WorldWideScience

Sample records for surface topology plays

  1. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  2. Topological surface states in nodal superconductors

    International Nuclear Information System (INIS)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-01-01

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)

  3. On the topology of untrapped surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2009-03-07

    Recently a simple proof of the generalizations of Hawking's black hole topology theorem and its application to topological black holes for higher dimensional (n >= 4) spacetimes was given by Racz I (2008 Class. Quantum Grav. 25 162001). By applying the associated new line of argument it is proven here that strictly stable untrapped surfaces possess exactly the same topological properties as strictly stable marginally outer trapped surfaces (MOTSs) are known to. In addition, a quasi-local notion of outwards and inwards pointing spacelike directions-applicable to untrapped and marginally trapped surfaces-is also introduced.

  4. Geometry and topology of wild translation surfaces

    OpenAIRE

    Randecker, Anja

    2016-01-01

    A translation surface is a two-dimensional manifold, equipped with a translation structure. It can be obtained by considering Euclidean polygons and identifying their edges via translations. The vertices of the polygons form singularities if the translation structure can not be extended to them. We study translation surfaces with wild singularities, regarding the topology (genus and space of ends), the geometry (behavior of the singularities), and how the topology and the geometry are related.

  5. Biomechanical aspects of playing surfaces.

    Science.gov (United States)

    Nigg, B M; Yeadon, M R

    1987-01-01

    The purpose of this paper is to discuss some biomechanical aspects of playing surfaces with special focus on (a) surface induced injuries, (b) methodologies used to assess surfaces and (c) findings from various sports. The paper concentrates primarily on questions related to load on the athlete's body. Data from epidemiological studies suggest strongly that the surface is an important factor in the aetiology of injuries. Injury frequencies are reported to be significantly different for different surfaces in several sports. The methodologies used to assess surfaces with respect to load or performance include material tests and tests using experimental subjects. There is only little correlation between the results of these two approaches. Material tests used in many standardized test procedures are not validated which suggests that one should exercise restraint in the interpretation of these results. Point elastic surfaces are widely studied while area elastic surfaces have received little attention to date. Questions of energy losses on sport surfaces have rarely been studied scientifically.

  6. Topology of Fermi surfaces and anomaly inflows

    Energy Technology Data Exchange (ETDEWEB)

    Adem, Alejandro; Camarena, Omar Antolín [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada); Semenoff, Gordon W. [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, V6T 1Z1 (Canada); Sheinbaum, Daniel [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada)

    2016-11-14

    We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half-space and with a gapped bulk, our derivation naturally yields a K-theory classification. Given the d−1-dimensional surface Brillouin zone X{sub s} of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K{sup −1}(X{sub s}) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d=2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.

  7. Lattice topological field theory on nonorientable surfaces

    International Nuclear Information System (INIS)

    Karimipour, V.; Mostafazadeh, A.

    1997-01-01

    The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R[G] of discrete groups G, in particular. copyright 1997 American Institute of Physics

  8. Topological Sound and Flocking on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Suraj Shankar

    2017-09-01

    Full Text Available Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature, orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state because of the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow, the system additionally supports long-wavelength propagating sound modes that get gapped by the curvature of the underlying substrate. We analytically compute the steady-state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry-protected topological modes that get localized to special geodesics on the surface (the equator or the neck, respectively. These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.

  9. Topological Sound and Flocking on Curved Surfaces

    Science.gov (United States)

    Shankar, Suraj; Bowick, Mark J.; Marchetti, M. Cristina

    2017-07-01

    Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature, orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state because of the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow, the system additionally supports long-wavelength propagating sound modes that get gapped by the curvature of the underlying substrate. We analytically compute the steady-state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry-protected topological modes that get localized to special geodesics on the surface (the equator or the neck, respectively). These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.

  10. In-surface confinement of topological insulator nanowire surface states

    International Nuclear Information System (INIS)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-01-01

    The bandstructures of [110] and [001] Bi 2 Te 3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects

  11. In-surface confinement of topological insulator nanowire surface states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fan W., E-mail: fanchen@purdue.edu [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); Jauregui, Luis A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Tan, Yaohua [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, Michael [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Klimeck, Gerhard [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Chen, Yong P. [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States)

    2015-09-21

    The bandstructures of [110] and [001] Bi{sub 2}Te{sub 3} nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  12. In-surface confinement of topological insulator nanowire surface states

    Science.gov (United States)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-09-01

    The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  13. Topology optimization of robust superhydrophobic surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2013-01-01

    In this paper we apply topology optimization to micro-structured superhydrophobic surfaces for the first time. It has been experimentally observed that a droplet suspended on a brush of micrometric posts shows a high static contact angle and low roll-off angle. To keep the fluid from penetrating...

  14. Protection of surface states in topological nanoparticles

    Science.gov (United States)

    Siroki, Gleb; Haynes, Peter D.; Lee, Derek K. K.; Giannini, Vincenzo

    2017-07-01

    Topological insulators host protected electronic states at their surface. These states show little sensitivity to disorder. For miniaturization one wants to exploit their robustness at the smallest sizes possible. This is also beneficial for optical applications and catalysis, which favor large surface-to-volume ratios. However, it is not known whether discrete states in particles share the protection of their continuous counterparts in large crystals. Here we study the protection of the states hosted by topological insulator nanoparticles. Using both analytical and tight-binding simulations, we show that the states benefit from the same level of protection as those on a planar surface. The results hold for many shapes and sustain surface roughness which may be useful in photonics, spectroscopy, and chemistry. They complement past studies of large crystals—at the other end of possible length scales. The protection of the nanoparticles suggests that samples of all intermediate sizes also possess protected states.

  15. Topological Superconductivity on the Surface of Fe-Based Superconductors.

    Science.gov (United States)

    Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2016-07-22

    As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.

  16. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  17. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  18. Status of surface conduction in topological insulators

    International Nuclear Information System (INIS)

    Barua, Sourabh; Rajeev, K. P.

    2014-01-01

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness

  19. Cells behaviors and genotoxicity on topological surface

    International Nuclear Information System (INIS)

    Yang, N.; Yang, M.K.; Bi, S.X.; Chen, L.; Zhu, Z.Y.; Gao, Y.T.; Du, Z.

    2013-01-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces

  20. Topological surface states scattering in antimony

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2012-01-01

    In this work we study the topologically protected states of the Sb(111) surface by using ab initio transport theory. In the presence of a strong surface perturbation we obtain standing-wave states resulting from the superposition of spin-polarized surface states. By Fourier analysis, we identify the underlying two dimensional scattering processes and the spin texture. We find evidence of resonant transmission across surface barriers at quantum well state energies and evaluate their lifetimes. Our results are in excellent agreement with experimental findings. We also show that despite the presence of a step edge along a different high-symmetry direction, the surface states exhibit unperturbed transmission around the Fermi energy for states with near to normal incidence. © 2012 American Physical Society.

  1. Topological surface states scattering in antimony

    KAUST Repository

    Narayan, Awadhesh

    2012-11-05

    In this work we study the topologically protected states of the Sb(111) surface by using ab initio transport theory. In the presence of a strong surface perturbation we obtain standing-wave states resulting from the superposition of spin-polarized surface states. By Fourier analysis, we identify the underlying two dimensional scattering processes and the spin texture. We find evidence of resonant transmission across surface barriers at quantum well state energies and evaluate their lifetimes. Our results are in excellent agreement with experimental findings. We also show that despite the presence of a step edge along a different high-symmetry direction, the surface states exhibit unperturbed transmission around the Fermi energy for states with near to normal incidence. © 2012 American Physical Society.

  2. Topological surface states on Bi$_{1-x}$Sb$_x$

    DEFF Research Database (Denmark)

    Zhu, Xie-Gang; Hofmann, Philip

    2014-01-01

    Topological insulators support metallic surface states whose existence is protected by the bulk band structure. It has been predicted early that the topology of the surface state Fermi contour should depend on several factors, such as the surface orientation and termination and this raises the qu...

  3. A time-reversal invariant topological phase at the surface of a 3D topological insulator

    International Nuclear Information System (INIS)

    Bonderson, Parsa; Nayak, Chetan; Qi, Xiao-Liang

    2013-01-01

    A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p x + ip y superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases. (paper)

  4. Surfaces and slabs of fractional topological insulator heterostructures

    Science.gov (United States)

    Sahoo, Sharmistha; Sirota, Alexander; Cho, Gil Young; Teo, Jeffrey C. Y.

    2017-10-01

    Fractional topological insulators (FTIs) are electronic topological phases in (3 +1 ) dimensions enriched by time reversal (TR) and charge U (1 ) conservation symmetries. We focus on the simplest series of fermionic FTIs, whose bulk quasiparticles consist of deconfined partons that carry fractional electric charges in integral units of e*=e /(2 n +1 ) and couple to a discrete Z2 n +1 gauge theory. We propose massive symmetry preserving or breaking FTI surface states. Combining the long-ranged entangled bulk with these topological surface states, we deduce the novel topological order of quasi-(2 +1 ) -dimensional FTI slabs as well as their corresponding edge conformal field theories.

  5. Explorations in topology map coloring, surfaces and knots

    CERN Document Server

    Gay, David

    2013-01-01

    Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigation

  6. Duo gating on a 3D topological insulator - independent tuning of both topological surface states

    Science.gov (United States)

    Li, Chuan; de Ronde, Bob; Snelder, Marieke; Stehno, Martin; Huang, Yingkai; Golden, Mark; Brinkman, Alexander; ICE Team; IOP Collaboration

    ABSTRACT: Topological insulators are associated with a trove of exciting physics, such as the ability to host robust anyons, Majorana Bound States, which can be used for quantum computation. For future Majorana devices it is desirable to have the Fermi energy tuned as close as possible to the Dirac point of the topological surface state. Based on previous work on gating BSTS, we report the experimental progress towards gate-tuning of the top and bottom topological surface states of BiSbTeSe2 crystal flakes. When the Fermi level is moved across the Dirac point conduction is shown to change from electron dominated transport to hole dominated transport independently for either surface. In the high magnetic field, one can tune the system precisely between the different landau levels of both surfaces, thus a full gating map of the possible landau levels combination is established. In addition, we provide a simple capacitance model to explain the general hysteresis behaviors in topological insulator systems.

  7. Theory of bulk-surface coupling in topological insulator films

    Science.gov (United States)

    Saha, Kush; Garate, Ion

    2014-12-01

    We present a quantitative microscopic theory of the disorder- and phonon-induced coupling between surface and bulk states in doped topological insulator films. We find a simple mathematical structure for the surface-to-bulk scattering matrix elements and confirm the importance of bulk-surface coupling in transport and photoemission experiments, assessing its dependence on temperature, carrier density, film thickness, and particle-hole asymmetry.

  8. Topology-optimized broadband surface relief transmission grating

    DEFF Research Database (Denmark)

    Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.

    2014-01-01

    We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized plane...

  9. Robust topology design of periodic grating surfaces

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Sigmund, Ole

    2012-01-01

    Modern nanoscale manufacturing techniques allow for a high degree of flexibility in designing surface microstructures and nanostructures. Injection molding of nanosized features allows for mass production of plastic components with a tailored nanostructure producing specific optical effects depen...

  10. Topology

    CERN Document Server

    Hocking, John G

    1988-01-01

    ""As textbook and reference work, this is a valuable addition to the topological literature."" - Mathematical ReviewsDesigned as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff t

  11. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh

    2015-03-12

    © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We demonstrate single atom anisotropic magnetoresistance on the surface of a topological insulator, arising from the interplay between the helical spin-momentum-locked surface electronic structure and the hybridization of the magnetic adatom states. Our first-principles quantum transport calculations based on density functional theory for Mn on Bi2Se3 elucidate the underlying mechanism. We complement our findings with a two dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological insulator surfaces, and reveal the real space spin texture around the magnetic impurity.

  12. Topology and symmetry of surface Majorana arcs in cyclic superconductors

    Science.gov (United States)

    Mizushima, Takeshi; Nitta, Muneto

    2018-01-01

    We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary "cyclic" pairing. Cyclic p -wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior P32 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly, we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured from surface probes in candidate compounds, such as U1 -xThxBe13 . We examine tunneling conductance spectra for two competitive scenarios in U1 -xThxBe13 —the degenerate Eu scenario and the accidental scenario.

  13. Photo-responsive surface topology in chiral nematic media

    Science.gov (United States)

    Liu, Danqing; Bastiaansen, Cees W. M.; Toonder, Jaap. M. J.; Broer, Dirk J.

    2012-03-01

    We report on the design and fabrication of 'smart surfaces' that exhibit dynamic changes in their surface topology in response to exposure to light. The principle is based on anisotropic geometric changes of a liquid crystal network upon a change of the molecular order parameter. The photomechanical property of the coating is induced by incorporating an azobenzene moiety into the liquid crystal network. The responsive surface topology consists of regions with two different types of molecular order: planar chiral-nematic areas and homeotropic. Under flood exposure with 365 nm light the surfaces deform from flat to one with a surface relief. The height of the relief structures is of the order of 1 um corresponding to strain difference of around 20%. Furthermore, we demonstrate surface reliefs can form either convex or concave structures upon exposure to UV light corresponding to the decrease or increase molecular order parameter, respectively, related to the isomeric state of the azobenzene crosslinker. The reversible deformation to the initial flat state occurs rapidly after removing the light source.

  14. Flow Structure and Surface Topology on a UCAV Planform

    Science.gov (United States)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  15. Topology

    CERN Document Server

    Manetti, Marco

    2015-01-01

    This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.

  16. Strong correlation effects on surfaces of topological insulators via holography

    Science.gov (United States)

    Seo, Yunseok; Song, Geunho; Sin, Sang-Jin

    2017-07-01

    We investigate the effects of strong correlation on the surface state of a topological insulator (TI). We argue that electrons in the regime of crossover from weak antilocalization to weak localization are strongly correlated, and calculate the magnetotransport coefficients of TIs using the gauge-gravity principle. Then, we examine the magnetoconductivity (MC) formula and find excellent agreement with the data of chrome-doped Bi2Te3 in the crossover regime. We also find that the cusplike peak in MC at low doping is absent, which is natural since quasiparticles disappear due to the strong correlation.

  17. Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films

    International Nuclear Information System (INIS)

    Li Long-Long; Xu Wen

    2015-01-01

    We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi 2 Se 3 at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi 2 Se 3 -based TITFs as high-performance TE materials and devices. (paper)

  18. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    Science.gov (United States)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  19. Thermoelectric properties of 3D topological insulator: Direct observation of topological surface and its gap opened states

    Science.gov (United States)

    Matsushita, Stephane Yu; Huynh, Khuong Kim; Yoshino, Harukazu; Tu, Ngoc Han; Tanabe, Yoichi; Tanigaki, Katsumi

    2017-10-01

    We report thermoelectric (TE) properties of topological surface Dirac states (TSDS) in three-dimensional topological insulators (3D-TIs) purely isolated from the bulk by employing single-crystal B i2 -xS bxT e3 -yS ey films epitaxially grown in the ultrathin limit. Two intrinsic nontrivial topological surface states, a metallic TSDS (m-TSDS) and a gap-opened semiconducting topological state (g-TSDS), are successfully observed by electrical transport, and important TE parameters [electrical conductivity (σ), thermal conductivity (κ), and thermopower (S )] are accurately determined. Pure m-TSDS gives S =-44 μ V K-1 , which is an order of magnitude higher than those of the conventional metals and the value is enhanced to -212 μ V K-1 for g-TSDS. It is clearly shown that the semiclassical Boltzmann transport equation (SBTE) in the framework of constant relaxation time (τ) most frequently used for conventional analysis cannot be valid in 3D-TIs and strong energy dependent relaxation time τ(E ) beyond the Born approximation is essential for making intrinsic interpretations. Although σ is protected on the m-TSDS, κ is greatly influenced by the disorder on the topological surface, giving a dissimilar effect between topologically protected electronic conduction and phonon transport.

  20. Absorption of surface acoustic waves by topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.

    2014-01-01

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies

  1. Time-Dependent Liquid Transport on a Biomimetic Topological Surface.

    Science.gov (United States)

    Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei

    2018-05-02

    Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.

  2. Predesigned surface patterns and topological defects control the active matter.

    Science.gov (United States)

    Turiv, Taras; Peng, Chenhui; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg

    Active matter exhibits remarkable patterns of never-ending dynamics with giant fluctuations of concentration, varying order, nucleating and annihilating topological defects. These patterns can be seen in active systems of both biological and artificial origin. A fundamental question is whether and how one can control this chaotic out-of-equilibrium behavior. We demonstrate a robust control of local concentration, trajectories of active self-propelled units and the net flows of active bacteria Bacillus Substilis by imposing pre-designed surface patterns of orientational order in a water-based lyotropic chromonic liquid crystal. The patterns force the bacteria to gather into dynamic swarms with spatially modulated concentration and well-defined polarity of motion. Topological defects produce net motion of bacteria with a unidirectional circulation, while pairs of defects induce a pumping action. The qualitative features of the dynamics can be explained by interplay of curvature and activity, in particular, by ability of mixed splay-bend curvatures to generate threshold-less active flows. The demonstrated level of control opens opportunities in engineering materials and devices that mimic rich functionality of living systems. This work was supported by NSF Grants DMR-1507637, DMS-1434185, CMMI-1436565, by the Petroleum Research Grant PRF# 56046-ND7 administered by the American Chemical Society.

  3. Transport on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Vargiamidis, V.; Vasilopoulos, P.

    2014-01-01

    We study theoretically dc and ac transport on the surface of a three-dimensional topological insulator when its time-reversal symmetry is broken. Starting with a Kubo formula, we derive an explicit expression for the dc Hall conductivity, valid for finite temperatures. At zero temperature this expression gives the dc half-quantum Hall conductivity, provided the Fermi level lies in the gap. Corrections when the Fermi level is outside the gap and scattering by impurities are quantified. The longitudinal conductivity is also examined. At finite frequencies, we find a modified Drude term in σ xx (ω) and logarithmic, frequency-dependent corrections in σ yx (ω). The ac Hall conductivity exhibits a robust logarithmic singularity for excitation energies equal to the gapwidth. For these energies, we also find that the power spectrum, which is pertinent to optical experiments, exhibits drastic increase. The Hall conductivity remains almost unaffected for temperatures up to approximately 300 K

  4. New Maps for Old: a Topological Approach to "the Faerie Queene" and Shakespeare's History Plays

    Science.gov (United States)

    Graney, Kathleen M.

    1994-01-01

    When Nicholas Copernicus published De revolutionibus in 1543, his announced discoveries both displaced humankind from its former place at the center of the universe and enlarged the boundaries of that universe beyond anything that had been imagined before. These discoveries evoked in men and women of the late-sixteenth century a new consciousness of both cosmic space and of psychological spaces within themselves, spaces for self-definition made available by the breakdown of the traditional, hierarchical world view. This re-vision of space is evident in almost every aspect of the culture of Elizabethan England, from its science and art to the accounts of New World voyagers. In the works of Edmund Spenser and William Shakespeare, this spatial awareness manifests itself "topologically" --that is, in the relationship between places in their epic and dramatic works that can be identified as "inside" or "outside" and in the kinds of actions associated with each place. In Books One and Two of The Faerie Queene Spenser uses space both topographically and topologically. He maps the journeys of his knights through Fairyland by means of references to allegorical structures and features of the mythical landscape. At the same time, he contrasts inside spaces, where the knights struggle psychologically to define themselves in terms of certain moral virtues, and outside spaces, where that "self" intersects with Spenser's myth of English history. In his earliest chronicle plays of the 1580s and '90s Shakespeare also depicts English history topographically, as a series of epic confrontations enacted in outside, public spaces bearing familiar place -names. With Richard III, however, he begins to dramatize that history as related to moments of self-discovery achieved by the central character within the privacy of inside spaces and involving some conflict between the values of public and private life. Unlike Spenser, whose characters ultimately define themselves in terms of some value

  5. Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators.

    Science.gov (United States)

    Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady

    2016-01-22

    We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.

  6. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  7. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Science.gov (United States)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  8. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  9. Quantum magnetotransport for the surface states of three-dimensional topological insulators in the presence of a Zeeman field

    KAUST Repository

    Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence

  10. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2015-01-01

    dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological

  11. Current-induced switching of magnetic molecules on topological insulator surfaces

    Science.gov (United States)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  12. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  13. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  14. Probing spin helical surface states in topological HgTe nanowires

    Science.gov (United States)

    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.

    2018-01-01

    Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

  15. Scanning tunneling microscopy study of the possible topological surface states in BiTeCl

    International Nuclear Information System (INIS)

    Yan, Y J; Ren, M Q; Liu, X; Huang, Z C; Jiang, J; Fan, Q; Miao, J; Xie, B P; Zhang, T; Feng, D L; Xiang, F; Wang, X

    2015-01-01

    Recently, the non-centrosymmetric bismuth tellurohalides such as BiTeCl are being studied as possible candidates for topological insulators. While some photoemission studies showed that BiTeCl is an inversion asymmetric topological insulator, others showed that it is a normal semiconductor with Rashba splitting. Meanwhile, first-principle calculations have failed to confirm the existence of topological surface states in BiTeCl so far. Therefore, the topological nature of BiTeCl requires further investigation. Here we report a low-temperature scanning tunneling microscopy study on the surface states of BiTeCl single crystals. On the tellurium (Te) -terminated surfaces with relatively low defect density, evidence for topological surface states is observed in the quasi-particle interference patterns, both in the anisotropy of the scattering vectors and the fast decay of the interference near the step edges. Meanwhile, on the samples with much higher defect densities, we observed surface states that behave differently. Our results may help to resolve the current controversy on the topological nature of BiTeCl. (paper)

  16. Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.

    Science.gov (United States)

    Li, Bing; Sun, Zhao-Yan; An, Li-Jia

    2015-07-14

    We investigate the effect of topology on the equilibrium behavior of singly tethered ring polymers adsorbed on an attractive surface. We focus on the change of square radius of gyration Rg(2), the perpendicular component Rg⊥(2) and the parallel component Rg‖(2) to the adsorbing surface, the mean contacting number of monomers with the surface , and the monomer distribution along z-direction during transition from desorption to adsorption. We find that both of the critical point of adsorption εc and the crossover exponent ϕ depend on the knot type when the chain length of ring ranges from 48 to 400. The behaviors of Rg(2), Rg⊥(2), and Rg‖(2) are found to be dependent on the topology and the monomer-surface attractive strength. At weak adsorption, the polymer chains with more complex topology are more adsorbable than those with simple topology. However, at strong adsorption, the polymer chains with complex topology are less adsorbable. By analyzing the distribution of monomer along z-direction, we give a possible mechanism for the effect of topology on the adsorption behavior.

  17. Generation of helical gears with new surfaces topology by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.; Hsiao, C. L.; Handschuh, Robert F.

    1993-01-01

    Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment that leads to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding of the helical gears with the new topology are proposed. A TCA (tooth contact analysis) program for simulation of meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.

  18. On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, V.L.; Apolonio, F.A.; Oliveira-Neto, N.M.

    2013-01-01

    We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry. -- Highlights: •Applying the anisotropic Heisenberg model on curved surfaces. •Appearance of topological solitons on curved surfaces with cylindrical symmetry. •Calculus of the vortex energy, which depends on curvature. •Discussion on features of non-topological helical-like states. •Vortex stability ensured by the anisotropy parameter value

  19. Topological open string amplitudes on local toric del Pezzo surfaces via remodeling the B-model

    International Nuclear Information System (INIS)

    Manabe, Masahide

    2009-01-01

    We study topological strings on local toric del Pezzo surfaces by a method called remodeling the B-model which was recently proposed by Bouchard, Klemm, Marino and Pasquetti. For a large class of local toric del Pezzo surfaces we prove a functional formula of the Bergman kernel which is the basic constituent of the topological string amplitudes by the topological recursion relation of Eynard and Orantin. Because this formula is written as a functional of the period, we can obtain the topological string amplitudes at any point of the moduli space by a simple change of variables of the Picard-Fuchs equations for the period. By this formula and mirror symmetry we compute the A-model amplitudes on K F 2 , and predict the open orbifold Gromov-Witten invariants of C 3 /Z 4 .

  20. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3

    Science.gov (United States)

    Fuhrer, Michael

    2013-03-01

    The three dimensional strong topological insulator (STI) is a new phase of electronic matter which is distinct from ordinary insulators in that it supports on its surface a conducting two-dimensional surface state whose existence is guaranteed by topology. I will discuss experiments on the STI material Bi2Se3, which has a bulk bandgap of 300 meV, much greater than room temperature, and a single topological surface state with a massless Dirac dispersion. Field effect transistors consisting of thin (3-20 nm) Bi2Se3 are fabricated from mechanically exfoliated from single crystals, and electrochemical and/or chemical gating methods are used to move the Fermi energy into the bulk bandgap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be ~60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se3, which will have implications for topological electronic devices operating at room temperature. As samples are made thinner, coherent coupling of the top and bottom topological surfaces is observed through the magnitude of the weak anti-localization correction to the conductivity, and, in the thinnest Bi2Se3 samples (~ 3 nm), in thermally-activated conductivity reflecting the opening of a bandgap.

  1. From the topological development of matrix models to the topological string theory: arrangement of surfaces through algebraic geometry

    International Nuclear Information System (INIS)

    Orantin, N.

    2007-09-01

    The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and arrangement of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that the fine tuning of the parameters ensures that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct. (author)

  2. Surface states on a topologically nontrivial semimetal: The case of Sb(110)

    DEFF Research Database (Denmark)

    Bianchi, Marco; Guan, Dandan; Strózecka, Anna

    2012-01-01

    The electronic structure of Sb(110) is studied by angle-resolved photoemission spectroscopy and first-principles calculations, revealing several electronic surface states in the projected bulk band gaps around the Fermi energy. The dispersion of the states can be interpreted in terms of a strong...... spin-orbit splitting. The bulk band structure of Sb has the characteristics of a strong topological insulator with a Z2 invariant ν0 = 1. This puts constraints on the existence of metallic surface states and the expected topology of the surface Fermi contour. However, bulk Sb is a semimetal......, not an insulator, and these constraints are therefore partly relaxed. This relation of bulk topology and expected surface-state dispersion for semimetals is discussed....

  3. Biaxially mechanical tuning of 2-D reversible and irreversible surface topologies through simultaneous and sequential wrinkling.

    Science.gov (United States)

    Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K

    2014-02-26

    Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to

  4. Excitonic condensation for the surface states of topological insulator bilayers

    International Nuclear Information System (INIS)

    Wang Zhigang; Fu Zhenguo; Zhang Ping; Hao Ningning

    2012-01-01

    We propose a generic topological insulator bilayer (TIB) system to study the excitonic condensation with self-consistent mean-field (SCMF) theory. We show that the TIB system presents the crossover behavior from the Bardeen-Cooper-Schrieffer (BCS) limit to the Bose-Einstein condensation (BEC) limit. Moreover, in comparison with traditional semiconductor systems, we find that for the present system the superfluid property in the BEC phase is more sensitive to electron-hole density imbalance and the BCS phase is more robust. Applying this TIB model to the Bi 2 Se 3 -family material, we find that the BEC phase is most likely to be observed in experiment. We also calculate the critical temperature for the Bi 2 Se 3 -family TIB system, which is ∼100 K. More interestingly, one can expect this relative high-temperature excitonic condensation, since our calculated SCMF critical temperature is approximately equal to the Kosterlitz-Thouless transition temperature. (paper)

  5. The substrate strain mediated magnetotransport properties of surface states in topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-10-14

    Recent experiments reveal that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). We further explore the strain effects on magnetotransport in HgTe at magnetic field. We find that the substrate strain associated with the surface index of carriers, can remove the surfaces degeneracy in Landau levels. This accordingly induces the well separated surface quantum Hall plateaus and Shubnikov–de Haas oscillations. These results can be used to generate and detect surface polarization, not only in HgTe but also in a broad class of TIs, which would be very great news for electronic applications of TIs. - Highlights: • We explore the strain mediated magnetotransport in topological insulators. • We analytically derive the zero frequency magnetoconductivity. • The strain removes the surface degeneracy in Landau levels. • The strain gives rise to the splitting and mixture of Landau levels. • The strain leads to the surface asymmetric spectrum of conductivity.

  6. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Directory of Open Access Journals (Sweden)

    Meng Cheng

    2016-12-01

    Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  7. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2018-03-05

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  8. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2017-04-30

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy 3D image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  9. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed; Sundaramoorthi, Ganesh

    2018-01-01

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  10. Emergent Momentum-Space Skyrmion Texture on the Surface of Topological Insulators

    Science.gov (United States)

    Mohanta, Narayan; Kampf, Arno P.; Kopp, Thilo

    The quantum anomalous Hall effect has been theoretically predicted and experimentally verified in magnetic topological insulators. In addition, the surface states of these materials exhibit a hedgehog-like ``spin'' texture in momentum space. Here, we apply the previously formulated low-energy model for Bi2Se3, a parent compound for magnetic topological insulators, to a slab geometry in which an exchange field acts only within one of the surface layers. In this sample set up, the hedgehog transforms into a skyrmion texture beyond a critical exchange field. This critical field marks a transition between two topologically distinct phases. The topological phase transition takes place without energy gap closing at the Fermi level and leaves the transverse Hall conductance unchanged and quantized to e2 / 2 h . The momentum-space skyrmion texture persists in a finite field range. It may find its realization in hybrid heterostructures with an interface between a three-dimensional topological insulator and a ferromagnetic insulator. The work was supported by the Deutsche Forschungsgemeinschaft through TRR 80.

  11. Fermiology and Superconductivity of Topological Surface States in PdTe2

    Science.gov (United States)

    Clark, O. J.; Neat, M. J.; Okawa, K.; Bawden, L.; Marković, I.; Mazzola, F.; Feng, J.; Sunko, V.; Riley, J. M.; Meevasana, W.; Fujii, J.; Vobornik, I.; Kim, T. K.; Hoesch, M.; Sasagawa, T.; Wahl, P.; Bahramy, M. S.; King, P. D. C.

    2018-04-01

    We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2 , we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p -orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.

  12. On topological approach to local theory of surfaces in Calabi-Yau threefolds

    DEFF Research Database (Denmark)

    Gukov, Sergei; Liu, Chiu-Chu Melissa; Sheshmani, Artan

    2017-01-01

    We study the web of dualities relating various enumerative invariants, notably Gromov-Witten invariants and invariants that arise in topological gauge theory. In particular, we study Donaldson-Thomas gauge theory and its reductions to D=4 and D=2 which are relevant to the local theory of surfaces...

  13. Topology of vortex Breakdown bubbles in a cylinder with rotating bottom and Free surface

    DEFF Research Database (Denmark)

    Brøns, Morten; Voigt, Lars Peter Kølgaard; Sørensen, Jens Nørkær

    2001-01-01

    The flow patterns in the steady, viscous flow in a cylinder with a rotating bottom and a free surface are investigated by a combination of topological and numerical methods. Assuming the flow is axisymmetric, we derive a list of possible bifurcations of streamline structures on varying two...

  14. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  15. Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model

    Science.gov (United States)

    Wu, Wei; Scheurer, Mathias S.; Chatterjee, Shubhayu; Sachdev, Subir; Georges, Antoine; Ferrero, Michel

    2018-04-01

    One of the distinctive features of hole-doped cuprate superconductors is the onset of a "pseudogap" below a temperature T* . Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fermi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is holelike and that, for a broad range of parameters, its opening is concomitant with a Fermi-surface topology change from electronlike to holelike. We identify a common link between these observations: The polelike feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi-surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this polelike feature and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.

  16. Dynamic surface electronic reconstruction as symmetry-protected topological orders in topological insulator Bi2Se3

    Science.gov (United States)

    Shu, G. J.; Liou, S. C.; Karna, S. K.; Sankar, R.; Hayashi, M.; Chou, F. C.

    2018-04-01

    The layered narrow-band-gap semiconductor Bi2Se3 is composed of heavy elements with strong spin-orbital coupling, which has been identified both as a good candidate for a thermoelectric material with high thermoelectric figure of merit (Z T ) and as a topological insulator of the Z2 type with a gapless surface band in a Dirac-cone shape. The existence of a conjugated π -bond system on the surface of each Bi2Se3 quintuple layer is proposed based on an extended valence bond model with valence electrons distributed in the hybridized orbitals. Supporting experimental evidence of a two-dimensional (2D) conjugated π -bond system on each quintuple layer of Bi2Se3 is provided using electron energy-loss spectroscopy and electron density mapping through inverse Fourier transform of x-ray diffraction data. Quantum chemistry calculations support the π -bond existence between partially filled 4 pz orbitals of Se via side-to-side orbital overlap positively. The conjugated π -bond system on the surface of each quintuple Bi2Se3 layer is proposed to be similar to that found in graphite (graphene) and responsible for the unique 2D conduction mechanism. The van der Waals (vdW) attractive force between quintuple layers is interpreted to be coming from the antiferroelectrically ordered effective electric dipoles, which are constructed with π -bond trimer pairs on Se layers across the vdW gap of minimized Coulomb repulsion.

  17. Topological surface states of Bi{sub 2}Te{sub 2}Se are robust against surface chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Conor R.; Sahasrabudhe, Girija; Kushwaha, Satya Kumar; Cava, Robert J.; Schwartz, Jeffrey [Department of Chemistry, Princeton University, Princeton, NJ (United States); Xiong, Jun [Department of Physics, Princeton University, Princeton, NJ (United States)

    2014-12-01

    The robustness of the Dirac-like electronic states on the surfaces of topological insulators (TIs) during materials process-ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi{sub 2}Te{sub 2}Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov-de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case - surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides - the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Surface plasmon on topological insulator/dielectric interface enhanced ZnO ultraviolet photoluminescence

    Directory of Open Access Journals (Sweden)

    Zhi-Min Liao

    2012-06-01

    Full Text Available It has recently been predicted that the surface plasmons are allowed to exist on the interface between a topological insulator and vacuum. Surface plasmons can be employed to enhance the optical emission from various illuminants. Here, we study the photoluminescence properties of the ZnO/Bi2Te3 hybrid structures. Thin flakes of Bi2Te3, a typical three-dimensional topological insulator, were prepared on ZnO crystal surface by mechanical exfoliation method. The ultraviolet emission from ZnO was found to be enhanced by the Bi2Te3 thin flakes, which was attributed to the surface plasmon – photon coupling at the Bi2Te3/ZnO interface.

  19. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  20. Surface Topology Reconstruction From The White Light Interferogram By Means Of Prony Analysis

    Directory of Open Access Journals (Sweden)

    Khoma Anna

    2015-12-01

    Full Text Available The paper presents a new method of surface topology reconstruction from a white light interferogram. The method is based on interferogram modelling by complex exponents (Prony method. The compatibility of white light interferogram and Prony models has already been proven. Effectiveness of the method was tested by modelling and examining reconstruction of tilted and spherical surfaces, and by estimating the reconstruction accuracy.

  1. Variational analysis of topological stationary barotropic MHD in the case of single-valued magnetic surfaces

    International Nuclear Information System (INIS)

    Yahalom, A

    2014-01-01

    Variational principles for magnetohydrodynamics have been introduced by previous authors both in Lagrangian and Eulerian form. Yahalom and Lynden-Bell (2008) have previously introduced simpler Eulerian variational principles from which all the relevant equations of barotropic magnetohydrodynamics can be derived. These variational principles were given in terms of six independent functions for non-stationary barotropic flows with given topologies and three independent functions for stationary barotropic flows. This is less then the seven variables which appear in the standard equations of barotropic magnetohydrodynamics which are the magnetic field B-vector the velocity field v-vector and the density ρ. Later, Yahalom (2010) introduced a simpler variational principle in terms of four functions for non-stationary barotropic magnetohydrodynamics. It was shown that the above variational principles are also relevant for flows of non-trivial topologies and in fact using those variational variables one arrives at additional topological conservation laws in terms of cuts of variables which have close resemblance to the Aharonov- Bohm phase (Yahalom (2013)). In previous examples (Yahalom and Lynden-Bell (2008); Yahalom (2013)) the magnetic field lines with non-trivial topology were at the intersection of two surface one of which was always multivalued; in this paper an example is introduced in which the magnetic helicity is not zero yet both surfaces are single-valued

  2. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  3. Surfaces of Minimal Paths from Topological Structures and Applications to 3D Object Segmentation

    KAUST Repository

    Algarni, Marei

    2017-10-24

    Extracting surfaces, representing boundaries of objects of interest, from volumetric images, has important applications in various scientific domains, from medicine to geology. In this thesis, I introduce novel mathematical, computational, and algorithmic machinery for extraction of sheet-like surfaces (with boundary), whose boundary is unknown a-priori, a particularly important case in applications that has no convenient methods. This case of a surface with boundaries has applications in extracting faults (among other geological structures) from seismic images in geological applications. Another application domain is in the extraction of structures in the lung from computed tomography (CT) images. Although many methods have been developed in computer vision for extraction of surfaces, including level sets, convex optimization approaches, and graph cut methods, none of these methods appear to be applicable to the case of surfaces with boundary. The novel methods for surface extraction, derived in this thesis, are built on the theory of Minimal Paths, which has been used primarily to extract curves in noisy or corrupted images and have had wide applicability in 2D computer vision. This thesis extends such methods to surfaces, and it is based on novel observations that surfaces can be determined by extracting topological structures from the solution of the eikonal partial differential equation (PDE), which is the basis of Minimal Path theory. Although topological structures are known to be difficult to extract from images, which are both noisy and discrete, this thesis builds robust methods based on Morse theory and computational topology to address such issues. The algorithms have run-time complexity O(NlogN), less complex than existing approaches. The thesis details the algorithms, theory, and shows an extensive experimental evaluation on seismic images and medical images. Experiments show out-performance in accuracy, computational speed, and user convenience

  4. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame

    2017-07-07

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  5. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame; Akosa, Collins Ashu; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, Aurelien

    2017-01-01

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  6. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    Science.gov (United States)

    Ndiaye, Papa B.; Akosa, C. A.; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, A.

    2017-07-01

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  7. Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators

    Science.gov (United States)

    Peng, Xingyue

    As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.

  8. Tissue breathing and topology of rats thymocytes surface under acute total γ-irradiation.

    Science.gov (United States)

    Nikitina, I A; Gritsuk, A I

    2017-12-01

    Assessment of the effect of single total γ irradiation to the parameters of mitochondrial oxidation and the topology of the thymocyte surface. The study was performed in sexually mature white outbreeding male rats divided into three groups: two experimental and one control. The states of energy metabolism were determined by the rate of oxygen consumption by the thymus tissues on endogenous substrates at the presence of 2,4 dinitrophenol, uncoupler of a tissue breathing (TB) and oxidative phosphorylation (OP) after a single total γ irradiation at a dose of 1.0 Gy at 3, 10, 40 and 60 days. The topology of thymus cells was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). On the 3rd and 10th days after total gamma irradiation at a dose of 1.0 Gy, a significant decrease in respira tory activity was determined in thymus tissues on endogenous substrates. Simultaneously, on the 3rd day, pro nounced changes in the morphological parameters of thymocytes (height, volume, area of contact with the sub strate) and the topology of their surface were also observed. On the 10th day after irradiation, most of the morpho logical parameters of thymocytes, except for their volume, were characterized by restoration to normal. In the long term (on the 30th and 60th days after exposure), a gradual but not complete recovery of the respiratory activity of thymocytes was observed, accompanied by an increase in the degree of dissociation of TD and OP. The obtained data reflect and refine mechanisms of post radiation repair of lymphopoiesis, showing the presence of conjugated changes in the parameters of aerobic energy metabolism of thymocytes, morphology and topology of their surface. The synchronism of changes in the parameters under study is a reflection of the state of the cytoskeleton, the functional activity of which largely depends on the level and efficiency of mitochondrial oxidation. І. A. Nikitina, A. I. Gritsuk.

  9. Surface Andreev Bound States and Odd-Frequency Pairing in Topological Superconductor Junctions

    Science.gov (United States)

    Tanaka, Yukio; Tamura, Shun

    2018-04-01

    In this review, we summarize the achievement of the physics of surface Andreev bound states (SABS) up to now. The route of this activity has started from the physics of SABS of unconventional superconductors where the pair potential has a sign change on the Fermi surface. It has been established that SABS can be regarded as a topological edge state with topological invariant defined in the bulk Hamiltonian. On the other hand, SABS accompanies odd-frequency pairing like spin-triplet s-wave or spin-singlet p-wave. In a spin-triplet superconductor junction, induced odd-frequency pairing can penetrate into a diffusive normal metal (DN) attached to the superconductor. It causes so called anomalous proximity effect where the local density of states of quasiparticle in DN has a zero energy peak. When bulk pairing symmetry is spin-triplet px-wave, the anomalous proximity effect becomes prominent and the zero bias voltage conductance is always quantized independent of the resistance in DN and interface. Finally, we show that the present anomalous proximity effect is realized in an artificial topological superconducting system, where a nanowire with spin-orbit coupling and Zeeman field is put on the conventional spin-singlet s-wave superconductor.

  10. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    Science.gov (United States)

    He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo

    2018-05-01

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.

  11. A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces

    International Nuclear Information System (INIS)

    Grines, V Z; Pochinka, O V; Kapkaeva, S Kh

    2014-01-01

    In a paper of Oshemkov and Sharko, three-colour graphs were used to make the topological equivalence of Morse-Smale flows on surfaces obtained by Peixoto more precise. In the present paper, in the language of three-colour graphs equipped with automorphisms, we obtain a complete (including realization) topological classification of gradient-like cascades on surfaces. Bibliography: 25 titles

  12. A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Grines, V Z; Pochinka, O V [N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation); Kapkaeva, S Kh [N.P. Ogarev Mordovian State University, Saransk (Russian Federation)

    2014-10-31

    In a paper of Oshemkov and Sharko, three-colour graphs were used to make the topological equivalence of Morse-Smale flows on surfaces obtained by Peixoto more precise. In the present paper, in the language of three-colour graphs equipped with automorphisms, we obtain a complete (including realization) topological classification of gradient-like cascades on surfaces. Bibliography: 25 titles.

  13. Protective capping of topological surface states of intrinsically insulating Bi2Te3

    Directory of Open Access Journals (Sweden)

    Katharina Hoefer

    2015-09-01

    Full Text Available We have identified epitaxially grown elemental Te as a capping material that is suited to protect the topological surface states of intrinsically insulating Bi2Te3. By using angle-resolved photoemission, we were able to show that the Te overlayer leaves the dispersive bands of the surface states intact and that it does not alter the chemical potential of the Bi2Te3 thin film. From in-situ four-point contact measurements, we observed that the conductivity of the capped film is still mainly determined by the metallic surface states and that the contribution of the capping layer is minor. Moreover, the Te overlayer can be annealed away in vacuum to produce a clean Bi2Te3 surface in its pristine state even after the exposure of the capped film to air. Our findings will facilitate well-defined and reliable ex-situ experiments on the properties of Bi2Te3 surface states with nontrivial topology.

  14. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface

    Directory of Open Access Journals (Sweden)

    Jiu-Jiu Chen

    2017-11-01

    Full Text Available The study for exotic topological effects of sound has attracted uprising interests in fundamental physics and practical applications. Based on the concept of valley pseudospin, we demonstrate the topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface, where a deterministic two-fold Dirac degeneracy is form by two plate modes. We show that the topological property can be controlled by the height of stubs deposited on the plate. By adjusting the relative heights of adjacent stubs, the valley vortex chirality and band inversion are induced, giving rise to a phononic analog of valley Hall phase transition. We further numerically demonstrate the valley states of plate-mode waves with robust topological protection. Our results provide a new route to design unconventional elastic topological insulators and will significantly broaden its practical application in the engineering field.

  15. Transport of Dirac fermions on the surface of strong topological insulator and graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Arijit

    2012-06-14

    In this dissertation I study electronic transport through Dirac Fermions on the surface of strong topological insulator and graphene. I start by reviewing the physics of topological insulator and graphene and the low energy effective theory for the electronic states of the surface of a 3D strong topological insulator and graphene. Using this theory the electronic structure of the surface states of strong topological insulators of geometries with large surface to bulk ratio like nanowire and thin film are obtained. Then the energy spectrum and the spin-parity structure of the eigenstates for a finite size topological insulator quantum dot of the shape of a nanotube are considered. Numerical calculations show that even at the lowest energy scales, the ''spin-surface locking'' is broken, that is, the spin direction in a topologically protected surface mode is not locked to the surface. The calculations also show the existence of ''zero-momentum'' modes, and sub-gap states localized near the ''caps'' of the dot. Both the energy spectrum and the spin texture of the eigenstates are basically reproduced from an analytical surface Dirac fermion description. The results are compared to microscopic calculations using a tight-binding model for a strong topological insulator in a finite-length nanowire geometry, which shows qualitative similarity. Then, a theoretical study of electron-phonon scattering effects in thin films made of a strong topological insulator is presented. Phonons are modeled by isotropic elastic continuum theory with stress-free boundary conditions, and the interaction with the helical surface Dirac fermions is mediated by the deformation potential. The temperature-dependent electrical resistivity ρ(T) and the quasi-particle decay rate Γ(T) observable in photo-emission are computed numerically. The low and high-temperature power laws for both quantities are obtained analytically. Detailed

  16. Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator

    Directory of Open Access Journals (Sweden)

    Christoph Brüne

    2014-12-01

    Full Text Available We report magnetotransport studies on a gated strained HgTe device. This material is a three-dimensional topological insulator and exclusively shows surface-state transport. Remarkably, the Landau-level dispersion and the accuracy of the Hall quantization remain unchanged over a wide density range (3×10^{11}  cm^{−2}surface-state dominated, where bulk transport would have been expected to coexist already. Moreover, the density dependence of the Dirac-type quantum Hall effect allows us to identify the contributions from the individual surfaces. A k·p model can describe the experiments but only when assuming a steep band bending across the regions where the topological surface states are contained. This steep potential originates from the specific screening properties of Dirac systems and causes the gate voltage to influence the position of the Dirac points rather than that of the Fermi level.

  17. Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable?

    Science.gov (United States)

    Borri, Claudia; Paggi, Marco

    2015-02-01

    The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what was expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted for by fractal modeling.

  18. Topological supersymmetric structure of hadron cross sections

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Ouvry, S.

    1980-12-01

    Recently a way of fully implementing unitarity in the framework of a Dual Topological Unitarization theory, including not only mesons but also baryons, was found. This theory consists in the topological description of hadron interactions involving confined quarks in terms of two 2-dimensional surfaces (a closed 'quantum' surface and a bounded 'classical' surface). We show that this description directly leads, at the zeroth order of the topological expansion, to certain relations between hadron cross-sections, in nice agreement with experimental data. A new topological suppression mechanism is shown to play an important dynamical role. We also point out a new topological supersymmetry property, which leads to realistic experimental consequences. A possible topological origin of the rho and ω universality relations emerges as a by-product of our study

  19. Topological hierarchy matters — topological matters with superlattices of defects

    International Nuclear Information System (INIS)

    He Jing; Kou Su-Peng

    2016-01-01

    Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)

  20. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator

    Science.gov (United States)

    Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.

    2017-05-01

    Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.

  1. Topological surface Fermi arcs in magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$

    OpenAIRE

    Xu, Qiunan; Liu, Enke; Shi, Wujun; Muechler, Lukas; Felser, Claudia; Sun, Yan

    2017-01-01

    Very recently, the half-metallic compound Co$_3$Sn$_2$S$_2$ was predicted to be a magnetic WSM with Weyl points only 60 meV above the Fermi level ($E_F$). Owing to the low charge carrier density and large Berry curvature induced, Co$_3$Sn$_2$S$_2$ possesses both a large anomalous Hall conductivity (AHC) and a large anomalous Hall angle (AHA), which provide strong evidence for the existence of Weyl points in Co$_3$Sn$_2$S$_2$. In this work, we theoretically studied the surface topological feat...

  2. The Topological Vertex

    CERN Document Server

    Aganagic, M; Marino, M; Vafa, C; Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun

    2005-01-01

    We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact Calabi-Yau toric threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kahler classes of Calabi-Yau. We interpret this result as an operator computation of the amplitudes in the B-model mirror which is the Kodaira-Spencer quantum theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.

  3. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2

    Science.gov (United States)

    Xu, Qiunan; Liu, Enke; Shi, Wujun; Muechler, Lukas; Gayles, Jacob; Felser, Claudia; Sun, Yan

    2018-06-01

    Very recently, the half-metallic compound Co3Sn2S2 was proposed to be a magnetic Weyl semimetal (WSM) with Weyl points only 60 meV above the Fermi level EF. Owing to the low charge carrier density and large Berry curvature induced, Co3Sn2S2 possesses both a large anomalous Hall conductivity and a large anomalous Hall angle, which provide strong evidence for the existence of Weyl points in Co3Sn2S2 . In this work, we theoretically study the surface topological feature of Co3Sn2S2 and its counterpart Co3Sn2Se2 . By cleaving the sample at the weak Sn-S/Se bonds, one can achieve two different surfaces terminated with Sn and S/Se atoms, respectively. The resulting Fermi-arc-related states can range from the energy of the Weyl points to EF-0.1 eV in the Sn-terminated surface. Therefore, it should be possible to observe the Fermi arcs in angle-resolved photoemission spectroscopy (ARPES) measurements. Furthermore, in order to simulate quasiparticle interference in scanning tunneling microscopy (STM) measurements, we also calculate the joint density of states for both terminals. This work should be helpful for a comprehensive understanding of the topological properties of these two magnetic WSMs and further ARPES and STM measurements.

  4. Interplay between surface and bulk states in the Topological Kondo Insulator SmB6

    Science.gov (United States)

    Biswas, Sangram; Hatnean, Monica Ciomaga; Balakrishnan, Geetha; Bid, Aveek

    Kondo insulator SmB6 is predicted to have topologically protected conducting surface states(TSS). We have studied electrical transport through surface states(SS) at ultra-low temperatures in single crystals of SmB6 using local-nonlocal transport scheme and found a large nonlocal signal at temperatures lower than bulk Kondo gap scale. Using resistance fluctuation spectroscopy, we probed the local and nonlocal transport channels and showed that at low temperatures, transport in this system takes place only through SS. The measured noise in this temperature range arises due to Universal Conductance Fluctuations whose statistics was found to be consistent with theoretical predictions for that of 2D systems in the Symplectic symmetry class. We studied the temperature dependence of noise and found that, unlike the topological insulators of the dichalcogenide family, the noise in surface and bulk conduction channels in SmB6 are uncorrelated - at sufficiently low temperatures, the bulk has no discernible contribution to electrical transport in SmB6 making it an ideal platform for probing the physics of TSS. Nanomission, Department of Science & Technology (DST) and Indian Institute of Scienc and EPSRC, UK, Grant EP/L014963/1.

  5. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  6. Experimental vortex breakdown topology in a cylinder with a free surface

    DEFF Research Database (Denmark)

    Lo Jacono, D.; Nazarinia, M.; Brøns, Morten

    2009-01-01

    The free SLII-face, flow in it circular cylinder driven by a rotating bottom disk IS Studied experimentally using particle image velocimetry. Results are compared With computational,11 results assuming I stress-free surface A dye visualization Study by Spohn et al ["Observations of vortex breakdown...... in in open cylindrical container with I rotating bottom," Exp. Fluids 14. 70 (1993)]v as well as several numerical computations. has found a range of different vortex breakdown Structures in this flow. We confirm the existence of a transition where the top of the breakdown bubble crosses from the axis...... to the surface, which has previously only been found numerically. We employ a technique by Brons et al ["Topology of vortex breakdown bubbles in I cylinder with rotating bottom and free surface J. Fluid Mech 428. 133 (2001)] to find the corresponding bifurcation curve in the parameter plane, which has hitherto...

  7. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton.

    Science.gov (United States)

    Ochiai, Tetsuyuki

    2015-02-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range.

  8. Surface State Dynamics of Topological Insulators Investigated by Femtosecond Time- and Angle-Resolved Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hamoon Hedayat

    2018-04-01

    Full Text Available Topological insulators (TI are known for striking quantum phenomena associated with their spin-polarized topological surface state (TSS. The latter in particular forms a Dirac cone that bridges the energy gap between valence and conduction bands, providing a unique opportunity for prospective device applications. In TI of the BixSb2−xTeySe3−y (BSTS family, stoichiometry determines the morphology and position of the Dirac cone with respect to the Fermi level. In order to engineer specific transport properties, a careful tuning of the TSS is highly desired. Therefore, we have systematically explored BSTS samples with different stoichiometries by time- and angle-resolved photoemission spectroscopy (TARPES. This technique provides snapshots of the electronic structure and discloses the carrier dynamics in surface and bulk states, providing crucial information for the design of electro-spin current devices. Our results reveal the central role of doping level on the Dirac cone structure and its femtosecond dynamics. In particular, an extraordinarily long TSS lifetime is observed when the the vertex of the Dirac cone lies at the Fermi level.

  9. Electronic structure and transport on the surface of topological insulator attached to an electromagnetic superlattice

    International Nuclear Information System (INIS)

    Wang Haiyan; Chen Xiongwen; Zhou Xiaoying; Zhang Lebo; Zhou Guanghui

    2012-01-01

    We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional (3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in antiparallel alignment is larger than that in parallel alignment, which stems to the energy band structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently, there is only small incident angle transport in the higher energy region when the system is modulated mainly by the higher electric barriers. We further find that the spatial distribution of the spin polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed direction in the transmitting region. The results may provide a further understanding of the nature of 3D TI surface states, and may be useful in the design of topological insulator-based electronic devices such as collimating electron beam.

  10. Majorana surface modes of nodal topological pairings in spin-3/2 semimetals

    Science.gov (United States)

    Yang, Wang; Xiang, Tao; Wu, Congjun

    2017-10-01

    When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.

  11. Ferromagnetic barrier-induced negative differential conductance on the surface of a topological insulator

    International Nuclear Information System (INIS)

    An Xing-Tao

    2014-01-01

    The effect of the negative differential conductance of a ferromagnetic barrier on the surface of a topological insulator is theoretically investigated. Due to the changes of the shape and position of the Fermi surfaces in the ferromagnetic barrier, the transport processes can be divided into three kinds: the total, partial, and blockade transmission mechanisms. The bias voltage can give rise to the transition of the transport processes from partial to blockade transmission mechanisms, which results in a considerable effect of negative differential conductance. With appropriate structural parameters, the current-voltage characteristics show that the minimum value of the current can reach to zero in a wide range of the bias voltage, and then a large peak-to-valley current ratio can be obtained. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    Science.gov (United States)

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

  13. Linear magnetoresistance and surface to bulk coupling in topological insulator thin films.

    Science.gov (United States)

    Singh, Sourabh; Gopal, R K; Sarkar, Jit; Pandey, Atul; Patel, Bhavesh G; Mitra, Chiranjib

    2017-12-20

    We explore the temperature dependent magnetoresistance of bulk insulating topological insulator thin films. Thin films of Bi 2 Se 2 Te and BiSbTeSe 1.6 were grown using the pulsed laser deposition technique and subjected to transport measurements. Magnetotransport measurements indicate a non-saturating linear magnetoresistance (LMR) behavior at high magnetic field values. We present a careful analysis to explain the origin of LMR taking into consideration all the existing models of LMR. Here we consider that the bulk insulating states and the metallic surface states constitute two parallel conduction channels. Invoking this, we were able to explain linear magnetoresistance behavior as a competition between these parallel channels. We observe that the cross-over field, where LMR sets in, decreases with increasing temperature. We propose that this cross-over field can be used phenomenologically to estimate the strength of surface to bulk coupling.

  14. Spatial distribution of spin polarization in a channel on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Zhou Xiaoying; Shao Huaihua; Liu Yiman; Tang Dongsheng; Zhou Guanghui

    2012-01-01

    We study the spatial distribution of electron spin polarization for a gate-controlled T-shaped channel on the surface of a three-dimensional topological insulator (3D TI). We demonstrate that an energy gap depending on channel geometry parameters is definitely opened due to the spatial confinement. Spin surface locking in momentum space for a uniform wide channel with Hamiltonian linearity in the wavevector is still kept, but it is broken with Hamiltonian nonlinearity in the wavevector, like that for two-dimensional surface states widely studied in the literature. However, the spin surface locking for a T-shaped channel is broken even with Hamiltonian linearity in the wavevector. Interestingly, the magnitude and direction of the in-plane spin polarization are spatially dependent in all regions due to the breaking of translational symmetry of the T-shaped channel system. These interesting findings for an electrically controlled nanostructure based on the 3D TI surface may be testable with the present experimental technique, and may provide further understanding the nature of 3D TI surface states. (paper)

  15. Geometric effects on surface states in topological insulator Bi2Te3 nanowire

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillman; Povolotskyi, Michael; Klimeck, Gerhard

    2012-02-01

    Bismuth Telluride (BT) is a 3D topological insulator (TI) with surface states that have energy dispersion linear in momentum and forms a Dirac cone at low energy. In this work we investigate the surface properties of a BT nanowire and demonstrate the existence of TI states. We also show how such states vanish under certain geometric conditions. An atomistic model (sp3d5s* TB) is used to compute the energy dispersion in a BT nanowire. Penetration depth of the surface states is estimated by ratio of Fermi velocity and band-gap. BT possesses a tiny band-gap, which creates small localization of surface states and greater penetration in to the bulk. To offset this large spatial penetration, which is undesirable to avoid a direct coupling between surfaces, we expect that bigger cross-sections of BT nanowires would be needed to obtain stable TI states. Our numerical work validates this prediction. Furthermore, geometry of the nanowire is shown to influence the TI states. Using a combined analytical and numerical approach our results reveal that surface roughness impact electronic structure leading to Rashba type splits along z-direction. Cylindrical and square cross-sections are given as illustrative examples.

  16. Ultrafast surface carrier dynamics in the topological insulator Bi₂Te₃.

    Science.gov (United States)

    Hajlaoui, M; Papalazarou, E; Mauchain, J; Lantz, G; Moisan, N; Boschetto, D; Jiang, Z; Miotkowski, I; Chen, Y P; Taleb-Ibrahimi, A; Perfetti, L; Marsi, M

    2012-07-11

    We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi(2)Te(3) following a femtosecond laser excitation. Using time and angle-resolved photoelectron spectroscopy, we provide a direct real-time visualization of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few picoseconds are necessary for the Dirac cone nonequilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.

  17. Electrical and proximity-magnetic effects induced quantum Goos–Hänchen shift on the surface of topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuai, Jian [School of Physics and Electronics, Yancheng Teachers College, Yancheng, 224002 Jiangsu (China); Da, H.X., E-mail: haixia8779@163.com [Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore)

    2014-03-15

    We use scattering matrix method to theoretically demonstrate that the quantum Goos–Hänchen shift of the surface on three-dimensional topological insulator coated by ferromagnetic strips is sensitive to the magnitude of ferromagnetic magnetization. The dependence of quantum Goos–Hänchen shift on magnetization and gate bias is investigated by performing station phase approach. It is found that quantum Goos–Hänchen shift is positive and large under the magnetic barrier but may be positive as well as negative values under the gate bias. Furthermore, the position of quantum Goos–Hänchen peak can also be modulated by the combination of gate bias and proximity magnetic effects. Our results indicate that topological insulators are another candidates to support quantum Goos–Hänchen shift. - Highlights: • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators is first investigated. • The magnetization affects quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators. • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators can be manipulated by the gate voltages.

  18. Reliability-Based Topology Optimization Using Stochastic Response Surface Method with Sparse Grid Design

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA and the sequential optimization and reliability assessment (SORA. To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.

  19. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces

    Science.gov (United States)

    Linklater, Denver P.; Khuong Duy Nguyen, Huu; Bhadra, Chris M.; Juodkazis, Saulius; Ivanova, Elena P.

    2017-06-01

    The nanostructuring of materials to create bactericidal and antibiofouling surfaces presents an exciting alternative to common methods of preventing bacterial adhesion. The fabrication of synthetic bactericidal surfaces has been inspired by the anti-wetting and anti-biofouling properties of insect wings, and other topologies found in nature. Black silicon is one such synthetic surfaces which has established bactericidal properties. In this study we show that time-dependent plasma etching of silicon wafers using 15, 30, and 45 min etching intervals, is able to produce different surface geometries with linearly increasing heights of approximately 280, 430, and 610 nm, respectively. After incubation on these surfaces with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacterial cells it was established that smaller, more densely packed pillars exhibited the greatest bactericidal activity with 85% and 89% inactivation of bacterial cells, respectively. The decrease in the pillar heights, pillar cap diameter and inter-pillar spacing corresponded to a subsequent decrease in the number of attached cells for both bacterial species.

  20. The effect of van der Waal's gap expansions on the surface electronic structure of layered topological insulators

    International Nuclear Information System (INIS)

    Eremeev, S V; Vergniory, M G; Chulkov, E V; Menshchikova, T V; Shaposhnikov, A A

    2012-01-01

    On the basis of relativistic ab initio calculations, we show that an expansion of van der Waal's (vdW) spacings in layered topological insulators caused by intercalation of deposited atoms, leads to the simultaneous emergence of parabolic and M-shaped two-dimensional electron gas (2DEG) bands as well as Rashba-splitting of the former states. The expansion of vdW spacings and the emergence of the 2DEG states localized in the (sub)surface region are also accompanied by a relocation of the topological surface state to the lower quintuple layers, that can explain the absence of inter-band scattering found experimentally. (paper)

  1. Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface

    Science.gov (United States)

    Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2018-02-01

    A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.

  2. Topology optimization applied to room acoustic problems and surface acoustic wave devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard

    can be minimized either by distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along all the walls for both 2D and 3D problems. It is also shown how the method can be used to design sound barriers. The main part...... in order to optimize more complicated SAW structures such as acoustic horns which focus the SAWs to a small area. [1] M. P. Bendsøe, O. Sigmund, “Topology optimization, theory, methods and applications”, Springer Verlag Berlin Heidelberg New York, 2nd edition, (2003). ISBN 3-540-42992-1. [2] J. S. Jensen......, Berlin, (2000). ISBN 3-540-67232-X. [5] M. M. de Lima Jr and P. V. Santos, “Modulation of photonic structures by surface acoustic waves”, Rep. Prog. Phys., 68 1639-1701 (2005)...

  3. Optically tunable spin transport on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Yudin, D; Shelykh, I A; Kibis, O V

    2016-01-01

    The emerging field of spinoptronics has a potential to supersede the functionality of modern electronics, while a proper description of strong light–matter coupling pose the most intriguing questions from both fundamental scientific and technological perspectives. In this paper we address a highly relevant issue for such a development. We theoretically explore spin dynamics on the surface of a 3D topological insulator (TI) irradiated with an off-resonant high-frequency electromagnetic wave. The strong coupling between electrons and the electromagnetic wave drastically modifies the spin properties of TI. The effects of irradiation are shown to result in anisotropy of electron energy spectrum near the Dirac point and suppression of spin current and are investigated in detail in this work. (paper)

  4. Systematic study of transport via surface and bulk states in Bi2Te3 topological insulator

    Science.gov (United States)

    de Castro, S.; Peres, M. L.; Chitta, V. A.; Gratens, X.; Soares, D. A. W.; Fornari, C. I.; Rappl, P. H. O.; Abramof, E.; Oliveira, N. F., Jr.

    2016-07-01

    We performed magnetoresistance measurements on Bi2Te3 thin film in the temperature range of T = 1.2-4.0 K and for magnetic fields up to 2 T. The curves exhibited anomalous behavior for temperatures below 4.0 K. Different temperature intervals revealed electrical transport through different conductive channels with clear signatures of weak antilocalization. The magnetoresistance curves were explained using the Hikami-Larkin-Nagaoka model and the 2D Dirac modified model. The comparison between the parameters obtained from the two models revealed the transport via topological surface states and bulk states. In addition, a superconductive like transition is observed for the lowest temperatures and we suggest that this effect can be originated from the misfit dislocations caused by strain, giving rise to a superconductive channel between the interface of the film and the substrate.

  5. Differential topology of complex surfaces elliptic surfaces with p g=1 smooth classification

    CERN Document Server

    Morgan, John W

    1993-01-01

    This book is about the smooth classification of a certain class of algebraicsurfaces, namely regular elliptic surfaces of geometric genus one, i.e. elliptic surfaces with b1 = 0 and b2+ = 3. The authors give a complete classification of these surfaces up to diffeomorphism. They achieve this result by partially computing one of Donalson's polynomial invariants. The computation is carried out using techniques from algebraic geometry. In these computations both thebasic facts about the Donaldson invariants and the relationship of the moduli space of ASD connections with the moduli space of stable bundles are assumed known. Some familiarity with the basic facts of the theory of moduliof sheaves and bundles on a surface is also assumed. This work gives a good and fairly comprehensive indication of how the methods of algebraic geometry can be used to compute Donaldson invariants.

  6. Tolerance of topological surface state towards adsorbed magnetic moments: Fe on Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Markus; Marchenko, Dmitry; Sanchez-Barriga, Jaime; Varykhalov, Andrei; Rader, Oliver [Helmholtz-Zentrum fuer Materialien und Energie, Berlin (Germany); Volykhov, Andrei; Yashina, Lada [Moscow State University, Moskau, Russland (Russian Federation)

    2011-07-01

    Topological surface states on Bi{sub 2}Se{sub 3} and Bi{sub 2}Te{sub 3} are protected by time reversal symmetry. Magnetic fields break time-reversal symmetry, and they have been used in two-dimensional spin quantum-Hall systems to destroy the topological edge states. Another possibility is to introduce magnetic moments. This has been done by substitution of Mn and Fe into the bulk. For Fe a small gap of 44meV was created, however, at very large amounts (12%). In this work, we deposit Fe directly onto the surface where the topological surface state is localized. We show for coverages of 0.25 and 1 ML Fe that the Dirac point remains intact and no gap appears. Core level spectroscopy of Bi and Te states gives insight into the interaction between substrate and adatoms. In addition, extra surface states appear at the Fermi energy which show a large Rashba-type spin-orbit splitting. The orientation of the spin of both, the topological as well as the Rashba-type split surface states is analysed.

  7. Numerical modeling of the effect of surface topology on the saturated pool nucleate boiling curve

    International Nuclear Information System (INIS)

    Unal, C.; Pasamehmetoglu, K.O.

    1993-01-01

    A numerical study of saturated pool nucleate boiling with an emphasis on the effect of surface topography is presented. The numerical model consisted of solving the three-dimensional transient heat conduction equation within the heater subjected to nucleate boiling over its upper surface. The surface topography model considered the distribution of the cavity and cavity angles based on exponential and normal probability functions. Parametric results showed that the saturated nucleate boiling curve shifted left and became steeper with an increase in the mean cavity radius. The boiling curve was found to be sensitive to the selection of how many cavities were selected for each octagonal cell. A small variation in the statistical parameters, especially cavity radii for smooth surfaces, resulted in noticeable differences in wall superheat for a given heat flux. This result indicated that while the heat transfer coefficient increased with cavity radii, the cavity radii or height alone was not sufficient to characterize the boiling curve. It also suggested that statistical experimental data should consider large samples to characterize the surface topology. The boiling curve shifted to the right when the cavity angle was obtained using a normal distribution. This effect became less important when the number of cavities for each cell was increasing because the probability of the potential cavity with a larger radius in each cell was increased. When the contact angle of the fluid decreased for a given mean cavity radii, the boiling curve shifted to the right. This shift was more pronounced at smaller mean cavity radii and decreased with increasing mean cavity radii

  8. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton

    Science.gov (United States)

    Ochiai, Tetsuyuki

    2015-01-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range. PMID:27877739

  9. Influence of semisynthetic modification of the scaffold of a contact domain of HbS on polymerization: role of flexible surface topology in polymerization inhibition.

    Science.gov (United States)

    Sonati, Srinivasulu; Bhutoria, Savita; Prabhakaran, Muthuchidambaran; Acharya, Seetharama A

    2018-02-01

    A new variant of HbS, HbS-Einstein with a deletion of segment α 23-26 in the B-helix, has been assembled by semisynthetic approach. B-helix of the α chain of cis αβ-dimer of HbS plays dominant role in the quinary interactions of deoxy HbS dimer. This B-helix is the primary scaffold that provides the orientation for the side chains of contact residues of this intermolecular contact domain. The design of HbS-Einstein has been undertaken to map the influence of perturbation of molecular surface topology and the flexibility of surface residues in the polymerization. The internal deletion exerts a strong inhibitory influence on Val-6 (β)-dependent polymerization, comparable to single contact site mutations and not for complete neutralization of Val-6(β)-dependent polymerization. The scaffold modification in cis-dimer is inhibitory, and is without any effect when present on the trans dimer. The flexibility changes in the surface topology in the region of scaffold modification apparently counteracts the intrinsic polymerization potential of the molecule. The inhibition is close to that of Le Lamentin mutation [His-20 (α) → Gln] wherein a mutation engineered without much change in flexibility of the contact domain. Interestingly, the chimeric HbS with swine-human chimeric α chain with multiple non-conservative mutations completely inhibits the Val-6(β)-dependent polymerization. The deformabilities of surface topology of chimeric HbS are comparable to HbS in spite of the multiple contact site mutations in the α-chain. We conclude that the design of antisickling Hbs for gene therapy of sickle cell disease should involve multiple mutations of intermolecular contact sites.

  10. Quantum magnetotransport for the surface states of three-dimensional topological insulators in the presence of a Zeeman field

    KAUST Repository

    Tahir, Muhammad

    2013-05-01

    We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence of Zeeman interaction, we investigate the opening of a gap at the Dirac point, making the surface Dirac fermions massive, and the effects on the transport properties. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for a transition from gapless to gapped surface states at n = 0 and activated transport is found from the temperature and magnetic-field dependence of the collisional and Hall conductivities. © Copyright EPLA, 2013.

  11. Nematic order on the surface of a three-dimensional topological insulator

    Science.gov (United States)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  12. Low-energy excitations and Fermi surface topology of parent cobaltate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M.Z. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)], E-mail: mzhasan@princeton.edu; Qian, D. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Foo, M.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2007-09-01

    The essential framework for cuprate superconductivity is that of a spin-1/2 electron system in the vicinity of a half filled (Mott limit) lattice. Of all oxide superconductors, this framework is most closely matched in the sodium doped cobalt oxides except that it is realized on a triangular lattice. We employ angle-resolved photoemission spectroscopy to study the quasiparticle dynamics of the parent cobaltate superconductor. Results reveal a single hole-like Fermi surface generated by the crossing of heavy ({approx}15 m{sub e} {approx} 3m{sub LDA}) quasiparticles with a negative effective hopping (t{sub eff} < 0). The observed ground state as given by the topology of the Fermi surface is found be very close to a collective charge instability with {radical}(3)x{radical}(3) symmetry. The measured electron dynamic parameters reveal the unusual character of the parent cobaltate class likely due to small and almost isotropic Fermi velocity (v{sub F}(k{sup {yields}}){approx}v{sub F}{approx}0.4{+-}0.1 eV A) observed. ARPES data is consistent with bulk thermodynamic specific heat and quantum oscillation measurements.

  13. Influence of surface topology and electrostatic potential on water/electrode systems

    Science.gov (United States)

    Siepmann, J. Ilja; Sprik, Michiel

    1995-01-01

    We have used the classical molecular dynamics technique to simulate the ordering of a water film adsorbed on an atomic model of a tip of a scanning tunneling microscope approaching a planar metal surface. For this purpose, we have developed a classical model for the water-substrate interactions that solely depends on the coordinates of the particles and does not require the definition of geometrically smooth boundary surfaces or image planes. The model includes both an electrostatic induction for the metal atoms (determined by means of an extended Lagrangian technique) and a site-specific treatment of the water-metal chemisorption. As a validation of the model we have investigated the structure of water monolayers on metal substrates of various topology [the (111), (110), and (100) crystallographic faces] and composition (Pt, Ag, Cu, and Ni), and compared the results to experiments. The modeling of the electrostatic induction is compatible with a finite external potential imposed on the metal. This feature is used to investigate the structural rearrangements of the water bilayer between the pair of scanning tunneling microscope electrodes in response to an applied external voltage difference. We find significant asymmetry in the dependence on the sign of the applied voltage. Another result of the calculation is an estimate of the perturbation to the work function caused by the wetting film. For the conditions typical for operation of a scanning tunneling microscope probe, the change in the work function is found to be comparable to the applied voltage (a few hundred millivolts).

  14. Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Guo Jun-Ji; Liao Wen-Hu

    2014-01-01

    Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n—n junction and n—p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ θ < π/2 and π/2 < θ ≤ π, the transmission probability of the n—n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n—p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs

  15. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  16. Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi

    Science.gov (United States)

    Jiang, J.; Schröter, N. B. M.; Wu, S.-C.; Kumar, N.; Shekhar, C.; Peng, H.; Xu, X.; Chen, C.; Yang, H. F.; Hwang, C.-C.; Mo, S.-K.; Felser, C.; Yan, B. H.; Liu, Z. K.; Yang, L. X.; Chen, Y. L.

    2018-02-01

    The recent discovery of the extreme magnetoresistance (XMR) in the nonmagnetic rare-earth monopnictides La X (X = P, As, Sb, Bi,), a recently proposed new topological semimetal family, has inspired intensive research effort in the exploration of the correlation between the XMR and their electronic structures. In this work, using angle-resolved photoemission spectroscopy to investigate the three-dimensional band structure of LaBi, we unraveled its topologically nontrivial nature with the observation of multiple topological surface Dirac fermions, as supported by our ab initio calculations. Furthermore, we observed substantial imbalance between the volume of electron and hole pockets, which rules out the electron-hole compensation as the primary cause of the XMR in LaBi.

  17. Stabilizing plug-and-play regulators and secondary coordinated control for AC islanded microgrids with bus-connected topology

    DEFF Research Database (Denmark)

    Riverso, Stefano; Tucci, Michele; Vasquez, Juan C.

    2018-01-01

    on the corresponding voltage-source converter. Following the plug-and-play design approach previously proposed by some of the authors, whenever the addition/removal of a distributed generation unit is required, feasibility of the operation is automatically checked by designing local controllers through convex...... is distributed, hence mirroring the modularity of the primary control layer. We validate primary and secondary controllers by performing experiments with both linear and nonlinear loads, on a setup composed of three bus-connected distributed generation units. Most importantly, the stability of the microgrid...... after the addition/removal of distributed generation units is assessed. Overall, the experimental results show the feasibility of the proposed modular control design framework, where generation units can be added/removed on the fly, thus enabling the deployment of virtual power plants that can...

  18. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  19. Electronic tunneling through a potential barrier on the surface of a topological insulator

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Zhou, Guanghui

    2016-12-01

    We investigate the tunneling transport for electrons on the surface of a topological insulator (TI) through an electrostatic potential barrier. By using the Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the transmission probability and conductance for the system. It is demonstrated that, the Klein paradox can also been observed in the system same as in graphene system. Interestingly, the conductance reaches the minimum value when the incident electron energy is equal to the barrier strength. Moreover, with increasing barrier width, the conductance turns up some tunneling oscillation peaks, and larger barrier strength can cause lower conductance, shorter period but larger oscillation amplitude. The oscillation amplitude decreases as the barrier width increases, which is similar as that of the system consisting of the compressive uniaxial strain applied on a TI, but somewhat different from that of graphene system where the oscillation amplitude is a constant. The findings here imply that an electrostatic barrier can greatly influence the electron tunneling transport of the system, and may provide a new way to realize directional filtering of electrons.

  20. A numerical investigation of the impact of surface topology on laminar boundary layers

    Science.gov (United States)

    Beratlis, Nikolaos; Squires, Kyle; Balaras, Elias

    2015-11-01

    Surface topology, such as dimples or trip wires, has been utilized in the past for passive separation control over bluff bodies. The majority of the work, however, has focused on the indirect effects on the drag and lift forces, while the details of the impact on the boundary layer evolution are not well understood. Here we report a series of DNS of flow over a single row of spherical and hexagonal dimples, as well as, circular grooves. The Reynolds number and the thickness of the incoming laminar boundary layer is carefully controlled. In all cases transition to turbulence downstream of the elements comes with reorientation of the spanwise vorticity into hairpin like vortices. Although qualitatively the transition mechanism amongst different dimples and grooves is similar, important quantitative differences exist: two-dimensional geometries such as the groove, are more stable than three-dimensional geometries. In addition, it was found that the cavity geometry controls the initial thickness of the boundary layer and practically results in a shift of the virtual origin of the turbulent boundary layer. Important differences in the momentum transport downstream of the dimples exist, but in all cases the boundary layer evolves in a self-similar manner.

  1. Topological surface states interacting with bulk excitations in the Kondo insulator SmB6 revealed via planar tunneling spectroscopy.

    Science.gov (United States)

    Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H

    2016-06-14

    Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3 Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6 The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6.

  2. Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, Jonathan

    2012-03-14

    Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi{sub 2}Se{sub 3}. We studied p-type Bi{sub 2}Se{sub 3}, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a meta-stable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.

  3. Enzymatic treatment of duck hepatitis B virus: Topology of the surface proteins for virions and noninfectious subviral particles

    International Nuclear Information System (INIS)

    Franke, Claudia; Matschl, Urte; Bruns, Michael

    2007-01-01

    The large surface antigen L of duck hepatitis B virus exhibits a mixed topology with the preS domains of the protein alternatively exposed to the particles' interior or exterior. After separating virions from subviral particles (SVPs), we compared their L topologies and showed that both particle types exhibit the same amount of L with the following differences: 1-preS of intact virions was enzymatically digested with chymotrypsin, whereas in SVPs only half of preS was accessible, 2-phosphorylation of L at S118 was completely removed by phosphatase treatment only in virions, 3-iodine-125 labeling disclosed a higher ratio of exposed preS to S domains in virions compared to SVPs. These data point towards different surface architectures of virions and SVPs. Because the preS domain acts in binding to a cellular receptor of hepatocytes, our findings implicate the exclusion of SVPs as competitors for the receptor binding and entry of virions

  4. Assessing topology and surface orientation of an antimicrobial peptide magainin 2 using mechanically aligned bilayers and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Mayo, Daniel J; Sahu, Indra D; Lorigan, Gary A

    2018-07-01

    Aligned CW-EPR membrane protein samples provide additional topology interactions that are absent from conventional randomly dispersed samples. These samples are aptly suited to studying antimicrobial peptides because of their dynamic peripheral topology. In this study, four consecutive substitutions of the model antimicrobial peptide magainin 2 were synthesized and labeled with the rigid TOAC spin label. The results revealed the helical tilts to be 66° ± 5°, 76° ± 5°, 70° ± 5°, and 72° ± 5° for the TOAC substitutions H7, S8, A9, and K10 respectively. These results are consistent with previously published literature. Using the EPR (electron paramagnetic resonance) mechanical alignment technique, these substitutions were used to critically assess the topology and surface orientation of the peptide with respect to the membrane. This methodology offers a rapid and simple approach to investigate the structural topology of antimicrobial peptides. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  6. Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard

    2015-01-01

    Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.

  7. Bulk chirality effect for symmetric bistable switching of liquid crystals on topologically self-patterned degenerate anchoring surface.

    Science.gov (United States)

    Park, Min-Kyu; Joo, Kyung-Il; Kim, Hak-Rin

    2017-06-26

    We demonstrate a bistable switching liquid crystal (LC) mode utilizing a topologically self-structured dual-groove surface for degenerated easy axes of LC anchoring. In our study, the effect of the bulk elastic distortion of the LC directors on the bistable anchoring surface is theoretically analyzed for balanced bistable states based on a free energy diagram. By adjusting bulk LC chirality, we developed ideally symmetric and stable bistable anchoring and switching properties, which can be driven by a low in-plane pulsed field of about 0.7 V/µm. The fabricated device has a contrast ratio of 196:1.

  8. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.

    Science.gov (United States)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-04-15

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone

  9. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

    Science.gov (United States)

    Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei

    2016-01-01

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378

  10. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface

    Science.gov (United States)

    Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng

    2009-06-01

    Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin-orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1-x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials.

  11. Saddle-like topological surface states on the T T'X family of compounds (T , T' = Transition metal, X =Si , Ge)

    Science.gov (United States)

    Singh, Bahadur; Zhou, Xiaoting; Lin, Hsin; Bansil, Arun

    2018-02-01

    Topological nodal-line semimetals are exotic conductors that host symmetry-protected conducting nodal lines in their bulk electronic spectrum and nontrivial drumhead states on the surface. Based on first-principles calculations and an effective model analysis, we identify the presence of topological nodal-line semimetal states in the low crystalline symmetric T T'X family of compounds (T ,T' = transition metal, X = Si or Ge) in the absence of spin-orbit coupling (SOC). Taking ZrPtGe as an exemplar system, we show that owing to small lattice symmetry this material harbors a single nodal line on the ky=0 plane with large energy dispersion and unique drumhead surface state with a saddlelike energy dispersion. When the SOC is included, the nodal line gaps out and the system transitions to a strong topological insulator state with Z2=(1 ;000 ) . The topological surface state evolves from the drumhead surface state via the sharing of its saddlelike energy dispersion within the bulk energy gap. These features differ remarkably from those of the currently known topological surface states in topological insulators such as Bi2Se3 with Dirac-cone-like energy dispersions.

  12. Open magnetic surfaces and resonant topology in the separatrix-dominated boundary region of the W7-AS stellarator

    International Nuclear Information System (INIS)

    Sardei, F.; Grigull, P.; Herre, G.; Kisslinger, J.; Richter-Gloetzl, M.

    1993-01-01

    The boundary of W7-AS for ι ≅ 1/3 is defined by the contact with two up-down limiters. Smooth flux surfaces extend deep into the SOL, and the limiters map into large-size flux bundles of homogeneous connection lengths. For this topology, a radial 1D transport model has been developed and used to derive radial profiles and density scaling of the diffusion coefficient in the limiter dominated SOL. At ι ≥ 0.5, the boundary topology is totally different and exhibits open, divertor-like field structures which are responsible for highly non-homogeneous recycling and wall load distributions. A comprehensive understanding of the plasma transport and recycling in this region is needed, for example, to optimize passive and active methods of particle and impurity control, to clarify the effects of the boundary conditions on the main plasma performance and to explore the divertor potential of W7-AS. Evaluation and correlation of local experimental data are more difficult in this open topology, as it cannot be parametrized by standard magnetic coordinates. (author) 5 refs., 6 figs

  13. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyunwoo, E-mail: chw0089@gmail.com [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of); Shin, Changhwan, E-mail: cshin@uos.ac.kr [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)

    2017-06-15

    Highlights: • The quantum capacitance in topological insulator (TI) at room temperature is directly revealed. • The physical origin of quantum capacitance, the two dimensional surface state of TI, is experimentally validated. • Theoretically calculated results of ideal quantum capacitance can well predict the experimental data. - Abstract: A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO{sub 2}-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C{sub T}{sup −1} = C{sub Q}{sup −1} + C{sub SiO2}{sup −1}). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron–electron interaction in the two-dimensional surface state of the TI.

  14. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    Science.gov (United States)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  15. STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects

    Energy Technology Data Exchange (ETDEWEB)

    Alpichshev, Zhanybek; /SIMES, Stanford /SLAC /Stanford U., Phys. Dept.; Analytis, J.G.; /SIMES, Stanford /SLAC /Stanford U., Phys. Dept.; Chu, J.-H.; Fisher, I.R.; /SIMES, Stanford /SLAC /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Chen, Y.L.; /SIMES, Stanford /SLAC /Stanford U., Phys. Dept.; Shen, Z.X.; /SIMES, Stanford /SLAC /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Fang, A.; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Kapitulnik, A.; /SIMES, Stanford /SLAC /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2010-06-02

    Scanning tunneling spectroscopy studies on high-quality Bi{sub 2}Te{sub 3} crystals exhibit perfect correspondence to ARPES data, hence enabling identification of different regimes measured in the local density of states (LDOS). Oscillations of LDOS near a step are analyzed. Within the main part of the surface band oscillations are strongly damped, supporting the hypothesis of topological protec- tion. At higher energies, as the surface band becomes concave, oscillations appear which disperse with a particular wave-vector that may result from an unconventional hexagonal warping term.

  16. Spin-related tunneling through a nanostructured electric-magnetic barrier on the surface of a topological insulator.

    Science.gov (United States)

    Wu, Zhenhua; Li, Jun

    2012-01-27

    We investigate quantum tunneling through a single electric and/or magnetic barrier on the surface of a three-dimensional topological insulator. We found that (1) the propagating behavior of electrons in such system exhibits a strong dependence on the direction of the incident electron wavevector and incident energy, giving the possibility to construct a wave vector and/or energy filter; (2) the spin orientation can be tuned by changing the magnetic barrier structure as well as the incident angles and energies.PACS numbers: 72.25.Dc; 73.20.-r; 73.23.-b; 75.70.-i.

  17. Homotopical topology

    CERN Document Server

    Fomenko, Anatoly

    2016-01-01

    This classic text of the renowned Moscow mathematical school equips the aspiring mathematician with a solid grounding in the core of topology, from a homotopical perspective. Its comprehensiveness and depth of treatment are unmatched among topology textbooks: in addition to covering the basics—the fundamental notions and constructions of homotopy theory, covering spaces and the fundamental group, CW complexes, homology and cohomology, homological algebra—the book treats essential advanced topics, such as obstruction theory, characteristic classes, Steenrod squares, K-theory and cobordism theory, and, with distinctive thoroughness and lucidity, spectral sequences. The organization of the material around the major achievements of the golden era of topology—the Adams conjecture, Bott periodicity, the Hirzebruch–Riemann–Roch theorem, the Atiyah–Singer index theorem, to name a few—paints a clear picture of the canon of the subject. Grassmannians, loop spaces, and classical groups play a central role ...

  18. Surface topology caused by dislocations in polar, semipolar, and nonpolar InGaN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schade, L.; Schwarz, U.T. [Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Wernicke, T.; Rass, J.; Ploch, S. [Institute of Solid State Physics, TU Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, TU Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany)

    2014-04-15

    The impact of dislocations on surface topology as well as on quantum well emission in c-plane, semipolar, and nonpolar InGaN/GaN heterostructures is being analyzed by micro-photoluminescence and white-light-interferometry. V-pits with (10 anti 11) and (10 anti 1 anti 4) side facets are identified in a (10 anti 12) semipolar heterostructure. Hillocks formed by spiral growth around screw dislocations change from hexagonal to triangular to rectangular shape in polar, semipolar, and nonpolar heterostructures, respectively, reflecting the symmetry of the individual surface. The emission in semipolar quantum wells, grown homoepitaxially on bulk GaN substrates, show dark stripes aligned with misfit dislocations. For (11 anti 22) and (20 anti 21) orientation, these dark stripes are perpendicular and parallel, respectively, to surface striation. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.

    Science.gov (United States)

    Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto

    2015-04-10

    Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.

  20. Intrinsic conduction through topological surface states of insulating Bi{sub 2}Te{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Katharina; Becker, Christoph; Rata, Diana; Thalmeier, Peter; Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Swanson, Jesse [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of British Columbia, Vancouver (Canada)

    2015-07-01

    Topological insulators represent a new state of matter that open up new opportunities to create unique quantum particles. Many exciting experiments have been proposed by theory, yet, the main obstacle for their execution is material quality and cleanliness of the experimental conditions. The presence of tiny amounts of defects in the bulk or contaminants at the surface already mask these phenomena. We present the preparation, structural and spectroscopic characterisation of MBE-grown Bi{sub 2}Te{sub 3} thin films that are insulating in the bulk. Moreover, temperature dependent four-point-probe resistivity measurements of the Dirac states on surfaces that are intrinsically clean were conducted. The total amount of surface charge carries is in the order of 10{sup 12} cm{sup -2} and mobilities up to 4600 cm{sup 2}/Vs are observed. Importantly, these results are achieved by carrying out the preparation and characterisation all in-situ under ultra-high-vacuum conditions.

  1. Impact of the Topological Surface State on the Thermoelectric Transport in Sb2Te3 Thin Films.

    Science.gov (United States)

    Hinsche, Nicki F; Zastrow, Sebastian; Gooth, Johannes; Pudewill, Laurens; Zierold, Robert; Rittweger, Florian; Rauch, Tomáš; Henk, Jürgen; Nielsch, Kornelius; Mertig, Ingrid

    2015-04-28

    Ab initio electronic structure calculations based on density functional theory and tight-binding methods for the thermoelectric properties of p-type Sb2Te3 films are presented. The thickness-dependent electrical conductivity and the thermopower are computed in the diffusive limit of transport based on the Boltzmann equation. Contributions of the bulk and the surface to the transport coefficients are separated, which enables to identify a clear impact of the topological surface state on the thermoelectric properties. When the charge carrier concentration is tuned, a crossover between a surface-state-dominant and a Fuchs-Sondheimer transport regime is achieved. The calculations are corroborated by thermoelectric transport measurements on Sb2Te3 films grown by atomic layer deposition.

  2. Faraday Rotation Due to Surface States in the Topological Insulator (Bi1-xSbx)2Te3.

    Science.gov (United States)

    Shao, Yinming; Post, Kirk W; Wu, Jhih-Sheng; Dai, Siyuan; Frenzel, Alex J; Richardella, Anthony R; Lee, Joon Sue; Samarth, Nitin; Fogler, Michael M; Balatsky, Alexander V; Kharzeev, Dmitri E; Basov, D N

    2017-02-08

    Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2 Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.

  3. Ketoprofen-loaded Eudragit RSPO microspheres: an influence of sodium carbonate on in vitro drug release and surface topology.

    Science.gov (United States)

    Pandit, Sachin S; Hase, Dinesh P; Bankar, Manish M; Patil, Arun T; Gaikwad, Naresh J

    2009-05-01

    Eudragit RSPO microspheres containing ketoprofen as model drug, prepared by solvent evaporation technique using acetone-liquid paraffin (heavy) solvent system were examined. Depending upon polymer concentration in the internal phase, microspheres of particle mean diameter (122.8, 213.6 and 309.5 μm) were obtained. The influence of surface washing of microspheres with n-hexane, i.e. untreated microspheres (UM) on the drug content, drug release and surface topology of microspheres were compared to those of microspheres washed with sodium carbonate, i.e. treated microspheres (TM) in order to make the non-encapsulated surface drug soluble. The significant reduction in encapsulation efficiency (p < 0.001) and drug content (p < 0.001) after treatment, in combination with the small crystalline peaks observed during XRD testing and lack of melting endotherm observed in DSC testing, suggests that the washing process actually removes a significant amount of drug (p < 0.001) from the surface and encapsulated near to the surface of the microsphere polymer matrix. Scanning electron microscopy (SEM) examination revealed that the removal of surface drug did not affect the size of microspheres but the topology of treated smallest microspheres was modified. The ketoprofen release profiles were examined in phosphate buffer pH 7.4, using USPXXIII paddle type dissolution apparatus. In general both UM and TM result in biphasic release patterns, but the initial burst effect (first release phase) of TM was lower than that of UM. The second release phase did not change for the bigger size but increased for the smallest microspheres, probably owing to the modification of matrix porosity.

  4. Artificial playing surfaces research: a review of medical, engineering and biomechanical aspects.

    Science.gov (United States)

    Dixon, S J; Batt, M E; Collop, A C

    1999-05-01

    In this paper, current knowledge of artificial playing surfaces is reviewed. Research status in the fields of sports medicine, engineering and biomechanics is described. A multidisciplinary approach to the study of artificial sports surface properties is recommended. The development of modelling techniques to characterise fundamental material properties is described as the most appropriate method for the unique specification of material properties such as stiffness and damping characteristics. It is suggested that the systematic manipulation of fundamental surface material properties in biomechanics research will allow the identification of subject responses to clearly defined surface variation. It is suggested that subjects should be grouped according to characteristic behaviour on specific sports surfaces. It is speculated that future biomechanics research will identify subject criterion related to differing group responses. The literature evidence of interactions between sports shoes and sports surfaces leads to the suggestion that sports shoe and sports surface companies should work together in the development of ideal shoe - surface combinations for particular groups of subjects.

  5. Spin-orbit torque in 3D topological insulator-ferromagnet heterostructure: crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2017-01-01

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore, our model accounts for spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large damping torque reported recently is more likely attributed to interfacial magnetoelectric effect, while spin Hall torque remains small even in the bulk-dominated regime.

  6. Spin-orbit torque in a three-dimensional topological insulator–ferromagnet heterostructure: Crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2018-01-01

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three-dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore our model accounts for the spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large dampinglike torque reported recently is more likely attributed to the Berry curvature of interfacial states, while spin Hall torque remains small even in the bulk-dominated regime.

  7. Spin-orbit torque in 3D topological insulator-ferromagnet heterostructure: crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit

    2017-11-29

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore, our model accounts for spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large damping torque reported recently is more likely attributed to interfacial magnetoelectric effect, while spin Hall torque remains small even in the bulk-dominated regime.

  8. Spin-orbit torque in a three-dimensional topological insulator–ferromagnet heterostructure: Crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit

    2018-04-02

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three-dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore our model accounts for the spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large dampinglike torque reported recently is more likely attributed to the Berry curvature of interfacial states, while spin Hall torque remains small even in the bulk-dominated regime.

  9. Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9

    Science.gov (United States)

    Shrestha, K.; Graf, D.; Marinova, V.; Lorenz, B.; Chu, C. W.

    2017-10-01

    We have investigated the weak antilocalization (WAL) effect in the p-type Bi2Se2.1Te0.9 topological system. The magnetoconductance shows a cusp-like feature at low magnetic fields, indicating the presence of the WAL effect. The WAL curves measured at different tilt angles merge together when they are plotted as a function of the normal field components, showing that surface states dominate the magnetoconductance in the Bi2Se2.1Te0.9 crystal. We have calculated magnetoconductance per conduction channel and applied the Hikami-Larkin-Nagaoka formula to determine the physical parameters that characterize the WAL effect. The number of conduction channels and the phase coherence length do not change with temperature up to T = 5 K. In addition, the sample shows a large positive magnetoresistance that reaches 1900% under a magnetic field of 35 T at T = 0.33 K with no sign of saturation. The magnetoresistance value decreases with both increasing temperature and tilt angle of the sample surface with respect to the magnetic field. The large magnetoresistance of topological insulators can be utilized in future technology such as sensors and memory devices.

  10. Surface quantum oscillations and weak antilocalization effect in topological insulator (Bi0.3Sb0.7)2Te3

    Science.gov (United States)

    Urkude, Rajashri; Rawat, Rajeev; Palikundwar, Umesh

    2018-04-01

    In 3D topological insulators, achieving a genuine bulk-insulating state is an important topic of research. The material system (Bi,Sb)2(Te,Se)3 has been proposed as a topological insulator with high resistivity and low carrier concentration. Topological insulators are predicted to present interesting surface transport phenomena but their experimental studies have been hindered by metallic bulk conduction that overwhelms the surface transport. Here we present a study of the bulk-insulating properties of (Bi0.3Sb0.7)2Te3. We show that a high resistivity exceeding 1 Ωm as a result of variable-range hopping behavior of state and Shubnikov-de Haas oscillations as coming from the topological surface state. We have been able to clarify both the bulk and surface transport channels, establishing a comprehensive understanding of the transport properties in this material. Our results demonstrate that (Bi0.3Sb0.7)2Te3 is a good material for studying the surface quantum transport in a topological insulator.

  11. Topology of surfaces for molecular Stark energy, alignment, and orientation generated by combined permanent and induced electric dipole interactions.

    Science.gov (United States)

    Schmidt, Burkhard; Friedrich, Bretislav

    2014-02-14

    We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as alignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.

  12. Topology of surfaces for molecular Stark energy, alignment, and orientation generated by combined permanent and induced electric dipole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Burkhard, E-mail: burkhard.schmidt@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin (Germany); Friedrich, Bretislav, E-mail: brich@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2014-02-14

    We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables – such as alignment and orientation cosines – in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.

  13. (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2017-05-22

    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.

  14. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  15. Visualizing vector field topology in fluid flows

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  16. Quantum and Classical Magnetoresistance in Ambipolar Topological Insulator Transistors with Gate-tunable Bulk and Surface Conduction

    Science.gov (United States)

    Tian, Jifa; Chang, Cuizu; Cao, Helin; He, Ke; Ma, Xucun; Xue, Qikun; Chen, Yong P.

    2014-01-01

    Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials. PMID:24810663

  17. Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS.

    Science.gov (United States)

    Ali, Mazhar N; Schoop, Leslie M; Garg, Chirag; Lippmann, Judith M; Lara, Erik; Lotsch, Bettina; Parkin, Stuart S P

    2016-12-01

    Magnetoresistance (MR), the change of a material's electrical resistance in response to an applied magnetic field, is a technologically important property that has been the topic of intense study for more than a quarter century. We report the observation of an unusual "butterfly"-shaped titanic angular magnetoresistance (AMR) in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K resistivity as low as 48(4) nΩ⋅cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 × 10 5 percent at 9 T and 2 K at a 45° angle between the applied current ( I || a ) and the applied field (90° is H || c ). Approaching 90°, a "dip" is seen in the AMR, which, by analyzing Shubnikov de Haas oscillations at different angles, we find to coincide with a very sharp topological phase transition unlike any seen in other known Dirac/Weyl materials. We find that ZrSiS has a combination of two-dimensional (2D) and 3D Dirac pockets comprising its Fermi surface and that the combination of high-mobility carriers and multiple pockets in ZrSiS allows for large property changes to occur as a function of angle between applied fields. This makes it a promising platform to study the physics stemming from the coexistence of 2D and 3D Dirac electrons as well as opens the door to creating devices focused on switching between different parts of the Fermi surface and different topological states.

  18. Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS

    Science.gov (United States)

    Ali, Mazhar N.; Schoop, Leslie M.; Garg, Chirag; Lippmann, Judith M.; Lara, Erik; Lotsch, Bettina; Parkin, Stuart S. P.

    2016-01-01

    Magnetoresistance (MR), the change of a material’s electrical resistance in response to an applied magnetic field, is a technologically important property that has been the topic of intense study for more than a quarter century. We report the observation of an unusual “butterfly”-shaped titanic angular magnetoresistance (AMR) in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K resistivity as low as 48(4) nΩ⋅cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 × 105 percent at 9 T and 2 K at a 45° angle between the applied current (I || a) and the applied field (90° is H || c). Approaching 90°, a “dip” is seen in the AMR, which, by analyzing Shubnikov de Haas oscillations at different angles, we find to coincide with a very sharp topological phase transition unlike any seen in other known Dirac/Weyl materials. We find that ZrSiS has a combination of two-dimensional (2D) and 3D Dirac pockets comprising its Fermi surface and that the combination of high-mobility carriers and multiple pockets in ZrSiS allows for large property changes to occur as a function of angle between applied fields. This makes it a promising platform to study the physics stemming from the coexistence of 2D and 3D Dirac electrons as well as opens the door to creating devices focused on switching between different parts of the Fermi surface and different topological states. PMID:28028541

  19. General topology

    CERN Document Server

    Willard, Stephen

    2004-01-01

    Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Its treatment encompasses two broad areas of topology: ""continuous topology,"" represented by sections on convergence, compactness, metrization and complete metric spaces, uniform spaces, and function spaces; and ""geometric topology,"" covered by nine sections on connectivity properties, topological characterization theorems, and homotopy theory. Many standard spaces are introduced in the related problems that accompany each section (340

  20. Surface modification of beta-tricalcium phosphate scaffolds with topological nanoapatite coatings

    International Nuclear Information System (INIS)

    Zhang Faming; Chang Jiang; Lu Jianxi; Ning Congqin

    2008-01-01

    A biomimetic process was developed to create a modulable surface topography of nanocrystalline apatite on pure beta-tricalcium phosphate (β-TCP) scaffolds. The scaffolds were immersed in a newly revised simulated body fluid (R n -SBF) to produce nanocrystalline apatite. The obtained surfaces were investigated using scanning electric microscopy, energy dispersion spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electric microscopy. Nanoparticulates apatite were produced on the surface of the scaffolds for 1 day's soaking; increasing soaking to 3 days led to the formation of a surface covered by needle-like apatite nanocrystals; and a surface coating of needle-like apatite clusters was created after two weeks' soaking in the R n -SBF without bicarbonate ion concentrations. The increase of bicarbonate ion concentrations progressively in the R n -SBF provided a surface entirely coated with a nanostructured thick layer of apatite. These apatite nanostructures were low-crystalline bone-like apatite. The mechanisms for the apatite formation and transition of surface topographies were also discussed. Therefore, a variety of surface topography of nanoapatite coatings on the β-TCP scaffolds can be obtained using this method, which may enhance cell adhesion to the scaffolds for bone tissue engineering applications

  1. Orientational Order on Surfaces: The Coupling of Topology, Geometry, and Dynamics

    Science.gov (United States)

    Nestler, M.; Nitschke, I.; Praetorius, S.; Voigt, A.

    2018-02-01

    We consider the numerical investigation of surface bound orientational order using unit tangential vector fields by means of a gradient flow equation of a weak surface Frank-Oseen energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete exterior calculus approach, a method based on vector spherical harmonics, a surface finite element method, and an approach utilizing an implicit surface description, the diffuse interface method, are described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples where the energy is decreased by introducing additional orientational defects.

  2. Topological spin excitations induced by an external magnetic field coupled to a surface with rotational symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2013-01-01

    We study the Heisenberg model in an external magnetic field on curved surfaces with rotational symmetry. The Euler-Lagrange static equations, derived from the Hamiltonian, lead to the inhomogeneous double sine-Gordon equation. Nonetheless, if the magnetic field is coupled to the metric elements of the surface, and consequently to its curvature, the homogeneous double sine-Gordon equation emerges and a 2π-soliton solution is obtained. In order to satisfy the self-dual equations, surface deformations are predicted to appear at the sector where the spin direction is opposite to the magnetic field. On the basis of the model, we find the characteristic length of the 2π-soliton for three specific rotationally symmetric surfaces: the cylinder, the catenoid, and the hyperboloid. On finite surfaces, such as the sphere, torus, and barrels, fractional 2π-solitons are predicted to appear. (author)

  3. Determining the in-plane Fermi surface topology in high Tc superconductors using angle-dependent magnetic quantum oscillations

    International Nuclear Information System (INIS)

    Harrison, N; McDonald, R D

    2009-01-01

    We propose a quantum oscillation experiment by which the rotation of an underdoped YBa 2 Cu 3 O 6+x sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|. (fast track communication)

  4. Quantum Hall effect on top and bottom surface states of topological insulator (Bi1-xSbx)2Te3 films.

    Science.gov (United States)

    Yoshimi, R; Tsukazaki, A; Kozuka, Y; Falson, J; Takahashi, K S; Checkelsky, J G; Nagaosa, N; Kawasaki, M; Tokura, Y

    2015-04-14

    The three-dimensional topological insulator is a novel state of matter characterized by two-dimensional metallic Dirac states on its surface. To verify the topological nature of the surface states, Bi-based chalcogenides such as Bi2Se3, Bi2Te3, Sb2Te3 and their combined/mixed compounds have been intensively studied. Here, we report the realization of the quantum Hall effect on the surface Dirac states in (Bi1-xSbx)2Te3 films. With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ±1 are resolved. Furthermore, the appearance of a quantum Hall plateau at filling factor zero reflects a pseudo-spin Hall insulator state when the Fermi level is tuned in between the energy levels of the non-degenerate top and bottom surface Dirac points. The observation of the quantum Hall effect in three-dimensional topological insulator films may pave a way toward topological insulator-based electronics.

  5. Surfaces of Minimal Paths from Topological Structures and Applications to 3D Object Segmentation

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2017-01-01

    Extracting surfaces, representing boundaries of objects of interest, from volumetric images, has important applications in various scientific domains, from medicine to geology. In this thesis, I introduce novel mathematical, computational

  6. Topological Oxide Insulator in Cubic Perovskite Structure

    Science.gov (United States)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  7. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, B.; Chen, T.; Shklovskii, B. I., E-mail: shklovsk@physics.spa.umn.edu [University of Minnesota, Fine Theoretical Physics Institute (United States)

    2013-09-15

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

  8. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states

  9. Differential effects of type of keyboard playing task and tempo on surface EMG amplitudes of forearm muscles

    Directory of Open Access Journals (Sweden)

    Hyun Ju eChong

    2015-09-01

    Full Text Available Despite increasing interest in keyboard playing as a strategy for repetitive finger exercises in fine motor skill development and hand rehabilitation, comparative analysis of task-specific finger movements relevant to keyboard playing has been less extensive. This study examined whether there were differences in surface EMG activity levels of forearm muscles associated with different keyboard playing tasks. Results demonstrated higher muscle activity with sequential keyboard playing in a random pattern compared to individuated playing or sequential playing in a successive pattern. Also, the speed of finger movements was found as a factor that affect muscle activity levels, demonstrating that faster tempo elicited significantly greater muscle activity than self-paced tempo. The results inform our understanding of the type of finger movements involved in different types of keyboard playing at different tempi so as to consider the efficacy and fatigue level of keyboard playing as an intervention for amateur pianists or individuals with impaired fine motor skills.

  10. Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator

    International Nuclear Information System (INIS)

    Roy, Urmimala; Dey, Rik; Pramanik, Tanmoy; Ghosh, Bahniman; Register, Leonard F.; Banerjee, Sanjay K.

    2015-01-01

    We consider a thermally stable, metallic nanoscale ferromagnet (FM) subject to spin-polarized current injection and exchange coupling from the spin-helically locked surface states of a topological insulator (TI) to evaluate possible non-volatile memory applications. We consider parallel transport in the TI and the metallic FM, and focus on the efficiency of magnetization switching as a function of transport between the TI and the FM. Transport is modeled as diffusive in the TI beneath the FM, consistent with the mobility in the TI at room temperature, and in the FM, which essentially serves as a constant potential region albeit spin-dependent except in the low conductivity, diffusive limit. Thus, it can be captured by drift-diffusion simulation, which allows for ready interpretation of the results. We calculate switching time and energy consumed per write operation using self-consistent transport, spin-transfer-torque (STT), and magnetization dynamics calculations. Calculated switching energies and times compare favorably to conventional spin-torque memory schemes for substantial interlayer conductivity. Nevertheless, we find that shunting of current from the TI to a metallic nanomagnet can substantially limit efficiency. Exacerbating the problem, STT from the TI effectively increases the TI resistivity. We show that for optimum performance, the sheet resistivity of the FM layer should be comparable to or larger than that of the TI surface layer. Thus, the effective conductivity of the FM layer becomes a critical design consideration for TI-based non-volatile memory

  11. Reconfigurable topological photonic crystal

    Science.gov (United States)

    Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.

    2018-02-01

    Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.

  12. Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe_{5}

    Directory of Open Access Journals (Sweden)

    R. Wu

    2016-05-01

    Full Text Available Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe_{5} crystal hosts a large full gap of ∼100  meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.

  13. Illumination-induced changes of the Fermi surface topology in three-dimensional superlattices

    Czech Academy of Sciences Publication Activity Database

    Goncharuk, Natalya; Smrčka, Ludvík; Svoboda, Pavel; Vašek, Petr; Kučera, Jan; Krupko, Yu.; Wegscheider, W.

    2007-01-01

    Roč. 75, č. 24 (2007), 245322/1-245322/7 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652 Institutional research plan: CEZ:AV0Z10100521 Keywords : persistent photoconductivity * superlattice * Fermi surface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  14. Controllable magnetic doping of the surface state of a topological insulator

    DEFF Research Database (Denmark)

    Schlenk, T.; Bianchi, M.; Koleini, Mohammad

    2013-01-01

    A combined experimental and theoretical study of doping individual Fe atoms into Bi2Se3 is presented. It is shown through a scanning tunneling microscopy study that single Fe atoms initially located at hollow sites on top of the surface (adatoms) can be incorporated into subsurface layers by ther...

  15. Extension of the constraint algebra for a closed string with a world surface of fixed topology

    International Nuclear Information System (INIS)

    Kashaev, R.M.; Osipov, A.A.

    1989-01-01

    The recently proposed choice of gauge in which the constraints and auxiliary conditions form a closed algebra is extended to the case of the Krichever--Novikov generalized graded algebras. It is shown that the central element of the extended algebra can be represented by an inexact form on a closed contour of the world surface of the string. A realization of the given algebra in terms of string variables is obtained. For this purpose, the classical dynamics of a closed bosonic string with a world surface of fixed genus is discussed. The dynamical variables are introduced in a covariant way and Hamilton equations are obtained in terms of them. These equations are equivalent to the Lagrange equations only in the case of a harmonic function of ''time.''

  16. The influence of an artificial playing surface on injury risk and perceptions of muscle soreness in elite Rugby Union.

    Science.gov (United States)

    Williams, S; Trewartha, G; Kemp, S P T; Michell, R; Stokes, K A

    2016-01-01

    This prospective cohort study investigated the influence of an artificial playing surface on injury risk and perceptions of muscle soreness in elite English Premiership Rugby Union players. Time loss (from 39.5 matches) and abrasion (from 27 matches) injury risk was compared between matches played on artificial turf and natural grass. Muscle soreness was reported over the 4 days following one match played on each surface by 95 visiting players (i.e., normally play on natural grass surfaces). There was a likely trivial difference in the overall injury burden relating to time-loss injuries between playing surfaces [rate ratio = 1.01, 90% confidence interval (CI): 0.73-1.38]. Abrasions were substantially more common on artificial turf (rate ratio = 7.92, 90% CI: 4.39-14.28), although the majority of these were minor and only two resulted in any reported time loss. Muscle soreness was consistently higher over the 4 days following a match on artificial turf in comparison with natural grass, although the magnitude of this effect was small (effect sizes ranging from 0.26 to 0.40). These results suggest that overall injury risk is similar for the two playing surfaces, but further surveillance is required before inferences regarding specific injury diagnoses and smaller differences in overall injury risk can be made. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Low-energy excitations and Fermi surface topology of parent cobaltate superconductor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Qian, D.; Foo, M.; Cava, R.J.

    2007-01-01

    The essential framework for cuprate superconductivity is that of a spin-1/2 electron system in the vicinity of a half filled (Mott limit) lattice. Of all oxide superconductors, this framework is most closely matched in the sodium doped cobalt oxides except that it is realized on a triangular lattice. We employ angle-resolved photoemission spectroscopy to study the quasiparticle dynamics of the parent cobaltate superconductor. Results reveal a single hole-like Fermi surface generated by the crossing of heavy (∼15 m e ∼ 3m LDA ) quasiparticles with a negative effective hopping (t eff F (k → )∼v F ∼0.4±0.1 eV A) observed. ARPES data is consistent with bulk thermodynamic specific heat and quantum oscillation measurements

  18. Bulk and surface electron transport in topological insulator candidate YbB{sub 6-δ}

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, Vladimir V.; Demishev, Sergey V.; Sluchanko, Nikolay E. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Bozhko, Alexey D.; Bogach, Alexey V.; Semeno, Alexey V.; Voronov, Valeriy V. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Dukhnenko, Anatoliy V.; Filipov, Volodimir B.; Shitsevalova, Natalya Yu. [Frantsevich Institute for Problems of Materials Science NAS, Krzhyzhanovsky str. 3, 03680, Kiev (Ukraine); Kondrin, Mikhail V. [Vereshchagin Institute of High Pressure Physics of RAS, 142190, Troitsk, Moscow (Russian Federation); Kuznetsov, Alexey V.; Sannikov, Ilia I. [National Research Nuclear University ' ' MEPhI' ' , Kashirskoe Shosse 31, 115409, Moscow (Russian Federation)

    2016-04-15

    We report the study of transport and magnetic properties of the YbB{sub 6-δ}single crystals grown by inductive zone melting. A strong disparity in the low temperature resistivity, Seebeck and Hall coefficients is established for the samples with the different level of boron deficiency. The effective parameters of the charge transport in YbB{sub 6-δ} are shown to depend on the concentration of intrinsic defects, which is estimated to range from 0.09% to 0.6%. The pronounced variation of Hall mobility μ{sub H} found for bulk holes is induced by the decrease of transport relaxation time from τ ∼ 7.7 fs for YbB{sub 5.994} to τ ∼ 2.2 fs for YbB{sub 5.96}. An extra contribution to conductivity from electrons with μ{sub H}∼ -1000 cm{sup 2} V{sup -1} s{sup -1} and the very low concentration n /n{sub Yb}∼ 10{sup -6} discovered below 20 K for all the single crystals under investigation is suggested to arise from the surface electron states appeared in the inversion layer due to the band bending. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-01-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  20. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae

    2012-03-27

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  1. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  2. Topological Methods for Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United Stat

    2016-04-07

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  3. Beginning topology

    CERN Document Server

    Goodman, Sue E

    2009-01-01

    Beginning Topology is designed to give undergraduate students a broad notion of the scope of topology in areas of point-set, geometric, combinatorial, differential, and algebraic topology, including an introduction to knot theory. A primary goal is to expose students to some recent research and to get them actively involved in learning. Exercises and open-ended projects are placed throughout the text, making it adaptable to seminar-style classes. The book starts with a chapter introducing the basic concepts of point-set topology, with examples chosen to captivate students' imaginations while i

  4. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    Science.gov (United States)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  5. Differential effects of type of keyboard playing task and tempo on surface EMG amplitudes of forearm muscles

    Science.gov (United States)

    Chong, Hyun Ju; Kim, Soo Ji; Yoo, Ga Eul

    2015-01-01

    Despite increasing interest in keyboard playing as a strategy for repetitive finger exercises in fine motor skill development and hand rehabilitation, comparative analysis of task-specific finger movements relevant to keyboard playing has been less extensive. This study examined, whether there were differences in surface EMG activity levels of forearm muscles associated with different keyboard playing tasks. Results demonstrated higher muscle activity with sequential keyboard playing in a random pattern compared to individuated playing or sequential playing in a successive pattern. Also, the speed of finger movements was found as a factor that affect muscle activity levels, demonstrating that faster tempo elicited significantly greater muscle activity than self-paced tempo. The results inform our understanding of the type of finger movements involved in different types of keyboard playing at different tempi. This helps to consider the efficacy and fatigue level of keyboard playing tasks when being used as an intervention for amateur pianists or individuals with impaired fine motor skills. PMID:26388798

  6. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  7. Contact spectroscopy on S/TI/N devices: Induced pairing on the surface of a topological insulator

    Science.gov (United States)

    Stehno, Martin P.; Ngabonziza, Prosper; Snelder, Marieke; Myoren, Hiroaki; Pan, Yu; de Visser, Anne; Huang, Y.; Golden, Mark S.; Brinkman, Alexander

    Translating concepts of topological quantum computation into applications requires fine-tuning of parameters in the model Hamiltonians of candidate systems. Such level of control has proven difficult to achieve in devices where superconductors are used to induce pairing in topological insulator (TI) materials. While local probe experiments have indicated features of p-wave superconducting correlations in TIs (as suggested by theory), results on extended devices often remain ambiguous. We present contact spectroscopy data on superconductor/topological insulator/normal metal devices with bulk-insulating TI material and compare these with bulk conducting samples. We discuss the magnitude of the induced gap and unusual features in the conductance traces of the bulk-insulating samples that may suggest the presence of p-wave type correlations in the TI. This work is financially supported by the Dutch Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC).

  8. Topology control

    NARCIS (Netherlands)

    Buchin, K.; Buchin, M.; Wagner, D.; Wattenhofer, R.

    2007-01-01

    Information between two nodes in a network is sent based on the network topology, the structure of links connecting pairs of nodes of a network. The task of topology control is to choose a connecting subset from all possible links such that the overall network performance is good. For instance, a

  9. Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological, mechanical, and mass transport properties

    NARCIS (Netherlands)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different

  10. Jakob Nielsen and His Contributions to Topology

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    The Danish mathematician Jakob Nielsen won international recognition as one of the developers of combinatorial group theory and the topology of surfaces. This article describes the life and work of Jakob Nielsen with emphasis on his contributions to topology.......The Danish mathematician Jakob Nielsen won international recognition as one of the developers of combinatorial group theory and the topology of surfaces. This article describes the life and work of Jakob Nielsen with emphasis on his contributions to topology....

  11. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    Science.gov (United States)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface

  12. Toric topology

    CERN Document Server

    Buchstaber, Victor M

    2015-01-01

    This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric v

  13. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  14. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  15. Formation of Dirac point and the topological surface states inside the strained gap for mixed 3D Hg1-xCdx Te

    Science.gov (United States)

    Marchewka, Michał

    2016-10-01

    In this paper the results of the numerical calculation obtained for the three-dimensional (3D) strained Hg1-xCdx Te layers for the x-Cd composition from 0.1 to 0.155 and a different mismatch of the lattice constant are presented. For the investigated region of the Cd composition (x value) the negative energy gap (Eg =Γ8 -Γ6) in the Hg1-xCdx Te is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point. The numerical calculation based on the finite difference method applied for the 8×8 kp model with the in-plane tensile strain for (001) growth oriented structure shows that the Dirac cone inside the induced insulating band gap for non zero of the Cd composition and a bigger strain caused by the bigger lattice mismatch (than for the 3D HgTe TI) can be obtained. It was also shown how different x-Cd compounds move the Dirac cone from the valence band into the band gap. The presented results show that 75 nm wide 3D Hg1-xCdx Te structures with x ≈ 0.155 and 1.6% lattice mismatch make the system a true topological insulator with the dispersion of the topological surface states similar to those ones obtained for the strained CdTe/HgTe QW.

  16. The influence of the playing surface on the exercise intensity of small-sided recreational soccer games.

    Science.gov (United States)

    Brito, João; Krustrup, Peter; Rebelo, António

    2012-08-01

    This study aimed to analyze the influence of the playing surface on movement pattern, physical loading, perceived exertion, and fatigue development during small-sided recreational soccer games. Time-motion, heart rate, blood lactate, and perceived exertion were measured for 16 recreational players aged 22 (range: 19-35) yrs. During 5-a-side soccer games on 3 different field surfaces: sand, artificial turf, and asphalt. Jump and sprint tests were performed prior to and after each game. Total distance covered was higher on asphalt and turf than on sand (3.89±0.04 and 3.73±0.12 vs. 2.59±0.21 km; p90% HR(max) (20.8±5.1% vs. 44.1±5.0%) were lower (precreational soccer games elicit high heart rates, multiple intense actions, and decreased jump performance for all the investigated playing surfaces, suggesting that multiple fitness and health benefits can be achieved through soccer on sand, artificial turf and asphalt. Nonetheless, locomotor activities, heart rate, blood lactate levels, and perceived exertion differ between surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  18. Cosmic Topology

    Science.gov (United States)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  19. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  20. A plug’n’play WiFi surface-mount dual-loop antenna

    Directory of Open Access Journals (Sweden)

    Pedro Chamorro-Posada

    2017-04-01

    Full Text Available We present the design, modelling and characterization in the 2.4 GHz band of a B-shaped antenna consisting of a dual circular loop over a conductor plane. The proposed design is intrinsically unbalanced and features a very good match to a 50 Ω line at resonance, which makes our device essentially plug’n’play for a coaxial cable feed. Another interesting property of the proposed antenna is its simplicity of construction. The antenna has been modelled using the moment method. A prototype resonant at 2.4 GHz has been built and we have measured its impedance in this spectral region. The radiation pattern and the gain at resonance have also been characterized and the device has been shown to provide 6.31 dBi gain. The overall properties of the device make it an excellent option to provide WiFi connectivity when required in open hardware implementations.

  1. CFT and topological recursion

    CERN Document Server

    Kostov, Ivan

    2010-01-01

    We study the quasiclassical expansion associated with a complex curve. In a more specific context this is the 1/N expansion in U(N)-invariant matrix integrals. We compare two approaches, the CFT approach and the topological recursion, and show their equivalence. The CFT approach reformulates the problem in terms of a conformal field theory on a Riemann surface, while the topological recursion is based on a recurrence equation for the observables representing symplectic invariants on the complex curve. The two approaches lead to two different graph expansions, one of which can be obtained as a partial resummation of the other.

  2. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  3. Relational topology

    CERN Document Server

    Schmidt, Gunther

    2018-01-01

    This book introduces and develops new algebraic methods to work with relations, often conceived as Boolean matrices, and applies them to topology. Although these objects mirror the matrices that appear throughout mathematics, numerics, statistics, engineering, and elsewhere, the methods used to work with them are much less well known. In addition to their purely topological applications, the volume also details how the techniques may be successfully applied to spatial reasoning and to logics of computer science. Topologists will find several familiar concepts presented in a concise and algebraically manipulable form which is far more condensed than usual, but visualized via represented relations and thus readily graspable. This approach also offers the possibility of handling topological problems using proof assistants.

  4. Topology Optimization

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt; Damkilde, Lars

    2007-01-01

    . A way to solve the initial design problem namely finding a form can be solved by so-called topology optimization. The idea is to define a design region and an amount of material. The loads and supports are also fidefined, and the algorithm finds the optimal material distribution. The objective function...... dictates the form, and the designer can choose e.g. maximum stiness, maximum allowable stresses or maximum lowest eigenfrequency. The result of the topology optimization is a relatively coarse map of material layout. This design can be transferred to a CAD system and given the necessary geometrically...... refinements, and then remeshed and reanalysed in other to secure that the design requirements are met correctly. The output of standard topology optimization has seldom well-defined, sharp contours leaving the designer with a tedious interpretation, which often results in less optimal structures. In the paper...

  5. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng; Randel, Jason C.; Peng, Hailin; Cha, Judy J.; Meister, Stefan; Lai, Keji; Chen, Yulin; Shen, Zhi-Xun; Manoharan, Hari C.; Cui, Yi

    2010-01-01

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive

  6. On play and playing.

    Science.gov (United States)

    Rudan, Dusko

    2013-12-01

    The paper offers a review of the development of the concept of play and playing. The true beginnings of the development of the theories of play are set as late as in the 19th century. It is difficult to define play as such; it may much more easily be defined through its antipode--work. In the beginning, play used to be connected with education; it was not before Freud's theory of psychoanalysis and Piaget's developmental psychology that the importance of play in a child's development began to be explained in more detail. The paper further tackles the role of play in the adult age. Detailed attention is paid to psychodynamic and psychoanalytic authors, in particular D. W. Winnicott and his understanding of playing in the intermediary (transitional) empirical or experiential space. In other words, playing occupies a space and time of its own. The neuroscientific concept of playing is also tackled, in the connection with development as well.

  7. Pseudoperiodic topology

    CERN Document Server

    Arnold, Vladimir; Zorich, Anton

    1999-01-01

    This volume offers an account of the present state of the art in pseudoperiodic topology-a young branch of mathematics, born at the boundary between the ergodic theory of dynamical systems, topology, and number theory. Related topics include the theory of algorithms, convex integer polyhedra, Morse inequalities, real algebraic geometry, statistical physics, and algebraic number theory. The book contains many new results. Most of the articles contain brief surveys on the topics, making the volume accessible to a broad audience. From the Preface by V.I. Arnold: "The authors … have done much to s

  8. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  9. ALGEBRAIC TOPOLOGY

    Indian Academy of Sciences (India)

    tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).

  10. Topology optimization

    DEFF Research Database (Denmark)

    Bendsøe, Martin P.; Sigmund, Ole

    2007-01-01

    Taking as a starting point a design case for a compliant mechanism (a force inverter), the fundamental elements of topology optimization are described. The basis for the developments is a FEM format for this design problem and emphasis is given to the parameterization of design as a raster image...

  11. Irrational Charge from Topological Order

    Science.gov (United States)

    Moessner, R.; Sondhi, S. L.

    2010-10-01

    Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.

  12. Topological excitations in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Koushik, R.; Mukerjee, Subroto; Ghosh, Arindam; Baenninger, Matthias; Narayan, Vijay; Pepper, Michael; Farrer, Ian; Ritchie, David A.

    2013-01-01

    Topological defects play an important role in the melting phenomena in two-dimensions. In this work, we report experimental observation of topological defect induced melting in two-dimensional electron systems (2DES) in the presence of strong Coulomb interaction and disorder. The phenomenon is characterised by measurement of conductivity which goes to zero in a Berezinskii-Kosterlitz-Thouless like transition. Further evidence is provided via low-frequency conductivity noise measurements

  13. The influence of the playing surface on the exercise intensity of small-sided recreational soccer games

    DEFF Research Database (Denmark)

    Brito, João; Krustrup, Peter; Rebelo, António

    2012-01-01

    This study aimed to analyze the influence of the playing surface on movement pattern, physical loading, perceived exertion, and fatigue development during small-sided recreational soccer games. Time-motion, heart rate, blood lactate, and perceived exertion were measured for 16 recreational players...... aged 22 (range: 19-35)yrs. During 5-a-side soccer games on 3 different field surfaces: sand, artificial turf, and asphalt. Jump and sprint tests were performed prior to and after each game. Total distance covered was higher on asphalt and turf than on sand (3.89±0.04 and 3.73±0.12 vs. 2.59±0.21km; p90...

  14. Towards topological quantum computer

    Science.gov (United States)

    Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, An.

    2018-01-01

    Quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates) for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.

  15. Towards topological quantum computer

    Directory of Open Access Journals (Sweden)

    D. Melnikov

    2018-01-01

    Full Text Available Quantum R-matrices, the entangling deformations of non-entangling (classical permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern–Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.

  16. Polydispersity-driven topological defects as order-restoring excitations.

    Science.gov (United States)

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2014-04-08

    The engineering of defects in crystalline matter has been extensively exploited to modify the mechanical and electrical properties of many materials. Recent experiments on manipulating extended defects in graphene, for example, show that defects direct the flow of electric charges. The fascinating possibilities offered by defects in two dimensions, known as topological defects, to control material properties provide great motivation to perform fundamental investigations to uncover their role in various systems. Previous studies mostly focus on topological defects in 2D crystals on curved surfaces. On flat geometries, topological defects can be introduced via density inhomogeneities. We investigate here topological defects due to size polydispersity on flat surfaces. Size polydispersity is usually an inevitable feature of a large variety of systems. In this work, simulations show well-organized induced topological defects around an impurity particle of a wrong size. These patterns are not found in systems of identical particles. Our work demonstrates that in polydispersed systems topological defects play the role of restoring order. The simulations show a perfect hexagonal lattice beyond a small defective region around the impurity particle. Elasticity theory has demonstrated an analogy between the elementary topological defects named disclinations to electric charges by associating a charge to a disclination, whose sign depends on the number of its nearest neighbors. Size polydispersity is shown numerically here to be an essential ingredient to understand short-range attractions between like-charge disclinations. Our study suggests that size polydispersity has a promising potential to engineer defects in various systems including nanoparticles and colloidal crystals.

  17. TOPOLOGY OPTIMIZATION OF OPTICAL BAND GAP EFFECTS IN SLAB STRUCTURES MODULATED BY PERIODIC RAYLEIGHWAVES

    DEFF Research Database (Denmark)

    This paper is concerned with topology optimization of a coupled optical and mechanical wave propagation problem in photonic crystals. It is motivated by the potential gain in functionality of optical devices where mechanical Rayleigh waves (travelling in the surface of the material) play a leading...

  18. Topological Aspects of Information Retrieval.

    Science.gov (United States)

    Egghe, Leo; Rousseau, Ronald

    1998-01-01

    Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)

  19. The topology of gauge fields

    International Nuclear Information System (INIS)

    Tellis, D.R.

    2000-01-01

    Full text: Instantons in pure Yang-Mills gauge theory have been studied extensively by physicists and mathematicians alike. The surprisingly rich topological structure plays an important role in hadron structure. A crucial role is played by how the boundary conditions on the gauge fields are imposed. While the topology of gauge fields in pure Yang-Mills gauge theory is understood for the compact manifold of the 4-sphere, the manifold of the 4-torus remains an active area of study. The latter is particularly important in the study of Lattice QCD

  20. Effect of the substrate surface topology and temperature on the structural properties of ZnO layers obtained by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kitova, S; Danev, G, E-mail: skitova@clf.bas.b [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria)

    2010-04-01

    In this work thin ZnO layers were grown by metal-organic PECVD (RF 13.56 MHz) on Si wafers. Zn acetylacetonate was used as a precursor and oxygen as oxidant. A system for dosed injection of the precursor and oxidant into the plasma reactor was developed. The influence of the substrate surface topology and temperature on the structural properties of the deposited layers was studied. ZnO and graphite powder dispersions were used to modify the silicon wafers before starting the deposition process of the layers. Some of the ZnO layers were deposited on the back, unpolished, side of Si wafers. Depositions at 400 {sup 0}C were performed to examine the effect of the substrate temperatures on the layer growth. The film structure was examined by XRD and SEM. The results show that all layers are crystalline with hexagonal wurtzite structure. The crystallites are preferentially oriented along the c-axis direction perpendicular to the substrate surfaces. ZnO layers deposited on thin ZnO seed films and clean Si surface exhibit well-developed grain structures and more c-axis preferred phase with better crystal quality than that of the layers deposited on graphite seed layer or rough, unpolished Si wafer.

  1. Spatial distribution of surface EMG on trapezius and lumbar muscles of violin and cello players in single note playing.

    Science.gov (United States)

    Afsharipour, Babak; Petracca, Francesco; Gasparini, Mauro; Merletti, Roberto

    2016-12-01

    Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16×4) grid, 10mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16×2 electrode grids (IED=10mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1bow/s) or detaché tip/tail (8bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A "muscle activity index" (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of

  2. Differential topology

    CERN Document Server

    Guillemin, Victor

    2010-01-01

    Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea-transversality-the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main

  3. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    Science.gov (United States)

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  4. Topological Insulators Dirac Equation in Condensed Matters

    CERN Document Server

    Shen, Shun-Qing

    2012-01-01

    Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...

  5. Topologically nontrivial quantum layers

    International Nuclear Information System (INIS)

    Carron, G.; Exner, P.; Krejcirik, D.

    2004-01-01

    Given a complete noncompact surface Σ embedded in R 3 , we consider the Dirichlet Laplacian in the layer Ω that is defined as a tubular neighborhood of constant width about Σ. Using an intrinsic approach to the geometry of Ω, we generalize the spectral results of the original paper by Duclos et al. [Commun. Math. Phys. 223, 13 (2001)] to the situation when Σ does not possess poles. This enables us to consider topologically more complicated layers and state new spectral results. In particular, we are interested in layers built over surfaces with handles or several cylindrically symmetric ends. We also discuss more general regions obtained by compact deformations of certain Ω

  6. Topological BF field theory description of topological insulators

    International Nuclear Information System (INIS)

    Cho, Gil Young; Moore, Joel E.

    2011-01-01

    Research highlights: → We show that a BF theory is the effective theory of 2D and 3D topological insulators. → The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. → The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. → Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a π flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.

  7. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure

    Science.gov (United States)

    Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.

    2016-05-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.

  8. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    /fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...

  9. Differential topology

    CERN Document Server

    Margalef-Roig, J

    1992-01-01

    ...there are reasons enough to warrant a coherent treatment of the main body of differential topology in the realm of Banach manifolds, which is at the same time correct and complete. This book fills the gap: whenever possible the manifolds treated are Banach manifolds with corners. Corners add to the complications and the authors have carefully fathomed the validity of all main results at corners. Even in finite dimensions some results at corners are more complete and better thought out here than elsewhere in the literature. The proofs are correct and with all details. I see this book as a reliable monograph of a well-defined subject; the possibility to fall back to it adds to the feeling of security when climbing in the more dangerous realms of infinite dimensional differential geometry. Peter W. Michor

  10. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  11. Magneto-photoconductivity of three dimensional topological insulator bismuth telluride

    Science.gov (United States)

    Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2018-03-01

    Magnetic field dependence of the photocurrent in a 3D topological insulator is studied. Among the 3D topological insulators bismuth telluride has unique hexagonal warping and spin texture which has been studied by photoemission, scanning tunnelling microscopy and transport. Here, we report on low temperature magneto-photoconductivity, up to 7 T, of two metallic bismuth telluride topological insulator samples with 68 and 110 nm thicknesses excited by 2.33 eV photon energy along the magnetic field perpendicular to the sample plane. At 4 K, both samples exhibit negative magneto-photoconductance below 4 T, which is as a result of weak-antilocalization of Dirac fermions similar to the previous observations in electrical transport. However the thinner sample shows positive magneto-photoconductance above 4 T. This can be attributed to the coupling of surface states. On the other hand, the thicker sample shows no positive magneto-photoconductance up to 7 T since there is only one surface state at play. By fitting the magneto-photoconductivity data of the thicker sample to the localization formula, we obtain weak antilocalization behaviour at 4, 10, and 20 K, as expected; however, weak localization behaviour at 30 K, which is a sign of surface states masked by bulk states. Also, from the temperature dependence of phase coherence length bulk carrier-carrier interaction is identified separately from the surface states. Therefore, it is possible to distinguish surface states by magneto-photoconductivity at low temperature, even in metallic samples.

  12. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi

    2009-01-01

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport

  13. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eun-Ah

    2016-01-01

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather

  14. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface*

    Science.gov (United States)

    Fantappiè, Laura; Irene, Carmela; De Santis, Micaela; Armini, Alessandro; Gagliardi, Assunta; Tomasi, Michele; Parri, Matteo; Cafardi, Valeria; Bonomi, Serena; Ganfini, Luisa; Zerbini, Francesca; Zanella, Ilaria; Carnemolla, Chiara; Bini, Luca; Grandi, Alberto; Grandi, Guido

    2017-01-01

    In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides. PMID:28483926

  15. An improved genetic algorithm with dynamic topology

    International Nuclear Information System (INIS)

    Cai Kai-Quan; Tang Yan-Wu; Zhang Xue-Jun; Guan Xiang-Min

    2016-01-01

    The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence. (paper)

  16. Induced topological pressure for topological dynamical systems

    International Nuclear Information System (INIS)

    Xing, Zhitao; Chen, Ercai

    2015-01-01

    In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure

  17. Electronic structure, Fermi surface topology and spectroscopic optical properties of LaBaCo{sub 2}O{sub 5.5} compound

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Al-Douri, Y. [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara 29000 (Algeria); Khan, Wilayat; Khan, Saleem Ayaz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Azam, Sikander, E-mail: sikander.physicst@gmail.com [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic)

    2014-08-01

    We have investigated the electronic band structure, Fermi surface topology, chemical bonding and optical properties of LaBaCo{sub 2}O{sub 5.5} compound. The first-principle calculations based on density functional theory (DFT) by means of the full-potential linearized augmented plane-wave method were employed. The atomic positions of LaBaCo{sub 2}O{sub 5.5} compound were optimized by minimizing the forces acting on atoms. We employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel–Vosko GGA (EVGGA) to treat the exchange correlation potential by solving Kohn–Sham equations. Electronic structure and bonding properties are studied throughout the calculation of densities of states, Fermi surfaces and charge densities. Furthermore, the optical properties are investigated via the calculation of the dielectric tensor component in order to characterize the linear optical properties. Optical spectra are analyzed by means of the electronic structure, which provides theoretical understanding of the conduction mechanism of the investigated compound. - Highlights: • DFT-FPLAPW method used for calculating the properties of LaBaCo{sub 2}O{sub 5.5} compound. • This study shows that nature of the compound is metallic. • Crystallographic plane which shows covalent character of O–Co bond. • The optical properties were also calculated and analyzed. • The Fermi surface of LaBaCo{sub 2}O{sub 5.5} is composed of five bands crossing along Γ–Z direction.

  18. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    Science.gov (United States)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  19. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    Science.gov (United States)

    Marchewka, Michał

    2017-01-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg1-xCdxTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the investigated region of the Cd composition (x value) the negative energy gap (Eg=Γ8-Γ6) in the Hg1-xCdxTe is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point for QW as well as for 3D TI. The results show that the strained gap and the position of the Dirac point against the Γ8 is a function of the x-Cd compounds in the case of the 3D TI as well as the critical width of the mixed Hg1-xCdxTe QW.

  20. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    International Nuclear Information System (INIS)

    Marchewka, Michał

    2017-01-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg_1_-_xCd_xTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the investigated region of the Cd composition (x value) the negative energy gap (E_g=Γ_8-Γ_6) in the Hg_1_-_xCd_xTe is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point for QW as well as for 3D TI. The results show that the strained gap and the position of the Dirac point against the Γ_8 is a function of the x-Cd compounds in the case of the 3D TI as well as the critical width of the mixed Hg_1_-_xCd_xTe QW.

  1. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface.

    Science.gov (United States)

    Fantappiè, Laura; Irene, Carmela; De Santis, Micaela; Armini, Alessandro; Gagliardi, Assunta; Tomasi, Michele; Parri, Matteo; Cafardi, Valeria; Bonomi, Serena; Ganfini, Luisa; Zerbini, Francesca; Zanella, Ilaria; Carnemolla, Chiara; Bini, Luca; Grandi, Alberto; Grandi, Guido

    2017-07-01

    In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Play Matters

    DEFF Research Database (Denmark)

    Sicart (Vila), Miguel Angel

    ? In Play Matters, Miguel Sicart argues that to play is to be in the world; playing is a form of understanding what surrounds us and a way of engaging with others. Play goes beyond games; it is a mode of being human. We play games, but we also play with toys, on playgrounds, with technologies and design......, but not necessarily fun. Play can be dangerous, addictive, and destructive. Along the way, Sicart considers playfulness, the capacity to use play outside the context of play; toys, the materialization of play--instruments but also play pals; playgrounds, play spaces that enable all kinds of play; beauty...

  3. Topological Photonics for Continuous Media

    Science.gov (United States)

    Silveirinha, Mario

    Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.

  4. The relationship between anisotropic magnetoresistance and topology of Fermi surface in Td-MoTe2 crystal

    Science.gov (United States)

    Lv, Yang-Yang; Li, Xiao; Pang, Bin; Cao, Lin; Lin, Dajun; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Dong, Song-Tao; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2017-07-01

    Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.

  5. The topology of architecture

    DEFF Research Database (Denmark)

    Marcussen, Lars

    2003-01-01

    Rummets topologi, Historiens topologi: betragtninger om menneskets orientering til rum - fra hulen over beherskelse af flere akser til det flydende rum.......Rummets topologi, Historiens topologi: betragtninger om menneskets orientering til rum - fra hulen over beherskelse af flere akser til det flydende rum....

  6. Topological superconductors: a review.

    Science.gov (United States)

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  7. Introduction to topology

    CERN Document Server

    Gamelin, Theodore W

    1999-01-01

    A fresh approach to introductory topology, this volume explains nontrivial applications of metric space topology to analysis, clearly establishing their relationship. Also, topics from elementary algebraic topology focus on concrete results with minimal algebraic formalism. The first two chapters consider metric space and point-set topology; the second two, algebraic topological material. 1983 edition. Solutions to Selected Exercises. List of Notations. Index. 51 illustrations.

  8. Converting topological insulators into topological metals within the tetradymite family

    Science.gov (United States)

    Chen, K.-W.; Aryal, N.; Dai, J.; Graf, D.; Zhang, S.; Das, S.; Le Fèvre, P.; Bertran, F.; Yukawa, R.; Horiba, K.; Kumigashira, H.; Frantzeskakis, E.; Fortuna, F.; Balicas, L.; Santander-Syro, A. F.; Manousakis, E.; Baumbach, R. E.

    2018-04-01

    We report the electronic band structures and concomitant Fermi surfaces for a family of exfoliable tetradymite compounds with the formula T2C h2P n , obtained as a modification to the well-known topological insulator binaries Bi2(Se,Te ) 3 by replacing one chalcogen (C h ) with a pnictogen (P n ) and Bi with the tetravalent transition metals T = Ti, Zr, or Hf. This imbalances the electron count and results in layered metals characterized by relatively high carrier mobilities and bulk two-dimensional Fermi surfaces whose topography is well-described by first-principles calculations. Intriguingly, slab electronic structure calculations predict Dirac-like surface states. In contrast to Bi2Se3 , where the surface Dirac bands are at the Γ point, for (Zr,Hf ) 2Te2 (P,As) there are Dirac cones of strong topological character around both the Γ ¯ and M ¯ points, which are above and below the Fermi energy, respectively. For Ti2Te2P , the surface state is predicted to exist only around the M ¯ point. In agreement with these predictions, the surface states that are located below the Fermi energy are observed by angle-resolved photoemission spectroscopy measurements, revealing that they coexist with the bulk metallic state. Thus this family of materials provides a foundation upon which to develop novel phenomena that exploit both the bulk and surface states (e.g., topological superconductivity).

  9. Independent Study Project, Topic: Topology.

    Science.gov (United States)

    Notre Dame High School, Easton, PA.

    Using this guide and the four popular books noted in it, a student, working independently, will learn about some of the classical ideas and problems of topology: the Meobius strip and Klein bottle, the four color problem, genus of a surface, networks, Euler's formula, and the Jordan Curve Theorem. The unit culminates in a project of the students'…

  10. Photoresponsive smart surface of LC azo-dendrimer: photomanipulation of topological structures and real-time imaging at a nano-scale

    Science.gov (United States)

    Araoka, Fumito; Eremin, Alexey; Aya, Satoshi; Lee, Guksik; Ito, Atsuki; Nadasi, Hajnalka; Sebastian, Nerea; Ishikawa, Ken; Haba, Osamu; Stannarius, Ralf; Yonetake, Koichiro; Takezoe, Hideo

    2017-02-01

    In this paper, we review some results on our recent studies on photo-induced phenomena of liquid crystals (LCs) by means of interfaces decorated with a photo-responsive azobenzene dendrimer (azo-dendrimer). The azo-dendrimer molecules doped in a LC are spontaneously segregated from bulk and adsorbed onto substrate/LC or solvent/LC interfaces, and their photo-isomerization can bring about the so-called anchoring transition, i.e. reversible switching between homeotropic and planar alignment states of the bulk LC, when exposed to UV/VIS light. In addition to photoinduced anchoring transition in a LC cell, several interesting photo-induced phenomena through the azo-dendrimerdecorated interfaces have been reported, such as photo-induced transformation of the interior topological structures of nematic, cholesteric and smectic droplets, photo-mechanical motion of the micro particles dispersed in a nematic matrix, and optical assistance of the athermal anchoring transition with the aid of a perfluoropolymer surface. In addition to such phenomena, we also discuss the conditions of such photo-responsive interfaces in terms of the polar anchoring energy at the interface upon photo-isomerization under illumination of UV and/or VIS lights. The anisotropy of the polar anchoring energy was evaluated experimentally by means of Polarization Microscopy (POM), Dielectric Spectroscopy (DS), Second Harmonic Generation (SHG), and Attenuated Total Reflection Fourier Transform Infrared (ATR-IR) Spectroscopy, and theoretically based on the simple Rapini-Papoular model. We also demonstrate the continuous bulk orientation change by the photo-dynamic process through the fine control of the polar anchoring energy. Besides, the state-of-the-art video-rate atomic force microscopy (ν-AFM) was carried out to visualize the dynamics of such interfaces at a nano-meter scale.

  11. Topological magnetic solitons on a paraboloidal shell

    Energy Technology Data Exchange (ETDEWEB)

    Vilas-Boas, Priscila S.C. [Universidade do Estado da Bahia, Campus VII, BR 402, 48970-000, Senhor do Bonfim, BA (Brazil); Elias, Ricardo G.; Altbir, Dora [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, Jakson M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000, Viçosa, MG (Brazil); Carvalho-Santos, Vagson L., E-mail: vagson.carvalho@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil)

    2015-01-02

    We study the influence of curvature on the exchange energy of skyrmions and vortices on a paraboloidal surface. It is shown that such structures appear as excitations of the Heisenberg model, presenting topological stability, unlike what happens on other simply-connected geometries such as pseudospheres. We also show that the skyrmion width depends on the geometrical parameters of the paraboloid. The presence of a magnetic field leads to the appearance of 2π-skyrmions, introducing a new characteristic length into the system. Regarding vortices, the geometrical parameters of the paraboloid play an important role in the exchange energy of this excitation. - Highlights: • Curvature-induced change in the width of a skyrmion on a paraboloid. • Presence of 2π-skyrmions due to the interaction with external fields. • Changes in the width of a skyrmion induced by magnetic fields. • Coupling between magnetic field and curvature. • Prediction of vortex repulsion due to a paraboloidal shell.

  12. The topological filtration of gamma-structures

    DEFF Research Database (Denmark)

    Li, Thomas; Reidys, Christian

    2013-01-01

    In this paper we study gamma-structures filtered by topological genus. gamma-structures are a class of RNA pseudoknot structures that plays a key role in the context of polynomial time folding of RNA pseudoknot structures. A gamma-structure is composed by specific building blocks, that have...... topological genus less than or equal to gamma, where composition means concatenation and nesting of such blocks. Our main results are the derivation of a new bivariate generating function for gamma-structures via symbolic methods, the singularity analysis of the solutions and a central limit theorem...... for the distribution of topological genus in gamma-structures of given length. In our derivation specific bivariate polynomials play a central role. Their coefficients count particular motifs of fixed topological genus and they are of relevance in the context of genus recursion and novel folding algorithms....

  13. Topological phases of topological-insulator thin films

    Science.gov (United States)

    Asmar, Mahmoud M.; Sheehy, Daniel E.; Vekhter, Ilya

    2018-02-01

    We study the properties of a thin film of topological insulator material. We treat the coupling between helical states at opposite surfaces of the film in the properly-adapted tunneling approximation, and show that the tunneling matrix element oscillates as a function of both the film thickness and the momentum in the plane of the film for Bi2Se3 and Bi2Te3 . As a result, while the magnitude of the matrix element at the center of the surface Brillouin zone gives the gap in the energy spectrum, the sign of the matrix element uniquely determines the topological properties of the film, as demonstrated by explicitly computing the pseudospin textures and the Chern number. We find a sequence of transitions between topological and nontopological phases, separated by semimetallic states, as the film thickness varies. In the topological phase, the edge states of the film always exist but only carry a spin current if the edge potentials break particle-hole symmetry. The edge states decay very slowly away from the boundary in Bi2Se3 , making Bi2Te3 , where this scale is shorter, a more promising candidate for the observation of these states. Our results hold for free-standing films as well as heterostructures with large-gap insulators.

  14. Book Review: Computational Topology

    DEFF Research Database (Denmark)

    Raussen, Martin

    2011-01-01

    Computational Topology by Herbert Edelsbrunner and John L. Harer. American Matheamtical Society, 2010 - ISBN 978-0-8218-4925-5......Computational Topology by Herbert Edelsbrunner and John L. Harer. American Matheamtical Society, 2010 - ISBN 978-0-8218-4925-5...

  15. Topological massive sigma models

    International Nuclear Information System (INIS)

    Lambert, N.D.

    1995-01-01

    In this paper we construct topological sigma models which include a potential and are related to twisted massive supersymmetric sigma models. Contrary to a previous construction these models have no central charge and do not require the manifold to admit a Killing vector. We use the topological massive sigma model constructed here to simplify the calculation of the observables. Lastly it is noted that this model can be viewed as interpolating between topological massless sigma models and topological Landau-Ginzburg models. ((orig.))

  16. Topology of polymer chains under nanoscale confinement.

    Science.gov (United States)

    Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza

    2017-08-24

    Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross

  17. Free Boolean Topological Groups

    Directory of Open Access Journals (Sweden)

    Ol’ga Sipacheva

    2015-11-01

    Full Text Available Known and new results on free Boolean topological groups are collected. An account of the properties that these groups share with free or free Abelian topological groups and properties specific to free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.

  18. Exotic Lifshitz transitions in topological materials

    Science.gov (United States)

    Volovik, G. E.

    2018-01-01

    Topological Lifshitz transitions involve many types of topological structures in momentum and frequency-momentum spaces, such as Fermi surfaces, Dirac lines, Dirac and Weyl points, etc., each of which has its own stability-supporting topological invariant ( N_1, N_2, N_3, {\\tilde N}_3, etc.). The topology of the shape of Fermi surfaces and Dirac lines and the interconnection of objects of different dimensionalities produce a variety of Lifshitz transition classes. Lifshitz transitions have important implications for many areas of physics. To give examples, transition-related singularities can increase the superconducting transition temperature; Lifshitz transitions are the possible origin of the small masses of elementary particles in our Universe, and a black hole horizon serves as the surface of the Lifshitz transition between vacua with type-I and type-II Weyl points.

  19. Quantum computation with topological codes from qubit to topological fault-tolerance

    CERN Document Server

    Fujii, Keisuke

    2015-01-01

    This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.

  20. Boundary Hamiltonian Theory for Gapped Topological Orders

    Science.gov (United States)

    Hu, Yuting; Wan, Yidun; Wu, Yong-Shi

    2017-06-01

    We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.

  1. Topological Characterization of Fractured Coal

    Science.gov (United States)

    Jing, Yu; Armstrong, Ryan T.; Ramandi, Hamed L.; Mostaghimi, Peyman

    2017-12-01

    Coal transport properties are highly dependent on the underlying fractured network, known as cleats, which are characterized by geometrical and topological properties. X-ray microcomputed tomography (micro-CT) has been widely applied to obtain 3-D digital representations of the cleat network. However, segmentation of 3-D data is often problematic due to image noise, which will result in inaccurate estimation of coal properties (e.g., porosity and specific surface area). To circumvent this issue, a discrete fracture network (DFN) model is proposed. We develop a characterization framework to determine if the developed DFN models can preserve the topological properties of the coal cleat network found in micro-CT data. We compute the Euler characteristic, fractal dimension, and percolation quantities to analyze the topology locally and globally and compare the results between micro-CT data (before denoising), filtered micro-CT data (after denoising), and the DFN model. We find that micro-CT data with noise have extensive connectivity while filtered micro-CT data and DFN models have similar topology both globally and locally. It is concluded that the topology of the DFN models are closer to that of the realistic cleat network that do not have segmentation-induced pores. In addition, micro-CT imaging always struggles with the trade-off between sample size and resolution, while the presented DFN models are not restricted by imaging resolution and thus can be constructed with extended domain size. Overall, the presented DFN model is a reliable alternative with realistic cleat topology, extended domain size and favorable data format for direct numerical simulations.

  2. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  3. QCD as a topologically ordered system

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2013-01-01

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1) A problem where the would be η ′ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1) A problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied

  4. Playful Membership

    DEFF Research Database (Denmark)

    Åkerstrøm Andersen, Niels; Pors, Justine Grønbæk

    2014-01-01

    This article studies the implications of current attempts by organizations to adapt to a world of constant change by introducing the notion of playful organizational membership. To this end we conduct a brief semantic history of organizational play and argue that when organizations play, employees...... are expected to engage in playful exploration of alternative selves. Drawing on Niklas Luhmann's theory of time and decision-making and Gregory Bateson's theory of play, the article analyses three empirical examples of how games play with conceptions of time. We explore how games represent an organizational...

  5. Pavement cells and the topology puzzle.

    Science.gov (United States)

    Carter, Ross; Sánchez-Corrales, Yara E; Hartley, Matthew; Grieneisen, Verônica A; Marée, Athanasius F M

    2017-12-01

    D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. © 2017. Published by The Company of Biologists Ltd.

  6. Play, Playfulness, Creativity and Innovation

    Directory of Open Access Journals (Sweden)

    Patrick Bateson

    2014-05-01

    Full Text Available Play, as defined by biologists and psychologists, is probably heterogeneous. On the other hand, playfulness may be a unitary motivational state. Playful play as opposed to activities that merge into aggression is characterized by positive mood, intrinsic motivation, occurring in a protected context and easily disrupted by stress. Playful play is a good measure of positive welfare. It can occupy a substantial part of the waking-life of a young mammal or bird. Numerous functions for play have been proposed and they are by no means mutually exclusive, but some evidence indicates that those individual animals that play most are most likely to survive and reproduce. The link of playful play to creativity and hence to innovation in humans is strong. Considerable evidence suggests that coming up with new ideas requires a different mindset from usefully implementing a new idea.

  7. Topological Material-Based Spin Devices

    Science.gov (United States)

    Zhang, Minhao; Wang, Xuefeng

    Three-dimensional topological insulators have insulating bulk and gapless helical surface states. One of the most fascinating properties of the metallic surface states is the spin-momentum helical locking. The giant current-driven torques on the magnetic layer have been discovered in TI/ferromagnet bilayers originating from the spin-momentum helical locking, enabling the efficient magnetization switching with a low current density. We demonstrated the current-direction dependent on-off state in TIs-based spin valve devices for memory and logic applications. Further, we demonstrated the Bi2Se3 system will go from a topologically nontrivial state to a topologically trivial state when Bi atoms are replaced by lighter In atoms. Here, topologically trivial metal (BixIny)2 Se3 with high mobility also facilitates the realization of its application in multifunctional spintronic devices.

  8. Topological sigma models on supermanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Bei, E-mail: beijia@physics.utexas.edu

    2017-02-15

    This paper concerns constructing topological sigma models governing maps from semirigid super Riemann surfaces to general target supermanifolds. We define both the A model and B model in this general setup by defining suitable BRST operators and physical observables. Using supersymmetric localization, we express correlation functions in these theories as integrals over suitable supermanifolds. In the case of the A model, we obtain an integral over the supermoduli space of “superinstantons”. The language of supergeometry is used extensively throughout this paper.

  9. Effect of position, time in the season, and playing surface on Achilles tendon ruptures in NFL games: a 2009-10 to 2016-17 review.

    Science.gov (United States)

    Krill, Michael K; Borchers, James R; Hoffman, Joshua T; Krill, Matthew L; Hewett, Timothy E

    2017-09-01

    Achilles tendon (AT) ruptures are a potentially career-altering and ending injury. Achilles tendon ruptures have a below average return-to-play rate compared to other common orthopaedic procedures for National Football League (NFL) players. The objective of this study was to monitor the incidence and injury rates (IR) of AT ruptures that occurred during the regular season in order to evaluate the influence of player position, time of injury, and playing surface on rupture rates. A thorough online review was completed to identify published injury reports and public information regarding AT ruptures sustained during regular season and post-season games in the National Football League (NFL) during the 2009-10 to 2016-17 seasons. Team schedules, player position details and stadium information was used to determine period of the season of injury and playing surface. IRs were calculated per 100 team games (TG). Injury rate ratios (IRR) were utilized to compare IRs. During eight monitored seasons, there were 44 AT ruptures in NFL games. A majority of AT ruptures were sustained in the first eight games of the regular season (n = 32, 72.7%). There was a significant rate difference for the first and second four-game segments of the regular season compared to the last two four-game segments of the regular season. Defensive players suffered a majority of AT ruptures (n = 32, 72.7%). The IR on grass was 1.00 per 100 TG compared to 1.08 per 100 TG on artificial turf (IRR: 0.93, p = .80). A significant increase in AT ruptures occurred in the first and second four game segments of the regular season compared to the last two-four game segments of the regular season. Defensive players suffered a majority of AT ruptures compared to offensive or specialist players. There was no difference between AT rupture rates and playing surface in games.

  10. On topological properties of sierpinski networks

    International Nuclear Information System (INIS)

    Imran, Muhammad; Sabeel-e-Hafi; Gao, Wei; Reza Farahani, Mohammad

    2017-01-01

    Sierpinski graphs constitute an extensively studied class of graphs of fractal nature applicable in topology, mathematics of Tower of Hanoi, computer science, and elsewhere. A large number of properties like physico-chemical properties, thermodynamic properties, chemical activity, biological activity, etc. are determined by the chemical applications of graph theory. These properties can be characterized by certain graph invariants referred to as topological indices. In QRAR/QSPR study these graph invariants has played a vital role. In this paper, we study the molecular topological properties of Sierpinski networks and derive the analytical closed formulas for the atom-bond connectivity (ABC) index, geometric-arithmetic (GA) index, and fourth and fifth version of these topological indices for Sierpinski networks denoted by S(n, k).

  11. Topology, isomorphic smoothness and polyhedrality in Banach spaces

    OpenAIRE

    Smith, Richard J.

    2018-01-01

    In recent decades, topology has come to play an increasing role in some geometric aspects of Banach space theory. The class of so-called $w^*$-locally relatively compact sets was introduced recently by Fonf, Pallares, Troyanski and the author, and were found to be a useful topological tool in the theory of isomorphic smoothness and polyhedrality in Banach spaces. We develop the topological theory of these sets and present some Banach space applications.

  12. Play Therapy

    Science.gov (United States)

    Lawver, Timothy; Blankenship, Kelly

    2008-01-01

    Play therapy is a treatment modality in which the therapist engages in play with the child. Its use has been documented in a variety of settings and with a variety of diagnoses. Treating within the context of play brings the therapist and the therapy to the level of the child. By way of an introduction to this approach, a case is presented of a six-year-old boy with oppositional defiant disorder. The presentation focuses on the events and interactions of a typical session with an established patient. The primary issues of the session are aggression, self worth, and self efficacy. These themes manifest themselves through the content of the child’s play and narration of his actions. The therapist then reflects these back to the child while gently encouraging the child toward more positive play. Though the example is one of nondirective play therapy, a wide range of variation exists under the heading of play therapy. PMID:19724720

  13. From topology to geometry

    International Nuclear Information System (INIS)

    Eberhart, M.

    1996-01-01

    A systematic study of the charge density topologies corresponding to a number of transition metal aluminides with the B2 structure indicates that unstable crystal structures are sometimes associated with uncharacteristic topologies. This observation invites the speculation that the distance to a topological instability might relate to a metals phase behavior. Following this speculation, a metric is imposed on the topological theory of Bader, producing a geometrical theory, where it is now possible to assign a distance from a calculated charge density topology to a topological instability. For the cubic transition metals, these distances are shown to correlate with single crystal elastic constants, where the metals that are furthest from an instability are observed to be the stiffest. (author). 16 refs., 1 tab., 9 figs

  14. Topological mirror superconductivity.

    Science.gov (United States)

    Zhang, Fan; Kane, C L; Mele, E J

    2013-08-02

    We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.

  15. Interactive Topology Optimization

    DEFF Research Database (Denmark)

    Nobel-Jørgensen, Morten

    Interactivity is the continuous interaction between the user and the application to solve a task. Topology optimization is the optimization of structures in order to improve stiffness or other objectives. The goal of the thesis is to explore how topology optimization can be used in applications...... on theory of from human-computer interaction which is described in Chapter 2. Followed by a description of the foundations of topology optimization in Chapter 3. Our applications for topology optimization in 2D and 3D are described in Chapter 4 and a game which trains the human intuition of topology...... optimization is presented in Chapter 5. Topology optimization can also be used as an interactive modeling tool with local control which is presented in Chapter 6. Finally, Chapter 7 contains a summary of the findings and concludes the dissertation. Most of the presented applications of the thesis are available...

  16. Ordered groups and topology

    CERN Document Server

    Clay, Adam

    2016-01-01

    This book deals with the connections between topology and ordered groups. It begins with a self-contained introduction to orderable groups and from there explores the interactions between orderability and objects in low-dimensional topology, such as knot theory, braid groups, and 3-manifolds, as well as groups of homeomorphisms and other topological structures. The book also addresses recent applications of orderability in the studies of codimension-one foliations and Heegaard-Floer homology. The use of topological methods in proving algebraic results is another feature of the book. The book was written to serve both as a textbook for graduate students, containing many exercises, and as a reference for researchers in topology, algebra, and dynamical systems. A basic background in group theory and topology is the only prerequisite for the reader.

  17. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  18. Topology of Event Horizon

    OpenAIRE

    Siino, Masaru

    1997-01-01

    The topologies of event horizons are investigated. Considering the existence of the endpoint of the event horizon, it cannot be differentiable. Then there are the new possibilities of the topology of the event horizon though they are excluded in smooth event horizons. The relation between the topology of the event horizon and the endpoint of it is revealed. A torus event horizon is caused by two-dimensional endpoints. One-dimensional endpoints provide the coalescence of spherical event horizo...

  19. Topological nearly entropy

    Science.gov (United States)

    Gulamsarwar, Syazwani; Salleh, Zabidin

    2017-08-01

    The purpose of this paper is to generalize the notions of Adler's topological entropy along with their several fundamental properties. A function f : X → Y is said to be R-map if f-1 (V) is regular open in X for every regular open set V in Y. Thus, we initiated a notion of topological nearly entropy for topological R-dynamical systems which is based on nearly compact relative to the space by using R-map.

  20. Decorrelating topology with HMC

    International Nuclear Information System (INIS)

    Lippert, Th.; Alles, B.; Bali, G.; D'Elia, M.; Di Giacomo, A.; Eicker, N.; Guesken, S.; Schilling, K.; Spitz, A.; Struckmann, T.; Ueberholz, P.; Viehoff, J.

    1999-01-01

    The investigation of the decorrelation efficiency of the HMC algorithm with respect to vacuum topology is a prerequisite for trustworthy full QCD simulations, in particular for the computation of topology sensitive quantities. We demonstrate that for ((m π )/(m ρ ))-ratios ≥ 0.69 sufficient tunneling between the topological sectors can be achieved, for two flavours of dynamical Wilson fermions close to the scaling region (β 5.6). Our results are based on time series of length 5000 trajectories

  1. Topological Phases in the Real World

    Science.gov (United States)

    Hsu, Yi-Ting

    The experimental discovery and subsequent theoretical understanding of the integer quantum Hall effect, the first known topological phase, has started a revolutionary breakthrough in understanding states of matter since its discovery four decades ago. Topological phases are predicted to have many generic signatures resulting from their underlying topological nature, such as quantized Hall transport, robust boundary states, and possible fractional excitations. The intriguing nature of these signatures and their potential applications in quantum computation has intensely fueled the efforts of the physics community to materialize topological phases. Among various topological phases initially predicted on theoretical grounds, chiral topological superconductors and time-reversal symmetric topological insulators (TI) in three dimension (3D) are two promising candidates for experimental realization and application. The family of materials, Bi2X3 (X = Se, Te), has been predicted and shown experimentally to be time-reversal symmetric 3D TIs through the observation of robust Dirac surface states with Rashba-type spin-winding. Due to their robust surface states with spin-windings, these 3D TIs are expected to be promising materials for producing large spin-transfer torques which are advantageous for spintronics application. As for topological superconductors, despite the exotic excitations that have been extensively proposed as qubits for topological quantum computing, materials hosting topological superconductivity are rare to date and the leading candidate in two dimensions (2D), Sr 2RuO4, has a low transition temperature (Tc ). The goal of my phd study is to push forward the current status of realization of topological phases by materializing higher Tc topological superconductors and investigating the stability of Dirac surface states in 3D TIs. In the first part of this thesis, I will discuss our double-pronged objective for topological superconductors: to propose how to

  2. $L$-Topological Spaces

    Directory of Open Access Journals (Sweden)

    Ali Bajravani

    2018-04-01

    Full Text Available ‎By substituting the usual notion of open sets in a topological space $X$ with a suitable collection of maps from $X$ to a frame $L$, we introduce the notion of L-topological spaces. Then, we proceed to study the classical notions and properties of usual topological spaces to the newly defined mathematical notion. Our emphasis would be concentrated on the well understood classical connectedness, quotient and compactness notions, where we prove the Thychonoff's theorem and connectedness property for ultra product of $L$-compact and $L$-connected topological spaces, respectively.

  3. Elements of topology

    CERN Document Server

    Singh, Tej Bahadur

    2013-01-01

    Topological SpacesMetric Spaces Topologies Derived Concepts Bases Subspaces Continuity and ProductsContinuityProduct TopologyConnectednessConnected Spaces Components Path-Connected Spaces Local ConnectivityConvergence Sequences Nets Filters Hausdorff SpacesCountability Axioms 1st and 2nd Countable Spaces Separable and Lindelöf SpacesCompactnessCompact Spaces Countably Compact Spaces Compact Metric Spaces Locally Compact Spaces Proper Maps Topological Constructions Quotient Spaces Identification Maps Cones, Suspensions and Joins Wedge Sums and Smash Products Adjunction Spaces Coherent Topologie

  4. Topological Gyroscopic Metamaterials

    Science.gov (United States)

    Nash, Lisa Michelle

    Topological materials are generally insulating in their bulk, with protected conducting states on their boundaries that are robust against disorder and perturbation of material property. The existence of these conducting edge states is characterized by an integer topological invariant. Though the phenomenon was first discovered in electronic systems, recent years have shown that topological states exist in classical systems as well. In this thesis we are primarily concerned with the topological properties of gyroscopic materials, which are created by coupling networks of fast-spinning objects. Through a series of simulations, numerical calculations, and experiments, we show that these materials can support topological edge states. We find that edge states in these gyroscopic metamaterials bear the hallmarks of topology related to broken time reversal symmetry: they transmit excitations unidirectionally and are extremely robust against experimental disorder. We also explore requirements for topology by studying several lattice configurations and find that topology emerges naturally in gyroscopic systems.A simple prescription can be used to create many gyroscopic lattices. Though many of our gyroscopic networks are periodic, we explore amorphous point-sets and find that topology also emerges in these networks.

  5. Topics in general topology

    CERN Document Server

    Morita, K

    1989-01-01

    Being an advanced account of certain aspects of general topology, the primary purpose of this volume is to provide the reader with an overview of recent developments.The papers cover basic fields such as metrization and extension of maps, as well as newly-developed fields like categorical topology and topological dynamics. Each chapter may be read independently of the others, with a few exceptions. It is assumed that the reader has some knowledge of set theory, algebra, analysis and basic general topology.

  6. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  7. General Topology of the Universe

    OpenAIRE

    Pandya, Aalok

    2002-01-01

    General topology of the universe is descibed. It is concluded that topology of the present universe is greater or stronger than the topology of the universe in the past and topology of the future universe will be stronger or greater than the present topology of the universe. Consequently, the universe remains unbounded.

  8. Playful Literacy

    DEFF Research Database (Denmark)

    Froes, Isabel

    these practices, which compose the taxonomy of tablet play. My contribution lies in identifying and proposing a series of theoretical concepts that complement recent theories related to play and digital literacy studies. The data collected through observations informed some noteworthy aspects, including how...... with tablets’ physical and digital affordances shape children’s digital play. This thesis presents how young children’s current practices when playing with tablets inform digital experiences in Denmark and Japan. Through an interdisciplinary lens and a grounded theory approach, I have identified and mapped...... vocabulary in children’s digital play experiences. These early digital experiences set the rules for the playgrounds and assert digital tablets as twenty-first-century toys, shaping young children’s playful literacy....

  9. Playful Interaction

    DEFF Research Database (Denmark)

    2003-01-01

    The video Playful Interaction describes a future architectural office, and envisions ideas and concepts for playful interactions between people, materials and appliances in a pervasive and augmented working environment. The video both describes existing developments, technologies and designs...... as well as ideas not yet implemented such as playful modes of interaction with an augmented ball. Playful Interaction has been used as a hybrid of a vision video and a video prototype (1). Externally the video has been used to visualising our new ideas, and internally the video has also worked to inspire...

  10. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts........ In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  11. Play Practices and Play Moods

    DEFF Research Database (Denmark)

    Karoff, Helle Skovbjerg

    2013-01-01

    The aim of this article is to develop a view of play as a relation between play practices and play moods based on an empirical study of children's everyday life and by using Bateson's term of ‘framing’ [(1955/2001). In Steps to an ecology of mind (pp. 75–80). Chicago: University of Chicago Press......], Schmidt's notion of ‘commonness’ [(2005). Om respekten. København: Danmarks Pædagogiske Universitets Forlag; (2011). On respect. Copenhagen: Danish School of Education University Press] and Heidegger's term ‘mood’ [(1938/1996). Time and being. Cornwall: Wiley-Blackwell.]. Play mood is a state of being...... in which we are open and ready, both to others and their production of meaning and to new opportunities for producing meaning. This play mood is created when we engage with the world during play practices. The article points out four types of play moods – devotion, intensity, tension and euphorica – which...

  12. Spintronics Based on Topological Insulators

    Science.gov (United States)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  13. A topological derivative method for topology optimization

    DEFF Research Database (Denmark)

    Norato, J.; Bendsøe, Martin P.; Haber, RB

    2007-01-01

    resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void......We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric...... regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures....

  14. Open String Diagrams I: Topological Type

    OpenAIRE

    Nag, Subhashis; Sankaran, Parameswaran

    1992-01-01

    An arbitrary Feynman graph for string field theory interactions is analysed and the homeomorphism type of the corresponding world sheet surface is completely determined even in the non-orientable cases. Algorithms are found to mechanically compute the topological characteristics of the resulting surface from the structure of the signed oriented graph. Whitney's permutation-theoretic coding of graphs is utilized.

  15. Playing Shakespeare.

    Science.gov (United States)

    Bashian, Kathleen Ryniker

    1993-01-01

    Describes a yearlong project at 12 Catholic middle schools in the Diocese of Arlington, Virginia, to incorporate the plays of William Shakespeare into the curriculum. Teachers attended university lectures and directed students in performances of the plays. Concludes that Shakespeare can be understood and enjoyed by middle school students. (BCY)

  16. Topology optimization approaches

    DEFF Research Database (Denmark)

    Sigmund, Ole; Maute, Kurt

    2013-01-01

    Topology optimization has undergone a tremendous development since its introduction in the seminal paper by Bendsøe and Kikuchi in 1988. By now, the concept is developing in many different directions, including “density”, “level set”, “topological derivative”, “phase field”, “evolutionary...

  17. Introduction to topology

    CERN Document Server

    Mendelson, Bert

    1990-01-01

    Highly regarded for its exceptional clarity, imaginative and instructive exercises, and fine writing style, this concise book offers an ideal introduction to the fundamentals of topology. It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

  18. Modeling Internet Topology Dynamics

    NARCIS (Netherlands)

    Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.

    Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements,

  19. Topology from Neighbourhoods

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-12-01

    If to each element x of a set X there corresponds a set B(x of subsets of X such that the properties VI, VII, VIII and VIV are satisfied, then there is a unique topological structure on X such that, for each x ∈ X, B(x is the set of neighborhoods of x in this topology.

  20. Topological defect clustering and plastic deformation mechanisms in functionalized graphene

    Science.gov (United States)

    Nunes, Ricardo; Araujo, Joice; Chacham, Helio

    2011-03-01

    We present ab initio results suggesting that strain plays a central role in the clustering of topological defects in strained and functionalized graphene models. We apply strain onto the topological-defect graphene networks from our previous work, and obtain topological-defect clustering patterns which are in excellent agreement with recent observations in samples of reduced graphene oxide. In our models, the graphene layer, containing an initial concentration of isolated topological defects, is covered by hydrogen or hydroxyl groups. Our results also suggest a rich variety of plastic deformation mechanism in functionalized graphene systems. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  1. Topological Acoustic Delay Line

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  2. Complete theory of symmetry-based indicators of band topology.

    Science.gov (United States)

    Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki

    2017-06-30

    The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.

  3. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  4. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    tems can lead to a state that supports zero energy Majorana fermions .... orbital motion is a relativistic effect most pronounced in heavy ... 1D helical edge states appear within the gap with a linear disper- ... free fermion in 1D. .... less, and electrically neutral. ... to be used as a building block for the next generation topological.

  5. Splitting, linking, knotting, and solitonic escape of topological defects in nematic drops with handles.

    Science.gov (United States)

    Tasinkevych, Mykola; Campbell, Michael G; Smalyukh, Ivan I

    2014-11-18

    Topologically nontrivial field excitations, including solitonic, linked, and knotted structures, play important roles in physical systems ranging from classical fluids and liquid crystals, to electromagnetism, classic, and quantum field theories. These excitations can appear spontaneously during symmetry-breaking phase transitions. For example, in cosmological theories, cosmic strings may have formed knotted configurations influencing the Early Universe development, whereas in liquid crystals transient tangled defect lines were observed during isotropic-nematic transitions, eventually relaxing to defect-free states. Knotted and solitonic fields and defects were also obtained using optical manipulation, complex-shaped colloids, and frustrated cholesterics. Here we use confinement of nematic liquid crystal by closed surfaces with varied genus and perpendicular boundary conditions for a robust control of appearance and stability of such field excitations. Theoretical modeling and experiments reveal structure of defect lines as a function of the surface topology and material and geometric parameters, establishing a robust means of controlling solitonic, knotted, linked, and other field excitations.

  6. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  7. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  8. Jakob Nielsen and his Contributions to Topology

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1996-01-01

    The Danish mathematician Jakob Nielsen won international recognitionas one of the developers of combinatiorial group theory and the topologyof surfaces. This article describes the life and work of Jakob Nielsenwith emphasis on his contributions to topology.The biography is to be included in the b......The Danish mathematician Jakob Nielsen won international recognitionas one of the developers of combinatiorial group theory and the topologyof surfaces. This article describes the life and work of Jakob Nielsenwith emphasis on his contributions to topology.The biography is to be included...

  9. From geometry to topology

    CERN Document Server

    Flegg, H Graham

    2001-01-01

    This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.

  10. Topologically massive supergravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    1983-01-01

    Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.

  11. Duality and topology

    Science.gov (United States)

    Sacramento, P. D.; Vieira, V. R.

    2018-04-01

    Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.

  12. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...

  13. Topology general & algebraic

    CERN Document Server

    Chatterjee, D

    2007-01-01

    About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the

  14. Topological pregauge-pregeometry

    International Nuclear Information System (INIS)

    Akama, Keiichi; Oda, Ichiro.

    1990-12-01

    The pregauge-pregeometric action, i.e. the fundamental matter action whose quantum fluctuations give rise to the Einstein-Hilbert and the Yang-Mills actions is investigated from the viewpoint of the topological field theory. We show that the scalar pregauge-pregeometric action is a topological invariant for appropriate choices of the internal gauge group. This model realizes the picture that the gravitational and internal gauge theory at the low energy scale is induced as the quantum effects of the topological field theory at the Planck scale. (author)

  15. Elementary topology problem textbook

    CERN Document Server

    Viro, O Ya; Netsvetaev, N Yu; Kharlamov, V M

    2008-01-01

    This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space. The book is tailored for the reader who is determined to work actively. The proofs of theorems are separated from their formulations and are gathered at the end of each chapter. This makes the book look like a pure problem book and encourages the reader to think through each formulation. A reader who prefers a more traditional style can either find the pr

  16. Membrane topology of hedgehog acyltransferase.

    Science.gov (United States)

    Matevossian, Armine; Resh, Marilyn D

    2015-01-23

    Hedgehog acyltransferase (Hhat) is a multipass transmembrane enzyme that mediates the covalent attachment of the 16-carbon fatty acid palmitate to the N-terminal cysteine of Sonic Hedgehog (Shh). Palmitoylation of Shh by Hhat is critical for short and long range signaling. Knowledge of the topological organization of Hhat transmembrane helices would enhance our understanding of Hhat-mediated Shh palmitoylation. Bioinformatics analysis of transmembrane domains within human Hhat using 10 different algorithms resulted in highly consistent predictions in the C-terminal, but not in the N-terminal, region of Hhat. To empirically determine the topology of Hhat, we designed and exploited Hhat constructs containing either terminal or 12 different internal epitope tags. We used selective permeabilization coupled with immunofluorescence as well as a protease protection assay to demonstrate that Hhat contains 10 transmembrane domains and 2 re-entrant loops. The invariant His and highly conserved Asp residues within the membrane-bound O-acyltransferase (MBOAT) homology domain are segregated on opposite sides of the endoplasmic reticulum membrane. The localization of His-379 on the lumenal membrane surface is consistent with a role for this invariant residue in catalysis. Analysis of the activity and stability of the Hhat constructs revealed that the C-terminal MBOAT domain is especially sensitive to manipulation. Moreover, there was remarkable similarity in the overall topological organization of Hhat and ghrelin O-acyltransferase, another MBOAT family member. Knowledge of the topological organization of Hhat could serve as an important tool for further design of selective Hhat inhibitors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Disorder Effects in Charge Transport and Spin Response of Topological Insulators

    Science.gov (United States)

    Zhao, Lukas Zhonghua

    Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in the bulk donated by randomly distributed defects such as vacancies and antisites. This bulk disorder intermixes surface and bulk conduction channels, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response and resulting in the relatively low measured carrier mobilities. Moreover, charge inhomogeneity arising from bulk disorder can result in pronounced nanoscale spatial fluctuations of energy on the surface, leading to the formation of surface `puddles' of different carrier types. Great efforts have been made to combat the undesirable effects of disorder in 3D topological insulators and to reduce bulk carriers through chemical doping, nanostructure fabrication, and electric gating. In this work we have developed a new way to reduce bulk carrier densities using high-energy electron irradiation, thereby allowing us access to the topological surface quantum channels. We also found that disorder in 3D topological insulators can be beneficial. It can play an important part in enabling detection of unusual magnetic response from Dirac fermions and in uncovering new excitations, namely surface superconductivity in Dirac `puddles'. In Chapter 3 we show how by using differential magnetometry we could probe spin rotation in the 3D topological material family (Bi2Se 3, Bi2Te3 and Sb2Te3

  18. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan

    2012-03-27

    Topological insulator is a new state of matter attracting tremendous interest due to its gapless linear dispersion and spin momentum locking topological states located near the surface. Heterostructures, which have traditionally been powerful in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered that an exotic topological state exists. Surprisingly, the state migrates from the nontrivial Bi 2Se 3 into the trivial Sb 2Se 3 region and spreads across the entire Sb 2Se 3 slab, extending beyond the concept of "surface" state while preserving all of the topological surface state characteristics. This unusual topological state arises from the coupling between different materials and the modification of electronic structure near Fermi energy. Our study demonstrates that heterostructures can open up opportunities for controlling the real-space distribution of the topological state and inducing quantum phase transitions between topologically trivial and nontrivial states. © 2012 American Chemical Society.

  19. Postphenomenological Play

    DEFF Research Database (Denmark)

    Hammar, Emil

    This paper aims to identify an understanding of digital games in virtual environments by using Don Ihde’s (1990) postphenomenological approach to how technology mediates the world to human beings in conjunction with Hans-Georg Gadamer’s (1993) notion of play . Through this tentatively proposed am...... amalgamation of theories I point towards an alternative understanding of the relationship between play and game as not only dialectic, but also as socially and ethically relevant qua the design and implementation of the game as technology....

  20. Distributed Energy-Efficient Topology Control Algorithm in Home M2M Networks

    OpenAIRE

    Lee, Chao-Yang; Yang, Chu-Sing

    2012-01-01

    Because machine-to-machine (M2M) technology enables machines to communicate with each other without human intervention, it could play a big role in sensor network systems. Through wireless sensor network (WSN) gateways, various information can be collected by sensors for M2M systems. For home M2M networks, this study proposes a distributed energy-efficient topology control algorithm for both topology construction and topology maintenance. Topology control is an effective method of enhancing e...

  1. Topology optimized microbioreactors

    DEFF Research Database (Denmark)

    Schäpper, Daniel; Lencastre Fernandes, Rita; Eliasson Lantz, Anna

    2011-01-01

    This article presents the fusion of two hitherto unrelated fields—microbioreactors and topology optimization. The basis for this study is a rectangular microbioreactor with homogeneously distributed immobilized brewers yeast cells (Saccharomyces cerevisiae) that produce a recombinant protein...

  2. Real topological string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)

    2017-03-15

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.

  3. Topological Susceptibility from Slabs

    CERN Document Server

    Bietenholz, Wolfgang; Gerber, Urs

    2015-01-01

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.

  4. Topological susceptibility from slabs

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)

    2015-12-14

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.

  5. Contact and symplectic topology

    CERN Document Server

    Colin, Vincent; Stipsicz, András

    2014-01-01

    Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

  6. Topology for analysis

    CERN Document Server

    Wilansky, Albert

    2008-01-01

    Three levels of examples and problems make this volume appropriate for students and professionals. Abundant exercises, ordered and numbered by degree of difficulty, illustrate important topological concepts. 1970 edition.

  7. Playful Organizations

    DEFF Research Database (Denmark)

    Pors, Justine Grønbæk; Åkerstrøm Andersen, Niels

    2015-01-01

    intact. In its final sections, the article discusses what happens to conditions of decision-making when organisations do not just see undecidability as a given condition, but as a limited resource indispensable for change and renewal. The article advances discussions of organisational play by exploring...

  8. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  9. Sweet Play

    Science.gov (United States)

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  10. Group play

    DEFF Research Database (Denmark)

    Tychsen, Anders; Hitchens, Michael; Brolund, Thea

    2008-01-01

    Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects of the v......Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects...... of the various formats used by RPGs on the gaming experience. This article presents the results of an empirical study, examining how multi-player tabletop RPGs are affected as they are ported to the digital medium. Issues examined include the use of disposition assessments to predict play experience, the effect...... of group dynamics, the influence of the fictional game characters and the comparative play experience between the two formats. The results indicate that group dynamics and the relationship between the players and their digital characters, are integral to the quality of the gaming experience in multiplayer...

  11. Playing Teacher.

    Science.gov (United States)

    Gilbert, Juan E.

    The acceptance of animation technologies is increasing. Video games, such as Sony PlayStation (SONY, 2002), have become part of the culture for young people from kindergarten through undergraduate school. Animation technologies have been implemented into educational systems in the form of animated pedagogical agents (Johnson, 2000). The research…

  12. Aesthetic Play

    DEFF Research Database (Denmark)

    Bang, Jytte Susanne

    2012-01-01

    The present article explores the role of music-related artefacts and technologies in children’s lives. More specifically, it analyzes how four 10- to 11-year old girls use CDs and DVD games in their music-play activities and which developmental themes and potentials may accrue from such activitie...

  13. Water Play

    Science.gov (United States)

    Cline, Jane E.; Smith, Brandy A.

    2016-01-01

    The inclusion of activities to develop sensory awareness, spatial thinking, and physical dexterity, operationalized through hands-on science lessons such as water play, have long been part of early childhood education. This practical article addresses Next Generation Science Standards K-2 ETS1-3 and K-2 ETS1-2 by having four-year-old…

  14. Fall Foliage Topology Seminars

    CERN Document Server

    1990-01-01

    This book demonstrates the lively interaction between algebraic topology, very low dimensional topology and combinatorial group theory. Many of the ideas presented are still in their infancy, and it is hoped that the work here will spur others to new and exciting developments. Among the many techniques disussed are the use of obstruction groups to distinguish certain exact sequences and several graph theoretic techniques with applications to the theory of groups.

  15. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2016-01-01

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  16. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  17. Experimental demonstration of anomalous Floquet topological insulator for sound

    Science.gov (United States)

    Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng

    2016-11-01

    Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.

  18. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface

    DEFF Research Database (Denmark)

    Rybtke, Morten; Berthelsen, Jens; Yang, Liang

    2015-01-01

    Pseudomonas aeruginosa is a clinically relevant species involved in biofilm-based chronic infections. We provide evidence that the P. aeruginosa LapG protein functions as a periplasmic protease that can cleave the protein adhesin CdrA off the cell surface, and thereby plays a role in biofilm...... formation and biofilm dispersal. The P. aeruginosa LapG protein is shown to be a functional homolog of the Pseudomonas putida LapG protein which has previously been shown to function as a periplasmic protease that targets the surface adhesin LapA. Transposon mutagenesis and characterization of defined...... and whole-cell protein fractions showed that CdrA was retained in the whole-cell protein fraction when LapG was absent, whereas it was found in the culture supernatant when LapG was present. The finding that CdrA is a target of LapG in P. aeruginosa is surprising because CdrA has no homology to LapA....

  19. On effective theories of topological strings

    International Nuclear Information System (INIS)

    Elitzur, S.; Forge, A.; Rabinovici, E.

    1992-01-01

    We study the construction of effective target-space theories of topological string theories. The example of the CP1 topological sigma model is analysed in detail. An effective target-space theory whose correlation functions are defined by the sum over connected Riemann surfaces of all genera is found to be itself topological. The values of the couplings of this effective theory are expressed in terms of those of the world-sheet theory for a general CP1-like world-sheet model. Any model of this type can be obtained as an effective theory. The definition of the effective theory's expectation values as a sum over disconnected surfaces as well, is shown not to be compatible with those of a topological theory, at least as long as the connectivity of the target space is kept fixed. Dilaton-type couplings emerge in the full lagrangian realization of the moduli space of topological theories with n observables. En route, we encounter a nonperturbative duality, an equivalence of theories with different world-sheets and discuss the relation between the cosmological constant in these finite theories and the zero-point function. (orig.)

  20. Planck 2015 results. XVIII. Background geometry & topology

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Désert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Feeney, S.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McEwen, J.D.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Tent, F. Van; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    Full-sky CMB maps from the 2015 Planck release allow us to detect departures from global isotropy on the largest scales. We present the first searches using CMB polarization for correlations induced by a non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance $\\chi_{rec}$). We specialize to flat spaces with toroidal and slab topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology at a scale below the diameter of the last scattering surface. The limits on the radius $R_i$ of the largest sphere inscribed in the topological domain (at log-likelihood-ratio $\\Delta\\ln{L}>-5$ relative to a simply-connected flat Planck best-fit model) are $R_i>0.97\\chi_{rec}$ for the cubic torus and $R_i>0.56\\chi_{rec}$ for the slab. The limit for the cubic torus from the matched-circles search is numerically equivalent, $R_i>0.97\\chi_{rec}...

  1. Playing facilitator

    DEFF Research Database (Denmark)

    Houmøller, Ellen; Marchetti, Emanuela

    2015-01-01

    event called InnoEvent, addressed to students in the fields of multimedia and healthcare. Being interested in studying games and role-play as tools to support independent learning in the field of design thinking and team-building, following Dewey’s (1938) theory of learning experience, we ran two...... workshops based on two classic role-play games: The Silent Game (Brandt, 2006) and The Six Thinking Hats (de Bono, 1985). These games were created to support students in learning design thinking in groups and are assigned positive values in literature, hence we expected a smooth process. However, our...... experience was rather characterized by conflictual negotiations with the students. Data from our observations and from interviews with group representatives show that the students took a discontinuous learning path, characterised by a false start, failure, and a thorough reconsideration of their work...

  2. The Surface Layer Homology Domain-Containing Proteins of Alkaliphilic Bacillus pseudofirmus OF4 Play an Important Role in Alkaline Adaptation via Peptidoglycan Synthesis.

    Science.gov (United States)

    Fujinami, Shun; Ito, Masahiro

    2018-01-01

    It is well known that the Na + cycle and the cell wall are essential for alkaline adaptation of Na + -dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na + concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na + concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.

  3. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  4. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  5. Playing Possum

    Directory of Open Access Journals (Sweden)

    Enrico Euli

    2016-07-01

    Full Text Available Our society is drenched in the catastrophe; where the growth of financial crisis, environmental cataclysm and militarization represents its gaudiest and mortifying phenomena. Humans struggle with depression, sense of impotence, anguish towards a future considered a threat.  A possibility to keep us alive can be represented by the enhancement of our ability in ‘playing Possum’, an exercise of desisting and renitence: to firmly say ‘no’. To say no to a world that proposes just one way of being and living free, that imposes as the only unavoidable possible destiny.

  6. Playful Technology

    DEFF Research Database (Denmark)

    Johansen, Stine Liv; Eriksson, Eva

    2013-01-01

    In this paper, the design of future services for children in Danish public libraries is discussed, in the light of new challenges and opportunities in relation to new media and technologies. The Danish government has over the last few years initiated and described a range of initiatives regarding...... in the library, the changing role of the librarians and the library space. We argue that intertwining traditional library services with new media forms and engaging play is the core challenge for future design in physical public libraries, but also that it is through new media and technology that new...

  7. Distinct effects of Cr bulk doping and surface deposition on the chemical environment and electronic structure of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Turgut, E-mail: yilmaz@phys.uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Hines, William [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Sun, Fu-Chang [Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269 (United States); Pletikosić, Ivo [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Budnick, Joseph [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Valla, Tonica [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Sinkovic, Boris [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2017-06-15

    Highlights: • Cr doping into the bulk of Bi{sub 2}Se{sub 3} opens an energy gap at the Dirac point which is observable in the non-magnetic state. • Cr surface deposition does not lead to open an energy gap at the Dirac point of Bi{sub 2}Se{sub 3}. • Formation of two distinct Bi and Cr core level peaks was observed upon the deposition of Cr on the surface of Bi{sub 2}Se{sub 3}. - Abstract: In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi{sub 2}Se{sub 3} films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. Angle resolved photoemission spectroscopy (ARPES) shows that Cr doped into the bulk opens a surface state energy gap which can be seen at room temperature; much higher than the measured ferromagnetic transition temperature of ≈10 K. On the other hand, similar ARPES measurements show that the surface states remain gapless down to 15 K for films with Cr surface deposition. In addition, core-level photoemission spectroscopy of the Bi 5d, Se 3d, and Cr 3p core levels show distinct differences in the chemical environment for the two methods of Cr introduction. Surface deposition of Cr results in the formation of shoulders on the lower binding energy side for the Bi 5d peaks and two distinct Cr 3p peaks indicative of two Cr sites. These striking differences suggests an interesting possibility that better control of doping at only near surface region may offer a path to quantum anomalous Hall states at higher temperatures than reported in the literature.

  8. LHCb Topological Trigger Reoptimization

    International Nuclear Information System (INIS)

    Likhomanenko, Tatiana; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Ilten, Philip; Williams, Michael

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays. (paper)

  9. Low energy electronic scattering processes in the topological Weyl semimetal TaAs

    Energy Technology Data Exchange (ETDEWEB)

    Muellner, Silvia; Lemmens, Peter [IPKM, TU-BS, Braunschweig (Germany); Gnezdilov, Vladimir [IPKM, TU-BS, Braunschweig (Germany); ILTPE NAS (Ukraine); Sankar, Raman; Chou, Fangcheng [CCMS, National Taiwan Univ., Taipei (China)

    2016-07-01

    The topological Weyl semimetal TaAs shows Weyl points as well as topological surface states (Fermi arcs) intimately related to symmetry and strong spin orbit interaction. We find evidence for a low energy maximum in the scattering intensity that is compatible with electronic correlations in a collision dominated regime. We compare our observations with topological insulators.

  10. p-topological Cauchy completions

    Directory of Open Access Journals (Sweden)

    J. Wig

    1999-01-01

    Full Text Available The duality between “regular” and “topological” as convergence space properties extends in a natural way to the more general properties “p-regular” and “p-topological.” Since earlier papers have investigated regular, p-regular, and topological Cauchy completions, we hereby initiate a study of p-topological Cauchy completions. A p-topological Cauchy space has a p-topological completion if and only if it is “cushioned,” meaning that each equivalence class of nonconvergent Cauchy filters contains a smallest filter. For a Cauchy space allowing a p-topological completion, it is shown that a certain class of Reed completions preserve the p-topological property, including the Wyler and Kowalsky completions, which are, respectively, the finest and the coarsest p-topological completions. However, not all p-topological completions are Reed completions. Several extension theorems for p-topological completions are obtained. The most interesting of these states that any Cauchy-continuous map between Cauchy spaces allowing p-topological and p′-topological completions, respectively, can always be extended to a θ-continuous map between any p-topological completion of the first space and any p′-topological completion of the second.

  11. Topology topical thoughts on the contemporary landscape

    CERN Document Server

    Bucher, Annemarie; Körner, Stefan; Krull, Wilhelm; Kühn, Norbert; Kuster, Hansjörg; Lampugnani, Vittorio Magnago; Schäfer, Lothar; Schwartz, Joseph; Seelis, Martin; Seiler, Michael; Stokman, Antje; Tessin, Wulf; Girot, Christophe; Kirchengast, Albert; Freytag, Anette; Richter, Dunja

    2014-01-01

    How can an abstract term like ""Topology"" become pertinent and effective to landscape thinking today? There is a schism between the way landscape is understood scientifically, either as a normative network or an environmental system, and the way the same place exists emotionally for people. This disparity which prevails in today''s landscape calls for a change of approach, both in terms of action and perception. Topology, in this instance, is not confined to the science of continuous surfaces in mathematics, it can pay greater attention to deeper spatial, physical, poetic and philosophical va

  12. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  13. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  14. Curvature-Controlled Topological Defects

    Directory of Open Access Journals (Sweden)

    Luka Mesarec

    2017-05-01

    Full Text Available Effectively, two-dimensional (2D closed films exhibiting in-plane orientational ordering (ordered shells might be instrumental for the realization of scaled crystals. In them, ordered shells are expected to play the role of atoms. Furthermore, topological defects (TDs within them would determine their valence. Namely, bonding among shells within an isotropic liquid matrix could be established via appropriate nano-binders (i.e., linkers which tend to be attached to the cores of TDs exploiting the defect core replacement mechanism. Consequently, by varying configurations of TDs one could nucleate growth of scaled crystals displaying different symmetries. For this purpose, it is of interest to develop a simple and robust mechanism via which one could control the position and number of TDs in such atoms. In this paper, we use a minimal mesoscopic model, where variational parameters are the 2D curvature tensor and the 2D orientational tensor order parameter. We demonstrate numerically the efficiency of the effective topological defect cancellation mechanism to predict positional assembling of TDs in ordered films characterized by spatially nonhomogeneous Gaussian curvature. Furthermore, we show how one could efficiently switch among qualitatively different structures by using a relative volume v of ordered shells, which represents a relatively simple naturally accessible control parameter.

  15. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  16. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  17. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun

    2015-02-11

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  18. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  19. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show...

  20. Riemann, topology, and physics

    CERN Document Server

    Monastyrsky, Michael I

    2008-01-01

    This significantly expanded second edition of Riemann, Topology, and Physics combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter such as the quantum Hall effect, quasicrystals, membranes with nontrivial topology, "fake" differential structures on 4-dimensional Euclidean space, new invariants of knots and more. In his relatively short lifetime, this great mathematician made outstanding contributions to nearly all branches of mathematics; today Riemann’s name appears prom...

  1. Knot topology in QCD

    International Nuclear Information System (INIS)

    Zou, L.P.; Zhang, P.M.; Pak, D.G.

    2013-01-01

    We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed

  2. Topology of tiling spaces

    CERN Document Server

    Sadun, Lorenzo

    2008-01-01

    Aperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden "symmetries" that were previously considered impossible, while the tilings themselves were quite striking. The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed. This broader study naturally leads to the topology of tiling spaces. This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to ...

  3. Topology, calculus and approximation

    CERN Document Server

    Komornik, Vilmos

    2017-01-01

    Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...

  4. Algebraic topology a primer

    CERN Document Server

    Deo, Satya

    2018-01-01

    This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...

  5. Topology optimization for nano-photonics

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2011-01-01

    Topology optimization is a computational tool that can be used for the systematic design of photonic crystals, waveguides, resonators, filters and plasmonics. The method was originally developed for mechanical design problems but has within the last six years been applied to a range of photonics...... applications. Topology optimization may be based on finite element and finite difference type modeling methods in both frequency and time domain. The basic idea is that the material density of each element or grid point is a design variable, hence the geometry is parameterized in a pixel-like fashion....... The optimization problem is efficiently solved using mathematical programming-based optimization methods and analytical gradient calculations. The paper reviews the basic procedures behind topology optimization, a large number of applications ranging from photonic crystal design to surface plasmonic devices...

  6. Particles with changeable topology in nematic colloids

    International Nuclear Information System (INIS)

    Ravnik, Miha; Čopar, Simon; Žumer, Slobodan

    2015-01-01

    We show that nematic colloids can serve as a highly variable and controllable platform for studying inclusions with changeable topology and their effects on the surrounding ordering fields. We explore morphing of toroidal and knotted colloidal particles into effective spheres, distinctively changing their Euler characteristic and affecting the surrounding nematic field, including topological defect structures. With toroidal particles, the inner nematic defect eventually transitions from a wide loop to a point defect (a small loop). Trefoil particles become linked with two knotted defect loops, mutually forming a three component link, that upon tightening transform into a two-component particle-defect loop link. For more detailed topological analysis, Pontryagin-Thom surfaces are calculated and visualised, indicating an interesting cascade of defect rewirings caused by the shape morphing of the knotted particles. (paper)

  7. Infrared circular photogalvanic effect in topological insulators

    Science.gov (United States)

    Luo, Siyuan

    2018-04-01

    Topological insulators have attracted a lot of attention in recent years due to its unique phenomena. Circular photogalvanic effect (CPGE) is one of the important phenomena in topological insulators. Bi2Se3, as one of the 3D topological insulators, consist of a single Dirac cone at the Γ point in k-space [1], corresponding to the surface states. Controlled by the Berry curvature of the surface band, the dominant photo response due to the interband transition is helicity dependent [2]. In addition, due to the spin-momentum locking in topological insulators' surface, the sign of spin-angular-momentum of obliquely incident light and photo currents are locked together. On the other hand, Bi2Se3 consists of quintuple layers which make it possible to be exfoliated and transferred based on graphene fabrication. In this paper, Bi2Se3 devices were fabricated and Ohm contact was achieved. We experimentally demonstrated the CPGE in Bi2Se3 using 1550nm incident laser.

  8. Topological and non-topological soliton solutions to some time

    Indian Academy of Sciences (India)

    Topological and non-topological soliton solutions to some time-fractional differential equations ... These equations have been widely applied in many branches of nonlinear ... Department of Engineering Sciences, Faculty of Technology and ...

  9. Dirichlet topological defects

    International Nuclear Information System (INIS)

    Carroll, S.M.; Trodden, M.

    1998-01-01

    We propose a class of field theories featuring solitonic solutions in which topological defects can end when they intersect other defects of equal or higher dimensionality. Such configurations may be termed open-quotes Dirichlet topological defects,close quotes in analogy with the D-branes of string theory. Our discussion focuses on defects in scalar field theories with either gauge or global symmetries, in 3+1 dimensions; the types of defects considered include walls ending on walls, strings on walls, and strings on strings. copyright 1998 The American Physical Society

  10. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  11. Topology from Neighbourhoods

    OpenAIRE

    Coghetto Roland

    2015-01-01

    Using Mizar [9], and the formal topological space structure (FMT_Space_Str) [19], we introduce the three U-FMT conditions (U-FMT filter, U-FMT with point and U-FMT local) similar to those VI, VII, VIII and VIV of the proposition 2 in [10]: If to each element x of a set X there corresponds a set B(x) of subsets of X such that the properties VI, VII, VIII and VIV are satisfied, then there is a unique topological structure on X such that, for each x ∈ X, B(x) is the set of neighborhoods of x ...

  12. Free topological vector spaces

    OpenAIRE

    Gabriyelyan, Saak S.; Morris, Sidney A.

    2016-01-01

    We define and study the free topological vector space $\\mathbb{V}(X)$ over a Tychonoff space $X$. We prove that $\\mathbb{V}(X)$ is a $k_\\omega$-space if and only if $X$ is a $k_\\omega$-space. If $X$ is infinite, then $\\mathbb{V}(X)$ contains a closed vector subspace which is topologically isomorphic to $\\mathbb{V}(\\mathbb{N})$. It is proved that if $X$ is a $k$-space, then $\\mathbb{V}(X)$ is locally convex if and only if $X$ is discrete and countable. If $X$ is a metrizable space it is shown ...

  13. Topological superconductivity, topological confinement, and the vortex quantum Hall effect

    International Nuclear Information System (INIS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2011-01-01

    Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.

  14. Photoinduced Topological Phase Transitions in Topological Magnon Insulators.

    Science.gov (United States)

    Owerre, S A

    2018-03-13

    Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials.

  15. Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg (P1 -xA sx)

    Science.gov (United States)

    Xu, N.; Qian, Y. T.; Wu, Q. S.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Strocov, V. N.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Yazyev, O. V.; Qian, T.; Ding, H.; Mesot, J.; Shi, M.

    2018-04-01

    By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg (P1 -xA sx) . We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also indicate that application of "negative" hydrostatic pressure can transform trivial semiconducting CaAgP into an ideal topological nodal-line semimetal phase. The topological transition can be realized by partial isovalent P/As substitution at x =0.38 .

  16. The Topology of Symmetric Tensor Fields

    Science.gov (United States)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval

    1997-01-01

    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  17. Quasi-topological Ricci polynomial gravities

    Science.gov (United States)

    Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.

    2018-02-01

    Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.

  18. Engineering topological phases with a three-dimensional nodal-loop semimetal

    Science.gov (United States)

    Li, Linhu; Yap, Han Hoe; Araújo, Miguel A. N.; Gong, Jiangbin

    2017-12-01

    A three-dimensional (3D) nodal-loop semimetal phase is exploited to engineer a number of intriguing phases featuring different peculiar topological surface states. In particular, by introducing various two-dimensional gap terms to a 3D tight-binding model of a nodal-loop semimetal, we obtain a rich variety of topological phases of great interest to ongoing theoretical and experimental studies, including a chiral insulator, degenerate-surface-loop insulator, and second-order topological insulator, as well as a Weyl semimetal with tunable Fermi arc profiles. The unique concept underlying our approach is to engineer topological surface states that inherit their dispersion relations from a gap term. The results provide one rather unified principle for the creation of novel topological phases and can guide the search for new topological materials. Two-terminal transport studies are also carried out to distinguish the engineered topological phases.

  19. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  20. Entropy, Topological Theories and Emergent Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    D. Cabrera

    2017-02-01

    Full Text Available The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a finite dimensional Hilbert space of quantum states. Specifically, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological field theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.

  1. Topological field theories and duality

    International Nuclear Information System (INIS)

    Stephany, J.; Universidad Simon Bolivar, Caracas

    1996-05-01

    Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs

  2. Wireless sensor network topology control

    OpenAIRE

    Zuk, Olexandr; Romanjuk, Valeriy; Sova, Oleg

    2010-01-01

    Topology control process for the wireless sensor network is considered. In this article the use of rule base for making decision on the search of optimum network topology is offered for the realization of different aims of network management.

  3. Topology optimization of viscoelastic rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  4. Slope constrained Topology Optimization

    DEFF Research Database (Denmark)

    Petersson, J.; Sigmund, Ole

    1998-01-01

    The problem of minimum compliance topology optimization of an elastic continuum is considered. A general continuous density-energy relation is assumed, including variable thickness sheet models and artificial power laws. To ensure existence of solutions, the design set is restricted by enforcing...

  5. Architecture, Drawing, Topology

    DEFF Research Database (Denmark)

    Meldgaard, Morten

    This book presents contributions of drawing and text along with their many relationalities from ontology to history and vice versa in a range of reflections on architecture, drawing and topology. We hope to thereby indicate the potential of the theme in understanding not only the architecture of ...

  6. LHCb Topological Trigger Reoptimization

    CERN Document Server

    INSPIRE-00400931; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael

    2015-12-23

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. ...

  7. Some geometry and topology

    International Nuclear Information System (INIS)

    Marmo, G.; Morandi, G.

    1995-01-01

    In this lecture some mathematical problems that arise when one deals with low-dimensional field theories, such as homotopy and topological invariants, differential calculus on Lie groups and coset spaces, fiber spaces and parallel transport, differential calculus on fiber bundles, sequences on principal bundles and Chern-Simons terms are discussed

  8. Rendering the Topological Spines

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  9. Coherence Multiplex System Topologies

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; Heideman, G.H.L.M.; van Etten, Wim

    2007-01-01

    Coherence multiplexing is a potentially inexpensive form of optical code-division multiple access, which is particularly suitable for short-range applications with moderate bandwidth requirements, such as access networks, LANs, or interconnects. Various topologies are known for constructing an

  10. Topological Trigger Developments

    CERN Multimedia

    Likhomanenko, Tatiana

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger utilized a custom boosted decision tree algorithm, selected an almost 100% pure sample of b-hadrons with a typical efficiency of 60-70%, and its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and uBoost. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. These inclu...

  11. Adjoint entropy vs topological entropy

    OpenAIRE

    Giordano Bruno, Anna

    2012-01-01

    Recently the adjoint algebraic entropy of endomorphisms of abelian groups was introduced and studied. We generalize the notion of adjoint entropy to continuous endomorphisms of topological abelian groups. Indeed, the adjoint algebraic entropy is defined using the family of all finite-index subgroups, while we take only the subfamily of all open finite-index subgroups to define the topological adjoint entropy. This allows us to compare the (topological) adjoint entropy with the known topologic...

  12. Topological fluid dynamics of interfacial flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1994-01-01

    The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....

  13. Topology of Document Retrieval Systems.

    Science.gov (United States)

    Everett, Daniel M.; Cater, Steven C.

    1992-01-01

    Explains the use of a topological structure to examine the closeness between documents in retrieval systems and analyzes the topological structure of a vector-space model, a fuzzy-set model, an extended Boolean model, a probabilistic model, and a TIRS (Topological Information Retrieval System) model. Proofs for the results are appended. (17…

  14. Comparing topological charge definitions using topology fixing actions

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Gruber, Florian; Jansen, Karl; Marinkovic, Marina; Urbach, Carsten; Wagner, Marc

    2009-05-01

    We investigate both the hyperbolic action and the determinant ratio action designed to fix the topological charge on the lattice. We show to what extent topology is fixed depending on the parameters of these actions, keeping the physical situation fixed. At the same time the agreement between different definitions of topological charge - the field theoretic and the index definition - is directly correlated to the degree topology is fixed. Moreover, it turns out that the two definitions agree very well. We also study finite volume effects arising in the static potential and related quantities due to topology fixing. (orig.)

  15. Fine topology and locally Minkowskian manifolds

    Science.gov (United States)

    Agrawal, Gunjan; Sinha, Soami Pyari

    2018-05-01

    Fine topology is one of the several well-known topologies of physical and mathematical relevance. In the present paper, it is obtained that the nonempty open sets of different dimensional Minkowski spaces with the fine topology are not homeomorphic. This leads to the introduction of a new class of manifolds. It turns out that the technique developed here is also applicable to some other topologies, namely, the s-topology, space topology, f-topology, and A-topology.

  16. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  17. Topological and trivial magnetic oscillations in nodal loop semimetals

    Science.gov (United States)

    Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto

    2018-05-01

    Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.

  18. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    Science.gov (United States)

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    Science.gov (United States)

    Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid

    2015-01-01

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717

  20. Topology optimized permanent magnet systems

    Science.gov (United States)

    Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.

    2017-09-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  1. Undergraduate topology a working textbook

    CERN Document Server

    McCluskey, Aisling

    2014-01-01

    This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp i

  2. Topology optimized permanent magnet systems

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian; Insinga, Andrea Roberto

    2017-01-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron...... and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a ΛcoolΛcool figure of merit of 0...

  3. Nobel Lecture: Topological quantum matter*

    Science.gov (United States)

    Haldane, F. Duncan M.

    2017-10-01

    Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."

  4. Graph topologies on closed multifunctions

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Maio

    2003-10-01

    Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.

  5. Ultrafilters and topologies on groups

    CERN Document Server

    Zelenyuk, Yevhen

    2011-01-01

    This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results aboutultrafilters. Topics covered include: topological and left topological groups, ultrafilter semigroups, local homomorphisms and automorphisms, subgroups and ideal structure of ßG, almost maximal spaces and projectives of finite semigroups, resolvability of groups. This is a self-contained book aimed at graduate students and researchers working in to

  6. Complete spacelike immersions with topology

    International Nuclear Information System (INIS)

    Harris, S.G.

    1988-01-01

    A fairly large class of Lorentz manifolds is defined, called WH normal manifolds, which are approximately those for which timelike infinity is a single point. It is shown that, in such a space, an immersed spacelike hypersurface which is complete must, if it is self-intersecting, not achronal or proper, satisfy strong topological conditions; in particular, if the immersion is injective in the fundamental group, then the hypersurface must be closed, embedded and achronal (i.e. a partial Cauchy surface). WH normal spaces include products of any Riemannian manifold with Minkowski 1-space; in such space, a complete immersed spacelike hypersurface must be immersed as a covering space for the Riemannian factor. (author)

  7. A quantized microwave quadrupole insulator with topologically protected corner states

    Science.gov (United States)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  8. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  9. Network topology mapper

    Science.gov (United States)

    Quist, Daniel A [Los Alamos, NM; Gavrilov, Eugene M [Los Alamos, NM; Fisk, Michael E [Jemez, NM

    2008-01-15

    A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.

  10. Topological signal processing

    CERN Document Server

    Robinson, Michael

    2014-01-01

    Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information.  Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known.  This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations.  Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.

  11. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  12. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  13. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  14. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  15. The topology of fullerenes

    DEFF Research Database (Denmark)

    Schwerdtfeger, Peter; Wirz, Lukas; Avery, James Emil

    2014-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar g....... In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems....

  16. Technologies for converter topologies

    Science.gov (United States)

    Zhou, Yan; Zhang, Haiyu

    2017-02-28

    In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

  17. Operator algebras and topology

    International Nuclear Information System (INIS)

    Schick, T.

    2002-01-01

    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  18. Topological Substituent Descriptors

    Directory of Open Access Journals (Sweden)

    Mircea V. DIUDEA

    2002-12-01

    Full Text Available Motivation. Substituted 1,3,5-triazines are known as useful herbicidal substances. In view of reducing the cost of biological screening, computational methods are carried out for evaluating the biological activity of organic compounds. Often a class of bioactives differs only in the substituent attached to a basic skeleton. In such cases substituent descriptors will give the same prospecting results as in case of using the whole molecule description, but with significantly reduced computational time. Such descriptors are useful in describing steric effects involved in chemical reactions. Method. Molecular topology is the method used for substituent description and multi linear regression analysis as a statistical tool. Results. Novel topological descriptors, XLDS and Ws, based on the layer matrix of distance sums and walks in molecular graphs, respectively, are proposed for describing the topology of substituents linked on a chemical skeleton. They are tested for modeling the esterification reaction in the class of benzoic acids and herbicidal activity of 2-difluoromethylthio-4,6-bis(monoalkylamino-1,3,5-triazines. Conclusions. Ws substituent descriptor, based on walks in graph, satisfactorily describes the steric effect of alkyl substituents behaving in esterification reaction, with good correlations to the Taft and Charton steric parameters, respectively. Modeling the herbicidal activity of the seo of 1,3,5-triazines exceeded the models reported in literature, so far.

  19. Manipulating topological-insulator properties using quantum confinement

    International Nuclear Information System (INIS)

    Kotulla, M; Zülicke, U

    2017-01-01

    Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron–hole asymmetry are disentangled and their respective physical consequences elucidated. (paper)

  20. On Topological Indices of Certain Dendrimer Structures

    Science.gov (United States)

    Aslam, Adnan; Bashir, Yasir; Ahmad, Safyan; Gao, Wei

    2017-05-01

    A topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.

  1. Transportation Network Topologies

    Science.gov (United States)

    Holmes, Bruce J.; Scott, John

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which

  2. Anomalous resistivity and the evolution of magnetic field topology

    Science.gov (United States)

    Parker, E. N.

    1993-01-01

    This paper explores the topological restructuring of a force-free magnetic field caused by the hypothetical sudden onset of a localized region of strong anomalous resistivity. It is shown that the topological complexity increases, with the primitive planar force-free field with straight field lines developing field lines that wrap half a turn around each other, evidently providing a surface of tangential discontinuity in the wraparound region. It is suggested that the topological restructuring contributes to the complexity of the geomagnetic substorm, the aurora, and perhaps some of the flare activity on the sun, or other star, and the Galactic halo.

  3. Differential and symplectic topology of knots and curves

    CERN Document Server

    Tabachnikov, S

    1999-01-01

    This book presents a collection of papers on two related topics: topology of knots and knot-like objects (such as curves on surfaces) and topology of Legendrian knots and links in 3-dimensional contact manifolds. Featured is the work of international experts in knot theory (""quantum"" knot invariants, knot invariants of finite type), in symplectic and contact topology, and in singularity theory. The interplay of diverse methods from these fields makes this volume unique in the study of Legendrian knots and knot-like objects such as wave fronts. A particularly enticing feature of the volume is

  4. Observation of symmetry-protected topological band with ultracold fermions

    Science.gov (United States)

    Song, Bo; Zhang, Long; He, Chengdong; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2018-01-01

    Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems. PMID:29492457

  5. Topological geometrodynamics. III. Quantum theory

    International Nuclear Information System (INIS)

    Pitkanen, M.

    1986-01-01

    The description of 3-space as a spacelike 3-surface of the space H = M 4 x CP 2 (product of Minkowski space and two-dimensional complex projective space CP 2 ) and the idea that particles correspond to 3-surfaces of finite size in H are the basic ingredients of topological geometrodynamics, TGD, an attempt to a geometry-based unification of the fundamental interactions. The observations that the Schroedinger equation can be derived from a variational principle and that the existence of a unitary S matrix follows from the phase symmetry of this action lead to the idea that quantum TGD should be derivable from a quadratic phase symmetric variational principle in the space SH consisting of the spacelike 3-surfaces of H. In this paper a formal realization of this idea is proposed. First, the space SH is endowed with the necessary geometric structures (metric, vielbein, and spinor structures) induced from the corresponding structures of the space H. Second, the concepts of the scalar super field in SH (both fermions and bosons should be describable by the same probability amplitude) and of super d'Alambertian are defined. It is shown that the requirement of a maximal symmetry leads to a unique CP-breaking super d'Alambertian and thus to a unique theory ''predicting everything.'' Finally, a formal expression for the S matrix of the theory is derived

  6. Effects of Structural and Electronic Disorder in Topological Insulator Sb2Te3 Thin Films

    Science.gov (United States)

    Korzhovska, Inna

    Topological quantum matter is a unique and potentially transformative protectorate against disorder-induced backscattering. The ultimate disorder limits to the topological state, however, are still not known - understanding these limits is critical to potential applications in the fields of spintronics and information processing. In topological insulators spin-orbit interaction and time-reversal-symmetry invariance guarantees - at least up to a certain disorder strength - that charge transport through 2D gapless Dirac surface states is robust against backscattering by non-magnetic disorder. Strong disorder may destroy topological protection and gap out Dirac surface states, although recent theories predict that under severe electronic disorder a quantized topological conductance might yet reemerge. Very strong electronic disorder, however, is not trivial to install and quantify, and topological matter under such conditions thus far has not been experimentally tested. This thesis addresses the behavior of three-dimensional (3D) topological insulator (TI) films in a wide range of structural and electronic disorder. We establish strong positional disorder in thin (20-50 nm) Sb2Te 3 films, free of extrinsic magnetic dopants. Sb 2Te3 is a known 2nd generation topological insulator in the low-disorder crystalline state. It is also a known phase-change material that undergoes insulator-to-metal transition with the concurrent orders of magnitude resistive drop, where a huge range of disorder could be controllably explored. In this work we show that even in the absence of magnetic dopants, disorder may induce spin correlations detrimental to the topological state. Chapter 1 contains a brief introduction to the topological matter and describes the role played by disorder. This is followed by theory considerations and a survey of prior experimental work. Next we describe the motivation for our experiments and explain the choice of the material. Chapter 2 describes deposition

  7. Topological phases in a three-dimensional topological insulator with a time-reversal invariant external field

    International Nuclear Information System (INIS)

    Guo, Xiaoyong; Ren, Xiaobin; Wang, Gangzhi; Peng, Jie

    2014-01-01

    We investigate the impact of a time-reversal invariant external field on the topological phases of a three-dimensional (3D) topological insulator. By taking the momentum k z as a parameter, we calculate the spin-Chern number analytically. It is shown that both the quantum spin Hall phase and the integer quantum Hall phase can be realized in our system. When the strength of the external field is varied, a series of topological phase transitions occurs with the closing of the energy gap or the spin-spectrum gap. In a tight-binding form, the surface modes are discussed numerically to confirm the analytically results. (paper)

  8. Topology Model of the Flow around a Submarine Hull Form

    Science.gov (United States)

    2015-12-01

    UNCLASSIFIED Topology Model of the Flow around a Submarine Hull Form S.-K. Lee Maritime Division Defence Science and Technology Group DST-Group–TR...3177 ABSTRACT A topology model constructed from surface-streamer visualisation describes the flow around a generic conventional submarine hull form at...pure yaw angles of 0 ◦, 10 ◦ and 18 ◦. The model is used to develop equations for sway-force and yaw-moment coefficients which relate to the hull - form

  9. Topological strings on compact Calabi-Yau's

    Energy Technology Data Exchange (ETDEWEB)

    Hollands, Lotte, E-mail: lhollands@science.uva.nl

    2007-09-15

    Some steps towards solving topological string amplitudes on Calabi-Yau spaces have been taken lately: all-genus amplitudes have been computed for non-compact toric Calabi-Yau threefolds, local Riemann surfaces and K3-fibrations, while progression has been made for the Fermat quintic threefold. However, the building blocks of all-genus topological string amplitudes for general compact Calabi-Yau's remain unknown. We study some aspects of the underlying geometry and discuss difficulties.

  10. Topological insulators/superconductors: Potential future electronic materials

    International Nuclear Information System (INIS)

    Hor, Y. S.

    2014-01-01

    A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb x Bi 2 Se 3 is shown to be a superconductor with T c ∼ 3.2 K, which could be a potential candidate for a topological superconductor

  11. Topological imprint for periodic orbits

    International Nuclear Information System (INIS)

    Martín, Jesús San; Moscoso, Ma José; Gómez, A González

    2012-01-01

    The more self-crossing points an orbit has the more complex it is. We introduce the topological imprint to characterize crossing points and focus on the period-doubling cascade. The period-doubling cascade topological imprint determines the topological imprint for orbits in chaotic bands. In addition, there is a closer link between this concept and the braids studied by Lettelier et al (2000 J. Phys. A: Math. Gen. 33 1809–25). (paper)

  12. Intuitionistic supra fuzzy topological spaces

    International Nuclear Information System (INIS)

    Abbas, S.E.

    2004-01-01

    In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space

  13. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  14. Topology and geometry for physicists

    CERN Document Server

    Nash, Charles

    1983-01-01

    Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. ""Thoroughly recommended"" by The Physics Bulletin, this volume's physics applications range fr

  15. OPTIMAL NETWORK TOPOLOGY DESIGN

    Science.gov (United States)

    Yuen, J. H.

    1994-01-01

    This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.

  16. Algebraic topological entropy

    International Nuclear Information System (INIS)

    Hudetz, T.

    1989-01-01

    As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)

  17. Novel limiter pump topologies

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topologies are suggested which allow high erosion without limiter failure

  18. Foundations of combinatorial topology

    CERN Document Server

    Pontryagin, L S

    2015-01-01

    Hailed by The Mathematical Gazette as ""an extremely valuable addition to the literature of algebraic topology,"" this concise but rigorous introductory treatment focuses on applications to dimension theory and fixed-point theorems. The lucid text examines complexes and their Betti groups, including Euclidean space, application to dimension theory, and decomposition into components; invariance of the Betti groups, with consideration of the cone construction and barycentric subdivisions of a complex; and continuous mappings and fixed points. Proofs are presented in a complete, careful, and eleg

  19. Design as Topology

    DEFF Research Database (Denmark)

    Ekman, Ulrik

    2015-01-01

    that increasingly develop mixed reality environments with context-aware out-of-the-box computing as well as the soci-ocultural and experiental horizon of a virtually and physically mobile citizenry. Design here must meet an ongoing and exceedingly complex interactivity among environmental, technical, social...... and personal multiplicities of urban nodes on the move. This chapter focuses on the design of a busy traffic intersection in the South Korean u-city Songdo. Hence, the discussion whether and how Songdo may be approached via design as topology primarily considers the situation, event, and experience in which...

  20. Modern general topology

    CERN Document Server

    Nagata, J-I

    1985-01-01

    This classic work has been fundamentally revised to take account of recent developments in general topology. The first three chapters remain unchanged except for numerous minor corrections and additional exercises, but chapters IV-VII and the new chapter VIII cover the rapid changes that have occurred since 1968 when the first edition appeared.The reader will find many new topics in chapters IV-VIII, e.g. theory of Wallmann-Shanin's compactification, realcompact space, various generalizations of paracompactness, generalized metric spaces, Dugundji type extension theory, linearly ordered topolo

  1. Foundations of topological racks and quandles

    OpenAIRE

    Mohamed Moutuou, El-Kaioum; Elhamdadi, Mohamed

    2016-01-01

    We give a foundational account on topological racks and quandles. Specifically, we define the notions of ideals, kernels, units, and inner automorphism group in the context of topological racks. Further, we investigate topological rack modules and principal rack bundles. Central extensions of topological racks are then introduced providing a first step towards a general continuous cohomology theory for topological racks and quandles

  2. Orbital selective spin-texture in a topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-05-15

    Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to an orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.

  3. Topological Nematic States and Non-Abelian Lattice Dislocations

    Directory of Open Access Journals (Sweden)

    Maissam Barkeshli

    2012-08-01

    Full Text Available An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  4. Topological Nematic States and Non-Abelian Lattice Dislocations

    Science.gov (United States)

    Barkeshli, Maissam; Qi, Xiao-Liang

    2012-07-01

    An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  5. Graph topology and gap topology for unstable systems

    NARCIS (Netherlands)

    Zhu, S.Q.

    1989-01-01

    A reformation is provided of the graph topology and the gap topology for a general setting (including lumped linear time-invariant systems and distributed linear time-invariant systems) in the frequency domain. Some essential properties and their comparisons are clearly presented in the

  6. Topological social choice

    CERN Document Server

    1997-01-01

    The origins of this volume can be traced back to a conference on "Ethics, Economic and Business" organized by Columbia Busi­ ness School in March of 1993, and held in the splendid facilities of Columbia's Casa Italiana. Preliminary versions of several of the papers were presented at that meeting. In July 1994 the Fields Institute of Mathematical Sciences sponsored a workshop on "Geometry, Topology and Markets": additional papers and more refined versions of the original papers were presented there. They were published in their present versions in Social Choice and Wel­ fare, volume 14, number 2, 1997. The common aim of these workshops and this volume is to crystallize research in an area which has emerged rapidly in the last fifteen years, the area of topological approaches to social choice and the theory of games. The area is attracting increasing interest from social choice theorists, game theorists, mathematical econ­ omists and mathematicians, yet there is no authoritative collection of papers in the a...

  7. Topological Aspects of the FAITH Experiment

    Science.gov (United States)

    Tobak, Murray; Long, Kurtis

    2010-01-01

    This slide presentation reviews the following issues (1) What is relationship between surface pressure extrema and singular points? (2) Does every singular point in a pattern of skin friction lines occur at a surface pressure extremum? (and/or vice versa?) (3) Can this relationship be generalized to all geometries? (4) FAITH Project (5) Ongoing effort at NASA Ames Experimental AeroPhysics Branch (6) Multi-parameter wind tunnel investigation of flow around obstacle (7) Acquire data for CFD validation, optimization and (8) Relationship between FAITH and topology projects

  8. Topology with applications topological spaces via near and far

    CERN Document Server

    Naimpally, Somashekhar A

    2013-01-01

    The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and...

  9. Topological origin of edge states in two-dimensional inversion-symmetric insulators and semimetals

    NARCIS (Netherlands)

    Miert, Guido van|info:eu-repo/dai/nl/413490378; Ortix, Carmine|info:eu-repo/dai/nl/413315304; de Morais Smith, C.|info:eu-repo/dai/nl/304836346

    2017-01-01

    Symmetries play an essential role in identifying and characterizing topological states of matter. Here, we classify topologically two-dimensional (2D) insulators and semimetals with vanishing spin-orbit coupling using time-reversal ($\\mathcal{T}$) and inversion ($\\mathcal{I}$) symmetry. This allows

  10. Integrable topological billiards and equivalent dynamical systems

    Science.gov (United States)

    Vedyushkina, V. V.; Fomenko, A. T.

    2017-08-01

    We consider several topological integrable billiards and prove that they are Liouville equivalent to many systems of rigid body dynamics. The proof uses the Fomenko-Zieschang theory of invariants of integrable systems. We study billiards bounded by arcs of confocal quadrics and their generalizations, generalized billiards, where the motion occurs on a locally planar surface obtained by gluing several planar domains isometrically along their boundaries, which are arcs of confocal quadrics. We describe two new classes of integrable billiards bounded by arcs of confocal quadrics, namely, non-compact billiards and generalized billiards obtained by gluing planar billiards along non-convex parts of their boundaries. We completely classify non-compact billiards bounded by arcs of confocal quadrics and study their topology using the Fomenko invariants that describe the bifurcations of singular leaves of the additional integral. We study the topology of isoenergy surfaces for some non-convex generalized billiards. It turns out that they possess exotic Liouville foliations: the integral trajectories of the billiard that lie on some singular leaves admit no continuous extension. Such billiards appear to be leafwise equivalent to billiards bounded by arcs of confocal quadrics in the Minkowski metric.

  11. Tetradymites as thermoelectrics and topological insulators

    Science.gov (United States)

    Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin

    2017-10-01

    Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

  12. Topological Schemas of Memory Spaces

    Science.gov (United States)

    Babichev, Andrey; Dabaghian, Yuri A.

    2018-01-01

    Hippocampal cognitive map—a neuronal representation of the spatial environment—is widely discussed in the computational neuroscience literature for decades. However, more recent studies point out that hippocampus plays a major role in producing yet another cognitive framework—the memory space—that incorporates not only spatial, but also non-spatial memories. Unlike the cognitive maps, the memory spaces, broadly understood as “networks of interconnections among the representations of events,” have not yet been studied from a theoretical perspective. Here we propose a mathematical approach that allows modeling memory spaces constructively, as epiphenomena of neuronal spiking activity and thus to interlink several important notions of cognitive neurophysiology. First, we suggest that memory spaces have a topological nature—a hypothesis that allows treating both spatial and non-spatial aspects of hippocampal function on equal footing. We then model the hippocampal memory spaces in different environments and demonstrate that the resulting constructions naturally incorporate the corresponding cognitive maps and provide a wider context for interpreting spatial information. Lastly, we propose a formal description of the memory consolidation process that connects memory spaces to the Morris' cognitive schemas-heuristic representations of the acquired memories, used to explain the dynamics of learning and memory consolidation in a given environment. The proposed approach allows evaluating these constructs as the most compact representations of the memory space's structure. PMID:29740306

  13. Topological Schemas of Memory Spaces

    Directory of Open Access Journals (Sweden)

    Andrey Babichev

    2018-04-01

    Full Text Available Hippocampal cognitive map—a neuronal representation of the spatial environment—is widely discussed in the computational neuroscience literature for decades. However, more recent studies point out that hippocampus plays a major role in producing yet another cognitive framework—the memory space—that incorporates not only spatial, but also non-spatial memories. Unlike the cognitive maps, the memory spaces, broadly understood as “networks of interconnections among the representations of events,” have not yet been studied from a theoretical perspective. Here we propose a mathematical approach that allows modeling memory spaces constructively, as epiphenomena of neuronal spiking activity and thus to interlink several important notions of cognitive neurophysiology. First, we suggest that memory spaces have a topological nature—a hypothesis that allows treating both spatial and non-spatial aspects of hippocampal function on equal footing. We then model the hippocampal memory spaces in different environments and demonstrate that the resulting constructions naturally incorporate the corresponding cognitive maps and provide a wider context for interpreting spatial information. Lastly, we propose a formal description of the memory consolidation process that connects memory spaces to the Morris' cognitive schemas-heuristic representations of the acquired memories, used to explain the dynamics of learning and memory consolidation in a given environment. The proposed approach allows evaluating these constructs as the most compact representations of the memory space's structure.

  14. Gapless Symmetry-Protected Topological Order

    Directory of Open Access Journals (Sweden)

    Thomas Scaffidi

    2017-11-01

    Full Text Available We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d-1 SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.

  15. Fermionic topological quantum states as tensor networks

    Science.gov (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  16. Knots, topology and quantum field theories

    International Nuclear Information System (INIS)

    Lusanna, L.

    1989-01-01

    The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks

  17. Spatially-protected Topology and Group Cohomology in Band Insulators

    Science.gov (United States)

    Alexandradinata, A.

    This thesis investigates band topologies which rely fundamentally on spatial symmetries. A basic geometric property that distinguishes spatial symmetry regards their transformation of the spatial origin. Point groups consist of spatial transformations that preserve the spatial origin, while un-split extensions of the point groups by spatial translations are referred to as nonsymmorphic space groups. The first part of the thesis addresses topological phases with discretely-robust surface properties: we introduce theories for the Cnv point groups, as well as certain nonsymmorphic groups that involve glide reflections. These band insulators admit a powerful characterization through the geometry of quasimomentum space; parallel transport in this space is represented by the Wilson loop. The non-symmorphic topology we study is naturally described by a further extension of the nonsymmorphic space group by quasimomentum translations (the Wilson loop), thus placing real and quasimomentum space on equal footing -- here, we introduce the language of group cohomology into the theory of band insulators. The second part of the thesis addresses topological phases without surface properties -- their only known physical consequences are discrete signatures in parallel transport. We provide two such case studies with spatial-inversion and discrete-rotational symmetries respectively. One lesson learned here regards the choice of parameter loops in which we carry out transport -- the loop must be chosen to exploit the symmetry that protects the topology. While straight loops are popular for their connection with the geometric theory of polarization, we show that bent loops also have utility in topological band theory.

  18. Phase coherent transport in hybrid superconductor-topological insulator devices

    Science.gov (United States)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  19. Topology optimized RF MEMS switches

    DEFF Research Database (Denmark)

    Philippine, M. A.; Zareie, H.; Sigmund, Ole

    2013-01-01

    Topology optimization is a rigorous and powerful method that should become a standard MEMS design tool - it can produce unique and non-intuitive designs that meet complex objectives and can dramatically improve the performance and reliability of MEMS devices. We present successful uses of topology...

  20. Topology optimization of turbulent flows

    DEFF Research Database (Denmark)

    Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.

    2018-01-01

    The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...

  1. Coverings, Networks and Weak Topologies

    Czech Academy of Sciences Publication Activity Database

    Dow, A.; Junnila, H.; Pelant, Jan

    2006-01-01

    Roč. 53, č. 2 (2006), s. 287-320 ISSN 0025-5793 R&D Projects: GA ČR GA201/97/0216 Institutional research plan: CEZ:AV0Z10190503 Keywords : Banach spaces * weak topologies * networks topologies Subject RIV: BA - General Mathematics

  2. Observational modeling of topological spaces

    International Nuclear Information System (INIS)

    Molaei, M.R.

    2009-01-01

    In this paper a model for a multi-dimensional observer by using of the fuzzy theory is presented. Relative form of Tychonoff theorem is proved. The notion of topological entropy is extended. The persistence of relative topological entropy under relative conjugate relation is proved.

  3. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  4. Novel topological invariants and anomalies

    International Nuclear Information System (INIS)

    Hirayama, M.; Sugimasa, N.

    1987-01-01

    It is shown that novel topological invariants are associated with a class of Dirac operators. Trace formulas which are similar to but different from Callias's formula are derived. Implications of these topological invariants to anomalies in quantum field theory are discussed. A new class of anomalies are calculated for two models: one is two dimensional and the other four dimensional

  5. On Neutrosophic Soft Topological Space

    Directory of Open Access Journals (Sweden)

    Tuhin Bera

    2018-03-01

    Full Text Available In this paper, the concept of connectedness and compactness on neutrosophic soft topological space have been introduced along with the investigation of their several characteristics. Some related theorems have been established also. Then, the notion of neutrosophic soft continuous mapping on a neutrosophic soft topological space and it’s properties are developed here.

  6. Solving equations by topological methods

    Directory of Open Access Journals (Sweden)

    Lech Górniewicz

    2005-01-01

    Full Text Available In this paper we survey most important results from topological fixed point theory which can be directly applied to differential equations. Some new formulations are presented. We believe that our article will be useful for analysts applying topological fixed point theory in nonlinear analysis and in differential equations.

  7. Topological semimetal in honeycomb lattice LnSI

    Science.gov (United States)

    Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng

    2017-10-01

    Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.

  8. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2.

    Science.gov (United States)

    Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A; Yano, Junko; Crumlin, Ethan J

    2017-06-27

    A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.

  9. The interaction between LYVE-1 with hyaluronan on the cell surface may play a role in the diversity of adhesion to cancer cells.

    Science.gov (United States)

    Du, Yan; Liu, Hua; He, Yiqing; Liu, Yiwen; Yang, Cuixia; Zhou, Muqing; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2013-01-01

    Hyaluronan (HA), a simple disaccharide unit, can polymerize and is considered a primary component of the extracellular matrix, which has a wide range of biological functions. In recent years, HA was found on the surface of tumor cells. According to previous reports, differing HA content on the cell surface of tumor cells is closely related to lymph node metastases, but the mechanisms mediating this process remained unclear. This research intended to study the surface content of HA on tumor cells and analyze cell adhesive changes caused by the interaction between HA and its lymphatic endothelial receptor (LYVE-1). We screened and observed high HA content on HS-578T breast cells and low HA content on MCF-7 breast cells through particle exclusion, immunofluorescence and flow cytometry experiments. The expression of LYVE-1, the lymph-vessel specific HA receptor, was consistent with our previous report and enhanced the adhesion of HA(high)-HS-578T cells to COS-7(LYVE-1(+)) through HA in cell static adhesion and dynamic parallel plate flow chamber experiments. MCF-7 breast cells contain little HA on the surface; however, our results showed little adhesion difference between MCF-7 cells and COS-7(LYVE-1(+)) and COS-7(LYVE-1(-)) cells. Similar results were observed concerning the adhesion of HS-578T cells or MCF-7 cells to SVEC4-10 cells. Furthermore, we observed for the first time that the cell surface HA content of high transfer tumor cells was rich, and we visualized the cross-linking of HA cable structures, which may activate LYVE-1 on lymphatic endothelial cells, promoting tumor adhesion. In summary, high-low cell surface HA content of tumor cells through the interaction with LYVE-1 leads to adhesion differences.

  10. Streamline topology of axisymmetric flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field $v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...... and interact follow the topological classification and that the complete set of patterns found is contained in a codimension-4 unfolding of the most simple singular configuration....

  11. Designing Out the Play: Accessibility and Playfulness in Inclusive Play.

    Science.gov (United States)

    Holt, Raymond; Beckett, Angharad

    2017-01-01

    Play is an important part of child development, yet disabled children are often excluded from the opportunity to play, either due to lack of accessible toys and games, or social pressures. This paper presents a case study reflecting on the development of Button Bash: a switch accessible game intended to encourage inclusive play between disabled and non-disabled children. In particular, the paper focuses on how changes intended to make the game more accessible tended to make it less playful, and reflects on the relationship between playfulness and accessibility.

  12. Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Editor)

    2004-01-01

    The existing U.S. hub-and-spoke air transportation system is reaching saturation. Major aspects of the current system, such as capacity, safety, mobility, customer satisfaction, security, communications, and ecological effects, require improvements. The changing dynamics - increased presence of general aviation, unmanned autonomous vehicles, military aircraft in civil airspace as part of homeland defense - contributes to growing complexity of airspace. The system has proven remarkably resistant to change. NASA Langley Research Center and the National Institute of Aerospace conducted a workshop on Transportation Network Topologies on 9-10 December 2003 in Williamsburg, Virginia. The workshop aimed to examine the feasibility of traditional methods for complex system analysis and design as well as potential novel alternatives in application to transportation systems, identify state-of-the-art models and methods, conduct gap analysis, and thus to lay a foundation for establishing a focused research program in complex systems applied to air transportation.

  13. Mooses, topology and Higgs

    International Nuclear Information System (INIS)

    Gregoire, Thomas; Wacker, Jay G.

    2002-01-01

    New theories of electroweak symmetry breaking have recently been constructed that stabilize the weak scale and do not rely upon supersymmetry. In these theories the Higgs boson is a weakly coupled pseudo-Goldstone boson. In this note we study the class of theories that can be described by theory spaces and show that the fundamental group of theory space describes all the relevant classical physics in the low energy theory. The relationship between the low energy physics and the topological properties of theory space allow a systematic method for constructing theory spaces that give any desired low energy particle content and potential. This provides us with tools for analyzing and constructing new theories of electroweak symmetry breaking. (author)

  14. Topology of foliations

    CERN Document Server

    Tamura, Itiro

    1992-01-01

    This book provides historical background and a complete overview of the qualitative theory of foliations and differential dynamical systems. Senior mathematics majors and graduate students with background in multivariate calculus, algebraic and differential topology, differential geometry, and linear algebra will find this book an accessible introduction. Upon finishing the book, readers will be prepared to take up research in this area. Readers will appreciate the book for its highly visual presentation of examples in low dimensions. The author focuses particularly on foliations with compact leaves, covering all the important basic results. Specific topics covered include: dynamical systems on the torus and the three-sphere, local and global stability theorems for foliations, the existence of compact leaves on three-spheres, and foliated cobordisms on three-spheres. Also included is a short introduction to the theory of differentiable manifolds.

  15. Cultural Topology of Creativity

    Directory of Open Access Journals (Sweden)

    L. M. Andryukhina

    2015-02-01

    Full Text Available The man in the modern culture faces the challenge of either being creative or forced to leave the stage, which reflects the essential basics of life. The price of lost opportunities, caused by mental stereotypes and encapsulation, is gradually rising. The paper reveals the socio-cultural conditions and the necessary cultural topology of creativity development, as well as the man’s creative potential in the 21st century. The content of the creativity concept is specified along with the phenomenon of its fast expansion in the modern discourse. That results from the global spreading of numerous creative practices in various spheres of life, affecting the progress directions in economics, business, industrial technologies, labor, employment and social stratification. The author emphasizes the social features of creativity, the rising number of, so called, creative class, and outlines the two opposing strategies influencing the topology modification of the social and cultural environment. The first one, applied by the developed countries, facilitates the development of the creative human potential, whereas the other one, inherent in our country, holds that a creative person is able to make progress by himself. However, for solving the urgent problem of innovative development, the creative potential of modern Russia is not sufficient, and following the second strategy will result in unrealized social opportunities and ever lasting social and cultural situation demanding further investment. According to the author, to avoid such a perspective, it is necessary to overcome the three deeply rooted archetypes: the educational disciplinary centrism, organizational absolutism and cultural ostracism. 

  16. Cultural Topology of Creativity

    Directory of Open Access Journals (Sweden)

    L. M. Andryukhina

    2012-01-01

    Full Text Available The man in the modern culture faces the challenge of either being creative or forced to leave the stage, which reflects the essential basics of life. The price of lost opportunities, caused by mental stereotypes and encapsulation, is gradually rising. The paper reveals the socio-cultural conditions and the necessary cultural topology of creativity development, as well as the man’s creative potential in the 21st century. The content of the creativity concept is specified along with the phenomenon of its fast expansion in the modern discourse. That results from the global spreading of numerous creative practices in various spheres of life, affecting the progress directions in economics, business, industrial technologies, labor, employment and social stratification. The author emphasizes the social features of creativity, the rising number of, so called, creative class, and outlines the two opposing strategies influencing the topology modification of the social and cultural environment. The first one, applied by the developed countries, facilitates the development of the creative human potential, whereas the other one, inherent in our country, holds that a creative person is able to make progress by himself. However, for solving the urgent problem of innovative development, the creative potential of modern Russia is not sufficient, and following the second strategy will result in unrealized social opportunities and ever lasting social and cultural situation demanding further investment. According to the author, to avoid such a perspective, it is necessary to overcome the three deeply rooted archetypes: the educational disciplinary centrism, organizational absolutism and cultural ostracism. 

  17. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Science.gov (United States)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  18. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Directory of Open Access Journals (Sweden)

    Daniel Litinski

    2017-09-01

    Full Text Available We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall–superconductor hybrids.

  19. Equivariant topological quantum field theory and symmetry protected topological phases

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, Anton [Division of Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA, 91125 (United States); Turzillo, Alex [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794 (United States)

    2017-03-01

    Short-Range Entangled topological phases of matter are closely related to Topological Quantum Field Theory. We use this connection to classify Symmetry Protected Topological phases in low dimensions, including the case when the symmetry involves time-reversal. To accomplish this, we generalize Turaev’s description of equivariant TQFT to the unoriented case. We show that invertible unoriented equivariant TQFTs in one or fewer spatial dimensions are classified by twisted group cohomology, in agreement with the proposal of Chen, Gu, Liu and Wen. We also show that invertible oriented equivariant TQFTs in spatial dimension two or fewer are classified by ordinary group cohomology.

  20. TD-DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10-hydroxybenzo[h]quinoline: Topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-01-01

    Here, we report a Density Functional Theoretical (DFT) study on the photophysics of a potent Excited-State Intramolecular Proton Transfer (ESIPT) molecular system, viz., 10-hydroxybenzo[h]quinoline (HBQ). Particular emphasis has been rendered on the assessment of the proton transfer reaction in HBQ in the ground and excited-states through elucidation and a careful perusal of the potential energy surfaces (PES). The non-viability of Ground-State Intramolecular Proton Transfer (GSIPT) process is dictated by a high-energy barrier coupled with no energy minimum for the proton transferred (K-form) form at the ground-state (S 0 ) PES. Remarkable reduction of the barrier along with thermodynamic stability inversion between the enol (E-form) and the keto forms (K-form) of HBQ upon photoexcitation from S 0 to the S 1 -state advocate for the operation of ESIPT process. These findings have been cross-validated on the lexicon of analysis of optimized geometry parameters, Mulliken's charge distribution on the heavy atoms, and molecular orbitals (MO) of the E- and the K-forms of HBQ. Our computational results also corroborate to experimental observations. From the modulations in optimized geometry parameters in course of the PT process a critical assessment has been endeavoured to delve into the movement of the proton during the process. Additional stress has been placed on the analysis of the intramolecular hydrogen bonding (IMHB) interaction in HBQ. The IMHB interaction has been explored by calculation of electron density ρ(r) and the Laplacian ∇ 2 ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and by calculation of interaction between σ* of OH with the lone pair of the nitrogen atom using Natural Bond Orbital (NBO) analysis. - Highlights: → Theoretical modelling of the photophysics of an ESIPT probe 10-hydroxybenzo[h]quinoline (HBQ). → Calculation of intramolecular hydrogen bond (IMHB) energy. → Role of hyperconjugative charge transfer