum theory with stress-free boundary conditions, and the interaction with the helical surface Dirac fermions is mediated by the deformation potential. The temperature-dependent electrical resistivity ρ(T) and the quasi-particle decay rate Γ(T) observable in photo-emission are computed numerically. The low and high-temperature power laws for both quantities are obtained analytically. Detailed

  20. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface

    Directory of Open Access Journals (Sweden)

    Sorina Claudia Popescu

    2012-04-01

    Full Text Available Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the plasma membrane.

  1. Theoretical investigation of the electronic structure and quantum transport in the graphene–C(111) diamond surface system

    International Nuclear Information System (INIS)

    Selli, Daniele; Baburin, Igor; Leoni, Stefano; Seifert, Gotthard; Zhu, Zhen; Tománek, David

    2013-01-01

    We investigate the interaction of a graphene monolayer with the C(111) diamond surface using ab initio density functional theory. To accommodate the lattice mismatch between graphene and diamond, the overlayer deforms into a wavy structure that binds strongly to the diamond substrate. The detached ridges of the wavy graphene overlayer behave electronically as free-standing polyacetylene chains with delocalized π electrons, separated by regions containing only sp 3 carbon atoms covalently bonded to the (111) diamond surface. We performed quantum transport calculations for different geometries of the system to study how the buckling of the graphene layer and the associated bonding to the diamond substrate affect the transport properties. The system displays high carrier mobility along the ridges and a wide transport gap in the direction normal to the ridges. These intriguing, strongly anisotropic transport properties qualify the hybrid graphene–diamond system as a viable candidate for electronic nanodevices. (paper)

  2. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    Directory of Open Access Journals (Sweden)

    Eva Gulikova

    2008-06-01

    Full Text Available Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust

  3. Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Guo Jun-Ji; Liao Wen-Hu

    2014-01-01

    Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n—n junction and n—p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ θ < π/2 and π/2 < θ ≤ π, the transmission probability of the n—n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n—p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs

  4. Partial and Total Annoyance Due to Road Traffic Noise Combined with Aircraft or Railway Noise: Structural Equation Analysis

    OpenAIRE

    Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che

    2017-01-01

    Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance, as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visibl...

  5. Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.

    Science.gov (United States)

    Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto

    2015-04-10

    Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.

  6. Influence of surface charge on the transport characteristics of nanowire-field effect transistors in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Daijiro, E-mail: daijiro.nozaki@gmail.com, E-mail: research@nano.tu-dresden.de [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Kunstmann, Jens [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Theoretical Chemistry, Department of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden (Germany); Zörgiebel, Felix [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), TU Dresden, 01062 Dresden (Germany)

    2015-05-18

    One dimensional nanowire field effect transistors (NW-FETs) are a promising platform for sensor applications. The transport characteristics of NW-FETs are strongly modified in liquid environment due to the charging of surface functional groups accompanied with protonation or deprotonation. In order to investigate the influence of surface charges and ionic concentrations on the transport characteristics of Schottky-barrier NW-FETs, we have combined the modified Poisson-Boltzmann theory with the Landauer-Büttiker transport formalism. For a typical device, the model is able to capture the reduction of the sensitivity of NW-FETs in ionic solutions due to the screening from counter ions as well as a local gating from surface functional groups. Our approach allows to model, to investigate, and to optimize realistic Schottky-barrier NW-FET devices in liquid environment.

  7. Simulación de ruido de tránsito automotor como herramienta para el rediseño de rutas de transporte público colectivo en el municipio de Medellín Simulation of road traffic noise as a tool for redesigning public transport routes in the municipality of Medellín

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Echeverri

    2011-01-01

    Full Text Available Este artículo presenta parte de los resultados del estudio "Metodología de rediseño de rutas de transporte público colectivo complementarias al sistema integrado de transporte en el Valle de Aburrá", realizado y financiado por las universidades de Medellín y San Buenaventura. Se enfoca en la simulación del ruido de tránsito automotor como una herramienta de análisis para la toma de decisiones en la conversión de algunas rutas radiales de transporte colectivo público a rutas diametrales o de flujo de cuenca a cuenca en la ciudad de Medellín. Se elaboró un mapa de ruido de las vías en un sector seleccionado del centro de la ciudad, y se aplicó software de predicción de ruido ambiental para obtener los niveles de contaminación acústica existente y pronosticado con la implementación del rediseño de rutas de transporte público.This article presents part of the study results "methodology to redesign public transport complementary routes to integrated transport system in the Aburrá Valley" held and funded by the Universities of Medellin and San Buenaventura. It focuses on the simulation of road traffic noise as a tool of analysis for decision making in the conversion of some radial routes of public bus transportation to transverse routes or migration to other basins in the city of Medellin. Noise maps for streets in the downtown have been made by application of software for prediction of noise environmental for evaluating existing noise levels and for predicted ones in case of the implementation of the study for redesign public transport routes.

  8. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.

    1999-09-01

    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  9. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  10. Transport Barkhausen-like noise in uniaxially pressed Bi{sub 1.65}Pb{sub 0.35}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}}ceramic samples

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fornaris, I. [Departamento de Ciencias Basicas, Universidad de Granma, Apdo. 21, P.O. Box 85100, Bayamo (Cuba); Govea-Alcaide, E. [Departamento de Fisica, Universidad de Oriente, Patricio Lumumba s/n, P.O. Box 90500, Santiago de Cuba (Cuba); Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil); Alberteris-Campos, M. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP (Brazil); Mune, P. [Departamento de Fisica, Universidad de Oriente, Patricio Lumumba s/n, P.O. Box 90500, Santiago de Cuba (Cuba); Jardim, R.F., E-mail: rjardim@if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

    2010-08-01

    We report on the detection of the transport Barkhausen-like noise (TBN) in polycrystalline samples of Bi{sub 1.65}Pb{sub 0.35}Sr{sub 2}Ca{sub 2} Cu{sub 3}O{sub 10+{delta}}(Bi-2223) which were subjected to different uniaxial compacting pressures. The transport Barkhausen-like noise was measured when the sample was subjected to an ac triangular-shape magnetic field (f {approx} 1 Hz) with maximum amplitude B{sub max} {approx} 5.5 mT, in order to avoid the flux penetration within the superconducting grains. Analysis of the TBN signal, measured for several values of excitation current density, indicated that the applied magnetic field in which the noise signal first appears, B{sub a}(t{sub i}), is closely related to the magnetic-flux pinning capability of the material. The combined results are consistent with the existence of three different superconducting levels within the samples: (i) the superconducting grains; (ii) the superconducting clusters; and (iii) the weak-links. We finally argue that TBN measurements constitute a powerful tool for probing features of the intergranular transport properties in polycrystalline samples of high-T{sub c} superconductors.

  11. Surface transportation security : TSA has taken actions to manage risk, improve coordination, and measure performance, but additional actions would enhance its efforts, April 21, 2010.

    Science.gov (United States)

    2010-04-21

    Terrorist attacks on surface transportation facilities in Moscow, Mumbai, London, and Madrid caused casualties and highlighted the vulnerability of such systems. The Transportation Security Administration (TSA), within the Department of Homeland Secu...

  12. Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface

    International Nuclear Information System (INIS)

    Haendel, S.; Marchant, A. L.; Wiles, T. P.; Hopkins, S. A.; Cornish, S. L.

    2012-01-01

    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of 85 Rb and 87 Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum. To maintain excellent optical access to the region surrounding the surface, magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally, we demonstrate the loading of a hybrid optical-magnetic trap with 87 Rb and the creation of Bose-Einstein condensates via forced evaporative cooling close to the dielectric surface.

  13. Existing Noise Level at Railway Stations in Malaysia

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Railway transportation known as one of the most environmental friendly transportation mode. However, the significance problems of railway transportation are noise pollution and negatively impact the wellbeing of the whole community. Unfortunately, there has been lack of public awareness about the noise level produce by the railway transportation in Malaysia. This study investigates the noise level produced by railway transportation in Malaysia specifically by Keretapi Tanah Melayu Berhad (KTMB. Methods of collecting existing noise level at railway stations in Malaysia are briefly discussed in this study. The finding indicates that the noise level produced by the railway transportation in Malaysia which is by KTMB is considered as dangerous to human being and also exceed the noise limit that has been assigned by Department of Environment Ministry of Natural Resources and Environment of Malaysia. A better noise barrier and improved material should be developed to mitigate the existing noise level produced by railway transportations in Malaysia.

  14. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    Science.gov (United States)

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  15. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    Science.gov (United States)

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  16. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    Science.gov (United States)

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data

  17. The decontamination of soft-plated nickel surfaces compared to alternative surface materials used in radioactive transport and storage containers

    International Nuclear Information System (INIS)

    Zwicky, H.U.; Bedenig, D.O.; Bohringer, I.M.; Petrik, F.

    1983-01-01

    Surfaces of raw, nickel-plated, and epoxy-coated spheroidal graphite cast iron, together with stainless steel, were contaminated with a modified fission product solution then conditioned by heat treatment. This was followed by a variety of simple decontamination techniques. It was shown that the ease of removal of contaminations similar to those expected on a dry storage container surface is significantly affected by the roughness of the surface. The raw cast iron surface was virtually impossible to significantly decontaminate. Highest decontamination factors were obtained on nickel-plated and epoxy-painted surfaces using steam/detergent mixtures. Stainless steel only performed well in a polished condition. In a supplementary irradiation experiment, scanning electron microscopy indicated visible decomposition of an epoxy-painted surface at a gamma dose of 3.1 X 10 6 Gy (3.1 X 10 8 rad). A nickel-plated surface did not undergo any visible changes at the same dose

  18. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    Terzi, R.

    2004-01-01

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.10 12 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to

  19. 14 CFR 36.801 - Noise measurement.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...

  20. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    Science.gov (United States)

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  1. Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study

    International Nuclear Information System (INIS)

    Dwivedi, Yogendra S.; Sharma, Anuj K.; Gupta, Banshi D.

    2007-01-01

    We have theoretically analyzed the influence of skew rays on the performance of a fiber-optic sensor based on surface plasmon resonance. The performance of the sensor has been evaluated in terms of its sensitivity and signal-to-noise ratio (SNR). The theoretical model for skewness dependence includes the material dispersion in fiber cores and metal layers, simultaneous excitation of skew rays, and meridional rays in the fiber core along with all guided rays launching from a collimated light source. The effect of skew rays on the SNR and the sensitivity of the sensor with two different metals has been compared. The same comparison is carried out for the different values of design parameters such as numerical aperture, fiber core diameter, and the length of the surface-plasmon-resonance (SPR)active sensing region. This detailed analysis for the effect of skewness on the SNR and the sensitivity of the sensor leads us to achieve the best possible performance from a fiber-optic SPR sensor against the skewness in the optical fiber

  2. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    OpenAIRE

    Jian-wei Li; Chong-jun Zhao; Chun Feng; Zhongfu Zhou; Guang-hua Yu

    2015-01-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observe...

  3. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity.

    Science.gov (United States)

    Jevprasesphant, Rachaneekorn; Penny, Jeffrey; Attwood, David; McKeown, Neil B; D'Emanuele, Antony

    2003-10-01

    To evaluate the cytotoxicity, permeation, and transport mechanisms of PAMAM dendrimers and surface-modified cationic PAMAM dendrimers using monolayers of the human colon adenocarcinoma cell line, Caco-2. Cytotoxicity was determined using the MTT assay. The effect of dendrimers on monolayer integrity was determined from measurements of transepithelial electrical resistance (TEER) and [14C]mannitol apparent permeability coefficient (Papp). The Papp of dendrimers through monolayers was measured in both the apical (A)-to-basolateral (B) and B --> A directions at 4 degrees C and 37 degrees C and also in the presence and absence of ethylenediamine tetraacetic acid (EDTA) and colchicine. The cytotoxicity and permeation of dendrimers increased with both concentration and generation. The cytotoxicity of cationic dendrimers (G2, G3, G4) was greater than that of anionic dendrimers (G2.5, G3.5) but was reduced by conjugation with lauroyl chloride: the least cytotoxic conjugates were those with six attached lauroyl chains. At 37 degrees C the Papp of cationic dendrimers was higher than that of anionic dendrimers and, in general, increased with the number of attached lipid chains. Cationic dendrimers decreased TEER and significantly increased the Papp of mannitol. Modified dendrimers also reduced TEER and caused a more marked increase in the Papp of mannitol. The Papp values of dendrimers and modified dendrimers were higher in the presence of EDTA, lower in the presence of colchicine, and lower at 4 degrees C than at 37 degrees C. The properties of dendrimers may be significantly modified by surface engineering. Conjugation of cationic PAMAM dendrimers with lauroyl chloride decreased their cytotoxicity and increased their permeation through Caco-2 cell monolayers. Both PAMAM dendrimers and lauroyl-PAMAM dendrimer conjugates can cross epithelial monolayers by paracellular and transcellular pathways.

  4. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    Science.gov (United States)

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  5. Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland.

    Science.gov (United States)

    Burkhardt, Michael; Stamm, Christian; Waul, Christopher; Singer, Heinz; Müller, Stephan

    2005-01-01

    Despite their common use in animal production the environmental fate of the veterinary sulfonamide antibiotics after excretion is only poorly understood. We performed irrigation experiments to investigate the transport of these substances with surface runoff on grassland. Liquid manure from pigs treated with sulfadimidine was spiked with sulfadiazine, sulfathiazole, the herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and the conservative tracer bromide and spread onto eight plots. Four plots received the same amounts of the spiked substances in aqueous solution (controls). Apart from the application matrix we varied the time between application and irrigation. Manure increased the runoff volume up to six times compared with the controls. It seemed that manure enhanced the runoff by sealing the soil surface. On manured plots the relative antibiotic concentrations in runoff were higher than on the controls, reaching an average of 0.3% (sulfadiazine), 0.8% (sulfathiazole), and 1.4% (sulfadimidine) of the input concentrations after a 1-d contact time. The corresponding values on the controls were 0.16% for sulfadiazine and 0.08% for sulfathiazole. After 3 d, the maximum values on the manured plots were even higher, whereas they had fallen below the limit of quantification on the controls. As a consequence, the sulfonamide losses were 10 to 40 times larger on the manured plots. The relative mobility of the sulfonamides on the control plots followed the trend expected from their chromatographic separation but the opposite was found on the manured plots. Hence it is important to consider explicitly the physical and chemical effects of manure when assessing the environmental fate of sulfonamides.

  6. Fate of Uranium During Transport Across the Groundwater-Surface Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Peter R. [Princeton Univ., NJ (United States); Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-30

    Discharge of contaminated groundwater to surface waters is of concern at many DOE facilities. For example, at F-Area and TNX-Area on the Savannah River Site, contaminated groundwater, including uranium, is already discharging into natural wetlands. It is at this interface where contaminants come into contact with the biosphere. These this research addressed a critical knowledge gap focusing on the geochemistry of uranium (or for that matter, any redox-active contaminant) in wetland systems. Understanding the interactions between hydrological, microbial, and chemical processes will make it possible to provide a more accurate conceptual and quantitative understanding of radionuclide fate and transport under these unique conditions. Understanding these processes will permit better long-term management and the necessary technical justification for invoking Monitored Natural Attenuation of contaminated wetland areas. Specifically, this research did provide new insights on how plant-induced alterations to the sediment biogeochemical processes affect the key uranium reducing microorganisms, the uranium reduction, its spatial distribution, the speciation of the immobilized uranium, and its long-term stability. This was achieved by conducting laboratory mesocosm wetland experiments as well as field measurements at the SRNL. Results have shown that uranium can be immobilized in wetland systems. To a degree some of the soluble U(VI) was reduced to insoluble U(IV), but the majority of the immobilized U was incorporated into iron oxyhydroxides that precipitated onto the root surfaces of wetland plants. This U was immobilized mostly as U(VI). Because it was immobilized in its oxidized form, results showed that dry spells, resulting in the lowering of the water table and the exposure of the U to oxic conditions, did not result in U remobilization.

  7. Triiodothyronine Acutely Stimulates Glucose Transport into L6 Muscle Cells Without Increasing Surface GLUT4, GLUT1, or GLUT3

    Science.gov (United States)

    Teixeira, Silvania Silva; Tamrakar, Akhilesh K.; Goulart-Silva, Francemilson; Serrano-Nascimento, Caroline; Klip, Amira

    2012-01-01

    Background Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T3 and insulin action. Methods Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T3. Results Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T3 treatment; however, in these cells glucose transport was not stimulated by T3. In wild-type L6 cells, although T3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T3 plus insulin. Conclusions These data reveal that T3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT. PMID:22663547

  8. Use of 198 Au, with surface labelling, in the study of solid transport by bed load in large natural channels

    International Nuclear Information System (INIS)

    Nakahira, S.

    1987-01-01

    The present study aims to present a method of measuring the bed load transport using a radioisotope technique in large natural channels. This study describes the basic principles of radioisotope application in this field, emphasizing the use of 198 Au for surface labelling of a natural sediment. Moreover, it presents the theoretical aspects, critical analysis, recommendations and comments on the methodology proposed. (author)

  9. 50 CFR 36.12 - Use of snowmobiles, motorboats, dog teams and other means of surface transportation traditionally...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Use of snowmobiles, motorboats, dog teams... Subsistence Uses § 36.12 Use of snowmobiles, motorboats, dog teams and other means of surface transportation... provision of subchapter C of title 50 CFR the use of snowmobiles, motorboats, dog teams and other means of...

  10. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  11. Utilizing various data sources for surface transportation human factors research : workshop summary report, November 6-7, 2013

    Science.gov (United States)

    2014-07-01

    The report summarizes a 2-day workshop held on November 6-7, 2013, to discuss data sources for surface transportation human factors research. The workshop was designed to assess the increasing number of different datasets and multiple ways of collect...

  12. Active control of the noise

    International Nuclear Information System (INIS)

    Rodriguez V, Luis Alfonso; Lopez Q, Jose German

    2001-01-01

    applications in areas so diverse as those that are described. In the industry: noise of fans, ducts of air, chimneys, transformers, generators, compressors, bombs, machines of washing, tunnels of wind, phone booths and others. In the transport: airplane booths, booths of helicopters, helmets for motorcycles, trains etc. in appliances: conditioners of air, ducts, cleaning machines, pruners, vacuum cleaners etc. and in the attenuation of the noise, mufflers of electronic gases in automobiles

  13. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  14. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  15. Transport of contaminants by Arctic sea ice and surface ocean currents

    International Nuclear Information System (INIS)

    Pfirman, S.

    1995-01-01

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brine drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins

  16. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  17. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  18. Effect of localized surface-plasmon mode on exciton transport and radiation emission in carbon nanotubes.

    Science.gov (United States)

    Roslyak, Oleksiy; Cherqui, Charles; Dunlap, David H; Piryatinski, Andrei

    2014-07-17

    We report on a general theoretical approach to study exciton transport and emission in a single-walled carbon nanotube (SWNT) in the presence of a localized surface-plasmon (SP) mode within a metal nanoparticle interacting via near-field coupling. We derive a set of quantum mechanical equations of motion and approximate rate equations that account for the exciton, SP, and the environmental degrees of freedom. The material equations are complemented by an expression for the radiated power that depends on the exciton and SP populations and coherences, allowing for an examination of the angular distribution of the emitted radiation that would be measured in experiment. Numerical simulations for a (6,5) SWNT and cone-shaped Ag metal tip (MT) have been performed using this methodology. Comparison with physical parameters shows that the near-field interaction between the exciton-SP occurs in a weak coupling regime, with the diffusion processes being much faster than the exciton-SP population exchange. In such a case, the effect of the exciton population transfer to the MT with its subsequent dissipation (i.e., the Förster energy transfer) is to modify the exciton steady state distribution while reducing the equilibration time for excitons to reach a steady sate distribution. We find that the radiation distribution is dominated by SP emission for a SWNT-MT separation of a few tens of nanometers due to the fast SP emission rate, whereas the exciton-SP coherences can cause its rotation.

  19. Active Self-Assembled Spinners: dynamic crystals, transport and induced surface flows

    Science.gov (United States)

    Snezhko, Alexey; Kokot, Gasper

    Strongly interacting colloids driven out-of-equilibrium by an external periodic forcing often develop nontrivial collective dynamics. Active magnetic colloids proved to be excellent model experimental systems to explore emergent behavior and active (out-of-equilibrium) self-assembly phenomena. Ferromagnetic micro-particles, suspended at a liquid interface and energized by a rotational homogeneous alternating magnetic field applied along the supporting interface, spontaneously form ensembles of synchronized self-assembled spinners with well-defined characteristic length. The size and the torque of an individual self-assembled spinner are controlled by the frequency of the driving magnetic field. Experiments reveal a rich collective dynamics in large ensembles of synchronized magnetic spinners that spontaneously form dynamic spinner lattices at the interface in a certain range of the excitation parameters. Non-trivial dynamics inside of the formed spinner lattices is observed. Transport of passive cargo particles and structure of the underlying self-induced surface flows is analyzed. The research was supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering.

  20. Ultra-Low Noise Vertical Takeoff and Landing, or Development of an Uber Self-Flying, Helipad-Capable, Quiet V-ESTOL Personal Transporter Integrated Flight Demonstrator

    Data.gov (United States)

    National Aeronautics and Space Administration — Several aspects of this research are completely unique compared to prior attempts to achieve low noise vertical lift solutions, and are an artifact of the incredible...

  1. Understanding and removing surface states limiting charge transport in TiO2 nanowire arrays for enhanced optoelectronic device performance.

    Science.gov (United States)

    Sheng, Xia; Chen, Liping; Xu, Tao; Zhu, Kai; Feng, Xinjian

    2016-03-01

    Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO 2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO 2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO 2 NWs can be developed and well-utilized, which is significantly important for their practical applications.

  2. Community reaction to noise from power stations

    International Nuclear Information System (INIS)

    Job, R.F.S.; Hede, A.J.

    1989-01-01

    Community reaction is a major consideration in noise control. The relationship between noise exposure and community reaction has received considerable attention in relation to railway, traffic, aircraft and impulsive noise. The results have shown a number of features in common, including: similarly shaped noise/reaction functions; similar results across different measurement techniques and cultures, noise/reaction correlations based on individual respondent data are low (mean r = 0.42 ± 0.12: Job, 1988), although correlations of .58 and above have been reported correlations based on data grouped by noise exposure are generally high and relatively unaffected by the type of noise studied whereas correlations based on individual data tend to be lower for impulsive noise than for transportation noise attitude to the noise source and sensitivity to noise shows strong correlations with reaction. This paper reports that the present study was undertaken in order toe establish over a wider range of noise exposure whether community reaction to power station noise is similar to reaction to other types of non-impulsive noise. It is possible that reaction is different given important differences in the source of the noise which may affect attitude. Attitudes towards power stations may be more positive than attitudes to aircraft or rail noise for example, because almost all respondents use electricity regularly every day. Further, the power stations in the present study provided employment for the relatively small surrounding communities

  3. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    Science.gov (United States)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  4. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  5. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  6. Simulating surface oil transport during the Deepwater Horizon oil spill: Experiments with the BioCast system

    Science.gov (United States)

    Jolliff, Jason Keith; Smith, Travis A.; Ladner, Sherwin; Arnone, Robert A.

    2014-03-01

    The U.S. Naval Research Laboratory (NRL) is developing nowcast/forecast software systems designed to combine satellite ocean color data streams with physical circulation models in order to produce prognostic fields of ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system to rapidly combine the latest satellite imagery of the oil slick distribution with surface circulation fields in order to produce oil slick transport scenarios and forecasts. In one such sequence of experiments, MODIS satellite true color images were combined with high-resolution ocean circulation forecasts from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®) to produce 96-h oil transport simulations. These oil forecasts predicted a major oil slick landfall at Grand Isle, Louisiana, USA that was subsequently observed. A key driver of the landfall scenario was the development of a coastal buoyancy current associated with Mississippi River Delta freshwater outflow. In another series of experiments, longer-term regional circulation model results were combined with oil slick source/sink scenarios to simulate the observed containment of surface oil within the Gulf of Mexico. Both sets of experiments underscore the importance of identifying and simulating potential hydrodynamic conduits of surface oil transport. The addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend beyond horizontal trajectory analysis.

  7. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G

    2010-04-01

    We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.

  8. The diffusion mechanism and convective transport in the formation of surface anomalies of RADON-222 generated at depth

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.

    1982-01-01

    A preliminar study on the importance of a thermally-activated convective transport of radon is made in order to explain radon anomalies at surface generated at great depth. It is theoretically shown that convective currents should be of the order of 10 μm/s or larger to explain such anomalies. The influence of surface temperature changes on the convective transport is also discussed. Seasonal changes in temperature typical of climates such as that of southern Brazil can develop thermal inversion layers at depths up to 20 metres. The optimum period of the year for the employment of surface emanometric techniques is during the second and the third months after the winter peak when the thermal inversion barriers are less intense. (Author) [pt

  9. Transport and fate of hexachlorocyclohexanes in the oceanic air and surface seawater

    Directory of Open Access Journals (Sweden)

    Z. Xie

    2011-09-01

    Full Text Available Hexachlorocyclohexanes (HCHs are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (α-, γ- and β-HCH in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. ΣHCHs concentrations (the sum of α-, γ- and β-HCH in the lower atmosphere ranged from 12 to 37 pg m−3 (mean: 27 ± 11 pg m−3 in the Northern Hemisphere (NH, and from 1.5 to 4.0 pg m−3 (mean: 2.8 ± 1.1 pg m−3 in the Southern Hemisphere (SH, respectively. Water concentrations were: α-HCH 0.33–47 pg l−1, γ-HCH 0.02–33 pg l−1 and β-HCH 0.11–9.5 pg l−1. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987–1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2–3 orders of magnitude. Air-water exchange gradients suggested net deposition for α-HCH (mean: 3800 pg m−2 day−1 and γ-HCH (mean: 2000 pg m−2 day−1, whereas β-HCH varied between equilibrium (volatilization: <0–12 pg m−2 day−1 and net deposition (range: 6–690 pg m−2 day−1. Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains and drive long-range transport from sources to deposition in the open oceans. Biological productivities may

  10. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  11. Role of rational surfaces on fluctuations and transport in the plasma edge of the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Lopez-Fraguas, A.

    2000-01-01

    It has been shown that transport barriers in toroidal magnetically confined plasmas tend to be linked to regions of unique magnetic topology such as the location of a minimum in the safety factor, rational surfaces or the boundary between closed and open flux surfaces. In the absence of E x B sheared flows, fluctuations are expected to show maximum amplitude near rational surfaces, and plasma confinement might tend to deteriorate. On the other hand, if the generation of E x B sheared flows were linked to low order rational surfaces, these would be beneficial to confinement. Experimental evidence of E x B sheared flows linked to rational surfaces has been obtained in the plasma edge region of the TJ-II stellarator. (author)

  12. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  13. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    Science.gov (United States)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are

  14. Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies

    Science.gov (United States)

    Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.

    2017-12-01

    Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are

  15. The Modelling Analysis of the Response of Convective Transport of Energy and Water to Multiscale Surface Heterogeneity over Tibetan Plateau

    Science.gov (United States)

    SUN, G.; Hu, Z.; Ma, Y.; Ma, W.

    2017-12-01

    The land-atmospheric interactions over a heterogeneous surface is a tricky issue for accurately understanding the energy-water exchanges between land surface and atmosphere. We investigate the vertical transport of energy and water over a heterogeneous land surface in Tibetan Plateau during the evolution of the convective boundary layer using large eddy simulation (WRF_LES). The surface heterogeneity is created according to remote sensing images from high spatial resolution LandSat ETM+ images. The PBL characteristics over a heterogeneous surface are analyzed in terms of secondary circulations under different background wind conditions based on the horizontal and vertical distribution and evolution of wind. The characteristics of vertical transport of energy and heat over a heterogeneous surface are analyzed in terms of the horizontal distribution as well as temporal evolution of sensible and latent heat fluxes at different heights under different wind conditions on basis of the simulated results from WRF_LES. The characteristics of the heat and water transported into the free atmosphere from surface are also analyzed and quantified according to the simulated results from WRF_LES. The convective transport of energy and water are analyzed according to horizontal and vertical distributions of potential temperature and vapor under different background wind conditions. With the analysis based on the WRF_LES simulation, the performance of PBL schemes of mesoscale simulation (WRF_meso) is evaluated. The comparison between horizontal distribution of vertical fluxes and domain-averaged vertical fluxes of the energy and water in the free atmosphere is used to evaluate the performance of PBL schemes of WRF_meso in the simulation of vertical exchange of energy and water. This is an important variable because only the energy and water transported into free atmosphere is able to influence the regional and even global climate. This work would will be of great significance not

  16. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium.

    Directory of Open Access Journals (Sweden)

    Vinciane Saint-Criq

    Full Text Available Male cystic fibrosis (CF patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1 and CF (CuFi-1 bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1-10 nM reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na(+/K(+ATPase in CF cells.

  17. Inhibition of beta-amino acid transport by diamide does not involve the brush border membrane surface

    International Nuclear Information System (INIS)

    Chesney, R.W.; Gusowski, N.; Albright, P.

    1985-01-01

    Diamide (dicarboxylic acid bis-(N,N-dimethylamide) has been shown in previous studies to block the uptake of the beta-amino acid taurine at its high affinity transport site in rat renal cortex slices. Diamide may act by increasing the efflux of taurine from the slice. Studies performed in rat slices again indicate enhanced efflux over 8-12 minutes. The time course of reduced glutathione (GSH) depletion from renal cortex is similar, indicating a potential interaction between GSH depletion and inhibition of taurine accumulation. The effect of 9 mM diamide on the Na+ -dependent accumulation of taurine (10 and 250 microM) by brush border membrane vesicles was examined, and the taurine uptake value both initially and at equilibrium was the same in the presence and absence of diamide. Isolation of the brush border surface and subsequent transport studies of taurine are not influenced by diamide. Thus, diamide inhibition of taurine uptake does not involve physiochemical alteration of the membrane surface where active amino acid transport occurs, despite the thiol-oxidizing properties of this agent. Further, these studies suggest that diamide either acts at the basolateral surface, rather than the brush border surface of rat renal cortex or requires the presence of an intact tubule, capable of metabolism, prior to its inhibitory action

  18. Computational simulation of biomolecules transport with multi-physics near microchannel surface for development of biomolecules-detection devices.

    Science.gov (United States)

    Suzuki, Yuma; Shimizu, Tetsuhide; Yang, Ming

    2017-01-01

    The quantitative evaluation of the biomolecules transport with multi-physics in nano/micro scale is demanded in order to optimize the design of microfluidics device for the biomolecules detection with high detection sensitivity and rapid diagnosis. This paper aimed to investigate the effectivity of the computational simulation using the numerical model of the biomolecules transport with multi-physics near a microchannel surface on the development of biomolecules-detection devices. The biomolecules transport with fluid drag force, electric double layer (EDL) force, and van der Waals force was modeled by Newtonian Equation of motion. The model validity was verified in the influence of ion strength and flow velocity on biomolecules distribution near the surface compared with experimental results of previous studies. The influence of acting forces on its distribution near the surface was investigated by the simulation. The trend of its distribution to ion strength and flow velocity was agreement with the experimental result by the combination of all acting forces. Furthermore, EDL force dominantly influenced its distribution near its surface compared with fluid drag force except for the case of high velocity and low ion strength. The knowledges from the simulation might be useful for the design of biomolecules-detection devices and the simulation can be expected to be applied on its development as the design tool for high detection sensitivity and rapid diagnosis in the future.

  19. Strategies for reducing the impacts of surface transportation on global climate change : a synthesis of policy research and state and local mitigation strategies

    Science.gov (United States)

    2009-03-01

    Climate change is likely to have more impact on the future of surface transportation than any other issue. The challenges and implications for surface transportation and for state DOTs include: the need to support major GHG reductions, the need to me...

  20. Drone noise

    Science.gov (United States)

    Tinney, Charles; Sirohi, Jayant; University of Texas at Austin Team

    2017-11-01

    A basic understanding of the noise produced by single and multirotor drones operating at static thrust conditions is presented. This work acts as an extension to previous efforts conducted at The University of Texas at Austin (Tinney et al. 2017, AHS Forum 73). Propeller diameters ranging from 8 inch to 12 inch are examined for configurations comprising an isolated rotor, a quadcopter configuration and a hexacopter configuration, and with a constant drone pitch of 2.25. An azimuthal array of half-inch microphones, placed between 2 and 3 hub-center diameters from the drone center, are used to assess the acoustic near-field. Thrust levels, acquired using a six degree-of-freedom load cell, are then used to correlate acoustic noise levels to aerodynamic performance for each drone configuration. The findings reveal a nearly logarithmic increase in noise with increasing thrust. However, for the same thrust condition, considerable noise reduction is achieved by increasing the number of propeller blades thereby reducing the blade passage frequency and both the thickness and loading noise sources that accompany it.

  1. The associations between noise sensitivity, reported physical and mental health, perceived environmental quality, and noise annoyance

    Directory of Open Access Journals (Sweden)

    Dirk Schreckenberg

    2010-01-01

    Full Text Available One hundred and ninety residents around Frankfurt Airport (46% female; 17-80 years were interviewed concerning noise annoyance due to transportation noise (aircraft, road traffic, perceived mental and physical health, perceived environmental quality, and noise sensitivity. The aim of the analyses was to test whether noise sensitivity reflects partly general environmental sensitivity and is associated with an elevated susceptibility for the perception of mental and physical health. In this study, the reported physical and mental health variables were not associated with noise exposure but with noise annoyance, and were interpreted to reflect nonspecific codeterminants of annoyance rather than noise effects. Noise sensitivity was found to influence total noise annoyance and aircraft noise annoyance but to a lesser degree annoyance due to road traffic noise. Noise sensitivity was associated with reported physical health, but not with reported mental health. Noise-sensitive persons reported poorer environmental quality in their residential area than less sensitive persons in particular with regard to air traffic (including the facets noise, pollution, and contaminations and quietness. Other aspects of the perceived quality of the environment were scarcely associated with noise sensitivity. This indicates that noise sensitivity is more specific and a reliable predictor of responses to noise from the dominant source (in this case air traffic rather than a predictor of the individual perception of the environmental quality in general.

  2. Adapting directives on noise emission reduction in fisheries and marine transport.Its impact on the economy; Adaptacion de las directivas sobre reduccion de emisiones acusticas en la pesca y transporte maritimo. Su impacto en la economia

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Palomo, P.

    2012-07-01

    The environmental impact assessment of a vessel requires the introduction of a new indicator called Noise and Vibration Full Signature. This indicator includes: N and V on board, noise radiated to harbour and underwater radiated noise. The last one has became not only the most remarkable novelty but also the biggest technical challenge to be solved. This manuscript details the technical-economical, also in terms of feasibility, consequences which this environmental policy will imply in the european marine sector. As a counterpoint, it is detailed the success of the spanish marine sector in the shipbuilding of silent vessels. (Author)

  3. Aerodynamic Noise Generated by Shinkansen Cars

    Science.gov (United States)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  4. Optimizing Transport in Surface Mines, Taking into Account the Quality of Extracted Raw Ore

    Directory of Open Access Journals (Sweden)

    Marian Šofranko

    2012-12-01

    Full Text Available This articles concerns problemacy of appropriate separation of transporting mechanisms for mining minerals from individulalteritories. In the following sections of the article a model solution is presented with the use of newly created program for optimizationof transport, taking into account the required quality of extracted raw ore. This process is being done through computing analysisand programming language Borland C++ Builder

  5. Transport of temperature and humidity variance and covariance in the marine surface layer

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Højstrup, J.

    1998-01-01

    In this paper we address the budget of potential temperature T and moisture mixing ratio q variances as well as the q - T covariance budget. We focus on the vertical transport and study the quantities contained in these terms. Estimates of transport terms are rare and to the best of our knowledge...

  6. Charge and current transport in open field lines turbulence: Influence of plasma-surface boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Futtersack, R., E-mail: romain.futtersack@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Universite Paul Sabatier Toulouse, LAPLACE, 118 Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Hagelaar, G. [Universite Paul Sabatier Toulouse, LAPLACE, 118 Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Ghendrih, Ph.; Simonin, A. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2013-07-15

    We investigate the impact of both parallel and transverse boundary conditions on the current and charge transport in open field line systems using the TOKAM2D code, which solves a minimal model for interchange turbulence. Various limit test cases are discussed and analyzed. In the parallel direction, the sheath conductivity is found to play an essential role in the stabilization of large-scale potential structures, leading to the formation of transport channel or transport barrier respectively for an insulating end wall or a wall with an enhanced sheath conductivity. On another hand, the addition of transverse boundary conditions intrinsically changes the transport characteristics, influencing both radial profiles and probability density functions. It underlines that in some cases a detailed description of the plasma-wall interaction process is required to get a proper description of the current loop pattern that determines electrostatic turbulent transport.

  7. A preliminary investigation of the applicability of surface complexation modeling to the understanding of transportation cask weeping

    International Nuclear Information System (INIS)

    Granstaff, V.E.; Chambers, W.B.; Doughty, D.H.

    1994-01-01

    A new application for surface complexation modeling is described. These models, which describe chemical equilibria among aqueous and adsorbed species, have typically been used for predicting groundwater transport of contaminants by modeling the natural adsorbents as various metal oxides. Our experiments suggest that this type of modeling can also explain stainless steel surface contamination and decontamination mechanisms. Stainless steel transportation casks, when submerged in a spent fuel storage pool at nuclear power stations, can become contaminated with radionuclides such as 137 Cs, 134 Cs, and 60 Co. Subsequent release or desorption of these contaminants under varying environmental conditions occasionally results in the phenomenon known as open-quotes cask weeping.close quotes We have postulated that contaminants in the storage pool adsorb onto the hydrous metal oxide surface of the passivated stainless steel and are subsequently released (by conversion from a fixed to a removable form) during transportation, due to varying environmental factors, such as humidity, road salt, dirt, and acid rain. It is well known that 304 stainless steel has a chromium enriched passive surface layer; thus its adsorption behavior should be similar to that of a mixed chromium/iron oxide. To help us interpret our studies of reversible binding of dissolved metals on stainless steel surfaces, we have studied the adsorption of Co +2 on Cr 2 O 3 . The data are interpreted using electrostatic surface complexation models. The FITEQL computer program was used to obtain the model binding constants and site densities from the experimental data. The MINTEQA2 computer speciation model was used, with the fitted constants, in an attempt to validate this approach

  8. Modelling for Near-Surface Transport Dynamics of Hydrogen of Plasma Facing Materials by use of Cellular Automaton

    International Nuclear Information System (INIS)

    Shimura, K.; Terai, T.; Yamawaki, M.

    2003-01-01

    In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in Cellular Automaton (CA). The modelling is achieved by downgrading the surface to one dimension. The model consists of two parts that are surface migration and desorption. The former is attained by randomly sorting the particles at each time, the latter is realised by modelling the thermally-activated process. For the verification of this model, thermal desorption is simulated then the comparison with the chemical kinetics is carried out. Excellent agreement is observed from the result. The results show that this model is reasonable to express the recombinative desorption of two chemisorbed adatoms. Though, the application of this model is limited to the second-order reaction case. But it can be believed that the groundwork of modelling the transport dynamics of hydrogen through the surface under complex conditions is established

  9. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William Jowett [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  10. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Riley, W.J.

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  11. 40 CFR 205.52 - Vehicle noise emission standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vehicle noise emission standards. 205... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52 Vehicle noise emission standards. (a) Low Speed Noise Emission Standard. Vehicles which are manufactured after...

  12. Increasing the number and signal-to-noise ratio of OBS traces with supervirtual refraction interferometry and free-surface multiples

    KAUST Repository

    Bharadwaj, P.; Wang, X.; Schuster, Gerard T.; McIntosh, K.

    2013-01-01

    The theory of supervirtual interferometry is modified so that free-surface related multiple refractions can be used to enhance the signal-to-noise ratio (SNR) of primary refraction events by a factor proportional to√Ns, where Ns is the number of post-critical sources for a specified refraction multiple. We also show that refraction multiples can be transformed into primary refraction events recorded at virtual hydrophones located between the actual hydrophones. Thus, data recorded by a coarse sampling of ocean bottom seismic (OBS) stations can be transformed, in principle, into a virtual survey with P times more OBS stations, where P is the order of the visible free-surface related multiple refractions. The key assumption is that the refraction arrivals are those of head waves, not pure diving waves. The effectiveness of this method is validated with both synthetic OBS data and an OBS data set recorded offshore from Taiwan. Results show the successful reconstruction of far-offset traces out to a source-receiver offset of 120 km. The primary supervirtual traces increase the number of pickable first arrivals from approximately 1600 to more than 3100 for a subset of the OBS data set where the source is only on one side of the recording stations. In addition, the head waves associated with the first-order free-surface refraction multiples allow for the creation of six new common receiver gathers recorded at virtual OBS station located about half way between the actual OBS stations. This doubles the number of OBS stations compared to the original survey and increases the total number of pickable traces from approximately 1600 to more than 6200. In summary, our results with the OBS data demonstrate that refraction interferometry can sometimes more than quadruple the number of usable traces, increase the source-receiver offsets, fill in the receiver line with a denser distribution of OBS stations, and provide more reliable picking of first arrivals. Apotential liability

  13. Increasing the number and signal-to-noise ratio of OBS traces with supervirtual refraction interferometry and free-surface multiples

    KAUST Repository

    Bharadwaj, P.

    2013-01-10

    The theory of supervirtual interferometry is modified so that free-surface related multiple refractions can be used to enhance the signal-to-noise ratio (SNR) of primary refraction events by a factor proportional to√Ns, where Ns is the number of post-critical sources for a specified refraction multiple. We also show that refraction multiples can be transformed into primary refraction events recorded at virtual hydrophones located between the actual hydrophones. Thus, data recorded by a coarse sampling of ocean bottom seismic (OBS) stations can be transformed, in principle, into a virtual survey with P times more OBS stations, where P is the order of the visible free-surface related multiple refractions. The key assumption is that the refraction arrivals are those of head waves, not pure diving waves. The effectiveness of this method is validated with both synthetic OBS data and an OBS data set recorded offshore from Taiwan. Results show the successful reconstruction of far-offset traces out to a source-receiver offset of 120 km. The primary supervirtual traces increase the number of pickable first arrivals from approximately 1600 to more than 3100 for a subset of the OBS data set where the source is only on one side of the recording stations. In addition, the head waves associated with the first-order free-surface refraction multiples allow for the creation of six new common receiver gathers recorded at virtual OBS station located about half way between the actual OBS stations. This doubles the number of OBS stations compared to the original survey and increases the total number of pickable traces from approximately 1600 to more than 6200. In summary, our results with the OBS data demonstrate that refraction interferometry can sometimes more than quadruple the number of usable traces, increase the source-receiver offsets, fill in the receiver line with a denser distribution of OBS stations, and provide more reliable picking of first arrivals. Apotential liability

  14. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  15. The deterioration during transport and storage of tomato fruits by microorganisms contaminating the surface and latent infected tissue

    OpenAIRE

    河野, 又四; 寺下, 隆夫

    1988-01-01

    [Author abstract]Deterioration during transport and storage of tomato fruits is generally thought to be caused by microorganisms contaminating the surface and latent infected tissue of apparently healthy fruit. Counts of viable airborne microorganisms showed that there were more in plastic greenhouses than in open culure of tomatoes. Altemaria, Aspergillus niger, Asp. oryzae, Cladosporium, Fusarium, Mucor, Penicillium, Trichoderma, Trichothecium, Bacillus, Erwinia and Pseudomonas were among t...

  16. THE POSSIBILITY OF REDUCING THE IMPACT OF TRAFFIC NOISE ON THE PERSON IN THE PASSENGER CARS OF A RAILWAY TRANSPORT IS THE METHOD, BASED ON THE MASKING EFFECT

    Directory of Open Access Journals (Sweden)

    S. V. Shmakov

    2008-01-01

    Full Text Available The problem of reduction of the long-term traffic noise effect on the person in coach passenger spaces is examined. The method of solving the problem is offered. The corresponding calculations and analysis of results are performed. The functional diagram on technical realization of this method is proposed.

  17. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    International Nuclear Information System (INIS)

    Li, Jian-wei; Zhao, Chong-jun; Feng, Chun; Yu, Guang-hua; Zhou, Zhongfu

    2015-01-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress

  18. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    Science.gov (United States)

    Li, Jian-wei; Zhao, Chong-jun; Feng, Chun; Zhou, Zhongfu; Yu, Guang-hua

    2015-08-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.

  19. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-wei [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Chong-jun; Feng, Chun; Yu, Guang-hua [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhou, Zhongfu [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2015-08-15

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.

  20. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes - A flume experiment.

    Science.gov (United States)

    Bento, Célia P M; Commelin, Meindert C; Baartman, Jantiene E M; Yang, Xiaomei; Peters, Piet; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2018-03-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m -2 of a glyphosate-based formulation (CLINIC ® ) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h -1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable. Copyright © 2017 Elsevier Ltd

  1. A Two-Phase Cooling Loop for Fission Surface Power Waste Heat Transport, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current lunar-based Fission Surface Power (FSP) Systems that will support sustained surface outposts consist of a nuclear reactor with power converters, whose waste...

  2. Modulating the Surface State of SiC to Control Carrier Transport in Graphene/SiC.

    Science.gov (United States)

    Jia, Yuping; Sun, Xiaojuan; Shi, Zhiming; Jiang, Ke; Liu, Henan; Ben, Jianwei; Li, Dabing

    2018-05-28

    Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000-1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000-1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    Science.gov (United States)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  4. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus

    DEFF Research Database (Denmark)

    Lauritzen, Fredrik; Heuser, Kjell; de Lanerolle, Nihal C

    2012-01-01

    Emerging evidence points to monocarboxylates as key players in the pathophysiology of temporal lobe epilepsy (TLE) with hippocampal sclerosis (mesial temporal lobe epilepsy, MTLE). Monocarboxylate transporters (MCTs) 1 and 2, which are abundantly present on brain endothelial cells and perivascular...

  5. Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska

    Science.gov (United States)

    2012-01-01

    The states in the Pacific Northwest and Alaska region share interconnected transportation networks for people, goods, and services that support the : regional economy, mobility, and human safety. Regional weather has and will continue to affect the p...

  6. Using Flux Information at Surface Water Boundaries to Improve a Groundwater Flow and Transport Model

    National Research Council Canada - National Science Library

    Genereux, David

    2000-01-01

    We investigated the performance of a groundwater flow and solute transport model when different combinations of hydraulic head, seepage flux, and chloride concentration data were used in calibration of the model...

  7. Neoclassical resonant-plateau transport in the noncircular equipotential surface of a tandem mirror

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Ishii, K.; Yatsu, K.; Miyoshi, S.

    1988-07-01

    Neoclassical resonant-plateau transport in a minimum-B anchored tandem mirror is calculated in an experimentally observed case that a magnetic flux tube of an equipotential contours is not circular at the central cell. (author)

  8. Neoclassical resonant-plateau transport in the noncircular equipotential surface of a tandem mirror

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Ishii, K.; Yatsu, K.; Miyoshi, S.

    1989-01-01

    Neoclassical resonant-plateau transport in a minimum-B anchored tandem mirror is calculated in an experimentally observed case where a flux tube of equipotential contours is not circular at the central cell

  9. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)

    2004-12-08

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.

  10. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    International Nuclear Information System (INIS)

    Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio

    2004-01-01

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties

  11. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, B.; Chen, T.; Shklovskii, B. I., E-mail: shklovsk@physics.spa.umn.edu [University of Minnesota, Fine Theoretical Physics Institute (United States)

    2013-09-15

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

  12. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states

  13. Noise control in aeroacoustics; Proceedings of the 1993 National Conference on Noise Control Engineering, NOISE-CON 93, Williamsburg, VA, May 2-5, 1993

    Science.gov (United States)

    Hubbard, Harvey H. (Editor)

    1993-01-01

    In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects.

  14. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 1: Traffic Noise Measurement and Abatement Techniques

    Directory of Open Access Journals (Sweden)

    MD Ohiduzzaman

    2016-08-01

    Full Text Available Noise pollution due to highway traffic has drawn the attention of transportation agencies worldwide. Noise pollution is an irritant to residents, especially in urban areas near roads with high traffic volume. In addition to its adverse effects on the quality of life, traffic noise can induce stress that could lead to sleep disturbance and anxiety. Traditionally, noise barrier walls have been used for highways to mitigate traffic noise. However, using barrier walls as a noise abatement measure has proven to be very expensive. In addition to the cost, noise barrier walls are not always effective because they must break the line of sight to work properly, which is not always possible in case of intersections or driveways. Therefore, researchers especially from Europe and USA have been very proactive to reduce the noise at source. A number of research studies show traffic noise can be reduced by using an alternative surface type or changing texture of the pavement while complying with other requirements of sustainability, i.e., safety, structural durability, construction and maintenance costs. This paper presents a comprehensive review of the research conducted on this subject. A review of the tire-pavement noise generation and amplification mechanism, various traffic noise measurement methods and correlation among these methods, in addition to the abatement techniques used by various agencies to reduce pavement noise, is also presented.

  15. Near surface structure of the North Anatolian Fault Zone near 30°E from Rayleigh and Love wave tomography using ambient seismic noise.

    Science.gov (United States)

    Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.

    2017-12-01

    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  16. Recent developments on surface contamination limits for packages and conveyances in transport regulations

    International Nuclear Information System (INIS)

    Thierfeldt, S.; Woerlen, S.; Lorenz, B.; Schwarz, W.

    2009-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material [1] contain requirements for contamination limits on packages and conveyances used for the transport of radioactive material. Current contamination limits for packages and conveyances under routine transport conditions have been derived from a model proposed by Fairbairn nearly 50 years ago [3]. This model has proven effective if used with pragmatism, but is based on very conservative as well as extremely simple assumptions which is in no way appropriate any more and which is not compatible with ICRP recommendations regarding radiation protection standards. Therefore, a new model has been developed over the last 8 years which reflects all steps of the transport process. The derivation of this model has been fostered by the IAEA by initiating a Co-ordinated Research Project (see section 2). The results of the calculations using this model could be directly applied as new nuclide specific transport limits for the non-fixed contamination. A corresponding regulatory text has been drafted by an IAEA technical meeting TM-36514, which was held in Tokyo November 10-14, 2008 (see section 4). (orig.)

  17. Recent developments on surface contamination limits for packages and conveyances in transport regulations

    Energy Technology Data Exchange (ETDEWEB)

    Thierfeldt, S.; Woerlen, S. [Brenk Systemplanung GmbH, Aachen (Germany); Lorenz, B. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Schwarz, W. [VGB PowerTech e.V., Essen (Germany)

    2009-07-01

    The IAEA Regulations for the Safe Transport of Radioactive Material [1] contain requirements for contamination limits on packages and conveyances used for the transport of radioactive material. Current contamination limits for packages and conveyances under routine transport conditions have been derived from a model proposed by Fairbairn nearly 50 years ago [3]. This model has proven effective if used with pragmatism, but is based on very conservative as well as extremely simple assumptions which is in no way appropriate any more and which is not compatible with ICRP recommendations regarding radiation protection standards. Therefore, a new model has been developed over the last 8 years which reflects all steps of the transport process. The derivation of this model has been fostered by the IAEA by initiating a Co-ordinated Research Project (see section 2). The results of the calculations using this model could be directly applied as new nuclide specific transport limits for the non-fixed contamination. A corresponding regulatory text has been drafted by an IAEA technical meeting TM-36514, which was held in Tokyo November 10-14, 2008 (see section 4). (orig.)

  18. Aircraft noise, air pollution, and mortality from myocardial infarction.

    NARCIS (Netherlands)

    Huss, A.; Spoerri, A.; Egger, M.; Roosli, M.

    2010-01-01

    OBJECTIVE: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. METHODS: We analyzed the Swiss National Cohort, which includes

  19. Surface transport mechanisms in molecular glasses probed by the exposure of nano-particles

    Science.gov (United States)

    Ruan, Shigang; Musumeci, Daniele; Zhang, Wei; Gujral, Ankit; Ediger, M. D.; Yu, Lian

    2017-05-01

    For a glass-forming liquid, the mechanism by which its surface contour evolves can change from bulk viscous flow at high temperatures to surface diffusion at low temperatures. We show that this mechanistic change can be conveniently detected by the exposure of nano-particles native in the material. Despite its high chemical purity, the often-studied molecular glass indomethacin contains low-concentration particles approximately 100 nm in size and 0.3% in volume fraction. Similar particles are present in polystyrene, another often-used model. In the surface-diffusion regime, particles are gradually exposed in regions vacated by host molecules, for example, the peak of a surface grating and the depletion zone near a surface crystal. In the viscous-flow regime, particle exposure is not observed. The surface contour around an exposed particle widens over time in a self-similar manner as 3 (Bt)1/4, where B is a surface mobility constant and the same constant obtained by surface grating decay. This work suggests that in a binary system composed of slow- and fast-diffusing molecules, slow-diffusing molecules can be stranded in surface regions vacated by fast-diffusing molecules, effectively leading to phase separation.

  20. Minimization of gully erosion on reclaimed surface mines using the stable slope and sediment transport computer model

    International Nuclear Information System (INIS)

    McKenney, R.A.; Gardner, T.G.

    1992-01-01

    Disequilibrium between slope form and hydrologic and erosion processes on reclaimed surface coal mines in the humid temperate northeastern US, can result in gully erosion and sediment loads which are elevated above natural, background values. Initial sheetwash erosion is surpassed by gully erosion on reclamation sites which are not in equilibrium with post-mining hydrology. Long-term stability can be attained by designing a channel profile which is in equilibrium with the increased peak discharges found on reclaimed surface mines. The Stable Slope and Sediment transport model (SSAST) was developed to design stable longitudinal channel profiles for post-mining hydrologic and erosional processes. SSAST is an event based computer model that calculates the stable slope for a channel segment based on the post-mine hydrology and median grain size of a reclaimed surface mine. Peak discharge, which drives post-mine erosion, is calculated from a 10-year, 24-hour storm using the Soil Conservation Service curve number method. Curve number calibrated for Pennsylvania surface mines are used. Reclamation sites are represented by the rectangle of triangle which most closely fits the shape of the site while having the same drainage area and length. Sediment transport and slope stability are calculated using a modified Bagnold's equation with a correction factor for the irregular particle shapes formed during the mining process. Data from three reclaimed Pennsylvania surface mines were used to calibrate and verify SSAST. Analysis indicates that SSAST can predict longitudinal channel profiles for stable reclamation of surface mines in the humid, temperate northeastern US

  1. Radial electric field and transport near the rational surface and the magnetic island in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Tamura, N.

    2002-10-01

    The structure of the radial electric field and heat transport at the magnetic island in the Large Helical Device is investigated by measuring the radial profile of poloidal flow with charge exchange spectroscopy. The convective poloidal flow inside the island is observed when the n/m=1/1 external perturbation field becomes large enough to increase the magnetic island width above a critical value (15-20% of minor radius) in LHD. This convective poloidal flow results in a non-flat space potential inside the magnetic island. The sign of the curvature of the space potential depends on the radial electric field at the boundary of the magnetic island. The heat transport inside the magnetic island is studied with a cold pulse propagation technique. The experimental results show the existence of the radial electric field shear at the boundary of the magnetic island and a reduction of heat transport inside the magnetic island. (author)

  2. Chemical Evidence for Vertical Transport from Magma Chambers to the Surface During Mid-Ocean Ridge Volcanic Eruptions

    Science.gov (United States)

    Sinton, J. M.; Rubin, K. H.

    2009-12-01

    Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake

  3. Can clouds enhance long-range transport of low volatile, ionizable and surface-active chemicals?

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2011-01-01

    Atmospheric partitioning and transport of low volatile organic compounds is strongly influenced by the presence of water (e.g. clouds) and its deposition velocity (e.g. rainfall, snow). It was identified that the assumption of continuous rainfall underestimates the residence time and the transport....... The longer residence time predicted for some compounds in the LMT is due to the capacity of clouds to sorb non-volatile molecules in the liquid water and at the interface of cloud droplets. The efficiency of wet deposition to remove low volatile organic pollutants from the atmosphere is limited primarily...

  4. Transport of plutonium in surface and sub-surface waters from the Arctic shelf to the North Pole via the Lomonosov Ridge

    International Nuclear Information System (INIS)

    Leon Vintro, L.; McMahon, C.A.; Mitchell, P.I.; Josefsson, D.; Holm, E.; Roos, P.

    2002-01-01

    New data on the levels and long-range transport of plutonium in the Arctic Ocean, recorded in the course of two expeditions to this zone in 1994 and 1996, are discussed in this paper. Specifically, approximately 100 plutonium measurements in surface and sub-surface water sampled at 58 separate stations throughout the Kara, Laptev and East Siberian Seas, as well as along latitudinal transects across the Lomonosov Ridge, are reported and interpreted in terms of the circulation pathways responsible for the transport of this element from the North Atlantic to the Arctic Shelf and into the Arctic interior. In addition, the behaviour of plutonium in its transit through the vast Arctic shelf seas to open waters under extreme environmental conditions is discussed in terms of the partitioning of plutonium between filtered (<0.45 μm) seawater and suspended particulate, and its association with colloidal matter. Finally, limited evidence of the presence of a colloidal plutonium component in Arctic waters subject to direct riverine input is adduced

  5. Observations of Lagrangian transport in the Adriatic Sea from GPS-tracked surface drifters

    DEFF Research Database (Denmark)

    Carlson, Daniel Frazier

    2014-01-01

    -dependent dispersion on the surface ocean remains an important open subject in physical oceanography. Lagrangian observations from surface drifters come with their own set of problems, most notably limited numbers, sampling bias, finite lifetime, and position uncertainties from wind and wave effects. Despite...

  6. Multispectral Analysis of Surface Wave (MASW) Analysis of Near-Surface Structure at Brady Hot Springs from Active Source and Ambient Noise Using a 8700-meter Distributed Acoustic Sensing (DAS) Array

    Science.gov (United States)

    Wang, H. F.; Lord, N. E.; Zeng, X.; Fratta, D.; Feigl, K. L.; Team, P.

    2016-12-01

    The Porotomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench on the surface and 400 meters down a borehole at Brady Hot Springs, Nevada in March 2016. The goal of the experiment was to detect changes in geophysical properties associated with hydrologic changes. The DAS cable occupied a natural laboratory of 1500-by-500-by-400-meters overlying a commercial, geothermal field operated by Ormat Technologies. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 120-meters in length. A large Vibroseis truck (T-Rex) provided the seismic source with a sweep frequency between 5 and 80 Hz over 20 seconds. Over the 15 days of the experiment, the Vibroseis truck re-occupied approximately 250 locations outside and within the array days while changes were made in water reinjection from the power plant into wells in the field. At each source location, one vertical and two orthogonal horizontal modes were excited. Dispersion curves were constructed using MASW and a Vibroseis source location approximately in line with each DAS cable segment or from ambient noise correlation functions. Representative fence diagrams of S-wave profiles were constructed by inverting the dispersion curves obtained for several different line segments.

  7. Surface transport properties of Fe-based superconductors: The influence of degradation and inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Plecenik, T.; Gregor, M.; Sobota, R.; Truchly, M.; Satrapinskyy, L.; Kus, P.; Plecenik, A. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Kurth, F.; Holzapfel, B.; Iida, K. [Institute for Metallic Materials, IFW Dresden, P. O. Box 270116, D-01171 Dresden (Germany)

    2013-07-29

    Surface properties of Co-doped BaFe{sub 2}As{sub 2} epitaxial superconducting thin films were inspected by X-ray photoelectron spectroscopy, scanning spreading resistance microscopy (SSRM), and point contact spectroscopy (PCS). It has been shown that surface of Fe-based superconductors degrades rapidly if being exposed to air, what results in suppression of gap-like structure on PCS spectra. Moreover, SSRM measurements revealed inhomogeneous surface conductivity, what is consistent with strong dependence of PCS spectra on contact position. Presented results suggest that fresh surface and small probing area should be assured for surface sensitive measurements like PCS to obtain intrinsic properties of Fe-based superconductors.

  8. Stability and transport of graphene oxide nanoparticles in groundwater and surface water

    Science.gov (United States)

    A transport study investigating the effects of natural organic matter (NOM) in the presence of monovalent (KCl) and divalent (CaCl2) salts was performed in a packed bed column. The electrophoretic mobility (EPM) and effective diameter of the graphene oxide nanoparticles (GONPs) were measured as a fu...

  9. Quantification of turfgrass buffer performance in reducing transport of pesticides in surface runoff

    Science.gov (United States)

    Pesticides are used to control pests in managed biological system such as agricultural crops and golf course turf. Off-site transport of pesticides with runoff and their potential to adversely affect non-target aquatic organisms has inspired the evaluation of management practices to minimize pestic...

  10. A simulation tool for integrating climate change and Canadian surface transport : towards assessing impacts and adaptations

    International Nuclear Information System (INIS)

    Kanaroglou, P.; Maoh, H.; Woudsma, C.; Marshall, S.

    2008-01-01

    Extreme weather events resulting from climate change will have a significant impact of the performance of the Canadian transportation system. This presentation described a simulation tool designed to investigate the potential ramifications of future climate change on transportation and the economy. The CLIMATE-C tool was designed to simulate future weather scenarios for the years 2020 and 2050 using weather parameters obtained from a global general circulation model. The model accounted for linkages between weather, transportation, and economic systems. A random utility-based multi-regional input-output model was used to predict inter-regional trade flows by truck and rail in Canada. Simulated weather scenarios were used to describe predicted changes in demographic, social, economic, technological and environmental developments to 2100. Various changes in population and economic growth were considered. Six additional scenarios were formulated to consider moderate and high rainfall events, moderate, high and extreme snowfall, and cold temperatures. Results of the preliminary analysis indicated that the model is sensitive to changes in weather events. Future research is needed to evaluate future weather scenarios and analyze weather-transport data in order to quantify travel speed reduction parameters. tabs., figs.

  11. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Ri [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Kwan-Young [Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Oh, Si Hyoung, E-mail: sho74@kist.re.kr [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2017-01-15

    Graphical abstract: Strategically-designed spinel-structured nano-scale surface layer, LiM{sub x}Mn{sup IV}{sub 1−x}O{sub 4}, featuring a high Li{sup +} ion conductivity and a good chemical stability was applied on Al-doped LiMn{sub 2}O{sub 4} spinel for the drastic improvement of the electrochemical performance at the elevated temperature as a promising cathode material for lithium rechargeable batteries. - Highlights: • Spinel-structured surface layer with a high Li-ion conductivity and a good chemical stability was prepared. • Simple wet process was developed to apply nano-scale surface layer on aluminum doped lithium manganese oxide spinel. • The properties of nano-scale surface layer were characterized by analytical tools including GITT, HR-TEM and XAS. • Materials with surface coating layer exhibit an excellent electrochemical performance at the elevated temperature. - Abstract: Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO{sub 4} and LiMg{sub 0.5}Mn{sub 1.5}O{sub 4} layers on the surface of LiAl{sub 0.1}Mn{sub 1.9}O{sub 4}. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  12. Geomorphic Transport Laws and the Statistics of Topography and Stratigraphy

    Science.gov (United States)

    Schumer, R.; Taloni, A.; Furbish, D. J.

    2016-12-01

    Geomorphic transport laws take the form of partial differential equations in which sediment motion is a deterministic function of slope. The addition of a noise term, representing unmeasurable, or subgrid scale autogenic forcing, reproduces scaling properties similar to those observed in topography, landforms, and stratigraphy. Here we describe a transport law that generalizes previous equations by permitting transport that is local or non-local in addition to different types of noise. More importantly, we use this transport law to link the character of sediment transport to the statistics of topography and stratigraphy. In particular, we link the origin of the Sadler effect to the evolution of the earth surface via a transport law.

  13. Quasi-one-dimensional electron transport over the surface of a liquid-helium film

    International Nuclear Information System (INIS)

    Sokolov, Sviatoslav; Studart, Nelson

    2003-01-01

    Quasi-one-dimensional mobility of surface electrons over a liquid-helium suspended film is studied for a conducting channel. The electron mobility is calculated taking into account the electron scattering by helium atoms in the vapor phase, ripplons, and surface defects of the film substrate both in one-electron regime and in the so-called complete-control limit where the influence of inter-electron collisions on the electron distribution function is taken into account. It is shown that the mobility for low temperatures is dominated by the surface-defect scattering and its temperature dependence is essentially different from that of the electron-ripplon scattering

  14. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  15. Single-electron transport driven by surface acoustic waves: Moving quantum dots versus short barriers

    DEFF Research Database (Denmark)

    Utko, Pawel; Hansen, Jørn Bindslev; Lindelof, Poul Erik

    2007-01-01

    We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave...... or the gate voltage V-g of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added......, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously...

  16. A risk-informed basis for establishing non-fixed surface contamination limits for spent fuel transportation casks

    International Nuclear Information System (INIS)

    Rawl, R.R.; Eckerman, K.F.; Bogard, J.S.; Cook, J.R.

    2004-01-01

    The current limits for non-fixed contamination on packages used to transport radioactive materials were introduced in the 1961 edition of the International Atomic Energy Agency (IAEA) transport regulations and were based on radiation protection guidance and practices in use at that time. The limits were based on exposure scenarios leading to intakes of radionuclides by inhalation and external irradiation of the hands. These considerations are collectively referred to as the Fairbairn model. Although formulated over 40 years ago, the model remains unchanged and is still the basis of current regulatory-derived limits on package non-fixed surface contamination. There can also be doses that while not resulting directly from the contamination, are strongly influenced by and attributable to transport regulatory requirements for contamination control. For example, actions necessary to comply with the current derived limits for light-water-reactor (LWR) spent nuclear fuel (SNF) casks can result in significant external doses to workers. This is due to the relatively high radiation levels around the loaded casks, where workers must function during the measurement of contamination levels and while decontaminating the cask. In order to optimize the total dose received due to compliance with cask contamination levels, it is necessary to take into account all the doses that vary as a result of the regulatory limit. Limits for non-fixed surface contamination on spent fuel casks should be established by using a model that considers and optimizes the appropriate exposure scenarios both in the workplace and in the public environment. A risk-informed approach is needed to ensure optimal use of personnel and material resources for SNF-based packaging operations. This paper is a summary of a study sponsored by the US Nuclear Regulatory Commission and performed by Oak Ridge National Laboratory that examined the dose implications for removable surface contamination limits on spent fuel

  17. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  18. Transport and transformation of pharmaceuticals and other contaminants of emerging concern from wastewater discharge through surface water to drinking water intake and treatment

    Science.gov (United States)

    The ubiquitous presence of pharmaceuticals, hormones, and other contaminants of emerging concern (CECs) in surface-water resources have necessitated research that better elucidates pathways of transport and transformation for these compounds from their discharged wastewater, thro...

  19. Noise pollution resources compendium

    Science.gov (United States)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  20. Yesterday's noise - today's signal

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1978-01-01

    Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)

  1. Effect of prepulse on fast electron lateral transport at the target surface irradiated by intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lin, X. X.; Li, Y. T.; Liu, B. C.; Liu, F.; Du, F.; Wang, S. J.; Lu, X.; Chen, L. M.; Zhang, L.; Liu, X.; Wang, J.; Liu, F.; Liu, X. L.; Wang, Z. H.; Ma, J. L.; Wei, Z. Y.; Zhang, J.

    2010-01-01

    The effects of preplasma on lateral fast electron transport at front target surface, irradiated by ultraintense (>10 18 W/cm 2 ) laser pulses, are investigated by Kα imaging technique. A large annular Kα halo with a diameter of ∼560 μm surrounding a central spot is observed. A specially designed steplike target is used to identify the possible mechanisms. It is believed that the halos are mainly generated by the lateral diffusion of fast electrons due to the electrostatic and magnetic fields in the preplasma. This is illustrated by simulated electron trajectories using a numerical model.

  2. Surface harmonics method for two-dimensional time-dependent neutron transport problems of square-lattice nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A. [National Research Centre Kurchatov Institute, Kurchatov Sq. 1, Moscow (Russian Federation)

    2013-07-01

    Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)

  3. Gas Phase Transport, Adsorption and Surface Diffusion in Porous Glass Membrane

    Czech Academy of Sciences Publication Activity Database

    Yang, J.; Čermáková, Jiřina; Uchytil, Petr; Hamel, Ch.; Seidel-Morgenstern, A.

    2005-01-01

    Roč. 104, 2-4 (2005), s. 344-351 ISSN 0920-5861. [International Conference on Catalysis in Membrane Reactors /6./. Lahnstein, 06.07.2004-09.07.2004] R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas phase transport * vycor glass * adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.365, year: 2005

  4. Conceptual Model for the Transport of Energetic Residues from Surface Soil to Groundwater by Range Activities

    Science.gov (United States)

    2006-11-01

    fluoranthenes are common products of diesel emissions (Hering et al. 1984). Benzo(a)pyrene is common in creosote and motor vehicle particulate emissions (Wild...military ranges are associated with on-site vegetative burning, diesel exhaust, and atmospheric deposi- tion. Metals Metal oxides and salts are...Hence, slow transport of TNT from the soil bed is a limiting fac- tor in the phytoremediation or bioremediation of TNT. Fluxes were, in de- creasing

  5. Leveraging Service Oriented Architecture to Enhance Information Sharing for Surface Transportation Security

    Science.gov (United States)

    2008-09-01

    Fire and Emergency Management Services, Suffolk County Sheriff’s Department, the U.S. Attorney’s Office, the Bureau of Alcohol, Tobacco and Firearms...mass transit services. These include express and regular bus service, a downtown Skyway monorail , a trolley service and the Stadium Shuttle for various...safety related incidents rather than security, including transportation disruptions due to derailments, accidents, fires , hazardous materials spills

  6. New York state high-speed surface transportation study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    In 1990, New York State Governor Mario M. Cuomo created an interagency task force under the leadership of Lt. Governor Stan Lundine to investigate the potential of high speed ground transportation (HSGT) systems. Building on information from previous agency activities, including consultant efforts contracted by the New York State Energy Research and Development Authority (NYSERDA), the New York State Thruway Authority (NYSTA), and in-house analyses performed by New York State Department of Transportation (NYSDOT), the task force focused on the corridor between New York City and the Niagara Frontier. In December 1991, NYSERDA issued a contract for a study of high speed ground transportation options for New York State. The study`s objective was to assess potential rights-of-way, ridership, energy and environmental impacts, economic benefits, capital, operating, and maintenance costs, and financial viability of HSGT systems. This study builds upon and supplements previous and on-going HSGT activities conducted by the members of the interagency task force. These activities include: Maglev Technical and Economic Feasibility Study (NYSERDA); Maglev Demonstration Site Investigation (NYSTA); and New York/Massachusetts High Speed Ground Transportation Study (NYSDOT). This study is intended to verify and refine previous information and analyses and provide supplemental information and insights to be used in determining if additional investigation and activities involving HSGT are desirable for New York State. This study evaluates HSGT technologies capable of speeds significantly higher than those achieved with the present rail system. Three HSGT categories are used in this study: incremental rail improvement, very high-speed rail, and Maglev.

  7. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Science.gov (United States)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  8. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    Science.gov (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  9. Environmental Factors Having an Impact on the Noise Induced by Motor Vahicles

    Directory of Open Access Journals (Sweden)

    Rasa Akelaitytė

    2013-12-01

    Full Text Available The transport sector is rapidly developing industry in Lithuania. Over the past few years, a significant increase in motor vehicles on our roads can be noticed. Both light and heavy vehicles create economic benefits, and, at the same time, cause ecological and social problems such as noise, a growing number of accidents and environmental pollution. In order to reduce the rate of accidents, many places have been equipped with speed-limiting humps. However, the vehicles approaching them will increase noise levels. The article describes a calculation method of how to determine the influence of various factors caused by car noise. Reflections on the surface, the atmosphere and sound waves on road obstacles can increase or decrease sounds in the environment. The above introduced factors must be taken into account conducting noise measurement tests.Article in Lithuanian

  10. In situ investigation of the mechanisms of the transport to tissues of polycyclic aromatic hydrocarbons adsorbed onto the root surface of Kandelia obovata seedlings

    International Nuclear Information System (INIS)

    Li, Ruilong; Zhu, Yaxian; Zhang, Yong

    2015-01-01

    A novel method for in situ determination of the polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the root surface of Kandelia obovata seedlings was established using laser-induced time-resolved nanosecond fluorescence spectroscopy (LITRF). The linear dynamic ranges for the established method were 1.5–1240 ng/spot for phenanthrene, 1.0–1360 ng/spot for pyrene and 5.0–1220 ng/spot for benzo[a]pyrene. Then, the mechanisms of PAHs transport from the Ko root surface to tissues were investigated. The three-phase model including fast, slow and very slow fractions was superior to the single or dual-phase model to describe the PAHs transport processes. Moreover, the fast fraction of PAHs transport process was mainly due to passive movement, while the slow and very slow fractions were not. Passive movement was the main process of B[a]P adsorbed onto Ko root surface transport to tissues. In addition, the extent of the PAHs transport to Ko root tissues at different salinity were evaluated. - Highlights: • A novel method in situ determination PAHs adsorbed onto root surface was established. • The mechanisms of PAHs transport from root surface to tissues are investigated. • Passive movement is the main process of B[a]P transport from root surface to tissues. • Effects of salinity on the PAHs transport from root surface to tissues are evaluated. - Passive movement for the PAHs adsorbed onto Kandelia obovata root surface to tissues was observed by a newly established in situ LITRF method

  11. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    International Nuclear Information System (INIS)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de

    2013-02-01

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of 135 Cs, 59 Ni, 230 Th and 226 Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a tendency to

  12. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de [Amphos 21 Consulting S.L., Barcelona (Spain)

    2013-02-15

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of {sup 135}Cs, {sup 59}Ni, {sup 230}Th and {sup 226}Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a

  13. Optimal Height Calculation and Modelling of Noise Barrier

    Directory of Open Access Journals (Sweden)

    Raimondas Grubliauskas

    2011-04-01

    Full Text Available Transport is one of the main sources of noise having a particularly strong negative impact on the environment. In the city, one of the best methods to reduce the spread of noise in residential areas is a noise barrier. The article presents noise reduction barrier adaptation with empirical formulas calculating and modelling noise distribution. The simulation of noise dispersion has been performed applying the CadnaA program that allows modelling the noise levels of various developments under changing conditions. Calculation and simulation is obtained by assessing the level of noise reduction using the same variables. The investigation results are presented as noise distribution isolines. The selection of a different height of noise barriers are the results calculated at the heights of 1, 4 and 15 meters. The level of noise reduction at the maximum overlap of data, calculation and simulation has reached about 10%.Article in Lithuanian

  14. Influence of low-order rational magnetic surfaces on heat transport in TJ-II heliac ECRH plasmas

    International Nuclear Information System (INIS)

    Castejon, F.; Lopez-Bruna, D.; Estrada, T.; Ascasibar, E.; Zurro, B.; Baciero, A.

    2004-01-01

    We study the effect of low-order rational surfaces on electron heat transport in plasmas confined in the TJ-II stellarator (Alejaldre et al 1990 Fusion Technol. 17 131) and heated by electron cyclotron waves. Enhancement of core electron heat confinement is observed when the rational surface is placed in the vicinity of the power deposition zone, either by performing a magnetic configuration scan or by inducing Ohmic current in a single discharge. The key to improving heat confinement seems to be a locally strong positive radial electric field, which is made possible by a synergistic effect between enhanced electron heat fluxes through radial positions around low-order rationals and pump out mechanisms in the heat deposition zone. (author)

  15. Noise in CdZnTe detectors

    International Nuclear Information System (INIS)

    Luke, P. N.; Amman, M.; Lee, J. S.; Manfredi, P. F.

    2000-01-01

    Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may be the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments

  16. Long-range Transport of Asian Dust Storms: A Satellite/Surface Perspective on Societal and Scientific Influence

    Science.gov (United States)

    2007-01-01

    Among the many components contributing to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative forcing effect on the weather/climate system. As much as one-third to half of the global dust emissions, estimated about 800 Tg, are introduced annually into Earth's atmosphere from various deserts in China. Asian dust storm outbreaks are believed to have persisted for hundreds and thousands years over the vast territory of north and northwest China, but not until recent decades that many studies reveal the compelling evidence in recognizing the importance of these eolian dust particles for forming Chinese Loess Plateau and for biogeochemical cycling in the North Pacific Ocean to as far as in the Greenland ice-sheets through long-range transport. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites and its evolution monitored by satellite and surface network. In this paper, we will demonstrate the capability of a new satellite algorithm, called Deep Blue, to retrieve aerosol properties, particularly but not limited to, over bright-reflecting surfaces such as urban areas and deserts. Recently, many field campaigns were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. We will provide an overview of the outbreak of Asian dust storms, near source/sink and their evolution along transport pathway, from space and surface observations. The climatic effects and societal impacts of the Asian dusts will be addressed in depth. (to be presented in the International Workshop on Semi-Arid Land Surface-

  17. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment.

    Science.gov (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-12-31

    Aggregate breakdown influences the availability of soil particles for size-selective sediment transport with surface runoff during erosive rainfall events. Organic matter management is known to affect aggregate stability against breakdown, but little is known about how this translates into rainfall-induced aggregate fragmentation and sediment transport under field conditions. In this study, we performed field experiments in which artificial rainfall was applied after pre-wetting on three pairs of arable soil plots (1.5×0.75m) six weeks after incorporating a mixture of grass and wheat straw into the topsoil of one plot in each pair (OI treatment) but not on the other plot (NI treatment). Artificial rainfall was applied for approximately 2h on each pair at an intensity of 49.1mmh -1 . In both treatments, discharge and sediment concentration in the discharge were correlated and followed a similar temporal pattern after the onset of surface runoff: After a sharp increase at the beginning both approached a steady state. But the onset of runoff was more delayed on the OI plots, and the discharge and sediment concentration were in average only roughly half as high on the OI as on the NI plots. With increasing discharge the fraction of coarse sediment increased. This relationship did not differ between the two treatments. Thus, due to the lower discharge, the fraction of fine particles in the exported sediment was larger in the runoff from the OI plots than from the NI plots. The later runoff onset and lower discharge rate was related to a higher initial aggregate stability on the OI plots. Terrestrial laser scanning proved to be a very valuable method to map changes in the micro-topography of the soil surfaces. It revealed a much less profound decrease in surface roughness on the OI than on the NI plots. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Quantum Noise

    International Nuclear Information System (INIS)

    Beenakker, C W J

    2005-01-01

    Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The

  19. Demonstration of surface transport in a hybrid Bi2Se3/Bi2Te3 heterostructure

    OpenAIRE

    Zhao, Yanfei; Chang, Cui-Zu; Jiang, Ying; DaSilva, Ashley; Sun, Yi; Wang, Huichao; Xing, Ying; Wang, Yong; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Jian

    2013-01-01

    In spite of much work on topological insulators (TIs), systematic experiments for TI/TI heterostructures remain absent. We grow a high quality heterostructure containing single quintuple layer (QL) of Bi2Se3 on 19 QLs of Bi2Te3 and compare its transport properties with 20 QLs Bi2Se3 and 20 QLs Bi2Te3. All three films are grown on insulating sapphire (0001) substrates by molecular beam epitaxy (MBE). In situ angle-resolved photoemission spectroscopy (ARPES) provides direct evidence that the su...

  20. Ab-Initio Modelling Of Surface Site Reactivity And Fluid Transport In Clay Minerals Case Study: Pyrophyllite

    International Nuclear Information System (INIS)

    Churakov, S.V.

    2005-01-01

    Pyrophyllite, Al 2 [Si 4 O 10 ](OH) 2 , is the simplest structural prototype for 2:1 dioctahedral phyllosilicate. Because the net electric charge in pyrophyllite is zero, it is the best candidate for investigating the non electrostatic contribution to sorption and transport phenomena in clays. Using ab-initio simulations, we have investigated the reactivity and structure of the water-solid interface on the basal plane and edge sites of pyrophyllite. The calculations predict slightly hydrophobic behaviour of the basal plane. For the high water coverage (100), (110) and (-110), lateral facets have a lower energy than for the (010), (130) and (-130) surfaces. Analysis of the surface reactivity reveals that the =Al-OH groups are most easily protonated on the (010), (130) and (-130) facets. The =Al-O-Si= sites will be protonated on the (100), (130), (110), (-110) and (-130) surfaces. The =Al-OH 2 complexes are more easily de-protonated than the =Si-OH and =Al-OH sites. A spontaneous, reversible exchange of the protons between the solution and the edge sites has been observed in ab-initio molecular dynamics simulations at 300 K. Such near-surface proton diffusion may result in a significant contribution to the diffusion coefficients measured in neutron scattering experiments. (author)

  1. Spatial and temporal patterns of airflow across a foredune and beach surface under offshore winds: implications for aeolian sediment transport

    Science.gov (United States)

    Jackson, D.; Delgado-Fernandez, I.; Lynch, K.; Baas, A. C.; Cooper, J. A.; Beyers, M.

    2010-12-01

    The input of aeolian sediment into foredune systems from beaches represents a key component of sediment budget analysis along many soft sedimentary coastlines. Where there are significant offshore wind components in local wind regimes this is normally excluded from analysis. However, recent work has shown that if the topography of the foredune is favourable then this offshore component is steered or undergoes flow reversal through leeside eddying to give onshore transport events at the back beach under offshore flow conditions. At particular distances from the foredune crest flow reattaches to the surface to continue its incident offshore direction. The location of this reattachment point has important implications for aeolian transport of sand on the back beach and foredune toe locations. This study reports initial results where the positioning of the reattachment point is mobile and is driven by incident wind velocity (at the foredune crest) and the actual undulations of the foredune crest’s topography, dictating heterogeneous flow behaviour at the beach. Using detailed field measurements (25 Hz, three-dimensional sonic anemometry) and computational fluid dynamic modelling, a temporal and spatial pattern of reattachment positions are described. Implications for aeolian transport and dune evolution are also examined.

  2. Universal Majorana thermoelectric noise

    Science.gov (United States)

    Smirnov, Sergey

    2018-04-01

    Thermoelectric phenomena resulting from an interplay between particle flows induced by electric fields and temperature inhomogeneities are extremely insightful as a tool providing substantial knowledge about the microscopic structure of a given system. By tuning, e.g., parameters of a nanoscopic system coupled via tunneling mechanisms to two contacts, one may achieve various situations where the electric current induced by an external bias voltage competes with the electric current excited by the temperature difference of the two contacts. Even more exciting physics emerges when the system's electronic degrees freedom split to form Majorana fermions which make the thermoelectric dynamics universal. Here, we propose revealing these unique universal signatures of Majorana fermions in strongly nonequilibrium quantum dots via noise of the thermoelectric transport beyond linear response. It is demonstrated that whereas mean thermoelectric quantities are only universal at large-bias voltages, the noise of the electric current excited by an external bias voltage and the temperature difference of the contacts is universal at any bias voltage. We provide truly universal, i.e., independent of the system's parameters, thermoelectric ratios between nonlinear response coefficients of the noise and mean current at large-bias voltages where experiments may easily be performed to uniquely detect these truly universal Majorana thermoelectric signatures.

  3. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    Science.gov (United States)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  4. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  5. Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in silicon

    NARCIS (Netherlands)

    Büyükköse, S.; Vratzov, B.; van der Veen, Johan (CTIT); Santos, P.V.; van der Wiel, Wilfred Gerard

    2013-01-01

    We demonstrate piezo-electrical generation of ultrahigh-frequency surface acoustic waves on silicon substrates, using high-resolution UV-based nanoimprint lithography, hydrogen silsequioxane planarization, and metal lift-off. Interdigital transducers were fabricated on a ZnO layer sandwiched between

  6. Cosmogenic nuclides in the Martian surface: constraints for sample recovery and transport

    International Nuclear Information System (INIS)

    Englert, P.A.J.

    1988-01-01

    Stable and radioactive cosmogenic nuclides and radiation damage effects such as cosmic ray tracks can provide information on the surface history of Mars. A recent overview on developments in cosmogenic nuclide research for historical studies of predominantly extraterrestrial materials was published previously. The information content of cosmogenic nuclides and radiation damage effects produced in the Martian surface is based on the different ways of interaction of the primary galactic and solar cosmic radiation (GCR, SCR) and the secondary particle cascade. Generally the kind and extent of interactions as seen in the products depend on the following factors: (1) composition, energy and intensity of the primary SCR and GCR; (2) composition, energy and intensity of the GCR-induced cascade of secondary particles; (3) the target geometry, i.e., the spatial parameters of Martian surface features with respect to the primary radiation source; (4) the target chemistry, i.e., the chemical composition of the Martian surface at the sampling location down to the minor element level or lower; and (5) duration of the exposure. These factors are not independent of each other and have a major influence on sample taking strategies and techniques

  7. Interactions between bacteria and solid surfaces in relation to bacterial transport in porous media

    NARCIS (Netherlands)

    Rijnaarts, H.H.M.

    1994-01-01

    Interactions between bacteria and solid surfaces strongly influence the behaviour of bacteria in natural and engineered ecosystems. Many biofilm reactors and terrestrial environments are porous media. The purpose of the research presented in this thesis is to gain a better insight into the

  8. Spin-orbit torque in 3D topological insulator-ferromagnet heterostructure: crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2017-01-01

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore, our model accounts for spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large damping torque reported recently is more likely attributed to interfacial magnetoelectric effect, while spin Hall torque remains small even in the bulk-dominated regime.

  9. Spin-orbit torque in a three-dimensional topological insulator–ferromagnet heterostructure: Crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2018-01-01

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three-dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore our model accounts for the spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large dampinglike torque reported recently is more likely attributed to the Berry curvature of interfacial states, while spin Hall torque remains small even in the bulk-dominated regime.

  10. Spin-orbit torque in 3D topological insulator-ferromagnet heterostructure: crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit

    2017-11-29

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore, our model accounts for spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large damping torque reported recently is more likely attributed to interfacial magnetoelectric effect, while spin Hall torque remains small even in the bulk-dominated regime.

  11. Spin-orbit torque in a three-dimensional topological insulator–ferromagnet heterostructure: Crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit

    2018-04-02

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three-dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore our model accounts for the spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large dampinglike torque reported recently is more likely attributed to the Berry curvature of interfacial states, while spin Hall torque remains small even in the bulk-dominated regime.

  12. Safety during sea transport of radioactive materials. Probabilistic safety analysis of package fro sea surface fire accident

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Obara, Isonori; Akutsu, Yukio; Aritomi, Masanori

    2000-01-01

    The ships carrying irradiated nuclear fuel, plutonium and high level radioactive wastes(INF materials) are designed to keep integrity of packaging based on the various safety and fireproof measures, even if the ship encounters a maritime fire accident. However, granted that the frequency is very low, realistic severe accidents should be evaluated. In this paper, probabilistic safety assessment method is applied to evaluate safety margin for severe sea fire accidents using event tree analysis. Based on our separate studies, the severest scenario was estimated as follows; an INF transport ship collides with oil tanker and induces a sea surface fire. Probability data such as ship's collision, oil leakage, ignition, escape from fire region, operations of cask cooling system and water flooding systems were also introduced from above mentioned studies. The results indicate that the probability of which packages cannot keep their integrity during the sea surface fire accident is very low and sea transport of INF materials is carried out very safely. (author)

  13. Science and Society Test for Scientists: Transportation

    Science.gov (United States)

    Hafemeister, David

    1976-01-01

    Presents numerous questions concerning transportation systems, energy consumption, noise, air pollution and other transportation oriented topics. Solutions are provided using undergraduate pre-calculus mathematics. (CP)

  14. Interagency Symposium on University Research in Transportation Noise (2nd) Held at North Carolina State Univ., Raleigh on June 5-7, 1974. Book of Proceedings, Volume I

    Science.gov (United States)

    1974-06-01

    emphasis to the author’s experiences with causality correlation techniques. Some legitimate deficiencies of these methods, and a number of mis-construed...e.g., resulting from spurious, non-correlating noise on either channel) or a deficient estimate (resulting from band pass filtering of the signals or...34 [°’ ~klk3* "*2k3» "J*!» °l/ tk2 (ki + kI)jl/2 ♦3B - [l, -2ikoK/k/7, -i/^T]/[^r + ^-]1/2 ♦4B - [-g, -ikmYC, g*V^T]/[2Ya2k2]1/2 ♦5ß ■ I-g*. -ikmYc, g/^T

  15. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  16. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  17. Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein.

    Directory of Open Access Journals (Sweden)

    Ming Zhong

    Full Text Available Vitamin A and its derivatives (retinoids play diverse and crucial functions from embryogenesis to adulthood and are used as therapeutic agents in human medicine for eye and skin diseases, infections and cancer. Plasma retinol binding protein (RBP is the principal and specific vitamin A carrier in the blood and binds vitamin A at 1:1 ratio. STRA6 is the high-affinity membrane receptor for RBP and mediates cellular vitamin A uptake. STRA6 null mice have severely depleted vitamin A reserves for vision and consequently have vision loss, even under vitamin A sufficient conditions. STRA6 null humans have a wide range of severe pathological phenotypes in many organs including the eye, brain, heart and lung. Known membrane transport mechanisms involve transmembrane pores that regulate the transport of the substrate (e.g., the gating of ion channels. STRA6 represents a new type of membrane receptor. How this receptor interacts with its transport substrate vitamin A and the functions of its nine transmembrane domains are still completely unknown. These questions are critical to understanding the molecular basis of STRA6's activities and its regulation. We employ acute chemical modification to introduce chemical side chains to STRA6 in a site-specific manner. We found that modifications with specific chemicals at specific positions in or near the transmembrane domains of this receptor can almost completely suppress its vitamin A transport activity. These experiments provide the first evidence for the existence of a transmembrane pore, analogous to the pore of ion channels, for this new type of cell-surface receptor.

  18. Shinkansen noise: Research and achievements in countermeasures for Shinkansen noise

    Science.gov (United States)

    Kikuchi, I.

    1988-01-01

    In 1982, the Tohoku and Joetsu Shinkansen lines were opened. The result is the present Shinkansen network that runs through Japan from north to south, leading to a remarkable improvement in railway services, together with the provision of new, efficient connections with conventional lines. Since the opening of the Tokaido Shinkansen, the high utility of the Shinkansen as a high speed, large volume, and safe mode of transport has been gaining a high reputation. On the other hand, social demands for environmental preservation increased in strength with the advent of the period of Japan's high economic growth. Such demands were posed in the form of complaints about air and water pollution and noise from transportation. The problems of noise and vibration from Shinkansen train operation were posed mainly in relation to railway viaducts in urban areas. The Japanese National Railways (JNR) has made all-out efforts in technical development for noise reduction, obtained many achievements, and put them into practical use one by one on the Shinkansen lines. In the early stage of studies, there were many virgin areas for JNR staff, such as measurement technology, estimation methods, and noise alleviation technology. With the start of full-scale testing at a general test center in 1975, various studies and the development of effective measures made a great step forward. In March 1985, the maximum speed on the Tohoku Shinkansen was increased to 240 km/h, enhancing the Shinkansen reputation and resulting in a considerable growth of traffic. As a matter of course, new measures for noise reduction were taken for this line. In view of the history and results of voluminous studies over many years on the Shinkansen noise problem, and also of the roles and surrounding conditions of the Shinkansen as a mode of transport, however, new tasks are being posed concerning such aspects as how to accomplish environmental preservation in the future.

  19. Coastal currents and mass transport of surface sediments over the shelf regions of Monterey Bay, California

    Science.gov (United States)

    Wolf, S.C.

    1970-01-01

    In Monterey Bay, the highest concentrations of medium and fine sands occur nearshore between ten and thirty fathoms. Silt and clay accumulate in greater depths. Contours of median diameter roughly parallel the isobaths. Fine-grained materials are supplied to the bay region from erosion of cliffs which partly surround Monterey Bay, from sediment laden river discharge, and from continual reworking of widespread Pleistocene and Recent sea floor sediments. These sediments in turn are picked up by coastal currents and distributed over the shelf regions by present day current regimes. Studies of bottom currents over the shelf regions and in Monterey Canyon have revealed patterns which vary with seasonal changes. Current patterns during August and September exhibit remarkable symmetry about the axis of Monterey Submarine Canyon. Central Shelf currents north and south of Monterey Canyon flowed northwest at an average rate of 0.2 knots and south at 0.3 knots respectively. On the North Shelf between January and March currents flowed east to southeast at 0.3-0.5 knots with mirror image patterns above the South Shelf during the same period. Irregular current flow in the canyon indicates a complex current structure with frequent shifts in counterclockwise and clockwise direction over very short periods of time. Bottom topography of the canyon complex often causes localization of canyon currents. One particular observation at a depth of 51 fathoms indicated up-canyon flow at a rate of 0.2 knots. Most of the observed currents are related to seasonal variations, upwelling, ocean swell patterns, and to changes in the California and Davidson currents. Changes in current regimes are reflected in the patterns of sediment distribution and transport. Sediment transport is chiefly parallel to the isobaths, particularly on the North and South Shelf regions. Complex dispersal patterns are observed near Monterey Canyon and Moss Landing Harbor jetties. Longshore currents move sediments

  20. Nanofluidic transport over a curved surface with viscous dissipation and convective mass flux

    Energy Technology Data Exchange (ETDEWEB)

    Mehmood, Zaffar; Iqbal, Z.; Azhar, Ehtsham; Maraj, E.N. [HITEC Univ., Taxila (Pakistan). Dept. of Mathematics

    2017-06-01

    This article is a numerical investigation of boundary layer flow of nanofluid over a bended stretching surface. The study is carried out by considering convective mass flux condition. Contribution of viscous dissipation is taken into the account along with thermal radiation. Suitable similarity transformations are employed to simplify the system of nonlinear partial differential equations into a system of nonlinear ordinary differential equations. Computational results are extracted by means of a shooting method embedded with a Runge-Kutta Fehlberg technique. Key findings include that velocity is a decreasing function of curvature parameter K. Moreover, Nusselt number decreases with increase in curvature of the stretching surface while skin friction and Sherwood number enhance with increase in K.

  1. Noise thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Von Brixy, H. [Forschungszentrum Juelich GmbH (Germany); Kakuta, Tsunemi

    1996-03-01

    The noise thermometry (NT) is a temperature measuring method by which the absolute temperature measurement can be performed with a very high accuracy and without any influence of ambient environments and of the thermal history of its NT sensor (electric resistor). Hence it is quite suitable for application as a standard thermometry to the in-situ temperature calibration of incore thermocouples. The KFA Juelich had played a pioneering role in the development of NT and applied the results successfully to the AVR for testing its feasibility. In this report, all about the NT including its principle, sensor elements and system configurations are presented together with the experiences in the AVR and the results of investigation to apply it to high temperature measurement. The NT can be adopted as a standard method for incore temperature measurement and in situ temperature calibration in the HTTR. (author). 85 refs.

  2. Noise thermometer

    International Nuclear Information System (INIS)

    Von Brixy, H.; Kakuta, Tsunemi.

    1996-03-01

    The noise thermometry (NT) is a temperature measuring method by which the absolute temperature measurement can be performed with a very high accuracy and without any influence of ambient environments and of the thermal history of its NT sensor (electric resistor). Hence it is quite suitable for application as a standard thermometry to the in-situ temperature calibration of incore thermocouples. The KFA Juelich had played a pioneering role in the development of NT and applied the results successfully to the AVR for testing its feasibility. In this report, all about the NT including its principle, sensor elements and system configurations are presented together with the experiences in the AVR and the results of investigation to apply it to high temperature measurement. The NT can be adopted as a standard method for incore temperature measurement and in situ temperature calibration in the HTTR. (author). 85 refs

  3. Hacking Your Ride: Is Web 2.0 Creating Vulnerabilities To Surface Transportation

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. HACKING YOUR RIDE...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE HACKING YOUR RIDE: IS WEB 2.0 CREATING VULNERABILITIES TO SURFACE...Prescribed by ANSI Std. 239-18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for public release. Distribution is unlimited. HACKING

  4. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    Science.gov (United States)

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.

  5. 224Ra distribution in surface and deep water of Long Island Sound: sources and horizontal transport rates

    International Nuclear Information System (INIS)

    Torgersen, T.; O'Donnell, J.; DeAngelo, E.; Turekian, K.K.; Turekian, V.C.; Tanaka, N.

    1997-01-01

    Measurements of surface water and deep water 224 Ra(half-life 3.64 days) distributions in Long Island Sound (LIS) were conducted in July 1991. Because the pycnocline structure of LIS had been in place for about 50 days in July (long compared to the half-life of 224 Ra) in the surface water and the deep water operate as separate systems. In the surface water, the fine-grain sediments of nearshore and saltmarsh environments provide a strong source of 224 Ra, which is horizontally mixed away from the short to central LIS. A one-dimensional model of 224 Ra distribution suggests a cross-LIS horizontal eddy dispersivity of 5-50 m 2 s -1 . In the deep water, the mid-LIS sediment flux of 224 Ra is enhanced by ∼ 2x relative to the periphery, and the horizontal eddy flux is from central LIS to the periphery. A second one-dimensional model suggests a cross-LIS horizontal eddy dispersivity below the thermocline of 5-50 m 2 -1 . 224 Ra fluxes into the deep water of the central LIS are likely enhanced by (1) inhomogeneous sediment or (2) a reduced scavenging of 224 Ra in the sediments of central LIS brought about by low oxygen conditions (hypoxia) and the loss of the MnO 2 scavenging layer in the sediments. These rates of horizontal eddy dispersivity are significantly less than the estimate of 100-650 m 2 s -1 (Riley, 1967) but are consistent with the transport necessary to explain the dynamics of oxygen depletion in summer LIS. These results demonstrate the use of 224 Ra for quantifying the parameters needed to describe estuarine mixing and transport. (Author)

  6. Comparison of surface meteorological data representativeness for the Weldon Spring transport and dispersion modeling analysis

    International Nuclear Information System (INIS)

    Lazaro, M.

    1989-06-01

    The US Department of Energy is conducting the Weldon Spring Site Remedial Action Project under the Surplus Facilities Management Program (SFMP). The major goals of the SFMP are to eliminate potential hazards to the public and the environment that associated with contamination at SFMP sites and to make surplus property available for other uses to the extent possible. This report presents the results of analysis of available meteorological data from stations near the Weldon Spring site. Data that are most representative of site conditions are needed to accurately model the transport and dispersion of air pollutants associated with remedial activities. Such modeling will assist the development of mitigative measures. 17 refs., 12 figs., 6 tabs

  7. A numerical analysis of antithetic variates in Monte Carlo radiation transport with geometrical surface splitting

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Prasad, M.A.

    1989-01-01

    A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs

  8. The Human Dopamine Transporter: Investigating the Role of the C Terminus in Surface Targeting

    DEFF Research Database (Denmark)

    Vægter, Christian Bjerggaard

    2005-01-01

    Dopaminergic neurotransmission is involved in the modulation of locomotor activity, emotional behavior, memory and cognition. Hence, imbalances in the dopaminergic system in humans have been hypothesized to contribute to the pathogenesis of a number of illnesses, including Parkinson's disease......, schizophrenia, ADHD (attention deficit hyperactivity disorder) and addiction. The dopamine transporter (DAT) is a presynaptic protein of dopaminergic nerve terminals that terminate dopaminergic signaling by rapidly sequestering released dopamine from the synaptic cleft. The DAT therefore plays an important role....... New data suggest a potential role of the PDZ interaction in the regulation of DAT internalization and recycling: we found that iv disrupting the PDZ domain-binding sequence affected the regulation of constitutive internalization, degradation and potentially also recycling of DAT in Neuro2A cells. We...

  9. Study of pollutant transport in surface boundary layer by generalized integral transform technique

    International Nuclear Information System (INIS)

    Guerrero, Jesus S.P.; Heilbron Filho, Paulo F.L.; Pimentel, Luiz C.G.; Cataldi, Marcio

    2001-01-01

    A theoretical study was developed to obtain solutions of the atmospheric diffusion equation for various point source, considering radioactive decay and axial diffusion, under neutral atmospheric conditions. It was used an algebraic turbulence model available in the literature, based on Monin-Obukhov similarity theory, for the representation of the turbulent transport in the vertical direction, in the longitudinal directions was considered a constant mass eddy diffusivity . The bi-dimensional transient partial differential equation, representative of the physical phenomena, was transformed into a coupled one-dimensional transient equation system by applying the Generalized Integral Transform Technique. The coupled system was solved numerically using a subroutine based in the lines method. In order to evaluate the computational algorithm were analyzed some representative physical situations. (author)

  10. Heavy metal transport processes in surface water and groundwater. Geochemical and isotopic aspects

    International Nuclear Information System (INIS)

    Tricca, A.

    1997-01-01

    This work deals with the transport mechanisms of trace elements in natural aquatic systems. The experimental field is situated in the Upper Rhine Rift Valley because of the density and variety of its hydrological net. This study focused on three aspects: the isotopic tracing with Sr, Nd and O allowed to characterize the hydro-system. The 87 Sr/ 86 Sr and 143 Nd/ 144 Nd ratios show that the system is controlled by two natural end members a carbonate and a silicate one and a third end member of anthropogenic origin. The isotopic data allowed also to investigate the exchange processes between the dissolved and the particulate phases of the water samples. Because of their use in the industry and their very low concentrations in natural media, the Rare Earth Elements (REE) are very good tracers of anthropogenic contamination. Furthermore, due to their similar chemical properties with the actinides,they constitute excellent analogues to investigate the behaviour of fission products in the nature. In this study we determined the distribution of the REE within a river between the dissolved, the colloidal and the particulate phases. Among the REE of the suspended load, we distinguished between the exchangeable and the residual REE by means OF IN HCl leading experiments. The third topic is the investigation of uranium series disequilibrium using α-Spectrometry. The determination of ratios 234 U/ 238 U as well as of the activities short-lived radionuclides like 222 Rn, 224 Ra, 226 Ra, 228 Ra, 210 Po and 210 Pb have been performed. Their activities are controlled by chemical and physical parameters and depend also on the lithology of the source area. The combination of the three aspects provided relevant informations about the exchanges between the different water masses, about the transport mechanisms of the REE. Furthermore, the uranium series disequilibrium provided informations about the geochemical processes at a micro-scale. (author)

  11. IAEA co-ordinated research programme on the transport of low specific activity materials and surface contaminated objects

    International Nuclear Information System (INIS)

    Gray, I.L.S.

    2000-01-01

    The International Atomic Energy Agency (IAEA) prepares regulations for the safe transport of radioactive material, and periodically revised editions of these are published. These regulations are adopted by individual countries across the world and by international organisations concerned with transport. Whilst it is desirable to have a stable framework of regulatory requirements, there is also a need to take account of technical advances and operational experience and revise the regulations. From time to time Co-ordinated Research Programmes (CRP) are established to investigate particular areas of the regulations that are giving concern. In 1996 the IAEA Standing Advisory Group on the Transport of Radioactive Material (SAGSTRAM) concluded that the requirements for classification, packaging and transport of low specific activity (LSA) material and surface contaminated objects (SCO) did not always have a strong radiation protection basis. Accordingly SAGSTRAM established a CRP with an overall objective to develop a dose-based approach for establishing LSA/SCO requirements. Six countries are participating in this CRP. Brazil, Canada, France, Germany, United Kingdom and United States. Each country is carrying out work that is outlined in agreements with the IAEA, with the work aimed at meeting the specific objective of the agreement and also contributing to achieving the overall objective of the CRP. Completion of the CRP usually involves the preparation of an IAEA TECDOC by a Consultant Services Meeting (CSM), and this TECDOC will summarise the work performed under the CRP and include any recommendations made by the CRP. Following the establishment of the CRP in 1997, the first Research Co-ordination Meeting (RCM) was held in December 1997. The second RCM was held in March 1999, with the final RCM planned for the end of 2000. The work being carried out by Brazil and Canada is focused upon the transport of uranium and thorium ores, and is a mixture of theoretical and

  12. Pavement noise measurements in Poland

    Science.gov (United States)

    Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz

    2017-09-01

    The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.

  13. Surface potential, charging and local current transport of individual Ge quantum dots grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Singha, R.K. [Department of Physics, Visva-Bharati, Santiniketan 731235 (India); Manna, S.; Bar, R.; Das, S. [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India)

    2017-06-15

    Highlights: We have elaborately explained the individual Ge QD charging phenomena and current transport, which is very important to understand the Ge/Si nano devices. This paper will give a flavor to properly understand these phenomena linked together along with the photocurrent mechanism which is related to the Ge/Si valence band offset. • Both the CAFM and KPFM techniques point out the functionality of doping nature of the underneath Si substrate on the aforementioned characteristics of Ge QDs. • Analysis of the surface potential mapping using KPFM technique yields an approximate valence band offset measurement which is required to understand the intra-valence transition of holes for the realization of long wavelength infrared photodetector. • KPFM and CAFM can be utilized to explore the charging/discharging phenomena of dots and their composition variations. • Current-voltage (I–V) characteristics of the individual Ge QD strongly depends on the individual QD size. • Energy band diagrams for diamond tip and Ge QD shows the higher barrier for electrons and lower barrier for holes allowing the easy tunneling for holes to dominate the transport. - Abstract: It is fundamentally important to understand the nanoscale electronic properties of a single quantum dot (QD) contrary to an ensemble of QDs. Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (CAFM) are two important tools, which could be employed to probe surface potential, charging phenomena, and current transport mechanism of individual QD. We demonstrate the aforementioned characteristics of self-assembled Ge QDs, which was grown on Si substrates by solid source molecular beam epitaxy driven by the Stranski-Krastanov method. Study reveals that each Ge QD acts as charge storage node even at zero applied bias. The shape, size and density of QDs could be well probed by CAFM and KPFM, whereas QD facets could be better resolved by the conductive tip. The CAFM investigation

  14. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    International Nuclear Information System (INIS)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio; Malek-Mohammadi, Siamak

    2013-01-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  15. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  16. Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    All solid-state poly(ethylene oxide) (PEO) nanocomposite electrolytes were made containing nanoscale fillers of layered double hydroxides (LDHs). Two kinds of LDHs with different surface states were prepared by aqueous co-precipitation method. The LDHs were added into PEO matrix to study the structures, conductivities and ionic transport properties of nanocomposite electrolytes. The structures of LDHs were characterized by infrared spectra, thermogravimetric analysis and wide-angle X-ray diffraction. With enhanced compatibility of LDH sheets by oligo(ethylene oxide) surface modification, the PEO/OMLDH nanocomposite electrolyte exhibits an amorphous morphology and an enhancement of conductivity by three orders of magnitude as compared to pure PEO electrolyte. The lithium ion transference number T Li + of PEO/LDH nanocomposite electrolyte measured with a value of 0.42 is two times higher than the one of pure PEO electrolyte, which can be attributed to the Lewis acid-base interaction between surface states of metal hydroxides and counter anions of lithium salts

  17. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling

    International Nuclear Information System (INIS)

    Schaefer, C.; Jansen, A. P. J.

    2013-01-01

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  18. Effect of hydrogen plasma treatment on the surface morphology, microstructure and electronic transport properties of nc-Si:H

    International Nuclear Information System (INIS)

    Dutta, P.; Paul, S.; Galipeau, D.; Bommisetty, V.

    2010-01-01

    Hydrogenated nanocrystalline silicon (nc-Si:H) films, deposited by reactive radio-frequency sputtering with 33% hydrogen dilution in argon at 200 o C, were treated with low-power hydrogen plasma at room temperature at various power densities (0.1-0.5 W/cm 2 ) and durations (10 s-10 min). Plasma treatment reduced the surface root mean square roughness and increased the average grain size. This was attributed to the mass transport of Si atoms on the surface by surface and grain boundary diffusion. Plasma treatment under low power density (0.1 W/cm 2 ) for short duration (10 s) caused a significant enhancement of crystalline volume fraction and electrical conductivity, compared to as-deposited film. While higher power (0.5 W/cm 2 ) hydrogen plasma treatment for longer durations (up to 10 min) caused moderate improvement in crystalline fraction and electrical properties; however, the magnitude of improvement is not significant compared to low-power (0.1 W/cm 2 )/short-duration (10 s) plasma exposure. The results indicate that low-power hydrogen plasma treatment at room temperature can be an effective tool to improve the structural and electrical properties of nc-Si:H.

  19. External noise when using biofuel

    International Nuclear Information System (INIS)

    Kotaleski, J.

    1994-08-01

    The aim of this study has been to cover sources of noise dealing with all steps in a biofuel chain; producing, transporting, storing and firing the biofuel. When the availability of relevant test results from noise surveys is not so good and mostly badly documented, the study has been concentrated on estimation of external noise for planning and design purposes, from a prospective biofuel-fired plant. A synoptic tabulation of estimated acoustic power levels from different noise sources, has been done. The results from measurements of external noise from different existing combined power and heating plants are tabulated. The Nordic model for simulation of external noise has been used for a prospective plant - VEGA - designed by Vattenfall. The aim has been to estimate its noise pollutions at critical points at the nearest residential area (250 m from the fenced industry area). The software - ILYD - is easy to handle, but knowledge about the model is necessary. A requisite for the reliability is the access to measurements or estimations of different sources of noise, at different levels of octaves from 63 to 8000 Hz. The degree of accuracy increases with the number of broad band sources, that are integrated. Using ILYD with available data, a night limit of 40 dB(A) should be possible to fulfill with good degree of accuracy at VEGA, between 10 pm and 7 am, with good planning and under normal operation conditions. A demand for 35 dB(A) as a limit can be harder to fulfill, especially at mornings from 6 to 7. Noise from heavy vehicles within the plant area is classified as industrial noise and not as road traffic noise. This type of noise depends very much on the way of driving and assumed acceleration. Concerning wheel-mounted loaders, they may then only be used during daytime. The simulations show, that even at daytime from 7 to 6 pm, it would be possible to use an acoustically damped chipping machine, inside the power industry area. 31 refs, 13 figs, tabs, 8

  20. Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model

    Science.gov (United States)

    Vira, J.; Sofiev, M.

    2015-02-01

    This paper describes the assimilation of trace gas observations into the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the AirBase observation database, which provides the observational data set used in this study. Attention was paid to the background and observation error covariance matrices, which were obtained primarily by the iterative application of a posteriori diagnostics. The diagnostics were computed separately for 2 months representing summer and winter conditions, and further disaggregated by time of day. This enabled the derivation of background and observation error covariance definitions, which included both seasonal and diurnal variation. The consistency of the obtained covariance matrices was verified using χ2 diagnostics. The analysis scores were computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values was improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.