WorldWideScience

Sample records for surface topography interferometer

  1. Interferometer for measuring the dynamic surface topography of a human tear film

    Science.gov (United States)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  2. Interferometer for measuring dynamic corneal topography

    Science.gov (United States)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an

  3. The Glacier and Land Ice Surface Topography Interferometer: An Airborne Proof-of-concept Mapping Sensor

    Science.gov (United States)

    Moller, D.; Hensley, S.; Chuang, C.; Fisher, C.; Muellerschoen, R.; Milligan, L.; Sadowy, G.; Rignot, E. J.

    2009-12-01

    In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year activities. This was achieved by integrating a Ka-band single-pass interferometric synthetic radar on the NASA Dryden Gulfstream III for a coordinated deployment. Although the technique of using radar interferometry for mapping terrain has been demonstrated before, this is the first such application at millimeter-wave frequencies. This proof-of-concept demonstration was motivated by the Glacier and Land Ice Surface Topography Interferometer (GLISTIN) Instrument Incubator Program and furthermore, highly leveraged existing ESTO hardware and software assets (the Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) and processor and the PR2 (precipitation radar 2) RF assembly and power amplifier). Initial Ka-band test flights occurred in March and April of 2009 followed by the Greenland deployment. Instrument performance indicates swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. However, for this application the electromagnetic wave will penetrate an unknown amount into the snow cover thus producing an effective bias that must be calibrated. This penetration will be characterized as part of this program and is expected to vary as a function of snow wetness and radar incidence angle. To evaluate this, we flew a coordinated collection with the NASA Wallops Airborne Topographic Mapper on a transect from Greenland’s Summit its West coast. This flight included two field calibration sites at Colorado Institute for Research in Environmental Science’s Swiss Camp and the National Science Foundation’s Summit station. Additional collections entailed flying a grid over Jakobshavn glacier which were repeated after 6 days to reveal surface dynamics. In this time frame we were able to observe horizontal motion of over 1km on the glacier. While developed for

  4. Novel double path shearing interferometer in corneal topography measurements

    Science.gov (United States)

    Licznerski, Tomasz J.; Jaronski, Jaroslaw; Kosz, Dariusz

    2005-09-01

    The paper presents an approach for measurements of corneal topography by use of a patent pending double path shearing interferometer (DPSI). Laser light reflected from the surface of the cornea is divided and directed to the inputs of two interferometers. The interferometers use lateral shearing of wavefronts in two orthogonal directions. A tilt of one of the mirrors in each interferometric setup perpendicularly to the lateral shear introduces parallel carrier frequency fringes at the output of each interferometer. There is orthogonal linear polarization of the laser light used in two DPSI. Two images of fringe patters are recorded by a high resolution digital camera. The obtained fringe patterns are used for phase difference reconstruction. The phase of the wavefront was reconstructed by use of algorithms for a large grid based on discrete integration. The in vivo method can also be used for tear film stability measurement, artificial tears and contact lens tests.

  5. Dual interferometer for dynamic measurement of corneal topography

    Science.gov (United States)

    Micali, Jason D.; Greivenkamp, John E.

    2016-08-01

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface, where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. A dual interferometer system for measuring the dynamic corneal topography is designed, built, verified, and qualified by testing on human subjects. The system consists of two coaligned simultaneous phase-shifting polarization-splitting Twyman-Green interferometers. The primary interferometer measures the surface of the tear film while the secondary interferometer tracks the absolute position of the cornea, which provides enough information to reconstruct the absolute shape of the cornea. The results are high-resolution and high-accuracy surface topography measurements of the in vivo tear film and cornea that are captured at standard camera frame rates.

  6. KARIN: The Ka-Band Radar Interferometer for the Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Peral, Eva; McWatters, Dalia; Pollard, Brian; Rodriguez, Ernesto; Hughes, Richard

    2013-01-01

    Over the last two decades, several nadir profiling radar altimeters have provided our first global look at the ocean basin-scale circulation and the ocean mesoscale at wavelengths longer than 100 km. Due to sampling limitations, nadir altimetry is unable to resolve the small wavelength ocean mesoscale and sub-mesoscale that are responsible for the vertical mixing of ocean heat and gases and the dissipation of kinetic energy from large to small scales. The proposed Surface Water and Ocean Topography (SWOT) mission would be a partnership between NASA, CNES (Centre National d'Etudes Spaciales) and the Canadian Space Agency, and would have as one of its main goals the measurement of ocean topography with kilometer-scale spatial resolution and centimeter scale accuracy. In this paper, we provide an overview of all ocean error sources that would contribute to the SWOT mission.

  7. Improved phase-shifting diffraction interferometer for microsphere topography measurements

    Institute of Scientific and Technical Information of China (English)

    Guodong Liu; Binghui Lu; Heyi Sun; Bingguo Liu; Fengdong Chen; Zhitao Zhuang

    2016-01-01

    In this study,an improved phase-shifting diffraction interferometer for measuring the surface topography of a microsphere is developed.A common diode-pumped solid state laser is used as the light source to facilitate apparatus realization,and a new polarized optical arrangement is designed to filter the bias light for phase-shifting control.A pinhole diffraction self-calibration method is proposed to eliminate systematic errors introduced by optical elements.The system has an adjustable signal contrast and is suitable for testing the surface with low reflectivity.Finally,a spherical ruby probe of a coordinate measuring machine is used as an example tested by the new phase-shifting diffraction interferometer system and the WYKO scanning white light interferometer for experimental comparison.The measured region presents consistent overall topography features,and the resulting peak-to-valley value of 84.43 nm and RMS value of 18.41 nm are achieved.The average roughness coincides with the manufacturer's specification value.

  8. Enhanced Characterization of Niobium Surface Topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xu, Hui Tian, Charles Reece, Michael Kelley

    2011-12-01

    Surface topography characterization is a continuing issue for the Superconducting Radio Frequency (SRF) particle accelerator community. Efforts are underway to both to improve surface topography, and its characterization and analysis using various techniques. In measurement of topography, Power Spectral Density (PSD) is a promising method to quantify typical surface parameters and develop scale-specific interpretations. PSD can also be used to indicate how chemical processes modifiesy the roughnesstopography at different scales. However, generating an accurate and meaningful topographic PSD of an SRF surface requires careful analysis and optimization. In this report, polycrystalline surfaces with different process histories are sampled with AFM and stylus/white light interferometer profilometryers and analyzed to indicate trace topography evolution at different scales. evolving during etching or polishing. Moreover, Aan optimized PSD analysis protocol will be offered to serve the SRF surface characterization needs is presented.

  9. Study of the tear topography dynamics using a lateral shearing interferometer

    Science.gov (United States)

    Dubra, Alfredo; Paterson, Carl; Dainty, Christopher

    2004-12-01

    The dynamics of the pre-corneal tear film topography are studied on 21 subjects with a purpose-built lateral shearing interferometer. Interesting tear topography features such as post-blink undulation, break-up, eyelid-produced bumps/ridges, bubbles and rough pre-contact lens tear surfaces were recorded. Using the calculated tear topography maps, the effects of the tear dynamics in visual performance, refractive surgery and ophthalmic adaptive optics are discussed in terms of wavefront RMS. The potential of lateral shearing interferometry for clinical applications such as dry eye diagnosis and contact lens performance studies is illustrated by the recorded topography features such as post-blink undulation, break-up, eyelid-produced bumps/ridges, bubbles and rough tear surfaces in front of contact lenses.

  10. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  11. Sub-angstrom surface metrology with a virtual reference interferometer

    Science.gov (United States)

    Freischlad, Klaus

    2012-09-01

    Non-contact, 3D optical interferometric profilers provide detailed topography measurements of super-smooth surfaces such as hard disk substrates and super-polished optics. However, the contribution of the interferometer system to the measurement can be significant for surfaces with an RMS roughness of one Angstrom and below. Special care must be taken to minimize random noise as well as to remove the systematic instrument error from the measured data. While the random noise can be addressed by low-noise design and averaging of measurements, the systematic instrument error is more difficult to eliminate. In this paper an interferometer configuration is presented that eliminates the mid to higher spatial frequencies from the reference beam. This configuration is called a virtual-reference interferometer, since there is no physical surface in focus conjugate to the test surface. This provides very smooth systematic instrument errors with essentially no contribution in the mid to high spatial frequencies of surface waviness and roughness. The virtual-reference interferometer has a midsize measurement area of 20x20 mm, is fully compensated for white light, extended source illumination, and enables data acquisition for both phase shifting and coherence scanning modes. Current performance data show a residual systematic tool waviness error of < 0.2 Angstrom RMS, with potential for improvement. Efficient stitching of subaperture measurements accommodates high resolution roughness and waviness maps of test surfaces up to 150 mm x100 mm.

  12. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    of the mechanisms controlling topography replication. Surface micro topography replication in injection moulding depends on the main elements of  Process conditions  Plastic material  Mould topography In this work, the process conditions is the main factor considered, but the impact of plastic material...

  13. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    The surface micro topography of injection moulded plastic parts can be important for aesthetical and technical reasons. The quality of replication of mould surface topography onto the plastic surface depends among other factors on the process conditions. A study of this relationship has been...

  14. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilomet...

  15. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilometry...... representing some average property of the surface under examination. Measurement methods, as well as their application and limitations, are briefly reviewed, including standardisation and traceability issues....

  16. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  17. Exploring scaling laws in surface topography

    Energy Technology Data Exchange (ETDEWEB)

    Abedini, M.J. [Dept. of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada)], E-mail: abedini@shirazu.ac.ir; Shaghaghian, M.R. [Dept. of Civil and Environmental Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2009-11-30

    Surface topography affects many soil properties and processes, particularly surface water storage and runoff. Application of fractal analysis helps understand the scaling laws inherent in surface topography at a wide range of spatial scales and climatic regimes. In this research, a high resolution digital elevation model with a 3 mm resolution on one side of the spectrum and large scale DEMs, with a 500 m spatial resolution on the other side were used to explore scaling laws in surface topography. With appropriate exploratory spatial data analysis of both types of data sets, two conventional computational procedures - variogram and Box Counting Methods (BCM) - address scaling laws in surface topography. The results respect scaling laws in surface topography to some extent as neither the plot treatment nor the direction treatment has a significant impact on fractal dimension variability. While in the variogram method, the change in slope in Richardson's plots appears to be the norm rather than the exception; Richardson's plots resulting from box counting implementation lack such mathematical behavior. These breaks in slope might have useful implications for delineating homogeneous hydrologic units and detecting change in trend in hydrologic time series. Furthermore, it is shown that fractal dimension cannot be used to capture anisotropic variabilities both within and among micro-plots. In addition, its numerical value remains insignificant at the 5% level in moving from one direction to another and also from one spatial scale to another while the ordinate intercept could discriminate the surface roughness variability from one spatial scale to another.

  18. Nonlinear surface waves over topography

    NARCIS (Netherlands)

    Janssen, T.T.

    2006-01-01

    As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to

  19. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    , the topography itself, and other factors were also investigated. The experimental work is based on a multi-purpose experimental injection mould with a collection of test surface inserts manufactured by EDM (electrical discharge machining). Experimental production took place with an injection moulding machine......Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... in a clean room environment. The mould and the injection moulding machine were fitted with transducers for subsequent process analysis. A total of 13 different plastic material grades were applied. Topographical characterisation was performed with an optical laser focus detection instrument. Replication...

  20. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  1. Surface topography characterization of automotive cylinder liner surfaces using fractal methods

    Science.gov (United States)

    Lawrence K, Deepak; Ramamoorthy, B.

    2013-09-01

    This paper explores the use of fractal approaches for the possible characterization of automotive cylinder bore surface topography by employing methods such as differential box counting method, power spectral method and structure function method. Three stage plateau honing experiments were conducted to manufacture sixteen cylinder liner surfaces with different surface topographies, for the study. The three fractal methods are applied on the image data obtained using a computer vision system and 3-D profile data obtained using vertical scanning white light interferometer from the cylinder liner surfaces. The computed fractal parameters (fractal dimension and topothesy) are compared and correlated with the measured 3-D Abbott-Firestone curve parameters (Sk, Spk, Svk, Sr1 and Sr2) that are currently used for the surface topography characterization cylinder liner surfaces. The analyses of the results indicated that the fractal dimension (D) computed using the vision data as well as 3-D profile data by employing three different fractal methods consistantly showed a negative correlation with the functional surface topographical parameters that represents roughness at peak (Spk),core (Sk) and valley (Svk) regions and positive correlation with the upper bearing area (Sr1) and lower bearing area (Sr2) of the automotive of cylinder bore surface.

  2. 3D surface topography formation in ultra-precision turning

    Institute of Scientific and Technical Information of China (English)

    李丽伟; 董申; 程凯

    2004-01-01

    The generation process of 3 D surface topography in ultra-precision turning is analyzed, as the result of superimposing between actual roughness surface, waviness surface and geometrical form texture surface. From the viewpoints of machine technical system and manufacturing process, factors influencing on roughness surface,waviness surface and geometrical form texture surface in ultra-precision turning are discussed further. The 3D topography of ideal roughness surface and actual surface affected by cutting vibration are simulated respectively.

  3. Comparative investigation of optical techniques for topography measurement of rough plastic surfaces

    DEFF Research Database (Denmark)

    Bariani, Paolo; Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2003-01-01

    polypropylene parts manufactured by injection moulding. The mould was equipped with inserts with EDM machined surfaces (Sa  3.5 µm) in order to represent a typical tool surface for injection moulding. A focus detection laser scanning profiler, a confocal scanning laser microscope, a white light interferometer...... and, in addition, a scanning electron microscope, have been used in the analysis of plastic surfaces. This investigation has shown that topography assessment of rough plastic surfaces is critical to both white light interference microscope and confocal microscope while the focus detection laser...

  4. Comparative investigation of optical techniques for topography measurement of rough plastic surfaces

    DEFF Research Database (Denmark)

    Bariani, Paolo; Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2003-01-01

    polypropylene parts manufactured by injection moulding. The mould was equipped with inserts with EDM machined surfaces (Sa  3.5 µm) in order to represent a typical tool surface for injection moulding. A focus detection laser scanning profiler, a confocal scanning laser microscope, a white light interferometer...... and, in addition, a scanning electron microscope, have been used in the analysis of plastic surfaces. This investigation has shown that topography assessment of rough plastic surfaces is critical to both white light interference microscope and confocal microscope while the focus detection laser...

  5. Origin of bending in uncoated microcantilever - Surface topography?

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in; Jayapandian, J.; Tyagi, A. K.; Sundar, C. S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2014-01-27

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.

  6. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; van Apeldoorn, Aart A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  7. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R.L.; Blitterswijk, van C.A.; Karperien, H.B.J.; Apeldoorn, van A.A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  8. Phase-locked loop based on machine surface topography measurement using lensed fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin-Ho; Lee, ChaBum; Joo, Jae-Young; Lee, Sun-Kyu

    2011-02-01

    We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers--the ball type and the tapered type--were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications.

  9. Effect of Surface Topography on Stress Concentration Factor

    Institute of Scientific and Technical Information of China (English)

    CHENG Zhengkun; LIAO Ridong

    2015-01-01

    Neuber rule and Arola-Ramulu model are widely used to predict the stress concentration factor of rough specimens. However, the height parameters and effective valley radius used in these two models depend strongly on the resolution of the roughness-measuring instruments and are easily introduce measuring errors. Besides, it is difficult to find a suitable parameter to characterize surface topography to quantitatively describe its effect on stress concentration factor. In order to overcome these disadvantages, profile moments are carried out to characterize surface topography, surface topography is simulated by superposing series of cosine components, the stress concentration factors of different micro cosine-shaped surface topographies are investigated by finite element analysis. In terms of micro cosine-shaped surface topography, an equation using the second profile moment to estimate the stress concentration factor is proposed, predictions for the stress concentration factor using the proposed expression are within 10% error compared with the results of finite element analysis, which are more accurate than other models. Moreover, the proposed equation is applied to the real surface topography machined by turning. Predictions for the stress concentration factor using the proposed expression are within 10% of the maximum stress concentration factors and about 5% of the effective stress concentration factors estimated from the finite element analysis for three levels of turning surface topographies under different simulated scales. The proposed model is feasible in predicting the stress concentration factors of real machined surface topographies.

  10. Dynamic Topography at Earth's Surface: Fact or Fiction? (Invited)

    Science.gov (United States)

    Lithgow-Bertelloni, C. R.; Silver, P. G.

    2009-12-01

    Contributions to Earth’s surface topography range from short-wavelength uncompensated features due to tectonic activity, to variations in crustal structure and long-wavelength deflections of the lithosphere caused by mantle dynamics. The latter we call dynamic topography. Dynamic topography elevates or depresses the surface even if the density anomaly giving rise to flow is deep in the mantle. Dynamic topography is also a major contributor to Earth’s gravitational potential and to surface deformation. However, direct observations of dynamic topography are elusive, because signals are obscured by the isostatic contribution due to crustal and lithospheric structure. The only seemingly unequivocal signals of dynamically supported topography have been found over mantle upwellings on both continents (Africa [Lithgow-Bertelloni and Silver, 1998] and Arabia [Daradich et al., 2004]) and oceanic basins (North-Atlantic [Conrad et al., 2004]). Recent work on Africa’s geomorphic history [Moore et al., 2009] and North Atlantic gravity and topography have called even these results into questions. In downwelling regions (near slabs) no clear signals have been found. I will explore why this dichotomy may exist and relate it to the need for dynamic topography in mantle flow models, with an eye towards the effects of phase transitions, lateral variations in viscosity and layered convection. I will also present recent results on dynamic topography over flat slab segments that overturn the conventional wisdom and explain basin topography in the Andean foreland. Along with the new models I will discuss a recent global lithospheric structure model with which to compute the residual topography, i.e. the “observed” dynamic topography.

  11. Surface topography evolvement of galvanized steels in sheet metal forming

    Institute of Scientific and Technical Information of China (English)

    HOU Ying-ke; YU Zhong-qi; ZHANG Wei-gang; JIANG Hao-min; LIN Zhong-qin

    2009-01-01

    U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming, i.e., the surface topographies of galvanized steels are roughened in SMF. Moreover, GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However, the hardness should not be too high.

  12. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    Science.gov (United States)

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  13. Recent advances in engineering topography mediated antibacterial surfaces

    Science.gov (United States)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  14. Oral Streptococci Biofilm Formation on Different Implant Surface Topographies

    Directory of Open Access Journals (Sweden)

    Pedro Paulo Cardoso Pita

    2015-01-01

    Full Text Available The establishment of the subgingival microbiota is dependent on successive colonization of the implant surface by bacterial species. Different implant surface topographies could influence the bacterial adsorption and therefore jeopardize the implant survival. This study evaluated the biofilm formation capacity of five oral streptococci species on two titanium surface topographies. In vitro biofilm formation was induced on 30 titanium discs divided in two groups: sandblasted acid-etched (SAE- n=15 and as-machined (M- n=15 surface. The specimens were immersed in sterilized whole human unstimulated saliva and then in fresh bacterial culture with five oral streptococci species: Streptococcus sanguinis, Streptococcus salivarius, Streptococcus mutans, Streptococcus sobrinus, and Streptococcus cricetus. The specimens were fixed and stained and the adsorbed dye was measured. Surface characterization was performed by atomic force and scanning electron microscopy. Surface and microbiologic data were analyzed by Student’s t-test and two-way ANOVA, respectively (P0.05. S. sanguinis exhibited similar behavior to form biofilm on both implant surface topographies, while S. salivarius showed the lowest ability to form biofilm. It was concluded that biofilm formation on titanium surfaces depends on surface topography and species involved.

  15. Fabrication of cell container arrays with overlaid surface topographies.

    NARCIS (Netherlands)

    Truckenmuller, R.; Giselbrecht, S.; Escalante-Marun, M.; Groenendijk, M.; Papenburg, B.; Rivron, N.; Unadkat, H.; Saile, V.; Subramaniam, V.; Berg, A. van den; Blitterswijk, C. Van; Wessling, M.; Boer, J. den; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  16. Fabrication of cell container arrays with overlaid surface topographies

    NARCIS (Netherlands)

    Truckenmüller, R.K.; Giselbrecht, S.; Escalante, M.; Groenendijk, M.N.W.; Papenburg, B.J.; Rivron, N.C.; Unadkat, H.V.; Saile, V.; Subramaniam, V.; Blitterswijk, van C.A.; Wessling, M.; Boer, de J.; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  17. Superhydrophobic nanocomposite surface topography and ice adhesion.

    Science.gov (United States)

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 μm on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 μm is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum.

  18. The effect of asteroid topography on surface ablation deflection

    Science.gov (United States)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  19. Research progress on theultra hydrophobic surface topography effect

    Institute of Scientific and Technical Information of China (English)

    WANG Jiadao; YU Ying; CHEN Darong

    2006-01-01

    Ultra hydrophobic surfaces take on better hydrophobicity and exhibit a water contact angle larger than 150°. In this paper the ultra hydrophobicity is analyzed and common fabrication methods are summarized in detail. The applications of micro topography in both the fabrication of hydrophobic surface and the experiments of drag reduction are addressed. Finally, the development trend and foreground of ultra hydrophobic surface are discussed.

  20. A Mathematical Approach for Evaluation of Surface Topography Parameters

    Directory of Open Access Journals (Sweden)

    A. K. Haghi

    2002-01-01

    Full Text Available The probability characteristics of surface topography parameters described by the composition of the deterministic component and the homogeneous random normal field were analysed. Formulae for the calculation of the mathematical expectation of the Ras parameter and the evaluation of its variance are given.

  1. Nanoscale surface topographies for structural colors

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik

    The thesis describes and demonstrates the possibilities for utilization of structural colors in mass fabricated plastic products as replacement for or in combination with pigments and inks. The motivation is the possible advantages related to re-cycling and re-use of plastic by limiting the number...... of materials in a given plastic part. Also, the reduction of process steps and materials leads to a reduction of the fabrication costs. In the thesis only surfaces, which may be fabricated using replication based methods, such as injection molding, are considered. Nanostructures with sizes comparable......-polymer interface is suppressed. This improves the ability to see through a clear plastic in the presence of specular reflection. The tapered nanostructures are also utilized to enhance the chroma of pigmented polymers. Larger tapered structures fabricated in a similar manor are shown to work as color filters...

  2. Open questions in surface topography measurement: a roadmap

    Science.gov (United States)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W.; O'Connor, Daniel

    2015-03-01

    Control of surface topography has always been of vital importance for manufacturing and many other engineering and scientific disciplines. However, despite over one hundred years of quantitative surface topography measurement, there are still many open questions. At the top of the list of questions is ‘Are we getting the right answer?’ This begs the obvious question ‘How would we know?’ There are many other questions relating to applications, the appropriateness of a technique for a given scenario, or the relationship between a particular analysis and the function of the surface. In this first ‘open questions’ article we have gathered together some experts in surface topography measurement and asked them to address timely, unresolved questions about the subject. We hope that their responses will go some way to answer these questions, address areas where further research is required, and look at the future of the subject. The first section ‘Spatial content characterization for precision surfaces’ addresses the need to characterise the spatial content of precision surfaces. Whilst we have been manufacturing optics for centuries, there still isn’t a consensus on how to specify the surface for manufacture. The most common three methods for spatial characterisation are reviewed and compared, and the need for further work on quantifying measurement uncertainties is highlighted. The article is focussed on optical surfaces, but the ideas are more pervasive. Different communities refer to ‘figure, mid-spatial frequencies, and finish’ and ‘form, waviness, and roughness’, but the mathematics are identical. The second section ‘Light scattering methods’ is focussed on light scattering techniques; an important topic with in-line metrology becoming essential in many manufacturing scenarios. The potential of scattering methods has long been recognized; in the ‘smooth surface limit’ functionally significant relationships can be derived from first

  3. Biological responses to immobilized microscale and nanoscale surface topographies.

    Science.gov (United States)

    Skoog, Shelby A; Kumar, Girish; Narayan, Roger J; Goering, Peter L

    2017-07-16

    Cellular responses are highly influenced by biochemical and biomechanical interactions with the extracellular matrix (ECM). Due to the impact of ECM architecture on cellular responses, significant research has been dedicated towards developing biomaterials that mimic the physiological environment for design of improved medical devices and tissue engineering scaffolds. Surface topographies with microscale and nanoscale features have demonstrated an effect on numerous cellular responses, including cell adhesion, migration, proliferation, gene expression, protein production, and differentiation; however, relationships between biological responses and surface topographies are difficult to establish due to differences in cell types and biomaterial surface properties. Therefore, it is important to optimize implant surface feature characteristics to elicit desirable biological responses for specific applications. The goal of this work was to review studies investigating the effects of microstructured and nanostructured biomaterials on in vitro biological responses through fabrication of microscale and nanoscale surface topographies, physico-chemical characterization of material surface properties, investigation of protein adsorption dynamics, and evaluation of cellular responses in specific biomedical applications. Published by Elsevier Inc.

  4. Quantitative characterization of surface topography using spectral analysis

    Science.gov (United States)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  5. Debris thickness and surface topography on Ngozumpa Glacier, Nepal

    Science.gov (United States)

    McCarthy, Michael; Nicholson, Lindsey; Rieg, Lorenzo; Klug, Christoph; Wirbel, Anna; Del Gobbo, Costanza; Pritchard, Hamish; Willis, Ian; Mayer, Christoph

    2017-04-01

    The ablation zones of many Himalayan glaciers are partially to completely covered with a layer of rock debris, the thickness of which is a key control on surface melt rates. Although it is commonly assumed that supraglacial debris is redistributed by gravitational processes due to variable surface topography, the nature of such a relationship has not been fully explored. Here we present locally extensive debris thickness data collected on Ngozumpa Glacier, Nepal, using ground-penetrating radar (GPR), and investigate, by comparison with a high-resolution digital terrain model (DTM), the relationship between debris thickness and surface topography. We compare debris thickness with slope, aspect, and hillslope curvature and look at how debris thickness relates to features of interest on the glacier surface. The existence of a relationship between debris thickness and surface topography has potentially important implications for remote sensing estimates of debris thickness made using thermal band satellite imagery because DTMs are commonly available at relatively high spatial resolution. For this reason, we assess whether or not debris thickness and surface topography covary. Further, due to the typically non-linear relationship between debris thickness and surface temperature, remote sensing estimates of debris thickness are affected by sub-pixel scale debris thickness variability. To see how debris thickness varies at sub-pixel scale, and the extent to which such variability should affect remote sensing-derived debris thickness estimates, we explore the effects of resampling our debris thickness data to the resolution of the thermal bands of ASTER and Landsat satellite images.

  6. Elastic Reverse Time Migration (RTM) From Surface Topography

    Science.gov (United States)

    Akram, Naveed; Chen, Xiaofei

    2017-04-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  7. Protein adsorption on materials surfaces with nano-topography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Protein adsorption behavior on the surfaces of biomedical materials is highly related to the biocompatibility of the materials. In the past, numerous research reports were mainly focused on the effect of chemical components of a material's surface on protein adsorption. The effect of surface topography on protein adsorption, the topic of this review, has recently receuvedkeen interest. The influence of surface nano-topographic factors, including roughness, curvature and geometry, on protein adsorption as well as the protein adsorption behavior, such as the amount of protein adsorbed, the activity and morphology of adsorbed protein, is introduced.

  8. The influence of Carisolv on enamel and dentine surface topography.

    Science.gov (United States)

    Wennerberg, A; Sawase, T; Kultje, C

    1999-08-01

    The purpose of the present study was to investigate the surface topography of healthy enamel and dentine before and after application of a new chemomechanical system for caries removal, Carisolv. The same surfaces were investigated with respect to the influence of phosphoric acid, plus carious dentine after removal with either Carisolv or burrs. One-hundred freshly extracted teeth were used. Surface topography was measured in two different ways in order to characterize the surfaces at different levels of resolution, atomic force microscopy (AFM) and a contact stylus profilometer. Somewhat conflicting data were obtained with the two measuring techniques. When surfaces were investigated over a small area (AFM), healthy enamel seemed unaffected by Carisolv, while healthy dentine became smoother. Etching enamel with phosphoric acid resulted in a rougher surface, while no effect was detected on etched healthy dentine. Caries removal using Carisolv resulted in a smoother surface compared with conventional caries removal. When the surfaces were monitored with the contact profilometer, no effect of Carisolv could be detected on healthy enamel or dentine. Phosphoric acid etching, in contrast, increased the surface roughness of both enamel and dentine. When compared with conventional caries removal technique, caries removal with Carisolv did increase the surface roughness.

  9. Laser Doppler interferometer for vibration of rotating curved surfaces

    Science.gov (United States)

    Wu, Giin-Yuan; Lee, Chih-Kung; Lin, San; Wakabayashi, Takenori; Ono, K.

    1999-10-01

    With the rapid advancement of today's ultra-high performance mechanical or mechatronic system such as magnetic or optical disk drives, improving metrology capabilities to examine the performance characteristics of these system are growing ever more important. The primary tested studied in this paper is an ultra-high precision ball-bearing spindle that possesses non-repeatable runout of less than 100nm. The metrology tool adopted is laser Doppler interferometer system that has Megahertz bandwidth and nanometer resolutions. Experimental data obtained clearly indicates that measuring vertical runout of a spindle motor is a straightforward process. However, a fundamental effect was identified, where the radial runout data was found to drift upward or downward with time, when using the laser Doppler system to measure the radial runout of ultra-high precision rotational systems whose surface profile is not flat. All of the underlying reasons that cause this undesirable effect were proposed and verified. Approaches that can be adopted to circumvent this apparent limitation on adopting the laser Doppler interferometer systems to measure rotational curved surface were implemented to further extend its application horizon. The experimental data realized and the application experience obtained were shown to further advance our measurement capabilities.

  10. Towards Mapping the Ocean Surface Topography at 1 km Resolution

    Science.gov (United States)

    Fu, Lee-Lueng; Rodriquez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology, and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  11. The Glacier and Ice Sheet Topography Interferometer: An Update on a Unique Sensor for High Accuracy Swath Mapping of Land Ice

    Science.gov (United States)

    Moller, D.; Heavey, B.; Hensley, S.; Hodges, R.; Rengarajan, S.; Rignot, E.; Sadowy, G.; Simard, M.; Zawadzki, M.

    2007-12-01

    We discuss the innovative concept and technology development of a Ka-band (35 GHz) radar for mapping the surface topography of glaciers and ice sheets. The "Glacier and Land Ice Surface Topography Interferometer" (GLISTIN) is a single-pass, single platform interferometric synthetic aperture radar (InSAR) with an 8mm wavelength, which minimizes snow penetration yet remains relatively impervious to atmospheric attenuation. Such a system has the potential for delivering topographic maps at high spatial resolution, high vertical accuracy, independent of cloud cover, with a subseasonal update and would greatly enhance current observational and modeling capabilities of ice mass-balance and glacial retreat. To enable such measurements, a digitally beamformed antenna array is utilized to provide a wide measurement swath at a technologically feasible transmit power. To prove this concept and advance the technology readiness of this design we are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to build and test a 1m x 1m digitally-beamformed (DBF) Ka-band slotted waveguide antenna with integrated digital receivers. This antenna provides 16 simultaneous receive beams, effectively broadening the swath without reducing receive antenna gain. The implementation of such a large aperture at Ka-band presents many design, manufacturing and calibration challenges which are addressed as part of this IIP. The integrated DBF array will be fielded at the Jet Propulsion Laboratory's antenna range to demonstrate the overall calibration, beamforming and interferometric performance through creation of topographic imagery of the local Arroyo Seco. Currently entering the third year of the program, we will overview the system concept, array implementation and status of the technology. While the IIP addresses the development of the major technology challenges, an additional effort will demonstrate the phenomenology of the measurement by

  12. Accurate source location from waves scattered by surface topography

    Science.gov (United States)

    Wang, Nian; Shen, Yang; Flinders, Ashton; Zhang, Wei

    2016-06-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (>100 m). In this study, we explore the use of P coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example to provide realistic topography. A grid search algorithm is combined with the 3-D strain Green's tensor database to improve search efficiency as well as the quality of hypocenter solutions. The strain Green's tensor is calculated using a 3-D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are obtained based on the least squares misfit between the "observed" and predicted P and P coda waves. The 95% confidence interval of the solution is provided as an a posteriori error estimation. For shallow events tested in the study, scattering is mainly due to topography in comparison with stochastic lateral velocity heterogeneity. The incorporation of P coda significantly improves solution accuracy and reduces solution uncertainty. The solution remains robust with wide ranges of random noises in data, unmodeled random velocity heterogeneities, and uncertainties in moment tensors. The method can be extended to locate pairs of sources in close proximity by differential waveforms using source-receiver reciprocity, further reducing errors caused by unmodeled velocity structures.

  13. Surface analysis of titanium dental implants with different topographies

    Directory of Open Access Journals (Sweden)

    Silva M.H. Prado da

    2000-01-01

    Full Text Available Cylindrical dental implants made of commercially pure titanium were analysed in four different surface finishes: as-machined, Al2O3 blasted with Al2O3 particles, plasma-sprayed with titanium beads and electrolytically coated with hydroxyapatite. Scanning electron microscopy (SEM with Energy Dispersive X-ray Analysis (EDX revealed the topography of the surfaces and provided qualitative results of the chemical composition of the different implants. X-ray Photoelectron Spectroscopy (XPS was used to perform chemical analysis on the surface of the implants while Laser Scanning Confocal Microscopy (LSM produced topographic maps of the analysed surfaces. Optical Profilometry was used to quantitatively characterise the level of roughness of the surfaces. The implant that was plasma-sprayed and the hydroxyapatite coated implant showed the roughest surface, followed by the implant blasted with alumina and the as-machined implant. Some remnant contamination from the processes of blasting, coating and cleaning was detected by XPS.

  14. SRF Cavity Surface Topography Characterization Using Replica Techniques

    Energy Technology Data Exchange (ETDEWEB)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  15. Thermally tailored gradient topography surface on elastomeric thin films.

    Science.gov (United States)

    Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata

    2014-05-14

    We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.

  16. Accurate source location from P waves scattered by surface topography

    Science.gov (United States)

    Wang, N.; Shen, Y.

    2015-12-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (> 100 m). In this study, we explore the use of P-coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example. The grid search method is combined with the 3D strain Green's tensor database type method to improve the search efficiency as well as the quality of hypocenter solution. The strain Green's tensor is calculated by the 3D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are then obtained based on the least-square misfit between the 'observed' and predicted P and P-coda waves. A 95% confidence interval of the solution is also provided as a posterior error estimation. We find that the scattered waves are mainly due to topography in comparison with random velocity heterogeneity characterized by the von Kάrmάn-type power spectral density function. When only P wave data is used, the 'best' solution is offset from the real source location mostly in the vertical direction. The incorporation of P coda significantly improves solution accuracy and reduces its uncertainty. The solution remains robust with a range of random noises in data, un-modeled random velocity heterogeneities, and uncertainties in moment tensors that we tested.

  17. The application of confocal technology based on polycapillary X-ray optics in surface topography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangcui, E-mail: zgcshirley@yahoo.cn [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi; Liu, Zhiguo; Yuan, Hao; Li, Yude; Liu, Hehe; Zhao, Weigang; Zhang, Ruixia; Min, Qin; Peng, Song [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-01

    A confocal micro-X-ray fluorescence (MXRF) technology based on polycapillary X-ray optics was proposed for determining surface topography. This confocal topography method involves elemental sensitivity and can be used to classify the objects according to their elemental composition while obtaining their surface topography. To improve the spatial resolution of this confocal topography technology, the center of the confocal micro-volume was overlapped with the output focal spot of the polycapillary X-ray, focusing the lens in the excitation channel. The input focal spot of the X-ray lens parallel to the detection channel was used to determine the surface position of the sample. The corresponding surface adaptive algorithm was designed to obtain the surface topography. The surface topography of a ceramic chip was obtained. This confocal MXRF surface topography method could find application in the materials sciences.

  18. DNSC08 mean sea surface and mean dynamic topography models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2009-01-01

    -2004. It is the first global MSS without a polar gap including all of the Arctic Ocean by including laser altimetry from the ICESat mission. The mean dynamic topography (MDT) is the quantity that bridges the geoid and the mean sea surface constraining large-scale ocean circulation. Here we present a new high......-resolution 1 min global MDT called DNSC08 MDT derived from the slightly smoothed difference between the DNSC08 MSS and the EGM2008 geoid. The derivation and quality control of the new DNSC08 MSS and DNSC08 MDT is presented in this paper along with suggestions for time period standardization of the MSS and MDT...

  19. EAARL Topography - Natchez Trace Parkway 2007: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Natchez Trace Parkway in Mississippi, acquired on September 14, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  20. EAARL Topography-Vicksburg National Military Park 2007: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on September 12, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  1. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  2. EAARL Coastal Topography - Northeast Barrier Islands 2007: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a

  3. The effect of Gonioscopy on keratometry and corneal surface topography

    Directory of Open Access Journals (Sweden)

    DeBroff Brian M

    2006-06-01

    Full Text Available Abstract Background Biometric procedures such as keratometry performed shortly after contact procedures like gonioscopy and applanation tonometry could affect the validity of the measurement. This study was conducted to understand the short-term effect of gonioscopy on corneal curvature measurements and surface topography based Simulated Keratometry and whether this would alter the power of an intraocular lens implant calculated using post-gonioscopy measurements. We further compared the effect of the 2-mirror (Goldmann and the 4-mirror (Sussman Gonioscopes. Methods A prospective clinic-based self-controlled comparative study. 198 eyes of 99 patients, above 50 years of age, were studied. Exclusion criteria included documented dry eye, history of ocular surgery or trauma, diabetes mellitus and connective tissue disorders. Auto-Keratometry and corneal topography measurements were obtained at baseline and at three follow-up times – within the first 5 minutes, between the 10th-15th minute and between the 20th-25th minute after intervention. One eye was randomized for intervention with the 2-mirror gonioscope and the other underwent the 4-mirror after baseline measurements. t-tests were used to examine differences between interventions and between the measurement methods. The sample size was calculated using an estimate of clinically significant lens implant power changes based on the SRK-II formula. Results Clinically and statistically significant steepening was observed in the first 5 minutes and in the 10–15 minute interval using topography-based Sim K. These changes were not present with the Auto-Keratometer measurements. Although changes from baseline were noted between 20 and 25 minutes topographically, these were not clinically or statistically significant. There was no significant difference between the two types of gonioscopes. There was greater variability in the changes from baseline using the topography-based Sim K readings

  4. Determining Titan surface topography from Cassini SAR data

    Science.gov (United States)

    Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini

    2009-01-01

    A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.

  5. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed

  6. The interior structure of Ceres as revealed by surface topography

    Science.gov (United States)

    Fu, Roger R.; Ermakov, Anton I.; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford H.; Zuber, Maria T.; King, Scott D.; Bland, Michael T.; Cristina De Sanctis, Maria; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.

    2017-10-01

    Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.

  7. Interpretation of Lunar Topography: Impact Cratering and Surface Roughness

    Science.gov (United States)

    Rosenburg, Margaret A.

    This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.

  8. Geophysical, petrological and mineral physics constraints on Earth's surface topography

    Science.gov (United States)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2015-04-01

    Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the

  9. Fabrication of cell container arrays with overlaid surface topographies.

    Science.gov (United States)

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  10. Influence of surface topography on the surface durability of steam oxidised sintered iron

    Directory of Open Access Journals (Sweden)

    José Daniel Biasoli de Mello

    2005-06-01

    Full Text Available Durability of surfaces has been reported as the main factor affecting tribological behavior of steam oxidised sintered iron. The presence of surface pores and their negative influence on load bearing capacity, suggest that surface topography might play an important role on the durability of the oxide layer. In this paper, the influence of compaction pressure and powder grade on surface topography, and as a consequence, its effect on the tribological behavior of steam oxidised sintered iron has been analysed. Specimens prepared from atomised iron powders with different sizes were compacted using 4 different pressures, sintered, and then subjected to steam treatment. Tribological characterisation was carried out in a reciprocating sliding wear test. Although the processing parameters affected the surface topography to a considerable extent, the main influence may be attributed to powder grade. A strong influence of surface topography on the durability distance, evaluated in terms of the evolution of contact resistance with total sliding distance, has been highlighted. Surfaces which were smoother and had high load-carrying capacity were always associated with a higher durability distance.

  11. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First Surface

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) elevation data were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The project provides highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system

  12. GENERALIZED SIMULATION MODEL FOR MILLED SURFACE TOPOGRAPHY-APPLICATION TO PERIPHERAL MILLING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector operation, the trajectory equation of cutting edge relative to workpiece is derived. Then, a three-dimensional topography simulation algorithm is constructed through dividing the workpiece into regular grids. Finally, taking the peripheral milling process as an example, the generalized model is simplified, and the corresponding simulation examples are given. The results indicate that it is very efficient for the generalized model to be used to analyze and simulate the peripherally milled surface topography.

  13. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, J; Pawlus, P [Rzeszow University of Technology, W Pola 2, 35-935 Rzeszow (Poland); Zelasko, W, E-mail: jmichals@prz.edu.pl [Technical School Complex at Lezajsk, Mickiewicza 67, 37-300 Lezajsk (Poland)

    2011-08-19

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  14. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    Science.gov (United States)

    Michalski, J.; Pawlus, P.; Żelasko, W.

    2011-08-01

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  15. Phase-referenced probe interferometer for biological surface profiling and displacement measurements

    Science.gov (United States)

    Fang-Yen, Christopher; Chu, Mark C.; Seung, H. Sebastian; Dasari, Ramachandra R.; Feld, Michael S.

    2007-12-01

    We present a probe-based, phase-referenced low coherence interferometer in which the reference field is provided by a fiber end reflection. A gradient-index microlens focuses light onto a sample and collects reflected light. We use the probe interferometer to measure surface profiles of the compound eye of a housefly (Musca domestica) and measure nanometer-scale vibrations in a test sample.

  16. On the surface topography of ultrashort laser pulse treated steel surfaces

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Skolski, J. Z. P.; Mitko, V. S.; Romer, G. R. B. E.; in't Veld, A. J. Huis; De Hosson, J. Th M.; Römer, G.R.B.E.; Huis in’t Veld, A.J.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  17. Development of strategic surface topographies for lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten; Olsson, David Dam; Petrushina, Irina

    2004-01-01

    . The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...... chlorinated paraffin oils with environmentally friendly, plain mineral oil....

  18. Strategic surface topographies for enhanced lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten Sixten; Olsson, David Dam; Petrushina, Irina

    2010-01-01

    . The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...... chlorinated paraffin oils with environmentally friendly plain mineral oil...

  19. Spatially resolved surface topography retrieved from far-field intensity scattering measurements.

    Science.gov (United States)

    Zerrad, Myriam; Lequime, Michel; Amra, Claude

    2014-02-01

    A far-field setup based on the fast and simultaneous recording of 1 million intensity angle-resolved-light-scattering patterns allows both to reconstruct surface topography and to cancel local defects in this topography. A spectral analysis is performed on measured data and allows to extract roughness and slopes mapping of a surface taking into account the spectral bandpass.

  20. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology

    NARCIS (Netherlands)

    Biemond, J.E.; Aquarius, R.J.M.; Verdonschot, N.J.J.; Buma, P.

    2011-01-01

    BACKGROUND: Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants. METHODS: The friction coefficients of two newly developed E-beam produced surface topographies were in vitro compared with sandblasted E-beam and titanium

  1. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology

    NARCIS (Netherlands)

    Biemond, J. Elizabeth; Aquarius, Rene; Verdonschot, Nicolaas Jacobus Joseph; Buma, Pieter

    2011-01-01

    Background Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants. Methods The friction coefficients of two newly developed E-beam produced surface topographies were in vitro compared with sandblasted E-beam and titanium

  2. Modelling Earth's surface topography: decomposition of the static and dynamic components

    DEFF Research Database (Denmark)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2016-01-01

    Contrasting results on the magnitude of the dynamic component of topography motivate us to analyse the sources of uncertainties affecting long wavelength topography modelling. We obtain a range of mantle density structures from thermo-chemical interpretation of available seismic tomography models...... too large. A truly interdisciplinary approach, combining constraints from the geological record with a multi-methodological interpretation of geophysical observations, is required to tackle the challenging task of linking the surface topography to deep processes....

  3. Surface topography characterization of brass alloys: lead brass (CuZn39Pb3) and lead free brass (CuZn21Si3P)

    Science.gov (United States)

    Reddy, Vijeth V.; Vedantha Krishna, Amogh; Schultheiss, Fredrik; Rosén, B.-G.

    2017-06-01

    Manufactured surfaces usually consist of topographical features which include both those put forth by the manufacturing process, and micro-features caused by disturbances during this process. Surface characterization basically involves study of these features which influence the functionality of the surface. This article focuses on characterization of the surface topography of machined lead brass and lead free brass. The adverse effect of lead on human health and the environment has led the manufacturing sector to focus on sustainable manufacturing of lead free brass, as well as how to maintain control of the surface integrity when substituting the lead content in the brass with silicon. The investigation includes defined areal surface parameters measured on the turned samples of lead- and lead free brass using an optical coherence scanning interferometer, CSI. This paper deals with the study of surface topography of turned samples of lead- and lead free brass. It is important to study the topographical characteristics of the brass samples which are the intermediate link between the manufacturing process variables and the functional behaviour of the surface. To numerically evaluate the sample’s surface topography and to validate the measurements for a significant study, a general statistical methodology is implemented. The results indicate higher surface roughness in turned samples of lead brass compared to lead free brass.

  4. The Jason-CS/Sentinel-6 Ocean Surface Topography Mission

    Science.gov (United States)

    Donlon, C.; Cullen, R.; Scharroo, R.

    2016-02-01

    The Jason-CS/Sentinel-6 (JCS/S6) mission will consist of 2 spacecraft providing the latest in a series of ocean surface topography "reference" satellite altimeters on-board TOPEX/Posiedon through to Jason-3 that span nearly 3 decades. It is a part of the European Copernicus Programme to establish a capacity for Earth Observation and associated services. It will continue to fulfil reference altimeter series objectives but will also introduce a major enhancement in capability to the operational and scientific oceanographic community. The 1st satellite is planned for launch in 2020 with the 2nd satellite 5 years later. Partner Agencies include ESA, EUMETSAT, NASA, EU and CNES. The mission design is based on a platform derived from CryoSat-2 but adjusted to the specific requirements of the higher reference mission orbit. Building on the heritage of previous ESA instruments (SIRAL and SRAL), the principle payload instrument is a high precision dual-frequency (for high stability ionospheric path delay correction) Ku/C band synthetic aperture radar altimeter (POSIEDON-4). Retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data uses measurements from a DORIS receiver (for Precise Orbit Determination (POD)) and the Climate Quality Advanced Microwave Radiometer (AMR-C) provided by JPL (for high stability wet-tropospheric path delay correction). Orbit tracking data are derived from a GPS and a Laser Retro Reflector. A 2nd GNSS-RO will be flown that is dedicated to radio-occultation measurements. The JCS/S6 altimeter will be the 1st Synthetic Aperture Radar (SAR) altimeter used as part of the reference altimeter mission series. It will also be the 1st altimeter to operate in a continuous high-rate pulse mode optimizing the RADAR sampling strategy and allowing, for the first time simultaneous production of low-resolution mode measurements on-board as well as the processing of SAR echoes on-ground. Both types of measurements will be

  5. The Ocean Surface Topography SENTINEL-6/JASON-CS Mission

    Science.gov (United States)

    Cullen, R.

    2015-12-01

    The Sentinel-6/Jason-CS mission will consist of 2 spacecraft and will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (expected March 2015). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of platform, measurement instrumentation design thus securing optimal operational and science data return. The programme is a part of the EC Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The programme brings together: ESA for development, procurement & early orbit activities; EUMETSAT for mission management, ground segment, flight ops, contributing funding of the 1st satellite and participation in funding for the 2nd satellite; NASA for the US payload and launcher procurement in addition to funding US science opportunities; EC for funding the operations and participation in funding (with EUMETSAT) for the 2nd satellite; NOAA are expected to provide US ground stations & operations services; CNES for mission expertise and provision of the POD service. The consortium plan to procure 2 satellites with the 1st planned for launch readiness in the 1st half of 2020 with the 2nd satellite 5 years later. The first major commitment to funding was given by the ESA member states that approved the programme in June 2014 and in addition the European Commission funding is also fully secure. The design is based on a platform derived from CryoSat-2 adjusted to the specific requirements of the higher orbit. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface

  6. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Zangi, Sepideh [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Seyfi, Javad, E-mail: Jseyfi@gmail.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Ehsan [Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran (Iran, Islamic Republic of); Davachi, Seyed Mohammad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. - Highlights: • A novel method is presented for fabrication of superhydrophobic surfaces. • The presence of nanoparticles in non-solvent bath notably promoted phase separation. • Topography had a more notable impact on cell adhesion than superhydrophobicity. • Nano-scale topographical features highly impeded cell adhesion on polymer surfaces.

  7. Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H. R.; van Belle, G. T.; Hutter, Clark; Mozurkewich, D.; Armstrong, J. T.; Baines, E. K.; Restaino, S. R.

    The Navy Precision Optical Interferometer (NPOI) has a unique layout which is particularly well-suited for high-resolution interferometric imaging. By combining the NPOI layout with a new data acquisition and fringe tracking system we are progressing toward a imaging capability which will exceed any other interferometer in operation. The project, funded by the National Science Foundation, combines several existing advances and infrastructure at NPOI with modest enhancements. For optimal imaging there are several requirements that should be fulfilled. The observatory should be capable of measuring visibilities on a wide range of baseline lengths and orientations, providing complete UV coverage in a short period of time. It should measure visibility amplitudes with good SNR on all baselines as critical imaging information is often contained in low-amplitude visibilities. It should measure the visibility phase on all baselines. The technologies which can achieve this are the NPOI Y-shaped array with (nearly) equal spacing between telescopes and an ability for rapid configuration. Placing 6-telescopes in a row makes it possible to measure visibilities into the 4th lobe of the visibility function. By arranging the available telescopes carefully we will be able to switch, every few days, between 3 different 6-station chains which provide symmetric coverage in the UV (Fourier) plane without moving any telescopes, only by moving beam relay mirrors. The 6-station chains are important to achieve the highest imaging resolution, and switching rapidly between station chains provides uniform coverage. Coherent integration techniques can be used to obtain good SNR on very small visibilities. Coherently integrated visibilities can be used for imaging with standard radio imaging packages such as AIPS. The commissioning of one additional station, the use of new data acquisition hardware and fringe tracking algorithms are the enhancements which make this project possible.

  8. Velopharyngeal mucosal surface topography in healthy subjects and subjects with obstructive sleep apnea.

    Science.gov (United States)

    Lambeth, Christopher; Amatoury, Jason; Wang, Ziyu; Foster, Sheryl; Amis, Terence; Kairaitis, Kristina

    2017-03-01

    Macroscopic pharyngeal anatomical abnormalities are thought to contribute to the pathogenesis of upper airway (UA) obstruction in obstructive sleep apnea (OSA). Microscopic changes in the UA mucosal lining of OSA subjects are reported; however, the impact of these changes on UA mucosal surface topography is unknown. This study aimed to 1) develop methodology to measure UA mucosal surface topography, and 2) compare findings from healthy and OSA subjects. Ten healthy and eleven OSA subjects were studied. Awake, gated (end expiration), head and neck position controlled magnetic resonance images (MRIs) of the velopharynx (VP) were obtained. VP mucosal surfaces were segmented from axial images, and three-dimensional VP mucosal surface models were constructed. Curvature analysis of the models was used to study the VP mucosal surface topography. Principal, mean, and Gaussian curvatures were used to define surface shape composition and surface roughness of the VP mucosal surface models. Significant differences were found in the surface shape composition, with more saddle/spherical and less flat/cylindrical shapes in OSA than healthy VP mucosal surface models (P surface models were also found to have more mucosal surface roughness (P surface models. Our novel methodology was utilized to model the VP mucosal surface of OSA and healthy subjects. OSA subjects were found to have different VP mucosal surface topography, composed of increased irregular shapes and increased roughness. We speculate increased irregularity in VP mucosal surface may increase pharyngeal collapsibility as a consequence of friction-related pressure loss.NEW & NOTEWORTHY A new methodology was used to model the upper airway mucosal surface topography from magnetic resonance images of patients with obstructive sleep apnea and healthy adults. Curvature analysis was used to analyze the topography of the models, and a new metric was derived to describe the mucosal surface roughness. Increased roughness was

  9. EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2005: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface topography Digital Elevation Model (DEM) mosaic for the Assateague Island National Seashore was produced from remotely sensed, geographically...

  10. EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface topography Digital Elevation Model (DEM) mosaic for the Cape Cod National Seashore was produced from remotely sensed, geographically referenced...

  11. 3D surface topography of cylinder liner forecasting during plateau honing process

    Science.gov (United States)

    Reizer, R.; Pawlus, P.

    2011-08-01

    Areal surface topographies after plateau honing process were measured. A correlation analysis of surface texture parameters was then carried out. As the results, the following parameters describing plateau honed cylinder 3D surface topography were selected: amplitude Sq, Sz, spatial: Str, Std, hybrid SΔq as well as functional: Spq, Svq and Smq. 3D surface topographies were modeled. The modeled surface topographies were correctly matched to measured ones in 77% of all analyzed cases. The plateau honing experiment was then carried out using an orthogonal selective research plan. Two machining parameters were input variables: coarse honing pressure pv and plateau honing time t. Chosen cylinder liners texture parameters were output values. As the result of the experiment, regression equations connecting plateau honing process parameters pv and t with recommended 3D surface topography parameters were obtained. Finally, cylinder liner surface topographies were predicted for various values of machining parameters. Proper matching accuracy of modeled to measured textures was assured in 67% of analyzed cases.

  12. 3D surface topography of cylinder liner forecasting during plateau honing process

    Energy Technology Data Exchange (ETDEWEB)

    Reizer, R [University of Rzeszow, Institute of Technology, Rejtana 16A, 35-959 Rzeszow (Poland); Pawlus, P, E-mail: rreizer@univ.rzeszow.pl [Rzeszow University of Technology, W. Pola 2, 35-959 Rzeszow (Poland)

    2011-08-19

    Areal surface topographies after plateau honing process were measured. A correlation analysis of surface texture parameters was then carried out. As the results, the following parameters describing plateau honed cylinder 3D surface topography were selected: amplitude Sq, Sz, spatial: Str, Std, hybrid S{Delta}q as well as functional: Spq, Svq and Smq. 3D surface topographies were modeled. The modeled surface topographies were correctly matched to measured ones in 77% of all analyzed cases. The plateau honing experiment was then carried out using an orthogonal selective research plan. Two machining parameters were input variables: coarse honing pressure p{sub v} and plateau honing time t. Chosen cylinder liners texture parameters were output values. As the result of the experiment, regression equations connecting plateau honing process parameters pv and t with recommended 3D surface topography parameters were obtained. Finally, cylinder liner surface topographies were predicted for various values of machining parameters. Proper matching accuracy of modeled to measured textures was assured in 67% of analyzed cases.

  13. The effect of selected parameters of the honing process on cylinder liner surface topography

    Science.gov (United States)

    Pawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R.

    2014-04-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable.

  14. Preliminary measurement performance evaluation of a new white light interferometer for cylindrical surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, Armando Jr; Pont, Alex Dal [Federal University of Santa Catarina, Metrology and Automation Laboratory, Cx Postal 5053, CEP 88 040-970, Florianopolis, SC (Brazil)

    2005-01-01

    This paper introduces a new design of a white light interferometer, suitable for measurement of cylindrical or quasi-cylindrical parts. A high precision 45 deg. conical mirror is used to direct collimated light radially, making it possible to measure in true cylindrical coordinates. The image of the measurand, distorted by the conical mirror, is projected in a high resolution digital camera. A mapping algorithm is used to reconstruct the cylindrical geometry from the distorted image. The rest of the interferometer is quite similar to a conventional white light interferometer: A flat reference mirror is scanned through the measurement range while an algorithm is searching for the maximum contrast position of the interference pattern. The performance evaluation of a configuration suitable for measurement of external cylindrical surfaces is also presented in this paper. A master cylinder was used as reference. Uncertainties of about 1.0 {mu}m were found at the present stage of development.

  15. Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art

    Science.gov (United States)

    Grzesik, Wit

    2016-10-01

    This survey overviews the functional performance of manufactured components produced by typical finishing machining operations in terms of their topographical characteristics. Surface topographies were characterized using both profile (2D) and 3D (areal) surface roughness parameters. The prediction of typical functional properties such as fatigue, friction, wear, bonding and corrosion is discussed based on appropriate surface roughness parameters. Some examples of real 3D surface topographies produced with desired functional characteristics are provided. This survey highlights technological possibilities of producing surfaces with enhanced functional properties by machining processes.

  16. Compound interferometer system for large-scale optical components surface measurement

    Science.gov (United States)

    Wang, Qiwei; Sun, Tao; Han, Chengshun; Dong, Shen; Rodionov, A. Y.; Shirin, A. S.; Shekhtman, V. N.

    2010-10-01

    Large-scale optical components is being applied more and more widely in the astronomical optics, space optics, groundbased space target detection and identification, laser propagation in the atmosphere, inertial confinement fusion (ICF) and other fields, especially the large-scale aspherical optical component is one of key parts which play a supportive role in those fields. Large-scale optical components surface measurement instrument and technique has become a research focus of many scholars in recent years. In this paper introduced a compound interferometer system, which based on the principle of traditional Fizeau interferometer and lateral shear interferometer. In this system, produces two probe light beams by a He-Ne laser, one of probe light beams is used to measure flat optical surface by using comparison with the reference wavefront, and the other probe light beam is used to measure spherical and aspherical optical surface according to the principle of lateral shear interferometer and without using reference wavefront. Discussed in detail optical layout of the system as well as the principle of surface measurement, and the preliminary test results were given. The compound interferometer system has a compact, multi-function, and good anti-vibration performance can be used for large-scale optical plane (diameter less than 320mm), spherical and aspherical optical components surface measurement. Due to the information that lateral shear interferogram carries does not show directly the deviation between the wavefront under test and the ideal wavefront, but the wavefront difference, so the wavefront reconstruction method is more complex, and the wavefront reconstruction algorithm from lateral shearing interferograms is also analyzed and discussed.

  17. Free Surface Thin Film Flow of a Sisko’s Fluid over a Surface Topography

    Directory of Open Access Journals (Sweden)

    R. A. Shah

    2017-01-01

    Full Text Available The flow of a thin film down an inclined surface over topography is considered for the case of liquids with Sisko’s model viscosity. For the first time lubrication theory is used to reduce the governing equations to a non-linear evolution equation for a current of a Sisko’s model non-Newtonian fluid on an inclined plane under the action of gravity and the viscous stresses. This model is solved numerically using an efficient Full Approximation Storage (FAS multigrid algorithm. Free surface results are plotted and carefully examined near the topography for different values of power-law index np, viscosity parameter m, the aspect ratio A and for different inclination angle of the plane with the horizontal. Number of complications and additional physical effects are discussed that enrich real situations. It is observed that the flows into narrow trenches develop a capillary ridge just in front of the upstream edge of a trench followed by a small trough. For relatively small width trenches, the free surface is almost everywhere flat as the dimensional width of the trench is much smaller than the capillary length scale. In this region, surface tension dominates the solution and acts so as to stretch a membrane across the trench leading to smaller height deviations. The ridge originates from the topographic forcing which works to force fluid upstream immediately prior to the trench before helping to accelerate it over. The upstream forcing slows down the fluid locally and increases the layer thickness.

  18. Influence of Workpiece Surface Topography on the Mechanisms of Liquid Lubrication in Strip Drawing

    DEFF Research Database (Denmark)

    Shimizu, I; Andreasen, Jan Lasson; Bech, Jakob Ilsted

    2001-01-01

    The workpiece surface topography is an important factor controlling the mechanisms of lubrication in metal forming processes. In the present work, the microscopic lubrication mechanisms induced by lubricant trapped in pockets of the surface in strip drawing are studied. The experiments are perfor......The workpiece surface topography is an important factor controlling the mechanisms of lubrication in metal forming processes. In the present work, the microscopic lubrication mechanisms induced by lubricant trapped in pockets of the surface in strip drawing are studied. The experiments...

  19. Simulation of Ultra-Long Wavelength interferometer in the Earth orbit and on the lunar surface

    OpenAIRE

    Zhang, Mo; Huang, Maohai; Yan, Yihua

    2014-01-01

    We present simulations for interferometer arrays in Earth orbit and on the lunar surface to guide the design and optimization of space-based Ultra-Long Wavelength missions, such as those of China's Chang'E program. We choose parameters and present simulations using simulated data to identify inter-dependencies and constraints on science and engineering parameters. A regolith model is created for the lunar surface array simulation, the results show that the lunar regolith will have an undesira...

  20. Why re-entrant surface topography is needed for robust oleophobicity.

    Science.gov (United States)

    Nosonovsky, Michael; Bhushan, Bharat

    2016-08-06

    Surface patterns affect wetting properties of solid materials allowing manipulation of the phase state of an adjacent fluid. The best known example of this effect is the superhydrophobic composite (Cassie-Baxter) interface with vapour/air pockets between the solid and liquid. Mathematically, the effect of surface micropatterns can be studied by an averaging technique similarly to the method of separation of motions in dynamics. However, averaged parameters are insufficient for robust superhydrophobic and superoleophobic surfaces because additional topography features are important: hierarchical organization and re-entrant roughness. The latter is crucial for the oleophobicity because it enhances the stability of a composite interface. The re-entrant topography can be achieved by various methods. Understanding the role of re-entrant surface topography gives us new insights on the multitude of wetting scenarios beyond the standard Wenzel and Cassie-Baxter models.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  1. Homodyne full-field interferometer for measuring dynamic surface phenomena in microstructures

    Science.gov (United States)

    Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti

    2017-01-01

    We describe a stabilized homodyne full-field interferometer capable of measuring vertical surface deformations of microstructures in the time domain. The interferometer is stabilized to a chosen operation point by obtaining a feedback signal from a non-moving, freely selectable, reference region on the sample surface. The stabilized full-field interferometer enables detection of time-dependent changes in the surface profile with nanometer scale vertical resolution, while the temporal resolution of the measurement is ultimately limited by the refresh rate of the camera only. The lateral resolution of the surface deformation is determined by the combination of the imaging optics together with the pixel size of the camera. The setup is used to measure the deformation of an Aluminum nitride membrane as a function of time-dependent pressure change. The data analysis allows for unambiguous determination of surface deformations over multiple fringes of the interferogram, hence enabling the study of a wide range of physical phenomena with varying magnitude of vertical surface movement.

  2. On the observability of bottom topography from measurements of tidal sea surface height

    Science.gov (United States)

    Zaron, Edward D.

    2016-06-01

    The question of whether features of the ocean bottom topography can be identified from measurements of water level is investigated using a simplified one-dimensional barotropic model. Because of the nonlinear dependence of the sea surface height on the water depth, a linearized analysis is performed concerning the identification of a Gaussian bump within two specific depth profiles, (1) a constant depth domain, and, (2) a constant depth domain adjoining a near-resonant continental shelf. Observability is quantified by examining the estimation error in a series of identical-twin experiments varying data density, tide wavelength, assumed (versus actual) topographic correlation scale, and friction. For measurements of sea surface height that resolve the scale of the topographic perturbation, the fractional error in the bottom topography is approximately a factor of 10 larger than the fractional error of the sea surface height. Domain-scale and shelf-scale resonances may lead to inaccurate topography estimates due to a reduction in the effective number of degrees of freedom in the dynamics, and the amplification of nonlinearity. A realizability condition for the variance of the topography error in the limit of zero bottom depth is proposed which is interpreted as a bound on the fractional error of the topography. Appropriately designed spatial covariance models partly ameliorate the negative impact of shelf-scale near-resonance, and highlight the importance of spatial covariance modeling for bottom topography estimation.

  3. Quantitative characterization of the surface topography of rolled sheets by laser scanning microscopy and fourier transformation

    Science.gov (United States)

    Gjønnes, Liv

    1996-08-01

    The surface of twin-roll cast aluminum sheets undergoes dramatic changes during cold rolling. This is mainly due to variables in the roll gap, topography of the rolls, lubrication, material properties, and in particular the initial structure and topography of the cast sheet. Therefore, it is important to have means to quantitatively describe the changes in the surface structure of each pass and from pass to pass in order to optimize the desired final surface structure. To achieve this, the laser scanning microscope (LSM) with its confocal technique has been employed to image the three-dimensional (3-D) topography and to digitize the image for further computer analysis. The digitization of the image is primarily motivated by the need to introduce a Fourier transformation of the surface topography. The method is effective in describing qualitative periodic trends in the surface features. Information is gained on the shape and periodicities as well as roughness directionality. For instance, grooves and cross hatches and their remnants can be followed from one pass to the other. Important characteristics of the surface topography such as rolling ridges and shingles can also easily be characterized.

  4. Effect of electrochemical polishing time on surface topography of mild steel

    Institute of Scientific and Technical Information of China (English)

    Baocheng Wang; Jinhua Zhu

    2007-01-01

    The variation in altitude density function (ADF) of the surface topography of mild steel during electrochemical polishing (ECP) was investigated, and the mechanism of the variation of surface roughness with polishing time was analyzed. The results show that the variation trend of ADF with polishing time is flat-steep-flat; the variation of surface roughness results in the different distributions of surface current density, and there is a fine surface smoothness in the special period of ECP from 4 to 8 s.

  5. The influence of deep mantle heterogeneity on the rhythms and scales of surface topography evolution

    Science.gov (United States)

    Arnould, Maëlis; Coltice, Nicolas; Flament, Nicolas

    2016-04-01

    Earth's surface, the interface between external processes and internal dynamics (lithosphere motions and mantle convection), is continuously reorganised. A large part of Earth's topography is generated by mantle motions and lithospheric stresses [1], which impacts for instance the global sea-level, the dynamics of sedimentary basins and the geoid. Studying how surface topography evolves in both space and time thus not only provides information on the rhythms and scales of evolution of those processes, but would also be a tool for the study of the mantle motions and properties from which it originates [2]. In this study, we propose to characterise the spatial and temporal scales of evolution of surface topography in 2D spherical annulus numerical models of mantle convection developing a plate-like behaviour. We use the geodynamical code StagYY [3] to first determine a mantle convection regime generating a surface topography with Earth-like amplitudes and realistic mantle dynamics at first order (e.g. high Rayleigh number, reasonable lithosphere thickness, pseudo-plastic lithosphere rheology generating plate tectonics). We then use this convection regime to investigate how the presence of stable deep-rooted thermochemical heterogeneities influence the rhythms of evolution of surface topography. We analyse our results to identify how the timescales of evolution are connected with the lengthscales of topography, in light of the tectonic histories produced by the models. References: [1] M. Gurnis, Long-term controls of eustatic and epeirogenic motions by mantle convection, GSA Today, 2(7):141-157, 1992. [2] B.H. Hager, R.W. Clayton, M.A. Richards, R.P. Comer, and A.M. Dziewonski, Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313:541-545, 1985. [3] J.W. Hernlund and P.J. Tackley, Modeling mantle convection in the spherical annulus, Phys. Earth Planet. Interiors, 171(1):48-54, 2008.

  6. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm (see...

  7. Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies.

    Science.gov (United States)

    Anderson, Jordan A; Lamichhane, Sujan; Mani, Gopinath

    2016-11-01

    The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016.

  8. Bioresponse to polymeric substrates: Effect of surface energy, modulus, topography, and surface graft copolymers

    Science.gov (United States)

    Wilson, Leslie Hoipkemeier

    Biofouling is the accumulation of biological matter on a substrate. It is essential to elucidate and model the major factors that affect both biological settlement and adhesion to substrates in order to develop coatings that minimize initial fouling or ease the removal of this fouling. To date, models that have estimated adhesion strength to coatings primarily included bulk elastic modulus and surface energy. Topography, however, has been found to dominate both these terms in the reduction of settlement and has been found to affect the adhesion strength as well. Silicone foul release coatings have demonstrated moderate success in the prevention of marine biofouling because of their low modulus and low surface energy. Problems exist with durability and eventual fouling of the coating due to the overgrowth of foulants that prefer hydrophobic substrates. This research details the characterization and the surface and bulk modification of a commercially available silicone elastomer. The modifications include bulk additives, surface topography, and surface graft copolymers. The effect of these modifications on biological response was then assayed using the alga Ulva as a model for marine biofouling. The unmodified silicone elastomer has a bulk modulus of approximately 1 MPa. The addition of vinyl functional polydimethylsiloxane oils allowed for a greater than 200% increase or a 90% decrease in the bulk modulus of the material. The addition of non-reactive polydimethylsiloxane oils allowed for a change in the surface lubricity of the elastomer without a significant change in the mechanical properties. Topographical modifications of the surface show a profound effect on the bioresponse. Appropriately scaled engineered microtopographies replicated in the silicone elastomer can produce a 250% increase in algal zoospore fouling or an 85% reduction in settlement relative to a smooth silicone elastomer. Finally, the modification of the surface energy of this material was

  9. Analysing surface plasmon resonance phase sensor based on Mach-Zehnder interferometer technique using glycerin

    Science.gov (United States)

    Kashif, Muhammad; Bakar, A. Ashrif A.; Hashim, Fazida Hanim

    2016-12-01

    Surface Plasmon Resonance (SPR) based on Mach-Zehnder interferometer (MZI) is a very accurate tool for the detection and analysis of molecular interactions. The performance of the proposed SPR phase sensor is dependent upon multiple performance parameters that include sensitivity, repeatability, drift and the induction speed of fluid into the flow cell. The SPR Mach-Zehnder interferometer is tested for different glycerin-water concentrations to check its performance based on the different parameters. This paper highlights the enhancement of the performance of SPR phase technique based on MZI that is influenced by different parameters, measured using glycerin solutions. These four performance parameters can affect the performance of SPR based on MZI and have a particular impact on the sensor output. It also provides us information about suitable working conditions for the SPR Mach-Zehnder interferometer sensor. The experiment data shows that the sensor's sensitivity is high for small concentrations of glycerin-water mixtures. Also, any change in drift as well as in induction speed of fluid can affect the performance of SPR Mach-Zehnder interferometer. The sensitivity of SPR phase sensor is high as it can measure glycerin concentration as low as 0.05%.

  10. Surface topography analysis and performance on post-CMP images (Conference Presentation)

    Science.gov (United States)

    Lee, Jusang; Bello, Abner F.; Kakita, Shinichiro; Pieniazek, Nicholas; Johnson, Timothy A.

    2017-03-01

    Surface topography on post-CMP processing can be measured with white light interference microscopy to determine the planarity. Results are used to avoid under or over polishing and to decrease dishing. The numerical output of the surface topography is the RMS (root-mean-square) of the height. Beyond RMS, the topography image is visually examined and not further quantified. Subjective comparisons of the height maps are used to determine optimum CMP process conditions. While visual comparison of height maps can determine excursions, it's only through manual inspection of the images. In this work we describe methods of quantifying post-CMP surface topography characteristics that are used in other technical fields such as geography and facial-recognition. The topography image is divided into small surface patches of 7x7 pixels. Each surface patch is fitted to an analytic surface equation, in this case a third order polynomial, from which the gradient, directional derivatives, and other characteristics are calculated. Based on the characteristics, the surface patch is labeled as peak, ridge, flat, saddle, ravine, pit or hillside. The number of each label and thus the associated histogram is then used as a quantified characteristic of the surface topography, and could be used as a parameter for SPC (statistical process control) charting. In addition, the gradient for each surface patch is calculated, so the average, maximum, and other characteristics of the gradient distribution can be used for SPC. Repeatability measurements indicate high confidence where individual labels can be lower than 2% relative standard deviation. When the histogram is considered, an associated chi-squared value can be defined from which to compare other measurements. The chi-squared value of the histogram is a very sensitive and quantifiable parameter to determine the within wafer and wafer-to-wafer topography non-uniformity. As for the gradient histogram distribution, the chi-squared could

  11. Influence of Workpiece Surface Topography on the Mechanisms of Liquid Lubrication in Strip Drawing

    DEFF Research Database (Denmark)

    Shimizu, I; Andreasen, Jan Lasson; Bech, Jakob Ilsted

    2001-01-01

    The workpiece surface topography is an important factor controlling the mechanisms of lubrication in metal forming processes. In the present work, the microscopic lubrication mechanisms induced by lubricant trapped in pockets of the surface in strip drawing are studied. The experiments are perfor...

  12. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Tian Hui [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States); Ribeill, Guilhem [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Dept. of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Xu Chen [Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Kelley, Michael J., E-mail: mkelley@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States)

    2011-03-15

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  13. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  14. Modelling Earth's surface topography: Decomposition of the static and dynamic components

    Science.gov (United States)

    Guerri, M.; Cammarano, F.; Tackley, P. J.

    2016-12-01

    Contrasting results on the magnitude of the dynamic component of topography motivate us to analyse the sources of uncertainties affecting long wavelength topography modelling. We obtain a range of mantle density structures from thermo-chemical interpretation of available seismic tomography models. We account for pressure, temperature and compositional effects as inferred by mineral physics to relate seismic velocity with density. Mantle density models are coupled to crustal density distributions obtained with a similar methodology. We compute isostatic topography and associated residual topography maps and perform instantaneous mantle flow modelling to calculate the dynamic topography. We explore the effects of proposed mantle 1-D viscosities and also test a 3D pressure- and temperature-dependent viscosity model. We find that the patterns of residual and dynamic topography are robust, with an average correlation coefficient (r) of respectively ∼0.74 and ∼0.71, upper-lower quartile ranges of 0.86-0.65 for residual topography and 0.83-0.62 for dynamic topography maps. The amplitudes are, on the contrary, poorly constrained. For the static component, the inferred density models of lithospheric mantle give an interquartile range of isostatic topography that is always higher than 100 m, reaching 1.7 km in some locations, and averaging ∼720 m. Crustal density models satisfying the same compressional velocity structure lead to variations in isostatic topography averaging 350 m, with peaks of 1 km in thick crustal regions, and always higher than 100 m. The uncertainties on isostatic topography are strong enough to mask, if present, the contribution of mantle convection to surface topography. For the dynamic component, we obtain a peak-to-peak dynamic topography amplitude exceeding 3 km for all our mantle density and viscosity models. These extremely high values would be associated with a magnitude of geoid undulations that is not in agreement with observations

  15. The influence of surface topography of UV coated and printed cardboard on the print gloss

    Directory of Open Access Journals (Sweden)

    Igor Karlović

    2010-09-01

    Full Text Available The incident light on the printed surface undergoes through several processes of scattering, absorbtion and reflectiondepending on the surface topography and structure of the material. The specular part of the surface reflection is commonlyattributed as the geometric component of the reflection, and when measured is associated with specular gloss.The diffuse part of the surface reflection contains the chromatic part of the reflection and is commonly calculatedthrough colorimetric values. Using UV coatings as surface enhacement materials which affect the optical propertiesof coated surfaces and final appearance of the printed product forms new surface topography over the existingone. We have investigated the influence of three different amounts of UV glossy and matte oveprint coating on themeasured specular gloss of printed cardboard samples. The different amount of coatings on the printed samples wereachived using three different screen stencils of 180 threads/cm, 150 threads/cm and 120 threads/cm thread count.The cardboard samples were analysed with AFM and SEM microscopes to obtain surface topography and roughnessvalues which were evaluated with the measured geometric values speficied as instrumental gloss. The surfaceswith a specific amount of UV coatings showed a new formed topography which influences the reflection of light.The changes in topography were evaluated through surface roughness parameters which showed a decline of surfaceroughness with tht additional ammount of glossy and matte coatings. The obtained and calculated correlations showthere is a high correlation between coating ammount and surface roughness change and gloss for the glossy UVcoating. The results for the matte UV coatings showed lower correlation for the gloss and surface roughness.

  16. The influence of drawing speed on surface topography of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2017-01-01

    Full Text Available In this work the influence of the drawing speed on surface topography of high carbon steel wires has been assessed. The drawing process of f 5,5 mm wire rod to the final wire of f 1,7 mm was conducted in 12 passes by means of a modern Koch multi-die drawing machine. The drawing speeds in the last passes were: 5, 10, 15, 20 and 25 m/s. For final wires f 1,7 mm the three-dimensional analysis of the wire surface topography investigation was determined. It has been proved that the wire topography in the drawing process is characterized by a random anisotropy and the amount of directing the geometrical structure of the surface depends on the drawing speed.

  17. A SENSITIVE AND STABLE CONFOCAL FABRY-PEROT INTERFEROMETER FOR SURFACE ULTRASONIC VIBRATION DETECTION

    Institute of Scientific and Technical Information of China (English)

    DING HONG-SHENG; TONG LI-GE; CHEN GENG-HUA

    2001-01-01

    A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays,the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.

  18. Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian, Charles Reece, Michael Kelley, G. Ribeill

    2009-05-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro-and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface chemical polishing (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the Nb surface as a function of different steps of EP is reported, resulting in a novel qualitative and quantitative description of Nb surface topography.

  19. Topography-Dependent Eikonal Traveltime Tomography for Upper Crustal Structure Beneath an Irregular Surface

    Science.gov (United States)

    Ma, Ting; Zhang, Zhongjie

    2015-06-01

    Seismic modeling of the crust with nonflat topography can be made by first-arrival traveltime tomography, which faces the challenge of an irregular free surface. A feasible way to deal with this problem consists of expanding the physical space by overlapping a low velocity layer above the irregular surface in order to have a flat topography, besides using the classical eikonal equation solver for traveltime computation. However, the undesirable consequences of this method include seismic ray deviations due to the transition from an irregular surface that is the free boundary to an inner discontinuity lying in the expanded computational space. An alternative solution, called irregular surface flattening, which involves the transformation between curvilinear and Cartesian coordinate systems, has been recently proposed through the formulation of the topography-dependent eikonal equation (TDEE) and a new solver for forward modeling of traveltimes. Based on the solution of this equation, we present topography-dependent eikonal traveltime tomography (hereafter TDETT) for seismic modeling of the upper crust. First-arrival traveltimes are calculated using the TDEE solver and the raypaths with the minimum traveltime that can be found by following the steepest traveltime gradient from the receiver to the source. By solving an algebraic equation system that connects the slowness perturbations with the already determined traveltimes, these variables can be obtained making use of the back-projection algorithm. This working scheme is evaluated through three numerical examples with different topographic complexities that are conducted from synthetic data and a fourth example with somewhat more complicated topography and real data acquired in northeastern Tibet. The comparison of the results obtained by both methods, i.e., physical space expansion above the irregular surface and irregular surface flattening, fully validates the tomography scheme that is proposed to construct

  20. Laser polishing for topography management of accelerator cavity surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Klopf, J. Mike [College of William and Mary, Williamsburg, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kelley, Michael J. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  1. Sinusoidal phase-modulating laser diode interferometer for real-time surface profile measurement

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang

    2007-01-01

    A sinusoidal phase-modulating (SPM) laser diode (LD) interferometer for real-time surface profile measurement is proposed and its principle is analyzed. The phase signal of the surface profile is detected from the sinusoidal phase-modulating interference signal using a real-time phase detection circuit. For 60 × 60 measurement points of the surface profile, the measuring time is 10 ms. A root mean square (RMS) measurement repeatability of 3.93 nm is realized, and the measurement resolution reaches 0.19 nm.

  2. Osteoblast response to zirconia surfaces with different topographies

    Energy Technology Data Exchange (ETDEWEB)

    Herath, H.M.T.U. [Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya (Sri Lanka); Di Silvio, L. [Guy' s, King' s and St Thomas' Medical and Dental Institute, King' s College London, London SE1 9RT (United Kingdom); Evans, J.R.G., E-mail: j.r.g.evans@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-12-01

    Zirconia-3 mol% yttria ceramics were prepared with as-sintered, abraded, polished, and porous surfaces in order to explore the attachment, proliferation and differentiation of osteoblast-like cells. After modification, all surfaces were heated to 600 °C to extinguish traces of organic contamination. All surfaces supported cell attachment, proliferation and differentiation but the surfaces with grain boundary grooves or abraded grooves provided conditions for enhanced initial cell attachment. Nevertheless, overall cell proliferation and total DNA were highest on the polished surface. Zirconia sintered at a lower temperature (1300 °C vs. 1450 °C) had open porosity and presented reduced proliferation as assessed by alamarBlue™ assay, possibly because the openness of the pores prevented cells developing a local microenvironment. All cells retained the typical polygonal morphology of osteoblast-like cells with variations attributable to the underlying surface notably alignment along the grooves of the abraded surface. - Highlights: • Biocompatibility of chemically identical, topologically different ZrO{sub 2} was tested. • ZrO{sub 2} promoted cell adhesion, proliferation, differentiation and nodule formation. • Proliferation was high on polished ZrO{sub 2} but initial recruitment was high on abraded ZrO{sub 2}. • With open porosity, proliferation was low; cells cannot establish a microenvironment.

  3. Individual IOL Surface Topography Analysis by the WaveMaster Reflex UV

    Directory of Open Access Journals (Sweden)

    Marc Kannengießer

    2013-01-01

    Full Text Available Purpose. In order to establish inspection routines for individual intraocular lenses (IOLs, their surfaces have to be measured separately. Currently available measurement devices lack this functionality. The purpose of this study is to evaluate a new topography measurement device based on wavefront analysis for measuring individual regular and freeform IOL surfaces, the “WaveMaster Reflex UV” (Trioptics, Wedel, Germany. Methods. Measurements were performed on IOLs with increasingly complex surface geometries: spherical surfaces, surfaces modelled by higher-order Zernike terms, and freeform surfaces from biometrical patient data. Two independent parameters were measured: the sample’s radius of curvature (ROC and its residual (difference of sample topography and its best-fit sphere. We used a quantitative analysis method by calculating the residuals’ root-mean-square (RMS and peak-to-Valley (P2V values. Results. The sample’s best-fit ROC differences increased with the sample’s complexity. The sample’s differences of RMS values were 80 nm for spherical surfaces, 97 nm for higher-order samples, and 21 nm for freeform surfaces. Graphical representations of both measurement and design topographies were recorded and compared. Conclusion. The measurements of spherical surfaces expectedly resulted in better values than those of freeform surfaces. Overall, the wavefront analysing method proves to be an effective method for evaluating individual IOL surfaces.

  4. EAARL Coastal Topography--Pearl River Delta 2008: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely...

  5. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from...

  6. EAARL Topography-Vicksburg National Millitary Park 2007: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely...

  7. EAARL Topography-Natchez Trace Parkway 2007: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DSM) of a portion of the Natchez Trace Parkway in Mississippi was produced from remotely...

  8. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from...

  9. EAARL Coastal Topography--Pearl River Delta 2008: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely...

  10. EAARL Coastal Topography--Northeast Barrier Islands 2007: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from...

  11. EAARL Topography-Vicksburg National Millitary Park 2007: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely...

  12. EAARL Topography-Natchez Trace Parkway 2007: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DSM) of a portion of the Natchez Trace Parkway in Mississippi was produced from remotely...

  13. EAARL Coastal Topography--Northeast Barrier Islands 2007: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from...

  14. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    Science.gov (United States)

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

  15. Surface topography analysis for dimensional quality control of replication at the micrometre scale

    DEFF Research Database (Denmark)

    Balcon, M.; Marinello, F.; Tosello, Guido;

    2011-01-01

    Replication of geometrical features and surfaces are present at different production levels, from realization of moulds to final product. Geometrical features must be reproduced within specification limits, to ensure product functionality . In order to control the replication quality, mould...... and replica surfaces must be quantitatively analysed and compared. In the present work, reference simulated surfaces were considered and studied in order to evaluate the effectiveness and traceability of different analysis tools for replication quality control. Topographies were analysed simulating different...

  16. Features of surface topography and the geological activity of Pluto

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    According to the data "New Horizons" of the spacecraft, researchers were able to specify the diameter of Pluto-2374 km. Its surface temperature in the equatorial region varies from 33 to 55 K over the planet's orbital period around the Sun in ~248 years. Presumably the surface of Pluto has a rocky base covered with a mantle of water ice, of frozen methane, nitrogen, ammonia and CO. Due to the large eccentricity of the orbit of Pluto, as it approaches the Sun, the ice melts, and the atmosphere is formed mainly of nitrogen and methane; while removing of the planet from the Sun - the atmosphere freezes out again.

  17. Recognition of fiducial surfaces in lidar surveys of coastal topography

    Science.gov (United States)

    Brock, J.C.; Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Wright, C.W.

    2001-01-01

    A new method for the recognition and mapping of surfaces in coastal landscapes that provide accurate and low variability topographic measurements with respect to airborne lidar surveys is described and demonstrated in this paper. Such surfaces are herein termed "fiducial" because they can represent reference baseline morphology in Studies of coastal change due to natural or anthropogenic causes. Non-fiducial surfaces may also be identified in each separate lidar survey to be used in a given geomorphic change analysis. Sites that are non-fiducial in either or both lidar surveys that bracket the time period under investigation may be excluded from consideration in subsequent calculations of survey-to-survey elevation differences to eliminate spurious indications of landscape change. This new analysis method, or lidar fiducial surface recognition (LFSR) algorithm, is intended to more fully enable the non-ambiguous Use of topographic lidar in a range of coastal investigations. The LFSR algorithm may be widely applied, because it is based solely on the information inherent in the USGS/NASA/NOAA airborne topographic lidar coverage that exists for most of the contiguous U.S. coastline.

  18. Early human bone response to laser metal sintering surface topography: a histologic report.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  19. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    NARCIS (Netherlands)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DlC). It is argued that the strength of the met

  20. Insights into the role of material surface topography and wettability on cell-material interactions

    NARCIS (Netherlands)

    Papenburg, Bernke J.; Rodrigues, Emillie Dooms; Wessling, Matthias; Stamatialis, Dimitris

    2010-01-01

    This work investigates the effect of surface topography and biomaterial wettability on protein absorption, cell attachment, proliferation and morphology and reveals important insights in the complexity of cell-material interactions. We use various materials, i.e. poly(dimethyl siloxane) (PDMS), poly

  1. The influence of Fe doping on the surface topography of GaN epitaxial material

    Science.gov (United States)

    Lei, Cui; Haibo, Yin; Lijuan, Jiang; Quan, Wang; Chun, Feng; Hongling, Xiao; Cuimei, Wang; Jiamin, Gong; Bo, Zhang; Baiquan, Li; Xiaoliang, Wang; Zhanguo, Wang

    2015-10-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 1019 cm-3. High resistivity GaN epitaxial material which is 1 × 109 Ω·cm is achieved. Project supported by the Knowledge Innovation Engineering of the Chinese Academy of Sciences (No. YYY-0701-02), the National Natural Science Foundation of China (Nos. 61204017, 61334002), the State Key Development Program for Basic Research of China, and the National Science and Technology Major Project.

  2. Steep waves in free-surface flow past narrow topography

    Science.gov (United States)

    Wade, Stephen L.; Binder, Benjamin J.; Mattner, Trent W.; Denier, James P.

    2017-06-01

    In this work, we compute steep forced solitary wave solutions for the problem of free-surface flow over a localised topographic disturbance in an otherwise flat horizontal channel bottom. A single forced solitary wave and a double-crested forced solitary wave solution are shown to exist, both of which approach the Stokes limiting configuration of an included angle of 12 0° and a stagnation point at the wave crests. The solution space for the topographically forced problem is compared to that found in Wade et al. ["On the free-surface flow of very steep forced solitary waves," J. Fluid Mech. 739, 1-21 (2014)], who considered forcing due to a localised distribution of pressure applied to the free surface. The main feature that differentiates the two types of forcing is an additional solution that exists in the pressure-forced problem, a steep wave with a cusp at a single wave crest. Our numerical results suggest that this cusped-wave solution does not exist in the topographically forced problem.

  3. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing

    2017-08-17

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  4. Effect of the Earth's surface topography on the quasi-dynamic earthquake cycle

    Science.gov (United States)

    Ohtani, M.; Hirahara, K.

    2014-12-01

    For quasi-dynamic earthquake cycle simulations (ECSs) using BIEM, we have developed a method of calculating slip response function (SRF) in a homogeneous elastic medium with an arbitrary shaped Earth's surface topography (Ohtani and Hirahara, 2013; Paper1). In this study, we report the improvement in our method. Following Hok and Fukuyama (2011), we set the Earth's surface as a free surface, in addition to the fault interface, in a homogeneous full-space medium. Then, using the analytic solution in full-space, we can calculate the Earth's surface deformation, then the SRF change. The surface cell setting determines the accuracy. For reducing the computational amount, we use the different sizes of the surface region and its divided subfault cells, depending on the fault depth. Paper1 used the uniform size for surface cells. Here, we improved our method where the Earth's surface cells closer to the trench have the finer sizes for achieving more accuracy. With such numerical SRF, we performed the quasi-dynamic ECS on a model, where the Earth's surface is convex upward. Basically, with this topography, the slip behavior approaches the full-space case, from the half-space with flat surface case. This is because the distance from the Earth's surface to the fault becomes large. When we set two asperities with negative A - B in the positive A - B background at 10km and 35km depths, the two asperities rupture independently. The recurrence time of the shallow asperity is Trshalf = 34.95, Trsflat = 34.89, and Trsactual =32.82 years, when using analytic SRF in half-space, and numerical SRF with flat surface and with actual topography, respectively. For each case, the recurrence time of the deep asperity is Tr1_dhalf = 26.80, Tr1_dflat = 26.89, and Tr1_dactual =26.69 years. Thus, the shallower asperity is more affected by the Earth's surface topography than the deeper one, because the distance change rate from the surface to the fault is larger. On the other hand, when we set

  5. Development of ballistics identification—from image comparison to topography measurement in surface metrology

    Science.gov (United States)

    Song, J.; Chu, W.; Vorburger, T. V.; Thompson, R.; Renegar, T. B.; Zheng, A.; Yen, J.; Silver, R.; Ols, M.

    2012-05-01

    Fired bullets and ejected cartridge cases have unique ballistics signatures left by the firearm. By analyzing the ballistics signatures, forensic examiners can trace these bullets and cartridge cases to the firearm used in a crime scene. Current automated ballistics identification systems are primarily based on image comparisons using optical microscopy. The correlation accuracy depends on image quality which is largely affected by lighting conditions. Because ballistics signatures are geometrical micro-topographies by nature, direct measurement and correlation of the surface topography is being investigated for ballistics identification. A Two-dimensional and Three-dimensional Topography Measurement and Correlation System was developed at the National Institute of Standards and Technology for certification of Standard Reference Material 2460/2461 bullets and cartridge cases. Based on this system, a prototype system for bullet signature measurement and correlation has been developed for bullet signature identifications, and has demonstrated superior correlation results.

  6. The Characteristics of the Surface Topography of Excimer Laser Processed Al2O3 Ceramic

    Institute of Scientific and Technical Information of China (English)

    LIUYing; WENShi-zhu

    2004-01-01

    Surface of Al2O3 ceramic was processed by an excimer laser and the characteristics of topography were examined based on the application of thesystem(MEMS). It is indicated that the statistic pararueters of surface topography processed by the excimer laser have an obvioas regularity. The arithmeticmean value Ro and the root-mean square value Rq change with the changing of processing parameters in the same step and trend, and there is a quantitative relation between them. A simplified nuuIel is proposed for the excimer laser processing surface profile, whose results of the analysis and calculation agree basically with the experimental data. Furthermore, the surfaces processed by excimer laser are greatly fiat. Skewness root-mean-square value Zq changed little with the change of the technological parameters. The above characteristics depend on the processing principle of excimer laser, quite different from the cutting processing.

  7. Inducing Changes in Surface Topography of Copper Thin Films: Implications for Chemical Mechanical Polishing

    Science.gov (United States)

    Smith, C. L.; Mitchell, E. J. R.; Koeck, D. C.; Galloway, H. C.

    2000-10-01

    We have investigated the effects of pH and corrosion inhibitors on the surface of Cu films when exposed and polished in H_2O2 based slurries. Acetic Acid was used to buffer H_2O2 into the acidic range necessary to keep the corrosion inhibitor, benzotriazole (BTA) in solution. Surface characteristics were examined using atomic force microscopy and profilometry. Some conditions cause dramatic changes in the surface topography of the Cu films. The original small "grains" that give the film a uniform roughness, disappear and leave large crystalline appearing structures with terrace widths of up to 600 Åand heights of 200-1000 ÅWe believe these changes have strong implications for Chemical Mechanical Polishing processes used to manufacture integrated circuits and will discuss how these changes in surface topography may be occurring.

  8. Evaluation of a laser scanner for surface topography.

    Science.gov (United States)

    Hill, D L; Berg, D C; Raso, V J; Lou, E; Durdle, N G; Mahood, J K; Moreau, M J

    2002-01-01

    A Minolta VIVID 700 portable non-contact 3D laser scanner was evaluated on 15 subjects with idiopathic scoliosis. The 3D map was compared to two structured light pattern (lines and dots) techniques to determine the reliability, ease of use, speed, and quality. The parameters used for the clinical assessment of scoliosis were measured twice for the Minolta and light projection systems. The edges of the image and areas where occlusion typically occur were examined. The absolute distance in calculated depth between adjacent points was examined to determine errors. The Minolta system and the dot pattern produced regular grids of points. The light projection pattern produced an irregular grid, with more resolution along the video line and less resolution between projected lines, resulted in a somewhat jagged appearance of the surface map. The Minolta system was less sensitive to edge effects, occlusion, and sharp transitions of depth. The comparison of clinical parameters showed good results between repetitions but moderate results between techniques.

  9. How Surface Ice and Topography Affects the Atmospheric Circulation on Pluto

    Science.gov (United States)

    Soto, A.; Rafkin, S. C.; Michaels, T. I.

    2016-12-01

    We developed a new general circulation model (GCM) for Pluto in order to investigate how the heterogeneous distribution of nitrogen surface ice and large-scale topography affects Pluto's atmospheric circulation. Our Pluto GCM is built on the GFDL Flexible Modeling System finite volume dynamical core. The GCM physics routines include a gray model radiative-conductive scheme, a subsurface conduction scheme, and a nitrogen volatile cycle. The radiative-conductive scheme accounts for the CH4 and CO absorption bands at 2.3, 3.3, and 7.8 microns, including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle assumes vapor pressure equilibrium between the atmosphere and the surface. Images from the New Horizon mission to Pluto showed an extremely complex, heterogeneous distribution of surface ice, some of which was draped over substantial and variable topography. To produce such a complicated ice distribution, the atmospheric dynamics and the volatile transport must be more complex than expected prior to the New Horizons fly-by of Pluto. We use simulations where topography and surface ice distributions were added individually and in various combinations to individually quantify the contribution of topography, volatile cycle, and surface ice distributions to Pluto's atmospheric circulation. We show that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and the distribution of surface ice. As well, we demonstrate that explaining the expression of Pluto's volatile cycle on the surface ice distribution requires the consideration of atmospheric processes beyond the simple vapor pressure equilibrium arguments.

  10. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Brydone, Alistair S; Dominic Meek, R M [Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E, E-mail: alibrydone@gmail.com [Centre for Cell Engineering, Joseph Black Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2011-06-15

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 {mu}m wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  11. Effect of surface orientation on dissolution rates and topography of CaF2

    Science.gov (United States)

    Godinho, J. R. A.; Piazolo, S.; Evins, L. Z.

    2012-06-01

    This paper reports how during dissolution differences in surface chemistry affect the evolution of topography of CaF2 pellets with a microstructure similar to UO2 spent nuclear fuel. 3D confocal profilometry and atomic force microscopy were used to quantify retreat rates and analyze topography changes on surfaces with different orientations as dissolution proceeds up to 468 h. A NaClO4 (0.05 M) solution with pH 3.6 which was far from equilibrium relative to CaF2 was used. Measured dissolution rates depend directly on the orientation of the exposed planes. The {1 1 1} is the most stable plane with a dissolution rate of (1.2 ± 0.8) × 10-9 mol m-2 s-1, and {1 1 2} the least stable plane with a dissolution rate 33 times faster that {1 1 1}. Surfaces that expose both Ca and F atoms in the same plane dissolve faster. Dissolution rates were found to be correlated to surface orientation which is characterized by a specific surface chemistry and therefore related to surface energy. It is proposed that every surface is characterized by the relative proportions of the three reference planes {1 1 1}, {1 0 0} and {1 1 0}, and by the high energy sites at their interceptions. Based on the different dissolution rates observed we propose a dissolution model to explain changes of topography during dissolution. Surfaces with slower dissolution rate, and inferred lower surface energy, tend to form while dissolution proceeds leading to an increase of roughness and surface area. This adjustment of the surface suggests that dissolution rates during early stages of dissolution are different from the later stages. The time-dependency of this dynamic system needs to be taken into consideration when predicting long-term dissolution rates.

  12. Effects of food surface topography on phage-based magnetoelastic biosensor detection

    Science.gov (United States)

    Horikawa, Shin; Chai, Yating; Zhao, Ruiting; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    Phage-based magnetoelastic (ME) biosensors have proven useful in rapidly and inexpensively detecting food surface con- tamination. These biosensors are wireless, mass-sensitive biosensors and can be placed directly on food surfaces to detect the presence of target pathogens. Previously, millimeter-scale strip-shaped ME biosensors have been used to demonstrate direct detection of Salmonella Typhimurium on various fresh produce surfaces, including tomatoes, shell eggs, watermel- ons, and spinach leaves. Since the topography of these produce surfaces are different, and the biosensor must come into direct contact with Salmonella bacteria, food surfaces with large roughness and curvatures (e.g., spinach leaf surfaces) may allow the bacteria to avoid direct contact, thereby avoiding detection. The primary objective of this paper is, hence, to investigate the effects of food surface topography on the detection capabilities of the biosensors. Spinach leaf surfaces were selected as model surfaces, and detection experiments were conducted with differently sized biosensors (2 mm, 0.5 mm, and 150 μm in length). Spinach leaf roughness and curvatures of both adaxial (top) and abaxial (underside) surfaces were measured using a confocal laser scanning microscope. The experimental results showed that in spinach as the sen- sor was made smaller, the physical contact between the biosensors and bacteria were improved. Smaller sensors thereby enhance detection capabilities. When proper numbers of biosensors are used, micron-scale biosensors are anticipated to yield improved limits of detection over previously investigated millimeter-scale biosensors.

  13. School screening for scoliosis: can surface topography replace examination with scoliometer?

    Directory of Open Access Journals (Sweden)

    Chowanska Joanna

    2012-04-01

    Full Text Available Abstract Background Clinical examination with the use of scoliometer is a basic method for scoliosis detection in school screening programs. Surface topography (ST enables three-dimensional back assessment, however it has not been adopted for the purpose of scoliosis screening yet. The purpose of this study was to assess the usefulness of ST for scoliosis screening. Methods 996 girls aged 9 to 13 years were examined, with both scoliometer and surface topography. The Surface Trunk Rotation (STR was introduced and defined as a parameter allowing comparison with scoliometer Angle of Trunk Rotation taken as reference. Results Intra-observer error for STR parameter was 1.9°, inter-observer error was 0.8°. Sensitivity and specificity of ST were not satisfactory, the screening cut-off value of the surface topography parameter could not be established. Conclusions The study did not reveal advantage of ST as a scoliosis screening method in comparison to clinical examination with the use of the scoliometer.

  14. Exploiting Oceanic Residual Depth to Quantify Present-day Dynamic Topography at the Earth's Surface

    Science.gov (United States)

    Hoggard, Mark; White, Nicky

    2014-05-01

    Convective circulation within the mantle causes vertical motions at the Earth's surface. This dynamic topography is time dependent and occurs on wavelengths of 1000s km with maximum amplitudes of ±2 km. Convective simulation models have been used extensively to make predictions of dynamic topography and have thus far out-paced observational constraints. Here, the well-established relationship between seafloor subsidence and age is used to produce a global map of residual depth anomalies in the oceanic realm. Care is taken to remove other causes of topography, including an isostatic correction for sedimentary loading that takes compaction into account, a correction for variable oceanic crustal thickness, and lithospheric thickening with age away from mid-ocean ridge spreading centres. A dataset including over 1000 seismic reflection profiles and 300 modern wide-angle refraction experiments has been amassed, primarily on old ocean floor adjacent to the continents. Calculation of residual depth yields a map of present-day dynamic topography with amplitudes significantly larger than the errors associated with the corrections. One of the most interesting results occurs along the west coast of Africa, where two full 2000 km wavelengths of dynamic topography have been captured with amplitudes ±1 km that correlate well with the long-wavelength free air gravity anomaly. Comparison with predictive models reveal poor to moderate correlations. This is a direct result of the limited resolution of the mantle tomography models used to set-up convection simulations and also the currently poor understanding of viscosity structure within the Earth. It is hoped that this residual depth dataset should provide an excellent surface boundary constraint for future convective simulation.

  15. Impact of plasma chemistry versus titanium surface topography on osteoblast orientation.

    Science.gov (United States)

    Rebl, Henrike; Finke, Birgit; Lange, Regina; Weltmann, Klaus-Dieter; Nebe, J Barbara

    2012-10-01

    Topographical and chemical modifications of biomaterial surfaces both influence tissue physiology, but unfortunately little knowledge exists as to their combined effect. There are many indications that rough surfaces positively influence osteoblast behavior. Having determined previously that a positively charged, smooth titanium surface boosts osteoblast adhesion, we wanted to investigate the combined effects of topography and chemistry and elucidate which of these properties is dominant. Polished, machined and corundum-blasted titanium of increasing microroughness was additionally coated with plasma-polymerized allylamine (PPAAm). Collagen I was then immobilized using polyethylene glycol diacid and glutar dialdehyde. On all PPAAm-modified surfaces (i) adhesion of human MG-63 osteoblastic cells increased significantly in combination with roughness, (ii) cells resemble the underlying structure and melt with the surface, and (iii) cells overcome the restrictions of a grooved surface and spread out over a large area as indicated by actin staining. Interestingly, the cellular effects of the plasma-chemical surface modification are predominant over surface topography, especially in the initial phase. Collagen I, although it is the gold standard, does not improve surface adhesion features comparably.

  16. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.

    Science.gov (United States)

    Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip

    2016-04-06

    The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.

  17. Estimation of measurement uncertainty caused by surface gradient for a white light interferometer.

    Science.gov (United States)

    Liu, Mingyu; Cheung, Chi Fai; Ren, Mingjun; Cheng, Ching-Hsiang

    2015-10-10

    Although the scanning white light interferometer can provide measurement results with subnanometer resolution, the measurement accuracy is far from perfect. The surface roughness and surface gradient have significant influence on the measurement uncertainty since the corresponding height differences within a single CCD pixel cannot be resolved. This paper presents an uncertainty estimation method for estimating the measurement uncertainty due to the surface gradient of the workpiece. The method is developed based on the mathematical expression of an uncertainty estimation model which is derived and verified through a series of experiments. The results show that there is a notable similarity between the predicted uncertainty from the uncertainty estimation model and the experimental measurement uncertainty, which demonstrates the effectiveness of the method. With the establishment of the proposed uncertainty estimation method, the uncertainty associated with the measurement result can be determined conveniently.

  18. Makyoh-topography studies of mirrorlike surfaces: toward a quantitative understanding

    Science.gov (United States)

    Riesz, Ferenc

    1998-08-01

    A quantitative approach to the Makyoh-topography image formation mechanism is presented. General relations are given on the optical settings. Then, optical ray-tracing simulations of an isolated defect (hillock or depression) and a periodic (sinusoidal) surface are presented for different optical settings. Optimum working conditions are established, and general features of the imaging are pointed out. Supporting experimental images of semiconductor samples are shown.

  19. Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar

    Science.gov (United States)

    Fu, Lee-Lueng; Rodriguez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  20. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  1. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    Science.gov (United States)

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  2. Approaches for Controlled Ag(+) Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content.

    Science.gov (United States)

    Sukhorukova, I V; Sheveyko, A N; Shvindina, N V; Denisenko, E A; Ignatov, S G; Shtansky, D V

    2017-02-01

    Silver is the most famous bactericidal element known from ancient times. Its antibacterial and antifungal effects are typically associated with the Ag ionization and concentration of Ag(+) ions in a bacterial culture. Herein we thoroughly studied the influence of surface topography and roughness on the rate of Ag(+) ion release. We considered two types of biocompatible and bioactive TiCaPCON-Ag films with 1 and 2 at. % of Ag and nine types of Ti surfaces with an average roughness varying in the range from 5.4 × 10(-2) to 12.6 μm and different topographic features obtained through polishing, sandblasting, laser treatment, and pulsed electrospark deposition. It is demonstrated that the Ag(+) ion release rates do not depend on the Ag content in the films as the main parameter, and it is other factors, such as the state of Ag agglomeration, surface topography and roughness, as well as kinetics of surface oxidation, that play a critical role. The obtained results clearly show a synergistic effect of the Ag content in the film and surface topography and roughness on Ag(+) ion release. By changing the surface topographical features at a constant content of bactericidal element, we showed that the Ag(+) ion release can be either accelerated by 2.5 times or almost completely suppressed. Despite low Ag(+) ion concentration in physiological solution (<40 ppb), samples with specially fabricated surface reliefs (flakes or holes) showed a pronounced antibacterial effect already after 3 h of immersion in E. coli bacterial culture. Thus, our results open up new possibilities for the production of cost-effective, scalable, and biologically safe implants with pronounced antibacterial characteristics for future applications in the orthopedic field.

  3. The influence of surface characteristics, topography, and continentality on mountain permafrost in British Columbia

    Directory of Open Access Journals (Sweden)

    A. Hasler

    2014-09-01

    Full Text Available Thermal offset and surface offset are terms that describe the deviation of the mean annual ground temperature from the mean annual air temperature. These offsets are controlled by surface characteristics and topo-climatic factors on a micro- and meso-scales. Macro-climatic conditions may, however, influence the effectiveness of the responsible processes. Existing knowledge on surface- and topography-specific offsets is not easily transferable and limits the applicability of empirical permafrost distribution models over large areas with macro-climatic gradients. In this paper we describe surface and thermal offsets derived from distributed measurements at seven field sites in British Columbia. Key findings are (i a surprisingly small variation of the surface offsets between different surface types and small thermal offsets in general (excluding wetlands and peat, (ii a clear influence of the micro-topography at wind exposed sites (snow cover erosion, (iii a north–south difference of the surface offset of 4 °C in near-vertical bedrock and of 1.5–3 °C on open (no canopy gentle slopes, (iv only small macro-climatic differences caused by the reverse influence of snow cover thickness and annual air temperature amplitude. These findings suggest, that empirical permafrost models based on topo-climatic variables may be applicable across regions with significant macro-climatic differences.

  4. Influence of Implant Surface Topography on Primary Stability in a Standardized Osteoporosis Rabbit Model Study

    Directory of Open Access Journals (Sweden)

    Hiroshi Oue

    2015-03-01

    Full Text Available Evaluating primary stability is important to predict the prognosis of dental implant treatment. Primary stability is decreased in a low bone density site such as osteoporosis. However, it is difficult to apply in small animal and the effect of the different implant surface topography for the primary stability at low bone density site has not yet fully been investigated. The purpose of the present study was to evaluate the influence of implant surface topography on primary stability in a standardized osteoporosis animal model. Six rabbits underwent ovariectomy and administrated glucocorticoid to induce an osteoporosis model. Sham-operations were performed in additional six rabbits. Implants with machined or oxidized-surfaces were inserted into the femur epiphyses and insertion torque (IT and implant stability quotient (ISQ were measured. In sham model, the IT and ISQ did not differ significantly between the both implant. However, the IT value of oxidized-surface implant was significantly higher than that of the machined implant in the osteoporosis model. Meanwhile, ISQ did not significantly differ between the machined and oxidized-surfaced implants. In conclusion, the IT of implants is higher with rough than with smooth surfaces but that there are no differences in ISQ value between different surfaces in a standardized osteoporosis bone reduced rabbit model.

  5. Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling

    Directory of Open Access Journals (Sweden)

    Mary V. Graham

    2014-01-01

    Full Text Available Bacterial surface fouling is problematic for a wide range of applications and industries, including, but not limited to medical devices (implants, replacement joints, stents, pacemakers, municipal infrastructure (pipes, wastewater treatment, food production (food processing surfaces, processing equipment, and transportation (ship hulls, aircraft fuel tanks. One method to combat bacterial biofouling is to modify the topographical structure of the surface in question, thereby limiting the ability of individual cells to attach to the surface, colonize, and form biofilms. Multiple research groups have demonstrated that micro and nanoscale topographies significantly reduce bacterial biofouling, for both individual cells and bacterial biofilms. Antifouling strategies that utilize engineered topographical surface features with well-defined dimensions and shapes have demonstrated a greater degree of controllable inhibition over initial cell attachment, in comparison to undefined, texturized, or porous surfaces. This review article will explore the various approaches and techniques used by researches, including work from our own group, and the underlying physical properties of these highly structured, engineered micro/nanoscale topographies that significantly impact bacterial surface attachment.

  6. Determination of surface roughness and topography of dental resin-based nanocomposites using AFM analysis.

    Science.gov (United States)

    Lainović, Tijana; Vilotić, Marko; Blažić, Larisa; Kakaš, Damir; Marković, Dubravka; Ivanišević, Aljoša

    2013-02-01

    The aim of this study was to determine surface roughness and topography of polished dental resin-based nanocomposites. Four representative dental resin-based nanocomposites were tested in the study: two nanohybrids (Filtek Z550 and Tetric EvoCeram) and two nanofilled (Filtek Ultimate Body and Filtek Ultimate Translucent); and two reference materials: one microfilled (Gradia Direct) and one microhybrid (Filtek Z250). Polymerized cylindrical specimens (4 mm x 2 mm) were polished with multi-step polishing system- Super Snap. Immediately after the polishing, topography of each specimen was examined by Veeco di CP-II Atomic Force Microscope. Specimen's surface has been scanned in 6 points in contact mode with CONT20A-CP tips. 1 Hz scan rate and 256 × 256 resolution were used to obtain topography on a 90 µm × 90 µm scanning area. Measured topography data were processed by Image Processing and Data Analysis v2.1.15 software. Following parameters were compared among specimens: average roughness and maximum peak-to-valley distance. All of the tested materials had similar average surface roughness after finishing and polishing procedure. The lowest values occurred in the material Filtek Ultimate Body, and the highest in the Filtek Z550. When interpreting maximum peak-to-valley distance the larger differences in values (up to 100%) occurred in Filtek Z550, Filtek Z250 and Filtek Ultimate Body, which is a result of the deep polishing channels and tracks. Type, size, distribution of fillers and filler loading in tested materials, didn't influence average roughness values, but had an impact on maximum peak-to-valley distance values.

  7. Simulation of Ultra-Long Wavelength interferometer in the Earth orbit and on the lunar surface

    CERN Document Server

    Zhang, Mo; Yan, Yihua

    2014-01-01

    We present simulations for interferometer arrays in Earth orbit and on the lunar surface to guide the design and optimization of space-based Ultra-Long Wavelength missions, such as those of China's Chang'E program. We choose parameters and present simulations using simulated data to identify inter-dependencies and constraints on science and engineering parameters. A regolith model is created for the lunar surface array simulation, the results show that the lunar regolith will have an undesirable effect on the observation. We estimate data transmission requirement, calculate sensitivities for both cases, and discuss the trade-off between brightness temperature sensitivity and angular resolution for the Earth orbit array case.

  8. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    Science.gov (United States)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  9. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    Science.gov (United States)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  10. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yun [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Eung-Sam [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Jeon, Gumhye [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Choi, Kwan Yong, E-mail: kchoi@postech.ac.kr [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Jin Kon, E-mail: jkkim@postech.ac.kr [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF{sub 4} and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF{sub 4} plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic.

  11. Correlation of patellar tracking pattern with trochlear and retropatellar surface topographies.

    Science.gov (United States)

    Ahmed, A M; Duncan, N A

    2000-12-01

    The study was aimed to test the hypothesis that in the knee extension range 100 to 30 deg, the patellar "out-of-plane" tracking pattern is controlled by the passive restraint provided by the topographic interaction of the patellofemoral contacting surfaces. The out-of-plane tracking pattern, i.e., the pattern of patellar displacements not in the plane of knee extension/flexion, consists of translation in the medial-lateral direction, and rotations about the anterior-posterior axis (spin) and the proximal-distal axis (tilt). Using 15 fresh-frozen knees subjected to extensor moment magnitudes comparable to those in the "static-lifting" activity (foot-ground reaction = 334 N), the patellar displacements were measured using a calibrated six-degree-of-freedom electromechanical goniometer. The topographies of the trochlear and retropatellar surfaces were then measured using a calibrated traveling dial-gage arrangement and the same coordinate system used for the displacement measurements. Three indices were defined to quantify particular natural features of the three-dimensional topographies that are expected to control the patellar displacements. Correlation of the indices with their corresponding displacements showed that topographic interaction was significant in the control of all three displacements. However, for patellar spin, unlike for the other two displacements, the direction of the active quadriceps tension vector was also a significant controlling factor. Patellar medial-lateral translation was found to be controlled dominantly by the trochlear topography, while retropatellar topography also had a significant role in the control of the other two displacements.

  12. Effect of collision cascade density on swelling and surface topography of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Titov, A.I. [State Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Karaseov, P.A., E-mail: platon.karaseov@rphf.spbstu.ru [State Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Karabeshkin, K.V.; Belyakov, V.S.; Arkhipov, A.V. [State Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Kucheyev, S.O. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2013-11-15

    We study the surface topography and swelling of GaN irradiated at room temperature with 1.3 keV/amu F, P, PF{sub 2}, and PF{sub 4} ions. These irradiation conditions reveal the effect of the collision cascade density on ion-induced swelling and roughening of the GaN surface. Results show that, for F and P ions that create dilute collision cascades, swelling dominates erosion. In the case of molecular ion irradiation, characterized by larger cascade densities, surface erosion dominates swelling. For the conditions studied, surface roughness scales with the thickness of surface amorphous layers when these layers are thinner than about 20 nm.

  13. Control of Cellular Arrangement by Surface Topography Induced by Plastic Deformation

    Directory of Open Access Journals (Sweden)

    Aira Matsugaki

    2016-06-01

    Full Text Available The anisotropic microstructure of bone tissue is crucial for appropriate mechanical and biological functions of bone. We recently revealed that the construction of oriented bone matrix is established by osteoblast alignment; there is a quite unique correlation between cell alignment and cell-produced bone matrix orientation governed by the molecular interactions between material surface and cells. Titanium and its alloys are one of the most attractive materials for biomedical applications. We previously succeeded in controlling cellular arrangement using the dislocations of a crystallographic slip system in titanium single crystals with hexagonal close-packing (hcp crystal lattice. Here, we induced a specific surface topography by deformation twinning and dislocation motion to control cell orientation. Dislocation and deformation twinning were introduced into α-titanium polycrystals in compression, inducing a characteristic surface structure involving nanometer-scale highly concentrated twinning traces. The plastic deformation-induced surface topography strongly influenced osteoblast orientation, causing them to align preferentially along the slip and twinning traces. This surface morphology, exhibiting a characteristic grating structure, controlled the localization of focal adhesions and subsequent elongation of stress fibers in osteoblasts. These results indicate that cellular responses against dislocation and deformation twinning are useful for controlling osteoblast alignment and the resulting bone matrix anisotropy.

  14. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology.

    Science.gov (United States)

    Biemond, J Elizabeth; Aquarius, René; Verdonschot, Nico; Buma, Pieter

    2011-05-01

    Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants. The friction coefficients of two newly developed E-beam produced surface topographies were in vitro compared with sandblasted E-beam and titanium plasma sprayed controls. Bone ingrowth (direct bone-implant contact) was determined by implanting the samples in the femoral condyles of 6 goats for a period of 6 weeks. Friction coefficients of the new structures were comparable to the titanium plasma sprayed control. The direct bone-implant contact was 23.9 and 24.5% for the new surface structures. Bone-implant contact of the sandblasted and titanium plasma sprayed control was 18.2 and 25.5%, respectively. The frictional and bone ingrowth properties of the E-beam produced surface structures are similar to the plasma-sprayed control. However, since the maximal bone ingrowth had not been reached for the E-beam structures during the relatively short-term period, longer-term follow-up studies are needed to assess whether the E-beam structures lead to a better long-term performance than surfaces currently in use, such as titanium plasma spray coating.

  15. White light interferometer with color CCD for 3D-surface profiling of microsystems

    Science.gov (United States)

    Upputuri, Paul K.; Pramanik, Manojit; Nandigana, Krishna M.; Kothiyal, Mahendra P.

    2015-03-01

    White light interferometry (WLI) is a state-of-the-art technique for high resolution full-filed 3-D surface profiling of Microsystems. However, the WLI is rather slow, because the number of frames to be recorded and evaluated is large compared to the single wavelength phase shifting interferometry. In this paper, we combine white light interferometer with a single-chip color CCD camera which makes the measurement faster, simpler, and cost-effective. The red-bluegreen (RGB) color interferogram stored in a computer is then decomposed into its individual components and corresponding phase maps for red, green, and blue components are calculated independently. The usefulness of the technique is demonstrated on reflective micro-scale-samples.

  16. Surface Response to Regional Uplift of Madagascar Reveals Short Wavelength Dynamic Topography

    Science.gov (United States)

    Stephenson, S.; White, N.

    2016-12-01

    The physiography of Madagascar is characterized by high elevation but low relief topography with 42% of the landscape at an elevation grgeater than 500 m. Eocene marine limestones crop out at an elevation of 400 m, extensive low relief erosion surfaces capped by laterites occur at elevations of up to 2 km, and longitudinal river profiles are disequilibrated. Together, these observations suggest that Madagascar underwent regional uplift in Neogene times. Inverse modeling of drainage networks suggests that regional uplift is diachronous and has occurred on wavelengths of 1000 km. The existence of deeply incised river channels together with low-temperature thermochronologic measurements (i.e. AFT, AHe) implies that erosion occurred in response to regional Neogene uplift. Admittance analysis of long wavelength free-air gravity and topography shows that admittance, Z = 45 ± 5 mGal/km. The history of Neogene volcanism and a lack of significant tectonic shortening both suggest that uplift is dynamically supported. Here we present a suite of U-Th dates of emergent coral reef deposits from northern Madagascar, whose margins are sometimes considered `stable'. Elevation of these coeval coral reefs decreases from 7.2 m at the northern tip of Madagascar to sea level 100 km to the south. The existence of a spatial gradient suggests that differential vertical motions occurred during Late Quaternary times. These results raise significant questions about the reliability both of emergent coral reefs as global sea-level markers and the length-scale of variations in dynamic topography.

  17. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, Teklu K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leung, Lai-Yung Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-22

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation, slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Overall the local

  18. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    Science.gov (United States)

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    2017-02-01

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation, slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Overall the local method

  19. Measuring anterior trunk deformity in scoliosis: development of asymmetry parameters using surface topography (a pilot study

    Directory of Open Access Journals (Sweden)

    Patrick Knott

    2016-10-01

    Full Text Available Abstract Background Clinicians who assess and treat patients for scoliosis typically use parameters that are all visible from the posterior view. Radiographs assess the internal spinal deformity, but do not directly evaluate body shape, either posterior or anterior. This is problematic, as the patient is most concerned about the way they appear in the mirror. An objective set of anterior measurements is needed to help quantify the anterior asymmetry that is present in scoliosis. Methods The design of this system of assessment was developed as a consensus of thinking from four points of view. A spine surgeon provided the musculoskeletal structural perspective. A plastic surgeon specializing in breast reconstruction provided the aesthetic and soft tissue perspective. A surface topography researcher provided the imaging perspective, and a scoliosis patient provided the self-perception and emotional perspective. Using an iterative process, a series of potential measurement parameters using surface topography measurements were considered, debated, and ultimately selected to be part of a system of measurement that provides an overall assessment of anterior trunk asymmetry. Results An anterior surface topography scan in the relaxed, standing position was taken of the scoliosis patient. The computer provides a 3D topographical model that is used to complete measurements that can be combined to achieve an Anterior Aesthetic Deformity Score. Shoulder parameters, including shoulder height difference and shoulder slope difference, make up 40 % of the total score. Breast asymmetry, including nipple height difference and sternal notch-to-nipple distance, make up 30 % of the total score. Waist asymmetry makes up the final 30 % of the score, providing an objective and quantifiable measure of anterior trunk deformity. Conclusions These measurements provide an objective, systematic evaluation of anterior trunk asymmetry that can be used in the assessment of

  20. Absolute surface metrology with a phase-shifting interferometer for incommensurate transverse spatial shifts.

    Science.gov (United States)

    Bloemhof, E E

    2014-02-10

    We consider the detailed implementation and practical utility of a novel absolute optical metrology scheme recently proposed for use with a phase-shifting interferometer (PSI). This scheme extracts absolute phase differences between points on the surface of the optic under test by differencing phase maps made with slightly different transverse spatial shifts of that optic. These absolute phase (or height) differences, which for single-pixel shifts are automatically obtained in the well-known Hudgin geometry, yield the underlying absolute surface map by standard wavefront reconstruction techniques. The PSI by itself maps surface height only relative to that of a separate reference optic known or assumed to be flat. In practice, even relatively high-quality (and expensive) transmission flats or spheres used to reference a PSI are flat or spherical only to a few dozen nanometers peak to valley (P-V) over typical 4 in. apertures. The new technique for removing the effects of the reference surface is in principle accurate as well as simple, and may represent a significant advance in optical metrology. Here it is shown that transverse shifts need not match the pixel size; somewhat counterintuitively, the single-pixel spatial resolution of the PSI is retained even when transverse shifts are much coarser. Practical considerations for shifts not necessarily commensurate with pixel size, and broader applications, are discussed.

  1. Roughness measurement of hole processing surface for mold steel using white light interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Chul; Kim, Kyeong Suk [Chosun Univ., Gwangju (Korea, Republic of)

    2013-02-15

    In this study, NIMAX material has been processed using the three dimensional measuring instrument and white light interferometer. They were tested to roundness and surface roughness and results are as follows: As for a cutting characteristic, it indicated that F4 showed a lower result than 2F showed due to the high hardness of the material and showed a good result when spindle rotation speed and tool feed were low. As for the measurement of roundness through 3 Dimensional measuring machine, it indicated that 4F showed a good result like the condition of cutting component and that roundness showed a good result when spindle rotation speed of 1,700 rpm and tool feed speed of 85 mm/min were applied. As for the surface roughness of processing surface, Surface roughness showed better 4F than 2F and conditions of spindle rotation speed 1,700 rpm, tool feed rate 55 mm/min showed good results in the Ra 0.4025 {mu}m.

  2. A three dimensional Dirichlet-to-Neumann map for surface waves over topography

    Science.gov (United States)

    Nachbin, Andre; Andrade, David

    2016-11-01

    We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.

  3. Modeling of reflection-type laser-driven white lighting considering phosphor particles and surface topography.

    Science.gov (United States)

    Lee, Dong-Ho; Joo, Jae-Young; Lee, Sun-Kyu

    2015-07-27

    This paper presents a model of blue laser diode (LD)-based white lighting coupled with a yellow YAG phosphor, for use in the proper design and fabrication of phosphor in automotive headlamps. First, the sample consisted of an LD, collecting lens, and phosphor was prepared that matches the model. The light distribution of the LD and the phosphor were modeled to investigate an effect of the surface topography and phosphor particle properties on the laser-driven white lighting systems by using the commercially available optical design software. Based on the proposed model, the integral spectrum distribution and the color coordinates were discussed.

  4. Effect of Bleaching on Color Change and Surface Topography of Composite Restorations

    Directory of Open Access Journals (Sweden)

    Gunjan Pruthi

    2010-01-01

    Full Text Available This study was conducted to determine the effect of 15% carbamide peroxide bleaching agent on color change and surface topography of different composite veneering materials (Filtek Z350 (3M ESPE, Esthet X (Dentsply India, and Admira (Voco, Germany. Methods. 30 samples were fabricated for evaluation of color change using CIELAB color system and Gonioreflectometer (GK 311/M, ZEISS. 45 disc-shaped specimens were made for evaluation of surface topography after bleaching (Nupro White Gold; Dentsply using SEM. Statistical analysis. One way ANOVA and Multiple comparison tests were used to analyze the data. Statistical significance was declared if the P value was .05 or less. Results and conclusion. All the specimens showed significant discoloration (ΔE>3.3 after their immersion in solutions representing food and beverages. The total color change after bleaching as compared to baseline color was significant in Filtek Z350 (P=.000 and Esthet X (P=.002, while it was insignificant for Admira (P=.18. Esthet X showed maximum surface roughness followed by Admira and Filtek Z350. Bleaching was effective in reducing the discoloration to a clinically acceptable value in all the three groups (ΔE<3.3.

  5. Variability of the temporal bone surface's topography: implications for otologic surgery

    Science.gov (United States)

    Lecoeur, Jérémy; Noble, Jack H.; Balachandran, Ramya; Labadie, Robert F.; Dawant, Benoit M.

    2012-02-01

    Otologic surgery is performed for a variety of reasons including treatment of recurrent ear infections, alleviation of dizziness, and restoration of hearing loss. A typical ear surgery consists of a tympanomastoidectomy in which both the middle ear is explored via a tympanic membrane flap and the bone behind the ear is removed via mastoidectomy to treat disease and/or provide additional access. The mastoid dissection is performed using a high-speed drill to excavate bone based on a pre-operative CT scan. Intraoperatively, the surface of the mastoid component of the temporal bone provides visual feedback allowing the surgeon to guide their dissection. Dissection begins in "safe areas" which, based on surface topography, are believed to be correlated with greatest distance from surface to vital anatomy thus decreasing the chance of injury to the brain, large blood vessels (e.g. the internal jugular vein and internal carotid artery), the inner ear, and the facial nerve. "Safe areas" have been identified based on surgical experience with no identifiable studies showing correlation of the surface with subsurface anatomy. The purpose of our study was to investigate whether such a correlation exists. Through a three-step registration process, we defined a correspondence between each of twenty five clinically-applicable temporal bone CT scans of patients and an atlas and explored displacement and angular differences of surface topography and depth of critical structures from the surface of the skull. The results of this study reflect current knowledge of osteogenesis and anatomy. Based on two features (distance and angular difference), two regions (suprahelical and posterior) of the temporal bone show the least variability between surface and subsurface anatomy.

  6. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    Science.gov (United States)

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-05-24

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm).

  7. Characterization of a dispersion-controlled approach to surface profilometry on wafers using a white-light interferometer

    Science.gov (United States)

    Taudt, Ch.; Augenstein, A.; Baselt, T.; Assmann, H.; Greiner, A.; Koch, E.; Hartmann, P.

    2015-05-01

    In this paper an alternative approach to surface profilometry based on a combined time-spectral domain white-light interferometer is shown. Within the setup a reference interferometer arm contains of a fixed mirror and a material with known dispersion while the object arm is aligned to a sample e.g. a wafer surface. Under the usage of a translation stage different height profiles in the nm - regime are emulated and measured accordingly with the interferometer. The signal analysis and calculation of interesting parameters is performed by a fitting algorithm. This algorithm is based on theoretical considerations on a dispersion affected interferometer which are also shown in the work. The experimental configuration allows a measurement range of 12 μm while a theoretical average resolution of 28 nm is possible. In the results it is observable that the measurement of height changes on a surface with an RMS error of 18 nm at the maximum is possible. In conclusion sources of error and further improvement possibilities are discussed.

  8. Metrological Aspects of Surface Topographies Produced by Different Machining Operations Regarding Their Potential Functionality

    Directory of Open Access Journals (Sweden)

    Żak Krzysztof

    2017-06-01

    Full Text Available This paper presents a comprehensive methodology for measuring and characterizing the surface topographies on machined steel parts produced by precision machining operations. The performed case studies concern a wide spectrum of topographic features of surfaces with different geometrical structures but the same values of the arithmetic mean height Sa. The tested machining operations included hard turning operations performed with CBN tools, grinding operations with Al2O3 ceramic and CBN wheels and superfinish using ceramic stones. As a result, several characteristic surface textures with the Sa roughness parameter value of about 0.2 μm were thoroughly characterized and compared regarding their potential functional capabilities. Apart from the standard 2D and 3D roughness parameters, the fractal, motif and frequency parameters were taken in the consideration.

  9. Effects of Asymmetrical Micro Electrode Surface Topography to AC Electroosmosis flow Rate

    CERN Document Server

    Hong-Yuan, Jiang; Zhen-Xiu, Hou; Yu-Kun, Ren; Yong-Jun, Sun

    2010-01-01

    AC Electroosmosis (ACEO) has many advantages such as low power consumption, non-moving parts, and easy to integrate etc., so it is widely used for low concentration microfluid manipulation in low frequency range. Classical ACEO theory assumes that electric double layer (EDL) is the main cause of electric field induced flow, and gives electric-flow field coupling equations for ACEO flow rate. But the calculation data usually are tens times faster than the experimental velocities. In this paper, electrode surface topography is included to solve ACEO flow rate. With electrode surface roughness as the characteristic parameter, equivalent EDL model is set up to modify the classical EDL model. The relationship between flow rate and electrode surface roughness is studied. Experiment results agree with the simulation very well, proving the feasibility of equivalent EDL model.

  10. Influence of surface topography on friction, film breakdown and running-in in the mixed lubrication regime

    NARCIS (Netherlands)

    Lugt, P.M.; Severt, R.W.M.; Fogelström, J.; Tripp, J.H.

    2001-01-01

    The influence of surface topography on the lubricant film build-up ability and the friction characteristics of potential rolling bearing surfaces has been investigated by experiments on two-disc rigs. Traction-friction torque measurements were made for a variety of surface combinations, together wit

  11. FFT and Wavelet-Based Analysis of the Influence of Machine Vibrations on Hard Turned Surface Topographies

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With hard turning, which is an attractive alternative to existing grinding processes, surface quality is of great importance. Signal processing techniques were used to relate workpiece surface topography to the dynamic behavior of the machine tool. Spatial domain frequency analyses based on fast Fourier transform were used to analyze the tool behavior. Wavelet reconstruction was used for profile filtering. The results show that machine vibration remarkably affects the surface topography at small feed rates, but has negligible effect at high feed rates. The analyses also show how to control the surface quality during hard turning.

  12. Modification of three dimensional topography of the machined KDP crystal surface using wavelet analysis method

    Science.gov (United States)

    Wang, H. X.; Zong, W. J.; Sun, T.; Liu, Q.

    2010-06-01

    The wavelet analysis method has been extensively employed to analyze the surface structures and evaluate the surface roughness. In this work, however, the wavelet analysis method was introduced to decompose and reconstruct the sampled surface profile signals in the cutting direction that achieved by SPDT (single point diamond turning) operation, and the surface profile signals in tool feeding direction were reconstructed with the approximate harmonic functions directly. And moreover, the orthogonal design method, i.e. the combination design of general rotary method, was resorted to model the variations of the independent frequency and amplitude of different simulated harmonic signals in the cutting and tool feeding directions. As expected resultantly, a novel 3D surface topography modeling solution was established, which aims to predict and modify the finished KDP (potassium dihydrogen phosphate or KH 2PO 4) crystal surfaces. The validation tests were carried out finally under different cutting conditions, and the collected average surface roughness in any case was compared with the corresponding value as predicted. The results indicated the experimental data were well consistent with the predictions, and only an average relative error of 11.4% occurred in predicting the average surface roughness.

  13. Evaluating the Surface Topography of Pyrolytic Carbon Finger Prostheses through Measurement of Various Roughness Parameters

    Directory of Open Access Journals (Sweden)

    Andrew Naylor

    2016-04-01

    Full Text Available The articulating surfaces of four different sizes of unused pyrolytic carbon proximal interphalangeal prostheses (PIP were evaluated though measuring several topographical parameters using a white light interferometer: average roughness (Sa; root mean-square roughness (Sq; skewness (Ssk; and kurtosis (Sku. The radii of the articulating surfaces were measured using a coordinate measuring machine, and were found to be: 2.5, 3.3, 4.2 and 4.7 mm for proximal, and 4.0, 5.1, 5.6 and 6.3 mm for medial components. ANOVA was used to assess the relationship between the component radii and each roughness parameter. Sa, Sq and Ssk correlated negatively with radius (p = 0.001, 0.001, 0.023, whilst Sku correlated positively with radius (p = 0.03. Ergo, the surfaces with the largest radii possessed the better topographical characteristics: low roughness, negative skewness, high kurtosis. Conversely, the surfaces with the smallest radii had poorer topographical characteristics.

  14. Evaluating the Surface Topography of Pyrolytic Carbon Finger Prostheses through Measurement of Various Roughness Parameters.

    Science.gov (United States)

    Naylor, Andrew; Talwalkar, Sumedh C; Trail, Ian A; Joyce, Thomas J

    2016-01-01

    The articulating surfaces of four different sizes of unused pyrolytic carbon proximal interphalangeal prostheses (PIP) were evaluated though measuring several topographical parameters using a white light interferometer: average roughness (Sa); root mean-square roughness (Sq); skewness (Ssk); and kurtosis (Sku). The radii of the articulating surfaces were measured using a coordinate measuring machine, and were found to be: 2.5, 3.3, 4.2 and 4.7 mm for proximal, and 4.0, 5.1, 5.6 and 6.3 mm for medial components. ANOVA was used to assess the relationship between the component radii and each roughness parameter. Sa, Sq and Ssk correlated negatively with radius (p = 0.001, 0.001, 0.023), whilst Sku correlated positively with radius (p = 0.03). Ergo, the surfaces with the largest radii possessed the better topographical characteristics: low roughness, negative skewness, high kurtosis. Conversely, the surfaces with the smallest radii had poorer topographical characteristics.

  15. Engaging the Applications Community of the future Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Srinivasan, M.; Andral, A.; Dejus, M.; Hossain, F.; Peterson, C.; Beighley, E.; Pavelsky, T.; Chao, Y.; Doorn, B.; Bronner, E.; Houpert, L.

    2015-04-01

    NASA and the French space agency, CNES, with contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UKSA) are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies. The proposed Surface Water and Ocean Topography (SWOT) mission will have the capability to make observations of surface water (lakes, rivers, wetland) heights and measurements of ocean surface topography with unprecedented spatial coverage, temporal sampling, and spatial resolution compared to existing technologies. These data will be useful for monitoring the hydrologic cycle, flooding, and characterizing human impacts on a changing environment. The applied science community is a key element in the success of the SWOT mission, demonstrating the high value of the science and data products in addressing societal issues and needs. The SWOT applications framework includes a working group made up of applications specialists, SWOT science team members, academics and SWOT Project members to promote applications research and engage a broad community of potential SWOT data users. A defined plan and a guide describing a program to engage early adopters in using proxies for SWOT data, including sophisticated ocean and hydrology simulators, an airborne analogue for SWOT (AirSWOT), and existing satellite datasets, are cornerstones for the program. A user survey is in development and the first user workshop was held in 2015, with annual workshops planned. The anticipated science and engineering advances that SWOT will provide can be transformed into valuable services to decision makers and civic organizations focused on addressing global disaster risk reduction initiatives and potential science-based mitigation activities for water resources challenges of the future. With the surface water measurements anticipated from SWOT, a broad range of applications can inform inland and coastal managers and marine operators of

  16. Laser surface treatment and the resultant hierarchical topography of Ti grade 2 for biomedical application

    Science.gov (United States)

    Kuczyńska, Donata; Kwaśniak, Piotr; Marczak, Jan; Bonarski, Jan; Smolik, Jerzy; Garbacz, Halina

    2016-12-01

    Modern prosthesis often have a complex structure, where parts of an implant have different functional properties. This gradient of functional properties means that local surface modifications are required. Method presented in this study was develop to functionalize prefabricated elements with original roughness obtained by conventional treatments used to homogenize and clean surface of titanium implants. Demonstrated methodology results in multimodal, periodic grooved topography with roughness in a range from nano- to micrometers. The modified surfaces were characterized in terms of shape, roughness, wettability, surface energy and chemical composition. For this purpose, the following methods were used: scanning electron microscopy, optical profilometry, atomic force microscopy, contact angle measurements and X-ray photoelectron spectroscopy. Protein adsorption studies were conducted to determine the potential biomedical application of proposed method. In order to estimate the intensity and way of the protein adsorption process on different titanium surfaces, XPS studies and AFM measurements were performed. The systematic comparison of surface states and their osseointegration tendency will be useful to evaluate suitability of presented method as an single step treatment for local surface functionalization of currently produced implantable devices.

  17. Verification of Geosat sea surface topography in the Gulf Stream extension with surface drifting buoys and hydrographic measurements

    Science.gov (United States)

    Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.

    1990-03-01

    Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.

  18. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  19. Examination and Research of the Surface Topography of Ultrasonic Vibration Honing Nd-Fe-B

    Institute of Scientific and Technical Information of China (English)

    Xi-jing ZHU; Zhi-meng LU; Jian-qing WANG; Quan CHENG

    2010-01-01

    The mechanism of ultrasonic vibration honing Nd-Fe-B has been briefly elaborated after the introduction of the strategic significanoe of processing Nd-Fe-B.Based on the formation principle of Scanning Electrvnic NTicroscope (SFM),and at the exarrnination with the aid of SEM to the ultrasonic vibration honing Nd-Fe-B materials superficial microscopic topography,the paper discusses the new processing mechanism according to the SFM examination picture.The research indicates that as a result of supersonic high frequency vibration,the path of the abrasion extends at the same time,and the supersonic cavitation effect fonts the intense shock-wave,impacting Nd-Fe-B material's internal surface,providing the supersonic energy for the superficial abrasive dust's elimination,which directly explain tat the honing processing efficiency is entranced,and the processing surface rwghness is high.

  20. A novel wide-range precision instrument for measuring three-dimensional surface topography

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-dong; CHEN Yu-rong; XIE Tie-bang

    2008-01-01

    We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.

  1. Defect-free Perpendicular Diblock Copolymer Films: The Synergistic Effect of Surface Topography and Chemistry

    CERN Document Server

    Man, Xingkun; Tang, Jiuzhou; Yan, Dadong; Andelman, David

    2016-01-01

    We propose a direct self-assembly mechanism towards obtaining defect-free perpendicular lamellar phases of diblock copolymer (BCP) thin films. In our numerical study, a thin BCP film having a flat top surface is casted on a uni-directional corrugated solid substrate. The substrate is treated chemically and has a weak preference toward one of the two BCP components. Employing self-consistent field theory (SCFT), we find that there is an enhanced synergy between two substrate characteristics: its topography (geometrical roughness) combined with a weak surface preference. This synergy produces the desired perpendicular lamellar phase with perfect inplane ordering. Defect-free BCP lamellar phases are reproducible for several random initial states, and are obtained for a range of substrate roughness and chemical characteristics, even for a uni-directional multi-mode substrate roughness. Our theoretical study suggests possible experiments that will explore the interplay between uni-directional substrate corrugation...

  2. Robust evaluation of statistical surface topography parameters using focus-variation microscopy

    Science.gov (United States)

    Grossman, E. N.; Gould, M.; Mujica-Schwann, N. P.

    2016-09-01

    Spatial bandwidth limitations frequently introduce large biases into the estimated values of rms roughness and autocorrelation length that are extracted from topography data on random rough surfaces. The biases can be particularly severe for focus-variation microscopy data because of the reduced lateral resolution (and therefore dynamic range) inherent in the technique. In this paper, we describe a measurement protocol—something similar to a deconvolution algorithm—that greatly reduces these biases. The measurement protocol is developed for the case of surfaces that are isotropic, and whose topography displays an autocovariance function that is exponential, with a single autocorrelation length. The protocol is first validated against Monte Carlo-generated mock surfaces of this form that have been filtered so as to simulate the lateral resolution and field-of-view limits of a particular commercial focus-variation microscope. It is found that accurate values of roughness and autocorrelation length can be extracted over a four octave range in autocorrelation length by applying the protocol, whereas errors without applying the protocol are a minimum of 30% even at the absolute optimum autocorrelation length. Then, microscopy data on eleven examples of rough, outdoor building materials are analyzed using the protocol. Even though the samples were not in any way selected to conform to the model’s assumptions, we find that applying the protocol yields extracted values of roughness and autocorrelation length for each surface that are highly consistent among datasets obtained at different magnifications (i.e. datasets obtained with different spatial bandpass limits). Publication of the US Government, not subject to copyright.

  3. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    Science.gov (United States)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by

  4. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    Science.gov (United States)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  5. Optics of the average normal cornea from general and canonical representations of its surface topography.

    Science.gov (United States)

    Navarro, Rafael; González, Luis; Hernández, José L

    2006-02-01

    Generally, the analysis of corneal topography involves fitting the raw data to a parametric geometric model that includes a regular basis surface, plus some sort of polynomial expansion to adjust the more irregular residual component. So far, these parametric models have been used in their canonical form, ignoring that the observation (keratometric) coordinate system is different from corneal axes of symmetry. Here we propose, instead, to use the canonical form when the topography is referenced to the intrinsic corneal system of coordinates, defined by its principal axes of symmetry. This idea is implemented using the general expression of an ellipsoid to fit the raw data given by the instrument. Then, the position and orientation of the three orthogonal semiaxes of the ellipsoid, which define the intrinsic Cartesian system of coordinates for normal corneas, can be identified by passing to the canonical form, by standard linear algebra. This model has been first validated experimentally obtaining significantly lower values for rms fitting error as compared with previous standard models: spherical, conical, and biconical. The fitting residual was then adjusted by a Zernike polynomial expansion. The topographies of 123 corneas were analyzed obtaining their radii of curvature, conic constants, Zernike coefficients, and the direction and position of the optical axis of the ellipsoid. The results were compared with those obtained using the standard models. The general ellipsoid model provides more negative values for the conic constants and lower apex radii (more prolate shapes) than the standard models applied to the same data. If the data are analyzed using standard models, the resulting mean shape of the cornea is consistent with previous studies, but when using the ellipsoid model we find new interesting features: The mean cornea is a more prolate ellipsoid (apical power 50 D), the direction of the optical axis is about 2.3 degrees nasal, and the residual term shows

  6. EAARL Coastal Topography-Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

    Science.gov (United States)

    Fredericks, Xan; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Klipp, E.S.; Nagle, D.B.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired post-Hurricane Jeanne (September 2004 hurricane) on October 1, 2004. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the

  7. EAARL coastal topography and imagery–Western Louisiana, post-Hurricane Rita, 2005: First surface

    Science.gov (United States)

    Bonisteel-Cormier, Jamie M.; Wright, Wayne C.; Fredericks, Alexandra M.; Klipp, Emily S.; Nagle, Doug B.; Sallenger, Asbury H.; Brock, John C.

    2013-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, Virginia. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beachface, acquired post-Hurricane Rita on September 27-28 and October 2, 2005. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL

  8. EAARL-B coastal topography: eastern New Jersey, Hurricane Sandy, 2012: first surface

    Science.gov (United States)

    Wright, C. Wayne; Fredericks, Xan; Troche, Rodolfo J.; Klipp, Emily S.; Kranenburg, Christine J.; Nagle, David B.

    2014-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida. This project provides highly detailed and accurate datasets for a portion of the New Jersey coastline beachface, acquired pre-Hurricane Sandy on October 26, and post-Hurricane Sandy on November 1 and November 5, 2012. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar system, known as the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), was used during data acquisition. The EAARL-B system is a raster-scanning, waveform-resolving, green-wavelength (532-nm) lidar designed to map nearshore bathymetry, topography, and vegetation structure simultaneously. The EAARL-B sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, down-looking red-green-blue (RGB) and infrared (IR) digital cameras, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL-B platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL-B system. The resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in

  9. EAARL Coastal Topography-Assateague Island National Seashore, 2008: First Surface

    Science.gov (United States)

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the

  10. EAARL Coastal Topography-Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Louisiana barrier islands, acquired post-Hurricane Gustav (September 2008 hurricane) on September 6 and 7, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using

  11. Optics of the average normal cornea from general and canonical representations of its surface topography

    Science.gov (United States)

    Navarro, Rafael; González, Luis; Hernández, José L.

    2006-02-01

    Generally, the analysis of corneal topography involves fitting the raw data to a parametric geometric model that includes a regular basis surface, plus some sort of polynomial expansion to adjust the more irregular residual component. So far, these parametric models have been used in their canonical form, ignoring that the observation (keratometric) coordinate system is different from corneal axes of symmetry. Here we propose, instead, to use the canonical form when the topography is referenced to the intrinsic corneal system of coordinates, defined by its principal axes of symmetry. This idea is implemented using the general expression of an ellipsoid to fit the raw data given by the instrument. Then, the position and orientation of the three orthogonal semiaxes of the ellipsoid, which define the intrinsic Cartesian system of coordinates for normal corneas, can be identified by passing to the canonical form, by standard linear algebra. This model has been first validated experimentally obtaining significantly lower values for rms fitting error as compared with previous standard models: spherical, conical, and biconical. The fitting residual was then adjusted by a Zernike polynomial expansion. The topographies of 123 corneas were analyzed obtaining their radii of curvature, conic constants, Zernike coefficients, and the direction and position of the optical axis of the ellipsoid. The results were compared with those obtained using the standard models. The general ellipsoid model provides more negative values for the conic constants and lower apex radii (more prolate shapes) than the standard models applied to the same data. If the data are analyzed using standard models, the resulting mean shape of the cornea is consistent with previous studies, but when using the ellipsoid model we find new interesting features: The mean cornea is a more prolate ellipsoid (apical power 50 D), the direction of the optical axis is about 2.3° nasal, and the residual term shows three

  12. Tailoring surface topographies of polymers by using ion beam: Recent advances and the potential applications in biomedical and tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Terumitsu, E-mail: teru_hasebe@sakura.med.toho-u.ac.jp [Department of Radiology, Toho University, Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-8741 (Japan); Center for Science of Environment, Resources and Energy, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Nagashima, So; Yoshimoto, Yukihiro; Hotta, Atsushi; Suzuki, Tetsuya [Center for Science of Environment, Resources and Energy, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)

    2012-07-01

    Ion beam technique has recently been actively employed to create various patterns on the surface of polymers. In this paper, we highlight some of the recent advances in tailoring surface topographies of polymers by using ion beam and present a brief discussion on the potential applications in biomedical and tissue engineering.

  13. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining.

    Science.gov (United States)

    Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj

    2015-03-01

    Drilling through the bone is a complicated process in orthopaedic surgery. It involves human as a part of the work so it needs better perfection and quality which leads to the sustainability. Different studies were carried out on this curious topic and some interesting results were obtained, which help the orthopaedic surgeon on the operation table. Major problems faced during bone drilling were crack initiation, thermal necrosis and burr formation. The surface topography of the bone is an indirect indication for the sustainability of bone joint. In this study, a comparison is made between conventional and a loose abrasive unconventional drilling technique for the surface characterization of the bone. The attempt has been made to show the feasibility of bone drilling with non-conventional technique and its aftereffect on the bone structure. The burr formation during conventional bone drilling was found to be more which leads to problems such as crack initiation and thermal necrosis. Scanning electrode microscope and surface roughness tester were used to characterize the surface of the fine drilled bone specimen and the results testified quite better surface finish and least crack formation while drilling with loose abrasive unconventional technique.

  14. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  15. Mixed-Mode Fracture Behavior and Related Surface Topography Feature of a Typical Sandstone

    Science.gov (United States)

    Ren, L.; Xie, L. Z.; Xie, H. P.; Ai, T.; He, B.

    2016-08-01

    The geo-mechanical properties of reservoirs, especially the morphology of the rock surface and the fracture properties of rocks, are of great importance in the modeling and simulation of hydraulic processes. To better understand these fundamental issues, five groups of mixed-mode fracture tests were conducted on sandstone using edge-cracked semi-circular bend specimens. Accordingly, the fracture loads, growth paths and fracture surfaces for different initial mixities of the mixed-mode loadings from pure mode I to pure mode II were then determined. A surface topography measurement for each rough fracture surface was conducted using a laser profilometer, and the fractal properties of these surfaces were then investigated. The fracture path evolution mechanism was also investigated via optical microscopy. Moreover, the mixed-mode fracture strength envelope and the crack propagation trajectories of sandstone were theoretically modeled using three widely accepted fracture criteria (i.e., the MTS, MSED and MERR criterions). The published test results in Hasanpour and Choupani (World Acad Sci Eng Tech 41:764-769, 2008) for limestone were also theoretically investigated to further examine the effectiveness of the above fracture criteria. However, none of these criteria could accurately predict the fracture envelopes of both sandstone and limestone. To better estimate the fracture strength of mixed-mode fractures, an empirical maximum tensile stress (EMTS) criterion was proposed and found to achieve good agreement with the test results. Finally, a uniformly pressurized fracture model was simulated for low pressurization rates using this criterion.

  16. Progress toward unprecedented imaging of stellar surfaces with the Navy precision optical interferometer

    Science.gov (United States)

    Jorgensen, A. M.; Mozurkewich, D.; Schmitt, H. R.; van Belle, G. T.; Hutter, D. J.; Clark, J.; Armstrong, J. T.; Baines, E. K.; Newman, K.; Landavazo, M.; Sun, B.; Restaino, S. R.

    2014-07-01

    We present progress on the stellar surface imaging project recently funded by the U. S. National Science Foun- dation. With the unique layout of the Navy Precision Optical Interferometer (NPOI) in combination with data acquisition and fringe-tracking upgrades we expect to be able to substantially exceed the imaging fidelity and resolution of any other interferometer in operation. The project combines several existing advances and infras- tructure at NPOI with modest enhancements. For optimal imaging there are several requirements that should be fulfilled. The observatory should be capable of measuring visibilities on a wide range of baseline lengths and orientations, providing complete Fourier (UV) coverage in a short period of time. It should measure visibility amplitudes with good SNR on all baselines as critical imaging information is often contained in low-amplitude visibilities. It should measure the visibility phase on all baselines. The technologies which can achieve this are the NPOI Y-shaped array with (nearly) equal spacing between telescopes and an ability for rapid configuration. Placing 6-telescopes in a row makes it possible to measure visibilities into the 4th lobe of the visibility function. By arranging the 12 available telescopes carefully we can switch, every few days, between 6 different 6-station chains which provide symmetric coverage in the Fourier plane without moving any telescopes, only by moving beam relay mirrors. The 6-station chains are important to achieve the highest imaging resolution, and switching rapidly between station chains provides uniform coverage. Coherent integration techniques can be used to obtain good SNR on very small visibilities. Coherently integrated visibilities can be used for imaging with standard radio imaging packages such as AIPS. The commissioning of one additional station, the use of new data acqui- sition hardware and fringe tracking algorithms are the enhancements which are making this project a reality

  17. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs

    Science.gov (United States)

    Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.

    2016-10-01

    A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.

  18. Morphology, surface topography and optical studies on electron beam evaporated MgO thin films

    Indian Academy of Sciences (India)

    A Chowdhury; J Kumar

    2006-10-01

    Electron beam evaporated thin films of MgO powder synthesized by burning of magnesium ribbon in air and sol–gel technique are studied for their microstructure (SEM), surface topography (AFM), and optical transmission behaviour (UV-visible spectroscopy). MgO thin films are shown to be either continuous or have mesh like morphology. The bar regions are believed to be of magnesium hydroxide formed due to absorption of moisture. Their AFM images exhibit columnar/pyramidal/truncated cone structure, providing support to the 3D Stranski–Krastanov model for film growth. Further, they are shown to have high transmittance (∼90%) in the wavelength range 400–600 nm, but absorb radiation below 350 nm substantially giving signature of a band transition.

  19. Using 3D Printers to Model Earth Surface Topography for Increased Student Understanding and Retention

    Science.gov (United States)

    Thesenga, David; Town, James

    2014-05-01

    In February 2000, the Space Shuttle Endeavour flew a specially modified radar system during an 11-day mission. The purpose of the multinational Shuttle Radar Topography Mission (SRTM) was to "obtain elevation data on a near-global scale to generate the most complete high-resolution digital topographic database of Earth" by using radar interferometry. The data and resulting products are now publicly available for download and give a view of the landscape removed of vegetation, buildings, and other structures. This new view of the Earth's topography allows us to see previously unmapped or poorly mapped regions of the Earth as well as providing a level of detail that was previously unknown using traditional topographic mapping techniques. Understanding and appreciating the geographic terrain is a complex but necessary requirement for middle school aged (11-14yo) students. Abstract in nature, topographic maps and other 2D renderings of the Earth's surface and features do not address the inherent spatial challenges of a concrete-learner and traditional methods of teaching can at times exacerbate the problem. Technological solutions such as 3D-imaging in programs like Google Earth are effective but lack the tactile realness that can make a large difference in learning comprehension and retention for these young students. First developed in the 1980's, 3D printers were not commercial reality until recently and the rapid rise in interest has driven down the cost. With the advent of sub US1500 3D printers, this technology has moved out of the high-end marketplace and into the local office supply store. Schools across the US and elsewhere in the world are adding 3D printers to their technological workspaces and students have begun rapid-prototyping and manufacturing a variety of projects. This project attempted to streamline the process of transforming SRTM data from a GeoTIFF format by way of Python code. The resulting data was then inputted into a CAD-based program for

  20. Longevity and thermo-rheological structure of old lithospheres : key constraints form surface and Moho topography.

    Science.gov (United States)

    François, Thomas; Burov, Evgueni

    2014-05-01

    Surface topography and Moho are the most robust observables that have been insufficiently exploited for containing the rheological and thermal structure and hence for understanding the longevity and eventual destruction of cratons and "tectons". Craton longevity has been often explained by their buoyancy and analysed by testing gravitational stability of cratonic mantle "keels" as a function of the hypothesized plate thickness and thermo-rheological structure. Destruction of some cratons (e.g. North China) and data indicating little if no buoyancy of some tectons (e.g., Arabian shield) suggest that buoyancy is not the only factor of their stability, and previous studies show that their mechanical strength is as important as buoyancy. The upper bounds on this strength are provided by flexural studies demonstrating that Te values (equivalent elastic thickness) in cratons are highest in the world and may probably reach 150 km. Yet, the sensitivity of common methods is poor for Te values above 80 km while the lower bounds on the strength and the equivalent elastic thickness of cratons are still matter of debate. How this strength is partitioned between crust and mantle, and which set of rheological parameters pertain, remain major unknowns. We show that smooth low topography and "frozen" heterogeneous crustal structure of cratons represent the missing constraints for understanding of craton longevity. The cratonic crust is characterized by isostatically misbalanced density heterogeneities, suggesting that the lithosphere has to be strong enough to keep them "frozen" through the time without producing major gravitational instabilities and topographic undulations. Hence, to constrain thermo-rheological properties of cratons one should first investigate the stability of their topography and internal structure (constrained from seismic and gravity data). Our thermo-mechanical numerical experiments accounting for free surface boundary condition demonstrate that craton

  1. Effects of topography and surface roughness in analyses of landscape structure –

    Directory of Open Access Journals (Sweden)

    S. Hoechstetter

    2008-02-01

    Full Text Available Topography and relief variability play a key role in ecosystem functioning and structuring. However, the most commonly used concept to relate pattern to process in landscape ecology, the so-called patch-corridor-matrix model, perceives the landscape as a planimetric surface. As a consequence, landscape metrics, used as numerical descriptors of the spatial arrangement of landscape mosaics, generally do not allow for the examination of terrain characteristics and may even produce erroneous results, especially in mountainous areas. This brief methodological study provides basic approaches to include relief properties into large-scale landscape analyses, including the calculation of standard landscape metrics on the basis of “true” surface geometries and the application of roughness parameters derived from surface metrology. The methods are tested for their explanatory power using neutral landscapes and simulated elevation models. The results reveal that area and distance metrics possess a high sensitivity to terrain complexity, while the values of shape metrics change only slightly when surface geometries are considered for their calculation. In summary, the proposed methods prove to be a valuable extension of the existing set of metrics mainly in “rough” landscape sections, allowing for a more realistic assessment of the spatial structure

  2. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    Science.gov (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.

  3. A Novel Low-cost, Ka-band, High Altitude, Multi-Baseline Unmanned Aerial Vehicle Sensor for Surface Water Ocean Topography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NRC Decadal Survey recommended the Surface Water Ocean Topography (SWOT) satellite mission to address terrestrial fresh water hydrology and physical oceanography...

  4. White light interferometer: applications in research and industry

    Science.gov (United States)

    Bandyopadhyay, Sujit

    2015-06-01

    Applications of interferometer are countless both in the research and commercial world. Laser sources offer precise measurements of relative path difference between two interfering beams. An exciting example is LIGO (laser Interferometer for Gravitational Observatory), which is aiming to resolve length change as small as 10-19 m over a 4 km length for detection of gravitational waves. However, laser is a disadvantage for microscopic imaging and surface topography applications usually required in semiconductor industry. A different approach for microscopy is to use white light in place of laser. White light due to its limited temporal coherence offers a multitude of benefits for imaging applications. An immediate benefit from white light is the sharp localisation of interference fringe that makes the 3D topography construction or OCT (Optical Coherence Topography) realisable using a Scanning White Light Interferometer (SWLI) imager. In Mirau Mode, SWLI performs high resolution imaging; whereas in Michelson mode Fourier Transform Spectroscopy (FTS) is realised. SWLI can easily be modified into PUPS (Pupil Plane SWLI) for Ellipsometry. Superimposing Michelson Interferometer known as VISAR (Velocity Interferometer System for Any reflector) can form interference fringes even in presence of wide angle light scattered from a moving illuminated object. This paper describes work undertaken at Nanometrics (UK) on simulation of SWLI fringes including high Numerical Aperture (NA) applications, thin film characterisation, OCT generation and Zemax modelling of compact dispersion-free vibration-immune Fourier-Transformed spectrometer. VISAR as a modified Mach-Zehnder Interferometer is also discussed based on the work at Rutherford-Appleton laboratory (UK).

  5. Landcover Change, Land Surface Temperature, Surface Albedo and Topography in the Plateau Region of North-Central Nigeria

    Directory of Open Access Journals (Sweden)

    Shakirudeen Odunuga

    2015-04-01

    Full Text Available This study assessed the change in some environmental parameters in the Plateau region of North-Central Nigeria (Barakinladi, Jos, and Kafachan environs using the nexus of landcover change, land surface temperature, surface albedo, and topography. The study employed both remote sensing and statistical techniques for the period between 1986 and 2014 to analyze the dynamics between and within these environmental variables. In Barakinladi, the built up landcover change is highest (increasing from 39.53% to 47.59% between 1986 and 2014; LST ranges from 19.09 °C to 38.59 °C in 1986 and from 22.68 °C and 41.68 °C in 2014; and the albedo ranges between 0.014 and 0.154 in 1986 and 0.017 and 0.248 in 2014. In Jos, the built-up landcover occupied 34.26% in 1986 and 36.67% in 2014; LST values range between 20.83 °C and 41.33 °C in 1986 and between 21.61 °C and 42.64 °C in 2014; and the albedo ranges between 0.003 and 0.211 in 1986 and 0.15 and 0.237 in 2014. In Kafachan area, the built up landcover occupied 32.95% in 1986 and 39.01% in 2014. Urbanization and agricultural activities, including animal grazing, were responsible for the gradual loss in vegetation and increasing average LST and albedo. The results also revealed that changing landcover and topography have a relationship with surface albedo and land surface temperature, thereby impacting significantly on ecosystem services delivered by the natural system.

  6. Time-varying surface electromyography topography as a prognostic tool for chronic low back pain rehabilitation.

    Science.gov (United States)

    Hu, Yong; Kwok, Jerry Weilun; Tse, Jessica Yuk-Hang; Luk, Keith Dip-Kei

    2014-06-01

    Nonsurgical rehabilitation therapy is a commonly used strategy to treat chronic low back pain (LBP). The selection of the most appropriate therapeutic options is still a big challenge in clinical practices. Surface electromyography (sEMG) topography has been proposed to be an objective assessment of LBP rehabilitation. The quantitative analysis of dynamic sEMG would provide an objective tool of prognosis for LBP rehabilitation. To evaluate the prognostic value of quantitative sEMG topographic analysis and to verify the accuracy of the performance of proposed time-varying topographic parameters for identifying the patients who have better response toward the rehabilitation program. A retrospective study of consecutive patients. Thirty-eight patients with chronic nonspecific LBP and 43 healthy subjects. The accuracy of the time-varying quantitative sEMG topographic analysis for monitoring LBP rehabilitation progress was determined by calculating the corresponding receiver-operating characteristic (ROC) curves. Physiologic measure was the sEMG during lumbar flexion and extension. Patients who suffered from chronic nonspecific LBP without the history of back surgery and any medical conditions causing acute exacerbation of LBP during the clinical test were enlisted to perform the clinical test during the 12-week physiotherapy (PT) treatment. Low back pain patients were classified into two groups: "responding" and "nonresponding" based on the clinical assessment. The responding group referred to the LBP patients who began to recover after the PT treatment, whereas the nonresponding group referred to some LBP patients who did not recover or got worse after the treatment. The results of the time-varying analysis in the responding group were compared with those in the nonresponding group. In addition, the accuracy of the analysis was analyzed through ROC curves. The time-varying analysis showed discrepancies in the root-mean-square difference (RMSD) parameters between the

  7. Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity

    Science.gov (United States)

    Takemura, Shunsuke; Furumura, Takashi; Maeda, Takuto

    2015-04-01

    Based on 3-D finite difference method simulations of seismic wave propagation, we examined the processes by which the complex, scattered high-frequency (f > 1 Hz) seismic wavefield during crustal earthquakes is developed due to heterogeneous structure, which includes small-scale velocity inhomogeneity in subsurface structure and irregular surface topography on the surface, and compared with observations from dense seismic networks in southwestern Japan. The simulations showed the process by which seismic wave scattering in the heterogeneous structure develops long-duration coda waves and distorts the P-wave polarization and apparent S-wave radiation pattern. The simulations revealed that scattering due to irregular topography is significant only near the station and thus the topographic scattering effects do not accumulate as seismic waves propagate over long distances. On the other hand, scattering due to velocity inhomogeneity in the subsurface structure distorts the seismic wavefield gradually as seismic waves propagate. The composite model, including both irregular topography and velocity inhomogeneity, showed the combined effects. Furthermore, by introducing irregular topography, the effects of seismic wave scattering on both body and coda waves were stronger than in the model with velocity inhomogeneity alone. Therefore, to model the high-frequency seismic wavefield, both topography and velocity inhomogeneity in the subsurface structure should be taken into account in the simulation model. By comparing observations with the simulations including topography, we determined that the most preferable small-scale velocity heterogeneity model for southwestern Japan is characterized by the von Kármán power spectral density function with correlation distance a = 5 km, rms value of fluctuation ɛ = 0.07 and decay order κ = 0.5. We also demonstrated that the relative contribution of scattering due to the topography of southwestern Japan is approximately 12 per cent.

  8. Effect of Polishing Systems on Surface Roughness and Topography of Monolithic Zirconia.

    Science.gov (United States)

    Goo, C L; Yap, Auj; Tan, Kbc; Fawzy, A S

    2016-01-01

    This study evaluated the effect of different chairside polishing systems on the surface roughness and topography of monolithic zirconia. Thirty-five monolithic zirconia specimens (Lava PLUS, 3M ESPE) were fabricated and divided into five groups of seven and polished with the following: Group 1 (WZ)-Dura white stone followed by Shofu zirconia polishing kit; Group 2 (SZ)-Shofu zirconia polishing kit; Group 3 (CE)-Ceramiste porcelain polishers; Group 4 (CM)-Ceramaster porcelain polishers; and Group 5 (KZ)-Komet ZR zirconia polishers. All specimens were ground with a fine-grit diamond bur prior to polishing procedures to simulate clinical finishing. Baseline and post-polishing profilometric readings were recorded and delta Ra values (difference in mean surface roughness before and after polishing) were computed and analyzed using one-way analysis of variance and Scheffe post hoc test (ppolished specimens were acquired. Delta Ra values ranged from 0.146 for CE to 0.400 for KZ. Delta Ra values for KZ, WZ, and SZ were significantly greater than for CE. Significant differences in delta Ra values were also observed between KZ and CM. The SEM images obtained were consistent with the profilometric findings. Diamond-impregnated polishing systems were more effective than silica carbide-impregnated ones in reducing the surface roughness of ground monolithic zirconia.

  9. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (100 km2). Surface area and height errors were found to be minimal (area SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  10. Surface topography and contact mechanics of dry and wet human skin

    Directory of Open Access Journals (Sweden)

    Alexander E. Kovalev

    2014-08-01

    Full Text Available The surface topography of the human wrist skin is studied by using optical and atomic force microscopy (AFM methods. By using these techniques the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for the dry and wet skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of elastic bodies. The big increase in friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as result of the increase in the contact area arising from the attraction of capillary bridges. Finally, we demonstrated that the real contact area can be properly defined only when a combination of both AFM and optical methods is used for power spectrum calculation.

  11. Spectral analysis of quasi-stationary sea surface topography from GRACE mission

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zizhan; LU Yang

    2005-01-01

    During the last two decades satellite altimetry has offered an abundance of measurements of the sea surface resulting in the improvement of global mean sea surface height (MSSH) and marine geoid determination. On the other hand, with the launching of new generation gravity satellites, some high accuracy long-wavelength gravity models are available. These breakthroughs give us a great opportunity for new estimation of quasi-stationary sea surface topography (QSST). In this paper, the new gravity model GGM01C derived from GRACE mission is briefly presented, and a new global high precision and high-resolution QSST is determined based on the GGM01C model and the global MSSH. The spectral features of the QSST estimated by GGM01C and EGM96 gravity model to degree/order 200 are discussed by spectral analysis. As a result, the QSST is mainly composed of long waves, medium waves partially and short waves scarcely, its power spectral structures are different between the zonal direction and the meridional direction, there are great differences between the two models, which maybe explain why the ocean currents derived from the two gravity models by Tapley show different patterns.

  12. Adhesion forces in liquid media: effect of surface topography and wettability.

    Science.gov (United States)

    Serro, A P; Colaço, R; Saramago, B

    2008-09-15

    This work was motivated by the unexpected values of adhesion forces measured between an atomic force microscopy tip and the hydrophobic surface of ultra-high-molecular-weight polyethylene. Two types of samples with different roughness but similar wettability were tested. Adhesion forces of similar magnitude were obtained in air and in polar liquids (water and Hank's Balanced Salt Solution, a saline solution) with the rougher sample. In contrast, the adhesion forces measured on the smoother sample in air were much higher than those measured in water or in the aqueous solution. Those experimental results suggested the presence of nanobubbles at the interface between the rough sample and the polar liquids. The existence of the nanobubbles was further confirmed by the images of the interface obtained in noncontact tapping mode. The adhesion forces measured in a nonpolar liquid (hexadecane) were small and of the same order of magnitude for both samples and their values were in good agreement with the predictions of the London-Hamaker approach for the van der Waals interactions. Finally, we correlate the appearance of nanobubbles with surface topography. The conclusion of this work is that adhesion forces measured in aqueous media may be strongly affected by the presence of nanobubbles if the surface presents topographical accidents.

  13. Topography and Atomic Structure Investigations Of (100 Cleavage Surface of In4Se3 Layered Crystals

    Directory of Open Access Journals (Sweden)

    P.V. Galiy

    2014-06-01

    Full Text Available The atomic microstructure and crystallography of (100 surfaces of In4Se3 layered crystals obtained by cleavage in situ were studied by the methods of scanning tunneling and atomic force microscopies (STM, AFM and low energy electron diffraction (LEED for reflection. The obtained results indicate the existence of periodic corrugated structures on the cleavage surface. It is shown that (100 In4Se3 cleavage surface is structurally stable and doesn't undergo reconstruction in a wide temperature range of 77-295 K. The anisotropy of thermal expansion along the main crystallography directions in the (100 In4Se3 cleavage plane has been shown. The evaluation of the two-dimensional lattice constant in the cleavage (100 surface plane of orthorhombic In4Se3 layered crystal was done. The calculated values of the lattice constants in consequence of LEED study, such as b  11,475 Å and c  3,734 Å, coincide well with those obtained by the AFM and STM (b  13-14 Å and c  4 Å, and correlate, within the errors limits, with the corresponding values obtained by X-ray diffraction (b  12,308(1 Å and c  4,0810(5 Å. Besides, the obtained results of cleavage surface structure studies show the correctness of filtering application concerning topography images and indicate the adequacy of the model used for calculations of the cleavage (100 surfaces lattice constants of In4Se3 in accordance with the LEED results. The influence of the LEED experimental module structure on the results has been considered.

  14. AGING EFFECTS OF REPEATEDLY GLOW-DISCHARGED POLYETHYLENE - INFLUENCE ON CONTACT-ANGLE, INFRARED-ABSORPTION, ELEMENTAL SURFACE-COMPOSITION, AND SURFACE-TOPOGRAPHY

    NARCIS (Netherlands)

    VANDERMEI, HC; STOKROOS, [No Value; SCHAKENRAAD, JM; BUSSCHER, HJ

    1991-01-01

    Aging effects of repeatedly oxygen glow-discharged polyethylene surfaces were determined by water contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron (XPS) spectroscopy, and surface topography determination. Glow-discharged surfaces were stored at room temperature and in liqu

  15. Simulation of surface topography of big aspheric fabrication by ultra-precision diamond turning based on tool swing feeding

    Science.gov (United States)

    Yao, Honghui; Li, Zengqiang; Sun, Tao

    2014-08-01

    In the respect of ultra-precision manufacturing of axisymmetric surface, the machine tool with tool swing feeding which has less interpolation error sources compared to the conventional ultra-precision diamond turning machine tool with T-structureis worth studying.Therefore,based on the dynamic simulation modeling and multi-body dynamics theory,in this paper, we establish the control model,and tool path for Ultra-precision machine.Then we got the model for surface topography with differentinput parameters like spindle speed, feedrate, tool parameters and so on. Taking the spherical optics part with diameter of 300 mm, for example, we input the process parameters and get its surface topography, then evaluate its surface quality by surface roughness value (Ra) and surface shape accuracy(PV) .

  16. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    Science.gov (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  17. The Micro Fourier Transform Interferometer (muFTIR) - A New Field Spectrometer for Acquisition of Infrared Data of Natural Surfaces

    Science.gov (United States)

    Hook, Simon J.

    1995-01-01

    A lightweight, rugged, high-spectral-resolution interferometer has been built by Designs and Prototypes based on a set of specifications provided by the Jet Propulsion Laboratory and Dr. J. W. Salisbury (Johns Hopkins University). The instrument, the micro Fourier Transform Interferometer (mFTIR), permits the acquisition of infrared spectra of natural surfaces. Such data can be used to validate low and high spectral resolution data acquired remotely from aircraft and spacecraft in the 3-5 mm and 8-14 mm atmospheric window. The instrument has a spectral resolutions of 6 wavenumbers, weighs 16 kg including batteries and computer, and can be operated easily by two people in the field. Laboratory analysis indicates the instrument is spectrally calibrated to better than 1 wavenumber and the radiometric accuracy is <0.5 K if the radiances from the blackbodies used for calibration bracket the radiance from the sample.

  18. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    Science.gov (United States)

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  19. Preparation of La-Ti Composite Oxide Nanocrystal and Examination of Their Surface Topography with Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With sol-gel method, nanometer La-Ti composite oxide was successfully prepared at a low temperature (750~800℃) using polyethylene glycol as dispersant. By means of atomic force microscope, the surface pattern, particle size distribution, and specific surface area were studied. The compound particle surface appears as a smooth sheet, the mean size of the compound is 25.38 nm. On the specific surface, the particle erects at a height of 4.69 nm. The surface area is 58.90 nm2. The La-Ti composite oxide nanocrystal prefers to narrow and even particle size distribution and the homogeneity of surface topography.

  20. Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape

    Directory of Open Access Journals (Sweden)

    Claudia Hilbert

    2012-07-01

    Full Text Available This study explores ICESat/GLAS waveform data in Thuringian Forest, a low mountain range located in central Germany. Lidar remote sensing has been proven to directly derive tree height as a key variable of forest structure. The GLAS signal is, however, very sensitive to surface topography because of the large footprint size. This study therefore focuses on forests in a mountainous area to assess the potential of GLAS data to derive terrain elevation and tree height. The work enhances the empirical knowledge about the interaction between GLAS waveform and landscape structure regarding a special temperate forest site with a complex terrain. An algorithm to retrieve tree height directly from GLA01 waveform data is proposed and compared to an approach using GLA14 Gaussian parameters. The results revealed that GLAS height estimates were accurate for areas with a slope up to 10° whereas waveforms of areas above 15° were problematic. Slopes between 10–15° have been found to be a critical crossover. Further, different waveform shape types and landscape structure classes were developed as a new possibility to explore the waveform in its whole structure. Based on the detailed analysis of some waveform examples, it could be demonstrated that the waveform shape can be regarded as a product of the complex interaction between surface and canopy structure. Consequently, there is a great variety of waveform shapes which in turn considerably hampers GLAS tree height extraction in areas with steep slopes and complex forest conditions.

  1. Stability and Surface Topography Evolution in Nanoimprinted Polymer Patterns under a Thermal Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yifu; Qi, Jerry H.; Alvine, Kyle J.; Ro, Hyun W.; Ahn, Dae Up; Lin-Gibson, Sheng; Douglas, Jack F.; Soles, Christopher L.

    2010-09-06

    Nanostructures created in polymer films by nanoimprint lithography are subject to large stresses, both those from the imprinting processes as well as stresses arising from the intrinsic thermodynamic instabilities. These stresses can induce nanostructure deformation that can compromise the intended function of the imprinted pattern. Controlling these stresses, and thus the stability of the imprinted patterns, is a key scientific issue for this technology. The requirement of film stability against dewetting requires the use of entangled polymer films, which necessitates an understanding of complex viscoelastic response of these materials to large stresses. Here we investigate the evolution of the surface topography of nanoimprinted patterns in polystyrene films through a high throughput annealing approach in which the patterns are annealed for a fixed time on a controlled temperature gradient. Using principles of time-temperature superposition we systematically explore the effect of varying basic system variables such as pattern feature size, polymer molecular mass, imprinting temperature, on nanopattern stability and on the evolution of imprinted patterns driven by surface tension and internal stress. Nanostructure collapse generally occurs through a combination of a "slumping" instability, where the imprinted film simply relaxes towards a planar film and the film height decreases with time, and a lateral "zigzag" instability in the nanoimprinted lines.

  2. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Science.gov (United States)

    Yi, Longtao; Qin, Min; Wang, Kai; Lin, Xue; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo

    2016-09-01

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces.

  3. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)

    2016-09-15

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  4. ON THE RESONANT GENERATION OF WEAKLY NONLINEAR STOKES WAVES IN REGIONS WITH FAST VARYING TOPOGRAPHY AND FREE SURFACE CURRENT

    Institute of Scientific and Technical Information of China (English)

    黄虎; 周锡礽

    2001-01-01

    The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.

  5. Surface topography, hardness, and frictional properties of GFRP for esthetic orthodontic wires.

    Science.gov (United States)

    Inami, Toshihiro; Tanimoto, Yasuhiro; Yamaguchi, Masaru; Shibata, Yo; Nishiyama, Norihiro; Kasai, Kazutaka

    2016-01-01

    In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fiber for esthetic orthodontic wires were prepared by using pultrusion. The purpose of the present study was to investigate the surface topography, hardness, and frictional properties of GFRPs. To investigate how fiber diameter affects surface properties, GFRP round wires with a diameter of 0.45 mm (0.018 in.) were prepared incorporating either 13 μm (GFRP-13) or 7 μm (GFRP-7) glass fibers. As controls, stainless steel (SS), cobalt-chromium-nickel alloy, β-titanium (β-Ti) alloy, and nickel-titanium (Ni-Ti) alloy were also evaluated. Under scanning electron microscopy and scanning probe microscopy, the β-Ti samples exhibited greater surface roughness than the other metallic wires and the GFRP wires. The dynamic hardness and elastic modulus of GFRP wires obtained by the dynamic micro-indentation method were much lower than those of metallic wires (p < 0.05). Frictional forces against the polymeric composite brackets of GFRP-13 and GFRP-7 were 3.45 ± 0.49 and 3.60 ± 0.38 N, respectively; frictional forces against the ceramic brackets of GFRP-13 and GFRP-7 were 3.39 ± 0.58 and 3.87 ± 0.48 N, respectively. For both bracket types, frictional forces of GFRP wires and Ni-Ti wire were nearly half as low as those of SS, Co-Cr, and β-Ti wires. In conclusion, there was no significant difference in surface properties between GFRP-13 and GFRP-7; presumably because both share the same polycarbonate matrix. We expect that GFRP wires will deliver superior sliding mechanics with low frictional resistance between the wire and bracket during orthodontic treatment.

  6. The influence of surface topography of a porous perfluoropolyether polymer on corneal epithelial tissue growth and adhesion.

    Science.gov (United States)

    Evans, Margaret D M; Chaouk, Hassan; Wilkie, John S; Dalton, Beatrice A; Taylor, Sarah; Xie, Ruo Zhong; Hughes, Timothy C; Johnson, Graham; McFarland, Gail A; Griesser, Hans H; Steele, John G; Meijs, Gordon F; Sweeney, Deborah F; McLean, Keith M

    2011-12-01

    Design principles for corneal implants are challenging and include permeability which inherently involves pore openings on the polymer surface. These topographical cues can be significant to a successful clinical outcome where a stratified epithelium is needed over the device surface, such as with a corneal onlay or corneal repair material. The impact of polymer surface topography on the growth and adhesion of corneal epithelial tissue was assessed using porous perfluoropolyether membranes with a range of surface topography. Surfaces were characterised by AFM and XPS, and the permeability and water content of membranes was measured. Biological testing of membranes involved a 21-day in vitro tissue assay to evaluate migration, stratification and adhesion of corneal epithelium. Similar parameters were monitored in vivo by surgically implanting membranes into feline corneas for up to 5 months. Data showed optimal growth and adhesion of epithelial tissue in vitro when polymer surface features were below a 150 nm RMS value. Normal processes of tissue growth and adhesion were disrupted when RMS values approached 300 nm. Data from the in vivo study confirmed these findings. Together, outcomes demonstrated the importance of surface topography in the design of implantable devices that depend on functional epithelial cover.

  7. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    Science.gov (United States)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2017-02-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  8. Measurement of fine dynamic changes of corneal topography by use of interferometry

    Science.gov (United States)

    Kasprzak, Henryk T.; Jaronski, Jaroslaw W.

    2002-06-01

    Paper presents results of in vivo measurements of dynamic variations of the corneal topography by use of the Twyman Green interferometer. Sequence of interferograms were recorded by the CCD camera and stored in the computer memory. Then the fringe tracking method was used separately to each interferogram giving the phase surface of the wave reflected from the cornea in the numerical form. Results from neighboring interferograms were subtracted giving new sequence of changes of the corneal topography within 40 ms. Obtained results show the complex space distribution of the corneal topography variations.

  9. The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production.

    Science.gov (United States)

    Tan, Kai Soo; Qian, Li; Rosado, Roy; Flood, Patrick M; Cooper, Lyndon F

    2006-10-01

    A role for monocyte/macrophage modulation of wound healing at endosseous implants is proposed. The modification of the endosseous implant surface topography can alter cell adhesion and resultant cell behavior. The aim of this study was to define the effect of increased cpTitanium surface topography on adherent J744A.1 macrophage phenotype in culture. The J744A.1 cells were cultured on 20mm diameter cpTitanium disks prepared with smooth and grit-blasted/acid rough surface topographies for 24-72 h. Following culture in growth media with or without lipopolysaccharide (LPS), total RNA was isolated and real-time polymerase chain reaction (PCR) was used to measure the steady-state levels of the pro-inflammatory cytokines interleukin 1-beta (IL-1beta) and interleukin 6 (IL-6) and the anti-inflammatory cytokine interleukin-10 (IL-10). Additional evidence of pro-inflammatory signaling was sought by measurement of cellular nitric oxide (NO) production. In the absence of LPS, IL-1beta levels were increased on grit-blasted/acid rough surfaces during the first 48 h. In contrast, IL-6 levels were reduced on the grit-blasted/acid rough surfaces. When cultures were treated with LPS, high levels of IL-1beta and IL-6 expression were measured, irrespective of surface topography. The responses of J744A.1 cells to surface and superimposed LPS stimulation suggest only modest effects of the modeled endosseous implant surface on adherent cell pro-inflammatory cytokine expression and NO signaling.

  10. 3D representation of the surface topography of normal and dysplastic trochlea using MRI.

    Science.gov (United States)

    Biedert, R; Sigg, A; Gal, I; Gerber, H

    2011-10-01

    The three-dimensional (3D) image of the articular surface topography of the normal and the dysplastic trochlea has not been defined. The aim of this study was to represent both the normal and dysplastic trochlear geometry in 3D using magnetic resonance imaging (MRI). Using the segmentation software program Amira (Mercury Computer Systems, Inc., Chelmsford, USA) we created 3D reconstructions of the distal femur bone and cartilage using MRI scans. Bone and cartilage of the distal femur were traced slice by slice in the acquisitioned dimension while the Amira program reconstructed the 3D model. This model was then transferred to the Rhinoceros 4.0 software (Robert McNeel & Associates, Seattle, USA) for measuring. Using this system a non-invasive 3D representation of the articular cartilage and bone of the normal trochlea and depiction of different types of trochlear dysplasia were possible. Potential advantages of these MRI measurements are assessment of the 3D articular cartilage of the whole trochlea and the bony contours on the same image, no imaging errors from joint malpositioning, no ionizing radiation, precise preoperative planning according to the documented pathomorphology, and comparison between the preoperative and the postoperative shapes. The disadvantages include higher costs compared to radiography or CT scans, and time consuming reconstruction, making them currently a research tool. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    Science.gov (United States)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  12. Modelling Earth's surface topography: decomposition of the static and dynamic components

    DEFF Research Database (Denmark)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2016-01-01

    . We account for pressure, temperature and compositional effects as inferred by mineral physics to relate seismic velocity with density. Mantle density models are coupled to crustal density distributions obtained with a similar methodology. We compute isostatic topography and associated residual...... topography maps and perform instantaneous mantle flow modelling to calculate the dynamic topography. We explore the effects of proposed mantle 1-D viscosities and also test a 3D pressure- and temperature-dependent viscosity model. We find that the patterns of residual and dynamic topography are robust...... mantle density and viscosity models. These extremely high values would be associated with a magnitude of geoid undulations that is not in agreement with observations. Considering chemical heterogeneities in correspondence with the lower mantle Large Low Shear wave Velocity Provinces (LLSVPs) helps...

  13. Evaluation of a novel spine and surface topography system for dynamic spinal curvature analysis during gait.

    Directory of Open Access Journals (Sweden)

    Marcel Betsch

    Full Text Available INTRODUCTION: The assessment of spinal deformities with rasterstereography can enhance the understanding, as well as can reduce the number of x-rays needed. However, to date this technique only allows measurements under static conditions. Since it would be of great value to be able to also analyze the spine in dynamic conditions, the present study evaluated a novel rasterstereographic system. MATERIALS AND METHODS: A new rasterstereographic device was evaluated in a comparison with the gold standard in motion analysis, the VICON system. After initial testing using 12 flat infrared markers adhered to a solid plate, the two systems were evaluated with the markers adhered onto the backs of 8 test subjects. Four triangles were defined using the markers, and the sides of each triangle were measured under static and dynamic conditions. RESULTS: On the solid plate, the sides of the 4 triangles were measured with a measuring tape and then by the two optical systems. Rasterstereography showed a high accuracy in marker detection on the solid plate. Under dynamic conditions, with the subjects walking on a treadmill, the rasterstereographically-measured side lengths were compared with the lengths measured by the VICON system as an assessment of marker detection. No significant differences (p>0.05 were found between the systems, differing only 0.07-1.1% for all sides of the four triangles with both systems. DISCUSSION: A novel rasterstereographic measurement device that allows surface and spine topography under dynamic conditions was assessed. The accuracy of this system was with one millimeter on a solid plate and during dynamic measurements, to the gold standard for motion detection. The advantage of rasterstereography is that it can be used to determine a three-dimensional surface map and also allows the analysis of the underlying spine.

  14. Surface Topography of Fine-grained ZrO2 Ceramic by Two-dimensional Ultrasonic Vibration Grinding

    Institute of Scientific and Technical Information of China (English)

    DING Ailing; WU Yan; LIU Yongjiang

    2011-01-01

    The surface quality of fine-grained ZrO2 engineering ceramic were researched using 270# diamond wheel both with and without work-piece two-dimension ultrasonic vibration grinding(WTDUVG).By AFM images,the surface topography and the micro structure of the two-dimensional ultrasonic vibration grinding ceramics were especially analyzed.The experimental results indicate that the surface roughness is related to grinding vibration mode and the material removal mechanism.Surface quality of WTDUVG is superior to that of conventional grinding,and it is easy for two-dimensional ultrasonic vibration grinding that material removal mechanism is ductile mode grinding.

  15. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    Science.gov (United States)

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc.

  16. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto.

    Science.gov (United States)

    Rafkin, Scot; Soto, Alejandro; Michaels, Timothy

    2016-04-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the unexpected and highly heterogeneous distribution of nitrogen surface ice imaged by the New Horizons spacecraft on the surface of Pluto. The GCM is based on the GFDL Flexible Modeling System (FMS) dynamical core, solved on a discretized latitude/longitude horizontal grid and a pressure-based hybrid vertical coordinate. Model physics include a 3-band radiative scheme, molecular thermal conduction within the atmosphere, subsurface thermal conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4, including non-local thermodynamic equilibrium effects. The subsurface conduction model assumes a water ice regolith. In the case of nitrogen surface ice deposition, additional super-surface layers are added above the water ice regolith to properly account for conductive energy flow through the nitrogen ice. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile surface ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient resulting primarily from the slow seasonal variations of radiative-conductive equilibrium. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Furthermore, the circulation, and thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows (so-called "condensation flows") associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over topography of substantial geologic diversity. To maintain such an ice distribution, the atmospheric circulation and

  17. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis

    DEFF Research Database (Denmark)

    Allesø, Morten; Carstensen, Jens Michael; Holm, Per;

    2016-01-01

    milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic...... deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately...

  18. Deposition of Ultrathin Nano-Hydroxyapatite Films on Laser Micro-Textured Titanium Surfaces to Prepare a Multiscale Surface Topography for Improved Surface Wettability/Energy

    Directory of Open Access Journals (Sweden)

    Maria Surmeneva

    2016-10-01

    Full Text Available The primary aim of this study was to analyse the correlation between topographical features and chemical composition with the changes in wettability and the surface free energy of microstructured titanium (Ti surfaces. Periodic microscale structures on the surface of Ti substrates were fabricated via direct laser interference patterning (DLIP. Radio-frequency magnetron sputter deposition of ultrathin nanostructured hydroxyapatite (HA films was used to form an additional nanoscale grain morphology on the microscale-structured Ti surfaces to generate multiscale surface structures. The surface characteristics were evaluated using atomic force microscopy and contact angle and surface free energy measurements. The structure and phase composition of the HA films were investigated using X-ray diffraction. The HA-coated periodic microscale structured Ti substrates exhibited a significantly lower water contact angle and a larger surface free energy compared with the uncoated Ti substrates. Control over the wettability and surface free energy was achieved using Ti substrates structured via the DLIP technique followed by the deposition of a nanostructured HA coating, which resulted in the changes in surface chemistry and the formation of multiscale surface topography on the nano- and microscale.

  19. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  20. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-03-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modeled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI, elevation and aspect have small and additive effects on

  1. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  2. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    Science.gov (United States)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of

  3. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    Directory of Open Access Journals (Sweden)

    Xuan Le

    2013-01-01

    Full Text Available Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales.

  4. Meter-scale characterization of surface processes and fault-related deformation using LiDAR topography (Invited)

    Science.gov (United States)

    Arrowsmith, R.; Crosby, C. J.

    2010-12-01

    Earthquake slip, fault zone geometric evolution, and geomorphic response to surface displacements from faulting are phenomena well manifest in topography at the meter scale. With laser ground return densities of multiple per square meter, LiDAR-derived topography provide a powerful tool to characterize features related to these processes at the appropriate scale. Many of the active faults in the western US, in particular the San Andreas Fault (SAF) system, have been scanned using LiDAR by community-oriented projects such as B4 and EarthScope. These data and many others (along with processed derivatives, dataset citation information, and educational and training materials) are available from the OpenTopography Facility (http://opentopography.org/). New meter-scale offsets along the SAF and other faults have been discovered and measured and known ones remeasured to provide a rich description of slip in the last few earthquakes. However, this method requires direct association of earthquake timing with measured (often cumulative) slip. Surface ruptures of recent earthquakes (Hector Mine, Denali, Sierra El Mayor) have been spectacularly documented by various research teams using LiDAR and other methods, and prepare us for future opportunities to directly measure post-event near field deformation with multi-temporal LiDAR surveys (the original motivator of the B4 project for the southern SAF and San Jacinto Fault). Cumulative ground deformation associated with repeated late Quaternary earthquakes produces the discontinuous fault zones well manifest in few km-wide swaths of LiDAR topography. Mapping these traces and associated landforms provides important ground rupture hazard information, locations of possible paleoseismic sites, and improved understanding of the structural geometry, mechanical behavior, and evolution of the shallow, velocity-strengthening portion of active fault zones. Fault-related deformation, in particular localized by geometric discontinuities

  5. Profiling wrist pulse from skin surface by Advanced Vibrometer Interferometer Device

    Science.gov (United States)

    Lee, Hao-Xiang; Lee, Shu-Sheng; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2017-02-01

    With global trends in population aging, the need to decrease and prevent the onset of cardiovascular disease has drawn a great attention. The traditional cuff-based upper arm sphygmomanometer is still the standard method to retrieve blood pressure information for diagnostics. However, this method is not easy to be adapted by patients and is not comfortable enough to perform a long term monitoring process. In order to correlate the beating profile of the arterial pulse on the wrist skin, an Advanced Vibrometer Interferometer Device (AVID) is adopted in this study to measure the vibration amplitude of skin and compare it with blood pressure measured from the upper arm. The AVID system can measure vibration and remove the directional ambiguity by using circular polarization interferometer technique with two orthogonal polarized light beams. The displacement resolution of the system is nearly 1.0 nm and the accuracy is experimentally verified. Using an optical method to quantify wrist pule, it provides a means to perform cuff-less, noninvasive and continuous measurement. In this paper, the correlations between the amplitude of skin vibration and the actual blood pressure is studied. The success of this method could potentially set the foundation of blood pressure monitor system based on optical approaches.

  6. Dynamic sea surface topography, gravity, and improved orbit accuracies from the direct evaluation of Seasat altimeter data

    Science.gov (United States)

    Marsh, J. G.; Koblinsky, C. J.; Lerch, F.; Klosko, S. M.; Robbins, J. W.

    1990-01-01

    A gravitational model incorporating Seasat altimetry, surface gravimetry, and satellite tracking data has been determined in terms of global spherical harmonics complete to degree and order 50. This model, PGS-3337, uses altimeter data as a dynamic observation of the satellite's height above the sea surface. A solution for the ocean's dynamic topography is recovered simultaneously with the orbit parameters, gravity, and ocean tidal terms. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 2000 km and is very similar to the mean upper ocean dynamic height derived from historical ship observations. The PGS-3337 geoid has an uncertainty of 60 cm rms globally but 25 cm rms over the ocean because of the altimeter measurements. Seasat orbits determined in this solution have an estimated accuracy for the radial position of 20 cm rms. The difference between the altimeter observed sea height and the geoid plus dynamic topography model is 30 cm rms. Contained in these residuals are the sea height variability, as well as errors from the geoid, orbits, tidal models, and altimeter range measurement. This performance level is 2 to 3 times better than that achieved with previous Goddard gravitational models.

  7. Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Fotini K.; Granvold, Patrick W.; Oldenburg, Curtis M.

    2008-11-01

    Understanding the potential impacts of unexpected surface releases of CO{sub 2} is an essential part of risk assessment for geologic carbon sequestration sites. We have extended a mesoscale atmospheric model to model dense gas dispersion of CO{sub 2} leakage. The hazard from CO{sub 2} leakage is greatest in regions with topographic depressions where the dense gas can pool. Simulation of dispersion in idealized topographies shows that CO{sub 2} can persist even under high winds. Simulation of a variety of topographies, winds, and release conditions allows the generation of a catalog of simulation results that can be queried to estimate potential impacts at actual geologic carbon sequestration sites.

  8. The effect of surface topography on the micellisation of hexadecyltrimethylammonium chloride at the silicon-aqueous interface

    Energy Technology Data Exchange (ETDEWEB)

    Darkins, Robert; Sushko, Maria L.; Liu, Jun; Duffy, Dorothy M.

    2015-02-11

    Amphiphilic aggregation at solid-liquid interfaces can generate mesostructured micelles that can serve as soft templates. In this study we have simulated the self-assembly of hexadecyltrimethylammonium chloride (C16TAC) surfactants at the Si(100)- and Si(111)-aqueous interfaces. The surfactants are found to form semicylindrical micelles on Si(100) but hemispherical micelles on Si(111). This difference in micelle structure is shown to be a consequence of the starkly different surface topographies that result from the reconstruction of the two silicon surfaces. This reveals that micelle structure can be governed by epitaxial matching even with non-polar substrates.

  9. The Sentinel-3 Surface Topography Mission (S-3 STM): Level 2 SAR Ocean Retracker

    Science.gov (United States)

    Dinardo, S.; Lucas, B.; Benveniste, J.

    2015-12-01

    The SRAL Radar Altimeter, on board of the ESA Mission Sentinel-3 (S-3), has the capacity to operate either in the Pulse-Limited Mode (also known as LRM) or in the novel Synthetic Aperture Radar (SAR) mode. Thanks to the initial results from SAR Altimetry obtained exploiting CryoSat-2 data, lately the interest by the scientific community in this new technology has significantly increased and consequently the definition of accurate processing methodologies (along with validation strategies) has now assumed a capital importance. In this paper, we present the algorithm proposed to retrieve from S-3 STM SAR return waveforms the standard ocean geophysical parameters (ocean topography, wave height and sigma nought) and the validation results that have been so far achieved exploiting the CryoSat-2 data as well as the simulated data. The inversion method (retracking) to extract from the return waveform the geophysical information is a curve best-fitting scheme based on the bounded Levenberg-Marquardt Least-Squares Estimation Method (LEVMAR-LSE). The S-3 STM SAR Ocean retracking algorithm adopts, as return waveform’s model, the “SAMOSA” model [Ray et al, 2014], named after the R&D project SAMOSA (led by Satoc and funded by ESA), in which it has been initially developed. The SAMOSA model is a physically-based model that offers a complete description of a SAR Altimeter return waveform from ocean surface, expressed in the form of maps of reflected power in Delay-Doppler space (also known as stack) or expressed as multilooked echoes. SAMOSA is able to account for an elliptical antenna pattern, mispointing errors in roll and yaw, surface scattering pattern, non-linear ocean wave statistics and spherical Earth surface effects. In spite of its truly comprehensive character, the SAMOSA model comes with a compact analytical formulation expressed in term of Modified Bessel functions. The specifications of the retracking algorithm have been gathered in a technical document (DPM

  10. Sputtering and surface topography modification of bismuth thin films under swift {sup 84}Kr{sup 15+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S., E-mail: souchaoui@gmail.com [Universite des Sciences et de la Technologie H. Boumediene (USTHB), Faculte de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, P.O. Box 1906, Bellville 7535 (South Africa); Dib, A. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Msimanga, M. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa)

    2012-12-01

    The sputtering and surface topography modification of bismuth thin films deposited onto Si substrates and irradiated by 27.5 MeV {sup 84}Kr{sup 15+} ions over the fluence range 10{sup 12}-10{sup 14} cm{sup -2} have been studied using three complementary techniques: Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM) and X-ray diffraction (XRD). The RBS analysis reveals a linear reduction of the initial thickness of the irradiated bismuth samples by {approx}4% up to 7% with increasing ion fluence corresponding to a mean sputtering yield of {approx}2.9 Multiplication-Sign 10{sup 2} at/ion. Besides, significant sample surface topography changes occur upon ion irradiation consisting in grain growth and surface roughening clearly pointed out by performed AFM and XRD analyses. Moreover, a close correlation is observed between the variations versus ion fluence of the measured sputtering yield and the determined Bi surface grain size and compressive strain. These moderate Bi surface effects are similar to those pointed out previously for thin films irradiated by MeV heavy ions. They can be mainly caused by inelastic electronic collision mechanisms taking place within the Bi material electronic stopping power regime below the threshold for latent track formation.

  11. The influence of surface topography on wear debris generation at the cement/bone interface under cyclic loading.

    Science.gov (United States)

    Stoffel, Kirk A; Yang, Dongliang T; Arola, Dwayne

    2008-05-01

    The long-term success of a total joint replacement can be undermined by loosening of the implant, generation of wear debris or a combination of both factors. In the present study the influence of the surface morphologies of the bone and cement mantle on loosening of cemented total joint replacements (THJRs) and development of wear debris were studied. Model cemented THJR specimens were prepared in which the femoral canal was textured using specific cutting tools. The specimens were subjected to cyclic loads inducing pure shear fatigue of the cement/bone interface. Changes in both the femoral canal and cement mantle resulting from fatigue were quantified in terms of the surface topography and the volume of wear debris. Loosening occurred with cyclic loading due to degradation of the cement and bone and resulted in the development of cement and bone particles. There was no correlation between the fatigue strength of the interfaces and the volume of wear debris. In general, the change in surface topography of the cement mantle with fatigue decreased with increasing volume of cement interdigitation. Femoral canal surfaces with symmetric profile height distribution (i.e., Gaussian surfaces) resulted in the lowest volume of generated debris.

  12. A Novel Low-cost, Ka-band, High Altitude, Multi-Baseline Unmanned Aerial Vehicle Sensor for Surface Water Ocean Topography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) to support the surface water ocean topography (SWOT) mission for science and algorithm...

  13. Traces of influence of the surface topography in the Venus atmosphere

    Science.gov (United States)

    Zasova, Ludmila; Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolay; Gorinov, Dmitry

    2017-04-01

    We study the traces of influence of the Venus' topography like Ishtar , Beta Regio, Atalanta Planitia in the Venus atmosphere. From the Fourier Spectrometry on Venera-15 (FS-V15) the 3-D temperature and clouds fields in mesosphere were retrieved [Zasova et al, PSS,2007]. It was found that distribution of temperature is described by the Fourier decomposition with 1, 1/2, 1/3, and 1/4days and upper boundary of clouds (1, 1/2 days) harmonics in Solar-fixed coordinates. The amplitudes of the thermal tide harmonics with wavenumbers 1 and 2 reach 10 K. We found that in the Sun- fixed frame of reference, both maxima and minima are shifted from noon and from midnight to westwards, in direction of the superrotation. Comparison the fields of temperature at isobaric levels (from 60 to 95 km), altitude of upper boundary of the upper and middle clouds, the thermal zonal wind with the Magellan topography maps shows that for all cases the high correlation with the images of the structures in Ishtar, Beta Regio, Atalanta Planitia are observed. For example, it was found that temperature field near upper boundary of clouds (at 65 km) in latitude-longitude coordinates shows a good correspondence between topography (Ishtar, Beta Regio and Atalanta Planitia) and temperature perturbations with coefficient of correlation CC>0.9. The temperature and clouds maps in comparison to the map of Magellan topography show that the perturbations are shifted by 30° also in the direction of superrotation. Venera-15 had geometry observations very convenient for thermal tides observation (polar orbit with pericenter near N-pole), the important results was obtained even with spatial coverage not enough. Interpretation of observed phenomena still not clear. Detailed study continues, also in comparison with VMS and VIRTIS observations for the Southern hemisphere.

  14. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study

    Science.gov (United States)

    Brindha, M.; Kumaran, N. Kurunji; Rajasigamani, K.

    2014-01-01

    Aim: The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Materials and Methods: Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. Result: The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Conclusion: Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys. PMID:25210383

  15. Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds.

    Science.gov (United States)

    Andrews, Kirstie D; Hunt, John A; Black, Richard A

    2007-02-01

    Electrostatic spinning is a potentially significant technique for scaffold production within the field of tissue engineering; however, the effect of sterilisation upon these structures is not known. This research investigated the extent of any topographical alteration to electrostatically spun scaffolds post-production through sterilisation, and examined any subsequent effect on contacting cells. Scaffolds made from Tecoflex SG-80A polyurethane were sterilised using ethylene oxide and UV-ozone. Scaffold topography was characterized in terms of inter-fibre separation (ifs), fibre diameter (f.dia) and surface roughness. Cell culture was performed over 7 days with both mouse L929 and human embryonic lung fibroblasts, the results of which were assessed using SEM, image analysis and confocal microscopy. Sterilisation by UV-ozone and ethylene oxide decreased ifs and increased f.dia; surface roughness was decreased by UV-ozone but increased by ethylene oxide. Possible mechanisms to explain these observations are discussed, namely photo-oxidative degradation in the case of UV-ozone and process-induced changes in surface roughness. UV-ozone sterilised scaffolds showed greater cell coverage than those treated with ethylene oxide, but lower coverage than all the controls. Changes in cell attachment and morphology were thought to be due to the changes in topography brought about by the sterilisation process. We conclude that surface modification by sterilisation could prove to be a useful tool at the final stage of scaffold production to enhance cell contact, phenotype or function.

  16. Evaluation of a bioluminescence method, contact angle measurements and topography for testing the cleanability of plastic surfaces under laboratory conditions

    Science.gov (United States)

    Redsven, I.; Kymäläinen, H.-R.; Pesonen-Leinonen, E.; Kuisma, R.; Ojala-Paloposki, T.; Hautala, M.; Sjöberg, A.-M.

    2007-04-01

    Detection of adenosine triphosphate (ATP) by bioluminescence is used, for instance, in the food industry and in hospitals to assess the hygiene status of surfaces. The aim of this laboratory study was to investigate the feasibility of the ATP method for estimating the cleanability of resilient floor coverings from biological soil. The surfaces were worn using a Soiling and Wearing Drum Tester, and soiled and cleaned with an Erichsen Washability and Scrubbing Resistance Tester. In the laboratory test carried out with the bioluminescence method, most of the new and worn floor coverings that were biologically soiled were cleaned efficiently. According to this study, the semiquantitative ATP screening method can be used for hygiene monitoring of flooring materials. No correlation was found between cleanability and contact angles or surface topography measured using a profilometer. However, by revealing local irregularities and damage on surfaces, scanning electron micrographs appeared useful in explaining differences in cleanability.

  17. Heterodyne Interferometer Angle Metrology

    Science.gov (United States)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  18. Monitoring of spine curvatures and posture during pregnancy using surface topography – case study and suggestion of method

    Directory of Open Access Journals (Sweden)

    Jakub Michoński

    2016-10-01

    Full Text Available Abstract Background Low back and pelvic pain is one of the most frequently reported disorders in pregnancy, however etiology and pathology of this problem have not been fully determined. The relationship between back pain experienced during pregnancy and posture remains unclear. It is challenging to measure reliably postural and spinal changes at the time of pregnancy, since most imaging studies cannot be used due to the radiation burden. 3D shape measurement, or surface topography (ST, systems designed for posture evaluation could potentially fill this void. A pilot study was conducted to test the potential of monitoring the change of spine curvatures and posture during pregnancy using surface topography. A single case was studied to test the methodology and preliminarily assess the usefulness of the procedure before performing a randomized trial. The apparatus used in this study was metrologically tested and utilized earlier in scoliosis screening. Case presentation The subject was measured using a custom-made structured light illumination scanner with accuracy of 0.2 mm. Measurement was taken every 2 weeks, between 17th and 37th week of pregnancy, 11 measurements in total. From the measurement the thoracic kyphosis and lumbar lordosis angles, and vertical balance angle were extracted automatically. Custom-written software was used for analysis. Oswestry Low Back Pain Disability Questionnaire (ODI was done with every measurement. The values were correctly extracted from the measurement. The results were: 50.9 ± 2.4° for kyphosis angle, 58.1 ± 2.1° for lordosis angle and 4.7 ± 1.7° for vertical balance angle. The registered change was 7.4° in kyphosis angle, 8.4° in lordosis angle and 5.5° in vertical balance angle. The calculated ODI values were between moderate disability and severe disability (22 to 58 %. Conclusions This case study presents that surface topography may be suitable for monitoring of spinal curvature

  19. Studies on Cercariae from Kuwait Bay. XI. Description and surface topography of Cercaria kuwaitae XI sp.n. (Digenea: Echinostomatidae

    Directory of Open Access Journals (Sweden)

    Abdul-Salam J

    1999-01-01

    Full Text Available A new echinostome cercaria, Cercaria kuwaitae XI sp.n., from the prosobranch gastropod Cerithidea cingulata (Gmelin from Kuwait Bay is described. The new cercaria is characterized by 23 collar spines and primary excretory tubules with distinct diverticula. The cercaria encysts in the snail host and is similar to those of Acanthoparyphium sp. The surface topography of the redia, cercaria and metacercarial cyst wall is studied by scanning electron microscopy. This is the first echinostome cercaria to be recorded in a gastropod from the Arabian Gulf region.

  20. Surface topography of two trematodes parasites infecting grey heron Ardea cinerea Jouyi (Aves, Ciconiiformes) in Qena, Egypt.

    Science.gov (United States)

    Ammar, Khalaf Nour Abd El-Wahed

    2015-04-01

    Apharyngostrigea ardeolina and Echinoparyphium recurvatum are two important digenean parasites that were recovered from small intestine of grey heron with an infection rate (16.2%) and (8.8%) respectively. The surface topography of two species was redescribed by both light and scanning electron microscopy. Using SEM studies showed that the body surface of two trematodes were covered by contact receptors, several types of sensory tegumental papillae which may have useful function in orientation and feeding through increasing the surface area of absorption, could also play a role in sensation or in selection of the materials for ingestion by the fluke. The head collar of E. recurvatum is reniform in shape, bearing uninterrupted double row of 41 collar finger-like spines, a total including 4 end group ones on both ventral corners., tegumental spines were tongue-shaped without a terminal tip.

  1. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    Science.gov (United States)

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand.

  2. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm(-1) optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies.

  3. Unification of the Greek vertical datum through a deterministic adjustment of tide gauge, marine geoid and sea surface topography data

    Science.gov (United States)

    Vergos, G. S.; . Tziavos, I. N.

    2013-01-01

    Countries like Greece with extensive coastlines and a large number of islands usually suffer from the absence of a common, for the entire country, unified vertical reference system.In Greece, no effort has been made until today for the unification of the country's vertical datum especially between mainland and the insular part. The main source for the vertical datum offsets is the sea surface topography, especially the stationary part, which is in effect the difference between the mean sea level realized by the tide-gauge stations at the islands and the one at Piraeus that indicates the origin of the country's vertical datum. The present work focuses on the utilization of available tide gauge and spirit levelling data with computed marine geoid and sea surface topography models, towards the determination of a common corrector surface for continental and insular Greece in order to unify the country's vertical datum. The aforementioned corrector surface provides correction values to be applied to local tide gauge mean sea level revords, so that the local zero level will coincide with that at the origin of the vertical system. The concept is based on a common adjustment of the available data in a parametric scheme imposing a condition concerning the value of the corrector model at the existing vertical origin of the country. The necessary observation equations are outlined together with the theoretical concepts of the data combination scheme. Various reference surfaces are investigated and validated against each other and in terms of the prediction error they provide. The results of this work successfully manage to provide correction values for the entire country, so that local heights tied to a local tide gauge station can be referred to the initial point of the country’s vertical datum

  4. Influence of diamond wheel grinding process on surface micro-topography and properties of SiO2/SiO2 composite

    Science.gov (United States)

    Cao, Xiaoyan; Lin, Bin; Wang, Yan; Wang, Shaolei

    2014-02-01

    According to anisotropic and inhomogeneous structure of fiber-reinforced ceramic matrix composites (FRCMC), it is difficult to control the surface quality with the traditional method used in metal material. The present paper studies the influence of diamond wheel grinding process on surface micro-topography and properties of SiO2/SiO2 composite. The research is based on some new discovery that the material enhanced fiber orientations play a key role in micro-topography of FRCMC grinding surface. Through a series of experiments, we investigate the relationship between grinding process and the quality of composites surface. We also analyze characteristics of the material surface topography height, wave distribution and surface support properties in details. This paper employs the orthogonal design to optimize grinding process parameters and also successfully models a critical condition to modify the surface characteristics. The results show that speed of grinding wheel has the greatest influence on height and surface support properties, the next is grain mesh size and depth of cut. The grain mesh size is the key factor for surface micro-topography modification. Compared to the surface with woven texture, the modified surface has better symmetrical characteristic. The research obtained will be an important technical support on improving the processing quality of FRCMC.

  5. Quantitive Evaluation and Modeling of Alumina Grinding Wheel Surface Topography%氧化铝砂轮地貌的量化评价及数学建模

    Institute of Scientific and Technical Information of China (English)

    言兰; 融亦鸣; 姜峰

    2011-01-01

    Grinding wheels are often characterized by the density and protrusion height of abrasive grains and cutting edges. Measurement and evaluation of grinding wheels contribute to the better understanding of grinding mechanism, which is also the necessary precondition of grinding optimization and simulation. White light interferometer are used to measure the surface topography of alumina grinding wheels. Three-dimensional surface characterization parameters from "Birmingham set" are employed to quantize the surface topography of grinding wheels, in items of grit density, shape and sharpness of grits. Mathematical models of the distribution of protrusion heights, are built based on statistical values of measured results. It is shown that the alumina abrasive grain can be simplified as a cone with tip radius. The tip radius is related with the abrasive grain size, while the cone angle is almost the same due to the same dressing and truing conditions. The result also shows that mathematical models of protrusion height of alumina grinding wheels accord with normal distribution.%砂轮地貌特征是指砂轮表面磨粒密度、磨粒切削刃和磨粒出刃高度分布等情况.准确测量和量化评价砂轮地貌不仅有助于加深对磨削机理的认识,而且是磨削过程优化、磨削过程建模与仿真不可缺少的前提条件.采用白光干涉仪对氧化铝砂轮地貌进行了测量;用伯明翰三维表面粗糙度特征参数量化砂轮地貌特征,评价不同粒度号氧化铝砂轮的磨粒密度、磨粒形状和磨粒锋利程度;根据磨粒出刃高度测量结果,利用统计方法建立氧化铝砂轮表面磨粒出刃高度分布的数学模型.结果表明,氧化铝砂轮表面磨刃形状近似为尖端带有圆球半径的圆锥形状,随着砂轮粒度号数的增加,磨刃的圆头半径减小;在同一砂轮修整工艺条件下,磨刃的顶锥角相差不大;氧化铝砂轮表面磨粒出刃高度符合正态分布规律.

  6. Laser exposure analysis for a near-infrared ocular interferometer

    Science.gov (United States)

    Primeau, Brian C.; Goldstein, Goldie L.; Greivenkamp, John E.

    2012-06-01

    Ocular interferometry has potential value in a variety of ocular measurement applications, including measuring ocular thicknesses, topography of ocular surfaces or the wavefront of the eye. Of particular interest is using interferometry for characterizing corneal shape and irregular corneal features, making this technology attractive due to its inherent accuracy and spatial resolution. A particular challenge of designing an ocular interferometer is determining safe laser exposure levels to the eye, including both the retina and anterior segment. Described here are the laser exposure standards relevant in the interferometer design and the corresponding calculations and results. The results of this work can be used to aid in the design of similar laser-based systems for ocular evaluation.

  7. Nanoscale probing of electronic band gap and topography of VO2 thin film surfaces by scanning tunneling microscopy

    Science.gov (United States)

    Yin, W.; Wolf, S.; Ko, C.; Ramanathan, S.; Reinke, P.

    2011-01-01

    The metal-insulator transition (MIT) in vanadium dioxide in the vicinity of room temperature makes it one of the most interesting materials for novel switching device applications. It is therefore essential to have a fundamental understanding of the VO2 surface when it is incorporated into multilayer structures or nanodevices. This study focuses on the surface modification of VO2 in response to the thermal treatment during phase transition. Vacuum annealing at temperatures in the vicinity of the MIT triggers a partial reduction in the surface, and thus initiates a chemical phase transition. Scanning tunneling microscopy and spectroscopy are used to investigate the electronic properties and surface structure of the VO2 thin film on (0001) sapphire substrates. Band gap maps with a high spatial resolution and single point spectroscopy I-V curves are measured as the sample is cycled through the MIT, and thus provide a direct observation of the surface phase transition at the nanoscale. The VO2 surface exhibits a homogeneous insulating behavior with a typical band gap of ˜0.5 eV at room temperature, and the surface becomes more metallic and spatially inhomogeneous in conductivity during MIT, and wide range of surface oxides can be identified. The surface still remains partially metallic after cooling down from a long period anneal, and such irreversible surface electrical change is attributed to the loss of oxygen. The location of metallic islands after thermal cycling is strongly coupled to the topography of the film, and relaxation processes and continued modification of the spatial distribution of the metallic regions are recognized on a longer timescale. The impact of film morphology, strain, surface chemistry, and structural phase transition on the electronic characteristics of VO2 surfaces are discussed.

  8. Three-dimensional modeling of chloroprene rubber surface topography upon composition

    Energy Technology Data Exchange (ETDEWEB)

    Žukienė, Kristina, E-mail: kristina.zukiene@ktu.lt [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Jankauskaitė, Virginija [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Petraitienė, Stase [Department of Applied Mathematics, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)

    2014-02-15

    In this study the effect of polymer blend composition on the surface roughness has been investigated and simulated. Three-dimensional modeling of chloroprene rubber film surface upon piperylene-styrene copolymer content was conducted. The efficiency of various surface roughness modeling methods, including Monte Carlo, surface growth and proposed method, named as parabolas, were compared. The required parameters for modeling were obtained from atomic force microscopy topographical images of polymer films surface. It was shown that experimental and modeled surfaces have the same correlation function. The quantitative comparison of function parameters was made. It was determined that novel parabolas method is suitable for three-dimensional polymer blends surface roughness description.

  9. EAARL coastal topography-Cape Hatteras National Seashore, North Carolina, post-Nor'Ida, 2009: first surface

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Fredericks, Xan; Stevens, Sara

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI. This project provides highly detailed and accurate datasets of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, acquired post-Nor'Ida (November 2009 nor'easter) on November 27 and 29 and December 1, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and

  10. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    NARCIS (Netherlands)

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath th

  11. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    NARCIS (Netherlands)

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath th

  12. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zhifeng, E-mail: scut0533@126.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Du Chang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Huang Nan [Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, 610031 Chengdu (China); Wang Lin; Ning Chengyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N{sub 2} to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N{sub 2} to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  13. The Effect of Electrochemical Polishing Time on Surface Topography of Mild Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-cheng; ZHU Jin-hua

    2006-01-01

    This paper investigated the variation of the altitude density function (ADF) and the autocorrelation function (ACF) about the surface profile of mild steel during electrochemical polishing (ECP). The results show that the variation features of ADF with polishing time are flat-steep-flat, and the variation features of ACF with polishing time are random-regular-random. There is a fine surface smoothness at the special period of ECP. Both the original surface and the full ECP surface show an obvious roughness.

  14. Development of strategic surface topographies for lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten; Olsson, David Dam; Petrushina, Irina

    2004-01-01

    Strategic stainless steel surfaces have been developed by which the tribological properties are significantly improved for sheet metal forming compared to as received surfaces. The improvements have been achieved by modification of the surface in order to promote micro-plasto hydrodynamic lubrica...

  15. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    CERN Document Server

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for ideal flat surface and a suppression factor that contains effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors are derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by the electropolishing is evaluated by using results of surface topographic study. The estimat...

  16. Vibration compensated high-resolution scanning white-light Linnik-interferometer

    Science.gov (United States)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2017-06-01

    We present a high-resolution Linnik scanning white-light interferometer (SWLI) with integrated distance measuring interferometer (DMI) for close-to-machine applications in the presence of environmental vibrations. The distance, measured by DMI during the depth-scan, is used for vibration compensation of SWLI signals. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the DMI and subsequent trigonometrical approximation. This system is the further development of our previously presented Michelson-interferometer. We are able to compensate for arbitrary vibrations with frequencies up to several kilohertz and amplitudes in the lower micrometer range. Completely distorted SWLI signals can be reconstructed and the surface topography can be obtained with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  17. A Combinatorial Library of Micro-Topographies and Chemical Compositions for Tailored Surface Wettability

    DEFF Research Database (Denmark)

    Kolind, Kristian; Bennetsen, Dines Tilsted; Arpanaei, Ayyoob

    2011-01-01

    chemical modifications with 1H, 1H, 2H, 2H perfluoroethyltriethoxy-silane (PFS) and n-octadecyltriethoxysilane (ODS) on standard silicon wafers it was possible to include both superhydrophobic and very hydrophilic pad arrays in the same screening platform. Surfaces modified with PFS were more hydrophobic...... than surfaces modified with ODS, while the unmodified silicon surfaces were hydrophilic. For the PFS modified surfaces the largest CAs were achieved with a small pillar size of X = 1 µm and an intermediate inter-pillar gap size of Y = 4 µm with superhydrophobic CAs over 170°. Surface analysis with X......-ray photoelectron spectroscopy (XPS) revealed that CF3 groups were present at the surface, contributing to the superhydrophobic effect. The ODS modified surfaces had intermediate wettabilities with CAs between 100 and 150°, which were dependent on the pillar size, the inter-pillar gap size, and the specific pillar...

  18. A Combinatorial Library of Micro-Topographies and Chemical Compositions for Tailored Surface Wettability

    DEFF Research Database (Denmark)

    Kolind, Kristian; Bennetsen, Dines Tilsted; Arpanaei, Ayyoob;

    2011-01-01

    than surfaces modified with ODS, while the unmodified silicon surfaces were hydrophilic. For the PFS modified surfaces the largest CAs were achieved with a small pillar size of X = 1 µm and an intermediate inter-pillar gap size of Y = 4 µm with superhydrophobic CAs over 170°. Surface analysis with X......-ray photoelectron spectroscopy (XPS) revealed that CF3 groups were present at the surface, contributing to the superhydrophobic effect. The ODS modified surfaces had intermediate wettabilities with CAs between 100 and 150°, which were dependent on the pillar size, the inter-pillar gap size, and the specific pillar...... different applications. The measured CAs did not follow the simple Wenzel model. Furthermore, the adaptation of the Cassie model introduces Φs, the fraction of solid surface in contact with the liquid, which is difficult to estimate, thereby emphasizing the need for an experimental determination...

  19. Measurement of copper vapour laser-induced deformation of dielectric-coated mirror surface by Michelson interferometer

    Indian Academy of Sciences (India)

    A Wahid; S Kundu; J S B Singh; A K Singh; A Khattar; S K Maurya; J S Dhumal; K Dasgupta

    2014-02-01

    AMichelson interferometer-based technique has been used to measure the deformation of dielectric-coated mirror, caused by an incident repetitive pulsed laser beam with high average power. Minimum measurable deformation of 17 nm is reported.

  20. Superoleophobic Surfaces through Control of Sprayed-on Stochastic Topography (Pre-Print)

    Science.gov (United States)

    2012-05-01

    T.; Onda , T.; Shibuichi, S., Super oil-repellent surfaces. Angew. Chem.- Int. Edit. Engl. 1997, 36, 1011-1012. 12. Shibuichi, S.; Yamamoto, T.; Onda ...Yamamoto, T.; Onda , T.; Tsujii, K., Super water- and oil-repellent surfaces resulting from fractal structure. J. Colloid Interface Sci. 1998, 208, 287...294. S5. Onda , T.; Shibuichi, S.; Satoh, N.; Tsujii, K., Super-water-repellent fractal surfaces. Langmuir 1996, 12, 2125-2127. S6. Schneider, G. J

  1. Entropic depletion in colloidal suspensions and polymer liquids: role of nanoparticle surface topography.

    Science.gov (United States)

    Banerjee, Debapriya; Yang, Jian; Schweizer, Kenneth S

    2015-12-21

    We employ a hybrid Monte Carlo plus integral equation theory approach to study how dense fluids of small nanoparticles or polymer chains mediate entropic depletion interactions between topographically rough particles where all interaction potentials are hard core repulsion. The corrugated particle surfaces are composed of densely packed beads which present variable degrees of controlled topographic roughness and free volume associated with their geometric crevices. This pure entropy problem is characterized by competing ideal translational and (favorable and unfavorable) excess entropic contributions. Surface roughness generically reduces particle depletion aggregation relative to the smooth hard sphere case. However, the competition between ideal and excess packing entropy effects in the bulk, near the particle surface and in the crevices, results in a non-monotonic variation of the particle-monomer packing correlation function as a function of the two dimensionless length scale ratios that quantify the effective surface roughness. As a result, the inter-particle potential of mean force (PMF), second virial coefficient, and spinodal miscibility volume fraction vary non-monotonically with the surface bead to monomer diameter and particle core to surface bead diameter ratios. A miscibility window is predicted corresponding to an optimum degree of surface roughness that completely destroys depletion attraction resulting in a repulsive PMF. Variation of the (dense) matrix packing fraction can enhance or suppress particle miscibility depending upon the amount of surface roughness. Connecting the monomers into polymer chains destabilizes the system via enhanced contact depletion attraction, but the non-monotonic variations with surface roughness metrics persist.

  2. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  3. Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: Implications for topography, volcanism, and hydrology

    Science.gov (United States)

    Heap, Michael J.; Byrne, Paul K.; Mikhail, Sami

    2017-01-01

    Surface gravitational acceleration (surface gravity) on Mars, the second-smallest planet in the Solar System, is much lower than that on Earth. A direct consequence of this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any given depth. Collated published data from deformation experiments on basalts suggest that, throughout its geological history (and thus thermal evolution), the Martian brittle lithosphere was much thicker but weaker than that of present-day Earth as a function solely of surface gravity. We also demonstrate, again as a consequence of its lower surface gravity, that the Martian lithosphere is more porous, that fractures on Mars remain open to greater depths and are wider at a given depth, and that the maximum penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than on Earth. The result of a weak Martian lithosphere is that dykes-the primary mechanism for magma transport on both planets-can propagate more easily and can be much wider on Mars than on Earth. We suggest that this increased the efficiency of magma delivery to and towards the Martian surface during its volcanically active past, and therefore assisted the exogeneous and endogenous growth of the planet's enormous volcanoes (the heights of which are supported by the thick Martian lithosphere) as well as extensive flood-mode volcanism. The porous and pervasively fractured (and permeable) nature of the Martian lithosphere will have also greatly assisted the subsurface storage of and transport of fluids through the lithosphere throughout its geologically history. And so it is that surface gravity, influenced by the mass of a planetary body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere with manifest differences in surface topography and geomorphology, volcanic character, and hydrology.

  4. Coherent Surface Clutter Suppression Techniques with Topography Estimation for Multi-Phase-Center Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen; Kristensen, Steen Savstrup;

    2012-01-01

    Radar ice sounding enables measurement of the thickness and internal structures of the large ice sheets on Earth. Surface clutter masking the signal of interest is a major obstacle in ice sounding. Algorithms for surface clutter suppression based on multi-phase-center radars are presented...

  5. Coherent Surface Clutter Suppression Techniques with Topography Estimation for Multi-Phase-Center Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen; Kristensen, Steen Savstrup

    2012-01-01

    Radar ice sounding enables measurement of the thickness and internal structures of the large ice sheets on Earth. Surface clutter masking the signal of interest is a major obstacle in ice sounding. Algorithms for surface clutter suppression based on multi-phase-center radars are presented. These ...

  6. Hybrid Sol-Gel-Derived Films That Spontaneously Form Complex Surface Topographies.

    Science.gov (United States)

    Destino, Joel F; Jones, Zachary R; Gatley, Caitlyn M; Zhang, Yi; Craft, Andrew K; Detty, Michael R; Bright, Frank V

    2016-10-04

    Surface patterns over multiple length scales are known to influence various biological processes. Here we report the synthesis and characterization of new, two-component xerogel thin films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS). Atomic force microscopy (AFM) reveals films surface with branched and hyper branched architectures that are ∼2 to 30 μm in diameter, that extend ∼3 to 1300 nm above the film base plane with surface densities that range from 2 to 77% surface area coverage. Colocalized AFM and Raman spectroscopy show that these branched structures are COE-rich domains, which are slightly stiffer (as shown from phase AFM imaging) and exhibit lower capacitive force in comparison with film base plane. Raman mapping reveals there are also discrete domains (≤300 nm in diameter) that are rich in COE dimers and densified TEOS, which do not appear to correspond with any surface structure seen by AFM.

  7. A Combined Experimental and Computational Approach for the Design of Mold Topography that Leads to Desired Ingot Surface and Microstructure in Aluminum Casting.

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Zabaras, N.; Tan, L.

    2005-07-12

    A thermomechanical study of the effects of mold topography on the solidification of Aluminum alloys at early times is provided. The various coupling mechanisms between the solid-shell and mold deformation and heat transfer at the mold/solid-shell interface during the early stages of Aluminum solidification on molds with uneven topographies are investigated. The air-gap nucleation time, the stress evolution and the solid-shell growth pattern are examined for different mold topographies to illustrate the potential control of Aluminum cast surface morphologies during the early stages of solidification using proper design of mold topographies. The unstable shell growth pattern in the early solidification stages results mainly from the unevenness of the heat flux between the solid-shell and the mold surface. This heat flux is determined by the size of the air-gaps formed between the solidifying shell and mold surface or from the value of the contact pressure. Simulation results show that a sinusoidal mold surface with a smaller wavelength leads to nucleation of air-gaps at earlier times. In addition, the unevenness in the solid-shell growth pattern decreases faster for a smaller wavelength. Such studies can be used to tune mold surfaces for the control of cast surface morphologies.

  8. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements.

    Science.gov (United States)

    Kumar, P; Martin, H; Jiang, X

    2016-06-01

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  9. EAARL Coastal Topography-St. John, U.S. Virgin Islands 2003: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of St. John, U.S. Virgin Islands was produced from remotely sensed,...

  10. Ocean Surface Topography Mission (OSTM) /Jason-3: Ancillary Files, 2015- (NCEI Accession 0122596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  11. EAARL Coastal Topography-St. John, U.S. Virgin Islands 2003: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of St. John, U.S. Virgin Islands was produced from remotely sensed,...

  12. Ocean Surface Topography Mission (OSTM) /Jason-3: Auxiliary Files, 2015- (NODC Accession 0122597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  13. EAARL Coastal Topography--Assateague Island National Seashore, 2008: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from...

  14. Ocean Surface Topography Mission (OSTM) /Jason-3: Telemetry, 2015- (NODC Accession 0122599)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  15. Ocean Surface Topography Mission (OSTM) /Jason-3: Orbital Information, 2015- (NODC Accession 0122598)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  16. EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely...

  17. EAARL Coastal Topography--Assateague Island National Seashore, 2008: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from...

  18. EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely...

  19. Atomic force microscopy of surface topography of nitrogen plasma treated steel

    CERN Document Server

    Mahboubi, F

    2002-01-01

    Nitriding of steels, using plasma environments has been practiced for many years. A lot of efforts have been put on developing new methods, such as plasma immersion ion implantation (Pl sup 3) and radio frequency (RF) plasma nitriding, for mass transfer of nitrogen into the surface of the work piece. This article presents the results obtained from an in depth investigation of the surface morphology of the treated samples, carried out using an atomic force microscope. Samples from a microalloyed steel, were treated by both methods for 5 hours at different temperatures ranging from 350 to 550 sup d eg sup C in 75% N sub 2 -25% H sub 2 atmosphere. It has been found that the surface of the samples treated by PI sup 3 technique, although having more favorable properties, were rougher than the surfaces treated by RF plasma nitriding.

  20. Tailored topography control of biopolymer surfaces by ultrafast lasers for cell–substrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele-Bucharest (Romania); Cazan, M. [University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering – IFIN HH, 30 Reactorului Street, PO Box MG-6, 077125 Magurele-Bucharest (Romania); Filipescu, M.; Sandel, S.; Zamfirescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele-Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele-Bucharest (Romania); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125 Magurele-Bucharest (Romania)

    2014-05-01

    Nowadays, the culture surfaces used for in vitro testing must be capable of possessing an improved interface for cell interactions and adhesion. For this reason, the materials used need to have an appropriate chemistry and architecture of its surface, resembling to the extracellular matrix. Within this context, in this work we combined the advantages of natural biopolymer characteristics (chitosan) with the flexibility in surface texturing by ultrafast laser for creating functional microstructured surfaces for cell–substrate in vitro studies. A Ti:Sapphire femtosecond laser irradiation (λ = 775 nm and 387 nm) was used for tailoring surface morphological characteristics of chitosan based films (i.e. polymer “bubbles”, “fingertips” and “sponge-like” structures). These structures were investigated by scanning electron microscopy and atomic force microscopy. The morphology of the structures obtained was correlated with the response of oligodendrocytes cells line. In vitro tests on the patterned surface showed that early cell growth was conditioned by the microtopography and indicate possible uses of the structures in biomedical applications.

  1. Tailored topography control of biopolymer surfaces by ultrafast lasers for cell-substrate studies

    Science.gov (United States)

    Rusen, L.; Cazan, M.; Mustaciosu, C.; Filipescu, M.; Sandel, S.; Zamfirescu, M.; Dinca, V.; Dinescu, M.

    2014-05-01

    Nowadays, the culture surfaces used for in vitro testing must be capable of possessing an improved interface for cell interactions and adhesion. For this reason, the materials used need to have an appropriate chemistry and architecture of its surface, resembling to the extracellular matrix. Within this context, in this work we combined the advantages of natural biopolymer characteristics (chitosan) with the flexibility in surface texturing by ultrafast laser for creating functional microstructured surfaces for cell-substrate in vitro studies. A Ti:Sapphire femtosecond laser irradiation (λ = 775 nm and 387 nm) was used for tailoring surface morphological characteristics of chitosan based films (i.e. polymer “bubbles”, “fingertips” and “sponge-like” structures). These structures were investigated by scanning electron microscopy and atomic force microscopy. The morphology of the structures obtained was correlated with the response of oligodendrocytes cells line. In vitro tests on the patterned surface showed that early cell growth was conditioned by the microtopography and indicate possible uses of the structures in biomedical applications.

  2. Micro-topography, rock surface modelling and minerology of notches in Mount Carmel

    Science.gov (United States)

    Brook, Anna; Ben-Binyamin, Atzmon; Shtober-Zisu, Nurit

    2016-04-01

    Notches are defined as horizontal concaved indentations developed on slopes or cliffs in a basic "C" shape regardless of their location or formation process. Many studies have proclaimed that notches are associated with coastal processes where rocky shore faces are back carved, parallel to sea level by a combination of physical and biological abrasion, and by chemical and biological dissolution. The notches morphologies are various and depend on the lithology, climate, and environment history. These changes involve complex volumetric effects such as weathering and surface mineral dissolution. The main impetus for the present paper is to advance the modeling and the 3D complex pattern reconstruction of notch's cavity surface and detailed shapes and to assess the association between the morphological structures observed upon the notch parts and the fine scale mineralogical composition of the rock. The reconstruction of 3D surfaces using point clouds scanned data is a known problem in computer graphics. Several approaches are based on combinatorial structures, such as Delaunay triangulations, alpha shapes, or Voronoi diagrams. These schemes typically create a triangle mesh that interpolates all or most of the points. In the presence of noisy data, resulting surface is often jagged, and is therefore smoothed or refit to the points in subsequent processing. Fast Fourier Transform (FFT) is a common technique for solving dense, periodic Poisson systems. However, the FFT requires longer time and larger space, quickly becoming prohibitive for fine resolutions. The Poisson approach's key element is the observation that inward normal field of the boundary can be inferred as the gradient of a three dimensional solid indicator function. Thus, the generation of a watertight mesh can be obtained by: (1) transforming the oriented point samples into a continuous vector field referred to as the relationship between the gradient of the indicator function and an integral of surface

  3. Dynamic Topography Revisited

    Science.gov (United States)

    Moresi, Louis

    2015-04-01

    Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The

  4. A Combined Experimental and Computational Approach for the Design of Mold Topography that Leads to Desired Ingot Surface and Microstructure in Aluminum Casting.

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Zabaras, N.J.; Samanta, D.; Tan, L.

    2005-10-30

    A design methodology will be developed with which casting mold surface topographies can be tuned to produce required surface features and micro-structural properties of Aluminum ingots. Both static and continuous casting processes will be examined with instrumented molds. Mold surface topographies, which consist of unidirectional and bi-directional groove textures, will be generated using contact and non-contact techniques to elicit a radiator-like effect at the mold-casting interface. The rate of heat extraction, the evolution of near-surface cast microstructure, and shell macro-morphology can be controlled once the proper balance between mold surface area extension and the degree of imperfect wetting at the instant solidification starts is determined. Once this control is achieved, it will be possible to minimize or even eliminate costly post-casting surface milling or scalping which is currently a major barrier to the development of new Aluminum casting processes.

  5. Determination of Mean Dynamic Topography (MDT) to Bridge Geoid and Mean Sea Surface Height (SSH) with a New Elliptic Equation

    Science.gov (United States)

    Chu, P. C.

    2016-12-01

    Mean dynamic topography (MDT, η) bridges the geoid and the mean sea surface (from satellite altimetry) and constrains large scale surface geostrophic circulations. It can be estimated from either satellite or underwater ocean temperature (T) and salinity (S) data. Satellite altimeter measures sea surface height (SSH) with high precision and unique resolution above a reference ellipsoid (not geoid). Two Gravity Recovery and Climate Experiment (GRACE) satellites launched in 2002, provide data to compute the marine geoid [called the GRACE Gravity Model (GGM)] (see website: http://www.csr.utexas.edu/grace/). The MDT is the difference of altimetry-derived mean SSH and the mean marine geoid (using GGM or pre-GRACE gravity model such as EGM96). A major difficulty arises that the spatial variations in mean SSH and marine geoid are approximately two orders of magnitude larger than the spatial variations in η.The second approach (using T, Sdata) is based on geostrophic balance, which is at the minimum energy state in the linear Boussinesq primitive equations with conservation of potential vorticity. In this paper, a new elliptic equation, -[∂x(gh/f2)∂xη+∂y(gh/f2)∂yη]+η = (g/f2)(∂C/∂x-∂B/∂y)is derived to determine MDT with H the water depth, g the gravitational acceleration, and coefficients (B, C) depend on 3D mean temperature (T) and salinity (S) data. Numerical approach transforms the elliptic equation into a set of well-posed linear algebraic equations of η at grid points. The solution for the North Atlantic Ocean (100oW-6oW, 7oN-72oN) on 1oX1ogrids with the coefficients (B, C) calculated from the three-dimensional (T, S) data of the NOAA National Centers for Environmental Information (NCEI) World Ocean Atlas 2013 version 2 (http://www.nodc.noaa.gov/OC5/woa13/woa13data.html) and H from the NOAA ETOPO5 (https://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html), compares well with the difference (also considered as the MDT) between the time-averaged SSH and

  6. Bragg-case limited projection topography study of surface damage in diamond-crystal plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Krasnicki, S; Macrander, A T; Chu, Y S; Maj, J [Advanced Photon Source, Argonne National Laboratory, Argonne (United States)

    2005-05-21

    To characterize diamond monochromators for synchrotron radiation beamlines, images for a region 25 {mu}m below the surface were obtained. Topographical images of a Bragg-diffracted beam having a scattering angle (twice the Bragg angle) of 90 deg. were obtained from asymmetric reflections with a CCD area detector. A 25 {mu}m incident slit was used to section the sample topographically. Patchwork images for the full surface area, but limited in depth to the slit size, were assembled from microbeam images. The small extinction depths provided by the asymmetric reflection geometry, namely, 2.8 {mu}m and 3.5 {mu}m for ideal diamond crystals set for the (224) and (044) reflections, respectively, permitted data analyses for a region near the surface. The diamonds were synthetic type Ib (yellowish due to nitrogen impurities). They were in the shape of plates sized 6 x 5 mm and were 0.5 mm thick. Measurements were made using monochromatic bending magnet radiation at the Advanced Photon Source at 12.04 keV and 13.90 keV. Data obtained before and after chemical etching demonstrate that damage visible as contrast from saw grooves is largely removed by etching. Dislocation etch pits were observed after etching for the (111) surface but not for the (100) surface.

  7. Lessons learnt from the Indian Ocean Tsunami 2004: the role of surface and subsurface topography in deep water tsunami propagation

    Science.gov (United States)

    Pattiaratchi, C. B.

    2014-12-01

    The Indian Ocean experienced its most devastating natural disaster through the action of a Tsunami, resulting from of an earthquake off the coast of Sumatra on 26th of December 2004. This resulted in widespread damage both to property and human lives with over 250,000 deaths in the region and many millions homeless. Our understanding of tsunami generation and propagation has increased significantly over the past decade. In this presentation, results obtained from detailed analysis of sea level data from Western Australia and Sri Lanka together with numerical modelling are presented to highlight the effects of topography both at the surface and subsurface. The major effects are due to wave reflection and refraction. Examples of wave reflection include: impacts on Malaysia/Thailand, Sri Lanka and Western Australia due to wave reflection from Sri Lanka, Maldives and Mascarene Ridge, respectively. In the case of Sri Lanka, the maximum wave height recorded along the west coast during the 2004 tsunami was due to the reflected wave from Maldives impacting 3 hours after the arrival of the initial waves. Similarly, along the West coast of Australia highest waves occurred 15 hours after the arrival of the first wave. Here, based on travel times, we postulate that the waves were reflected from the Mascarene Ridge and/or the island of Madagascar (Figure 1b). The conclusions based on observations were verified using numerical model simulations using the MOST and ComMIT models. Numerical modelling using the MOST model indicated the role of offshore susurface topography on tsunami propagation through wave wave refraction. Examples of wave refraction included the effects of deep water seamounts (Venin Meinesz) and plateaus (Wallaby, Cuvier and Exmouth) on tsunami propagation along the West Australian coast. The tsunami waves are first scattered by the Venin Meinesz seamounts and were then refracted by the Wallaby and Cuvier plateaus resulting in waves being deflected onto the

  8. Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Sebnem DUZYER

    2016-11-01

    Full Text Available The aim of this study to investigate the effects of different sterilization methods on electrospun polyester. Ethylene oxide (EO, autoclave (AU and ultraviolet (UV sterilization methods were applied to electrospun fibers produced from polyethylene terephthalate (PET solutions with concentrations of 10, 15 and 20 wt.%. The surface characteristics of the fibers were examined by scanning electron microscope (SEM, atomic force microscope (AFM, surface pore size studies and contact angle measurements. Differential scanning calorimetry (DSC tests were carried out to characterize the thermal properties. Fourier Transform Infrared spectroscopy (FTIR tests were performed to analyze the micro structural properties. SEM studies showed that different sterilization methods made significant changes on the surfaces of the fibers depending on the PET concentration. Although the effects were decreased with the increasing polymer concentration, the fiber structure was damaged especially with the EO sterilization. The contact angle values were decreased with the UV sterilization method the most.

  9. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  10. Quantification of Galling in Sheet Metal Forming by surface topography characterisation

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Bay, Niels; De Chiffre, Leonardo

    1998-01-01

    One of the major problems in forming of stainless steel sheet is galling due to lubricant film breakdown leading to scoring and bad surface quality. In a Danish research programme new lubricants substituting the normally applied chlorinated paraffin oils are being developed and tested for this pu......One of the major problems in forming of stainless steel sheet is galling due to lubricant film breakdown leading to scoring and bad surface quality. In a Danish research programme new lubricants substituting the normally applied chlorinated paraffin oils are being developed and tested...

  11. Topography Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  12. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...

  13. Relation between light trapping and surface topography of plasma textured crystalline silicon wafers

    NARCIS (Netherlands)

    Souren, F. M. M.; Rentsch, J.; M. C. M. van de Sanden,

    2015-01-01

    Currently, in the photovoltaic industry, wet chemical etching technologies are used for saw damage removal and surface texturing. Alternative to wet chemical etching is plasma etching. However, as for example, the linear microwave plasma technique, developed by Roth&Rau, has not been implemented

  14. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.

    Science.gov (United States)

    Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A

    2017-03-01

    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.

  15. Relation between light trapping and surface topography of plasma textured crystalline silicon wafers

    NARCIS (Netherlands)

    Souren, F. M. M.; Rentsch, J.; M. C. M. van de Sanden,

    2015-01-01

    Currently, in the photovoltaic industry, wet chemical etching technologies are used for saw damage removal and surface texturing. Alternative to wet chemical etching is plasma etching. However, as for example, the linear microwave plasma technique, developed by Roth&Rau, has not been implemented

  16. Changes in snow distribution and surface topography following a snowstorm on Antarctic sea ice

    Science.gov (United States)

    Trujillo, Ernesto; Leonard, Katherine; Maksym, Ted; Lehning, Michael

    2016-11-01

    Snow distribution over sea ice is an important control on sea ice physical and biological processes. We combine measurements of the atmospheric boundary layer and blowing snow on an Antarctic sea ice floe with terrestrial laser scanning to characterize a typical storm and its influence on the spatial patterns of snow distribution at resolutions of 1-10 cm over an area of 100 m × 100 m. The pre-storm surface exhibits multidirectional elongated snow dunes formed behind aerodynamic obstacles. Newly deposited dunes are elongated parallel to the predominant wind direction during the storm. Snow erosion and deposition occur over 62% and 38% of the area, respectively. Snow deposition volume is more than twice that of erosion (351 m3 versus 158 m3), resulting in a modest increase of 2 ± 1 cm in mean snow depth, indicating a small net mass gain despite large mass relocation. Despite significant local snow depth changes due to deposition and erosion, the statistical distributions of elevation and the two-dimensional correlation functions remain similar to those of the pre-storm surface. Pre-storm and post-storm surfaces also exhibit spectral power law relationships with little change in spectral exponents. These observations suggest that for sea ice floes with mature snow cover features under conditions similar to those observed in this study, spatial statistics and scaling properties of snow surface morphology may be relatively invariant. Such an observation, if confirmed for other ice types and conditions, may be a useful tool for model parameterizations of the subgrid variability of sea ice surfaces.

  17. Surface topography study of prepared 3D printed moulds via 3D printer for silicone elastomer based nasal prosthesis

    Science.gov (United States)

    Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad

    2016-12-01

    Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.

  18. Annual variation of topography and surface sedimentary facies of 2014~2015 years in the Gochang coast, southwestern Korea

    Science.gov (United States)

    Ryang, Woo Hun; Kang, Sol Ip

    2016-04-01

    The Gochang coast is characterized by macro-tide, open-coast, linear shoreline, and sand substrates. It is located on the southwestern coast of Korea along the eastern part of the Yellow Sea, comprising the Donghori, Gwangseungri, and Myengsasipri areas from the north to south. This study has investigated annual variation of topography, accumulation rates, surface sediment texture, and sedimentary facies during 2014~2015. In the intertidal area, topographic elevation and surface sediments were measured and sampled at 63 sites during the 7 seasons from winter (Feb.) in 2014 to summer (Aug.) in 2015. Surface sediments of the subtidal area were sampled at 110 and 119 sites with 500 m interval for the two seasons of winter and summer in 2015, respectively. In the Gochang coast of 2014~2015 years, surface sedimentary facies represent a fining trend from shoreline to offshore. Area distribution of sedimentary facies also becomes finer from the north to south. Annual accumulation rates of the Gochang intertidal area represent av. -0.081m/yr from winter to winter, av. -0.018m/yr from spring to spring, av. -0.019m/yr from summer to summer during 2014~2015, respectively. It was indicative of an erosion-dominated environment. Keywords: macro-tide, open-coast, surface sediment, accumulation rate, Gochang coast Acknowledgements: This study was supported by the research grant from the Korean Ministry of Oceans and Fisheries (PJT200538). This presentation is an interim result of the coastal research program in the study area.

  19. From bed topography to ice thickness: GlaRe, a GIS tool to reconstruct the surface of palaeoglaciers

    Science.gov (United States)

    Pellitero, Ramon; Rea, Brice; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig; Hughes, Philip; Ribolini, Adriano; Renssen, Hans; Lukas, Sven

    2016-04-01

    We present GlaRe, A GIS tool that automatically reconstructs the 3D geometry for palaeoglaciers given the bed topography. This tool utilises a numerical approach and can work using a minimum of morphological evidence i.e. the position of the palaeoglacier front. The numerical approach is based on an iterative solution to the perfect plasticity assumption for ice rheology, explained in Benn and Hulton (2010). The tool can be run in ArcGIS 10.1 (ArcInfo license) and later updates and the toolset is written in Python code. The GlaRe toolbox presented in this paper implements a well-established approach for the determination of palaeoglacier equilibrium profiles. Significantly it permits users to quickly run multiple glacier reconstructions which were previously very laborious and time consuming (typically days for a single valley glacier). The implementation of GlaRe will facilitate the reconstruction of large numbers of palaeoglaciers which will provide opportunities for such research addressing at least two fundamental problems: 1. Investigation of the dynamics of palaeoglaciers. Glacier reconstructions are often based on a rigorous interpretation of glacial landforms but not always sufficient attention and/or time has been given to the actual reconstruction of the glacier surface, which is crucial for the calculation of palaeoglacier ELAs and subsequent derivation of quantitative palaeoclimatic data. 2. the ability to run large numbers of reconstructions and over much larger spatial areas provides an opportunity to undertake palaeoglaciers reconstructions across entire mountain, ranges, regions or even continents, allowing climatic gradients and atmospheric circulation patterns to be elucidated. The tool performance has been evaluated by comparing two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known with a basic reconstruction using GlaRe. Results from the comparisons between extant glacier surfaces and modelled

  20. Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching.

    Science.gov (United States)

    Turp, Volkan; Akgungor, Gokhan; Sen, Deniz; Tuncelli, Betul

    2014-10-01

    The aim of this study is to evaluate the effect of Erbium: yttrium-aluminum-garnet (Er:YAG) laser with different pulse lengths on the surface roughness of zirconia ceramic and airborne particle abrasion. Er:YAG laser treatment is expected to be an alternative surface treatment method for zirconia ceramics; however, the parameters and success of the application are not clear. One hundred and forty zirconia discs (diameter, 10 mm; thickness, 1.2 mm) were prepared by a computer-aided design and computer-aided manufacturing (CAD/CAM) system according to the manufacturer's instructions. Specimens were divided into 14 groups (n=10). One group was left as polished control, one group was air-particle abraded with Al2O3 particles. For the laser treatment groups, laser irradiation was applied at three different pulse energy levels (100, 200, and 300 mJ) and for each energy level at four different pulse lengths; 50, 100, 300, and 600 μs. Surface roughness was evaluated with an optical profilometer and specimens were evaluated with scanning electron microscopy (SEM). Data was analyzed with one way ANOVA and Tukey multiple comparison tests (α=0.05). For the 100 and 200 mJ laser etching groups, 50 and 100 μs laser duration resulted in significantly higher surface roughness compared with air-particle abrasion (p0.05). For the 300 mJ laser etching groups; there was no statistically significant difference among the Ra values of 50 μs, 100 μs, 300 μs, 600 μs, and air-particle abrasion groups (p>0.05). In order to increase surface roughness and promote better bonding to resin luting agents, Er:YAG laser etching may be an alternative to air-particle abrasion for zirconia ceramics. However, high levels of pulse energy and longer pulse length may have an adverse effect on micromechanical locking properties, because of a decrease in surface roughness.

  1. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Science.gov (United States)

    Chen, Haiyan; Peng, Jianke; Fu, Li; Wang, Xincheng; Xie, Yan

    2016-04-01

    In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  2. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    Science.gov (United States)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  3. New Approach to Investigating Near-Surface Structures for Complex Seismic Topography

    Institute of Scientific and Technical Information of China (English)

    JiangWenbo; HeZhanxiang; LiuHong

    2003-01-01

    Addressed in this article is a new approach to investigating the near-surface structures through the use of the electromagnetic sounding. The advantages of the electro-magnetic sounding method and the problems of the nearssurface investigation and their solutions are described. Actual examples from the southwestern Takelamagan, western Qaidam and northern Xinjiang are taken to demonstrate the results and the capability of this approach in solving the nearsurface problems. It is also pointed out that the new approach could become both the basis for designing seismic acquisition parameters and determining the seismic shot locations,as well as supplying near-surface velocity models for seismic data processing so as to improve the quality of seismic sections.

  4. Diagnostic model of 3-D circulation in the Arabian Sea and western equatorial Indian Ocean: Results of monthly mean sea surface topography

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.

    -frog numerical scheme, the sea surface topography equation is solved by successive over-relaxation technique. Model has 18 levels in the vertical with a maximum depth of 900 meters, a resolution of 1 degrees in the latitute and longitude directions and is forced...

  5. The influence of surface topography on the forming friction of automotive aluminum sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Pamela Ann [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1998-05-01

    Interest in utilizing aluminum alloys in automobiles has increased in recent years as a result of the desire to lower automobile weight and, consequently, increase fuel economy. While aluminum alloy use in cast parts has increased, outer body panel applications are still being investigated. The industry is interested in improving the formability of these sheet alloys by a combination of alloy design and processing. A different avenue of improving the formability of these alloys may be through patterning of the sheet surface. Surface patterns hold the lubricant during the forming process, with a resulting decrease in the sheet-die surface contact. While it has been speculated that an optimum surface pattern would consist of discrete cavities, detailed investigation into the reduction of forming friction by utilizing discrete patterns is lacking. A series of discrete patterns were investigated to determine the dependence of the forming friction of automotive aluminum alloys on pattern lubricant carrying capacity and on material strength. Automotive aluminum alloys used in outer body panel applications were rolled on experimental rolls that had been prepared with a variety of discrete patterns. All patterns for each alloy were characterized before and after testing both optically and, to determine pattern lubricant capacity, using three dimensional laser profilometry. A draw bead simulation (DBS) friction tester was designed and fabricated to determine the forming friction of the patterned sheets. Tensile testing and frictionless DBS testing were performed to ascertain the material properties of each sheet. The most striking result of this work was the inversely linear dependence of forming friction on the lubricant carrying capacity of the discrete patterns.

  6. Effect of compaction pressure and powder grade on the microstructure, hardness and surface topography of steam oxidized sintered iron

    Energy Technology Data Exchange (ETDEWEB)

    Mello, J.D.B. de; Hutchings, I.M. [Univ. of Cambridge (United Kingdom); Binder, R. [Embraco, Joinville, S.C. (Brazil); Klein, A.N. [Labmat, UFSC, Florianopolis, S.C. (Brazil)

    2000-07-01

    Steam oxidation has proved to be an effective process to improve the properties of sintered iron components. The wear processes of such surfaces might be expected to be influenced by the presence of pores, the extent of pore closure and the nature and morphology of the oxide produced. In this paper, the influence of compaction pressure and powder grade on the microstructure, oxide content, hardness and surface topography of steam treated sintered iron is analysed. Specimens prepared from atomised powders in different sizes were compacted using 4 different pressure, sintered and then subjected to a continuous steam treatment. A clear influence of the processing parameters on porosity was highlighted. Low porosity is always associated with high compaction pressure and greater powder size. Decreasing powder size always leads to high hardness. Samples produced with smaller powder size show a continuous decrease in hardness as the compaction pressure increases although for the large powder size there is a slight increase to a constant value of ultimate hardness. For the intermediate grain size a maximum hardness is obtained as the compaction pressure increases. X-ray diffraction shows that the oxide layer is composed of magnetite and haematite. No general correlation was found between topographic features, examined using vertical scanning interferometry, and processing parameters or microstructure. (orig.)

  7. Influence of microstructure and surface topography on the electrical conductivity of Cu and Ag thin films obtained by magnetron sputtering

    Science.gov (United States)

    Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.

    2017-05-01

    Conductive thin films formation by copper and silver magnetron sputtering is one of high technological areas for industrial production of solar energy converters, energy-saving coatings, flat panel displays and touch control panels because of their high electrical and optical properties. Surface roughness and porosity, average grain size, internal stresses, orientation and crystal lattice type, the crystallinity degree are the main physical properties of metal films affecting their electrical resistivity and conductivity. Depending on the film thickness, the dominant conduction mechanism can affect bulk conductivity due to the flow of electron gas, and grain boundary conductivity. The present investigation assesses the effect of microstructure and surface topography on the electrical conductivity of magnetron sputtered Cu and Ag thin films using X-ray diffraction analysis, scanning electron and laser interference microscopy. The highest specific conductivity (78.3 MS m-1 and 84.2 MS m-1, respectively, for copper and silver films at the thickness of 350 nm) were obtained with the minimum values of roughness and grain size as well as a high degree of lattice structuredness.

  8. Forward ray tracing for image projection prediction and surface reconstruction in the evaluation of corneal topography systems

    NARCIS (Netherlands)

    Snellenburg, J.J.; Braaf, B.; Hermans, E.A.; Heijde, van der R.G.L.; Sicam, V.A.

    2010-01-01

    A forward ray tracing (FRT) model is presented to determine the exact image projection in a general corneal topography system. Consequently, the skew ray error in Placido-based topography is demonstrated. A quantitative analysis comparing FRT-based algorithms and Placido-based algorithms in reconstr

  9. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    Science.gov (United States)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  10. Calibration Standards for Surface Topography Measuring Systems down to Nanometric Range

    DEFF Research Database (Denmark)

    Trumpold, H.; De Chiffre, Leonardo; Andreasen, Jan Lasson

    calibrator has been designed, built and tested. Primary calibration standards have been produced by ion-beam and plasma etching (step height standards), by holographic generation of sinusoidal structures with two-beam interference exposure and by ultra-precision diamond cutting. From primary standards...... to be replicated during all stages of the replication processes. Procedures for cleaning glass, PVC, PC, PMM and Ni-surfaces have been developed and tested. Calibration procedures for calibration standards and for calibrating instruments in X-, Y- and Z-direction have been developed and tested. Proposals...

  11. High-Accuracy Near-Surface Large-Eddy Simulation with Planar Topography

    Science.gov (United States)

    2015-08-03

    humidity. Error in humidity predictions will likely enter cloud cover predictions and produce error in solar radiative heating at the earth’s surface...are density and viscosity, and the angle brackets denote ensemble averaging. Integrating Eq. (2) in z and replacing ( )T z with * ( )m u z z...ReLES parameter space;  and ReLES progressively increase in each panel from left to right. Top panel : LES with 96zN  . Bottom panel : LES with

  12. Surface topography of machined fibre reinforced plastics obtained by stylus instruments and optical profilometers

    DEFF Research Database (Denmark)

    Eriksen, Else; Hansen, Hans Nørgaard

    1998-01-01

    introduced. They use another working principle to obtain the same parameters, but the settings of most of the measuring variables are not standardized. The present study has investigated aspects that have to be taken into account when the roughness of short fibre reinforced thermoplastics is measured...... identical values, whereas significantly higher roughnesses were measured with one of the two optical instruments. The optical instruments were identical but with different settings of the control parameters, which resulted in large deviations between the values measured. Some of the differences between...... by stylus instruments and by optical profilometers. The measurements were performed on machined surfaces with three distinct different roughness levels. The materials were two thermoplastics, polyoxymethylene and polypropylene, reinforced with short glass fibres. The two stylus instruments gave almost...

  13. Scattering of oblique surface water waves by thin vertical barrier over undulating bed topography

    Science.gov (United States)

    Choudhary, A.; Martha, S. C.

    2017-06-01

    The present study deals with the scattering of oblique surface water waves by small undulation on the bottom in the presence of a thin vertical barrier. Here, three different configurations of vertical barriers are investigated. Perturbation analysis is employed to determine the physical quantities, namely, the reflection and transmission coefficients. In this analysis, many different Boundary Value Problems (BVPs) are obtained out of which the first two bvps are considered. The zeroth order bvp is solved with the aid of eigenfunction expansion method. The first order reflection and transmission coefficients are derived in terms of the integrals by the method of the Green's integral theorem. The variation of these coefficients is plotted and analyzed for different physical parameters. Furthermore, the energy balance relation, an important relation in the study of water wave scattering, is derived and checked for assuring the correctness of the numerical results for the present problem.

  14. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    Science.gov (United States)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  15. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    Science.gov (United States)

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  16. Guided magnonic Michelson interferometer

    OpenAIRE

    Muhammad H. Ahmed; Jeske, Jan; Greentree, Andrew D.

    2015-01-01

    Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media suffer from dispersion, which limits their effective range and fidelity. We show the design of controllable magnonic circuitry, that utilise surface current carrying wires to create magnonic waveguides. We also show the design of a magnonic directional coupler and controllable Michelson interferometer to demonstrate its utility for inf...

  17. The TOPOMOD-ITN project: unravel the origin of Earth's topography from modelling deep-surface processes

    Science.gov (United States)

    Faccenna, C.; Funiciello, F.

    2012-04-01

    EC-Marie Curie Initial Training Networks (ITN) projects aim to improve the career perspectives of young generations of researchers. Institutions from both academic and industry sectors form a collaborative network to recruit research fellows and provide them with opportunities to undertake research in the context of a joint research training program. In this frame, TOPOMOD - one of the training activities of EPOS, the new-born European Research Infrastructure for Geosciences - is a funded ITN project designed to investigate and model how surface processes interact with crustal tectonics and mantle convection to originate and develop topography of the continents over a wide range of spatial and temporal scales. The multi-disciplinary approach combines geophysics, geochemistry, tectonics and structural geology with advanced geodynamic numerical/analog modelling. TOPOMOD involves 8 European research teams internationally recognized for their excellence in complementary fields of Earth Sciences (Roma TRE, Utrecht, GFZ, ETH, Cambridge, Durham, Rennes, Barcelona), to which are associated 5 research institutions (CNR-Italy, Univ. Parma, Univ. Lausanne, Univ. Montpellier, Univ. Mainz) , 3 high-technology enterprises (Malvern Instruments, TNO, G.O. Logical Consulting) and 1 large multinational oil and gas company (ENI). This unique network places emphasis in experience-based training increasing the impact and international visibility of European research in modeling. Long-term collaboration and synergy are established among the overmentioned research teams through 15 cross-disciplinary research projects that combine case studies in well-chosen target areas from the Mediterranean, the Middle and Far East, west Africa, and South America, with new developments in structural geology, geomorphology, seismology, geochemistry, InSAR, laboratory and numerical modelling of geological processes from the deep mantle to the surface. These multidisciplinary projects altogether aim to

  18. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA to estimate actual evapotranspiration under complex terrain

    Directory of Open Access Journals (Sweden)

    Z. Q. Gao

    2010-07-01

    Full Text Available Evapotranspiration (ET may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA. With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM, and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  19. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA to estimate actual evapotranspiration over heterogeneous terrain

    Directory of Open Access Journals (Sweden)

    Z. Q. Gao

    2011-01-01

    Full Text Available Evapotranspiration (ET may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA. With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM, and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  20. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

    Science.gov (United States)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N.-B.

    2011-01-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  1. Bending strength and fracture surface topography of natural fiber-reinforced shell for investment casting process

    Directory of Open Access Journals (Sweden)

    Kai Lu

    2016-05-01

    Full Text Available In order to improve the properties of silica sol shell for investment casting process, various contents of cattail fibers were added into the slurry to prepare a fiber-reinforced shell in the present study. The bending strength of fiber-reinforced shell was investigated and the fracture surfaces of shell specimens were observed using SEM. It is found that the bending strength increases with the increase of fiber content, and the bending strength of a green shell with 1.0 wt.% fiber addition increases by 44% compared to the fiber-free shell. The failure of specimens of the fiber-reinforced green shell results from fiber rupture and debonding between the interface of fibers and adhesive under the bending load. The micro-crack propagation in the matrix is inhibited by the micro-holes for ablation of fibers in specimens of the fiber-reinforced shell during the stage of being fired. As a result, the bending strength of specimens of the fired shell had no significant drop. Particularly, the bending strength of specimens of the fired shell reinforced with 0.6wt.% fiber reached the maximum value of 4.6 MPa.

  2. Extent of Stream Burial and Relationships to Watershed Area, Topography, and Impervious Surface Area

    Directory of Open Access Journals (Sweden)

    Roy E. Weitzell

    2016-11-01

    Full Text Available Stream burial—the routing of streams through culverts, pipes, and concrete lined channels, or simply paving them over—is common during urbanization, and disproportionately affects small, headwater streams. Burial undermines the physical and chemical processes governing life in streams, with consequences for water quality and quantity that may amplify from headwaters to downstream receiving waters. Knowledge of the extent of stream burial is critical for understanding cumulative impacts to stream networks, and for future decision-making allowing for urban development while protecting ecosystem function. We predicted stream burial across the urbanizing Potomac River Basin (USA for each 10-m stream segment in the basin from medium-resolution impervious cover data and training observations obtained from high-resolution aerial photography in a GIS. Results were analyzed across a range in spatial aggregation, including counties and independent cities, small watersheds, and regular spatial grids. Stream burial was generally correlated with total impervious surface area (ISA, with areas exhibiting ISA above 30% often subject to elevated ratios of stream burial. Recurring patterns in burial predictions related to catchment area and topographic slope were also detected. We discuss these results in the context of physiographic constraints on stream location and urban development, including implications for environmental management of aquatic resources.

  3. New tetradecyltrimethylammonium-selective electrodes: surface composition and topography as correlated with electrode's life span.

    Science.gov (United States)

    Marafie, Hayat M; Al-Shammari, Tahani F; Shoukry, Adel F

    2012-03-15

    Two conventional plastic membrane electrodes that are selective for the tetradecyltrimethylammonium cation (TTA) have been prepared. The ion exchangers of these sensors were the ion associate, TTA-PT, and the ion aggregate, TTA-PSS, where PT and PSS are phosphotungstate and polystyrene sulfonate, respectively. The following performance characteristics of the TTA-PT- and TTA-PSS-containing electrodes were found: conditioning time of 30 and 20 min; potential response of 58.2 and 61.1 mV/TTA concentration decade; rectilinear concentration ranges of 2.0 × 10(-5)-5.0 × 10(-2) and 1.5 × 10(-5)-7.9 × 10(-2) mol L(-1); average working pH ranges of 4.0-10.5 and 3.8-10.7; life spans of 20 and 28 weeks, and isothermal temperature coefficients of 4.44 × 10(-4) and 6.10 × 10(-4)V/°C, respectively. Both electrodes exhibited high selectivity for TTA with an increasing number of inorganic and quaternary ammonium surfactant cations. These electrodes have been successfully applied to assay an antiseptic formulation containing TTA. Surface analyses using electron microscopy and X-ray photoelectron spectroscopy were used to determine the cause of the limited life span of plastic membrane electrodes.

  4. A web-based platform for simulating seismic wave propagation in 3D shallow Earth models with DEM surface topography

    Science.gov (United States)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.

  5. The surface topography of the choroid plexus. Environmental, low and high vacuum scanning electron microscopy.

    Science.gov (United States)

    Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael

    2011-05-01

    Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Accessory neurovascular foramina on the lingual surface of mandible: Incidence, topography, and clinical implications

    Directory of Open Access Journals (Sweden)

    B V Murlimanju

    2012-01-01

    Full Text Available Context: It was suggested that the accessory neurovascular foramina of the mandible might be of significance in relation to the effectiveness of local anesthesia following the routine inferior alveolar nerve block. Aims: To investigate the incidence of neurovascular foramina over the lingual surface of the mandible in South Indian population. Settings and Design: The study was conducted at the department of anatomy. Materials and Methods: The study included 67 human adult dry mandibles, the exact ages and sexes of which were not known. The location and number of neurovascular foramina were topographically analyzed. Statistical Analysis Used: Descriptive statistics. Results: The foramina were observed in 64 mandibles (95.5% and were often multiple in most of the cases. They were located between the two medial incisors in 8 mandibles (1.9%, between the medial and lateral incisor in 34 mandibles (50.7%; 25-bilateral; 7-right; 2-left, between the lateral incisor and canine in 7 mandibles (10.4%; 2-bilateral; 3-right; 2-left, between the canine and first premolar in 6 cases (8.9%; 3 on each side. Foramina were also present around the genial tubercle in 56 mandibles (83.6%. Among them, 52 mandibles showed a single foramen just above the genial tubercle, 34 mandibles had foramina below the tubercles, 13 mandibles had foramina on the right side of genial tubercle and 17 were having on the left side. Conclusion: Since the anatomical details of these foramina are important to various fields of dentistry and oncology, the present investigation was undertaken. The clinical significance and implications are emphasized.

  7. Micro-topography and reactivity of implant surfaces: an in vitro study in simulated body fluid (SBF).

    Science.gov (United States)

    Gandolfi, M G; Taddei, P; Siboni, F; Perrotti, V; Iezzi, G; Piattelli, A; Prati, C

    2015-02-01

    The creation of micro-textured dental implant surfaces possessing a stimulating activity represents a challenge in implant dentistry; particularly, the formation of a thin, biologically active, calcium-phosphate layer on their surface could help to strengthen the bond to the surrounding bone. The aim of the present study was to characterize in terms of macrostructure, micro-topography and reactivity in simulated body fluid (SBF), the surface of titanium (Ti) implants blasted with TiO2 particles, acid etched with hydrofluoric acid, and activated with Ca and Mg-containing nanoparticles. Sandblasted and acid-etched implants were analyzed by ESEM-EDX (environmental scanning electron microscope with energy dispersive X-ray system) to study the micromorphology of the surface and to perform elemental X-ray microanalysis (microchemical analyses) and element mapping. ESEM-EDX analyses were performed at time 0 and after a 28-day soaking period in SBF Hank's balanced salt solution (HBSS) following ISO 23317 (implants for surgery—in vitro evaluation for apatite-forming ability of implant materials). Microchemical analyses (weight % and atomic %) and element mapping were carried out to evaluate the relative element content, element distribution, and calcium/phosphorus (Ca/P) atomic ratio. Raman spectroscopy was used to assess the possible presence of impurities due to manufacturing and to investigate the phases formed upon HBSS soaking. Micro-morphological analyses showed a micro-textured, highly rough surface with microgrooves. Microchemical analyses showed compositional differences among the apical, middle, and distal thirds. The micro-Raman analyses of the as-received implant showed the presence of amorphous Ti oxide and traces of anatase, calcite, and a carbonaceous material derived from the decomposition of an organic component of lipidic nature (presumably used as lubricant). A uniform layer of Ca-poor calcium phosphates (CaPs) (Ca/P ratio <1.47) was observed after

  8. Selective metallization of polymers using laser induced surface activation (LISA)—characterization and optimization of porous surface topography

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; De Grave, Arnaud

    2011-01-01

    Laser induced selective activation (LISA) is a molded interconnected devices technique for selective metallization of polymers. On the working piece, only the laser-machined area can be metalized in the subsequent plating. The principle of the technology is introduced. Surface analysis was perfor...

  9. Michelson Interferometer

    Science.gov (United States)

    Rogers, Ryan

    2007-01-01

    The Michelson Interferometer is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson Interferometer for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.

  10. The Importance Of Surface Topography For The Biological Properties Of Nitrided Diffusion Layers Produced On Ti6Al4V Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Wierzchoń T.

    2015-09-01

    Full Text Available Diffusion nitrided layers produced on titanium and its alloys are widely studied in terms of their application for cardiac and bone implants. The influence of the structure, the phase composition, topography and surface morphology on their biological properties is being investigated. The article presents the results of a study of the topography (nanotopography of the surface of TiN+Ti2N+αTi(N nitrided layers produced in low-temperature plasma on Ti6Al4V titanium alloy and their influence on the adhesion of blood platelets and their aggregates. The TEM microstructure of the produced layers have been examined and it was demonstrated that the interaction between platelets and the surface of the titanium implants subjected to glow-discharge nitriding can be shaped via modification of the roughness parameters of the external layer of the TiN titanium nitride nanocrystalline zone.

  11. 4D very high-resolution topography monitoring of surface deformation using UAV-SfM framework.

    Science.gov (United States)

    Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof

    2016-04-01

    During the last years, exploratory research has shown that UAV-based image acquisition is suitable for environmental remote sensing and monitoring. Image acquisition with cameras mounted on an UAV can be performed at very-high spatial resolution and high temporal frequency in the most dynamic environments. Combined with Structure-from-Motion algorithm, the UAV-SfM framework is capable of providing digital surface models (DSM) which are highly accurate when compared to other very-high resolution topographic datasets and highly reproducible for repeated measurements over the same study area. In this study, we aim at assessing (1) differential movement of the Earth's surface and (2) the sediment budget of a complex earthflow located in the Central Swiss Alps based on three topographic datasets acquired over a period of 2 years. For three time steps, we acquired aerial photographs with a standard reflex camera mounted on a low-cost and lightweight UAV. Image datasets were then processed with the Structure-from-Motion algorithm in order to reconstruct a 3D dense point cloud representing the topography. Georeferencing of outputs has been achieved based on the ground control point (GCP) extraction method, previously surveyed on the field with a RTK GPS. Finally, digital elevation model of differences (DOD) has been computed to assess the topographic changes between the three acquisition dates while surface displacements have been quantified by using image correlation techniques. Our results show that the digital elevation model of topographic differences is able to capture surface deformation at cm-scale resolution. The mean annual displacement of the earthflow is about 3.6 m while the forefront of the landslide has advanced by ca. 30 meters over a period of 18 months. The 4D analysis permits to identify the direction and velocity of Earth movement. Stable topographic ridges condition the direction of the flow with highest downslope movement on steep slopes, and diffuse

  12. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic.

    Science.gov (United States)

    Mohammadibassir, Mahshid; Rezvani, Mohammad Bagher; Golzari, Hossein; Moravej Salehi, Elham; Fahimi, Mohammad Amin; Kharazi Fard, Mohammad Javad

    2017-03-08

    To evaluate the effect of overglazing and two polishing procedures on flexural strength and quality and quantity of surface roughness of a monolithic lithium disilicate ceramic computer-aided design (CAD) after grinding. This in vitro study was conducted on 52 partially crystalized bar-shaped specimens (16 × 4 × 1.6 mm) of monolithic lithium disilicate ceramic. The specimens were wet polished with 600-, 800-, and 1200-grit silicon carbide papers for 15 seconds using a grinding/polishing machine at a speed of 300 rpm. Then, the specimens were crystalized and glaze-fired in one step simultaneously and randomly divided into four groups of 13: (I) Glazing group (control); (II) Grinding-glazing group, subjected to grinding with red band finishing diamond bur (46 μm) followed by glazing; (III) Grinding-D+Z group, subjected to grinding and then polishing by coarse, medium, and fine diamond rubber points (D+Z); and (IV) Grinding-OptraFine group, subjected to grinding and then polishing with a two-step diamond rubber polishing system followed by a final polishing step with an OptraFine HP brush and diamond polishing paste. The surface roughness (Ra and Rz) values (μm) were measured by a profilometer, and the mean values were compared using one-way ANOVA and Tamhane's test (post hoc comparison). One specimen of each group was evaluated under a scanning electron microscope (SEM) for surface topography. The three-point flexural strength values of the bars were measured using a universal testing machine at a 0.5 mm/min crosshead speed and recorded. The data were analyzed using one-way ANOVA and Tamhane's test (α = 0.05). Statistically significant differences were noted among the experimental groups for Ra, Rz (p quality of roughness compared to glazing. The flexural strength of lithium disilicate ceramic after polishing with the OptraFine system was similar to that after glazing (p = 0.86). Despite similar surface roughness after polishing with the two systems, the D

  13. Cryogenic Michelson Interferometer on the Space Shuttle

    OpenAIRE

    Wellard, Stan; Blakeley, Jeff; Brown, Steven; Bartschi, Brent

    1993-01-01

    A helium-cooled interferometer was flown aboard shuttle ifight STS-39. This interferometer, along with its sister radiometer, set new benchmarks for the quantity and quality of data collected. The interferometer generated approximately 150,000 interferograms during the course of the ifight. Data was collected at tangent heights from the earth's surface to celestial targets. The interferograms encoded spectral data from aurora, earth limb, and earth terminator scenes. The interfemmeter collect...

  14. Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering

    Science.gov (United States)

    Song, C. Y.; Zhou, N.; Yang, B. Y.; Yang, Y. J.; Wang, L. H.

    2015-10-01

    The physicochemical properties of noble metal nanocrystals depend strongly on their size and shape, and it is becoming clear that the design and facile synthesis of particular nanostructures with tailored shape and size is especially important. Herein a novel class of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies and optical properties are prepared for the first time by a facile, one-pot, seedless synthesis using ascorbic acid (AA) to reduce hydrogen tetrachloroaurate (HAuCl4) in the presence of (1-hexadecyl)trimethylammonium chloride (CTAC). The morphologies of the synthesized gold nanoflowers are controlled and fine-tuned by varying the synthetic conditions such as the concentration of reagents and the growth temperature. Due to their unique hierarchical three-dimensional (3D) structures with rich hot spots, these gold nanoflowers exhibit an efficient performance in single-particle surface-enhanced Raman scattering (SERS). The work stands out as an interesting approach for anisotropic particle synthesis and morphological control, and the proposed novel, hierarchical gold nanoflowers have a number of exciting potential applications in SERS-based sensors.The physicochemical properties of noble metal nanocrystals depend strongly on their size and shape, and it is becoming clear that the design and facile synthesis of particular nanostructures with tailored shape and size is especially important. Herein a novel class of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies and optical properties are prepared for the first time by a facile, one-pot, seedless synthesis using ascorbic acid (AA) to reduce hydrogen tetrachloroaurate (HAuCl4) in the presence of (1-hexadecyl)trimethylammonium chloride (CTAC). The morphologies of the synthesized gold nanoflowers are controlled and fine-tuned by varying the synthetic conditions such as the concentration of reagents and the growth temperature. Due to

  15. Observation and simulation of near-surface wind and its variation with topography in Urumqi, West China

    Science.gov (United States)

    Jin, Lili; Li, Zhenjie; He, Qing; Miao, Qilong; Zhang, Huqiang; Yang, Xinghua

    2016-12-01

    Near-surface wind measurements obtained with five 100-m meteorology towers, 39 regional automatic stations, and simulations by the Weather Research and Forecasting (WRF) model were used to investigate the spatial structure of topography-driven flows in the complex urban terrain of Urumqi, China. The results showed that the wind directions were mainly northerly and southerly within the reach of 100 m above ground in the southern suburbs, urban area, and northern suburbs, which were consistent with the form of the Urumqi gorge. Strong winds were observed in southern suburbs, whereas the winds in the urban, northern suburbs, and northern rural areas were weak. Static wind occurred more frequently in the urban and northern rural areas than in the southern suburbs. In the southern suburbs, wind speed was relatively high throughout the year and did not show significant seasonal variations. The average annual wind speed in this region varied among 1.9-5.5, 1.1-3.6, 1.2-4.3, 1.2-4.3, and 1.1-3.5 m s -1 within the reach of 100 m above ground at Yannanlijiao, Shuitashan, Liyushan, Hongguangshan, and Midong, respectively. The flow characteristics comprised more airflows around the mountain, where the convergence and divergence were dominated by the terrain in eastern and southwestern Urumqi. Further analysis showed that there was a significant mountain-valley wind in spring, summer, and autumn, which occurred more frequently in spring and summer for 10-11 h in urban and northern suburbs. During daytime, there was a northerly valley wind, whereas at night there was a southerly mountain wind. The conversion time from the mountain wind to the valley wind was during 0800-1000 LST (Local Standard Time), while the conversion from the valley wind to the mountain wind was during 1900-2100 LST. The influence of the mountain-valley wind in Urumqi City was most obvious at 850 hPa, according to the WRF model.

  16. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    Science.gov (United States)

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright

  17. To attach or not to attach? The effect of carrier surface morphology and topography on attachment of phoretic deutonymphs of Uropoda orbicularis (Acari)

    Science.gov (United States)

    Bajerlein, Daria; Adamski, Zbigniew; Kacalak, Wojciech; Tandecka, Katarzyna; Wiesner, Maciej; Jurga, Stefan

    2016-08-01

    Previous studies on preferences of phoretic deutonymphs of Uropodina for attachment sites have shown that they frequently select smooth and hydrophobic surfaces. The aim of our study was to provide the detailed morphological and topographical characteristics of beetle body surfaces to which deutonymphs frequently attach and to verify how the presence of setae and surface sculpture affects deutonymph attachment. The study was conducted on Uropoda orbicularis (Müller, 1776) and its common beetle carriers: Aphodius prodromus (Brahm, 1790), Aphodius fimetarius (Linnaeus, 1758), Onthophagus nuchicornis (Linnaeus, 1758) and Margarinotus carbonarius (Hoffmann, 1803). Morphology and topography of elytra, femora, propygidia and pygidia of beetles were analysed mainly using SEM methods supported with CLSM and AFM techniques. The hypothesis that deutonymphs may attach to surfaces covered with setae, if seta density is low enough not to disturb mite movement, was tested. The study revealed that deutonymphs attach to surfaces of various types as follows: (i) smooth, (ii) hairy, i.e., covered with setae, (iii) flat and (iv) sculptured. Smooth body parts and body parts covered with setae of low density were most frequently and intensively occupied with deutonymphs. Surfaces of high seta density were avoided by mites. Within elytra of Aphodius beetles, deutonymphs definitely preferred flat surfaces of elytral intervals. On the contrary, densely punctuated propygidium and pygidium in M. carbonarius were heavily infested with deutonymphs. We conclude that carrier surface morphology and topography are important for Uropodina deutonymph attachment, but these two factors cannot fully explain the observed relation.

  18. Effects and Mechanisms of Surface Topography on the Antiwear Properties of Molluscan Shells (Scapharca subcrenata Using the Fluid-Solid Interaction Method

    Directory of Open Access Journals (Sweden)

    Limei Tian

    2014-01-01

    Full Text Available The surface topography (surface morphology and structure of the left Scapharca subcrenata shell differs from that of its right shell. This phenomenon is closely related to antiwear capabilities. The objective of this study is to investigate the effects and mechanisms of surface topography on the antiwear properties of Scapharca subcrenata shells. Two models are constructed—a rib morphology model (RMM and a coupled structure model (CSM—to mimic the topographies of the right and left shells. The antiwear performance and mechanisms of the two models are studied using the fluid-solid interaction (FSI method. The simulation results show that the antiwear capabilities of the CSM are superior to those of the RMM. The CSM is also more conducive to decreasing the impact velocity and energy of abrasive particles, reducing the probability of microcrack generation, extension, and desquamation. It can be deduced that in the real-world environment, Scapharca subcrenata’s left shell sustains more friction than its right shell. Thus, the coupled structure of the left shell is the result of extensive evolution.

  19. The characteristics of Ishikawa endometrial cancer cells are modified by substrate topography with cell-like features and the polymer surface

    Directory of Open Access Journals (Sweden)

    Tan LH

    2015-08-01

    Full Text Available Li Hui Tan,1,2 Peter H Sykes,1 Maan M Alkaisi,2,3 John J Evans1,2,4 1Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 3Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, 4Centre for Neuroendocrinology, University of Otago, Christchurch, New Zealand Abstract: Conventional in vitro culture studies on flat surfaces do not reproduce tissue environments, which have inherent topographical mechanical signals. To understand the impact of these mechanical signals better, we use a cell imprinting technique to replicate cell features onto hard polymer culture surfaces as an alternative platform for investigating biomechanical effects on cells; the high-resolution replication of cells offers the micro- and nanotopography experienced in typical cell–cell interactions. We call this platform a Bioimprint. Cells of an endometrial adenocarcinoma cell line, Ishikawa, were cultured on a bioimprinted substrate, in which Ishikawa cells were replicated on polymethacrylate (pMA and polystyrene (pST, and compared to cells cultured on flat surfaces. Characteristics of cells, incorporating morphology and cell responses, including expression of adhesion-associated molecules and cell proliferation, were studied. In this project, we fabricated two different topographies for the cells to grow on: a negative imprint that creates cell-shaped hollows and a positive imprint that recreates the raised surface topography of a cell layer. We used two different substrate materials, pMA and pST. We observed that cells on imprinted substrates of both polymers, compared to cells on flat surfaces, exhibited higher expression of β1-integrin, focal adhesion kinase, and cytokeratin-18. Compared to cells on flat surfaces, cells were larger on imprinted pMA and more in number, whereas on pST-imprinted surfaces, cells were smaller and fewer than

  20. Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography

    Science.gov (United States)

    Hochberg, Eric B. (Inventor); Baroth, Edmund C. (Inventor)

    1994-01-01

    An novel interferometric apparatus and method for measuring the topography of aspheric surfaces, without requiring any form of scanning or phase shifting. The apparatus and method of the present invention utilize a white-light interferometer, such as a white-light Twyman-Green interferometer, combined with a means for dispersing a polychromatic interference pattern, using a fiber-optic bundle and a disperser such as a prism for determining the monochromatic spectral intensities of the polychromatic interference pattern which intensities uniquely define the optical path differences or OPD between the surface under test and a reference surface such as a reference sphere. Consequently, the present invention comprises a snapshot approach to measuring aspheric surface topographies such as the human cornea, thereby obviating vibration sensitive scanning which would otherwise reduce the accuracy of the measurement. The invention utilizes a polychromatic interference pattern in the pupil image plane, which is dispersed on a point-wise basis, by using a special area-to-line fiber-optic manifold, onto a CCD or other type detector comprising a plurality of columns of pixels. Each such column is dedicated to a single point of the fringe pattern for enabling determination of the spectral content of the pattern. The auto-correlation of the dispersed spectrum of the fringe pattern is uniquely characteristic of a particular optical path difference between the surface under test and a reference surface.

  1. Interaction of mantle dynamics, crustal tectonics, and surface processes in the topography of the Romanian Carpathians: A geomorphological approach

    Science.gov (United States)

    Molin, P.; Fubelli, G.; Nocentini, M.; Sperini, S.; Ignat, P.; Grecu, F.; Dramis, F.

    2012-06-01

    Tectonic processes and dynamic mantle flow impart a unique imprint on topography and geomorphic responses over time scales of 104 to 106 yr. First-order topographic features in a tectonically active landscape represent ways to quantitatively characterise the interaction between crustal tectonics, mantle dynamics, and geomorphology, providing a basis for modelling landscape evolution. We analysed the topographic features of the Romanian Carpathians, a mountain range characterised by two straight segments connected by a narrow curvature zone. The deformation started in the Late Jurassic and includes two collisional phases during the Cretaceous and Miocene. We examined the tectonic geomorphology of the Romanian Carpathians focusing on regional and local topographic setting, drainage pattern, and river long profiles. Our main database is composed of DEM-based topographic analysis, supplemented with field investigations in the Slănic River basin, located in the Carpathian curvature zone. The longitudinal profiles of rivers draining the southern Carpathians are close to the equilibrium shape, in agreement with the older emersion of the chain. The longitudinal profiles of the rivers draining the eastern and southeastern Carpathians are in a transient state of disequilibrium as a consequence of a more recent emersion of the chain and of the Pliocene-Pleistocene tectonic activity in the Bend Zone. Filtering the topography at different wavelengths, we observe a relative depression in correspondence with the Carpathian Bend, where mantle seismicity and a high-velocity zone in tomography data are located and commonly interpreted as related to an almost inactive and dying subduction zone. Contrastingly, the filtered topography presents a high in the Transylvanian basin, where tomography data show a low-velocity area, interpreted as upwelling of hot asthenospheric materials. We hypothesise that local mantle convection generates positive and negative dynamic topographies. In the

  2. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation.

    Science.gov (United States)

    Xu, Jia-Yun; Chen, Xian-Shuai; Zhang, Chun-Yu; Liu, Yun; Wang, Jing; Deng, Fei-Long

    2016-11-01

    Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P<0.05) and higher total protein contents on the 14th day (P<0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P<0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes.

  3. Surface fine topography and PCR-based determination of metacercaria of Paragonimus sp. from edible crabs in Arunachal Pradesh, Northeast India.

    Science.gov (United States)

    Tandon, V; Prasad, P K; Chatterjee, A; Bhutia, P T

    2007-12-01

    In several mountainous regions of Northeastern India, foci of Paragonimus infection reportedly involving species that are known to prevail in China have been identified. The present study was undertaken to demonstrate the surface fine topography and sequence analysis of the ribosomal deoxyribonucleic acid (rDNA; second internal transcribed spacer, ITS2) of the metacercarial stages of the lung fluke collected from a mountain stream of the area (Miao, Changlang District in Arunachal Pradesh). The encysted metacercariae were oval in shape and had a smooth surface. The newly excysted metacercaria had a ventral sucker larger than the oral; the body surface was covered with numerous single-pointed and thorn-like tegumentary spines, of which those on the anterior part of the body were bigger in size and showed a gradual reduction in length and number towards the posterior end; dome-shaped papillae in variable numbers were seen around the rim of the oral sucker and were sparsely distributed all over the body surface. The polymerase chain reaction-amplified rDNA ITS2 sequences of the metacercariae were aligned with known sequences for the various species of Paragonimus, and the expectation value was found to be most significant with P. westermani, revealing an absolute match. The surface topography including the number and distribution of papillae and spination patterns and the ITS2 sequences of the metacercariae strongly suggest that the Paragonimus species, prevalent in the region of India, is in fact P. westermani.

  4. Demonstration of Two Portable Scanning LiDAR Systems Flown at Low-Altitude for Investigating Coastal Sea Surface Topography

    Directory of Open Access Journals (Sweden)

    Jorg Hacker

    2011-09-01

    Full Text Available We demonstrate the efficacy of a commercial portable 2D laser scanner (operating at a wavelength close to 1,000 nm deployed from a fixed-wing aircraft for measuring the sea surface topography and wave profiles over coastal waters. The LiDAR instrumentation enabled simultaneous measurements of the 2D laser scanner with two independent inertial navigation units, and also simultaneous measurements with a more advanced 2D laser scanner (operating at a wavelength near 1,500 nm. The latter scanner is used routinely for accurately measuring terrestrial topography and was used as a benchmark in this study. We present examples of sea surface topography and wave profiles based on low altitude surveys (< ~300 m over coastal waters in the vicinity of Cape de Couedic, Kangaroo Island, South Australia and over the surf zone adjacent to the mouth of the Murray River, South Australia. Relative wave heights in the former survey are shown to be consistent with relative wave heights observed from a waverider buoy located near Cape de Couedic during the LiDAR survey. The sea surface topography of waves in the surf zone was successfully mapped with both laser scanners resolving relative wave height variations and fine structure of the sea surface to within approximately 10 cm. A topographic map of the sea surface referenced to the airborne sensor frame transforms to an accurate altimetry map which may be used with airborne electromagnetic instrumentation to provide an averaged altimetry covering a portion of the larger electromagnetic footprint. This averaged altimetry is deemed to be significantly more reliable as a measurement of altimetry than spot measurements using a nadir-looking laser altimeter and would therefore improve upon the use of airborne electromagnetic methods for bathymetric mapping in surf-zone waters. The aperture range of the scanner does not necessarily determine the swath. We observed that instead, the maximum swath at a given altitude was

  5. Surface modification for patterned cell growth on substrates with pronounced topographies using sacrificial photoresist and parylene-C peel-off

    Science.gov (United States)

    Larramendy, Florian; Yoshida, Shotaro; Jalabert, Laurent; Takeuchi, Shoji; Paul, Oliver

    2016-09-01

    A range of methods including soft lithography are available for patterning protein layers for cell adhesion on quasi-planar substrates. Suitably structured, these layers favor the geometrically constrained, controlled growth of cells and the development of cellular extensions on them. For this purpose, the ability to control the shape and dimension of cell-adhesive areas with high precision is crucial. For more advanced studies of cell interactions, the surface modification or functionalization of substrates with complex topographies is desirable. This paper describes a simple technique allowing to produce surface modification patterns using delicate molecules such as laminin on substrates exhibiting pronounced topographies with recessed and protruding microstructures. The technique is based on the combination of sacrificial photoresist structures with a connected parylene-C layer. This layer locally adheres to the substrate wherever the substrate needs to be protected against the surface modification. After surface modification, the parylene-C layer is peeled off. Patterns comprising arbitrary networks of modified and unmodified substrate areas can thus be realized. We demonstrate the technique with the guided growth of neuron-like PC12 cells on networks of laminin lines on substrates structured with micropillars and microwells.

  6. Special relativity and interferometers

    Science.gov (United States)

    Han, D.; Kim, Y. S.

    1988-01-01

    A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.

  7. The Palomar Testbed Interferometer

    OpenAIRE

    Colavita, M. M.; Wallace, J. K.

    1998-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferomet...

  8. Special relativity and interferometers

    Science.gov (United States)

    Han, D.; Kim, Y. S.

    1988-01-01

    A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.

  9. Double-grating interferometer with a one-to-one correspondence with a Michelson interferometer.

    Science.gov (United States)

    Xu, Yande; Sasaki, Osami; Suzuki, Takamasa

    2003-10-01

    We describe a double-grating interferometer that has a one-to-one correspondence with a Michelson interferometer. The half spatial periods of the gratings are equivalent to the wavelengths of the interferometer. The widths of the interference fringes can be changed easily. The intensity distribution of the interference pattern is independent of the wavelength of the light source used. The surface profile of an object can be measured because two interference beams can coincide precisely on the image plane of the object. The measuring range is much larger than that of a Michelson interferometer.

  10. Corneal topography measurement by means of radial shearing interference: Part II - experiment results

    Science.gov (United States)

    Garncarz, Beata E.; Kowalik, Waldemar W.; Kasprzak, Henryk T.

    The method of the measurement of the corneal topography was worked out. This measurement system uses an interferometer based on radial shearing. This paper presents the preliminary results of the experiments. The results are compared with other methods.

  11. The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Stenseng, Lars

    2015-01-01

    enables the determination of sea level in leads in the ice, which has enabled us to derive an accurate MSS all the way to 88°N.With the availability to determine the geoid with higher accuracy than ever before due to the launch of the GRACE and GOCE satellites, is hence become possible to derive...... a satellite only mean dynamic topography (MDT) from the difference between the MSS and the geoid. Here the DTU13MSS and DTU13MDT are presented and we demonstrate how these can be used to derive realistic geostrophic currents in the world’s ocean comparable to oceanographic derived MDT....

  12. Dynamic changes in corneal topography and its influence on the point-spread function of the eye

    Science.gov (United States)

    Siedlecki, Damian; Kasprzak, Henryk; Pierscionek, Barbara K.

    2007-03-01

    The dynamic changes of the anterior surface of the eye are investigated. A Twyman-Green interferometer is used to record topographic images at 40 ms intervals. A method of analysis of the dynamic changes in topography by use of Zernike polynomials enables a general distinction to be made between dynamic alterations in the shape of the cornea itself and the changes in the layer of the tears. The influence of deviations in the shape of the anterior surface of the eye on the retinal image is estimated.

  13. Interferometer and analysis methods for the in vitro characterization of dynamic fluid layers on contact lenses

    Science.gov (United States)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-06-01

    The anterior refracting surface of the eye when wearing a contact lens is the thin fluid layer that forms on the surface of the contact lens. Under normal conditions, this fluid layer is less than 10 μm thick. The fluid layer thickness and topography change over time and are affected by the material properties of the contact lens and may affect vision quality and comfort. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed by use of a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. Quantitative analysis beyond typical contact angle or visual inspection methods is provided. Different fluid and contact lens material combinations have been evaluated, and variations in fluid layer properties have been observed. This paper discusses the interferometer design and analysis methods used. Example measurement results of different contact lens are presented.

  14. Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses.

    Science.gov (United States)

    Moon, Byeong-Seok; Kim, Sungwon; Kim, Hyoun-Ee; Jang, Tae-Sik

    2017-04-01

    Hierarchical micro-nano (HMN) surface structuring of dental implants is a fascinating strategy for achieving fast and mechanically stable fixation due to the synergetic effect of micro- and nano-scale surface roughness with surrounding tissues. However, the introduction of a well-defined nanostructure on a microstructure having complex surface geometry is still challenging. As a means of fabricating HMN surface on Ti6Al4V-ELI, target-ion induced plasma sputtering (TIPS) was used onto a sand-blasted, large-grit and acid-etched substrate. The HMN surface topography was simply controlled by adjusting the tantalum (Ta) target power of the TIPS technique, which is directly related to the Ta ion flux and the surface chemical composition of the substrate. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and laser scanning microscopy (LSM) verified that well-defined nano-patterned surface structures with a depth of ~300 to 400nm and a width of ~60 to 70nm were uniformly distributed and followed the complex micron-sized surface geometry. In vitro cellular responses of pre-osteoblast cells (MC3T3-E1) were assessed by attachment and proliferation of cells on flat, nano-roughened, micro-roughened, and an HMN surface structure of Ti6Al4V-ELI. Moreover, an in vivo dog mandible defect model study was used to investigate the biological effect of the HMN surface structure compared with the micro-roughened surface. The results showed that the surface nanostructure significantly increased the cellular activities of flat and micro-roughened Ti, and the bone-to-implant contact area and new bone volume were significantly improved on the HMN surface structured Ti. These results support the idea that an HMN surface structure on Ti6Al4V-ELI alloy has great potential for enhancing the biological performance of dental implants.

  15. A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2010-10-01

    Full Text Available Most of the indices currently employed for assessing soil surface micro-topography, such as random roughness (RR, are merely descriptors of its vertical component. Recently, multifractal analysis provided a new insight for describing the spatial configuration of soil surface roughness. The main objective of this study was to test the ability of multifractal parameters to assess in field conditions the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. In addition, we evaluated the potential of the joint use of multifractal indices plus RR to improve predictions of water storage in depressions of the soil surface (MDS. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil. Six tillage treatments, namely, disc harrow, disc plough, chisel plough, disc harrow + disc level, disc plough + disc level and chisel plough + disc level were tested. In each treatment soil surface micro-topography was measured four times, with increasing amounts of natural rainfall, using a pin meter. The sampling scheme was a square grid with 25 × 25 mm point spacing and the plot size was 1350 × 1350 mm (≈1.8 m2, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. MDS was estimated from grid elevation data with a depression-filling algorithm. Multifractal analysis was performed for experimental data sets as well as for oriented and random surface conditions obtained from the former by removing slope and slope plus tillage marks, respectively. All the investigated microplots exhibited multifractal behaviour, irrespective of surface condition, but the degree of multifractality showed wide differences between them. Multifractal parameters provided valuable information for characterizing the spatial features of soil micro-topography as they were able to

  16. A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2010-03-01

    Full Text Available Most of the indices currently employed for assessing soil surface micro-topography, such as random roughness (RR, are merely descriptors of its vertical component. Recently, multifractal analysis provided a new insight for describing the spatial configuration of soil surface roughness. The main objective of this study was to test the ability of multifractal parameters to assess decay of initial surface roughness induced by natural rainfall under different soil tillage systems in field conditions. In addition, we evaluated the potential of the joint use of multifractal indices plus RR to improve predictions of water storage in depressions of the soil surface (MDS. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil. Six tillage treatments, namely, disc harrow, disc plough, chisel plough, disc harrow + disc level, disc plough + disc level and chisel plough + disc level were tested. In each treatment soil surface micro-topography was measured four times, with increasing amounts of natural rainfall, using a pin meter. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm (≈1.8 m2, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. MDS was estimated from grid elevation data with a depression-filling algorithm. Multifractal analysis was performed for experimental data sets as well as for oriented and random surface conditions obtained from the former by removing slope and slope plus tillage marks, respectively. All the investigated microplots exhibited multifractal behaviour, irrespective of surface condition, but the degree of multifractality showed wide differences between them. Multifractal parameters provided valuable information for characterizing the spatial features of soil micro-topography as they were able to discriminate data

  17. Improving Surface Geostrophic Current from a GOCE-Derived Mean Dynamic Topography Using Edge-Enhancing Diffusion Filtering

    DEFF Research Database (Denmark)

    Sanchez-Reales, J. M.; Andersen, Ole Baltazar; Vigo, M. I.

    2016-01-01

    in the Northwestern Pacific Ocean, we found that EED filtering provides similar estimation of the current velocities in both cases, whereas a non-linear isotropic filter (the Perona and Malik filter) returns results influenced by local residual noise when a difficult case is tested. We found that EED filtering......With increased geoid resolution provided by the gravity and steady-state ocean circulation explorer (GOCE) mission, the ocean's mean dynamic topography (MDT) can be now estimated with an accuracy not available prior to using geodetic methods. However, an altimetric-derived MDT still needs filtering...... in order to remove short wavelength noise unless integrated methods are used in which the three quantities are determined simultaneously using appropriate covariance functions. We studied nonlinear anisotropic diffusive filtering applied to the oceanA ' s MDT and a new approach based on edge...

  18. Organic carbon and nitrogen in the surface sediments of world oceans and seas: distribution and relationship to bottom topography

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.

    1980-06-01

    Information dealing with the distribution of organic carbon and nitrogen in the top sediments of world oceans and seas has been gathered and evaluated. Based on the available information a master chart has been constructed which shows world distribution of sedimentary organic matter in the oceans and seas. Since organic matter exerts an influence upon the settling properties of fine inorganic particles, e.g. clay minerals and further, the interaction between organic matter and clay minerals is maximal, a relationship between the overall bottom topography and the distribution of clay minerals and organic matter should be observable on a worldwide basis. Initial analysis of the available data indicates that such a relationship does exist and its significance is discussed.

  19. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Eva [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria); Bruck, Roman [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Hainberger, Rainer, E-mail: rainer.hainberger@ait.ac.at [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Laemmerhofer, Michael, E-mail: michael.laemmerhofer@univie.ac.at [Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria)

    2011-08-12

    Highlights: {yields} We realize a biosensing platform for polyimide evanescent photonic wave sensors. {yields} We show that the surface functionalization via silanisation and biotinylation followed by streptavidin immobilization do not destroy or damage the thin polyimide film. {yields} A highly dense streptavidin layer enables the immobilisation of biotinylated ligands such as biotinylated ssDNA for the selective measurement of DNA hybridization. - Abstract: The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG{sub 2}-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm{sup -2} streptavidin with good reproducibility (13.9% RSD, n = 10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer

  20. Guided magnonic Michelson interferometer

    Science.gov (United States)

    Ahmed, Muhammad H.; Jeske, Jan; Greentree, Andrew D.

    2017-01-01

    Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks.

  1. Dynamic measurement of the corneal tear film with a Twyman-Green interferometer

    Science.gov (United States)

    Micali, Jason D.; Greivenkamp, John E.; Primeau, Brian C.

    2015-05-01

    An interferometer for measuring dynamic properties of the in vivo tear film on the human cornea has been developed. The system is a near-infrared instantaneous phase-shifting Twyman-Green interferometer. The laser source is a 785 nm solid-state laser, and the system has been carefully designed and calibrated to ensure that the system operates at eye-safe levels. Measurements are made over a 6 mm diameter on the cornea. Successive frames of interferometric height measurements are combined to produce movies showing both the quantitative and qualitative changes in the topography of the tear film surface and structure. To date, measurement periods of up to 120 s at 28.6 frames per second have been obtained. Several human subjects have been examined using this system, demonstrating a surface height resolution of 25 nm and spatial resolution of 6 μm. Examples of features that have been observed in these preliminary studies of the tear film include postblink disruption, evolution, and stabilization of the tear film; tear film artifacts generated by blinking; tear film evaporation and breakup; and the propagation of foreign objects in the tear film. This paper discusses the interferometer design and presents results from in vivo measurements.

  2. Surface topography, nano-mechanics and secondary structure of wheat gluten pretreated by alternate dual-frequency ultrasound and the correlation to enzymolysis.

    Science.gov (United States)

    Zhang, Yanyan; Wang, Bei; Zhou, Cunshan; Atungulu, Griffiths G; Xu, Kangkang; Ma, Haile; Ye, Xiaofei; Abdualrahman, Mohammed A Y

    2016-07-01

    The effects of alternate dual-frequency ultrasound (ADFU) pretreatment on the degree of hydrolysis (DH) of wheat gluten (WG) and angiotensin I-converting enzyme (ACE) inhibitory activity were investigated in this research. The surface topography, nano-mechanics and secondary structure of WG were also determined using atomic force microscope (AFM) and circular dichroism (CD). The correlations of ACE inhibitory activity and DH with surface topography, nano-mechanics and secondary structure of WG were determined using Pearson's correlation analysis. The results showed that with an increase in either pretreatment duration or power, the ACE inhibitory activity of the hydrolysate also increases, reaching maximum at 10 min and 150 W/L, respectively, and then decreases thereafter. Similarly, AFM analysis showed that as the pretreatment duration or power increases, the surface roughness also increase and again a decrease occurs thereafter. As the pretreatment duration or power increased, the Young's modulus and adhesion of WG also increased and then declined. Young's modulus and adhesions average values were compared with ACE inhibitory activity reversely. The result of the CD spectra analysis exhibited losses in the relative percentage of α-helix of WG. Pearson's correlation analysis showed that the average values of Young's modulus and the relative percentage of α-helix correlated with ACE inhibitory activity of the hydrolysates linearly and significantly (P<0.05); the relative percentage of β-sheet correlated linearly with DH of WG significantly (P<0.05). In conclusion, ADFU pretreatment is an efficient method in proteolysis due to its physical and chemical effect on the Young's modulus, α-helix and β-sheet of WG.

  3. Growth, structure, surface topography and magnetic properties of GdMnO3 multiferroic epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Mukovskii Ya.

    2013-01-01

    Full Text Available Epitaxial GdMnO3 thin films were grown in various regimes on (001 NdGaO3 and (001 SrTiO3 substrates by RF magnetron sputtering. X-ray analysis revealed that the films grown at a substrate temperature of 650-900 °C are single phase (GdMnO3 with orthorhombic Pbnm structure. Films grown on NdGaO3 substrates at lower temperature (750 °C reveal two orientations, i.e. GdMnO3(001||NdGaO3(001 and GdMnO3(110||NdGaO3(001. These results are confirmed by transmission electron microscopy. Films grown on SrTiO3 substrates have two orientations, i.e. GdMnO3(001||SrTiO3(001 and GdMnO3(110||SrTiO3(001, in the whole temperature range in which the phase exists. Using atomic force microscopy the correlation between the topography of the films and their crystallographic structure was studied. The magnetic properties of the films differ from those of bulk samples and revealed spin-glass behavior.

  4. Toward optical coherence topography

    Science.gov (United States)

    Sayegh, Samir; Jiang, Yanshui

    2012-03-01

    Commercial OCT systems provide pachymetry measurements. Full corneal topographic information of anterior and posterior corneal surfaces for use in cataract surgery and refractive procedures is a desirable goal and would add to the usefulness of anterior and posterior segment evaluation. While substantial progress has been made towards obtaining "average" central corneal power (D Huang), power in different meridians and topography are still missing. This is usually reported to be due to eye movement. We analyze the role of centration, eye movements and develop a model that allows for the formulation of criteria for obtaining reliable topographic data within ¼ diopter.

  5. Carbon Dioxide Exchange in Complex Topography

    Science.gov (United States)

    Reif, Matthias; Rotach, Mathias; Wohlfahrt, Georg; Gohm, Alexander

    2015-04-01

    On a global scale the budget of carbon dioxide (CO_2) bears a quite substantial uncertainty, which is commonly understood to be mainly due to land-surface exchange processes. In this project we investigate to what extent complex topography can amplify these land-surface exchange processes. The hypothesis is that, on the meso-scale, topography adds additional atmospheric mechanisms that drive the exchange of CO2 at the surface. This sensitivity model study investigates an idealized sine shaped valley with the atmospheric numerical model Weather Research and Forecasting (WRF) coupled to the community land model (CLM) to study the effect of complex topography on the CO2 budget compared to flat terrain. The experiment is designed to estimate the effect of the topography during maximum ecosystem exchange in summer using meteorological and ecosystem conditions at solstice, the 21. of June. Systematic variation of meteorological initial conditions, plant functional types and the topography creates an ensemble that unveils the fundamental factors that dominate the differences of CO2 between simulations with topography compared to plain surfaces in the model. The sign and magnitude of the difference between the CO2 exchange over topography and over a plain simulation are strongly dependent on the CLM plant functional type, the initial temperature, the initial relative humidity, the latitude and the area height distribution of the topography. However, in this model experiment the topography is, in the mean, a sink to the CO2 budget in the order of 5% per day.

  6. A study on the effect of surface topography on the actuation performance of stacked-rolled dielectric electro active polymer actuator

    Science.gov (United States)

    Sait, Usha; Muthuswamy, Sreekumar

    2016-05-01

    Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.

  7. Combined Effect of Surface Nano-Topography and Delivery of Therapeutics on the Adhesion of Tumor Cells on Porous Silicon Substrates

    KAUST Repository

    De Vitis, S.

    2016-02-23

    Porous silicon is a nano material in which pores with different sizes, densities and depths are infiltrated in conventional silicon imparting it augmented properties including biodegradability, biocompatibility, photoluminescence. Here, we realized porous silicon substrates in which the pore size and the fractal dimension were varied over a significant range. We loaded the described substrates with a PtCl(O, O′ − acac)(DMSO) antitumor drug and determined its release profile as a function of pore size over time up to 15 days. We observed that the efficacy of delivery augments with the pore size moving from small (∼ 8nm, efficiency of delivery ∼ 0.2) to large (∼ 55nm, efficiency of delivery ∼ 0.7). Then, we verified the adhesion of MCF-7 breast cancer cells on the described substrates with and without the administration of the antitumor drug. This permitted to decouple and understand the coincidental effects of nano-topography and a controlled dosage of drugs on cell adhesion and growth. While large pore sizes guarantee elevated drug dosages, large fractal dimensions boost cell adhesion on a surface. For the particular case of tumor cells and the delivery of an anti-tumor drug, substrates with a small fractal dimension and large pore size hamper cell growth. The competition between nano-topography and a controlled dosage of drugs may either accelerate or block the adhesion of cells on a nanostructured surface, for applications in tissue engineering, regenerative medicine, personalized lab-on-a-chips, and the rational design of implantable drug delivery systems.

  8. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: f.heib@mx.uni-saarland.de [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)

    2015-07-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  9. Multi Scale Investigation of Surface Topography of Ball Python (Python Regius) Shed Skin in Comparison to Human skin

    CERN Document Server

    Abdel-Aal, H A; Mezghani, S; 10.1007/s11249-009-9547-y

    2010-01-01

    Constructing a surface that is an integral part of the function of tribosystems (deterministic surface) is an intriguing goal. Inspirations for such surfaces come from studying natural systems and deducing design rules. The major attraction is that natural systems, while functionally complex, are, in general, of optimized shape and performance. It is further believed that functional complexity of natural systems is what affords natural species to morph continuously to adapt with the operating environment. One bio-species that is of interest is the Ball Python. This is because such a species continuously slides against various surfaces, many of which are deemed tribologically hostile, without sustaining much damage. Much of the success of that species in adapting to its environment is attributed to surface design features. In that respect, studying these features and how do they contribute to the control of friction and wear is very attractive. This paper is a step in this direction. In this work we apply a mu...

  10. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene.

    Science.gov (United States)

    Dowling, Denis P; Miller, Ian S; Ardhaoui, Malika; Gallagher, William M

    2011-09-01

    Biomaterials interact with the biological environment at their surface, making accurate biophysical characterization of the surface crucially important for understanding subsequent biological effects. In this study, the surface of polystyrene (PS) was systematically altered in order to determine the effect of plasma treatment and surface roughness on cell adhesion and spreading. Surfaces with water contact angle from hydrophilic (12°) to superhydrophobic (155°) were obtained through a combination of modifying surface roughness (R (a)), the deposition of siloxane coatings and the fluorination of the PS surface. R (a) values in the range of 19-2365 nm were obtained by grinding the PS surface. The nanometer-thick siloxane coatings were deposited using an atmospheric pressure plasma system, while the fluorination of the PS was carried out using a low-pressure radio frequency (RF) plasma. The siloxane coatings were obtained using a liquid poly(dimethylsiloxane) precursor that was nebulized into helium or helium/oxygen plasmas. Water contact angles in the range of 12-122° were obtained with these coatings. Cell adhesion studies were carried out using human MG63 osteosarcoma cells. It was observed that higher polymer surface roughness enhanced cell adhesion, but had a negative effect on cell spreading. Optimum cell adhesion was observed at ∼64° for the siloxane coatings, with a decrease in adhesion observed for the more hydrophilic and hydrophobic coatings. This decrease in cell adhesion with an increase in hydrophobicity was also observed for the fluorinated PS surfaces with water contact angles in the range of 110-155°.

  11. Quantitative model of cellulite: three-dimensional skin surface topography, biophysical characterization, and relationship to human perception.

    Science.gov (United States)

    Smalls, Lola K; Lee, Caroline Y; Whitestone, Jennifer; Kitzmiller, W John; Wickett, R Randall; Visscher, Marty O

    2005-01-01

    Gynoid lipodystrophy (cellulite) is the irregular, dimpled skin surface of the thighs, abdomen, and buttocks in 85% of post-adolescent women. The distinctive surface morphology is believed to result when subcutaneous adipose tissue protrudes into the lower reticular dermis, thereby creating irregularities at the surface. The biomechanical properties of epidermal and dermal tissue may also influence severity. Cellulite-affected thigh sites were measured in 51 females with varying degrees of cellulite, in 11 non-cellulite controls, and in 10 male controls. A non-contact high-resolution three-dimensional laser surface scanner was used to quantify the skin surface morphology and determine specific roughness values. The scans were evaluated by experts and naive judges (n=62). Body composition was evaluated via dual-energy x-ray absorptiometry; dermal thickness and the dermal-subcutaneous junction were evaluated via high-resolution 3D ultrasound and surface photography under compression. Biomechanical properties were also measured. The roughness parameters Svm (mean depth of the lowest valleys) and Sdr (ratio between the roughness surface area and the area of the xy plane) were highly correlated to the expert image grades and, therefore, designated as the quantitative measures of cellulite severity. The strength of the correlations among naive grades, expert grades, and roughness values confirmed that the data quantitatively evaluate the human perception of cellulite. Cellulite severity was correlated to BMI, thigh circumference, percent thigh fat, architecture of the dermal-subcutaneous border (ultrasound surface area, red-band SD from compressed images), compliance, and stiffness (negative correlation). Cellulite severity was predicted by the percent fat and the area of the dermal-subcutaneous border. The biomechanical properties did not significantly contribute to the prediction. Comparison of the parameters for females and males further suggest that percent thigh fat

  12. Comparison of Placido disc and Scheimpflug image-derived topography-guided excimer laser surface normalization combined with higher fluence CXL: the Athens Protocol, in progressive keratoconus

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-07-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis11Laservision.gr Eye Institute, Athens, Greece; 2New York University School of Medicine, Department of Opthalmology, NY, NY, USABackground: The purpose of this study was to compare the safety and efficacy of two alternative corneal topography data sources used in topography-guided excimer laser normalization, combined with corneal collagen cross-linking in the management of keratoconus using the Athens protocol, ie, a Placido disc imaging device and a Scheimpflug imaging device.Methods: A total of 181 consecutive patients with keratoconus who underwent the Athens protocol between 2008 and 2011 were studied preoperatively and at months 1, 3, 6, and 12 postoperatively for visual acuity, keratometry, and anterior surface corneal irregularity indices. Two groups were formed, depending on the primary source used for topoguided photoablation, ie, group A (Placido disc and group B (Scheimpflug rotating camera. One-year changes in visual acuity, keratometry, and seven anterior surface corneal irregularity indices were studied in each group.Results: Changes in visual acuity, expressed as the difference between postoperative and preoperative corrected distance visual acuity were +0.12 ± 0.20 (range +0.60 to -0.45 for group A and +0.19 ± 0.20 (range +0.75 to -0.30 for group B. In group A, K1 (flat keratometry changed from 45.202 ± 3.782 D to 43.022 ± 3.819 D, indicating a flattening of -2.18 D, and K2 (steep keratometry changed from 48.670 ± 4.066 D to 45.865 ± 4.794 D, indicating a flattening of -2.805 D. In group B, K1 (flat keratometry changed from 46.213 ± 4.082 D to 43.190 ± 4.398 D, indicating a flattening of -3.023 D, and K2 (steep keratometry changed from 50.774 ± 5.210 D to 46.380 ± 5.006 D, indicating a flattening of -4.394 D. For group A, the index of surface variance decreased to -5.07% and the index of height decentration to -26.81%. In group B, the index of surface variance

  13. The study on the posterior corneal surface topography after LASIK%LASIK后角膜后表面形态的研究

    Institute of Scientific and Technical Information of China (English)

    许琛琛; 王勤美; 余野

    2001-01-01

    Objective:To investigate the changes in the posterior corneal surface topography after LASIK and the factors that influence the results.Methods:This study comprised 41 eyes of middle and high myopia(2 patients) that had undergone LASIK. Diopter and radius of curvature of posterior corneal surface were measured by Orbscan before operation, and at 3rd day, 3rd month post-operatiion. Eyes were divided into two groups(3mm area and 5mm area) according to the optical diameter of cornea.Results:Significant difference in posterior corneal surface topography existed between pre-operation and post-operation(P<0.05) in corneal center and peripheral(P<0.05). There is significant difference in 3 months and 3 days post operation in 3mm area(P<0.05). The change in radius of curvature of posterior corneal surface was correlated with corneal thickness after LASIK(r=-0.6,P<0.05), but irrelevant to IOP. The change of posterior corneal surface topography was more significant in the corneal thickness less than 350μm(P<0.01).Conclusion:LASIK can decrease the radius of curvature of the posterior corneal surface. The corneal thickness after LASIK is a major contributing factor.%目的:研究激光角膜原位磨镶术(LASIK)前后,角膜后表面屈光度及曲率半径的改变以及影响因素。 方法:随机选择停戴隐形眼镜一月以上的中高度近视41眼进行LASIK治疗,依角膜光学区直径的不同,分3mm区及5mm区两组,应用Orbscan分别观察分析其术前及术后3天、3月角膜后表面屈光度和曲率半径。 结果:各组术前与术后各期相比,角膜后表面屈光度和曲率半径的改变均有显著性意义(P<0.05),角膜中央变化较周边明显(P<0.05),角膜3mm区术后3月与3天相比差异有显著性意义(P<0.05),角膜后表面曲率半径的改变与患眼正常眼压无关,与术后角膜厚度存在统计学相关性(r=-0.6,P<0.05),厚度小于350μm时角膜后表

  14. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanan, E-mail: ynzhang@suda.edu.cn [School of Mathematical Sciences, Soochow University, Suzhou 215006 (China); Ren, Weiqing, E-mail: matrw@nus.edu.sg [Department of Mathematics, National University of Singapore, Singapore 119076 (Singapore); Institute of High Performance Computing, Singapore 138632 (Singapore)

    2014-12-28

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results are obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.

  15. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Science.gov (United States)

    Heib, F.; Hempelmann, R.; Munief, W. M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-07-01

    Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θa and the receding θr contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis relative to the first boundary points XB,10. Therefore, sessile drops during the inclination of the sample surface are video recorded and different specific contact angle events in dependence on the acceleration/deceleration of the triple line motion are analyzed. This procedure results in characteristically density distributions in dependence on the surface properties. The used procedures lead to the possibility to investigate influences on contact

  16. Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base.

    Science.gov (United States)

    Shinawi, Lana Ahmed

    2017-05-01

    The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits.

  17. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  18. Sterilization-Induced Changes in Surface Topography of Biodegradable POSS-PCLU and the Cellular Response of Human Dermal Fibroblasts.

    Science.gov (United States)

    Yildirimer, Lara; Seifalian, Alexander M

    2015-06-01

    The field of tissue engineering is rapidly evolving, generating numerous biodegradable materials suited as regeneration platforms. Material sterility is of fundamental importance for clinical translation; however, a few studies have systematically researched the effects of different sterilization methods on biodegradable materials. Here, we exposed a novel bioabsorbable nanocomposite based on a poly(ɛ-caprolactone urea) urethane backbone integrating polyhedral oligomeric silsesquioxane nanoparticles (POSS-PCLU) to autoclave, microwave, antibiotics, and 70% ethanol sterilization and systematically correlated differences in material characteristics to the attachment, viability, proliferative capacity, and shape of human dermal fibroblasts (HDFa). Nanotopographical profiling of autoclaved or microwaved surfaces revealed relatively deep nano-grooves, increasing total surface area, roughness, and hydrophobicity, which resulted in significantly fewer adherent cells. Antibiotics or 70% ethanol-treated surfaces displayed shallower nano-grooves, a more hydrophilic character, and significantly greater cellular adhesion (ppostproduction processing tool to enhance cytocompatibility of tissue engineering scaffolds.

  19. Atomic force microscopic view of the fine topography on the tobacco stigma surface during its response to pollination

    Institute of Scientific and Technical Information of China (English)

    WU Hui; LI Meng; SUN MengXiang

    2008-01-01

    During compatible pollination in tobacco, an extracellular matrix (ECM) is secreted from the stigma surface; however, it is unknown whether the pattern of secretion across the stigma depends on the pollen source. In fact, technical limitations have prevented clear observation of ECM secretion. Here, we report the detailed topographic changes on the stigma surface that accompanies intraspecies and interspecies pollination in tobacco using contact mode atomic force microscopy (AFM). Our results, which show the dynamics and time course of ECM secretion after pollination, indicate that a certain pattern of secretion already exists on the stigma prior to pollination. Intraspecies induced a two-step response, characterized by topograPhical changes on the stigma surface several hours after pollina-tion, which was distinct from the pattern of ECM secretion induced by interspecies pollination. This difference was confirmed by root-mean-square analysis, which assessed the roughness of the stigma surface. Our findings indicate that compatible pollination not only induces ECM secretion from the stigma, but also results in a specific distribution of the ECM. Thus, this study demonstrates the pow-erful potential of AFM in studying the pollen-stigma interaction.

  20. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two orde

  1. The effect of surface treatment and topography on corrosion behavior of EN 1.4404 stainless steel

    DEFF Research Database (Denmark)

    Lage, R.; Møller, Per; Fallesen, Henrik Ebbe

    2015-01-01

    . By analyzing the characteristic geometry of the typographies produced, the correlation between the varying corrosion properties and surfaces is determinable. In continuation hereof, the utilization of average roughness values (Ra) as an isolated parameter, were found not to be sufficient for the assessment...

  2. Quantifying the level of improvement in discharge estimation from the SRTM-era to the proposed Surface Water Ocean Topography (SWOT)-mission era

    Science.gov (United States)

    Sikder, M. S.; Hossain, F.

    2014-12-01

    It was almost 15 years ago, when the Shuttle Radar Topography Mission (SRTM) flew for a few days to map the elevation of earth's surface. SRTM has since become the community standard for a global digital elevation model (DEM) and has triggered numerous studies that require elevation information. One particular avenue that has benefited the hydrologic community is the space-borne discharge estimation using water slope information that is afforded by the spatial imaging concept of SRTM. Numerous feasibility studies involving SRTM data for discharge estimation in rivers have led to adopting a similar concept for the proposed Surface Water and Ocean Topography (SWOT) mission (launch date: 2020). Because SWOT is expected to have significantly higher accuracy and smaller spatial scale in resolving the elevation characteristics of a water surface, it is important to understand the extent of improvement that SWOT will afford for discharge estimation once it is launched. In this study, we explored geophysical sources of uncertainty of satellite interferometric-based discharge estimation in Bangladesh delta of the Ganges, Brahmaputra and Meghna (GBM) river basins. This exploration was carried out for two scenarios: A) using SRTM elevation data and B) using SWOT-simulated elevation data. We contextualized the improvement in accuracy as a function of river's geophysical characteristics (river width, reach averaging length, bed/water slope) and also to explored a pragmatic approach to further uncertainty reduction using water level climatology. The discharge was estimated according to the slope-area (Manning's) method using elevation data assuming availability of in-situ river bathymetry (in order to remove uncertainty due to river cross section data). A high resolution hydrodynamic model was accurately calibrated (against in-situ water level data) to simulate water level and flow dynamics along the entire river reaches of the GBM river network and served as reference for

  3. Nonlinearity-reduced interferometer

    Science.gov (United States)

    Wu, Chien-ming

    2007-12-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.

  4. Characterizing and Mapping Ice Sheet Surface Topography Using a Medium-Footprint, Multi- Beam, Waveform-Recording Lidar

    Science.gov (United States)

    Hofton, M. A.; Blair, J. B.; Rabine, D. L.; Luthcke, S. B.

    2007-12-01

    Lidar surveys of the Greenland ice sheet have been used to study mass-balance changes since the early 1990's. Sensors include NASA's ATM system (e.g., Krabill et al., 2000), and the ICESat (Schutz et al., 2002), a large- footprint, spaceborne system launched in 2003 for monitoring long-term trends in ice mass balance. To complement these data sets and prepare for the next-generation of spaceborne measurements, the Laser Vegetation Imaging Sensor (LVIS) was flown onboard the NASA P-3 aircraft over Greenland in September 2007. LVIS is an airborne, medium- footprint (25m diameter), full waveform-recording, airborne, scanning lidar system that has been used extensively for mapping forest structure, habitat, carbon and natural hazards. The system digitally records the shape of the returning laser echo, or waveform, after its interaction with the various reflecting surfaces of the earth, providing a true 3-dimensional record of the surface structure. Data collected included ground elevation and vertical extent measurements for each laser footprint, as well as the vertical distribution of intercepted surfaces (the return waveform) from which surface slope, roughness and other metrics can be extracted. During the mission, data were collected along ICESat repeat ground-track "corridors" that encompass a variety of terrain types (e.g., inland ice, crevasses, ponds, sastrugi, ice/rock margins, and bare earth), over sea- ice in northern Greenland, and at Jakobshavn Isbrae, a fast-flowing outlet glacier where discharge rates have increased in recent years. Data from this mission will be used to assess the ability of 25m-footprint, waveform lidar to precisely and accurately characterize and monitor the surface of the Greenland ice sheet and its margins. The data will also be used to assess the effects of across-track slope corrections currently being used on the ICESat data. The study will highlight the complimentary measurement science that can be achieved using a multi

  5. Antimicrobial effect of three disinfecting agents on Resilon cones and their effect on surface topography: An in vitro study

    Directory of Open Access Journals (Sweden)

    Mahesh Martur Chandrappa

    2016-01-01

    Full Text Available Aim: The objective of this study was to evaluate the effectiveness of 5.25% sodium hypochlorite (NaOCl, 2% chlorhexidine (CHX, and 2% peracetic acid (PAA in disinfecting Resilon cones and to evaluate topographical changes microscopically under scanning electron microscope (SEM after rapid chemical disinfection. Materials and Methods: Resilon cones were disinfected in an ultraviolet (UV light chamber for 20 min and contaminated by immersing in a microbial suspension of Enterococcus faecalis for 30 min. The contaminated cones were then immersed in the 5.25% NaOCl, 2% CHX, and 2% PAA for 1 min, 5 min, and 10 min, separately. The cones were then incubated at 37΀C in thioglycollate broth for 7 days and examined for turbidity. The samples showing turbidity were subcultured on blood agar and incubated at 37΀C for 48 h. Gram staining was done to confirm that the cultured bacteria were E. faecalis. Surface changes of disinfected Resilon cones were evaluated under SEM. Statistical Analysis Used: The data were analyzed statistically using Kruskal-Wallis, analysis of variance (ANOVA, and Mann-Whitney U-test. Result: In eliminating E. faecalis, 5.25% NaOCl was most effective followed by 2% PAA and 2% CHX. Topographic examination of tested Resilon cones revealed some surface deposits after disinfection with 5.25% NaOCl and 2% CHX, whereas 2% PAA caused surface erosion. Conclusion: In disinfecting Resilon cones, 5.25% NaOCl is most effective followed by 2% PAA and 2% CHX.

  6. SEM study of diversity in the cyst surface topography of nine parthenogenetic Artemia (Crustacea: Anostraca) populations from China.

    Science.gov (United States)

    Asem, Alireza; Sun, Shi-Chun

    2014-12-01

    The cysts of nine Chinese populations of parthenogenetic Artemia were studied by scanning electron microscope. In the 270 cysts examined, 15 different morphological patterns were recognized with most of them not recorded in previous studies and the "tubercled shell surface" being the most common pattern. Results also displayed high intrapopulation variability, with the maximum of 11 patterns (in 30 cysts) recorded from the Barkol population. No positive correlation between the diversity of cyst shell patterns and ploidy compositions was found. Principal components analysis suggests higher similarity among coastal populations than among inland populations, which may be attributed to the identity of physicochemical conditions among coastal salterns and dissimilarity among inland saline lakes.

  7. Combination of a fast white-light interferometer with a phase shifting interferometric line sensor for form measurements of precision components

    Science.gov (United States)

    Laubach, Sören; Ehret, Gerd; Riebling, Jörg; Lehmann, Peter

    2017-06-01

    By means of an interferometric line sensor system, the form of a specimen can be measured by stitching several overlapping circular subapertures to form one 3D topography. This concept is very flexible and can be adapted to many different specimen geometries. The sensor is based on a Michelson interferometer configuration that consists of a rapidly oscillating reference mirror in combination with a high-speed line-scan camera. Due to the overlapping areas, movement errors of the scan axes can be corrected. In order to automatically adjust the line sensor in such a way that it is perpendicular to the measurement surface at a fixed working distance, a white-light interferometer was included in the line-based form-measuring system. By means of a fast white-light scan, the optimum angle of the sensor (with respect to the surface of the specimen) is determined in advance, before scanning the specimen using the line-based sinusoidal phase shifting interferometer. This produces accurate measurement results and makes it possible to also measure non-rotational specimens. In this paper, the setup of the line-based form-measuring system is introduced and the measurement strategy of the sensor adjustment using an additional white-light interferometer is presented. Furthermore, the traceability chain of the system and the main error influences are discussed. Examples of form measurement results are shown.

  8. Michelson and His Interferometer

    Science.gov (United States)

    Shankland, Robert S.

    1974-01-01

    Presents a brief historical account of Michelson's invention of his interferometer with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)

  9. Simple control of surface topography of gold nanoshells by a surfactant-less seeded-growth method.

    Science.gov (United States)

    Topete, Antonio; Alatorre-Meda, Manuel; Villar-Álvarez, Eva M; Cambón, Adriana; Barbosa, Silvia; Taboada, Pablo; Mosquera, Víctor

    2014-07-23

    We report the synthesis of branched gold nanoshells (BGNS) through a seeded-growth surfactant-less method. This was achieved by decorating chitosan-Pluronic F127 stabilized poly(lactic-co-gycolic) acid nanoparticles (NPs) with Au seeds (NP-seed), using chitosan as an electrostatic self-assembling agent. Branched shells with different degrees of anisotropy and optical response were obtained by modulating the ratios of HAuCl4/K2CO3 growth solution, ascorbic acid (AA) and NP-seed precursor. Chitosan and AA were crucial in determining the BGNS size and structure, acting both as coreductants and structure directing growth agents. Preliminary cytotoxicity experiments point to the biocompatibility of the obtained BGNS, allowing their potential use in biomedical applications. In particular, these nanostructures with "hybrid" compositions, which combine the features of gold nanoshells and nanostars showed a better performance as surface enhanced Raman spectroscopy probes in detecting intracellular cell components than classical smoother nanoshells.

  10. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2013-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the effect of multiple root canal usage on the surface topography and fracture of Twisted File (TF and ProTaper (PT rotary Ni-Ti file systems, using scanning electron microscope (SEM. Materials and Methods: Ten sets of PT and TF instruments were used to prepare the mesial canals of mandibular first molars. TF 25, 0.06 taper and PT F1 instruments were analyzed by SEM when new and thereafter every three root canal usages. This sequence was repeated for both the TF and PT groups until 12 uses. Two images of the instrument were recorded, one of the instrument tip and the other 5 mm from the tip, both at ×100 magnification. The sequential use was continued till the instrument fractured and the number of root canal usages for the file to fracture was noted. All fracture surfaces were examined under the SEM. Results: Fresh TF instruments showed no surface wear when compared to PT instruments (P 0.05, while at the 9 th usage TF showed a steep increase in the spiral distortion score when compared to PT (P < 0.05. PT instruments fractured at a mean root canal usage of 17.4, while TF instruments showed a mean root canal usage of 11.8. Fractographically, all the TF instruments failed due to torsion, while all the PT instruments failed because of cyclic fatigue. Conclusion: PT instruments showed more resistance to fracture than TF instruments.

  11. Ice thickness, internal layers, and surface and subglacial topography in the vicinity of Chinese Antarctic Taishan station in Princess Elizabeth Land, East Antarctica

    Institute of Scientific and Technical Information of China (English)

    Tang Xue-Yuan; Guo Jing-Xue; Sun Bo; Wang Tian-Tian; Cui Xiang-Bin

    2016-01-01

    We present the results of two ground-based radio-echo-sounding (RES) and GPS surveys performed in the vicinity of new Chinese Taishan station, Princess Elizabeth Land, East Antarctica, obtained in two austral summers during CHINARE 21 (2004/2005) and CHINARE 29 (2012/2013). The radar surveys measured ice thickness and internal layers using 60- and 150-MHz radar systems, and GPS measurements showed smooth surface slopes around the station with altitudes of 2607–2636 m above sea level (a.s.l.). Radar profiles indicate an average ice thickness of 1900 m, with a maximum of 1949 m and a minimum of 1856 m, within a square area measuring approximately 2 km × 2 km in the vicinity of the station. The ice thickness beneath the station site is 1870 m. The subglacial landscape beneath the station is quiet sharp and ranges from 662 to 770 m a.s.l., revealing part of a mountainous topography. The ice volume in the grid is estimated to be 7.6 km3. Along a 60-MHz radar profi le with a length of 17.6 km at the region covering the station site, some disturbed internal layers are identifi ed and traced; the geometry of internal layers within the englacial stratigraphy may imply a complex depositional process in the area.

  12. A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures

    Energy Technology Data Exchange (ETDEWEB)

    Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

    1992-11-01

    The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ``ideal system,`` could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

  13. A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures

    Energy Technology Data Exchange (ETDEWEB)

    Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

    1992-11-01

    The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ideal system,'' could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

  14. Investigation of Sea Surface Temperature and local topography effects on coastal fog: Case study of 21-22 January 2008 event on the west coast of Morocco

    Science.gov (United States)

    Bari, Driss; Bergot, Thierry; El Khlifi, Mohamed

    2014-05-01

    The life cycle of fog over coastal regions is very sensitive to the heterogeneity of the landform and to the vicinity to the Ocean. Thus, the influence of the sea surface temperature (SST) and local topography on the evolution of a coastal fog is assessed in this study by performing sensitivity experiments. To achieve this, the numerical simulations are performed with the three-dimensional research model Meso-NH. This fog event occurred at the Grand Casablanca region, in the northwest coast of Morocco, during the night of 21-22 January 2008 and last more than 12 hours. It was analyzed using standard meteorological observations from the two synoptic stations of the region, the observed radio-sounding at the coastal station, the MSG satellite imagery and the ECMWF ERA-Interim reanalysis. The numerical simulation reproduced well the main features of this fog event since its formation to its dissipation. The numerical results demonstrated that this fog event was of a radiation type over land, due to the nocturnal radiative cooling and the turbulence. And one hour later near the coast, the fog was resulting from base lowering of Stratus low cloud, due to the cloud top cooling and the vertical turbulent mixing. The sensitivity experiments to SST demonstrate that varying SST in space and time affects the spatial distribution of the fog layer over an area of about 20km around the coast. Besides, the SST governs the thermodynamic fluxes at the air-sea interface, and then affects the life cycle of this fog event, in particular in the mature and dissipation phases. On the other hand, the sensitivity experiments to local coastal topography demonstrated its impact on the speed and direction of wind in the boundary layer during the different phases of the life cycle of this fog event. Then, it was found that the heterogeneities of terrain over the coastal regions affect the horizontal extension of this fog event during the mature phase and its evolution during the dissipation

  15. Effects of surface shape on the geometry and surface topography of the melt pool in low-power density laser melting

    KAUST Repository

    Kim, Youngdeuk

    2011-04-15

    The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).

  16. Dynamic Topography of the Bering Sea

    Science.gov (United States)

    2011-01-01

    Bering Sea. Comparisons also indicate that MDT estimates derived from the latest Gravity Recovery and Climate Experiment geoid model have more in common...with the presented sea surface topography than with the MDTs based on earlier versions of the geoid . The presented MDT will increase the accuracy of...estimating the geoid in the Bering Sea. 15. SUBJECT TERMS dynamic topography, sea surface height, Bering Sea, 4DVar 16. SECURITY CLASSIFICATION OF: a

  17. Topography of Io (color)

    Science.gov (United States)

    1997-01-01

    The images used to create this color composite of Io were acquired by Galileo during its ninth orbit (C9) of Jupiter and are part of a sequence of images designed to map the topography or relief on Io and to monitor changes in the surface color due to volcanic activity. Obtaining images at low illumination angles is like taking a picture from a high altitude around sunrise or sunset. Such lighting conditions emphasize the topography of the volcanic satellite. Several mountains up to a few miles high can be seen in this view, especially near the upper right. Some of these mountains appear to be tilted crustal blocks. Most of the dark spots correspond to active volcanic centers.North is to the top of the picture which merges images obtained with the clear, red, green, and violet filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. . The resolution is 8.3 kilometers per picture element. The image was taken on June 27, 1997 at a range of 817,000 kilometers by the solid state imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Parameterizing turbulence over abrupt topography

    Science.gov (United States)

    Klymak, Jody

    2016-11-01

    Stratified flow over abrupt topography generates a spectrum of propagating internal waves at large scales, and non-linear overturning breaking waves at small scales. For oscillating flows, the large scale waves propagate away as internal tides, for steady flows the large-scale waves propagate away as standing "columnar modes". At small-scales, the breaking waves appear to be similar for either oscillating or steady flows, so long as in the oscillating case the topography is significantly steeper than the internal tide angle of propagation. The size and energy lost to the breaking waves can be predicted relatively well from assuming that internal modes that propagate horizontally more slowly than the barotropic internal tide speed are arrested and their energy goes to turbulence. This leads to a recipe for dissipation of internal tides at abrupt topography that is quite robust for both the local internal tide generation problem (barotropic forcing) and for the scattering problem (internal tides incident on abrupt topography). Limitations arise when linear generation models break down, an example of which is interference between two ridges. A single "super-critical" ridge is well-modeled by a single knife-edge topography, regardless of its actual shape, but two supercritical ridges in close proximity demonstrate interference of the high modes that makes knife-edfe approximations invalid. Future direction of this research will be to use more complicated linear models to estimate the local dissipation. Of course, despite the large local dissipation, many ridges radiate most of their energy into the deep ocean, so tracking this low-mode radiated energy is very important, particularly as it means dissipation parameterizations in the open ocean due to these sinks from the surface tide cannot be parameterized locally to where they are lost from the surface tide, but instead lead to non-local parameterizations. US Office of Naval Research; Canadian National Science and

  19. Curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye

    Science.gov (United States)

    Gruppetta, Steve; Koechlin, Laurent; Lacombe, François; Puget, Pascal

    2005-10-01

    A system to measure the topography of the first optical surface of the human eye noninvasively by using a curvature sensor is described. The static corneal topography and the dynamic topography of the tear film can both be measured, and the topographies obtained are presented. The system makes possible the study of the dynamic aberrations introduced by the tear film to determine their contribution to the overall ocular aberrations in healthy eyes, eyes with corneal pathologies, and eyes wearing contact lenses.

  20. Mariner 9 Michelson interferometer.

    Science.gov (United States)

    Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.

    1972-01-01

    The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.

  1. Numerical simulation and experimental verification of extended source interferometer

    Science.gov (United States)

    Hou, Yinlong; Li, Lin; Wang, Shanshan; Wang, Xiao; Zang, Haijun; Zhu, Qiudong

    2013-12-01

    Extended source interferometer, compared with the classical point source interferometer, can suppress coherent noise of environment and system, decrease dust scattering effects and reduce high-frequency error of reference surface. Numerical simulation and experimental verification of extended source interferometer are discussed in this paper. In order to provide guidance for the experiment, the modeling of the extended source interferometer is realized by using optical design software Zemax. Matlab codes are programmed to rectify the field parameters of the optical system automatically and get a series of interferometric data conveniently. The communication technique of DDE (Dynamic Data Exchange) was used to connect Zemax and Matlab. Then the visibility of interference fringes can be calculated through adding the collected interferometric data. Combined with the simulation, the experimental platform of the extended source interferometer was established, which consists of an extended source, interference cavity and image collection system. The decrease of high-frequency error of reference surface and coherent noise of the environment is verified. The relation between the spatial coherence and the size, shape, intensity distribution of the extended source is also verified through the analysis of the visibility of interference fringes. The simulation result is in line with the result given by real extended source interferometer. Simulation result shows that the model can simulate the actual optical interference of the extended source interferometer quite well. Therefore, the simulation platform can be used to guide the experiment of interferometer which is based on various extended sources.

  2. Toward a High-Resolution Monitoring of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography)

    Science.gov (United States)

    Prigent, Catherine; Lettenmaier, Dennis P.; Aires, Filipe; Papa, Fabrice

    2016-03-01

    Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset (0.25^circ × 0.25^circ) of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.

  3. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  4. Moire topography in odontology

    Science.gov (United States)

    Moreno Yeras, A.

    2001-08-01

    For several decades measurement optical techniques have been used in different branches of Science and Technology and in medicine. One of these techniques is the so-called Moire topography that allows the accurate measurement of different parts of the human body topography. This investigation presents the measurement of topographies of teeth and gums using an automated system of shadow moire, with which precision can be reached up to the order of the microns by the phase shift instrumentation in an original way. Advantages and disadvantages of using the Moire topography and its comparison with other techniques used in the optical metrology are presented. Also, some positive and negative aspects of the implementation of this technique are shown in dentistry.

  5. Fabry-Perot interferometers

    CERN Document Server

    Mora-Hernandez, G

    1988-01-01

    This book describes the Fabry-Perot interferometer and its variants as well as its use, optimisation and applications. The author begins with an historical perspective on the development of the instrument. Because of the quantitative uses of the device, the text tends to be mostly mathematical in its treatment. However, there is also much practical detail on the use and optimization of the Fabry-Perot interferometer and discussion of its classical uses (such as in metrology) and its contemporary applications (such as in lasers). In addition the book contains a comprehensive bibliography summarizing the extensive literature on the subject. This book will appeal both to high-resolution practitioners, such as spectroscopists, and to the laser community, since the Fabrv-Perot is not only an integral part of the laser but is also usea to characterize its optical and spectroscopic behaviour.

  6. Posterior surface topography of early keratoconus patients%早期圆锥角膜患者的角膜后表面形态分析

    Institute of Scientific and Technical Information of China (English)

    徐艺; 戴锦晖; 褚仁远

    2009-01-01

    Objective To investigate the corneal posterior surface topography characteristics of keratoconus at early stages applying the Pentacam anterior segment analysis system. Methods The present study included 43 eyes of 43 patients with keratoconus at the subclinical stage (group A), 40 eyes of 40 suspected keratoconus patients (group B), and 143 normal eyes of 143 controls (group C). Based on an examination of the Pentacam anterior segment analysis system of each subject, a series of data, including the posterior surface refractive power, the posterior surface elevation were collected. The differences among the three groups, the correlation among indices, and the area under the receiver operating characteristic (ROC) curves were analyzed. Results The mean values of the posterior surface maximum refractive power in 3 groups were -6.2 D, Q=0.5;-5.6 D, Q=0.3;and -5.5 D, Q=0.3, respectively. The mean values of the posterior surface maximum elevation were 23 μm, Q=14;11 μm, Q=8.5;and 7 μm, Q=6, respectively. The posterior surface maximum refractive power and maximum elevation among three groups were statistically different. The area under ROC (AUR) of posterior maximum refractive power and the AUR of posterior maximum elevation were greater than that of other indices in the diagnosis of early keratoconus. Conclusions Based on the results from the Pentacam anterior segment analysis system, the changes of the posterior surface refractive power and elevation are important characteristics of early keratoconus.%目的 应用Pentacam三维眼前节分析系统分析早期圆锥角膜后表面形态的特点,为完善早期圆锥角膜形态特点的描述提供参考.方法 选取亚临床期圆锥角膜患者(43人43眼),可疑圆锥角膜患者(40人40眼)及正常对照(143人143眼).使用Pentacam三维眼前节分析系统检测角膜,统计分析后表面最大屈光度、后表面最大高度值、分布位置及各指标的组间差异,计算各指标的受试者工

  7. Handheld ESPI-speckle interferometer

    DEFF Research Database (Denmark)

    Skov Hansen, René

    2003-01-01

    reference. The reference wave is established by reflecting a part of the diffuse object illumination from a glass plate located just in front of the object. The glass plate is mounted on a piezoelectric translator in order to control the phase of the reference wave when using phase stepping algorithms....... The coherent light source is a laser diode. A web camera with a Universal Serial Bus (USB) interface is employed as the image-capturing device. Likewise, is the piezoelectric translator controlled through the USB interface. The necessary size of the optical set-up depends on the size of the object....... The interferometer presented here is a compact version of the set-up, Which is capable of measuring displacements of small objects, having either a specularly reflecting-or a diffusely scattering surface. The small optical set-up together with the use of the popular USB-communication for acquiring the images...

  8. Atom-Light Hybrid Interferometer.

    Science.gov (United States)

    Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L Q; Ou, Z Y; Zhang, Weiping

    2015-07-24

    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.

  9. 基于三维形貌重建的镗加工表面粗糙度检测%Boring Surface Roughness Detection Based on 3D Topography Reconstruction

    Institute of Scientific and Technical Information of China (English)

    郭便

    2011-01-01

    以计算机显微视觉为检测手段,采用明暗恢复形状方法重建加工表面微观形貌,进而检测加工表面粗糙度.根据微观金属表面反射特性,采用基于Torrance-Sparrow光照模型的明暗恢复形状算法,完成了镗加工表面图像三维形貌重构与表面粗糙度参数检测.%Computer micro- vision is taken as the detection means.The 3D topography and roughness parameters of the workpiece surface was obtained by 3D reconstruction of the gray images of the workpiece surface using shape from shading.The SFS algorithm based on Torrance -Sparrow illuminant model was applied according to reflective characteristics of the metal micro - surface, 3D topography reconstruction and roughness detection of the workpiece surface was completed.

  10. Naval Prototype Optical Interferometer (NPOI)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...

  11. Corneal topography measurement by means of radial shearing interference: Part I - theoretical consideration

    Science.gov (United States)

    Kowalik, Waldemar W.; Garncarz, Beata E.; Kasprzak, Henryk T.

    The paper presents the principle of radial shearing interference; the build of a simple and stable device for interference measurement; the comparison of this structure with other types of interferometers; presents the results of the examination of corneal topography and discusses the prospects for its future uses.

  12. VISAR (Velocity Interferometer System for Any Reflector): Line-imaging interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Hemsing, W.F.; Mathews, A.R.; Warnes, R.H.; Whittemore, G.R.

    1990-01-01

    This paper describes a Velocity Interferometer System for Any Reflector (VISAR) technique that extends velocity measurements from single points to a line. Single-frequency argon laser light was focused through a cylindrical lens to illuminate a line on a surface. The initially stationary, flat surface was accelerated unevenly during the experiment. Motion produced a Doppler-shift of light reflected from the surface that was proportional to the velocity at each point. The Doppler-shifted image of the illuminated line was focused from the surface through a push-pull VISAR interferometer where the light was split into four quadrature-coded images. When the surface accelerated, the Doppler-shift caused the interference for each point on each line image to oscillate sinusoidally. Coherent fiber optic bundles transmitted images from the interferometer to an electronic streak camera for sweeping in time and recording on film. Data reduction combined the images to yield a continuous velocity and displacement history for all points on the surface that reflected sufficient light. The technique was demonstrated in an experiment where most of the surface was rapidly driven to a saddle shape by an exploding foil. Computer graphics were used to display the measured velocity history and to aid visualization of the surface motion. 6 refs., 8 figs.

  13. Model-based phase-shifting interferometer

    Science.gov (United States)

    Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.

  14. Why is topography fractal?

    CERN Document Server

    Pelletier, J D

    1997-01-01

    The power spectrum S of linear transects of the earth's topography is often observed to be a power-law function of wave number k with exponent close to -2: S(k) is proportional to k^-2. In addition, river networks are fractal trees that satisfy many power-law or fractal relationships between their morphologic components. A model equation for the evolution of the earth's topography by erosional processes which produces fractal topography and fractal river networks is presented and its solutions compared in detail to real topography. The model is the diffusion equation for sediment transport on hillslopes and channels with the local diffusivity proportional to the square of the discharge. The dependence of diffusivity on discharge follows from fundamental equations of sediment transport. We study the model in two ways. In the first analysis the diffusivity is parameterized as a function of relief and a Taylor expansion procedure is carried out to obtain a differential equation for the landform elevation which i...

  15. Folding gravitational-wave interferometers

    Science.gov (United States)

    Sanders, J. R.; Ballmer, Stefan W.

    2017-01-01

    The sensitivity of kilometer-scale terrestrial gravitational wave interferometers is limited by mirror coating thermal noise. Alternative interferometer topologies can mitigate the impact of thermal noise on interferometer noise curves. In this work, we explore the impact of introducing a single folding mirror into the arm cavities of dual-recycled Fabry–Perot interferometers. While simple folding alone does not reduce the mirror coating thermal noise, it makes the folding mirror the critical mirror, opening up a variety of design and upgrade options. Improvements to the folding mirror thermal noise through crystalline coatings or cryogenic cooling can increase interferometer range by as much as a factor of two over the Advanced LIGO reference design.

  16. Hybrid photonic chip interferometer for embedded metrology

    Science.gov (United States)

    Kumar, P.; Martin, H.; Maxwell, G.; Jiang, X.

    2014-03-01

    Embedded metrology is the provision of metrology on the manufacturing platform, enabling measurement without the removal of the work piece. Providing closer integration of metrology upon the manufacturing platform can lead to the better control and increased throughput. In this work we present the development of a high precision hybrid optical chip interferometer metrology device. The complete metrology sensor system is structured into two parts; optical chip and optical probe. The hybrid optical chip interferometer is based on a silica-on-silicon etched integrated-optic motherboard containing waveguide structures and evanescent couplers. Upon the motherboard, electro-optic components such as photodiodes and a semiconductor gain block are mounted and bonded to provide the required functionality. The key structure in the device is a tunable laser module based upon an external-cavity diode laser (ECDL). Within the cavity is a multi-layer thin film filter which is rotated to select the longitudinal mode at which the laser operates. An optical probe, which uses a blazed diffracting grating and collimating objective lens, focuses light of different wavelengths laterally over the measurand. Incident laser light is then tuned in wavelength time to effectively sweep an `optical stylus' over the surface. Wavelength scanning and rapid phase shifting can then retrieve the path length change and thus the surface height. We give an overview of the overall design of the final hybrid photonic chip interferometer, constituent components, device integration and packaging as well as experimental test results from the current version now under evaluation.

  17. Line-imaging Fabry-Perot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, A.R.; Warnes, R.H.; Hemsing, W.F.; Whittemore, G.R.

    1990-01-01

    A method for measuring the velocity history of a line element on a shock-loaded solid has been demonstrated. Light from single-frequency laser is focused through a cylindrical lens to a line on a moving target. The return Doppler-shifted image is passed through a Fabry-Perot interferometer. Because only specific combinations of incident light angle and frequency can pass through the interferometer the output is an incomplete image of the moving target appearing as a set of fringes. This image is focused onto an electronic streak camera and swept in time. The fringe pattern changes with time as the target surface moves, allowing determination of velocity for each point on the target that forms a fringe. Because the velocity can only be measured at the fringe positions, it is necessary to use an interpolating polynomial to obtain a continuous function of time and velocity along the sampled lien. 9 refs., 7 figs.

  18. Interferometer for Low-Uncertainty Vector Metrology

    Science.gov (United States)

    Toland, Ronald W.; Leviton, Douglas B.

    2006-01-01

    A simplified schematic diagram of a tilt-sensing unequal-path interferometer set up to measure the orientation of the normal vector of one surface of a cube mounted on a structure under test is described herein. This interferometer has been named a "theoferometer" to express both its interferometric nature and the intention to use it instead of an autocollimating theodolite. The theoferometer optics are mounted on a plate, which is in turn mounted on orthogonal air bearings for near-360 rotation in azimuth and elevation. Rough alignment of the theoferometer to the test cube is done by hand, with fine position adjustment provided by a tangent arm drive using linear inchwormlike motors.

  19. Silk film topography directs collective epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Brian D Lawrence

    Full Text Available The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography's edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization.

  20. The Fizeau Interferometer Testbed

    CERN Document Server

    Zhang, X; Lyon, R G; Huet, H; Marzouk, J; Solyar, G; Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G.; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2002-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  1. Effects of patterned topography on biofilm formation

    Science.gov (United States)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  2. The VLA Atmospheric Phase Interferometer

    Science.gov (United States)

    Morris, Keith

    2014-05-01

    The Atmospheric Phase Interferometer (API) is a two-element atmospheric seeing monitor located at the Very Large Array (VLA) site. The instrument measures turbulent refractive index variation through the atmosphere by examining phase differences in a satellite beacon signal detected at two (or more) antennas. With this measurement, the VLA scheduling software is able to consider atmospheric stability when determining which frequency observation to schedule next. We are in the process of extending this two-element interferometer to four elements, which will allow us to measure the turbulence in two dimensions and at multiple length scales. This thesis will look at some statistical properties of turbulence, the effects of atmospheric stability on radio interferometric observations, and discuss details of the instrument and the data that it collects. The thesis will also cover some techniques and principles of signal processing, and an analysis of some data from the instrument. The results demonstrate that other surface atmospheric variables (e.g. windspeed, water vapor pressure) show the same structure function exponent as the atmospheric phase fluctuations. In particular, the structure functions of water vapor partial pressure and wind speed show the same exponent as the phase. Though the agreement between meteorological variables and atmospheric phase is scientifically satisfying, these surface measurements are not nearly as sensitive as the API saturation phase measurement, and therefore cannot be used to schedule telescope time in its stead. What is informative about these results is that the similar structure functions for API and meteorological data are detecting reinforce the claim that both measurements represent turbulent transport, and not instrumental noise. Data from the instrument reveals that measurements are consistent with both Kolmogorov turbulence theory, and with prior observations. The API predominately measures three-dimensional isotropic

  3. THE KECK INTERFEROMETER NULLER

    Energy Technology Data Exchange (ETDEWEB)

    Serabyn, E.; Mennesson, B.; Colavita, M. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Koresko, C. [Argon ST, Inc., 1386 Connellsville Road, Lemont Furnace, PA 15456 (United States); Kuchner, M. J., E-mail: Gene.Serabyn@jpl.nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-03-20

    The Keck Interferometer Nuller (KIN), the first operational separated-aperture infrared nulling interferometer, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which 'cross-combination' on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline-a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant ({approx}order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.

  4. MIT's interferometer CST testbed

    Science.gov (United States)

    Hyde, Tupper; Kim, Ed; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-12-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  5. The photothermal effect in interferometers

    CERN Document Server

    Rao, S R

    2002-01-01

    We have measured the photothermal effect in a single cross-polarized interferometer at audio frequencies (5 Hz - 4 kHz). In a Fabry-Perot interferometer, light in one polarization is chopped to periodically heat the interferometer mirrors, while light in the orthogonal polarization measures the mirror length changes. Tests of a polished solid metal mirror show good agreement with relevant proposed theories by Braginsky et al. ["Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae," Physics Letters A 264, 1-10 (1999)] and Cerdonio et al. ["Thermoelastic effects at low temperatures and quantum limits in displacement measurements," Physical Review D 63 082003 (2001)] describing uncoated optics.

  6. Imaging on a Sphere with Interferometers: the Spherical Wave Harmonic Transform

    CERN Document Server

    Carozzi, T D

    2015-01-01

    I present an exact and explicit solution to the scalar (Stokes flux intensity) radio interferometer imaging equation on a spherical surface which is valid also for non-coplanar interferometer configurations. This imaging equation is comparable to $w$-term imaging algorithms, but by using a spherical rather than a Cartesian formulation this term has no special significance. The solution presented also allows direct identification of the scalar (spin 0 weighted) spherical harmonics on the sky. The method should be of interest for future multi-spacecraft interferometers, wide-field imaging with non-coplanar arrays, and CMB spherical harmonic measurements using interferometers.

  7. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs.

    Science.gov (United States)

    Osman, Reham B; van der Veen, Albert J; Huiberts, Dennis; Wismeijer, Daniel; Alharbi, Nawal

    2017-11-01

    The aim of this study was to evaluate the dimensional accuracy, surface topography of a custom designed, 3D-printed zirconia dental implant and the mechanical properties of printed zirconia discs. A custom designed implant was 3D-printed in zirconia using digital light processing technique (DLP). The dimensional accuracy was assessed using the digital-subtraction technique. The mechanical properties were evaluated using biaxial flexure strength test. Three different build angles were adopted to print the specimens for the mechanical test; 0°(Vertical), 45° (Oblique) and 90°(Horizontal) angles. The surface topography, crystallographic phase structure and surface roughness were evaluated using scanning electron microscopy analysis (SEM), X-ray diffractometer and confocal microscopy respectively. The printed implant was dimensionally accurate with a root mean square (RMSE) value of 0.1mm. The Weibull analysis revealed a statistically significant higher characteristic strength (1006.6MPa) of 0° printed specimens compared to the other two groups and no significant difference between 45° (892.2MPa) and 90° (866.7MPa) build angles. SEM analysis revealed cracks, micro-porosities and interconnected pores ranging in size from 196nm to 3.3µm. The mean Ra (arithmetic mean roughness) value of 1.59µm (±0.41) and Rq (root mean squared roughness) value of 1.94µm (±0.47) was found. A crystallographic phase of primarily tetragonal zirconia typical of sintered Yttria tetragonal stabilized zirconia (Y-TZP) was detected. DLP prove to be efficient for printing customized zirconia dental implants with sufficient dimensional accuracy. The mechanical properties showed flexure strength close to those of conventionally produced ceramics. Optimization of the 3D-printing process parameters is still needed to improve the microstructure of the printed objects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. $T^3$-interferometer for atoms

    CERN Document Server

    Zimmermann, M; Roura, A; Schleich, W P; DeSavage, S A; Davis, J P; Srinivasan, A; Narducci, F A; Werner, S A; Rasel, E M

    2016-01-01

    The quantum mechanical propagator of a massive particle in a linear gravitational potential derived already in 1927 by Earle H. Kennard \\cite{Kennard,Kennard2} contains a phase that scales with the third power of the time $T$ during which the particle experiences the corresponding force. Since in conventional atom interferometers the internal atomic states are all exposed to the same acceleration $a$, this $T^3$-phase cancels out and the interferometer phase scales as $T^2$. In contrast, by applying an external magnetic field we prepare two different accelerations $a_1$ and $a_2$ for two internal states of the atom, which translate themselves into two different cubic phases and the resulting interferometer phase scales as $T^3$. We present the theoretical background for, and summarize our progress towards experimentally realizing such a novel atom interferometer.

  9. Balloon Exoplanet Nulling Interferometer (BENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  10. T 3-Interferometer for atoms

    Science.gov (United States)

    Zimmermann, M.; Efremov, M. A.; Roura, A.; Schleich, W. P.; DeSavage, S. A.; Davis, J. P.; Srinivasan, A.; Narducci, F. A.; Werner, S. A.; Rasel, E. M.

    2017-04-01

    The quantum mechanical propagator of a massive particle in a linear gravitational potential derived already in 1927 by Kennard [2, 3] contains a phase that scales with the third power of the time T during which the particle experiences the corresponding force. Since in conventional atom interferometers the internal atomic states are all exposed to the same acceleration a, this T^3-phase cancels out and the interferometer phase scales as T^2. In contrast, by applying an external magnetic field we prepare two different accelerations a_1 and a_2 for two internal states of the atom, which translate themselves into two different cubic phases and the resulting interferometer phase scales as T^3. We present the theoretical background for, and summarize our progress towards experimentally realizing such a novel atom interferometer.

  11. Photoacoustic Tomography using a Michelson Interferometer with Quadrature Phase Detection

    CERN Document Server

    Speirs, Rory W

    2013-01-01

    We present a pressure sensor based on a Michelson interferometer, for use in photoacoustic tomography. Quadrature phase detection is employed allowing measurement at any point on the mirror surface without having to retune the interferometer, as is typically required by Fabry-Perot type detectors. This opens the door to rapid full surface detection, which is necessary for clinical applications. Theory relating acoustic pressure to detected acoustic particle displacements is used to calculate the detector sensitivity, which is validated with measurement. Proof-of-concept tomographic images of blood vessel phantoms have been taken with sub-millimeter resolution at depths of several millimeters.

  12. Michelson interferometer for measuring temperature

    OpenAIRE

    Xie, Dong; Xu, Chunling; Wang, Anmin

    2016-01-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  13. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  14. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  15. Four beam interferometer manual: Operating instructions for the INEL diffraction Moire interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Deason, V.A.

    1993-11-01

    Moire interferometry is an interferometric method for measuring changes of in-plane geometry. It is essentially insensitive to out-of-plane topography or changes in that topography. Changes in geometry are referenced to a particular moment in time when the moire` sensor, a diffraction grating, was attached to the specimen. Distortions experienced by the specimen prior to that time are not directly detectable, although they may be inferred from specimen behavior or condition. In its most common form, moire interferometry is not well suited to large (> 50 mm square), curved (< 300 mm diameter) or high temperature (> 200 C) regions. However, various efforts have been made to handle each of these conditions. In general, the moire` process is most straightforward for flat, 25 mm diameter regions of coverage and room temperature. Much smaller or larger regions require more specialized optics, which can become very expensive. This report will discuss various aspects of moire interferometry. In particular, a new four beam (bi-axial) interferometer is described in detail. Issues involved in safety, assembly, calibration and use are fully explained.

  16. Detection of falsification of security documents using white light interferometer

    OpenAIRE

    Sugawara, Shigeru; Nakanishi, Shoichi; Itoh, Masahide; Yatagai, Toyohiko

    2010-01-01

    In order to verify the authenticity of security documents, we propose the measurement of the surface distortion of the cover film of security documents. Surface shapes of films of 31 genuine documents and 29 counterfeit documents were measured by using a white light interferometer. Differences between the surface features of a genuine security document and those of a counterfeit one were studied. Roughness and peak–valley density were the two features used to characterize the measured surface...

  17. Michelson Interferometer (MINT)

    Science.gov (United States)

    Lacis, Andrew; Carlson, Barbara

    1993-01-01

    MINT is a Michelson interferometer designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.

  18. New null screen design for corneal topography

    Science.gov (United States)

    Campos-García, Manuel; Estrada-Molina, Amilcar; Díaz-Uribe, Rufino

    2011-09-01

    In this work we report the design of a null screen for corneal topography. Here we assume that the corneal surface is an ellipsoid with a diameter of 12 mm and a curvature radius of 7.8 mm. To avoid the difficulties in the alignment of the test system due to the face contour (eyebrows, nose, or eyelids), we design a conical null-screen with spots (similar to ellipses) drawn on it in such a way that its image, which is formed by reflection on the test surface, becomes an exact radial array of circular spots if the surface is perfect. Additionally, we performed a numerical simulation introducing Gaussian random errors in the coordinates of the centroids of the spots on the image plane, and in the coordinates of the sources (spots on the null-screen) in order to obtain the conical null-screen that reduces the error in the evaluation of the topography.

  19. Mapping Indigenous Settlement Topography in the Caribbean Using Drones

    National Research Council Canada - National Science Library

    Sonnemann, Till; Ulloa Hung, Jorge; Hofman, Corinne

    2016-01-01

    ...; predominantly conglomerations of shells, ceramics and lithics. While archaeological material may not always be visible on the surface, particular settlement patterns may be identifiable by a topography created through cultural action...

  20. Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography

    Science.gov (United States)

    James, Peter B.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.

    2015-02-01

    To explore the mechanisms of support of surface topography on Mercury, we have determined the admittances and correlations of topography and gravity in Mercury's northern hemisphere from measurements obtained by NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. These admittances and correlations can be interpreted in the context of a number of theoretical scenarios, including flexural loading and dynamic flow. We find that long-wavelength (spherical harmonic degree l shallow crustal compensation and are weakly correlated with positive mass anomalies in the mantle. The center of the Caloris basin features some of the thinnest crust on the planet, and the basin is underlain by a large negative mass anomaly. We also explore models of dynamic flow in the presence of compositional stratification above the liquid core. If there is substantial compositional stratification in Mercury's solid outer shell, relaxation of perturbed compositional interfaces may be capable of creating and sustaining long-wavelength topography.

  1. AN EXPERIMENTAL STUDY ON EFFECTS OF THE BETA TOPOGRAPHY ON SURFACE FLOWS IN A ROTATING ANNULUS SUBJECT TO RADIAL TEMPERATURE GRADIENT

    Institute of Scientific and Technical Information of China (English)

    LIN Shang-jing; WEI Gang; LIU Li-long; LIU Yu-di

    2005-01-01

    Beta effects on surface flows in a rotating annulus with a radial temperature gradient and a sloping bottom were studied experimentally. An azimuthal jet was produced by the action of the Coriolis force in the convective region between the two side walls of the annulus. Propagating velocity and patterns of the baroclinic wave on the surface were obtained by using a frequency-meter and a streak photograph respectively. It is shown that there exists the nonlinear interaction between the baroclinic and beta effects. The beta effect exerts little influence on the stratification flows and constrains the baroclinic instability, and it prompts the instability of the weak stratification flows and results in the surface pattern of waves with higher frequency. It is also indicated that the beta effect can reduce the propagating speed of the surface waves in the jet, and increase the thermal Rossby number for those same surface patterns under a given Taylor number.

  2. Lower mantle heterogeneity, dynamic topography and the geoid

    Science.gov (United States)

    Hager, B. H.; Clayton, R. W.; Richards, M. A.; Comer, R. P.; Dziewonski, A. M.

    1985-01-01

    Density contrasts in the lower mantle, recently imaged using seismic tomography, drive convective flow which results in kilometers of dynamically maintained topography at the core-mantle boundary and at the earth's surface. The total gravity field due to interior density constrasts and boundary topography predicts the largest wavelength components of the geoid remarkably well. Neglecting dynamic surface deformation leads to geoid anomalies of opposite sign than are observed.

  3. Comparative evaluation of surface topography of tooth prepared using erbium, chromium: Yttrium, scandium, gallium, garnet laser and bur and its clinical implications

    Directory of Open Access Journals (Sweden)

    Mahesh Verma

    2015-01-01

    Conclusions: Er, Cr: YSGG laser can be used for preparing tooth and bond strength value achieved by laser preparation alone without surface treatment procedure lies in the range of clinical acceptability.

  4. Ocean Surface Topography Mission (OSTM) /Jason-3: Near Real-Time Altimetry Validation System (NRTAVS) QA Reports, 2015 - (NCEI Accession 0122600)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  5. VIS Fabry-Pérot-Interferometer with (HL)4 PE-Si3N4/PE-SiO2 reflectors on freestanding LP-Si3N4 membranes for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Helke, Christian; Meinig, Marco; Seifert, Mario; Seiler, Jan; Hiller, Karla; Kurth, Steffen; Martin, Jörg; Gessner, Thomas

    2016-03-01

    Profound developments of miniaturized spectrometry systems enable new breakthrough applications such as online monitoring systems for specific molecules by Surface Enhanced Raman Spectroscopy (SERS). The spectrometry system is based on SERS active surfaces in-situ generating nanoparticles and miniaturized detectors with tunable Fabry-Pérot- Interferometers (FPI) with very sharp transmission peaks and a FWHM bandwidth below 2 nm. The key part of this online monitoring system is a tunable FPI, which is fabricated with MEMS technology. This contribution presents a 7.5 x 7.5 mm² chip size FPI, consisting of a moveable reflector on a 210 nm thin and up to 5.5 mm in diameter Si3N4 membrane on a silicon carrier, and a fixed reflector on glass. The optical resonator with an aperture of 2 mm diameter is designed for the central wavelength of 570 nm and realized by adhesive SU-8 bonding of the silicon on glass substrate. The moveable Si3N4 membrane is fabricated by combined wet and dry etching of silicon. The dielectric (HL)4 Si3N4/ SiO2 reflector stack with a reflectance of 93 % is deposited by PE-CVD on the LP-CVD-Si3N4 and structured by dry etching on the membrane and the glass. The measured peak transmittance is between 52 % and 74 % with a FWHM bandwidth between 1.3 nm and 2.0 nm. It was shown, that the FPIs are tunable over the spectral range from 555 nm to 585 nm which is relevant for this SERS application with a tuning voltage of 25 V.

  6. Measurement of the topography of human cadaver lenses using the PAR corneal topography system

    Science.gov (United States)

    Fernandez, Viviana; Manns, Fabrice; Zipper, Stanley; Sandadi, Samith; Hamaoui, Marie; Tahi, Hassan; Ho, Arthur; Parel, Jean-Marie A.

    2001-06-01

    To measure the radius of curvature and asphericity of the anterior and posterior surfaces of crystalline lenses of human Eye-Bank eyes using the PAR Corneal Topography System. The measured values will be used in an optical model of the eye for lens refilling procedures.

  7. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    Science.gov (United States)

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  8. A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography

    Science.gov (United States)

    Rodríguez-Caballero, E.; Afana, A.; Chamizo, S.; Solé-Benet, A.; Canton, Y.

    2016-07-01

    Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by ∼30% under dense canopy plants and over ∼40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies.

  9. Detection of Elastic Waves Using Stabilized Michelson Interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. H.; Kwon, O. Y. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); So, C. H. [Dong Sin University, Gwangju (Korea, Republic of)

    1994-01-15

    The stabilized Michelson interferometer was developed in order to measure micro dynamic displacement at the surface of solids due to elastic wave propagation. The stabilizer was designed to compensate light path disturbances using a reference mirror driven by piezoelectric actuator. Using stabilizer, the effect of external vibration was reduced and the quadrature condition was satisfied. As the results, the output of photodetector had maximum sensitivity and linearity. The minimum detectable displacement was 0.3nm at the band width of 10 MHz. The epicentral displacements due to the glass capillary breaks and the steel ball drop impact were measured using the developed interferometer and the results were compared with the calculated one