WorldWideScience

Sample records for surface texture characteristics

  1. Characteristics of laser textured silicon surface and effect of mud adhesion on hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Ali, H. [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Khaled, M. [CHEM Department, King Fahd University of Petroleum & Minerals, Dhahran (Saudi Arabia); Al-Aqeeli, N.; Abu-Dheir, N. [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Varanasi, K.K. [Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA (United States)

    2015-10-01

    Highlights: • Laser treatment increases surface microhardness and slightly lowers surface fracture toughness. • Residual stress formed is compressive and self-annealing effect of laser tracks lowers residual stress. • Nitride species lowers surface energy and adhesion work required to remove dust. • Mud residues do not have notable effect on fracture toughness and microhardness of treated surface. • Mud residues lower surface hydrophobicity. - Abstract: Laser gas assisted texturing of silicon wafer surface is carried out. Morphological and metallurgical changes in the treated layer are examined using the analytical tools. Microhardness and fracture toughness of the laser treated surface are measured using the indentation technique while residual stress formed is determined from the X-ray diffraction data. The hydrophobicity of the textured surfaces are assessed incorporating the contact angle data and compared with those of as received workpiece surfaces. Environmental dust accumulation and mud formation, due to air humidity, at the laser treated and as received workpiece surfaces are simulated and the effect of the mud residues on the properties of the laser treated surface are studied. The adhesion work due to the presence of the mud on the laser treated surface is also measured. It is found that laser textured surface composes of micro/nano poles and fibers, which in turn improves the surface hydrophobicity significantly. In addition, formation of nitride species contributes to microhardness increase and enhancement of surface hydrophobicity due to their low surface energy. The mud residues do not influence the fracture toughness and microhardness of the laser textured surface; however, they reduced the surface hydrophobicity significantly.

  2. Laser textured surface gradients

    Science.gov (United States)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-05-01

    This work demonstrates a novel technique for fabricating surfaces with roughness and wettability gradients and their subsequent applications for chemical sensors. Surface roughness gradients on brass sheets are obtained directly by nanosecond laser texturing. When these structured surfaces are exposed to air, their wettability decreases with time (up to 20 days) achieving both spatial and temporal wettability gradients. The surfaces are responsive to organic solvents. Contact angles of a series of dilute isopropanol solutions decay exponentially with concentration. In particular, a fall of 132° in contact angle is observed on a surface gradient, one order of magnitude higher than the 14° observed for the unprocessed surface, when the isopropanol concentration increased from 0 to 15.6 wt%. As the wettability changes gradually over the surface, contact angle also changes correspondingly. This effect offers multi-sensitivity at different zones on the surface and is useful for accurate measurement of chemical concentration.

  3. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bastos-Neto, M. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Canabrava, D.V. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Torres, A.E.B. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Jimenez-Lopez, A. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Azevedo, D.C.S. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil)]. E-mail: diana@gpsa.ufc.br; Cavalcante, C.L. [Grupo de Pesquisas em Separacoes por Adsorcao (GPSA), Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus Universitario do Pici, Bl 709 60455-760 Fortaleza, CE (Brazil)

    2007-04-30

    The objective of this study is to relate textural and surface characteristics of selected microporous activated carbons to their methane storage capacity. In this work, a magnetic suspension balance (Rubotherm, Germany) was used to measure methane adsorption isotherms of several activated carbon samples. Textural characteristics were assessed by nitrogen adsorption on a regular surface area analyzer (Autosorb-MP, by Quantachrome, USA). N{sub 2} adsorption was analysed by conventional models (BET, DR, HK) and by Monte Carlo molecular simulations. Elemental and surface analyses were performed by X-ray photoelectronic spectroscopy (XPS) for the selected samples. A comparative analysis was then carried out with the purpose of defining some correlation among the variables under study. For the system under study, pore size distribution and micropore volume seem to be a determining factor as long as the solid surface is perfectly hydrophobic. It was concluded that the textural parameters per se do not unequivocally determine natural gas storage capacities. Surface chemistry and methane adsorption equilibria must be taken into account in the decision-making process of choosing an adsorbent for gas storage.

  4. Influence of surface texture on the galling characteristics of lean duplex and austenitic stainless steels

    DEFF Research Database (Denmark)

    Wadman, Boel; Eriksen, J.; Olsson, M.;

    2010-01-01

    of sheet materials and lubricants. The strip reduction test, a severe sheet forming tribology test was used to simulate the conditions during ironing. This investigation shows that the risk of galling is highly dependent on the surface texture of the duplex steel. Trials were also performed......Two simulative test methods were used to study galling in sheet forming of two types of stainless steel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. The pin-on-disc test was used to analyse the galling resistance of different combinations...... in an industrial tool used for high volume production of pump components, to compare forming of LDX 2101 and austenitic stainless steel with equal thickness. The forming forces, the geometry and the strains in the sheet material were compared for the same component. It was found that LDX steels can be formed...

  5. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per;

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential (low organic soils with n > 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  6. Surface characteristics of debris-covered glacier tongues in the Khumbu Himalaya derived from remote sensing texture analysis

    Science.gov (United States)

    Racoviteanu, Adina; Arnaud, Yves; Nicholson, Lindsay

    2013-04-01

    The delineation of debris-covered glaciers remains a challenge in optical remote sensing, due to the similarity of the spectral signature of debris-covered ice to surrounding lateral moraines, making it difficult to apply standard semi-automated algorithms commonly used for clean ice delineation. Furthermore, supraglacial debris exhibits considerable spatial variability in its characteristics such as debris cover thickness, particle size, thermal resistance and thermal conductivity. These properties are needed in order to map the extent of debris cover and to estimate ice melt under the debris cover or at the surface. In this study we evaluate the potential of texture analysis for detecting surface characteristics of debris-cover glacier tongues in the Khumbu Himalaya, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and high-resolution Ikonos data. We focus on mapping supra-glacier lakes and exposed ice walls using texture analysis algorithms such as grey-level co-occurrence measures (GLCM), filtering, image segmentation, and particle boundaries. We compare the performance of various existing commercial software suitable for texture analysis such as ERDAS Objective, Aphelion, as well as public domain image display and analysis software used originally for medical analysis, notably Image SXM and ImageJ. Preliminary results based on geostatistics and GLCM measures show differences in surface roughness of debris cover when compared to surrounding ice-free moraines. We expand on these results and aim at developing a quasi-automated algorithm for extracting surface features, which will be used as input in an energy balance model for estimating melting under debris cover as well as surface ice melt.

  7. Quantitative Characterisation of Surface Texture

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Lonardo, P.M.; Trumpold, H.

    2000-01-01

    This paper reviews the different methods used to give a quantitative characterisation of surface texture. The paper contains a review of conventional 2D as well as 3D roughness parameters, with particular emphasis on recent international standards and developments. It presents new texture...

  8. Laser surface texturing: chosen problems

    Science.gov (United States)

    Antoszewski, Bogdan; Sek, Piotr

    2013-01-01

    In modern machines for realization of goals like lubrication intesyfication, heat flow intensyfiacation, microflow simulation; more and more often surface texturing is used. It became possible due to develepment of technologies that use sources of concentrated energy stream like microlasers. The paper shows results of experimental investigation on seal rings made of silicon carbide. Experiments were conducted using seal rings without surface modifications and a seal rings with a geometrical surface textures made with Nd:Yag laser.

  9. EUROMET SUPPLEMENTARY COMPARISON - SURFACE TEXTURE

    DEFF Research Database (Denmark)

    Koenders, L.; Andreasen, Jan Lasson; De Chiffre, Leonardo

    At the length meeting in Prague in Oct. 1999 a new comparison was suggested on surface texture. The last comparison on this field was finished in 1989. In the meantime the instrumentation, the standards and the written standards have been improved including some software filters. The pilot...... laboratories for this supplementary comparison on surface texture are the Centre for Geometrical Metrology at the Technical University of Denmark and the Micro- and Nanotopography laboratory at the Physikalisch-Technische Bundesanstalt, Germany....

  10. Laser surface texturing of tool steel: textured surfaces quality evaluation

    Science.gov (United States)

    Šugár, Peter; Šugárová, Jana; Frnčík, Martin

    2016-05-01

    In this experimental investigation the laser surface texturing of tool steel of type 90MnCrV8 has been conducted. The 5-axis highly dynamic laser precision machining centre Lasertec 80 Shape equipped with the nano-second pulsed ytterbium fibre laser and CNC system Siemens 840 D was used. The planar and spherical surfaces first prepared by turning have been textured. The regular array of spherical and ellipsoidal dimples with a different dimensions and different surface density has been created. Laser surface texturing has been realized under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of ablated surfaces has been performed using scanning electron microscopy (SEM) technique. The results show limited possibility of ns pulse fibre laser application to generate different surface structures for tribological modification of metallic materials. These structures were obtained by varying the processing conditions between surface ablation, to surface remelting. In all cases the areas of molten material and re-cast layers were observed on the bottom and walls of the dimples. Beside the influence of laser beam parameters on the machined surface quality during laser machining of regular hemispherical and elipsoidal dimple texture on parabolic and hemispherical surfaces has been studied.

  11. Surface texture metrology for high precision surfaces

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Gasparin, Stefania; Tosello, Guido

    2010-01-01

    This paper introduces some of the challenges related to surface texture measurement of high precision surfaces. The paper is presenting two case studies related to polished tool surfaces and micro part surfaces. In both cases measuring instrumentation, measurement procedure and the measurement...

  12. Surface texture metrology for high precision surfaces

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Gasparin, Stefania; Tosello, Guido

    2010-01-01

    This paper introduces some of the challenges related to surface texture measurement of high precision surfaces. The paper is presenting two case studies related to polished tool surfaces and micro part surfaces. In both cases measuring instrumentation, measurement procedure and the measurement re...

  13. Quantitative Characterisation of Surface Texture

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Lonardo, P.M.; Trumpold, H.;

    2000-01-01

    This paper reviews the different methods used to give a quantitative characterisation of surface texture. The paper contains a review of conventional 2D as well as 3D roughness parameters, with particular emphasis on recent international standards and developments. It presents new texture...... characterisation methods, such as fractals, wavelets, change trees and others, including for each method a short review, the parameters that the new methods calculate, and applications of the methods to solve surface problems. The paper contains a discussion on the relevance of the different parameters...... and quantification methods in terms of functional correlations, and it addresses the need for reducing the large number of existing parameters. The review considers the present situation and gives suggestions for future activities....

  14. Lizard-Skin Surface Texture

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 The south polar region of Mars is covered seasonally with translucent carbon dioxide ice. In the spring gas subliming (evaporating) from the underside of the seasonal layer of ice bursts through weak spots, carrying dust from below with it, to form numerous dust fans aligned in the direction of the prevailing wind. The dust gets trapped in the shallow grooves on the surface, helping to define the small-scale structure of the surface. The surface texture is reminiscent of lizard skin (figure 1). Observation Geometry Image PSP_003730_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 14-May-2007. The complete image is centered at -85.2 degrees latitude, 181.5 degrees East longitude. The range to the target site was 248.5 km (155.3 miles). At this distance the image scale is 24.9 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:04 PM and the scene is illuminated from the west with a solar incidence angle of 69 degrees, thus the sun was about 21 degrees above the horizon. At a solar longitude of 237.5 degrees, the season on Mars is Northern Autumn.

  15. Some Numerical Characteristics of Image Texture

    Directory of Open Access Journals (Sweden)

    O. Samarina

    2012-05-01

    Full Text Available Texture classification is one of the basic images processing tasks. In this paper we present some numerical characteristics to the images analysis and processing. It can be used at the solving of images classification problems, their recognition, problems of remote sounding, biomedical images analysis, geological researches.

  16. Friction tensor concept for textured surfaces

    Indian Academy of Sciences (India)

    K R Y Simha; Anirudhan Pottirayil; Pradeep L Menezes; Satish V Kailas

    2008-06-01

    Directionality of grinding marks influences the coefficient of friction during sliding. Depending on the sliding direction the coefficient of friction varies between maximum and minimum for textured surfaces. For random surfaces without any texture the friction coefficient becomes independent of the sliding direction. This paper proposes the concept of a friction tensor analogous to the heat conduction tensor in anisotropic media. This implies that there exists two principal friction coefficients $\\mu_{1,2}$ analogous to the principal conductivities $k_{1,2}$. For symmetrically textured surfaces the principal directions are orthogonal with atleast one plane of symmetry. However, in the case of polished single crystalline solids in relative sliding motion, crystallographic texture controls the friction tensor.

  17. Lubrication of textured surfaces: a general theory for flow and shear stress factors.

    Science.gov (United States)

    Scaraggi, Michele

    2012-08-01

    We report on a mean field theory of textured surface lubrication. We study the fluid flow dynamics occurring at the interface as a function of the texture characteristics, e.g. texture area density, shape and distribution of microstructures, and local slip lengths. The present results may be very important for the investigation of tailored microtextured surfaces for low-friction hydrodynamic applications.

  18. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  19. Extracting Canopy Surface Texture from Airborne Laser Scanning Data for the Supervised and Unsupervised Prediction of Area-Based Forest Characteristics

    Directory of Open Access Journals (Sweden)

    Mikko T. Niemi

    2016-07-01

    Full Text Available Area-based analyses of airborne laser scanning (ALS data are an established approach to obtain wall-to-wall predictions of forest characteristics for vast areas. The analyses of sparse data in particular are based on the height value distributions, which do not produce optimal information on the horizontal forest structure. We evaluated the complementary potential of features quantifying the textural variation of ALS-based canopy height models (CHMs for both supervised (linear regression and unsupervised (k-Means clustering analyses. Based on a comprehensive literature review, we identified a total of four texture analysis methods that produced rotation-invariant features of different order and scale. The CHMs and the textural features were derived from practical sparse-density, leaf-off ALS data originally acquired for ground elevation modeling. The features were extracted from a circular window of 254 m2 and related with boreal forest characteristics observed from altogether 155 field sample plots. Features based on gray-level histograms, distribution of forest patches, and gray-level co-occurrence matrices were related with plot volume, basal area, and mean diameter with coefficients of determination (R2 of up to 0.63–0.70, whereas features that measured the uniformity of local binary patterns of the CHMs performed poorer. Overall, the textural features compared favorably with benchmark features based on the point data, indicating that the textural features contain additional information useful for the prediction of forest characteristics. Due to the developed processing routines for raster data, the CHM features may potentially be extracted with a lower computational burden, which promotes their use for applications such as pre-stratification or guiding the field plot sampling based solely on ALS data.

  20. Method of Direct Texture Synthesis on Arbitrary Surfaces

    Institute of Scientific and Technical Information of China (English)

    Fu-Li Wu; Chun-Hui Mei; Jiao-Ying Shi

    2004-01-01

    A direct texture synthesis method on arbitrary surfaces is proposed in this paper. The idea is to recursively map triangles on surface to texture space until the surface is completely mapped. First, the surface is simplified and a tangential vector field is created over the simplified mesh. Then, mapping process searches for the most optimal texture coordinates in texture sample for each triangle, and the textures of neighboring triangles are blended on the mesh. All synthesized texture triangles are compressed to an atlas. Finally, the simplified mesh is subdivided to approach the initial surface. The algorithm has several advantages over former methods:it synthesizes texture on surface without local parameterization; it does not need partitioning surface to patches;and it does not need a particular texture sample. The results demonstrate that the new algorithm is applicable to a wide variety of texture samples and any triangulated surfaces.

  1. Arabinoxylan Microspheres: Structural and Textural Characteristics

    Directory of Open Access Journals (Sweden)

    Yolanda López-Franco

    2013-04-01

    Full Text Available The aim of this research was to study the structural and textural characteristics of maize bran arabinoxylan (MBAX microspheres. The laccase-induced cross-linking process was monitored by storage (G' and loss (G'' moduli changes in a 4% (w/v MBAX solution. The G' and G'' values at the plateau region were 215 and 4 Pa, respectively. After gelation, the content of ferulic acid dimers decreased from 0.135 to 0.03 µg/mg MBAX, suggesting the formation of ferulated structures unreleased by mild alkaline hydrolysis. MBAX microspheres presented an average diameter of 531 µm and a swelling ratio value (q of 18 g water/g MBAX. The structural parameters of MBAX microspheres were calculated from equilibrium swelling experiments, presenting an average mesh size of 52 nm. Microstructure and textural properties of dried MBAX microspheres were studied by scanning electron microscopy and nitrogen adsorption/desorption isotherms, respectively, showing a heterogeneous mesoporous and macroporous structure throughout the network.

  2. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  3. Dropwise condensation on inclined textured surfaces

    CERN Document Server

    Khandekar, Sameer

    2014-01-01

    Dropwise Condensation on Textured Surfaces presents a holistic framework for understanding dropwise condensation through mathematical modeling and meaningful experiments. The book presents a review of the subject required to build up models as well as to design experiments. Emphasis is placed on the effect of physical and chemical texturing and their effect on the bulk transport phenomena. Application of the model to metal vapor condensation is of special interest. The unique behavior of liquid metals, with their low Prandtl number and high surface tension, is also discussed. The model predicts instantaneous drop size distribution for a given level of substrate subcooling and derives local as well as spatio-temporally averaged heat transfer rates and wall shear stress.

  4. Wetting transitions on textured hydrophilic surfaces

    Science.gov (United States)

    Ishino, C.; Okumura, K.

    2008-04-01

    We consider the quasi-static energy of a drop on a textured hydrophilic surface, with taking the contact angle hysteresis (CAH) into account. We demonstrate how energy varies as the contact state changes from the Cassie state (in which air is trapped at the drop bottom) to the Wenzel state (in which liquid fills the texture at the drop bottom) assuming that the latter state nucleates from the center of the drop bottom. When the textured substrate is hydrophilic enough to allow spontaneous penetration of liquid film of the texture thickness, the present theory asserts that the drop develops into an experimentally observed state in which a drop looks like an egg fried without flipped over (sunny-side up) with a well-defined radius of “the egg yolk.” Otherwise, the final contact state of the drop becomes like a Wenzel state, but with the contact circle smaller than the original Wenzel state due to the CAH. We provide simple analytical estimations for the yolk radius of the “sunny-side-up” state and for the final radius of the contact circle of the pseudo-Wenzel state.

  5. Surface texture measurement for additive manufacturing

    Science.gov (United States)

    Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.

    2015-06-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.

  6. 基于感性工学的木材表面山峰状纹理视觉特性%Research on visual characteristics about the wood mountain surface texture based on Kansei Engineering

    Institute of Scientific and Technical Information of China (English)

    苗艳凤; 关惠元

    2012-01-01

    This paper based on the principle of Kansei Engineering,from the aspects of human visual characteristics,research on the wood mountain surface texture,color and luster,summary of the general rule of visual properties about wood mountain surface texture,and artificial simulate wood mountain texture design case,to verify the conclusion,enriched wood texture visual characteristic research theory.%基于感性工学的原理,从人类视觉特性方面入手,对木材表面山峰状纹理、颜色、光泽方面进行了研究,提出木材表面山峰状纹理视觉特性的一般规律,并用人工模拟山峰状纹理设计案例来验证结论,进而丰富了木材纹理的视觉特性研究的相关理论。

  7. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  8. Dynamic air layer on textured superhydrophobic surfaces.

    Science.gov (United States)

    Vakarelski, Ivan U; Chan, Derek Y C; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model.

  9. Detection of surfaces for projection of texture

    Science.gov (United States)

    Molinier, Thierry; Fofi, David; Gorria, Patrick; Salvi, Joaquim

    2007-01-01

    Augmented reality is used to improve color segmentation on human's body or on precious no touch artefacts. We propose a technique based on structured light to project texture on a real object without any contact with it. Such techniques can be apply on medical application, archeology, industrial inspection and augmented prototyping. Coded structured light is an optical technique based on active stereovision which allows shape acquisition. By projecting a light pattern onto the surface of an object and capturing images with a camera, a large number of correspondences can be found and 3D points can be reconstructed by means of triangulation.

  10. Development of low friction snake-inspired deterministic textured surfaces

    Science.gov (United States)

    Cuervo, P.; López, D. A.; Cano, J. P.; Sánchez, J. C.; Rudas, S.; Estupiñán, H.; Toro, A.; Abdel-Aal, H. A.

    2016-06-01

    The use of surface texturization to reduce friction in sliding interfaces has proved successful in some tribological applications. However, it is still difficult to achieve robust surface texturing with controlled designer-functionalities. This is because the current existing gap between enabling texturization technologies and surface design paradigms. Surface engineering, however, is advanced in natural surface constructs especially within legless reptiles. Many intriguing features facilitate the tribology of such animals so that it is feasible to discover the essence of their surface construction. In this work, we report on the tribological behavior of a novel class of surfaces of which the spatial dimensions of the textural patterns originate from micro-scale features present within the ventral scales of pre-selected snake species. Mask lithography was used to produce implement elliptical texturizing patterns on the surface of titanium alloy (Ti6Al4V) pins. To study the tribological behavior of the texturized pins, pin-on-disc tests were carried out with the pins sliding against ultra-high molecular weight polyethylene discs with no lubrication. For comparison, two non-texturized samples were also tested under the same conditions. The results show the feasibility of the texturization technique based on the coefficient of friction of the textured surfaces to be consistently lower than that of the non-texturized samples.

  11. Separation Surfaces in the Spectral TV Domain for Texture Decomposition

    Science.gov (United States)

    Horesh, Dikla; Gilboa, Guy

    2016-09-01

    In this paper we introduce a novel notion of separation surfaces for image decomposition. A surface is embedded in the spectral total-variation (TV) three dimensional domain and encodes a spatially-varying separation scale. The method allows good separation of textures with gradually varying pattern-size, pattern-contrast or illumination. The recently proposed total variation spectral framework is used to decompose the image into a continuum of textural scales. A desired texture, within a scale range, is found by fitting a surface to the local maximal responses in the spectral domain. A band above and below the surface, referred to as the \\textit{Texture Stratum}, defines for each pixel the adaptive scale-range of the texture. Based on the decomposition an application is proposed which can attenuate or enhance textures in the image in a very natural and visually convincing manner.

  12. Picosecond laser surface micro-texturing for the modification of aerodynamic and dust distribution characteristics in a multi-cyclone system

    Directory of Open Access Journals (Sweden)

    Omonigho B. Otanocha

    2016-12-01

    Full Text Available Aerodynamic flow control in a cyclone is critical to its performance. Dust accumulation in a multi-cyclone is undesirable. This research investigated, the effects of laser-patterned Ethylene-Propylene-Diene Monomer (EPDM roof in a commercial multi-cyclone system on its aerodynamic and dust accumulation characteristics. Our experimental data show that strategically designed concentric micro-dimples on the cyclone roof can improve both the aerodynamic performance and dust separation capability in the multi-cyclone system. With specific laser-patterned cyclone roof, up to 78% reduction in dust adhesion was demonstrated in one of the cones (cone 9. With the 315-μm diameter micro-dimples on EPDM roof, it was observed that dimples located close to the vortex finder caused an increase in the reverse airflows in the cyclone, thereby effecting entrainment of dust. The overall dust separation efficiency of the multi-cyclone system was at an average of 99.9% with the laser-textured roof, hence no adverse effect on the original cyclone system, in spite of the reported improvements in dust adhesion reduction.

  13. Optical simulation of surface textured TCO using FDTD method

    Science.gov (United States)

    Elviyanti, I. L.; Purwanto, H.; Kusumandari

    2016-02-01

    The purpose of this research is simulating the transmittance of surface textured transparent conducting oxide (TCO) for Dye-Sensitized Solar Cell (DSSC) application. The simulation based on finite difference time domain (FDTD) was performed using the MatLab software for flat and pyramid surface textured TCO. Fluorine-doped tin oxide (FTO) and indium tin oxide (ITO) were used as TCO material. The transmittance simulation of flat TCO was compared to UV-Vis spectrophotometer measurement of real TCO to ensure the accuracy of the simulation. Then, the transmittance simulation of pyramid surface textures of TCO is higher than a flat one. It suggested that surface texturing enhance the path of light through dispersion and reflectance light by the pattern of the surface. This result indicates that surface textured increasing the transmittance of TCO through a complex light trapping mechanism which might be used to increase the light harvesting for DSSC application.

  14. Wetting theory for small droplets on textured solid surfaces

    CERN Document Server

    Kim, Donggyu; Ryu, Seunghwa

    2016-01-01

    Conventional wetting theories on rough surfaces with Wenzel, Cassie-Baxter, and Penetrate modes suggest the possibility of tuning the contact angle by adjusting the surface texture. Despite decades of intensive study, there are still many experimental results that are not well understood because conventional wetting theory, which assume an infinite droplet size, has been used to explain measurements of finite-sized droplets. In this study, we suggest a wetting theory that is applicable to any droplet size based on the free energy landscape analysis of various wetting modes of finite-sized droplets on a 2D textured surface. The key finding of our study is that there are many quantized wetting angles with local free energy minima; the implication of this is remarkable. We find that the conventional theories can predict the contact angle at the global free energy minimum if the droplet size is 40 times or larger than the characteristic scale of the surface roughness. Furthermore, we confirm that the pinning orig...

  15. The Application of Marker Based Segmentation for Surface Texture Characterization

    Directory of Open Access Journals (Sweden)

    Che Pin Nuraini binti

    2016-01-01

    Full Text Available Structured surfaces have been increasingly used in industry for a variety of applications, including improving the tribological properties of the surfaces. Surface metrology plays an important role in this discipline since with the help of surface metrology technology, surface texture can be measured, visualize and quantified. Traditional surface texture parameters, such as roughness and waviness, cannot be related to the function for structured surfaces due to the less statistical description and little information. Therefore, a new approaches based on characterizing the structured surface is introduces where this paper focus on type of edges grain surface. To identify features, it is a must to detect the location of the edges and segmented the features based on the detected edges. Hence characterization of surface texture segmentation based on the edges detection is developing using Marker Based segmentation and it is prove that this method is possible to be used in order to characterize the structured surface.

  16. Tribological performance analysis of textured steel surfaces under lubricating conditions

    Science.gov (United States)

    Singh, R. C.; Pandey, R. K.; Rooplal; Ranganath, M. S.; Maji, S.

    2016-09-01

    The tribological analysis of the lubricated conformal contacts formed between the smooth/textured surfaces of steel discs and smooth surface of steel pins under sliding conditions have been considered. Roles of dimples’ pitch of textured surfaces have been investigated experimentally to understand the variations of coefficient of friction and wear at the tribo-contacts under fully flooded lubricated conditions. Substantial reductions in coefficient of friction and wear at the tribo-interfaces have been observed in presence of textures on the rotating discs for both fully flooded and starved conditions in comparison to the corresponding lubricating conditions of the interfaces formed between the smooth surfaces of disc and pin. In presence of surface texture, the coefficient of friction reduces considerable at elevated sliding speeds (>2 m/s) and unit loads (>0.5 MPa) for the set of operating parameters considered in the analysis.

  17. Effect of strontium tantalate surface texture on nickel nanoparticle dispersion by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compean-González, C.L. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Arredondo-Torres, V.M. [Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan #173, Col. Matamoros, Morelia, Michoacán C.P. 58240 (Mexico); Zarazúa-Morin, M.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Figueroa-Torres, M.Z., E-mail: m.zyzlila@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico)

    2015-09-15

    Highlights: • Efficient short-time procedure for nickel nanoparticles dispersion by electroless. • Nanoparticles are spherical in shape with an average size of 15 nm. • Influence of surface texture on deposition temperature and time was observed. • Nickel deposition can be done below 50 °C. - Abstract: The present work studies the effect of smooth and porous texture of Sr{sub 2}Ta{sub 2}O{sub 7} on its surface modification with nickel nanoparticles through electroless deposition technique. The influence of temperature to control Ni nanoparticles loading amount and dispersion were analyzed. Nitrogen adsorption isotherms were used to examine surface texture characteristics. The morphology was observed by scanning electron microscopy (MEB) equipped with an energy dispersive spectrometry system (EDS), which was used to determine the amount of deposited Ni. The material with smooth texture (SMT) consists of big agglomerates of semispherical shape particles of 400 nm. Whilst the porous texture (PRT) exhibit a pore-wall formed of needles shape particles of around 200 nm in size. Results indicated that texture characteristics strongly influence the deposition reaction rate; for PRT oxide, Ni deposition can be done from 20 °C while for SMT oxide deposition begins at 40 °C. Analysis of Sr{sub 2}Ta{sub 2}O{sub 7} surface indicated that in both textures, Ni nanoparticles with spherical shape in the range of 10–20 nm were obtained.

  18. Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Zhao, Ying

    2015-10-01

    We demonstrate a new class of silicon texturing approach based on inorganic (sodium hydroxide, NaOH) and organic (tetramethylammonium hydroxide, TMAH) alkaline liquor etching processes for photovoltaic applications. The first stage of inorganic alkaline etching textures the silicon surface rapidly with large pyramids and reduces the cost. The subsequent organic alkaline second-etching improves the coverage of small pyramids on the silicon surface and strip off the metallic contaminants produced by the first etching step. In addition, it could smoothen the surface of the pyramids to yield good morphology. In this study, the texturing duration of both etching steps was controlled to optimize the optical and electrical properties as well as the surface morphology and passivation characteristics of the silicon substrates. Compared with traditional inorganic NaOH texturing, this hybrid process yields smoother (111) facets of the pyramids, fewer residual Na+ ions on the silicon surface, and a shorter processing period. It also offers the advantage of lower cost compared with the organic texturing method based on the use of only TMAH. We applied this hybrid texturing process to fabricate silicon heterojunction solar cells, which showed a remarkable improvement compared with the cells based on traditional alkaline texturing processes.

  19. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.

    Science.gov (United States)

    Xu, Li-Chong; Siedlecki, Christopher A

    2014-06-01

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  20. Wetting theory for small droplets on textured solid surfaces

    Science.gov (United States)

    Kim, Donggyu; Pugno, Nicola M.; Ryu, Seunghwa

    2016-11-01

    Conventional wetting theories on rough surfaces with Wenzel, Cassie-Baxter, and Penetrate modes suggest the possibility of tuning the contact angle by adjusting the surface texture. Despite decades of intensive study, there are still many experimental results that are not well understood because conventional wetting theory, which assumes an infinite droplet size, has been used to explain measurements of finite-sized droplets. Here, we suggest a wetting theory applicable to a wide range of droplet size for the three wetting modes by analyzing the free energy landscape with many local minima originated from the finite size. We find that the conventional theory predicts the contact angle at the global minimum if the droplet size is about 40 times or larger than the characteristic scale of the surface roughness, regardless of wetting modes. Furthermore, we obtain the energy barrier of pinning which can induce the contact angle hysteresis as a function of geometric factors. We validate our theory against experimental results on an anisotropic rough surface. In addition, we discuss the wetting on non-uniformly rough surfaces. Our findings clarify the extent to which the conventional wetting theory is valid and expand the physical understanding of wetting phenomena of small liquid drops on rough surfaces.

  1. Critical heat flux maxima during boiling crisis on textured surfaces

    Science.gov (United States)

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  2. Drops bouncing off macro-textured superhydrophobic surfaces

    CERN Document Server

    Moqaddam, Ali Mazloomi; Karlin, Ilya

    2016-01-01

    Recent experiments with droplets impacting a macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. We present here a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantify the role played by various external and internal forces that effect the dynamics of a drop impacting a complex surface. For the first time, three-dimensional simulations involving macro-textured surfaces are performed. Aside from demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analyzing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyze the role played by the texture density. Moreover, we report a non-linear behavior of the contact time with the increase of the Weber number for application relevant imperfectly coated textures, and also study the impact on tilted sur...

  3. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2012-03-01

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

  4. Mapping lava flow textures using three-dimensional measures of surface roughness

    Science.gov (United States)

    Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.

    2016-12-01

    Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on

  5. Algorithms and software for areal surface texture function parameters

    Science.gov (United States)

    Smith, I. M.; Harris, P. M.; Todhunter, L. D.; Giusca, C.; Jiang, X.; Scott, P.; Leach, R. K.

    2017-10-01

    Software for the evaluation of areal surface texture function parameters is described. Definitions of the parameters, expressed in terms of the inverse areal material ratio function, are provided along with details of the numerical algorithms employed in the software to implement calculations to evaluate approximations to the parameters according to those definitions. Results obtained using the software to process a number of data sets representing different surfaces are compared with those returned by proprietary software for surface texture measurement. Differences in the results, arising from different choices being made when implementing the steps in the parameter evaluation process, are discussed.

  6. A scattering model for surface-textured thin films

    NARCIS (Netherlands)

    Jäger, K.; Zeman, M.

    2009-01-01

    We present a mathematical model that relates the surface morphology of randomly surface-textured thin films with the intensity distribution of scattered light. The model is based on the first order Born approximation [see e.g., M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University

  7. A scattering model for surface-textured thin films

    NARCIS (Netherlands)

    Jäger, K.; Zeman, M.

    2009-01-01

    We present a mathematical model that relates the surface morphology of randomly surface-textured thin films with the intensity distribution of scattered light. The model is based on the first order Born approximation [see e.g., M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University

  8. Correlation between gloss reflectance and surface texture in photographic paper.

    Science.gov (United States)

    Vessot, Kevin; Messier, Paul; Hyde, Joyce M; Brown, Christopher A

    2015-01-01

    Surface textures of a large collection of photographic papers dating from 1896 to the present were measured using a laser scanning confocal microscope (LSCM) with four different objective lenses. Roughness characterization parameters were calculated from the texture measurements and were compared with gloss measurements. Characterization by the area-scale fractal dimension (Das) and the area-scale fractal complexity (Asfc) provided the strongest correlations between gloss reflectance and surface texture. The measurements with the 5× and 10× objectives, which contained many large-scale, spiky measurement artifacts that distorted the measurement, resulted in the strongest correlations (R(2)  > 0.8) compared to the 20× and 50× (R(2)  < 0.5). The presence of spiky artifacts in the measurements, which increases when the magnification of the objective lens is decreased, appears to amplify surface features in such a way to improve the correlations.

  9. Friction reduction using discrete surface textures: principle and design

    Science.gov (United States)

    Hsu, Stephen M.; Jing, Yang; Hua, Diann; Zhang, Huan

    2014-08-01

    There have been many reports on the use of dimples, grooves, and other surface textures to control friction in sliding interfaces. The effectiveness of surface textures in friction reduction has been demonstrated in conformal contacts under high speed low load applications such as mechanical seals and automotive water pump seals, etc., resulting in reduced friction and longer durability. For sliding components with higher contact pressures or lower speeds, conflicting results were reported. Reasons for the inconsistency may be due to the differences in texture fabrication techniques, lack of dimple size and shape uniformity, and different tester used. This paper examines the basic principles on which surface textural patterns influence friction under the three principle lubrication regimes: hydrodynamic, elastohydrodynamic, and boundary lubrication regimes. Our findings suggest that each regime requires specific dimple size, shape, depth, and areal density to achieve friction reduction. Control experiments were also conducted to explore mechanisms of friction reduction. The dimple geometric shape and the dimple's orientation with respect to the sliding direction influence friction significantly. The underlying mechanisms for friction control via textures are discussed.

  10. Nanoparticle-textured surfaces from spin coating.

    Science.gov (United States)

    Weiss, R A; Zhai, X; Dobrynin, A V

    2008-05-20

    Rough surfaces composed of discrete but relatively uniform nanoparticles were prepared from a lightly sulfonated polystyrene ionomer by spin coating from tetrahydrofuran (THF) or a THF/methanol mixture onto a silica surface. The particle morphology is consistent with the spinodal decomposition of the film surface occurring during spin coating. The particles are well wetted to the silica, and if heated for a long time above the ionomer's glass-transition temperature, the particles flow and coalesce into a smooth, homogeneous film.

  11. Drops bouncing off macro-textured superhydrophobic surfaces

    Science.gov (United States)

    Mazloomi Moqaddam, Ali; Chikatamarla, Shyam S.; Karlin, Iliya V.

    2017-08-01

    Recent experiments with droplets impacting a macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. We present here a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantify the role played by various external and internal forces that effect the dynamics of a drop impacting a complex surface. For the first time, three-dimensional simulations involving macro-textured surfaces are performed. Aside from demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analyzing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyze the role played by the texture density. Moreover, we report a non-linear behavior of the contact time with the increase of the Weber number for application relevant imperfectly coated textures, and also study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers.

  12. Neuronal Alignment On Asymmetric Textured Surfaces

    CERN Document Server

    Beighley, Ross; Sekeroglu, Koray; Atherton, Timothy; Demirel, Melik C; Staii, Cristian

    2013-01-01

    Axonal growth and the formation of synaptic connections are key steps in the development of the nervous system. Here we present experimental and theoretical results on axonal growth and interconnectivity in order to elucidate some of the basic rules that neuronal cells use for functional connections with one another. We demonstrate that a unidirectional nanotextured surface can bias axonal growth. We perform a systematic investigation of neuronal processes on asymmetric surfaces and quantify the role that biomechanical surface cues play in neuronal growth. These results represent an important step towards engineering directed axonal growth for neuro-regeneration studies.

  13. Thermodynamic analysis of shark skin texture surfaces for microchannel flow

    Science.gov (United States)

    Yu, Hai-Yan; Zhang, Hao-Chun; Guo, Yang-Yu; Tan, He-Ping; Li, Yao; Xie, Gong-Nan

    2016-09-01

    The studies of shark skin textured surfaces in flow drag reduction provide inspiration to researchers overcoming technical challenges from actual production application. In this paper, three kinds of infinite parallel plate flow models with microstructure inspired by shark skin were established, namely blade model, wedge model and the smooth model, according to cross-sectional shape of microstructure. Simulation was carried out by using FLUENT, which simplified the computation process associated with direct numeric simulations. To get the best performance from simulation results, shear-stress transport k-omega turbulence model was chosen during the simulation. Since drag reduction mechanism is generally discussed from kinetics point of view, which cannot interpret the cause of these losses directly, a drag reduction rate was established based on the second law of thermodynamics. Considering abrasion and fabrication precision in practical applications, three kinds of abraded geometry models were constructed and tested, and the ideal microstructure was found to achieve best performance suited to manufacturing production on the basis of drag reduction rate. It was also believed that bionic shark skin surfaces with mechanical abrasion may draw more attention from industrial designers and gain wide applications with drag-reducing characteristics.

  14. Control and characterization of textured, hydrophobic ionomer surfaces

    Science.gov (United States)

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The

  15. Droplet hysteresis investigation on non-wetting striped textured surfaces: A lattice Boltzmann study

    Science.gov (United States)

    Zheng, Rongye; Liu, Haihu; Sun, Jinju; Ba, Yan

    2014-10-01

    The Cassie-Baxter model is widely used to predict the apparent contact angles on textured super-hydrophobic surfaces. However, it has been challenged by some recent studies, since it does not consider contact angle hysteresis and surface structure characteristics near the contact line. The present study is to investigate the contact angle hysteresis on striped textured surfaces, and its elimination through vibrating the substrate. The two-phase flow is simulated by a recently proposed lattice Boltzmann model for high-density-ratio flows. Droplet evolutions under various initial contact angles are simulated, and it is found that different contact angles exist for the same textured surface. The importance of the contact line structure for droplet pinning is underlined via a study of droplet behavior on a composite substrate, with striped textured structure inside and flat structure outside. A “stick-jump” motion is found for the advancing contact line on the striped textured surface. Due to hysteresis, the contact angles after advancing are not consistent with the Cassie-Baxter model. The stable equilibrium is obtained through properly vibrating the substrate, and the resulted contact angles are consistent with Cassie's predictions.

  16. Observation of water condensate on hydrophobic micro textured surfaces

    Science.gov (United States)

    Kim, Ki Wook; Do, Sang Cheol; Ko, Jong Soo; Jeong, Ji Hwan

    2013-07-01

    We visually observed that a dropwise condensation occurred initially and later changed into a filmwise condensation on hydrophobic textured surface at atmosphere pressure condition. It was observed that the condensate nucleated on the pillar side walls of the micro structure and the bottom wall adhered to the walls and would not be lifted to form a spherical water droplet using environmental scanning electron microscope.

  17. Texture Gradient Effectiveness in the Perception of Surface Slant

    Science.gov (United States)

    Rosinski, Richard R.; Levine, Nancy Parker

    1976-01-01

    To assess the development of monocular slant perception as well as the relative effectiveness of different sources of information, 90 children in first, third, and fifth grades and 30 college adults were asked to make judgments of surface slant on the basis of monocular texture gradient information. (Author/JH)

  18. Static Performance of Surface Textured Magnetorheological Fluid Journal Bearings

    Directory of Open Access Journals (Sweden)

    D.A. Bompos

    2015-09-01

    Full Text Available Previous studies of journal bearings with artificial texturing on the bearing surface show potential benefits in certain cases. These benefits are usually focused on a specific operating area of the bearing, whereas under certain operating conditions the performance of the bearing is deteriorating due to the surface texturing. Gaining control over the viscosity of the lubricant may become a useful tool in order to take advantage of the surface texturing in a wider range of loads and journal velocities. One way to achieve this control is the use of magnetorheological fluid journal bearings. Magnetorheological fluids are solutions of iron based paramagnetic particles in conventional lubricant. Under the influence of an external magnetic field, these particles form chains, they hinder the flow of the lubricant and they ultimately alter its apparent viscosity. In this work the two techniques are combined in order to optimize the behaviour of the journal bearing in as much a variety of operating conditions as possible. Different shapes applied on the surface texturing will be examined.

  19. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  20. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    Science.gov (United States)

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.

  1. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  2. Conveying the 3D Shape of Transparent Surfaces Via Texture

    Science.gov (United States)

    Interrante, Victoria; Fuchs, Henry; Pizer, Stephen

    1997-01-01

    Transparency can be a useful device for depicting multiple overlapping surfaces in a single image. The challenge is to render the transparent surfaces in such a way that their three-dimensional shape can be readily understood and their depth distance from underlying structures clearly perceived. This paper describes our investigations into the use of sparsely-distributed discrete, opaque texture as an 'artistic device' for more explicitly indicating the relative depth of a transparent surface and for communicating the essential features of its 3D shape in an intuitively meaningful and minimally occluding way. The driving application for this work is the visualization of layered surfaces in radiation therapy treatment planning data, and the technique is illustrated on transparent isointensity surfaces of radiation dose. We describe the perceptual motivation and artistic inspiration for defining a stroke texture that is locally oriented in the direction of greatest normal curvature (and in which individual strokes are of a length proportional to the magnitude of the curvature in the direction they indicate), and discuss several alternative methods for applying this texture to isointensity surfaces defined in a volume. We propose an experimental paradigm for objectively measuring observers' ability to judge the shape and depth of a layered transparent surface, in the course of a task relevant to the needs of radiotherapy treatment planning, and use this paradigm to evaluate the practical effectiveness of our approach through a controlled observer experiment based on images generated from actual clinical data.

  3. Experimental research of surface roughness and surface texture after laser cladding

    Science.gov (United States)

    Przestacki, Damian; Majchrowski, Radomir; Marciniak-Podsadna, Lidia

    2016-12-01

    The objective of the investigation was to identify surface integrity of machined parts after laser cladding. Surface analysis was made by using novel metrology methods: auto correlation and gradient distributions. An Infinite Focus Measurement Machine (IFM) has been used for the surface texture analysis. The study has been performed within a production facility during the prototyping process of new products. There are many methods available for geometric and surface topography measurements: contact and non-contact, micro and nanoscale approaches. An optical method based on the measurement of light reflected or scattered from the surface of an examined object can be used for this purpose. We have tested the application of an advanced 3D scanner for this purpose - optical scanner ATOS II. The scanner ATOS II represents the optical method, i.e. the digital light projection (DLP) method. The system consists of a projector and two digital cameras capable of supplying 1.4 million of measuring points per second. This method enables to scan elements from a few millimeters to a several dozen of meters in size. The roughness analysis is based on 2D measurements, which gave two-dimensional characteristics of the surface. In last decades, the metrology of the surface layer notes dynamical development as a science. During the last decades, many scientists and constructors became convinced that the third dimension should be added to the surface analysis. At present, 3D analysis of the surface geometry is widely accepted. In order to complete the topography analysis of the surface texture after laser cladding, our team worked out original program for 2D and 3D surface analysis. It was called TAS (topography analysis and simulation) and was based on Matlab software. Four modules were developed: the initial data processing module, basic parameters calculating module, data visualization module, and digital filtration module.

  4. Texture- and deformability-based surface recognition by tactile image analysis.

    Science.gov (United States)

    Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal

    2016-08-01

    Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material

  5. Capturing the surface texture and shape of pollen: a comparison of microscopy techniques.

    Directory of Open Access Journals (Sweden)

    Mayandi Sivaguru

    Full Text Available Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques, and brightfield and differential interference contrast microscopy (DIC (transmitted light techniques. We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae, Mabea occidentalis (Euphorbiaceae and Agropyron repens (Poaceae. No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (~250 nm; NDL presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical

  6. Ion Beam Textured and Coated Surfaces Experiment (IBEX)

    Science.gov (United States)

    Mirtich, Michael J.; Rutledge, Sharon K.; Stevens, Nicholas; Olle, Raymond; Merrow, James

    1992-01-01

    Ion beam textured and commercial materials suitable for use in space power systems were flown in low Earth orbit on the Long Duration Exposure Facility (LDEF) for 5.8 years. Because of their location on LDEF (98 deg from the ram direction), the 36 materials were primarily exposed to vacuum ultraviolet radiation, thermal cycling, the vacuum of space, the micrometeoroid environment, and grazing incidence atomic oxygen. Measurements of solar absorptance and thermal emittance (pre- and post-flight) showed no changes for almost all of the materials, except for the S-13G and Kapton and coated Kapton samples. The optical property stability of ion beam textured surfaces and most other surfaces indicates that they are functionally durable to the synergistic rigors of the space environment.

  7. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  8. Contact angle hysteresis on textured surfaces with nanowire clusters.

    Science.gov (United States)

    Liao, Ying-Chih; Chiang, Cheng-Kun; Lu, Yen-Wen

    2013-04-01

    Nanowire arrays with various agglomeration patterns were synthesized by adjusting the solvent evaporation rates. Nanowires with 200 nm diameter and 2-25 microm in length were fabricated from an anodic aluminum oxide (AAO) porous template. Various drying treatments were applied to develop nanostructured surfaces with topological differences. Due to surface tension forces, copper nanowires after thermal and evaporative drying treatments agglomerated into clusters, while supercritical drying technique provided excellent bundled-free and vertically-standing nanowire arrays. Although all dried surfaces exhibited hydrophobic nature, the contact angle hysteresis, or the difference between advancing and receding angles, was found to be larger on those surfaces with bundled nanowire clusters. To explain the difference, the wetted solid fraction on each surface was calculated using the Cassie-Baxter model to show that the hysteresis was contributed by liquid/solid contact area on the textured surfaces.

  9. Surface classification and detection of latent fingerprints based on 3D surface texture parameters

    Science.gov (United States)

    Gruhn, Stefan; Fischer, Robert; Vielhauer, Claus

    2012-06-01

    In the field of latent fingerprint detection in crime scene forensics the classification of surfaces has importance. A new method for the scientific analysis of image based information for forensic science was investigated in the last years. Our image acquisition based on a sensor using Chromatic White Light (CWL) with a lateral resolution up to 2 μm. The used FRT-MicroProf 200 CWL 600 measurement device is able to capture high-resolution intensity and topography images in an optical and contact-less way. In prior work, we have suggested to use 2D surface texture parameters to classify various materials, which was a novel approach in the field of criminalistic forensic using knowledge from surface appearance and a chromatic white light sensor. A meaningful and useful classification of different crime scene specific surfaces is not existent. In this work, we want to extend such considerations by the usage of fourteen 3D surface parameters, called 'Birmingham 14'. In our experiment we define these surface texture parameters and use them to classify ten different materials in this test set-up and create specific material classes. Further it is shown in first experiments, that some surface texture parameters are sensitive to separate fingerprints from carrier surfaces. So far, the use of surface roughness is mainly known within the framework of material quality control. The analysis and classification of the captured 3D-topography images from crime scenes is important for the adaptive preprocessing depending on the surface texture. The adaptive preprocessing in dependency of surface classification is necessary for precise detection because of the wide variety of surface textures. We perform a preliminary study in usage of these 3D surface texture parameters as feature for the fingerprint detection. In combination with a reference sample we show that surface texture parameters can be an indication for a fingerprint and can be a feature in latent fingerprint detection.

  10. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  11. Modulated surface textures for enhanced scattering in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.; Battaglia, C.; Ballif, C.; Zeman, M.

    2012-01-01

    Nano-scale randomly textured front transparent oxides are superposed on micro-scale etched glass substrates to form modulated surface textures. The resulting enhanced light scattering is implemented in single and double junction thin-film silicon solar cells.

  12. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    Science.gov (United States)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-02-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle ( θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low- k to high- k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  13. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    Science.gov (United States)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-01-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle (θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low-k to high-k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  14. An international comparison of surface texture parameters quantification on polymer artefacts using optical instruments

    DEFF Research Database (Denmark)

    Tosello, Guido; Haitjema, H.; Leach, R.K.

    2016-01-01

    scanning interferometers) from thirteen research laboratories worldwide. Results demonstrated that: (i)Agreement among different instruments could be achieved to a limited extent; (ii) standardisedguidelines for uncertainty evaluation of areal surface parameters are needed for users; (iii......An international comparison of optical instruments measuring polymer surfaces with arithmetic mean height values in the sub-micrometre range has been carried out. The comparison involved sixteen optical surface texture instruments (focus variation instruments, confocal microscopes and coherent......) it is essentialthat the performance characteristics (and especially the spatial frequency response) of an instrument isunderstood prior to a measurement....

  15. Fast Characterization of Moving Samples with Nano-Textured Surfaces

    CERN Document Server

    Madsen, Morten Hannibal; Zalkovskij, Maksim; Karamehmedović, Mirza; Garnæs, Jørgen

    2015-01-01

    We characterize nano-textured surfaces by optical diffraction techniques using an adapted commercial light microscope with two detectors, a CCD camera and a spectrometer. The acquisition and analyzing time for the topological parameters height, width, and sidewall angle is only a few milliseconds of a grating. We demonstrate that the microscope has a resolution in the nanometer range, also in an environment with many vibrations, such as a machine floor. Furthermore, we demonstrate an easy method to find the area of interest with the integrated CCD camera.

  16. Droplets impact on textured surfaces: Mesoscopic simulation of spreading dynamics

    Science.gov (United States)

    Wang, Yuxiang; Chen, Shuo

    2015-02-01

    Superhydrophobic surfaces have attracted much attention due to their excellent water-repellent property. In the present study, droplets in the ideal Cassie state were focused on, and a particle-based numerical method, many-body dissipative particle dynamics, was employed to explore the mechanism of droplets impact on textured surfaces. A solid-fluid interaction with three linear weight functions was used to generate different wettability and a simple but efficient method was introduced to compute the contact angle. The simulated results show that the static contact angle is in good agreement with the Cassie-Baxter formula for smaller ∅S and Fa, but more deviation will be produced for larger ∅S and Fa, and it is related to the fact that the Cassie-Baxter theory does not consider the contact angle hysteresis effect in their formula. Furthermore, high impact velocity can induce large contact angle hysteresis on textured surfaces with larger ∅S and Fa. The typical time-based evolutions of the spreading diameter were simulated, and they were analyzed from an energy transformation viewpoint. These results also show that the dynamical properties of droplet, such as rebounding or pinning, contact time and maximum spreading diameters, largely depend on the comprehensive effects of the material wettability, fraction of the pillars and impact velocities of the droplets.

  17. TEXTURAL FRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Hynek Lauschmann

    2011-05-01

    Full Text Available The reconstitution of the history of a fatigue process is based on the knowledge of any correspondences between the morphology of the crack surface and the velocity of the crack growth (crack growth rate - CGR. The textural fractography is oriented to mezoscopic SEM magnifications (30 to 500x. Images contain complicated textures without distinct borders. The aim is to find any characteristics of this texture, which correlate with CGR. Pre-processing of images is necessary to obtain a homogeneous texture. Three methods of textural analysis have been developed and realized as computational programs: the method based on the spectral structure of the image, the method based on a Gibbs random field (GRF model, and the method based on the idealization of light objects into a fibre process. In order to extract and analyze the fibre process, special methods - tracing fibres and a database-oriented analysis of a fibre process - have been developed.

  18. The effect of surface texture on the kinetic friction of a nanowire on a substrate

    Science.gov (United States)

    Xie, Hongtao; Mead, James; Wang, Shiliang; Huang, Han

    2017-01-01

    The friction between Al2O3 nanowires and silicon substrates of different surface textures was characterised by use of optical manipulation. It was found that surface textures had significant effect on both the friction and the effective contact area between a nanowire and a substrate. A genetic algorithm was developed to determine the effective contact area between the nanowire and the textured substrate. The frictional force was found to be nearly proportional to the effective contact area, regardless of width, depth, spacing and orientation of the surface textures. Interlocking caused by textured grooves was not observed in this study. PMID:28322351

  19. Analysis of Surface Texturization of Solar Cells by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Chung

    2008-01-01

    Full Text Available The purpose of this paper is to develop a simple new model, based on the classic molecular dynamics simulation (MD, alternative to complex electron-photon interactions to analyze the surface texturization of solar cells. This methodology can easily propose the absorptance differences between texturing and nontexturing solar cells. To verify model feasibility, this study simulates square, pyramidal, and semicircular texturization surfaces. Simulations show that surface texturization effectively increases the absorptance of incident light for solar cells, and this paper presents optimal texturization shapes. The MD model can also be potentially used to predict the efficiency promotion in any optical reflection-absorption cases.

  20. Numerical analysis of monocrystalline silicon solar cells with fine nanoimprinted textured surface

    Science.gov (United States)

    Yoshinaga, Seiya; Ishikawa, Yasuaki; Araki, Shinji; Honda, Tatsuki; Jiang, Yunjiang; Uraoka, Yukiharu

    2017-02-01

    We investigated the surface reflectance of nanoimprinted textures on silicon. Zirconium oxide, which is a wide-bandgap inorganic dielectric material, was used as the texturing material. We performed several calculations to optimize the textures for the production of high-efficiency bulk-type monocrystalline silicon solar cells. Our analysis revealed that nanoimprinted textured solar cells exhibit a lower reverse saturation current density than a solar cell with a conventional etched texture. It was also confirmed that the photocarrier generation rate for a solar cell with a submicron-scale nanoimprinted texture has little dependence on the texture shape. Furthermore, the weighted average reflectance of an optimized nanoimprinted textured solar cell was substantially reduced to 3.72%, suggesting that texture formation by nanoimprint lithography is an extremely effective technology for producing high-efficiency solar cells at a low cost.

  1. Reliable Classification of Geologic Surfaces Using Texture Analysis

    Science.gov (United States)

    Foil, G.; Howarth, D.; Abbey, W. J.; Bekker, D. L.; Castano, R.; Thompson, D. R.; Wagstaff, K.

    2012-12-01

    Communication delays and bandwidth constraints are major obstacles for remote exploration spacecraft. Due to such restrictions, spacecraft could make use of onboard science data analysis to maximize scientific gain, through capabilities such as the generation of bandwidth-efficient representative maps of scenes, autonomous instrument targeting to exploit targets of opportunity between communications, and downlink prioritization to ensure fast delivery of tactically-important data. Of particular importance to remote exploration is the precision of such methods and their ability to reliably reproduce consistent results in novel environments. Spacecraft resources are highly oversubscribed, so any onboard data analysis must provide a high degree of confidence in its assessment. The TextureCam project is constructing a "smart camera" that can analyze surface images to autonomously identify scientifically interesting targets and direct narrow field-of-view instruments. The TextureCam instrument incorporates onboard scene interpretation and mapping to assist these autonomous science activities. Computer vision algorithms map scenes such as those encountered during rover traverses. The approach, based on a machine learning strategy, trains a statistical model to recognize different geologic surface types and then classifies every pixel in a new scene according to these categories. We describe three methods for increasing the precision of the TextureCam instrument. The first uses ancillary data to segment challenging scenes into smaller regions having homogeneous properties. These subproblems are individually easier to solve, preventing uncertainty in one region from contaminating those that can be confidently classified. The second involves a Bayesian approach that maximizes the likelihood of correct classifications by abstaining from ambiguous ones. We evaluate these two techniques on a set of images acquired during field expeditions in the Mojave Desert. Finally, the

  2. Self-adaptive surface texture design for friction reduction across the lubrication regimes

    Science.gov (United States)

    Hsu, Stephen M.; Jing, Yang; Zhao, Fei

    2016-03-01

    Surface texturing has been shown to reduce friction and improve durability in mechanical face seals and metal forming operations, and lightly loaded thrust bearings. However, the success has been limited to conformal contacts and low load high speed operating conditions, i.e. hydrodynamic lubrication dominated regime. Both experiments and numerical simulations have shown that textural patterns, under higher loading and/or slower speeds may increase friction and even cause the lubrication film collapse. Specific designs of surface texture pattern, as its shape, depth and density, are required for different lubrication regimes. Our own study has shown (Hsu et al 2014 J. Phys. D: Appl. Phys. 47 335307) that large/shallow dimple reduces friction in hydrodynamic lubrication regime, whereas small/deep dimple shows benefit in mixed/boundary lubrication regimes (if the textural designs can provides hydrodynamic/hydrostatic lift forces to reduce the machine loading). In considering an engine component typically experiences duty cycles that may cross various lubrication regimes, a multiscale surface texture design appears attractive. This type of mixed shape texturing combines textures designed for low load, high speed operating conditions and the textures that are designed for high load, low speed operations. In this paper, two types of multiscale surface texture designs are presented. Ball-on-three-flats (BOTF) wear tester (under high loading conditions) is used to evaluate the performance of these multiscale texture designs along with the baselines of un-textured surfaces under the same surface preparation procedures. Two texture designs with only a single shape dimples are included in the study. Results suggest that multiscale surface texture design not only further reduces friction in comparison to the textures with single shape dimples, but also shows the effectiveness across hydrodynamic regimes to the mixed lubrication regimes.

  3. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.

    Science.gov (United States)

    Zhao, Hong; Law, Kock-Yee; Sambhy, Varun

    2011-05-17

    Inspired by the superhydrophobic effect displayed in nature, we set out to mimic the interplay between the chemistry and physics in the lotus leaf to see if the same design principle can be applied to control wetting and adhesion between toners and inks on various printing surfaces. Since toners and inks are organic materials, superoleophobicity has become our design target. In this work, we report the design and fabrication of a model superoleophobic surface on silicon wafer. The model surface was created by photolithography, consisting of texture made of arrays of ∼3 μm diameter pillars, ∼7 μm in height with a center-to-center spacing of 6 μm. The surface was then made oleophobic with a fluorosilane coating, FOTS, synthesized by the molecular vapor deposition technique with tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane. Contact angle measurement shows that the surface exhibits super repellency toward water and oil (hexadecane) with a water and hexadecane contact angles at 156° and 158°, respectively. Since the sliding angles for both liquids are also very small (∼10°), we conclude that the model surface is both superhydrophobic and superoleophobic. By comparing with the contact angle data of the bare silicon surfaces (both smooth and textured), we also conclude that the superoleophobicity is a result of both surface texturing and fluorination. Results from investigations of the effects of surface modification and pillar geometry indicate that both surface oleophobicity and pillar geometry are contributors to the superoleophobicity. More specifically, we found that superoleophobicity can only be attained on our model textured surface when the flat surface coating has a relatively high oleophobicity (i.e., with a hexadecane contact angle of >73°). SEM examination of the pillars with higher magnification reveals that the side wall in each pillar is not smooth; rather it consists of a ∼300 nm wavy structure (due to the Bosch etching process

  4. Experimental study on effect of surface vibration on micro textured surfaces with hydrophobic and hydrophilic materials

    Science.gov (United States)

    Yao, Chun-Wei; Lai, Chen-Ling; Alvarado, Jorge L.; Zhou, Jiang; Aung, Kendrick T.; Mejia, Jose E.

    2017-08-01

    Artificial hydrophobic surfaces have been studied in the last ten years in an effort to understand the effects of structured micro- and nano-scale features on droplet motion and self-cleaning mechanisms. Among these structured surfaces, micro-textured surfaces consisting of a combination of hydrophilic and hydrophobic materials have been designed, fabricated and characterized to understand how surface properties and morphology affect enhanced self-cleaning mechanisms. However, use of micro textured surfaces leads to a strong pinning effect that takes place between the droplets and the hydrophobic-hydrophilic edge, leading to a significant contact angle hysteresis effect. This research study focuses on the effects of surface vibrations on droplet shedding at different inclined angles on micro-textured surfaces. Surface vibration and shedding processes were experimentally characterized using a high speed imaging system. Experimental results show that droplets under the influence of surface vibration depict different contour morphologies when vibrating at different resonance frequencies. Moreover, droplet sliding angles can be reduced through surface vibration when the proper combination of droplet size and surface morphology is prescribed.

  5. Effect of cumulative strain on texture characteristics during wire drawing of eutectoid steels

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, NanJing, 211189 (China)], E-mail: yangfan.hit@gmail.com; Ma, C.; Jiang, J.Q. [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, NanJing, 211189 (China); Feng, H.P.; Zhai, S.Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2008-10-15

    The texture characteristics associated with plastic deformation of Fe-C steels near-eutectoid composition during a continuous cold drawing process were thoroughly investigated by orientation distribution function analysis based on X-ray diffraction. The effect of cumulative drawing strains on the <1 1 0> fiber texture in drawn hypereutectoid and hypoeutectoid steel wires was discussed.

  6. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  7. Composite fillings microleakage after TEM00 Er: YAG laser texturing of human tooth enamel surface

    Science.gov (United States)

    Belikov, A. V.; Shatilova, K. V.; Skrypnik, A. V.; Fedotov, D. Y.

    2010-11-01

    The results of comparative investigation of methylene-blue microleakage between tooth enamel surface and light-cure composites various fluidity are presented. An enamel surface was treated by traditional methods or laser method (laser texturing). The role of adhesive systems is investigated at enamel texturing by the TEM00 Er: YAG radiation. It is shown, that microleakage was not observed when enamel was textured by the TEM00 Er: YAG laser radiation and covered with flowable composite "Revolution" (Kerr) without adhesive system. It is established, that for laser textured surfaces methylene-blue microleakage depends on distance between microcraters.

  8. Rational design of organic semiconductors for texture control and self-patterning on halogenated surfaces

    KAUST Repository

    Ward, Jeremy W.

    2014-05-15

    Understanding the interactions at interfaces between the materials constituting consecutive layers within organic thin-film transistors (OTFTs) is vital for optimizing charge injection and transport, tuning thin-film microstructure, and designing new materials. Here, the influence of the interactions at the interface between a halogenated organic semiconductor (OSC) thin film and a halogenated self-assembled monolayer on the formation of the crystalline texture directly affecting the performance of OTFTs is explored. By correlating the results from microbeam grazing incidence wide angle X-ray scattering (μGIWAXS) measurements of structure and texture with OTFT characteristics, two or more interaction paths between the terminating atoms of the semiconductor and the halogenated surface are found to be vital to templating a highly ordered morphology in the first layer. These interactions are effective when the separating distance is lower than 2.5 dw, where dw represents the van der Waals distance. The ability to modulate charge carrier transport by several orders of magnitude by promoting "edge-on" versus "face-on" molecular orientation and crystallographic textures in OSCs is demonstrated. It is found that the "edge-on" self-assembly of molecules forms uniform, (001) lamellar-textured crystallites which promote high charge carrier mobility, and that charge transport suffers as the fraction of the "face-on" oriented crystallites increases. The role of interfacial halogenation in mediating texture formation and the self-patterning of organic semiconductor films, as well as the resulting effects on charge transport in organic thin-film transistors, are explored. The presence of two or more anchoring sites between a halogenated semiconductor and a halogenated self-assembled monolayer, closer than about twice the corresponding van der Waals distance, alter the microstructure and improve electrical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Deformation of textural characteristics and sedimentology along micro-tidal estuarine beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Dora, G.U.; SanilKumar, V.; Philip, C.S.; Johnson, G.

    . Sajiv Philip & Glejin Johnson Ocean Engineering Division, CSIR-National Institute of Oceanography , Dona Paula, Goa 403 004 India [Email:sanil@nio.org] Received 28 November 2012; revised 03 July 2013 Deformation in the textural characteristics... sediment is a foremost parameter for a coastal researcher/engineer/designer due to its various applications for sorting out a coastal environment. Sedimentary process at foreshore zone is a highly dynamical whereas textural characteristics...

  10. High friction and low wear properties of laser-textured ceramic surface under dry friction

    Science.gov (United States)

    Xing, Youqiang; Deng, Jianxin; Wu, Ze; Wu, Fengfang

    2017-08-01

    Two kinds of grooved textures with different spacing were fabricated on Al2O3/TiC ceramic surface by an Nd:YAG laser. The dry tribological properties of the textured samples were investigated by carrying out unidirectional rotary sliding friction and wear tests using a ball-on-disk tribometer. Results show that the laser textured samples exhibit higher friction coefficient and excellent wear resistance compared with the smooth sample under dry friction conditions. Furthermore, the texture morphology and spacing have a significant influence on the tribological properties. The sample with small texture spacing may be beneficial to increasing the friction coefficient, and the wavy-grooved sample exhibits the highest friction coefficient and shallowest wear depth. The increasing friction coefficient and anti-wear properties are attributed to the combined effects of the increased surface roughness, reduced real contact area, micro-cutting effect by the texture edges and entrapment of wear debris.

  11. Evaluation of Tire/Surfacing/Base Contact Stresses and Texture Depth

    Directory of Open Access Journals (Sweden)

    W.J.vdM. Steyn

    2015-03-01

    Full Text Available Tire rolling resistance has a major impact on vehicle fuel consumption. Rolling resistance is the loss of energy due to the interaction between the tire and the pavement surface. This interaction is a complicated combination of stresses and strains which depend on both tire and pavement related factors. These include vehicle speed, vehicle weight, tire material and type, road camber, tire inflation pressure, pavement surfacing texture etc. In this paper the relationship between pavement surface texture depth and tire/surfacing contact stress and area is investigated. Texture depth and tire/surfacing contact stress were measured for a range of tire inflation pressures on five different pavement surfaces. In the analysis the relationship between texture and the generated contact stresses as well as the contact stress between the surfacing and base layer are presented and discussed, and the anticipated effect of these relationships on the rolling resistance of vehicles on the surfacings, and subsequent vehicle fuel economy discussed.

  12. Surface texturing for adaptive Ag/MoS_2 solid lubricant plating

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The objective of this research is to prepare specially designed surface texture on hard steel surface by electrochemical micromachining (EM) and to incorporate electroless plated Ag/MoS2 solid lubricant coating into the dimples of EM textured steel surface to effectively reduce friction and wear of steel-steel contacts. The friction and wear behavior of the Ag/MoS2 solid lubricant coating on EM textured steel surface was evaluated in relation to the size and spacing of the dimples thereon. The microstructur...

  13. Associations between soil texture, soil water characteristics and earthworm populations of grassland

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Lamandé, Mathieu; Torp, Søren Bent;

    2011-01-01

    The aim of the present study was to investigate the relationships between soil physical characteristics and earthworms in a regional-scale field study in Denmark. The earthworm populations along within-field gradients in soil texture were quantified at five field sites, representing dominant soil......) was not causally associated with the soil parameters studied. This indicates that there must be other causal factors associated with the abundance (and composition) of anecic worms that are not among the soil texture and structure parameters studied. On the other hand, soil texture (Coarse sand) was associated...... with the abundance of the dominant endogeic species, A. tuberculata, but not endogeic worms in general. It was hypothesized that anecic and endogeic earthworms might respond to local soil water characteristics rather than soil texture, but this hypothesis could not be confirmed with the present data....

  14. A validated computational model for the design of surface textures in full-film lubricated sliding

    Science.gov (United States)

    Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy

    2016-11-01

    Our recent experimental work showed that asymmetry is needed for surface textures to decrease friction in full-film lubricated sliding (thrust bearings) with Newtonian fluids; textures reduce the shear load and produce a separating normal force. The sign of the separating normal force is not predicted by previous 1-D theories. Here we model the flow with the Reynolds equation in cylindrical coordinates, numerically implemented with a pseudo-spectral method. The model predictions match experiments, rationalize the sign of the normal force, and allow for design of surface texture geometry. To minimize sliding friction with angled cylindrical textures, an optimal angle of asymmetry β exists. The optimal angle depends on the film thickness but not the sliding velocity within the applicable range of the model. The model has also been used to optimize generalized surface texture topography while satisfying manufacturability constraints.

  15. Characteristic Textures of Recrystallized, Peritectic, and Primary Magmatic Olivine in Experimental Samples and Natural Volcanic Rocks

    OpenAIRE

    Erdmann, Saskia; Scaillet, Bruno; Martel, Caroline; Cadoux, Anita

    2014-01-01

    International audience; Olivine textures are potentially important recorders of olivine origin and crystallization conditions. Primary magmatic and xenocrystic origins are commonly considered for olivine from ultramafic to intermediate magmas, while secondary olivine origins (i.e. crystals formed by recrystallization or peritectic reaction) are rarely considered in the interpretation of magmatic phenocrysts. The main aim of our study was to determine textures that are characteristic for secon...

  16. Tribological Analysis of Ventral Scale Structure in a Python Regius in Relation to Laser Textured Surfaces

    CERN Document Server

    Abdel-aal, Hisham A

    2013-01-01

    Laser Texturing is one of the leading technologies applied to modify surface topography. To date, however, a standardized procedure to generate deterministic textures is virtually non-existent. In nature, especially in squamata, there are many examples of deterministic structured textures that allow species to control friction and condition their tribological response for efficient function. In this work, we draw a comparison between industrial surfaces and reptilian surfaces. We chose the python regius species as a bio-analogue with a deterministic surface. We first study the structural make up of the ventral scales of the snake (both construction and metrology). We further compare the metrological features of the ventral scales to experimentally recommended performance indicators of industrial surfaces extracted from open literature. The results indicate the feasibility of engineering a Laser Textured Surface based on the reptilian ornamentation constructs. It is shown that the metrological features, key to...

  17. Laser scanning on road pavements: a new approach for characterizing surface texture.

    Science.gov (United States)

    Bitelli, Gabriele; Simone, Andrea; Girardi, Fabrizio; Lantieri, Claudio

    2012-01-01

    The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the "texture" appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey.

  18. Effect of surface penetrating sealant on surface texture and microhardness of composite resins.

    Science.gov (United States)

    Bertrand, M F; Leforestier, E; Muller, M; Lupi-Pégurier, L; Bolla, M

    2000-01-01

    The application of Fortify (Bisco, Lombard, IL), an unfilled resin, to the surface of composite resin restorations is intended to fill in defects in the surface that persist despite polishing, improve marginal integrity, and increase these materials' resistance to abrasion. The aim of this study was to observe the surface texture by scanning electron microscopy and measure the microhardness of the surface. For each sample of composite resin covered with glaze, 40 measurements were made of the thickness of the resin. Measurements of the Vickers microhardness included three samples of composite resin, three samples of glaze, and six samples of composite resin covered with glaze. A relationship was established between microhardness and thickness. Scanning electron microscopy showed a noticeable improvement in the surface texture. Nevertheless, areas were seen in which glaze seemed very thin or even completely absent. Measurements of the thickness ranged from 0-70 microm. The mean microhardness of composite resin was 65.8 +/- 0.7, while the mean hardness of glaze was 7.3 +/- 0.7. The microhardness of the double layer was reduced, depending on the thickness of the glazing resin. The capacity of glaze to mask surface defects of composite resin was shown, but it was difficult to obtain a regular surface with liquid resin. The application of this product caused a decrease of the microhardness of the composite resin's surface.

  19. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure

  20. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure i

  1. Evaluation of long bone surface textures as ontogenetic indicators in centrosaurine ceratopsids.

    Science.gov (United States)

    Tumarkin-Deratzian, Allison R

    2009-09-01

    The search for criteria for aging non-mammalian fossil vertebrates has preoccupied paleobiologists in recent years. Previous studies of the long bones of pterosaurs and modern and subfossil birds as well as of cranial material of centrosaurine ceratopsid dinosaurs have documented variations in surface textures that seem to be ontogenetically related. In this study, long bones from the centrosaurine ceratopsid genera Centrosaurus, Einiosaurus, and Pachyrhinosaurus are examined to test the hypothesis that changes in bone surface textures and reduction of surface porosity could be correlated with size (and presumably age) classes, as has been previously documented in pterosaurs and birds. The data set includes 141 bones representing all six long bone elements, collected from monodominant centrosaurine bone beds. Bone surface patterns are documented by macroscopic visual examination, and a sequence of five texture classes ordered by decreasing surface porosity is described based on the common distributions of these patterns. Calculations of Spearman's rank correlation coefficients reveal significant correlations between texture class and size. The smallest bones are invariably associated with porous midshaft textures that grade to fibrous and long-grained patterns proximally and distally [Texture Class (TC) 1]. Post-hoc analysis after Kruskal-Wallis ANOVA on ranks confirms that the mean size of TC1 bones is, in most cases, significantly different than the mean size of bones in other texture classes. Results of this study suggest the presence of an ontogenetic surface textural signal in centrosaurine long bones; however, comparison of texture classes with size-independent maturity criteria is needed to clarify further the potential ontogenetic significance of higher texture classes.

  2. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  3. Crystallographic Texture Difference Between Center and Sub-Surface of Thin Cold-Drawn Pearlitic Steel Wires

    Science.gov (United States)

    Zhao, Tian-Zhang; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming; Zhang, Shi-Hong

    2014-09-01

    The texture difference between the center and sub-surface of pearlitic steel wires, which were manufactured by continuous cold drawing, was investigated by orientation distribution function based on electron back-scattered diffraction at different drawing passes. A perfect fiber texture parallel to drawing direction develops gradually with drawing strain increasing at the wire center, while at the sub-surface, a quasi fiber texture with the orientation nearly parallel to the circumferential direction is found. This texture at the sub-surface is softer than the perfect fiber texture in tension. The reasons for this texture difference and influences on the wire's mechanical properties are discussed.

  4. A new procedure for characterizing textured surfaces with a deterministic pattern of valley features

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, A; De Chiffre, Leonardo

    2013-01-01

    In recent years there has been the development of a high number of manufacturing methods for creating textured surfaces which often present deterministic patterns of valley features. Unfortunately, suitable methodologies for characterizing them are lacking. Existing standards cannot in fact...

  5. Effect of Q-switched Laser Surface Texturing of Titanium on Osteoblast Cell Response

    Science.gov (United States)

    Voisey, K. T.; Scotchford, C. A.; Martin, L.; Gill, H. S.

    Titanium and its alloys are important biomedical materials. It is known that the surface texture of implanted medical devices affects cell response. Control of cell response has the potential to enhance fixation of implants into bone and, in other applications, to prevent undesired cell adhesion. The potential use of a 100W Q-switched YAG laser miller (DMG Lasertec 60 HSC) for texturing titanium is investigated. A series of regular features with dimensions of the order of tens of micrometers are generated in the surface of titanium samples and the cell response to these features is determined. Characterisation of the laser milled features reveals features with a lengthscale of a few microns superposed on the larger scale structures, this is attributed to resolidification of molten droplets generated and propelled over the surface by individual laser pulses. The laser textured samples are exposed to osteoblast cells and it is seen that cells do respond to the features in the laser textured surfaces.

  6. Optimization-based design of surface textures for thin-film Si solar cells.

    Science.gov (United States)

    Sheng, Xing; Johnson, Steven G; Michel, Jurgen; Kimerling, Lionel C

    2011-07-04

    We numerically investigate the light-absorption behavior of thin-film silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic gratings and commercial random textures, and examine arbitrary irregular periodic textures designed by multi-parameter optimization. Deep and high-index-contrast textures exhibit strong anisotropic scattering that is outside the regime of validity of the Lambertian models commonly used to describe texture-induced absorption enhancement for normal incidence. Over a 900-1100 nm wavelength range, our optimized surface texture in two dimensions (2D) enhances absorption by a factor of 2.7 πn, considerably larger than the original πn Lambertian result and exceeding by almost 50% a recent generalization of Lambertian model for periodic structures in finite spectral range. However, the πn Lambertian limit still applies for isotropic incident light, and our structure obeys this limit when averaged over all the angles. Therefore, our design can be thought of optimizing the angle/enhancement tradeoff for periodic textures.

  7. Comparison and optimization of randomly textured surfaces in thin-film solar cells.

    Science.gov (United States)

    Rockstuhl, C; Fahr, S; Bittkau, K; Beckers, T; Carius, R; Haug, F-J; Söderström, T; Ballif, C; Lederer, F

    2010-09-13

    Using rigorous diffraction theory we investigate the scattering properties of various random textures currently used for photon management in thin-film solar cells. We relate the haze and the angularly resolved scattering function of these cells to the enhancement of light absorption. A simple criterion is derived that provides an explanation why certain textures operate more beneficially than others. Using this criterion we propose a generic surface profile that outperforms the available substrates. This work facilitates the understanding of the effect of randomly textured surfaces and provides guidelines towards their optimization.

  8. Mechanism of surface texture evolution in pure copper strips subjected to double rolling

    Directory of Open Access Journals (Sweden)

    Xiyong Wang

    2014-02-01

    Full Text Available Developing ultra-thin copper foils with different surface roughness and microstructure has important significance for improving the service performance and reducing the production cost of high-end circuit boards. In this paper, pure copper strips with initial cube texture were subjected to a double rolling process (deformation amount ranges from 50% to 95%, and the surface textures evolution law and mechanism of double-rolled strips were studied by an X-ray diffraction technique. The results show that when a deformation amount increased from 50% to 70%, the grains of two surfaces rotate away from the cube orientation, and the formed textures of two surfaces mainly consisted of C, S and B orientation components. The orientation density values for these three components on bright surface only had slight difference; the orientation density values for C and S components were much larger than that for B components on a matt surface. When the deformation amount increased to 90%, the increase extents of orientation density values for C and S components were obviously larger than that for B components on a bright surface; the increase extents of orientation density values for these three components were almost the same on the matt surface. It has been found that when deformation amount reaches 95%, the grains orientation of bright surface were relatively concentrated, and the orientation density value for C texture obviously increased to 11.68 and that for B texture was only 3.15; the grains orientation of matt surface were relatively dispersed, and the orientation density value for C texture increased to 9.26 and that for B texture obviously increased to 6.35, and the density values of these two textures had less difference. For the condition of strong compressive and shear stress on the bright surface, grains were mainly rotating to C texture orientation; compared with the bright surface, “semi-free” deformation condition on the matt surface is

  9. Image-space texture-based output-coherent surface flow visualization.

    Science.gov (United States)

    Huang, Jin; Pan, Zherong; Chen, Guoning; Chen, Wei; Bao, Hujun

    2013-09-01

    Image-space line integral convolution (LIC) is a popular scheme for visualizing surface vector fields due to its simplicity and high efficiency. To avoid inconsistencies or color blur during the user interactions, existing approaches employ surface parameterization or 3D volume texture schemes. However, they often require expensive computation or memory cost, and cannot achieve consistent results in terms of both the granularity and color distribution on different scales. This paper introduces a novel image-space surface flow visualization approach that preserves the coherence during user interactions. To make the noise texture under different viewpoints coherent, we propose to precompute a sequence of mipmap noise textures in a coarse-to-fine manner for consistent transition, and map the textures onto each triangle with randomly assigned and constant texture coordinates. Further, a standard image-space LIC is performed to generate the flow texture. The proposed approach is simple and GPU-friendly, and can be easily combined with various texture-based flow visualization techniques. By leveraging viewpoint-dependent backward tracing and mipmap noise phase, our method can be incorporated with the image-based flow visualization (IBFV) technique for coherent visualization of unsteady flows. We demonstrate consistent and highly efficient flow visualization on a variety of data sets.

  10. Comparative Study of Leaf Surface Texture and Ability to Expand of Cured Tobacco

    Directory of Open Access Journals (Sweden)

    Rohr R

    2014-12-01

    Full Text Available Tobacco leaf texture, appreciated by the difference of surface roughness of cured leaves, is studies with light microscopy and scanning electron microscopy (SEM. The leaf texture is obviously determined by the presence or absence of conical cellular protuberances on the adaxial side of the leaf. Considering the anatomic point of view, the leaf thickness, always more important when the leaf texture is open, is the only objective criterion which could be associated to the texture. The ultra-structural study with SEM and transmission electron microscopy (TEM demonstrates that the expansion capacity of tobacco doesn't rely on cytological factors such as cellular reserves or debris. The expansion capacity could be inversely proportional with the relative importance of the mesophyll comparing to palisade parenchyma. On the studied material, no direct relation between the leaf texture and the expansion capacity has been noticed.

  11. Texturing of the Silicon Substrate with Nanopores and Si Nanowires for Anti-reflecting Surfaces of Solar Cells

    Directory of Open Access Journals (Sweden)

    A.A. Druzhinin

    2015-06-01

    Full Text Available The paper presents the prospects of obtaining a functional multi-layer anti-reflecting coating of the front surface of solar cells by texturing the surface of the silicon by electrochemical etching. The physical model of the "Black Si" coating with discrete inhomogeneity of the refractive index and technological aspects of producing of "Black Si" functional anti-reflecting coatings were presented. The investigation results of the spectral characteristics of the obtained multilayer multiporous "Black Si" coatings for silicon solar cells made by electrochemical etching are presented. The possibility of creating the texture on a silicon wafer surface using silicon nanowires and ordered nanopores obtained by metal-assisted chemical etching was shown.

  12. Characterisation of group behaviour surface texturing with multi-layers fitting method

    Science.gov (United States)

    Kang, Zhengyang; Fu, Yonghong; Ji, Jinghu; Wang, Hao

    2016-07-01

    Surface texturing was widely applied in improving the tribological properties of mechanical components, but study of measurement of this technology was still insufficient. This study proposed the multi-layers fitting (MLF) method to characterise the dimples array texture surface. Based on the synergistic effect among the dimples, the 3D morphology of texture surface was rebuilt by 2D stylus profiler in the MLF method. The feasible regions of texture patterns and sensitive parameters were confirmed by non-linear programming, and the processing software of MLF method was developed based on the Matlab®. The characterisation parameters system of dimples was defined mathematically, and the accuracy of MLF method was investigated by comparison experiment. The surface texture specimens were made by laser surface texturing technology, in which high consistency of dimples' size and distribution was achieved. Then, 2D profiles of different dimples were captured by employing Hommel-T1000 stylus profiler, and the data were further processed by MLF software to rebuild 3D morphology of single dimple. The experiment results indicated that the MLF characterisation results were similar to those of Wyko T1100, the white light interference microscope. It was also found that the stability of MLF characterisation results highly depended on the number of captured cross-sections.

  13. Nondestructive Semistatic Testing Methodology for Assessing Fish Textural Characteristics via Closed-Form Mathematical Expressions

    Directory of Open Access Journals (Sweden)

    D. Dimogianopoulos

    2017-01-01

    Full Text Available This paper presents a novel methodology based on semistatic nondestructive testing of fish for the analytical computation of its textural characteristics via closed-form mathematical expressions. The novelty is that, unlike alternatives, explicit values for both stiffness and viscoelastic textural attributes may be computed, even if fish of different size/weight are tested. Furthermore, the testing procedure may be adapted to the specifications (sampling rate and accuracy of the available equipment. The experimental testing involves a fish placed on the pan of a digital weigh scale, which is subsequently tested with a ramp-like load profile in a custom-made installation. The ramp slope is (to some extent adjustable according to the specification (sampling rate and accuracy of the equipment. The scale’s reaction to fish loading, namely, the reactive force, is collected throughout time and is shown to depend on the fish textural attributes according to a closed-form mathematical formula. The latter is subsequently used along with collected data in order to compute these attributes rapidly and effectively. Four whole raw sea bass (Dicentrarchus labrax of various sizes and textures were tested. Changes in texture, related to different viscoelastic characteristics among the four fish, were correctly detected and quantified using the proposed methodology.

  14. Pre-stack-texture-based reservoir characteristics and seismic facies analysis

    Institute of Scientific and Technical Information of China (English)

    Song Cheng-Yun; Liu Zhi-Ning; Cai Han-Peng; Qian Feng; Hu Guang-Min

    2016-01-01

    Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation. However, information is mislaid in the stacking process when traditional texture attributes are extracted from post-stack data, which is detrimental to complex reservoir description. In this study, pre-stack texture attributes are introduced, these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset, anisotropy, and heterogeneity in the medium. Due to its strong ability to represent stratigraphics, a pre-stack-data-based seismic facies analysis method is proposed using the self-organizing map algorithm. This method is tested on wide azimuth seismic data from China, and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verifi ed, in addition to the method’s ability to reveal anisotropy and heterogeneity characteristics. The pre-stack texture classification results effectively distinguish different seismic reflection patterns, thereby providing reliable evidence for use in seismic facies analysis.

  15. Study on the fabrication of titanium surface texture by nanosecond laser and its wettability

    Directory of Open Access Journals (Sweden)

    Chengjuan YANG

    2016-08-01

    Full Text Available Laser processing technology can produce various types of surface textures on material. In order to investigate the effect of surface texture type processed by laser on the wettability, line, grid and spot patterns are fabricated on titanium surface based on nanosecond laser processing technology. Then surface morphology, water contact angle, roughness and chemical composition of the processed titanium surface are analyzed by scanning electron microscope, contact angle measuring device, surface analyzer and X-ray photoelectron spectroscopy, respectively. It is found that the roughness of titanium surfaces processed by nanosecond laser increases significantly compared with that of the unprocessed titanium surface, while the surface contact angles of the processed titanium surfaces are all less than 90°. As time goes on, the chemical composition variation of ablated titanium surface results in the change of material surface free energy, which leads to a general increase of the surface contact angle. Finally, the surface contact angle is almost unchanged once the chemical composition of titanium surface reaches steady state. For each type of surface texture, surface contact angle increases as the roughness rises. The surface contact angles of processed titanium surfaces with line, grid and spot patterns can be 157.2°, 153.1° and 134.6°, which verifies the possibility of wettability change of titanium from hydrophilicity to hydrophobicity.

  16. Effect of rate of addition of starter culture on textural characteristics of buffalo milk Feta type cheese during ripening

    OpenAIRE

    Kumar, Sanjeev; Kanawjia, S. K.; Kumar, Suryamani; Khatkar, Sunil

    2011-01-01

    The effect of rate of addition of starter culture on textural characteristics of buffalo milk Feta type cheese was investigated during ripening period up to two months. The textural characteristics of buffalo milk Feta type cheese in terms of hardness, cohesiveness, springiness, gumminess and chewiness were analyzed by using textural profile analyzer. The maximum hardness was found with cheese made using 1% culture, while the minimum was found with 2% culture. The cohesiveness and springiness...

  17. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Miyata, Toshihiro, E-mail: tmiyata@neptune.kanazawa-it.ac.jp [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Uozaki, Ryousuke [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Sai, Hitoshi; Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-09-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film.

  18. Texture Analysis of Hydrophobic Polycarbonate and Polydimethylsiloxane Surfaces via Persistent Homology

    Directory of Open Access Journals (Sweden)

    Ali Nabi Duman

    2017-09-01

    Full Text Available Due to recent climate change-triggered, regular dust storms in the Middle East, dust mitigation has become the critical issue for solar energy harvesting devices. One of the methods to minimize and prevent dust adhesion and create self-cleaning abilities is to generate hydrophobic characteristics on surfaces. The purpose of this study is to explore the topological features of hydrophobic surfaces. We use non-standard techniques from topological data analysis to extract morphological features from the AFM images. Our method recovers most of the previous qualitative observations in a robust and quantitative way. Persistence diagrams, which is a summary of topological structures, witness quantitatively that the crystallized polycarbonate (PC surface possesses spherulites, voids, and fibrils, and the texture height and spherulite concentration increases with the increased immersion period. The approach also shows that the polydimethylsiloxane (PDMS exactly copied the structures at the PC surface but 80 to 90 percent of the nanofibrils were not copied at PDMS surface. We next extract a feature vector from each persistence diagram to show which experiments hold features with similar variance using principal component analysis (PCA. The K-means clustering algorithm is applied to the matrix of feature vectors to support the PCA result, grouping experiments with similar features.

  19. DNS of turbulent flows over superhydrophobic surfaces: effect of texture randomness

    Science.gov (United States)

    Seo, Jongmin; Mani, Ali

    2016-11-01

    Superhydrophobic surfaces (SHS) are non-wetting surfaces consisting of hydrophobic material and nano/micro-scale structures. When in contact with overlaying liquid flows, such structures can entrap gas and therefore suppress the direct contact between water and solid, reducing skin friction. SHS patterns can utilize a wide range of geometries including posts, ridges, and etched holes, either in a pre-specified arrangement or randomly distributed. In this work we investigate how the randomness of such patterns affect the drag reduction and interfacial robustness when these surfaces are under turbulent flows. We perform direct numerical simulations of turbulent flows over randomly patterned slip surface on a wide range of texture parameters. We present slip lengths of randomly distributed SHS for texture widths w+ = 4 - 26, and solid fractions from 11% to 25%. For fixed gas fraction and texture size, the slip lengths of randomly distributed textures are less than those of aligned textures. We show that the geometric randomness of texture distribution weakens the interfacial robustness of the gas pocket. Support from Office of Naval Research (ONR) under Grant #3002451214 is gratefully acknowledged.

  20. Characterization of solar cells for space applications. Volume 10: Electrical characteristics of Spectrolab BSF, textured, 10 ohm-cm, 300 micron cells as a function of intensity, temperature and irradiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1979-01-01

    Electrical characteristics of textured, back surface field, 10 ohm cm, 300 micron N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity, and temperature.

  1. Systems and Methods of Laser Texturing of Material Surfaces and Their Applications

    Science.gov (United States)

    Gupta, Mool C. (Inventor); Nayak, Barada K. (Inventor)

    2014-01-01

    The surface of a material is textured and by exposing the surface to pulses from an ultrafast laser. The laser treatment causes pillars to form on the treated surface. These pillars provide for greater light absorption. Texturing and crystallization can be carried out as a single step process. The crystallization of the material provides for higher electric conductivity and changes in optical and electronic properties of the material. The method may be performed in vacuum or a gaseous environment. The gaseous environment may aid in texturing and/or modifying physical and chemical properties of the surfaces. This method may be used on various material surfaces, such as semiconductors, metals and their alloys, ceramics, polymers, glasses, composites, as well as crystalline, nanocrystalline, polycrystalline, microcrystalline, and amorphous phases.

  2. Experimental Study on Tribological Properties of Laser Textured 45 Steel Surface

    Directory of Open Access Journals (Sweden)

    Li Zhi Peng

    2016-01-01

    Full Text Available In order to study the influence of pits’ size parameters on the tribological properties of textured friction pairs, using the Nd:YAG laser micro machining system and the “single pulse at the same point, interval more times” processing technics to process the pits on the surface of 45 steel. The dimension parameters of pits texture were obtained by orthogonal experimental design. The tribological experiment of GCr15 pin/45 steel disc was carried out by UMT-2 test machine. The surface morphology of the specimens was analyzed by using scanning electron microscopy. The experimental results show that the pits texture on the surface of 45 steel can effectively reduce the friction coefficient and the wear on the condition of oil-rich lubrication. The textured specimen with diameter 60μm, depth 6μm and surface density 10% has the lowest friction coefficient, and the friction coefficient is reduced by 21% compared with the smooth specimen. By analyzing the wear morphology on the surface of 45 steel, it is found that the surface of pits texture can obviously reduce the wear.

  3. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity

    Science.gov (United States)

    Li, Bao-jia; Li, Huang; Huang, Li-jing; Ren, Nai-fei; Kong, Xia

    2016-12-01

    A facile and highly-efficient laser scanning process coupled with a simple silanization modification was used to prepare textured titanium (Ti) surfaces with stable superhydrophilicity and superhydrophobicity. Femtosecond pulsed laser scanning along two mutually perpendicular directions led to the formation of binary structures featuring micrometer-scale spikes covered with nanometer-scale ripples. The period of the spikes significantly increased and the period of the ripples irregularly changed in the narrow range of 550-600 nm with the increase of laser fluence. The obtained laser-textured Ti surfaces were hydrophilic or even superhydrophilic, and the superhydrophilic laser-textured Ti surface using a laser fluence of 1.5 J/cm2 was observed to retain its wetting property after 30 days of storage in ambient atmosphere. After silanization, all the laser-textured Ti surfaces exhibited high hydrophobicity or superhydrophobicity, and the superhydrophobic laser-textured Ti surfaces using laser fluences of 1.5 and 1.8 J/cm2 remained stable when stored in air for over 30 days. The results imply the potential applications of these surfaces in a variety of fields.

  4. A Study on the Surface Oxidation Behavior of Cube-textured Nickel Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ji Hyun; Kim, Byeong Joo; Kim, Jae Geun; Kim, Ho Jin; Hong, Gye Won; Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of); Yoo, Jai Moo [Korea Instititue of Machinery and Matrials, Changwon (Korea, Republic of); Pradeep, Halder [College of Namoscale Science and Engineering, University at Albany, State University of NewYork, Albany (United States)

    2005-10-15

    We investigated the surface oxidation behavior of cube-textured polycrystalline nickel at various oxidation conditions. Cube-textured NiO film was formed on a cube-textured polycrystalline nickel regardless of oxidation conditions but different growth behavior of NiO crystals was observed depending on the oxidation conditions. The introduction of water vapor into O{sub 2} did not affect the texture evolution, but rough and porous microstructure was developed. Microstructure of NiO film tends to be denser as the oxygen partial pressure increases. It is interesting that peak of theta - two theta diffraction pattern started to get stronger in air atmosphere and plane became the major texture in the substrate oxidized in high purity argon gas. Small amount of high index crystallographic plane NiO peak crystal was observed when N{sub 2}Owas used as an oxidant while only plane crystal was formed in dry O{sub 2} atmosphere. Flat and smooth surface was changed into rough faceted one when ramping rate to oxidation temperature was faster. The grain size of NiO was decreased when the oxygen partial pressure was low. It was also observed that the modification of nickel surface suppressed the development of texture.

  5. Freezing characteristics and texture variation after freezing and thawing of four fruit types

    Directory of Open Access Journals (Sweden)

    Arpassorn Sirijariyawat

    2012-11-01

    Full Text Available One major problem with frozen fruits is a loss of texture. Therefore this study investigated the effects of the freezingprocess on the freezing profiles, texture, and drip loss of apple, mango, cantaloupe, and pineapple fruit samples. All frozenthawedfruits varied in these three properties because of diversity in the fresh fruits. Mango had the highest total solublesolids content and the lowest freezing point, whereas pineapple showed the highest freezing rate. The highest firmness andcrunchy texture were found in fresh apple, and these properties were absent in the other fresh fruits. The firmness of allfrozen fruits significantly decreased by different percentages as compared to those of the fresh fruits. The drip loss of eachfruit type was also significantly different with apple samples having the highest firmness decrease and drip loss. This studyshows that freezing characteristics and frozen fruit properties depend on type of fruit.

  6. Effect of fat quality on sausage processing, texture, and sensory characteristics.

    Science.gov (United States)

    Baer, Arica A; Dilger, Anna C

    2014-03-01

    Fresh pork sausage was manufactured to determine the effects of animal diet (unsaturated or control) and inclusion of corn oil during processing (0% and 14% fat replacement). Bologna was manufactured to investigate only diet effects. Processing, textural, sensory, visual, and storage characteristics were evaluated. Processing yield was improved 2.9 percentage units in fresh sausage but reduced 1.8 units in bologna in unsaturated compared with control diets. Break strength of fresh sausage was reduced 0.6 kg by oil inclusion. Both unsaturated fat and including oil during processing resulted in softer texture of fresh sausage, while increased unsaturation in bologna resulted in firmer or unchanged textural properties. Fresh sausage with oil was lighter colored (5.3 L* units increased) with more fat smearing. In fresh sausage, lipid oxidation remained below 1mg/kg MDA during 12 weeks frozen storage. Overall, changes in fat quality minimally affected sausage quality, likely providing acceptable products to consumers.

  7. High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics.

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio

    2007-12-01

    Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.

  8. Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges.

    Science.gov (United States)

    Gauthier, Anaïs; Rivetti, Marco; Teisseire, Jérémie; Barthel, Etienne

    2014-02-18

    A clue to understand wetting hysteresis on superhydrophobic surfaces is the relation between receding contact angle and surface textures. When the surface textures are large, there is a significant distribution of local contact angles around the drop. As seen from the cross section, the apparent contact angle oscillates as the triple line recedes. Our experiments demonstrate that the origin of these oscillations is a finite size effect. Combining side and bottom views of the drop, we take into account the 3D conformation of the surface near the edge to evaluate an intrinsic contact angle from the oscillations of the apparent contact angle. We find that for drops receding on axisymmetric textures the intrinsic receding contact angle is the minimum value of the oscillation while for a square lattice it is the maximum.

  9. Self-similarity Based Editing of 3D Surface Textures Using Height and Albedo Maps

    Institute of Scientific and Technical Information of China (English)

    DONG Junyu; REN Jing; CHEN Guojiang

    2007-01-01

    This paper presents an inexpensive method for self-similarity based editing of real-world 3D surface textures by using height and albedo maps. Unlike self-similarity based 2D texture editing approaches which only make changes to pixel color or intensity values, this technique also allows surface geometry and reflectance of the captured 3D surface textures to be edited and relit using illumination conditions and viewing angles that differ from those of the original. A single editing operation at a given location affects all similar areas and produces changes on all images of the sample rendered under different conditions. Since surface height and albedo maps can be used to describe seabed topography and geologic features, which play important roles in many oceanic processes, the proposed method can be effectively employed in applications regarding visualization and simulation of oceanic phenomena.

  10. Effect of surface texture and working gap on the braking performance of the magnetorheological fluid brake

    Science.gov (United States)

    Wang, Na; Li, Dong Heng; Li Song, Wan; Chao Xiu, Shi; Zhi Meng, Xiang

    2016-10-01

    In this paper, the effect of the surface textures of braking disc on the braking performance is experimentally investigated under the conditions of different working gaps and applied currents. For this purpose, a new configuration of magnetorheological fluid brake (MRB) with adjustable working gap is developed to improve the manufacturing accuracy and cost, and to reduce the problem of replacing the braking disc. In addition, the braking discs with three types of surface texture are designed and machined. Based on the test bed developed for the proposed MRB, a series of experiments are carried out on the manufactured prototype and the results are presented to obtain the relationship among the surface texture of the braking disc, applied current, working gap and the braking performance. The results show that the braking torque is significantly influenced by the working gap and surface texture of the braking disc, and the maximum braking torque is obtained on the conditions of 0.25 mm working gap and the braking disc with square surface texture.

  11. OUT-OF-FOCUS REGION SEGMENTATION OF 2D SURFACE IMAGES WITH THE USE OF TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    K. Anding

    2015-09-01

    Full Text Available A segmentation method of out-of-focus image regions for processed metal surfaces, based on focus textural features is proposed. Such regions contain small amount of useful information. The object of study is a metal surface, which has a cone shape. Some regions of images are blurred because the depth of field of industrial cameras is limited. Automatic removal of out-of-focus regions in such images is one of the possible solutions to this problem. Focus texture features were used to calculate characteristics that describe the sharpness of particular image area. Such features are used in autofocus systems of microscopes and cameras, and their application for segmentation of out-of-focus regions of images is unusual. Thirty-four textural features were tested on a set of metal surface images with out-of-focus regions. The most useful features, usable for segmentation of an image more accurately, are an average grey level and spatial frequency. Proposed segmentation method of out-of-focus image regions for metal surfaces can be successfully applied for evaluation of processing quality of materials with the use of industrial cameras. The method has simple implementation and high calculating speed.

  12. HIGH AND LOW RESOLUTION TEXTURED MODELS OF COMPLEX ARCHITECTURAL SURFACES

    Directory of Open Access Journals (Sweden)

    E. K. Stathopoulou

    2012-09-01

    Full Text Available During the recent years it has become obvious that 3D technology, applied mainly with the use of terrestrial laser scanners (TLS is the most suitable technique for the complete geometric documentation of complex objects, whether they are monuments or architectural constructions in general. However, it is rather a challenging task to convert an acquired point cloud into a realistic 3D polygonal model that can simultaneously satisfy high resolution modeling and visualization demands. The aim of the visualization of a simple or complex object is to create a 3D model that best describes the reality within the computer environment. This paper is dedicated especially in the visualization of a complex object's 3D model, through high, as well as low resolution textured models. The object of interest for this study was the Almoina (Romanesque Door of the Cathedral of Valencia in Spain.

  13. High and Low Resolution Textured Models of Complex Architectural Surfaces

    Science.gov (United States)

    Stathopoulou, E. K.; Valanis, A.; Lerma, J. L.; Georgopoulos, A.

    2011-09-01

    During the recent years it has become obvious that 3D technology, applied mainly with the use of terrestrial laser scanners (TLS) is the most suitable technique for the complete geometric documentation of complex objects, whether they are monuments or architectural constructions in general. However, it is rather a challenging task to convert an acquired point cloud into a realistic 3D polygonal model that can simultaneously satisfy high resolution modeling and visualization demands. The aim of the visualization of a simple or complex object is to create a 3D model that best describes the reality within the computer environment. This paper is dedicated especially in the visualization of a complex object's 3D model, through high, as well as low resolution textured models. The object of interest for this study was the Almoina (Romanesque) Door of the Cathedral of Valencia in Spain.

  14. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    Science.gov (United States)

    Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.

    2016-02-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.

  15. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces.

    Science.gov (United States)

    Vaikuntanathan, V; Sivakumar, D

    2014-05-07

    Liquid drops impacted on textured surfaces undergo a transition from the Cassie state characterized by the presence of air pockets inside the roughness valleys below the drop to an impaled state with at least one of the roughness valleys filled with drop liquid. This occurs when the drop impact velocity exceeds a particular value referred to as the critical impact velocity. The present study investigates such a transition process during water drop impact on surfaces textured with unidirectional parallel grooves referred to as groove-textured surfaces. The process of liquid impalement into a groove in the vicinity of drop impact through de-pinning of the three-phase contact line (TPCL) beneath the drop as well as the critical impact velocity were identified experimentally from high speed video recordings of water drop impact on six different groove-textured surfaces made from intrinsically hydrophilic (stainless steel) as well as intrinsically hydrophobic (PDMS and rough aluminum) materials. The surface energy of various 2-D configurations of liquid-vapor interface beneath the drop near the drop impact point was theoretically investigated to identify the locally stable configurations and establish a pathway for the liquid impalement process. A force balance analysis performed on the liquid-vapor interface configuration just prior to TPCL de-pinning provided an expression for the critical drop impact velocity, Uo,cr, beyond which the drop state transitions from the Cassie to an impaled state. The theoretical model predicts that Uo,cr increases with the increase in pillar side angle, α, and intrinsic hydrophobicity whereas it decreases with the increase in groove top width, w, of the groove-textured surface. The quantitative predictions of the theoretical model were found to show good agreement with the experimental measurements of Uo,cr plotted against the surface texture geometry factor in our model, {tan(α/2)/w}(0.5).

  16. Surface texture and percolation effects in microporous oriented films of polyolefins

    Science.gov (United States)

    Novikov, D. V.; Kuryndin, I. S.; Bukošek, V.; Elyashevich, G. K.

    2012-11-01

    The surface structure of polypropylene and polyethylene microporous films prepared by the extrusion of the polymer melt with the subsequent stages of annealing, uniaxial extension, and thermal fixation of the samples has been analyzed using scanning electron microscopy. It has been shown that percolation through pores corresponds to the axial texture of the surface with the channel structure described by the fractal cluster model. The transition from open pores (through-flow channels) to closed pores leads to the formation of surface regions with a biaxial texture. An increase in the density of the solid phase cluster is accompanied by the formation of a homogeneous biaxial texture with a period of alternation of the density in two mutually perpendicular directions, one of which coincides with the direction of orientation of the films.

  17. An analysis of type F2 software measurement standards for profile surface texture parameters

    Science.gov (United States)

    Todhunter, L. D.; Leach, R. K.; Lawes, S. D. A.; Blateyron, F.

    2017-06-01

    This paper reports on an in-depth analysis of ISO 5436 part 2 type F2 reference software for the calculation of profile surface texture parameters that has been performed on the input, implementation and output results of the reference software developed by the National Physical Laboratory (NPL), the National Institute of Standards and Technology (NIST) and Physikalisch-Technische Bundesanstalt (PTB). Surface texture parameters have been calculated for a selection of 17 test data files obtained from the type F1 reference data sets on offer from NPL and NIST. The surface texture parameter calculation results show some disagreements between the software methods of the National Metrology Institutes. These disagreements have been investigated further, and some potential explanations are given.

  18. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture

    Directory of Open Access Journals (Sweden)

    Gabriele Bitelli

    2012-07-01

    Full Text Available The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the “texture” appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey.

  19. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong

    2016-06-01

    A hybrid method consisting of ultrafast laser-assisted texturing and chemical fluorination treatment was applied for efficiently enhancing the surface broadband antireflection to fabricate black titanium alloy surface with ultra-light-trapping micro-nanostructure. Based on the theoretical analysis of surface antireflective principle of micro-nanostructures and fluoride film, the ultra-light-trapping micro-nanostructures have been processed using a picosecond pulsed ultrafast laser on titanium alloy surfaces. Then fluorination treatment has been performed by using fluoroalkyl silane solution. According to X-ray diffraction phase analysis of the surface compositions and measurement of the surface reflectance using spectrophotometer, the broadband antireflective properties of titanium alloy surface with micro-nano structural characteristics were investigated before and after fluorination treatment. The results show that the surface morphology of micro-nanostructures processed by picosecond laser has significant effects on the antireflection of light waves to reduce the surface reflectance, which can be further reduced using chemical fluorination treatment. The high antireflection of over 98 % in a broad spectral range from ultraviolet to infrared on the surface of metal material has been achieved for the surface structures, and the broadband antireflective black metal surfaces with an extremely low reflectance of ultra-light-trapping structures have been obtained in the wavelength range from ultraviolet-visible to near-infrared, middle-wave infrared. The average reflectance of microgroove groups structured surface reaches as low as 2.43 % over a broad wavelength range from 200 to 2600 nm. It indicates that the hybrid method comprising of picosecond laser texturing and chemical fluorination can effectively induce the broadband antireflective black metal surface. This method has a potential application for fabricating antireflective surface used to improve the

  20. Segmentation of Textures Defined on Flat vs. Layered Surfaces using Neural Networks: Comparison of 2D vs. 3D Representations.

    Science.gov (United States)

    Oh, Sejong; Choe, Yoonsuck

    2007-08-01

    Texture boundary detection (or segmentation) is an important capability in human vision. Usually, texture segmentation is viewed as a 2D problem, as the definition of the problem itself assumes a 2D substrate. However, an interesting hypothesis emerges when we ask a question regarding the nature of textures: What are textures, and why did the ability to discriminate texture evolve or develop? A possible answer to this question is that textures naturally define physically distinct (i.e., occluded) surfaces. Hence, we can hypothesize that 2D texture segmentation may be an outgrowth of the ability to discriminate surfaces in 3D. In this paper, we conducted computational experiments with artificial neural networks to investigate the relative difficulty of learning to segment textures defined on flat 2D surfaces vs. those in 3D configurations where the boundaries are defined by occluding surfaces and their change over time due to the observer's motion. It turns out that learning is faster and more accurate in 3D, very much in line with our expectation. Furthermore, our results showed that the neural network's learned ability to segment texture in 3D transfers well into 2D texture segmentation, bolstering our initial hypothesis, and providing insights on the possible developmental origin of 2D texture segmentation function in human vision.

  1. Influence Of Laser Beam Intensity On Geometry Parameters Of A Single Surface Texture Element

    Directory of Open Access Journals (Sweden)

    Antoszewski B.

    2015-09-01

    Full Text Available Laser surface texturing is used more and more often in modern machines for the implementation of variety of purposes such as for example intensification of lubrication, intensification of heat exchange, stimulation of microfluidics, increasing the chemical activity of the surface. Owing to the development of technologies using a concentrated energy flux, including laser microprocessing, it has become feasible. The present paper concentrates on the selection of parameters of laser microprocessing with picosecond pulses so as to obtain the highest efficiency and accuracy of the execution of a single texture element.

  2. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications

    Science.gov (United States)

    Ta, Duong V.; Dunn, Andrew; Wasley, Thomas J.; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Connaughton, Colm; Shephard, Jonathan D.

    2015-12-01

    This work demonstrates superhydrophobic behavior on nanosecond laser patterned copper and brass surfaces. Compared with ultrafast laser systems previously used for such texturing, infrared nanosecond fiber lasers offer a lower cost and more robust system combined with potentially much higher processing rates. The wettability of the textured surfaces develops from hydrophilicity to superhydrophobicity over time when exposed to ambient conditions. The change in the wetting property is attributed to the partial deoxidation of oxides on the surface induced during laser texturing. Textures exhibiting steady state contact angles of up to ∼152° with contact angle hysteresis of around 3-4° have been achieved. Interestingly, the superhydrobobic surfaces have the self-cleaning ability and have potential for chemical sensing applications. The principle of these novel chemical sensors is based on the change in contact angle with the concentration of methanol in a solution. To demonstrate the principle of operation of such a sensor, it is found that the contact angle of methanol solution on the superhydrophobic surfaces exponentially decays with increasing concentration. A significant reduction, of 128°, in contact angle on superhydrophobic brass is observed, which is one order of magnitude greater than that for the untreated surface (12°), when percent composition of methanol reaches to 28%.

  3. Fabrication of micro-nano composite textured surface for slurry sawn mc-Si wafers cell

    Science.gov (United States)

    Niu, Y. C.; liu, Z.; Ren, X. K.; Liu, X. J.; Liu, H. T.; Jiang, Y. S.

    2017-01-01

    In order to enhance the PV efficiency of the cell made from slurry sawn (SS) mc-Si wafers, using a Ag-assisted electroless etching (AgNO3+HF+H2O2) combined with an auxiliary etching (HF+HNO3) the RENA textured SS mc-Si wafers (called as RENA wafers) were further textured (nano pores were formed on the original micro pits) to change into micro-nano composite textured wafers (called as MN-RENA wafers). The solar cells made from the MN-RENA wafers had a better PV efficiency than that of RENA wafers. This is mainly attributed to the higher light-trapping of the micro-nano composite texture. The nano size texture enhanced the light-trap of wafer surface and, at the same time, the micro size texture maintained the light-trap uniformity of different gains of RENA wafer. However, there still exist a potential for optimization, such as, the SiNx passviation coating should be improved to be deposited more uniformly in order to passivate the bottom of pits better and to reduce the reflectance of the obtuse tips of pits.

  4. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2016-10-01

    Full Text Available Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316, surface-textured 316 (ST-316, and duplex-treated 316 (DT-316 in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  5. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel.

    Science.gov (United States)

    Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin

    2016-10-27

    Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si₃N₄ balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  6. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

    CERN Document Server

    Hubert, Julie; Dufour, Thierry; Vandencasteele, Nicolas; Reniers, François; Viville, Pascal; Lazzaroni, Roberto; Raes, M; Terryn, Herman

    2016-01-01

    The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115{\\textdegree}, but only the filamentary argon d...

  7. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    Energy Technology Data Exchange (ETDEWEB)

    Dinca, V., E-mail: dincavalentina@yahoo.com [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Alloncle, P.; Delaporte, P. [Aix-Marseille University, CNRS, LP3 Laboratory, Campus de Luminy, 13288 Marseille (France); Ion, V. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Faculty of Physics, University of Bucharest, 077125 Magurele (Romania); Rusen, L.; Filipescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering – IFIN HH, Magurele, Bucharest (Romania); Luculescu, C.; Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania)

    2015-10-15

    Highlights: • Roughness gradients are obtained in one step by applying single laser pulses and sample tilting. • BSA protein and cell dependence behavior onto gradient characteristics was studied. • The degradation of the samples by lysozyme was correlated to its ability to access the textured area. - Abstract: Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan–collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  8. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals.

    Science.gov (United States)

    Wang, Jundong; Peng, Jinping; Tan, Zhi; Gao, Yifan; Zhan, Zhiwei; Chen, Qiuqiang; Cai, Liqi

    2017-03-01

    While large quantities of studies on microplastics in the marine environment have been widely carried out, few were available in the freshwater environment. The occurrence and characteristics, including composition, abundance, surface texture and interaction with heavy metals, of microplastics in the surface sediments from Beijiang River littoral zone were investigated. The concentrations of microplastics ranged from 178 ± 69 to 544 ± 107 items/kg sediment. SEM images illustrated that pits, fractures, flakes and adhering particles were the common patterns of degradation. Chemical weathering of microplastics was also observed and confirmed by μ-FTIR. EDS spectra displayed difference in the elemental types of metals on the different surface sites of individual microplastic, indicating that some metals carried by microplastics were not inherent but were derived from the environment. The content of metals (Ni, Cd, Pb, Cu, Zn and Ti) in microplastics after ultrasonic cleaning has been analyzed by ICP-MS. Based on data from the long-term sorption of metals by microplastics and a comparison of metal burden between microplastics, macroplastics and fresh plastic products, we suggested that the majority of heavy metals carried by microplastics were derived from inherent load.

  9. Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O.; Mercer, C.; Allameh, S.; Nemetski, B. [Princeton Materials Inst., NJ (United States). Dept. of Mechanical and Aerospace Engineering; Marcantonio, N. [Brown Univ., Providence, RI (United States). Div. of Engineering; Ricci, J.L. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics

    2001-07-01

    This paper presents the results of a multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces that are used in biomedical implants. The hierarchies of substructural and microstructural features associated with laser micro-texturing, mechanical polishing and surface blasting with alumina pellets are elucidated via atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and optical microscopy (OM). The nano-scale roughness profiles for the different surface textures are characterized via AFM. Sub-micron precipitates and dislocation substructures associated with wrought processing and laser processing are revealed by TEM. OM and SEM micro- and mesoscale images of the groove structures and then described before discussing the implications of the result for the optimization of laser processing schemes. The implications of the results are examined for the fabrication of micro-textured surfaces that will facilitate the self organization of proteins, and the attachment of mammalian cells to the Ti-6Al-4V surfaces in biomedical implants. (orig.)

  10. Fabrication of Micro/Nano-textured Titanium Alloy Implant Surface and Its Inlfuence on Hydroxyapatite Coatings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui; WAN Yi; AI Xing; MEN Bo; WANG Teng; LIU Zhanqiang; ZHANG Dong

    2016-01-01

    We put forward a protocol combining laser treatment and acid etching to obtain multiscale micro/nano-texture surfaces of titanium alloy implant. Firstly, the operational parameters of the laser were optimized to obtain an optimum current. Secondly, the laser with the optimum operational parameters was used to fabricate micro pits. Thirdly, multiple acid etching was used to clean the clinkers of micro pits and generate submicron and nanoscale structures. Finally, the bioactivity of the samples was measured in a simulated body lfuid. The results showed that the micropits with a diameter of 150 μm and depth of 50 μm were built successfully with the optimized working current of 13 A. In addition, submicron and nanoscale structures, with 0.5-2 μm microgrooves and 10-20 nm nanopits, were superimposed on micro pits surface by multiple acid etching. There was thick and dense HA coating only observed on the multiscale micro/nano-textured surface compared with polished and micro-textured surface. This indicated that the multiscale micro/nano-texture surface showed better ability toward HA formation, which increased the bioactivity of implants.

  11. Roughness analysis for textured surfaces over several orders of magnitudes

    Energy Technology Data Exchange (ETDEWEB)

    Vepsäläinen, Laura, E-mail: laura.vepsalainen@uef.fi [Department of Chemistry, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101 Joensuu (Finland); Stenberg, Petri, E-mail: petri.stenberg@uef.fi [Department of Physics and Mathematics, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101 Joensuu (Finland); Pääkkönen, Pertti, E-mail: pertti.paakkonen@uef.fi [Department of Physics and Mathematics, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101 Joensuu (Finland); Kuittinen, Markku, E-mail: markku.kuittinen@uef.fi [Department of Physics and Mathematics, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101 Joensuu (Finland); Suvanto, Mika, E-mail: mika.suvanto@uef.fi [Department of Chemistry, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101 Joensuu (Finland); Pakkanen, Tapani A., E-mail: tapani.pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101 Joensuu (Finland)

    2013-11-01

    Multiscale structured surfaces have roughness distributions at various spatial frequencies that affect surface properties of materials. A recently developed filtered power spectral density (FPSD) method for surface roughness characterization was generalized to comprise structures from micro- to nanoscale. Furthermore, a uniform analysis method for micro- and nanoscale characterization over five orders of magnitudes was found by combining optical profilometry data, at the microscale level and atomic force microscopy data, at the nanoscale level. The FPSD method was also combined with structure simulation for multiscales, thus the roughness distributions can be designed and studied without the fabrication of structures. Furthermore, the FPSD simulation offers a design tool for structure–property correlations.

  12. Surface Texturing Investigated for a High Solar Absorptance Low Infrared Emittance Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.

    2001-01-01

    The objective of this work was to design, build, and vacuum test a high solar absorptance, low infrared emittance solar collector for heat engine and thermal switching applications. Mini-satellites proposed by the Applied Physics Laboratory for operation in environments that are subject to radiation threat may utilize a heat engine for power and a thermal bus for thermal control. To achieve this goal, a surface having high solar absorptance and low infrared emittance is needed. At the NASA Glenn Research Center, one concept being pursued to achieve this goal is texturing high thermal conductivity graphite epoxy composites using a directed atomic oxygen beam and then coating the textured surface with a reflective metallic coating. Coupons were successfully textured, coated, and evaluated. A variety of texturing conditions were explored, and textures were documented by scanning electron microscopy. Copper, gold, silver, iridium, and aluminum coatings were applied, and the highest solar absorptance to infrared emittance ratio was found to be 1.3. A full-sized solar collector was manufactured with this ratio, and the amount of heat collected was observed using an Inconel calorimeter installed in a bench-top vacuum chamber equipped with a solar simulator. Results to date indicate good heat flow through the system, with 9 W of heat flow measured by the calorimeter.

  13. Optical stent inspection of surface texture and coating thickness

    Science.gov (United States)

    Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger

    2017-02-01

    Stent quality control is a critical process. Coronary stents have to be inspected 100% so no defective stent is implanted into a human body. We have developed a high numerical aperture optical stent inspection system able to acquire both 2D and 3D images. Combining a rotational stage, an area camera with line-scan capability and a triple illumination arrangement, unrolled sections of the outer, inner, and sidewalls surfaces are obtained with high resolution. During stent inspection, surface roughness and coating thickness uniformity is of high interest. Due to the non-planar shape of the surface of the stents, the thickness values of the coating need to be corrected with the 3D surface local slopes. A theoretical model and a simulation are proposed, and a measurement with white light interferometry is shown. Confocal and spectroscopic reflectometry showed to be limited in this application due to stent surface roughness. Due to the high numerical aperture of the optical system, only certain parts of the stent are in focus, which is a problem for defect detection, specifically on the sidewalls. In order to obtain fully focused 2D images, an extended depth of field algorithm has been implemented. A comparison between pixel variance and Laplacian filtering is shown. To recover the stack image, two different methods are proposed: maximum projection and weighted intensity. Finally, we also discuss the implementation of the processing algorithms in both the CPU and GPU, targeting real-time 2-Million pixel image acquisition at 50 frames per second.

  14. Relation between light trapping and surface topography of plasma textured crystalline silicon wafers

    NARCIS (Netherlands)

    Souren, F. M. M.; Rentsch, J.; M. C. M. van de Sanden,

    2015-01-01

    Currently, in the photovoltaic industry, wet chemical etching technologies are used for saw damage removal and surface texturing. Alternative to wet chemical etching is plasma etching. However, as for example, the linear microwave plasma technique, developed by Roth&Rau, has not been implemented

  15. Relation between light trapping and surface topography of plasma textured crystalline silicon wafers

    NARCIS (Netherlands)

    Souren, F. M. M.; Rentsch, J.; M. C. M. van de Sanden,

    2015-01-01

    Currently, in the photovoltaic industry, wet chemical etching technologies are used for saw damage removal and surface texturing. Alternative to wet chemical etching is plasma etching. However, as for example, the linear microwave plasma technique, developed by Roth&Rau, has not been implemented

  16. Random Surface Texturing of Silicon Dioxide Using Gold Agglomerates

    Science.gov (United States)

    2016-07-01

    cells work by converting sunlight (electromagnetic radiation ) into electricity. Photon absorption needs to occur inside the solar cell’s active...underneath. SEM and AFM were the primary characterization techniques used to evaluate the resulting surfaces, before and after etching, and after

  17. Surface texturing of sialon ceramic by femtosecond pulsed laser

    CSIR Research Space (South Africa)

    Tshabalala, Lerato C

    2017-01-01

    Full Text Available AlONSi(sub3)N(sub4) ceramic using the Ti: Sapphire Femtosecond laser system was investigated. Parametric analysis was conducted using surface drilling, unidirectional and cross-hatching machining procedures performed on the substrate at a varied power...

  18. Mean shift texture surface detection based on WT and COM feature image selection

    Institute of Scientific and Technical Information of China (English)

    HAN Yan-fang; SHI Peng-fei

    2006-01-01

    Mean shift is a widely used clustering algorithm in image segmentation. However, the segmenting results are not so good as expected when dealing with the texture surface due to the influence of the textures. Therefore, an approach based on wavelet transform (WT), co-occurrence matrix (COM) and mean shift is proposed in this paper. First, WT and COM are employed to extract the optimal resolution approximation of the original image as feature image. Then, mean shift is successfully used to obtain better detection results. Finally, experiments are done to show this approach is effective.

  19. Modelling of Random Textured Tandem Silicon Solar Cells Characteristics: Decision Tree Approach

    Directory of Open Access Journals (Sweden)

    R.S. Kamath

    2016-11-01

    Full Text Available We report decision tree (DT modeling of randomly textured tandem silicon solar cells characteristics. The photovoltaic modules of silicon-based solar cells are extremely popular due to their high efficiency and longer lifetime. Decision tree model is one of the most common data mining models can be used for predictive analytics. The reported investigation depicts optimum decision tree architecture achieved by tuning parameters such as Min split, Min bucket, Max depth and Complexity. DT model, thus derived is easy to understand and entails recursive partitioning approach implemented in the “rpart” package. Moreover the performance of the model is evaluated with reference Mean Square Error (MSE estimate of error rate. The modeling of the random textured silicon solar cells reveals strong correlation of efficiency with “Fill factor” and “thickness of a-Si layer”.

  20. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition

    Science.gov (United States)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-03-01

    This work reports the laser surface modification of 304S15 stainless steel to develop superhydrophobic properties and the subsequent application for homogeneous spot deposition. Superhydrophobic surfaces, with steady contact angle of ∼154° and contact angle hysteresis of ∼4°, are fabricated by direct laser texturing. In comparison with common pico-/femto-second lasers employed for this patterning, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. The effect of laser power and scan line separation on surface wettability of textured surfaces are investigated and optimized fabrication parameters are given. Fluid flows and transportations of polystyrene (PS) nanoparticles suspension droplets on the processed surfaces and unprocessed wetting substrates are investigated. After evaporation is complete, the coffee-stain effect is observed on the untextured substrates but not on the superhydrophobic surfaces. Uniform deposition of PS particles on the laser textured surfaces is achieved and the deposited material is confined to smaller area.

  1. [Cereal bars with soy protein and wheat germ, physicochemical characteristics and texture during the storage].

    Science.gov (United States)

    Castro Freitas, Daniela D G

    2005-09-01

    Studies analyzing cereal bars have reported on consumer characteristics and preferences in sensory analyses and on their market growth, however little has been published on their physicochemical data and texture properties. Thus the objective of this research was to provide information about the storage of a cereal bar formulation with high protein and vitamin levels based on soy protein and wheat germ, packaged in 3 different films (A: PET/PEBD; B: PETmet/PEBD; C: PET/PEBD/AL/PEBD), during 6 months under environmental conditions of temperature (25 +/- 2 degrees C) and relative humidity (56%). The moisture content, water activity, pH and total acidity of the cereal bars were determined. The textural measurements accompanied during storage were breaking strength, hardness and cohesiveness. The cereal bars presented variations in water activity (Aw), moisture content and total acidity during storage. The moisture content of the bars tended to increase, which led to a significant (p = 0.05) influence on the texture characteristics of breaking strength and hardness, in the different packaging films tested. The increase in the values for breaking strength (A: 4756,5N; B: 5093,0N; C: 5575,6N) at 45 days of storage was attributed to a possible crystallization of the agglutinating syrup used for the bars. The textured soy protein used in the formulation could also have contributed to this fact due to its hygroscopic character, also interfering in the decrease in the cohesiveness measurements (deformation) with time. The effect of the different barrier properties of the packaging films tested was significant (p cereal bars during storage.

  2. Mechanical interlocking of cotton fibers on slightly textured surfaces of metallic cylinders

    Science.gov (United States)

    Zhang, Youqiang; Tian, Yu; Meng, Yonggang

    2016-05-01

    Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been achieved. It is found that the locking or sliding of the cotton fibers on the metallic cylinder depends on the friction coefficient and the ratio of cotton fiber diameter, 2r, to the height of the rough peaks, h, of metal surfaces. When the critical ratio h/r exceeds 1, the cotton fibers could tightly attach to the metallic surface through mechanical interlocking. This work provided a convenient and universal method for the control of interlocking or sliding of fiber-based materials on textured surfaces.

  3. Surface pore tension and adsorption characteristics of polluted sediment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Most natural sediment particles have numerous pores and a complex surface texture which facilitates their adsorption of contaminants. Particle surface structure,therefore,is an important instrumental factor in the transport of contaminants,especially in water environments. This paper reports on the results of adsorption-desorption experiments to analyze polluted sediment surface pore tension characteristics performed on samples from the bottom of Guanting Reservoir. In our analysis,the Frenkel-Halsey-Hill(FHH) equation is applied to calculate the fractal dimensions of particles to quantify the surface roughness and pore tension characteristics. The results show that the surface fractal dimensions of sediment particle surfaces normally measure from 2.6 to 2.85. The volume of pores smaller than 10 nm changes significantly after being contaminated with pollutants and the fractal dimension decreases because the pores adsorb the contaminants.

  4. Iron oxide porous nanorods with different textural properties and surface composition: Preparation, characterization and electrochemical lithium storage capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Tartaj, Pedro; Amarilla, Jose M. [Instituto de Ciencia de Materiales de Madrid (CSIC), Campus Universitario de Cantoblanco, 28049, Madrid (Spain)

    2011-02-15

    We here report a method for the facile and large scale preparation of lithium-ion battery anodes based on {alpha}-Fe{sub 2}O{sub 3} (hematite) nanorods with different textural characteristics and surface composition. The method combines electrostatically driven self-assembly approaches with specific adsorption and magnetically easy to disrupt soft aggregates. Special emphasis has been set to correlate the textural characteristics (porosity) and surface composition (core, core-nanoshell and core-double nanoshells) of nanorods with their electrochemical response. Thus, we have shown that nanorods present a nanophase whose specific capacity strongly depends on the lithium transport distances (nanorods with slit-shape mesopores running along their long axis vs. non-porous or surface blocked nanorods). We have also shown that the capacity retention of this nanophase after several charge-discharge processes depends on maintaining the structural integrity of the nanorods. Essential for the success of this latter study has been the use of nanorods that offer a simple tool (oriented X-ray line broadening) to follow their electrochemical grinding. Our data suggest that {alpha}-Fe{sub 2}O{sub 3} mesoporous nanorods could both operate at a voltage and retain a capacity similar to that of nanostructured lithium titanates anodes if actions are taken to prevent electrochemical grinding. (author)

  5. Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface

    Science.gov (United States)

    Zheng, Dan; Cai, Zhen-bing; Shen, Ming-xue; Li, Zheng-yang; Zhu, Min-hao

    2016-11-01

    Tribological properties of graphene nanosheets (GNS) as lubricating oil additives on textured surfaces were investigated using a UMT-2 tribotester. The lubricating fluids keeping a constant temperature of 100 °C were applied to a GCr15 steel ball and an RTCr2 alloy cast iron plate with various texture designs (original surface, dimple density of 22.1%, 19.6% and 44.2%). The oil with GNS adding showed good tribological properties (wear reduced 50%), especially on the textured surfaces (the reduction in wear was high at over 90%). A combined effect between GNS additives and laser surface texturing (LST) was revealed, which is not a simple superposition of the two factors mentioned. A mechanism is proposed to explain for these results -the graphene layers sheared at the sliding contact interfaces, and form a protective film, which is closely related with the GNS structures and surface texture patterns.

  6. Enhanced quantum efficiency of photoelectron emission, through surface textured metal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Anna; Bandaru, Prabhakar R., E-mail: pbandaru@ucsd.edu [Program in Materials Science, Department of Mechanical Engineering, University of California, San Diego, La Jolla, California, 92130 (United States); Moody, Nathan A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-03-15

    It is predicted that the quantum efficiency (QE) of photoelectron emission from metals may be enhanced, possibly by an order of magnitude, through optimized surface texture. Through extensive computational simulations, it is shown that the absorption enhancement in select surface groove geometries may be a dominant contributor to enhanced QE and corresponds to localized Fabry–Perot resonances. The inadequacy of extant analytical models in predicting the QE increase, and suggestions for further improvement, are discussed.

  7. A Study of CO2 Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics

    Directory of Open Access Journals (Sweden)

    Yanyan Feng

    2015-01-01

    Full Text Available This work studied the influence of textural characteristics of CNTs on catalytic performance of Ni/CNTs for CO2 methanation. The CNTs supports were prepared by chemical vapor deposition method using Ni/MgO catalysts, and acetonitrile and ethanol were used as carbon sources, respectively. The Ni/CNTs catalysts were prepared via impregnation method and characterized by X-ray diffraction (XRD, N2 adsorption/desorption, and temperature-programmed reduction (H2-TPR techniques. The results indicated that the textural characteristics of CNTs supports significantly impacted on the catalytic performance of Ni/CNTs. The catalyst Ni/CNTs-E (CNTs using ethanol as carbon source had good reducibility, high specific surface area, and moderate defects, resulting in higher CO2 conversion and CH4 yield, followed by Ni/CNTs-C (commercial CNTs and Ni/CNTs-A (CNTs using acetonitrile as carbon source. Based on Arrhenius formula, activation energies of the catalysts were calculated and were found decreased for Ni/CNTs-A and Ni/CNTs-E.

  8. Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball.

    Science.gov (United States)

    Turp, Gulen Yildiz; Icier, Filiz; Kor, Gamze

    2016-04-01

    The objective of the current study was to improve the quality characteristics of ohmically pre-cooked beef meatballs via infrared cooking as a final stage. Samples were pre-cooked in a specially designed-continuous type ohmic cooker at a voltage gradient of 15.26 V/cm for 92 s. Infrared cooking was then applied to the pre-cooked samples at different combinations of heat fluxes (3.706, 5.678, and 8.475 kW/m(2)), application distances (10.5, 13.5, and 16.5 cm) and application durations (4, 8, and 12min). Effects of these parameters on color, texture and cooking characteristics of ohmically pre-cooked beef meatballs were investigated. The appearance of ohmically pre-cooked meatball samples was improved via infrared heating. A dark brown layer desired in cooked meatballs formed on the surface of the meatballs with lowest application distance (10.5 cm) and longest application duration (12 min). The texture of the samples was also improved with these parameters. However the cooking yield of the samples decreased at the longest application duration of infrared heating.

  9. Photoelectric characteristics of silicon P—N junction with nanopillar texture: Analysis of X-ray photoelectron spectroscopy

    Science.gov (United States)

    Liu, Jing; Wang, Jia-Ou; Yi, Fu-Ting; Wu, Rui; Zhang, Nian; Ibrahim, Kurash

    2014-09-01

    Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface are subjected to phosphorus (P) diffusion by liquid dopant source (POCl3) at 870 °C to form P—N junctions with a depth of 300 nm. The X-ray photoelectron spectroscopy (XPS) is used to measure the Si 2p core levels of P—N junction wafer with nanopillar texture and planar surface. With a visible light excitation, the P—N junction produces a new electric potential for photoelectric characteristic, which causes the Si 2p core level to have a energy shift compared with the spectrum without the visible light. The energy shift of the Si 2p core level is -0.27 eV for the planar P—N junction and -0.18 eV for the nanopillar one. The difference in Si 2p energy shift is due to more space lattice defects and chemical bond breaks for nanopillar compared with the planar one.

  10. Effect of droplet size on wetting behavior on laser textured SiC surface

    Science.gov (United States)

    Wang, Rong; Bai, Shaoxian

    2015-10-01

    Effect of droplet size on wetting behavior on laser textured SiC surface was studied in this work. The micro-square-convex surface was processed on smooth surface with intrisinc contact angle 101°. Then contact angles were measured on both smooth and textured surface by sessile drop method using deionized water with different droplet volume. It was found that there was significant droplet size effect on wetting behaviors for the textured SiC surface. Contact angles on smooth surface kept stable for different water droplet volume with a variation amplitude 13°. However, contact angles increased significantly from 42.25° to 131.25° with increasing droplet volume from 0.001 μL to 1 μL, then remained unchanged when the droplet volume exceeds 1 μL. The correlation analysis shows that contact angles increase with the increasing ratio of base diameter and groove width, then keep stable when the ratio exceeds 25, which explains the wetting behavior for different droplet volume.

  11. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis-Granados, J. [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico); Granados-Correa, F., E-mail: francisco.granados@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Barrera-Díaz, C.E. [Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico)

    2013-08-15

    This work examines the surface fractal dimensions (D{sub f}) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N{sub 2}-physisorption measurements. Surface fractal dimensions were determined using single N{sub 2}-adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D{sub f} values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  12. Surface morphology of highly ordered nanotube formed and laser textured beta titanium alloys.

    Science.gov (United States)

    Kim, Jae-Un; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    The aim of the present study is to produce and characterize a well-controlled surface texture on Ti-35Nb-xHf alloys to promote osseointegration. Ti-35Nb-xHf (x = 0, 3, 7 and 15 wt.%) alloys were prepared by arc melting and heat treated for 12 hr at 1000 degrees C in an argon atmosphere and then water quenching. For surface texturing, an amplified Ti: sapphire laser system was used for generating 184 femtosecond (FS, 10(-15) sec) laser pulses with the pulse energy over 30 mJ at a 1 kHz repetition rate with a central wavelength of 800 nm. The nanotube formation was achieved by anodizing a Ti-35Nb-xHf alloy in H3PO4 electrolytes containing 0.8 wt.% NaF at room temperature. The surface morphology of nano/micro structure will enhance osseointegration and cell adhesion.

  13. Effect of fingerprints orientation on skin vibrations during tactile exploration of textured surfaces

    CERN Document Server

    Prevost, Alexis; Debrégeas, Georges

    2009-01-01

    In humans, the tactile perception of fine textures is mediated by skin vibrations when scanning the surface with the fingertip. These vibrations are encoded by specific mechanoreceptors, Pacinian corpuscules (PCs), located about 2 mm below the skin surface. In a recent article, we performed experiments using a biomimetic sensor which suggest that fingerprints (epidermal ridges) may play an important role in shaping the subcutaneous stress vibrations in a way which facilitates their processing by the PC channel. Here we further test this hypothesis by directly recording the modulations of the fingerpad/substrate friction force induced by scanning an actual fingertip across a textured surface. When the fingerprints are oriented perpendicular to the scanning direction, the spectrum of these modulations shows a pronounced maximum around the frequency v/lambda, where v is the scanning velocity and lambda the fingerprints period. This simple biomechanical result confirms the relevance of our previous finding for hu...

  14. Effect of fingerprints orientation on skin vibrations during tactile exploration of textured surfaces.

    Science.gov (United States)

    Prevost, Alexis; Scheibert, Julien; Debrégeas, Georges

    2009-09-01

    In humans, the tactile perception of fine textures is mediated by skin vibrations when scanning the surface with the fingertip. These vibrations are encoded by specific mechanoreceptors, Pacinian corpuscules (PCs), located about 2 mm below the skin surface. In a recent article, we performed experiments using a biomimetic sensor which suggest that fingerprints (epidermal ridges) may play an important role in shaping the subcutaneous stress vibrations in a way which facilitates their processing by the PC channel. Here we further test this hypothesis by directly recording the modulations of the fingerpad/substrate friction force induced by scanning an actual fingertip across a textured surface. When the fingerprints are oriented perpendicular to the scanning direction, the spectrum of these modulations shows a pronounced maximum around the frequency v/lambda, where v is the scanning velocity and lambda the fingerprints period. This simple biomechanical result confirms the relevance of our previous finding for human touch.

  15. Substrate texture properties induce triatomine probing on bitten warm surfaces

    Directory of Open Access Journals (Sweden)

    Lorenzo Marcelo G

    2011-06-01

    Full Text Available Abstract Background In this work we initially evaluated whether the biting process of Rhodnius prolixus relies on the detection of mechanical properties of the substrate. A linear thermal source was used to simulate the presence of a blood vessel under the skin of a host. This apparatus consisted of an aluminium plate and a nickel-chrome wire, both thermostatized and presented at 33 and 36°C, respectively. To evaluate whether mechanical properties of the substrate affect the biting behaviour of bugs, this apparatus was covered by a latex membrane. Additionally, we evaluated whether the expression of probing depends on the integration of bilateral thermal inputs from the antennae. Results The presence of a latex cover on a thermal source induced a change in the biting pattern shown by bugs. In fact, with latex covered sources it was possible to observe long bites that were never performed in response to warm metal surfaces. The total number of bites was higher in intact versus unilaterally antennectomized insects. These bites were significantly longer in intact than in unilaterally antennectomized insects. Conclusions Our results suggest that substrate recognition by simultaneous input through thermal and mechanical modalities is required for triggering maxillary probing activity.

  16. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations

    Science.gov (United States)

    Wang, LiYa; Wang, FengChao; Yang, FuQian; Wu, HengAn

    2014-11-01

    A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces. The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces. The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations. The extended MKT slip model is validated by our MD simulations under various situations, by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid. This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow. Moreover, the slip velocity shear-rate dependence can be predicted using this slip model, since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.

  17. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations

    Institute of Scientific and Technical Information of China (English)

    WANG LiYa; WANG FengChao; YANG FuQian; WU HengAn

    2014-01-01

    A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.

  18. Increasing the hydrophobicity degree of stonework by means of laser surface texturing: An application on Zimbabwe black granites

    Science.gov (United States)

    Chantada, A.; Penide, J.; Riveiro, A.; del Val, J.; Quintero, F.; Meixus, M.; Soto, R.; Lusquiños, F.; Pou, J.

    2017-10-01

    Tailoring the wetting characteristics of materials has gained much interest in applications related to surface cleaning in both industry and home. Zimbabwe black granite is a middle-to-fine-grained natural stone commonly used as countertops in kitchens and bathrooms. In this study, the laser texturing of Zimbabwe black granite surfaces is investigated with the aim to enhance its hydrophobic character, thus reducing the attachment of contaminants on the surface. Two laser sources (λ = 1064 and 532 nm) were used for this purpose. The treatment is based on the irradiation of the stone by a laser focused on the surface of the targeting sample. The influence of different laser processing parameters on the surface characteristics of granite (wettability, roughness, and chemistry) was statistically assessed. Most suitable laser processing parameters required to obtain the highest hydrophobicity degree were identified. It has been possible to identify the 532 nm laser wavelength as the most effective one to increase the hydrophobic degree of Zimbabwe black granite surface. The phenomenon governing wettability changes was found to be the surface roughness patterns, given the unaltered chemical surface composition after laser processing.

  19. Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics

    Institute of Scientific and Technical Information of China (English)

    Amin Manouchehrian; Mostafa Sharifzadeh; Rasoul Hamidzadeh Moghadam

    2012-01-01

    Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.

  20. Temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern based on image texture spectrum descriptor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xi-guo; JIN Ning-de; WANG Zhen-ya; ZHANG Wen-yin

    2009-01-01

    The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a high-speed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic param-eter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to tmderstand the temporal and spatial evolution of flow pattern dynamics.

  1. Influence of the “Fire jet” finishing method of stone claddings on the mineralogical and textural characteristics and physical properties of ''pink Porriño'' granite

    OpenAIRE

    1986-01-01

    The effect of an industrial process of surface treatment ("fire jet") of ornamental rock slabs upon the mineralogical and textural characteristics of an igneous rock known commercially as "Pink Porriño" (Rosa Porriño) rom Galicia (NW Spain), has been studied by optical and electron microscopy. The most important physical properties of both treated and non-treated rocks have also been determined. As a result, it may be concluded that no significant changes in the mineralogical or textura...

  2. Use of biomimetic hexagonal surface texture in friction against lubricated skin.

    Science.gov (United States)

    Tsipenyuk, Alexey; Varenberg, Michael

    2014-05-01

    Smooth contact pads that evolved in insects, amphibians and mammals to enhance the attachment abilities of the animals' feet are often dressed with surface micropatterns of different shapes that act in the presence of a fluid secretion. One of the most striking surface patterns observed in contact pads of these animals is based on a hexagonal texture, which is recognized as a friction-oriented feature capable of suppressing both stick-slip and hydroplaning while enabling friction tuning. Here, we compare this design of natural friction surfaces to textures developed for working in similar conditions in disposable safety razors. When slid against lubricated human skin, the hexagonal surface texture is capable of generating about twice the friction of its technical competitors, which is related to it being much more effective at channelling of the lubricant fluid out of the contact zone. The draining channel shape and contact area fraction are found to be the most important geometrical parameters governing the fluid drainage rate.

  3. Influence of citric acid on the surface texture of glass ionomer restorative materials

    Directory of Open Access Journals (Sweden)

    Dappili SwamiRanga Reddy

    2014-01-01

    Full Text Available Aim: This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Materials and Methods: Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7. Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, ΅m of each specimen was measured using a surface profilometer (Taylor & Habson, UK. Data was analyzed using one-way analysis of variance (ANOVA and Tukey′s HSD test at a significance level of 0.05. Results: The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. Conclusion: The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of

  4. Study on cavitation effect of mechanical seals with laser-textured porous surface

    Science.gov (United States)

    Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.

    2012-11-01

    Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.

  5. Analysis of Pyramidal Surface Texturization of Silicon Solar Cells by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Chung

    2008-01-01

    Full Text Available The purpose of this paper is to explore the relations between surface texturization and absorptance of multicrystalline silicon solar cells by a simple new model, based on the classic molecular (MD dynamics simulation, alternative to complex electron-photon interactions to analyze the surface texturization of solar cells. In this study, the large tilted angle leads to the lower efficiency of solar cell. To consider the effect of incident angle, a range of high efficiency exists due to the increasing probability of second reflection. Furthermore, the azimuth angle of incident light also affects the efficiency of solar cells. Our results agree well with previous studies. This MD model can potentially be used to predict the efficiency promotion in any optical reflection-absorption cases.

  6. Influence of Conditioned Surface Textures on Plain Journal Bearing Performance Working on HL Conditions

    OpenAIRE

    Vélez-Restrepo J.M.; Toro-Botero F.M.; Suárez-Bustamante F.A.

    2012-01-01

    As an answer to the need for reducing friction losses on bearings, dynamic seals, piston rings, cutting tools and others, a lot of work has been dedicated to mechanical systems study whose surfaces have been textured in a controlled way. Theoretical models and experimental results have shown improvements on the tribological performance of these systems regarding untextured systems, working under the same conditions. This paper presents a numerical model for getting relationships among the ope...

  7. Light scattering effect of ITO:Zr/AZO films deposited on periodic textured glass surface morphologies for silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahzada Qamar [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Kwon, Gi Duk; Kim, Sunbo; Balaji, Nagarajan; Shin, Chonghoon; Kim, Sangho; Khan, Shahbaz; Pribat, Didier [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Raja, Jayapal; Lee, Youn-Jung [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Razaq, Aamir [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Velumani, S. [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Department of Electrical Engineering (SEES), Mexico City (Mexico); Yi, Junsin [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of)

    2015-09-15

    Various SF{sub 6}/Ar plasma-textured periodic glass surface morphologies for high transmittance, haze ratio and low sheet resistance of ITO:Zr films are reported. The SF{sub 6}/Ar plasma-textured glass surface morphologies were changed from low aspect ratio to high aspect ratio with the increase in RF power from 500 to 600 W. The micro- and nano-size features of textured glass surface morphologies enhanced the haze ratio in visible as well as NIR wavelength region. Micro-size textured features also influenced the sheet resistance and electrical characteristics of ITO:Zr films due to step coverage. The ITO:Zr/AZO bilayer was used as front TCO electrode for p-i-n amorphous silicon thin film solar cells with current density-voltage characteristics as: V{sub oc} = 875 mV, FF = 70.90 %, J{sub sc} = 11.31 mA/cm{sup 2}, η = 7.02 %. (orig.)

  8. Chemical and texture characteristics and sensory properties of “mozzarella” cheese from different feeding systems

    Directory of Open Access Journals (Sweden)

    R. Rubino

    2010-02-01

    Full Text Available The aim of this study was describing the chemical composition, the rheological characteristics and the sensory properties of “mozzarella” cheese produced with milk from buffalos fed with different diets. The study involved two farms and four feeding systems. In farm C, one group was mostly fed with Ryegrass Hay (RH and the other group with Ryegrass Silage (RS. In farm T, instead, one group was mostly fed with Corn Silage (CS and the other one with a Sorghum Silage (SS. In summer, three cheesemakings, for each farm and for each feeding system, were carried out at C.R.A. of Bella. In each farm, data were processed by the analysis of variance in order to compare the effects of two feeding systems. Some parameters of chemical and texture characteristics and sensory properties were influenced by the feeding system. Results were remarkable for the DOP products.

  9. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface...... for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding...... reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation....

  10. The effect of controlled microrobotized blasting on implant surface texturing and early osseointegration.

    Science.gov (United States)

    Gil, Luiz F; Marin, Charles; Teixeira, Hellen; Marão, Heloisa F; Tovar, Nick; Khan, Rehan; Bonfante, Estevam A; Janal, Malvin; Coelho, Paulo G

    2016-02-01

    Surface topography modifications have become a key strategy for hastening the host-to-implant response to implantable materials. The present study evaluated the effect of three different carefully controlled surface texture patterns achieved through microrobotized blasting (controlled to high, medium and low roughness) relative to a larger scale blasting procedure (control) in early osseointegration in a canine model. Four commercially pure grade 2 titanium alloy implants (one of each surface) were bilaterally placed in the radii of six beagle dogs and allowed end points of 1 and 6 weeks in vivo. Following sacrifice, implants in bone were non-decalcified processed for bone morphologic and histometric (bone-to-implant contact; bone area fraction occupancy) evaluation. Surface topography was characterized by scanning electron microscopy and optical interferometry. Results showed initial osteogenic tissue interaction at one week and new bone in intimate contact with all implant surfaces at 6 weeks. At 1 and 6 weeks in vivo, higher bone-to-implant and bone area fraction occupancy were observed for the high texture pattern microrobotized blasted surface relative to others.

  11. Texturing of UHMWPE surface via NIL for low friction and wear properties

    Energy Technology Data Exchange (ETDEWEB)

    Kustandi, Tanu Suryadi; Low, Hong Yee [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Choo, Jian Huei; Sinha, Sujeet K, E-mail: hy-low@imre.a-star.edu.s, E-mail: mpesks@nus.edu.s [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2010-01-13

    Wear is a major obstacle limiting the useful life of implanted ultra-high molecular weight polyethylene (UHMWPE) components in total joint arthroplasty. It has been a continuous effort in the implant industry to reduce the frictional wear problem of UHMWPE by improving the structure, morphology and mechanical properties of the polymer. In this paper, a new paradigm that utilizes nanoimprint lithography (NIL) in producing textures on the surface of UHMWPE is proposed to efficiently improve the tribological properties of the polymer. Friction and wear experiments were conducted on patterned and controlled (non-patterned) UHMWPE surfaces using a commercial tribometer, mounted with a silicon nitride ball, under a dry-sliding condition with normal loads ranging from 60 to 200 mN. It has been shown that the patterned UHMWPE surface showed a reduction in the coefficient of friction between 8% and 35% as compared with the controlled (non-patterned) surface, depending on the magnitude of the normal load. Reciprocating wear experiments also showed that the presence of surface textures on the polymer resulted in lower wear depth and width, with minimal material transfer to the sliding surface.

  12. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    Science.gov (United States)

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Real-time color-based texture analysis for sophisticated defect detection on wooden surfaces

    Science.gov (United States)

    Polzleitner, Wolfgang; Schwingshakl, Gert

    2004-10-01

    We describe a scanning system developed for the classification and grading of surfaces of wooden tiles. The system uses color imaging sensors to analyse the surfaces of either hard- or softwood material in terms of the texture formed by grain lines (orientation, spatial frequency, and color), various types of colorization, and other defects like knots, heart wood, cracks, holes, etc. The analysis requires two major tracks: the assignment of a tile to its texture class (like A, B, C, 1, 2, 3, Waste), and the detection of defects that decrease the commercial value of the tile (heart wood, knots, etc.). The system was initially developed under the international IMS program (Intelligent Manufacturing Systems) by an industry consortium. During the last two years it has been further developed, and several industrial systems have been installed, and are presently used in production of hardwood flooring. The methods implemented reflect some of the latest developments in the field of pattern recognition: genetic feature selection, two-dimensional second order statistics, special color space transforms, and classification by neural networks. In the industrial scenario we describe, many of the features defining a class cannot be described mathematically. Consequently a focus was the design of a learning architecture, where prototype texture samples are presented to the system, which then automatically finds the internal representation necessary for classification. The methods used in this approach have a wide applicability to problems of inspection, sorting, and optimization of high-value material typically used in the furniture, flooring, and related wood manufacturing industries.

  14. A plateau–valley separation method for textured surfaces with a deterministic pattern

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, Anders; De Chiffre, Leonardo

    2014-01-01

    The effective characterization of textured surfaces presenting a deterministic pattern of lubricant reservoirs is an issue with which many researchers are nowadays struggling. Existing standards are not suitable for the characterization of such surfaces, providing at times values without physical...... division of the two regions, which can be studied separately according to their specific function. The case of a turned multifunctional profile is presented depicting the lacks in efficacy of standardized methods and therefore studied with this new methodology. Limitations of the method are eventually...

  15. Maps showing textural characteristics of benthic sediments in the Corpus Christi Bay estuarine system, south Texas

    Science.gov (United States)

    Shideler, Gerald L.; Stelting, Charles E.; McGowen, Joseph H.

    1981-01-01

    Corpus Christi Bay is a heavily used estuary on the south Texas coast in the northwest Gulf of Mexico (fig. 1).  The Bay is stressed by diverse activities which could substantially affect its ecosystem.  Such activities include shipping, resource production (oil, gas, and construction aggregate), commercial and sport fishing, and recreation.  Shipping activities alone have had a substantial impact on the bay.  For example, the past maintenance of navigation channels has required extensive dredging and spoil disposal within the estuarine system.  Numerous subaqueous spoil disposal sites and subaerial spoil banks are present throughout the bay (fig. 1), and the selection of future spoil disposal sites is becoming a critical local problem.  As activities in the bay increase, the need for effective environmental management becomes increasingly important, and effective management necessitates a good understanding of the bay's physical characteristics.  The objective of this study is to provide detailed information about the textural composition of bottom sediments within the estuarine system, information which could be used in making environmental-management decisions.  Visual descriptions of bottom sediments in Corpus Christi Bay and adjacent areas have been presented by McGowen and Morton (1979).  Additionally, a study of the textures of sediments on the Inner Continental Shelf adjacent to the bay has been presented by Shideler and Berryhill (1977).

  16. Structure stability and water retention near saturation characteristics as affected by soil texture, and polyacrylamide concentration

    Science.gov (United States)

    Mamedov, Amrakh I.; Ekberli, Imanverdi A.; Ozturk, Hasan S.; Wagner, Larry E.; Norton, Darrell L.; Levy, Guy J.

    2017-04-01

    Studying the effects of soil properties and amendment application on soil structure stability is important for the development of effective soil management and conservation practices for sustaining semi-arid soil and water quality under climate change scenarios. Two sets of experiments were conducted to evaluate the effects of soil texture and soil amendment polyacrylamide (PAM) rate on soil structural stability expressed in terms of near saturation soil water retention and aggregate stability using the high energy (0-5 J kg-1) moisture characteristic (HEMC) method. Contribution of (i) soil type were assessed using 30 soil samples varying in texture from sandy to clay taken from long term cultivated lands, covering a range of crop and land management practices, and (ii) anionic PAM concentration (0, 10, 25, 50, 100 & 200 mg l-1) were tested on selected loam and clay soils. The water retention curves of slow and fast wetted soil samples were characterized by a modified van Genuchten (1980) model that provides (i) model parameters α and n, which represent the location of the inflection point and the steepness of the S-shaped water retention curves, and (ii) a composite soil structure index (SI =VDP/MS; VDP-volume of drainable pores, MS-modal suction). The studied treatments had, generally, considerable effects on the shape of the water retention curves (α and n). Soil type, PAM concentration and their interaction had significantly effects on the stability indices (SI, VDP and MS) and the model parameters (α and n). The SI and α increased, and ndecreased exponentially with the increase in soil clay content and PAM concentration, but the shape of curves were soil texture and management dependent, since predominant changes were observed in the various range of studied macropores (pore size > 60 μm). An exponential type of relationship existed between SI and α and n. Effect of PAM contribution and wetting condition was more pronounced in the loam soil at low PAM

  17. Optical design and laser ablation of surface textures: demonstrating total internal reflection

    Science.gov (United States)

    Gommans, Hans; Booij, Silvia; Pijlman, Fetze; Krijn, Marcel; de Zwart, Siebe; Sepkhanov, Ruslan; Beaumont, Dave; van der Schaft, Hans; Sanders, Rene

    2015-09-01

    In lighting applications key drivers for optical design of surface textures are integration of optical elements, the disentanglement of optical functionality and appearance and late stage configuration. We investigated excimer laser ablation as a mastering technology for micro textured surfaces, where we targeted an increase in correspondence between surface design and ablated surface for high aspect ratio structures. To achieve this we have improved the photo mask design using a heuristic algorithm that corrects for the angular dependence of the ablation process and the loss of image resolution at ablation depths that exceed the depth of field. Using this approach we have been able to demonstrate close correspondence between designed and ablated facet structures up to 75° inclination at 75 μm depth. These facet design parameters allow for total internal reflection (TIR) as a means of beam deflection which is demonstrated in a range of mono shaped cone arrays in hexagonal tessellation. BSDF analysis was used to characterize the narrow TIR deflection beams that matched the peak positions of the design down to 28° apex. In addition, a single surface TIR-Fresnel lens design with focal distance 5 mm has been manufactured using this photo mask design algorithm and beam collimation up to 12° beam angle and 32° field angle is shown. These outcomes demonstrate that the laser ablation process intrinsically yields sufficient small dispersion in structure and fillet radii for lighting applications.

  18. An experimental bioactive dental ceramic for metal-ceramic restorations: Textural characteristics and investigation of the mechanical properties.

    Science.gov (United States)

    Goudouri, Ourania-Menti; Kontonasaki, Eleana; Papadopoulou, Lambrini; Manda, Marianthi; Kavouras, Panagiotis; Triantafyllidis, Konstantinos S; Stefanidou, Maria; Koidis, Petros; Paraskevopoulos, Konstantinos M

    2017-02-01

    The aim of this study was the evaluation of the textural characteristics of an experimental sol-gel derived feldspathic dental ceramic, which has already been proven bioactive and the investigation of its flexural strength through Weibull Statistical Analysis. The null hypothesis was that the flexural strength of the experimental and the commercial dental ceramic would be of the same order, resulting in a dental ceramic with apatite forming ability and adequate mechanical integrity. Although the flexural strength of the experimental ceramics was not statistically significant different compared to the commercial one, the amount of blind pores due to processing was greater. The textural characteristics of the experimental ceramic were in accordance with the standard low porosity levels reported for dental ceramics used for fixed prosthetic restorations. Feldspathic dental ceramics with typical textural characteristics and advanced mechanical properties as well as enhanced apatite forming ability can be synthesized through the sol-gel method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Learning Shape and Texture Characteristics of CT Tree-in-Bud Opacities for CAD Systems

    CERN Document Server

    Bagci, Ulas; Caban, Jesus; Suffredini, Anthony F; Palmore, Tara N; Mollura, Daniel J

    2011-01-01

    Although radiologists can employ CAD systems to characterize malignancies, pulmonary fibrosis and other chronic diseases; the design of imaging techniques to quantify infectious diseases continue to lag behind. There exists a need to create more CAD systems capable of detecting and quantifying characteristic patterns often seen in respiratory tract infections such as influenza, bacterial pneumonia, or tuborculosis. One of such patterns is Tree-in-bud (TIB) which presents \\textit{thickened} bronchial structures surrounding by clusters of \\textit{micro-nodules}. Automatic detection of TIB patterns is a challenging task because of their weak boundary, noisy appearance, and small lesion size. In this paper, we present two novel methods for automatically detecting TIB patterns: (1) a fast localization of candidate patterns using information from local scale of the images, and (2) a M\\"{o}bius invariant feature extraction method based on learned local shape and texture properties. A comparative evaluation of the pr...

  20. Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.

    Science.gov (United States)

    Arikan, Murat; Preiner, Reinhold; Scheiblauer, Claus; Jeschke, Stefan; Wimmer, Michael

    2014-09-01

    In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task. We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem, our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since our preprocessing phase requires only a minor fraction of the whole data set at once, we provide maximum flexibility when dealing with growing data sets.

  1. Surface texture and some properties of acrylic resins submitted to chemical polishing.

    Science.gov (United States)

    Braun, K O; Mello, J A N; Rached, R N; Del Bel Cury, A A

    2003-01-01

    The effects of chemical polishing on dental acrylic resin properties are not well clarified. This study evaluated the effect of chemical and mechanical polishing on the residual monomer release (RM), Knoop hardness (KH), transverse strength (TS) and surface texture (ST) of a heat- and self-cured acrylic resin. Four groups were formed: GI-self-cured resin/mechanical polishing; GII-self-cured resin/chemical polishing; GIII-heat-cured resin/mechanical polishing; GIV-heat-cured resin/chemical polishing. Following the polishing procedures, specimens were stored in distilled water at 37 degrees C. The KH and RM measurements were taken after 1, 2, 8 and 32 days of storage, and TS after 2, 8 and 32 days. Surface texture was observed under SEM evaluation. Results were compared statistically at a confidence level of 95%. The following conclusions were drawn: (1) regardless of the acrylic resin and the period of analysis, chemical polishing increased RM levels, reduced KH, and did not affect TS significantly; (2) water storage increased the surface hardness of GII and GIV; (3) GII and GIV showed a smooth and wavy surface under SEM evaluation.

  2. Investigation of mechanical responses to the tactile perception of surfaces with different textures using the finite element method

    Directory of Open Access Journals (Sweden)

    Wei Tang

    2016-07-01

    Full Text Available Tactile perception is essential for humans to perceive the world, and it usually results in mechanical responses from the finger. In this study, a nonlinear, viscoelastic, and multilayered finite element model of the finger was developed. The relationship between the mechanical responses within the finger and tactile perception while the finger scanned different surface textures was studied. The results showed that the sensitivity of tactile perception is affected by the peak value of von Mises stress, which is itself determined by the shape and density of a given texture. The von Mises stress varies periodically with time, and this variation depends on the periodicity of the texture. Displacement signals around Pacinian corpuscles have periodic variation. The period of displacement decreases as the density of the texture increases. The spectral centroid increases as the spacing of the texture decreases. The related mechanisms are discussed in this article.

  3. Magnetism, spin texture and in-gap states. Atomic specialization at the surface of oxygen-deficient SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, Harald O.; Altmeyer, Michaela; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Rozenberg, Marcelo; Gabay, Marc [Laboratoire de Physique des Solides, Bat 510, Universite Paris-Sud, 91405 Orsay (France)

    2016-07-01

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO{sub 3} in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ∝ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∝ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO{sub 3}. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures.

  4. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating

    Directory of Open Access Journals (Sweden)

    Yanlei Hu

    2014-12-01

    Full Text Available Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.

  5. The Friction Reducing Effect of Square-Shaped Surface Textures under Lubricated Line-Contacts—An Experimental Study

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2016-07-01

    Full Text Available Surface texturing has been shown to be an effective modification approach for improving tribological performance. This study examined the friction reduction effect generated by square dimples of different sizes and geometries. Dimples were fabricated on the surface of ASP2023 steel plates using femtosecond laser-assisted surface texturing techniques, and reciprocating sliding line contact tests were carried out on a Plint TE77 tribometer using a smooth 52100 bearing steel roller and textured ASP2023 steel plates. The tribological characterization of the friction properties indicated that the textured samples had significantly lowered the friction coefficient in both boundary (15% improvement and mixed lubrication regimes (13% improvement. Moreover, the high data sampling rate results indicated that the dimples work as lubricant reservoirs in the boundary lubrication regime.

  6. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Alexandre [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Elie, Anne-Marie [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Plawinski, Laurent [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Serro, Ana Paula [Instituto Superior Técnico, Universidade de Lisboa, CQE-Centro de Química Estrutural, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Botelho do Rego, Ana Maria [Instituto Superior Técnico, Universidade de Lisboa, CQFM-Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology - IN, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Almeida, Amélia [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Urdaci, Maria C. [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Durrieu, Marie-Christine [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Vilar, Rui, E-mail: rui.vilar@tecnico.ulisboa.pt [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • The short-term adhesion of Staphylococcus aureus onto femtosecond laser textured surfaces of titanium was investigated. • The laser textured surfaces consist of laser-induced periodic surface structures (LIPSS) and nanopillars. • The laser treatment enhances the hydrophilicity and the surface free energy of the material. • The laser treatment reduces significantly the adhesion of S. aureus and biofilm formation. • Femtosecond laser surface texturing of titanium is a simple and promising method for endowing dental and orthopedic implants with antibacterial properties. - Abstract: The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method

  7. TEXTURE ANALYSIS OF EXTRUDED APPLE POMACE - WHEAT SEMOLINA BLENDS

    Directory of Open Access Journals (Sweden)

    Ivan Bakalov

    2016-03-01

    Full Text Available Apple pomace - wheat semolina blends were extruded in a laboratory single screw extruder (Brabender 20 DN, Germany. Effects apple pomace content, moisture content, screw speed, and temperature of final cooking zone on texture of extrudates were studied applying response surface methodology. The texture characteristics of the extrudates were measured using a TA.XT Plus Texture Analyser, Stable Micro Systems.

  8. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    Science.gov (United States)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  9. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  10. Effect of rate of addition of starter culture on textural characteristics of buffalo milk Feta type cheese during ripening.

    Science.gov (United States)

    Kumar, Sanjeev; Kanawjia, S K; Kumar, Suryamani; Khatkar, Sunil

    2014-04-01

    The effect of rate of addition of starter culture on textural characteristics of buffalo milk Feta type cheese was investigated during ripening period up to two months. The textural characteristics of buffalo milk Feta type cheese in terms of hardness, cohesiveness, springiness, gumminess and chewiness were analyzed by using textural profile analyzer. The maximum hardness was found with cheese made using 1% culture, while the minimum was found with 2% culture. The cohesiveness and springiness decreased as the level of addition of starter culture increased. The chewiness of cheese also decreased, as the rate of addition of starter culture increased for cheese making. In addition to this, yield, moisture, fat, FDM, protein, salt and S/M of fresh buffalo milk Feta type cheese increased with the increase in rate of addition of starter culture; however, TS of experimental cheeses decreased.

  11. Investigation of mechanism: spoof SPPs on periodically textured metal surface with pyramidal grooves

    Science.gov (United States)

    Tian, Lili; Liu, Jianlong; Zhou, Keya; Gao, Yang; Liu, Shutian

    2016-08-01

    In microwave and terahertz frequency band, a textured metal surface can support spoof surface plasmon polaritons (SSPPs). In this paper, we explore a SSPPs waveguide composed of a metal block with pyramidal grooves. Under the deep subwavelength condition, theoretical formulas for calculation of dispersion relations are derived based on the modal expansion method (MEM). Using the obtained formulas, a general analysis is given about the properties of the SSPPs in the waveguides with upright and downward pyramidal grooves. It is demonstrated that the SSPPs waveguides with upright pyramidal grooves give better field-confinement. Numerical simulations are used to check the theoretical analysis and show good agreement with the analytical results. In addition, the group velocity of the SSPPs propagating along the waveguide is explored and two structures are designed to show how to trap the SSPPs on the metal surface. The calculation methodology provided in this paper can also be used to deal with the SSPPs waveguides with irregular grooves.

  12. A New Rig for Testing Textured Surfaces in Pure Sliding Conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran

    2013-01-01

    for cylinder liners. To prove the efficacy of a particular textured surface, it is paramount to perform experimental tests under controlled laboratory conditions. In this paper, a new test rig simulating pure sliding conditions is presented, dubbed axial sliding test. It presents four major components: a rod......, a sleeve, a housing and a stripwound container. The rod and the sleeve are the two surfaces in relative sliding motion; the stripwound container maintains a constant, but adjustable normal pressure, and the housing serves as interface between the sleeve and the container. For carrying out the test, two......-turned rod against a mirror-polished sleeve. Qualitatively, the multifunctional surfaces improve the friction conditions, but a more structured test campaign is required. It is furthermore assessed the repeatability of the test device, in order to rely on the results obtained. Ten repetitions made...

  13. Evolution of texture and microstructure in pulsed electro-deposited Cu treated by Surface Mechanical Attrition Treatment (SMAT)

    Energy Technology Data Exchange (ETDEWEB)

    Blonde, Romain [LETAM, CNRS 3143, Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Chan, Hoi-Lam [The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Allain-Bonasso, Nathalie [LETAM, CNRS 3143, Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Bolle, Bernard [LETAM, Ecole Nationale d' Ingenieurs de Metz, Ile du Saulcy, 57045 Metz (France); Grosdidier, Thierry [LETAM, CNRS 3143, Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Lu, Jian, E-mail: mmmelu@inet.polyu.edu.h [The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2010-08-15

    This paper presents the microstructure and texture evolution in pulsed electro-deposited copper samples and the additional effect of the Surface Mechanical Attrition Treatment (SMAT), which were analyzed by means of electron backscattering and X-ray diffractions. A transition in the microstructure was observed as the thickness of the deposit increased: from randomly oriented equiaxed (3D) nanograins at the beginning of the deposition process towards elongated (2D) nanograins having a strong <1 1 0> fibre texture. Meanwhile, the SMAT treatment is shown to randomize the strong texture of the electrodeposits.

  14. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling

    Science.gov (United States)

    Menut, Laurent; PéRez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, StéPhane

    2013-06-01

    Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

  15. High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids.

    Science.gov (United States)

    He, Lining; Lai, Donny; Wang, Hao; Jiang, Changyun; Rusli

    2012-06-11

    An efficient Si/PEDOT:PSS hybrid solar cell using synergistic surface texturing of Si nanowires (SiNWs) on pyramids is demonstrated. A power conversion efficiency (PCE) of 9.9% is achieved from the cells using the SiNW/pyramid binary structure, which is much higher than similar cells based on planar Si, pyramid-textured Si, and SiNWs. The PCE is the highest reported to-date for hybrid cells based on Si nanostructures and PEDOT.

  16. High friction on ice provided by elastomeric fiber composites with textured surfaces

    Science.gov (United States)

    Rizvi, R.; Naguib, H.; Fernie, G.; Dutta, T.

    2015-03-01

    Two main applications requiring high friction on ice are automobile tires and footwear. The main motivation behind the use of soft rubbers in these applications is the relatively high friction force generated between a smooth rubber contacting smooth ice. Unfortunately, the friction force between rubber and ice is very low at temperatures near the melting point of ice and as a result we still experience automobile accidents and pedestrian slips and falls in the winter. Here, we report on a class of compliant fiber-composite materials with textured surfaces that provide outstanding coefficients of friction on wet ice. The fibrous composites consist of a hard glass-fiber phase reinforcing a compliant thermoplastic polyurethane matrix. The glass-fiber phase is textured such that it is aligned transversally and protruding out of the elastomer surface. Our analysis indicates that the exposed fiber phase exhibits a "micro-cleat" effect, allowing for it to fracture the ice and increase the interfacial contact area thereby requiring a high force to shear the interface.

  17. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jihai [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Wenjie, E-mail: zhaowj@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Peng, Shusen; Zeng, Zhixiang; Zhang, Xin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wu, Xuedong, E-mail: xdwu@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2014-08-30

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  18. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  19. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Science.gov (United States)

    Chen, Haiyan; Peng, Jianke; Fu, Li; Wang, Xincheng; Xie, Yan

    2016-04-01

    In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  20. Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility.

    Science.gov (United States)

    Wang, Xiang; Wu, Tong; Wang, Wei; Huang, Chen; Jin, Xiangyu

    2016-01-01

    A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications.

  1. A synergetic effect of surface texture and field-effect passivations on improving Si solar cell performance

    Science.gov (United States)

    Qiu, Ying; Wang, Liangxing; Hao, Hongchen; Shi, Wei; Lu, Ming

    2015-07-01

    P-type Si substrate based solar cells were prepared with indium-tin-oxide thin films as the front top electrodes and Al layers as the rear ones. A synergetic effect of surface texture and field-effect passivations on improving Si solar cell performance was investigated. The surface texture was conducted by NaOH etching of Si, and field-effect passivations were performed by introducing SiO2 and Al2O3 thin film layers at the front and rear sides of the Si solar cell, respectively. The surface texture treatment makes the Si solar cell efficiency increase from 9.81% to 11.08%. After the synergetic treatments of surface texture and field-effect passivations, the efficiency further increased to 15.04%, that is, a more than 50% relative efficiency enhancement was obtained. This work demonstrates the significant effectiveness and facile applicability of the synergetic effect of surface texture and field-effect passivations on improving Si solar cell performance.

  2. Structural and textural characteristics of slate and its response to the point load test

    Directory of Open Access Journals (Sweden)

    Ana Mladenovič

    2006-12-01

    Full Text Available From the geomechanical point of view slate is considered to be one of more trying rock varieties. The results of research have shown close relationship between structural, textural and mineralogical characteristics on the one hand, and its strength and resistance to point loads on the other hand. Its weakened zones are the result of anisotropy. They develop mainly due to dynamo-metamorphosis of the primary mudstone, resulting in the formation of the secondary slaty cleavage, with a pronounced preferred orientation of the hyllosilicates. Low strength is the consequence of the weak Van der Waals chemical bond between individual packets of the internal crystal structure of the sheet minerals, particularly sericite. Bedding and microfolds with a crenulated structure and partial preferred orientation of sheet minerals, as well as directions that are weakened with sigmoidal shear deformations as the predecessors of microfaults, also result in significant but less problematicanisotropy. Thin lepidoblastic lamina, in apparently massive sandy metasiltstone beds in the slate represent discontinuities, which have a decisive influence on the reduction of their strength.

  3. Optimization of hybrid antireflection structure integrating surface texturing and multi-layer interference coating

    Science.gov (United States)

    Kubota, Shigeru; Kanomata, Kensaku; Suzuki, Takahiko; Hirose, Fumihiko

    2014-10-01

    The antireflection structure (ARS) for solar cells is categorized to mainly two different techniques, i.e., the surface texturing and the single or multi-layer antireflection interference coating. In this study, we propose a novel hybrid ARS, which integrates moth eye texturing and multi-layer coat, for application to organic photovoltaics (OPVs). Using optical simulations based on the finite-difference time-domain (FDTD) method, we conduct nearly global optimization of the geometric parameters characterizing the hybrid ARS. The proposed optimization algorithm consists of two steps: in the first step, we optimize the period and height of moth eye array, in the absence of multi-layer coating. In the second step, we optimize the whole structure of hybrid ARS by using the solution obtained by the first step as the starting search point. The methods of the simple grid search and the Hooke and Jeeves pattern search are used for global and local searches, respectively. In addition, we study the effects of deviations in the geometric parameters of hybrid ARS from their optimized values. The design concept of hybrid ARS is highly beneficial for broadband light trapping in OPVs.

  4. [Backscattering Characteristics of Machining Surfaces and Retrieval of Surface Multi-Parameters].

    Science.gov (United States)

    Tao, Hui-rong; Zhang, Fu-min; Qu, Xing-hua

    2015-07-01

    For no cooperation target laser ranging, the backscattering properties of the long-range and real machined surfaces are uncertain which seriously affect the ranging accuracy. It is an important bottleneck restricting the development of no cooperation ranging technology. In this paper, the backscattering characteristics of three typical machining surfaces (vertidal milling processing method, horizontal milling processing method and plain grinding processing method) under the infrared laser irradiation with 1550 nm were measured. The relation between the surface nachining texture, incident azimuth, roughness and the backscattering distribution were analyzed and the reasons for different processing methods specific backscattering field formed were explored. The experimental results show that the distribution of backscattering spectra is greatly affected by the machined processing methods. Incident angle and roughness have regularity effect on the actual rough surface of each mode. To be able to get enough backscattering, knowing the surface texture direction and the roughness of machined metal is essential for the optimization of the non-contact measurement program in industry. On this basis, a method based on an artificial neural network (ANN) and genetic algorithm (GA), is proposed to retrieve the surface multi-parameters of the machined metal. The generalized regression neural network (GRNN) was investigated and used in this application for the backscattering modeling. A genetic algorithm was used to retrieve the multi-parameters of incident azimuth angle, roughness and processing methods of machined metal sur face. Another processing method of sample (planer processing method) was used to validate data. The final results demonstrated that the method presented was efficient in parameters retrieval tasks. This model can accurately distinguish processing methods and the relative error of incident azimuth and roughness is 1.21% and 1.03%, respectively. The inversion

  5. Conducting elastomer surface texturing: a path to electrode spotting. Application to the biochip production.

    Science.gov (United States)

    Marquette, Christophe A; Blum, Loïc J

    2004-09-15

    A new active support for electro-chemiluminescent biochip preparation has been developed. This material was based on an original material composed of graphite modified polydimethyl siloxane (PDMS). The addressed inclusion of Sepharose beads at the surface of this elastomeric electrode generated interesting local high specific surface. The electrode was characterised by electrochemical (cyclic voltametry, chronoamperomatry) and imaging (scanning electron microscopy (SEM)) methods, and a surface area increase factor of 50 was found, linked to the texturing of the surface generated by the presence of the Sepharose beads. The consequence of this increase was shown to be a jump of the local electrochemical activity which induced a well defined and localised electro-chemiluminescent signal. The new material was used to design biochips based on the electro-chemiluminescent reaction of luminol with enzymatically produced hydrogen peroxide. Thus, when using beads bearing bio-molecules such nucleic acid or human IgG, in conjunction with glucose oxidas-labelled DNA or antibody, sensitive biochips could be obtained with detection limits of 10(11) and 10(10) molecules, respectively. Multi-parameter enzyme-based biochips could also be achieved by locally adsorbing, at the PDMS-graphite surface, either glucose oxidase, lactate oxidase or choline oxidase. Detection limits of 10 microM for lactate and choline and 20 microM for glucose were found, with detection ranging over two decades at least.

  6. The modulation of surface texture for single-crystalline Si solar cells using calibrated silver nanoparticles as a catalyst

    Science.gov (United States)

    Gu, Xin; Yu, Xuegong; Liu, Tao; Li, Dongsheng; Yang, Deren

    2011-01-01

    We have employed Ag nanoparticles with calibrated size as catalysts to modulate the surface texture of single-crystalline Si surfaces for reducing sunlight reflectivity. Both experiments and theoretical analysis have proved that a well-organized microporous structure on the pyramids can be obtained by optimizing the size of Ag nanoparticles and the texturing time, and the Si wafer with such structures can effectively reduce the reflectivity of sunlight. However, based on the conventional cell fabrication process, the performance of silicon solar cells with such microporous structures gets degraded. It is closely associated with the strong surface recombination and the high phosphorus diffusion barrier induced by the microporous textures. These results are interesting for us to understand the application of nanotechnology on the silicon solar cell.

  7. Coupling between elytra of some beetles: Mechanism, forces and effect of surface texture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Lightweight materials, structures and coupling mechanisms are very important for realizing advanced flight vehicles. Here, we obtained the geometric structures and morphologies of the elytra of beetles and ascertained its coupling zone by using the histological section technique and SEM. We set up a three-dimensional motion observing system to monitor the opening and closing behaviour of elytra in beetles and to determine the motion mechanism. We constructed a force measuring system to measure the coupling forces between elytra. The results show that elytra open and close by rotating about a single axle, where the coupling forces may be as high as 160 times its own bodyweight, the elytra coupling with the tenon and mortise mechanism, surface texture and opening angle between elytra heavily influence the coupling forces. These results may provide insights into the design mechanism and structure for future vehicles of flight.

  8. Influence of Conditioned Surface Textures on Plain Journal Bearing Performance Working on HL Conditions

    Directory of Open Access Journals (Sweden)

    Vélez-Restrepo J.M.

    2012-07-01

    Full Text Available As an answer to the need for reducing friction losses on bearings, dynamic seals, piston rings, cutting tools and others, a lot of work has been dedicated to mechanical systems study whose surfaces have been textured in a controlled way. Theoretical models and experimental results have shown improvements on the tribological performance of these systems regarding untextured systems, working under the same conditions. This paper presents a numerical model for getting relationships among the operational conditions (load, speed, and dynamic viscosity, the minimum lubricate film thickness, the friction coefficient and the conditioned micro-topography of a plain sliding bearing working under a hydrodynamic regime. Moreover, regarding other similar works the constructed model allows studying the combined effect of the micro-wedges that work as micro-bearings, and the typical convergent macro-wedge of these study elements.

  9. Textural characteristics of foreshore sediments along Karnataka shoreline, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Dora, G.U.; SanilKumar, V.; Philip, C.S.; Johnson, G.; Vinayaraj, P.; Gowthaman, R.

    Grain character analysis of beach sediments along three selected beaches (Pavinkurve, Kundapura and Padukare) of Karnataka coast, west coast of India is carried out to identify the textural behavior of beach sediments during an annual cycle from...

  10. Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nowicki Piotr

    2015-12-01

    Full Text Available Two series of functionalised carbonaceous adsorbents were prepared by means of oxidation and nitrogenation of commercially available activated carbon and multi-walled carbon nanotubes. The effect of nitrogen and oxygen incorporation on the textural, surface, thermal and sorption properties of the adsorbents prepared was tested. The materials were characterized by elemental analysis, low-temperature nitrogen sorption, thermogravimetric study and determination of the surface oxygen groups content. Sorptive properties of the materials obtained were characterized by the adsorption of methylene and alkali blue 6B as well as copper(II ions. The final products were nitrogen- and oxygen-enriched mesoporous adsorbents of medium-developed surface area, showing highly diverse N and O-heteroatom contents and acidic-basic character of the surface. The results obtained in our study have proved that through a suitable choice of the modification procedure of commercial adsorbents it is possible to produce materials with high sorption capacity towards organic dyes as well as copper(II ions.

  11. Rapidly 3D Texture Reconstruction Based on Oblique Photography

    Directory of Open Access Journals (Sweden)

    ZHANG Chunsen

    2015-07-01

    Full Text Available This paper proposes a city texture fast reconstruction method based on aerial tilt image for reconstruction of three-dimensional city model. Based on the photogrammetry and computer vision theory and using the city building digital surface model obtained by prior treatment, through collinear equation calculation geometric projection of object and image space, to obtain the three-dimensional information and texture information of the structure and through certain the optimal algorithm selecting the optimal texture on the surface of the object, realize automatic extraction of the building side texture and occlusion handling of the dense building texture. The real image texture reconstruction results show that: the method to the 3D city model texture reconstruction has the characteristics of high degree of automation, vivid effect and low cost and provides a means of effective implementation for rapid and widespread real texture rapid reconstruction of city 3D model.

  12. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.

    Science.gov (United States)

    Slovin, Mitchell R; Shirts, Michael R

    2015-07-28

    We quantify some of the effects of patterned nanoscale surface texture on static contact angles, dynamic contact angles, and dynamic contact angle hysteresis using molecular dynamics simulations of a moving Lennard-Jones droplet in contact with a solid surface. We observe static contact angles that change with the introduction of surface texture in a manner consistent with theoretical and experimental expectations. However, we find that the introduction of nanoscale surface texture at the length scale of 5-10 times the fluid particle size does not affect dynamic contact angle hysteresis even though it changes both the advancing and receding contact angles significantly. This result differs significantly from microscale experimental results where dynamic contact angle hysteresis decreases with the addition of surface texture due to an increase in the receding contact angle. Instead, we find that molecular-kinetic theory, previously applied only to nonpatterned surfaces, accurately describes dynamic contact angle and dynamic contact angle hysteresis behavior as a function of terminal fluid velocity. Therefore, at length scales of tens of nanometers, the kinetic phenomena such as contact line pinning observed at larger scales become insignificant in comparison to the effects of molecular fluctuations for moving droplets, even though the static properties are essentially scale-invariant. These findings may have implications for the design of highly hierarchical structures with particular wetting properties. We also find that quantitatively determining the trends observed in this article requires the careful selection of system and analysis parameters in order to achieve sufficient accuracy and precision in calculated contact angles. Therefore, we provide a detailed description of our two-surface, circular-fit approach to calculating static and dynamic contact angles on surfaces with nanoscale texturing.

  13. Dry-fermented chicken sausage produced with inulin and corn oil: physicochemical, microbiological, and textural characteristics and acceptability during storage.

    Science.gov (United States)

    Menegas, Léia Zenaide; Pimentel, Tatiana Colombo; Garcia, Sandra; Prudencio, Sandra Helena

    2013-03-01

    This study aimed to evaluate the effect of oil content reduction and the addition of inulin as a partial oil substitute on the physicochemical, microbiological, and textural characteristics and acceptability during the storage (4 °C for 45 days) of dry-fermented chicken sausage produced with corn oil. Reducing the oil content did not influence the characteristics evaluated but tended to produce sausage with a dark reddish coloration. The addition of inulin did not change the physicochemical and microbiological parameters or the acceptability of the products, but resulted in an altered texture profile and a tendency toward lighter and less reddish coloration, similar to products with standard oil content. Fermented chicken sausages produced with standard amounts of corn oil, reduced amounts of corn oil, and inulin as a partial oil replacement remained stable without a significant loss of physical, chemical, microbiological, or sensory attributes during storage at 4 °C for 45 days.

  14. Chemical, microbiological, textural, color, and sensory characteristics of pressed ewe milk cheeses with saffron (Crocus sativus L.) during ripening.

    Science.gov (United States)

    Licón, C C; Carmona, M; Molina, A; Berruga, M I

    2012-08-01

    Adding saffron to dairy products represents an innovative practice to introduce them to niche markets. This paper represents a contribution to this field, as few studies have evaluated the influence of this spice on general aspects and ripening parameters of cheese. In this work, pasteurized ewe milk pressed cheeses with saffron were made to study compositional, microbiological, color, textural, and sensory characteristics in relation to saffron concentration and ripening time. The main changes were observed on sensory characteristics and color. In addition, compositional, textural, and microbiological changes could be observed; among them, saffron cheeses were firmer and more elastic but less prone to fracture. A remarkable result that could lead to further studies is that saffron addition slightly slowed down growth of total and lactic acid bacteria. This resulted in a slightly lower rate of pH decrease during pressing and, as a consequence, lower salt and water content. Compositional differences were not evident by the end of the ripening period.

  15. Optimizing Geometry Mediated Skin Friction Drag on Riblet-Textured Surfaces

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2016-11-01

    Micro-scale riblets have been shown to modify the skin friction drag on patterned surfaces. Shark skin is widely known as a natural example of this passive drag reduction mechanism and artificial riblet tapes have been previously used in the America's Cups tournament resulting in a 1987 victory. Previous experiments with riblet surfaces in turbulent boundary layer flow have shown 4-8% reduction in the skin friction drag. Our computations with sinusoidal riblet surfaces in high Reynolds number laminar boundary layer flow and experiments with V-grooves in laminar Taylor-Couette flow also show that the reduction in skin friction can be substantial and depends on the spacing and height of the riblets. In the boundary layer setting, this frictional reduction is also a function of the length of the plate in the flow direction, while in the Taylor Couette setting it depends on the gap size. In the current work, we use scaling arguments and conformal mapping to establish a simplified theory for laminar flow over V-groove riblets and explore the self-similarity of the velocity contours near the patterned surface. We combine these arguments with theoretical and numerical calculations using Matlab and OpenFOAM to show that the drag reduction achievable in laminar flow over riblet surfaces depends on a rescaled form of the Reynolds number combined with the aspect ratio of the texture (defined in terms of the ratio of the height to spacing of the riblets). We then use these results to explain the underlying physical mechanisms driving frictional drag reduction and offer recommendations for designing low drag surfaces.

  16. Identification and comparison of electrical tapes using instrumental and statistical techniques: I. Microscopic surface texture and elemental composition.

    Science.gov (United States)

    Goodpaster, John V; Sturdevant, Amanda B; Andrews, Kristen L; Brun-Conti, Leanora

    2007-05-01

    Comparisons of polyvinyl chloride electrical tape typically rely upon evaluating class characteristics such as physical dimensions, surface texture, and chemical composition. Given the various techniques that are available for this purpose, a comprehensive study has been undertaken to establish an optimal analytical scheme for electrical tape comparisons. Of equal importance is the development of a quantitative means for sample discrimination. In this study, 67 rolls of black electrical tape representing 34 different nominal brands were analyzed via scanning electron microscopy and energy dispersive spectroscopy. Differences in surface roughness, calendering marks, and filler particle size were readily apparent, including between some rolls of the same nominal brand. The relative amounts of magnesium, aluminum, silicon, sulfur, lead, chlorine, antimony, calcium, titanium, and zinc varied greatly between brands and, in some cases, could be linked to the year of manufacture. For the first time, quantitative differentiation of electrical tapes was achieved through multivariate statistical techniques, with 36 classes identified within the sample population. A single-blind study was also completed where questioned tape samples were correctly associated with known exemplars. Finally, two case studies are presented where tape recovered from an improvised explosive device is compared with tape recovered from a suspect.

  17. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  18. Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Wu, Tong [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Wang, Wei [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Huang, Chen, E-mail: hc@dhu.edu.cn [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Jin, Xiangyu [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China)

    2016-01-01

    A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. - Highlights: • Wet-spun regenerated collagen fibers having aligned surface grooves • Comparable physiochemical properties to commercialized fibers • Readily processed into nonwovens • Excellent cytocompatibility with prompt cell adhesion and proliferation.

  19. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Science.gov (United States)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  20. Wafer Surface Charge Reversal as a Method of Simplifying Nanosphere Lithography for Reactive Ion Etch Texturing of Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel Inns

    2007-01-01

    Full Text Available A simplified nanosphere lithography process has been developed which allows fast and low-waste maskings of Si surfaces for subsequent reactive ion etching (RIE texturing. Initially, a positive surface charge is applied to a wafer surface by dipping in a solution of aluminum nitrate. Dipping the positive-coated wafer into a solution of negatively charged silica beads (nanospheres results in the spheres becoming electrostatically attracted to the wafer surface. These nanospheres form an etch mask for RIE. After RIE texturing, the reflection of the surface is reduced as effectively as any other nanosphere lithography method, while this batch process used for masking is much faster, making it more industrially relevant.

  1. Effect of texturized soy protein on quality characteristics of beef samosas

    Directory of Open Access Journals (Sweden)

    Mary Omwamba

    2014-04-01

    Full Text Available Texturized soy protein (TSP granules obtained from defatted soy flour were used to replace beef at 25, 50, 75 and 100% levels in samosa stuffing. The moisture, protein and ash content of the stuffing increased with an increase in the amount of texturized soy protein while the fat content decreased significantly (p<0.05 with an increase in the amount of texturized soy protein. Sensory evaluation of baked samosas showed no significant (p>0.05 difference in appearance, taste and overall acceptability with inclusion of texturized soy protein. However there were significant (p<0.05 differences in flavour, texture and willingness to purchase between 100% beef and 100% TSP samosas. There was a reduction in the moisture content while the protein, fat, ash and carbohydrate content increased in baked as compared to raw samples, both in the control and TSP50 samosas. The caloric value of the baked samosas was 24.07% lower in TSP added samples compared to 100% beef samples (control. Lipid oxidation increased with storage time from 0.25 to 0.68 mg malonaldehyde/kg in the control and from 0.21 to 0.39 mg malonaldehyde/kg in TSP50 samosas. The oxidation in the control was significantly (p<0.05 higher than in TSP50. The results suggest that TSP granules can be use with up to 50% addition in samosa products without significant differences in sensory attributes.

  2. Neural Network Change Detection Model for Satellite Images Using Textural and Spectral Characteristics

    Directory of Open Access Journals (Sweden)

    A. K. Helmy

    2010-01-01

    Full Text Available Problem statement: Change detection is the process of identifying difference of the state of an object or phenomena by observing it at different time. Essentially, it involves the ability to quantify temporal effects using multi-temporal data sets. Information about change is necessary for evaluating land cover and the management of natural resources. Approach: A neural network model based on both spectral and textural analysis is developed. Change detection system in this study is presented using modified version of back-propagation-training algorithm with dynamic learning rate and momentum. Through proposed model, the two images at different dates are fed into the input layer of neural network, in addition with Variance, Skewness and Eculedian for each image that represent different texture measure. This leads to better discrimination process. Results: The results showed that the trained network with texture measures achieve 23% higher accuracy than that without textural parameters. Conclusion: Adding textural parameters of satellite images through training phase increases the efficiently of change detection process also, it provides adequate information about the type of changes. It also found, when using dynamic momentum and learning rate, time and effort needed to select their appropriate value is reduced.

  3. Nuclear Technology. Course 27: Metrology. Module 27-4, Angle Measurement Instruments, Optical Projections and Surface Texture Gages.

    Science.gov (United States)

    Selleck, Ben; Espy, John

    This fourth in a series of eight modules for a course titled Metrology describes the universal bevel protractor and the sine bar, the engineering microscope and optical projector, and several types of surface texture gages. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3)…

  4. Cooling Enhancement by Drop Impact and Pool Boiling on Nano-textured Surfaces Under Normal Gravity Conditions and at Zero and Increased Gravity in Parabolic Flights

    Science.gov (United States)

    Yarin, Alexander; Sinha-Ray, Suman; Jun, Seongchul

    2014-03-01

    The earth experiments with drop impact onto metal-plated electrospun nanofiber mats encompass a single drop, or drop trains or jets impacts. The results on drop cooling and pool boiling on nano-textured surface were obtained during the parabolic flights supported by NASA and ESA. Pool boiling on nano-textured surfaces was studied for ethanol and water as working fluids. The nano-textured surfaces were copper platelets covered with copper-plated electrospun nanofibers. The results revealed that the heat flux in boiling on the nano-textured surfaces was about 3-8 times higher than that on the bare copper. This stems from the fact that nano-textured surfaces promote bubble growth by increasing the average temperature of fluid surrounding growing bubbles. Nano-textured surfaces facilitated bubble growth rate and increase bubble detachment frequency. On the other hand, the critical heat flux (CHF) on the nano-textured surfaces was found to be very close to its counterpart on the bare copper surfaces. However, the heat flux on the nano-textured surfaces in transition boiling was significantly higher than on the bare copper ones, since the presence of nanofibers prevented bubble merging and delayed formation of vapor film.

  5. Fabrication of friction-reducing texture surface by selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs)

    Science.gov (United States)

    Wang, Xinjian; Liu, Junyan; Wang, Yang; Fu, Yanan

    2017-02-01

    This paper reports a process of selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs) for the fabrication of full dense Cu friction-reducing texture on the metallic surface in ambient condition. This technique synthesizes pure Cu by chemical reduction route using an organic solvent during laser melting in the atmosphere environment, and provides a flexible additive manufacture approach to form complex friction-reduction texture on the metallic surface. Microtextures of ring and disc arrays have been fabricated on the stainless steel surface by SLM-IP Cu NPs. The friction coefficient has been measured under the lubricating condition of the oil. Disc texture surface (DTS) has a relatively low friction coefficient compared with ring texture surface (RTS), Cu film surface (Cu-FS) and the untreated substrate. The study suggests a further research on SLM-IP approach for complex microstructure or texture manufacturing, possibly realizing its advantage of flexibility.

  6. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture.

    Science.gov (United States)

    Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W

    2013-11-07

    Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.

  7. Surface texture and hardness of dental alloys processed by alternative technologies

    Science.gov (United States)

    Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.

    2017-08-01

    Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.

  8. Scatterometry—fast and robust measurements of nano-textured surfaces

    Science.gov (United States)

    Hannibal Madsen, Morten; Hansen, Poul-Erik

    2016-06-01

    Scatterometry is a fast, precise and low cost way to determine the mean pitch and dimensional parameters of periodic structures with lateral resolution of a few nanometer. It is robust enough for in-line process control and precise and accurate enough for metrology measurements. Furthermore, scatterometry is a non-destructive technique capable of measuring buried structures, for example a grating covered by a thick oxide layer. As scatterometry is a non-imaging technique, mathematical modeling is needed to retrieve structural parameters that describe a surface. In this review, the three main steps of scatterometry are discussed: the data acquisition, the simulation of diffraction efficiencies and the comparison of data and simulations. First, the intensity of the diffracted light is measured with a scatterometer as a function of incoming angle, diffraction angle and/or wavelength. We discuss the evolution of the scatterometers from the earliest angular scatterometers to the new imaging scatterometers. The basic principle of measuring diffraction efficiencies in scatterometry has remained the same since the beginning, but the instrumental improvements have made scatterometry a state-of-the-art solution for fast and accurate measurements of nano-textured surfaces. The improvements include extending the wavelength range from the visible to the extreme ultra-violet range, development of Fourier optics to measure all diffraction orders simultaneously, and an imaging scatterometer to measure area of interests smaller than the spot size. Secondly, computer simulations of the diffraction efficiencies are discussed with emphasis on the rigorous coupled-wave analysis (RCWA) method. RCWA has, since the mid-1990s, been the preferred method for grating simulations due to the speed of the algorithms. In the beginning the RCWA method suffered from a very slow convergence rate, and we discuss the historical improvements to overcome this challenge, e.g. by the introduction of Li

  9. Computer Modeling of the Surface Texture Treated by Mill with Curved Cutting Edge

    Directory of Open Access Journals (Sweden)

    M. S. Potapova

    2015-01-01

    Full Text Available Application of mills with a curvilinear profile of the cutting edge (often called rough end mills allows us to increase milling rate, but a roughness of the surface treated by such mills is higher, than after milling by the "ordinary" mills with the "smooth" cutting edge. Deterioration of a roughness is caused by a curvature of cutting edge. The shape and sizes of a profile are of crucial importance for forming roughness on a surface. A literary review revealed that depending on a profile of the cutting edge the roughness of the machined surface makes Ra2…12,5μm.There is a developed parametrical computer model to visualize roughness formed on a surface after milling by the fluting cutter and curved cutting edge mill. The computer model also allows a 3D chip type to be cut off from a work-piece by the mills with various cutting edge profiles. When developing the model it was assumed that the tilt angle of a cutting flute is equal 0 °, a trajectory of the tooth movement is a circle rather than a trochoidal curve.An experimental test of the model has shown that the radial beats of the mill teeth have a very significant effect on the extent of the roughness formed on the machined surface. After amendments - taking into consideration teeth beats - introduced into model the modeling error made less than 5% that can be explained by the fact that profile parameters of the cutting edge of mills embedded in the model are inaccurate because of the tilt angle the cutting flutes.The analysis of the surface model has shown that after milling the work piece has a cellular structure. Each tooth with curved cutting edge forms the cell repeating with the next turn of a mill. The adjacent teeth form identical cells displaced in the feed path with respect to the cell formed by the previous tooth by the chip load Sz. Unlike processing by the ordinary mills with the "smooth" cutting edge in this case on a surface there is a surface texture not only in the feed

  10. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate.

    Science.gov (United States)

    Akalın, A S; Unal, G; Dinkci, N; Hayaloglu, A A

    2012-07-01

    The influence of milk protein-based ingredients on the textural characteristics, sensory properties, and microstructure of probiotic yogurt during a refrigerated storage period of 28 d was studied. Milk was fortified with 2% (wt/vol) skim milk powder as control, 2% (wt/vol) sodium calcium caseinate (SCaCN), 2% (wt/vol) whey protein concentrate (WPC) or a blend of 1% (wt/vol) SCaCN and 1% (wt/vol) WPC. A commercial yogurt starter culture and Bifidobacterium lactis Bb12 as probiotic bacteria were used for the production. The fortification with SCaCN improved the firmness and adhesiveness. Higher values of viscosity were also obtained in probiotic yogurts with SCaCN during storage. However, WPC enhanced water-holding capacity more than the caseinate. Addition of SCaCN resulted in a coarse, smooth, and more compact protein network; however, WPC gave finer and bunched structures in the scanning electron microscopy micrographs. The use of SCaCN decreased texture scores in probiotic yogurt; probably due to the lower water-holding capacity and higher syneresis values in the caseinate-added yogurt sample. Therefore, the textural characteristics of probiotic yogurts improved depending on the ingredient variety.

  11. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kaichen; Zhang, Chentao; Zhou, Rui; Ji, Rong; Hong, Minghui

    2016-05-16

    Surface enhanced Raman spectroscopy (SERS) has drawn much research interest in the past decades as an efficient technique to detect low-concentration molecules. Among many technologies, which can be used to fabricate SERS substrates, laser ablation is a simple and high-speed method to produce large-area SERS substrates. This work investigates the angular texturing effect by dynamic laser ablation and its influence on SERS signals. By tuning the angle between the Si surface and laser irradiation, the distributions and sizes of laser induced hybrid micro/nano-structures are studied. By decorating with a silver film, plenty of hot spots can be created among these structures for SERS. It is found that when the incident laser angle is 15° at the laser fluence of 16.0 J/cm2, the SERS performance is well optimized. This work realizes antisymmetric distribution of nanoparticles deposited on Si surface, which provides a flexible tuning of the hybrid micro/nano-structures' fabrication with high controllability for practical applications.

  12. Experimental study of light output power for vertical GaN-based light-emitting diodes with various textured surface and thickness of GaN layer

    Directory of Open Access Journals (Sweden)

    Ho-Sang Kwack

    2012-06-01

    Full Text Available The light output power (LOP of vertical-type GaN-based light emitting diodes (LED with surface roughness (texture can be changed by texture size, density, and thickness of GaN film or by the combined effects of texture formation and thickness of GaN film. We have investigated these changes experimentally and note that the enhancement of the LOP by a factor of 2.4 can be improved with optimum texturing parameters as compared to that without texturing. In addition, the LOP of GaN-based LEDs under the same texture density increase slightly as thickness of GaN film decreases. Base on these results, we have evidently demonstrated that the enhancement factors of LOP are related to the correlation between texture size (density and thickness of GaN film.

  13. A semi-automatic multiple view texture mapping for the surface model extracted by laser scanning

    Science.gov (United States)

    Zhang, Zhichao; Huang, Xianfeng; Zhang, Fan; Chang, Yongmin; Li, Deren

    2008-12-01

    Laser scanning is an effective way to acquire geometry data of the cultural heritage with complex architecture. After generating the 3D model of the object, it's difficult to do the exactly texture mapping for the real object. we take effort to create seamless texture maps for a virtual heritage of arbitrary topology. Texture detail is acquired directly from the real object in a light condition as uniform as we can make. After preprocessing, images are then registered on the 3D mesh by a semi-automatic way. Then we divide the mesh into mesh patches overlapped with each other according to the valid texture area of each image. An optimal correspondence between mesh patches and sections of the acquired images is built. Then, a smoothing approach is proposed to erase the seam between different images that map on adjacent mesh patches, based on texture blending. The obtained result with a Buddha of Dunhuang Mogao Grottoes is presented and discussed.

  14. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    Science.gov (United States)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  15. Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture

    Directory of Open Access Journals (Sweden)

    Homayun Mehrabani

    2014-09-01

    Full Text Available Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g., Antarctic anchor ice, or in environments with moisture and cold air (e.g., plants, intertidal begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We examined sub-polar marine organisms to develop sample textures and screened them for ice formation and accretion in submerged conditions using previous methods for comparison to data for Antarctic organisms. The sub-polar organisms tested were all found to form ice readily. We also screened artificial 3-D printed samples using the same previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. Despite limitations inherent to our techniques, it appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttalli. The geometric dimensions of the features have only a small (∼6% effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their

  16. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".

    Science.gov (United States)

    Zhao, Hong; Park, Kyoo-Chul; Law, Kock-Yee

    2012-10-23

    Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect

  17. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.

    Science.gov (United States)

    Choi, Wonjae; Tuteja, Anish; Mabry, Joseph M; Cohen, Robert E; McKinley, Gareth H

    2009-11-01

    The Cassie-Baxter model is widely used to predict the apparent contact angles obtained on composite (solid-liquid-air) superhydrophobic interfaces. However, the validity of this model has been repeatedly challenged by various research groups because of its inherent inability to predict contact angle hysteresis. In our recent work, we have developed robust omniphobic surfaces which repel a wide range of liquids. An interesting corollary of constructing such surfaces is that it becomes possible to directly image the solid-liquid-air triple-phase contact line on a composite interface, using an electron microscope with non-volatile organic liquids or curable polymers. Here, we fabricate a range of model superoleophobic surfaces with controlled surface topography in order to correlate the details of the local texture with the experimentally observed apparent contact angles. Based on these experiments, in conjunction with numerical simulations, we modify the classical Cassie-Baxter relation to include a local differential texture parameter which enables us to quantitatively predict the apparent advancing and receding contact angles, as well as contact angle hysteresis. This quantitative prediction also allows us to provide an a priori estimation of roll-off angles for a given textured substrate. Using this understanding we design model substrates that display extremely small or extremely large roll-off angles, as well as surfaces that demonstrate direction-dependent wettability, through a systematic control of surface topography and connectivity.

  18. Fluoride influences nickel-titanium orthodontic wires' surface texture and friction resistance

    Science.gov (United States)

    Abbassy, Mona Aly

    2016-01-01

    Objectives: The aim of this study was to investigate the effects exerted by the acidulated fluoride gel on stainless steel and nickel-titanium (Ni-Ti) orthodontic wires. Materials and Methods: Sixty stainless steel and Ni-Ti orthodontic archwires were distributed into forty archwires used for in vitro study and twenty for in situ study. Fluoride was applied for 1 h in the in vitro experiment while it was applied for 5 min in the in situ experiment. The friction resistance of all wires with ceramic brackets before/after topical fluoride application was measured using a universal testing machine at 1 min intervals of moving wire. Moreover, surface properties of the tested wires before/after fluoride application and before/after friction test were examined by a scanning electron microscope (SEM). Dunnett's t-test was used to compare frictional resistance of as-received stainless steel wires and Ni-Ti wires to the wires treated by fluoride in vitro and in situ (P < 0.05). Two-way ANOVA was used to compare the effect of fluoride application and type of wire on friction resistance in vitro and in situ (P < 0.05). Results: Ni-Ti wires recorded significantly high friction resistance after fluoride application when compared to stainless steel wires in vitro, P < 0.05. Fluoride application did not significantly affect the friction resistance of the tested wires in situ, P < 0.05. SEM observation revealed deterioration of the surface texture of the Ni-Ti wires after fluoride application in vitro and in situ. Conclusions: The in vitro fluoride application caused an increase in friction resistance of Ni-Ti wires when compared to stainless steel wires. In vitro and in situ fluoride application caused deterioration in surface properties of Ni-Ti wires. PMID:27843886

  19. Response surface methodology for predicting quality characteristics of beef patties added with flaxseed and tomato paste.

    Science.gov (United States)

    Valenzuela Melendres, M; Camou, J P; Torrentera Olivera, N G; Alvarez Almora, E; González Mendoza, D; Avendaño Reyes, L; González Ríos, H

    2014-05-01

    Response surface methodology was used to study the effect of flaxseed flour (FS) and tomato paste (TP) addition, from 0 to 10% and 0 to 20% respectively, on beef patty quality characteristics. The assessed quality characteristics were color (L, a, and b), pH and texture profile analysis (TPA). Also, sensory analysis was performed for the assessment of color, juiciness, firmness, and general acceptance. FS addition reduced L and a values and decreased weight loss of cooked products (Psensory characteristics of the cooked product (Psensory characteristics evaluated had an acceptable score (>5.6). Thus FS and TP are ingredients that can be used in beef patty preparation.

  20. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    Directory of Open Access Journals (Sweden)

    Koen Smets

    2016-07-01

    Full Text Available The production of activated carbons (ACs from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C, activation time (30, 60, 90 and 120 min and agent (steam and CO2 on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240 in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model.

  1. Effect of illuminating and viewing geometry on the color coordinates of samples with various surface textures.

    Science.gov (United States)

    Billmeyer, F W; Marcus, R T

    1969-04-01

    Color measurements with several different illuminating/viewing geometries were carried out for samples with four different surface textures in four different colors: matte papers, glossy papers, ceramic or porcelain enamel tiles, and polished opaque glasses, with ISCC-NBS color designations moderate pink, pale orange-yellow, dark bluish-green, and dark gray. On a single instrument (Cary 14 spectrophotometer), three geometries were used: normal/diffuse (N/D), diffuse/normal (D/N) and normal/45 degrees (N/45). For comparison, measurements were also made on a GE spectrophotometer (GERS) using near-normal/diffuse geometry. All integrating sphere (diffuse) measurements were made with specular component both included and excluded. Specular gloss and goniophotometric reflectance measurements were made. For these samples, the Cary 14 N/D and GERS results are in good agreement, and the results with N/D and D/N geometries are essentially equivalent, but there is strong evidence of the serious problem of incomplete exclusion of the specular component with all of the integrating sphere geometries when operated in the specular-excluded mode, even with samples normally considered to be highly glossy or highly matte.

  2. Novel low-cost approach for removal of surface contamination before texturization of commercial monocrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, U. [Electronics and Telecommunication Engineering Department, IC Design and Fabrication Centre, Jadavpur University, Kolkata 700032 (India); School of Information and Communication Engineering, Sungkyunkwan University, 300, Chun-Chun dong, Jangan-gu, Suwon, 440-746 (Korea); Dhungel, S.K.; Yi, J. [School of Information and Communication Engineering, Sungkyunkwan University, 300, Chun-Chun dong, Jangan-gu, Suwon, 440-746 (Korea); Mondal, A.K. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 71103 (India); Saha, H. [Electronics and Telecommunication Engineering Department, IC Design and Fabrication Centre, Jadavpur University, Kolkata 700032 (India)

    2007-07-23

    This paper reports a novel approach on the surface treatment of monocrystalline silicon solar cells using an inorganic chemical, sodium hypochlorite (NaOCl) that has some remarkable properties. The treatment of contaminated crystalline silicon wafer with hot NaOCl helps the removal of organic contaminants due to its oxidizing properties. The objective of this paper is to establish the effectiveness of this treatment using hot NaOCl solution before the saw damage removal step of the conventional NaOH texturing approach. A comparative study of surface morphology and FTIR analyses of textured monocrystalline silicon surfaces with and without NaOCl pre-treatment is also reported. The process could result in a significant low cost approach viable for cleaning silicon wafers on a mass production scale. (author)

  3. Application of Texture Characteristics for Urban Feature Extraction from Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    D.Shanmukha Rao

    2014-12-01

    Full Text Available Quest of fool proof methods for extracting various urban features from high resolution satellite imagery with minimal human intervention has resulted in developing texture based algorithms. In view of the fact that the textural properties of images provide valuable information for discrimination purposes, it is appropriate to employ texture based algorithms for feature extraction. The Gray Level Co-occurrence Matrix (GLCM method represents a highly efficient technique of extracting second order statistical texture features. The various urban features can be distinguished based on a set of features viz. energy, entropy, homogeneity etc. that characterize different aspects of the underlying texture. As a preliminary step, notable numbers of regions of interests of the urban feature and contrast locations are identified visually. After calculating Gray Level Co-occurrence matrices of these selected regions, the aforementioned texture features are computed. These features can be used to shape a high-dimensional feature vector to carry out content based retrieval. The insignificant features are eliminated to reduce the dimensionality of the feature vector by executing Principal Components Analysis (PCA. The selection of the discriminating features is also aided by the value of Jeffreys-Matusita (JM distance which serves as a measure of class separability Feature identification is then carried out by computing these chosen feature vectors for every pixel of the entire image and comparing it with their corresponding mean values. This helps in identifying and classifying the pixels corresponding to urban feature being extracted. To reduce the commission errors, various index values viz. Soil Adjusted Vegetation Index (SAVI, Normalized Difference Vegetation Index (NDVI and Normalized Difference Water Index (NDWI are assessed for each pixel. The extracted output is then median filtered to isolate the feature of interest after removing the salt and pepper

  4. Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow

    Science.gov (United States)

    Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.

    2011-12-01

    Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference

  5. Rheological characteristics of soft rock structural surface

    Institute of Scientific and Technical Information of China (English)

    陈沅江; 吴超; 傅衣铭

    2008-01-01

    There are two mechanisms of the coarse surface asperity resistance effect and rubbing resistance effect in the course of the soft rock structural surface creep,of which the former plays a dominant role in hindering the deformation in the starting creep phase,so that the structural surface creep usually displays the strong surface roughness effect,and so does the latter when the asperities in the coarse surface were fractured by shearing.Under the low stress condition,there are only two phases of the decelerating creep and the constant creep for the soft rock structural surface,and as the stress increases and overcomes the rubbing resistance,the accelerating creep failure of the structural surface will happen suddenly.Therefore,a multiple rheological model,which combines the nonlinear NEWTON body(NN) of a certain mass and the empirical plastic body(EM) with the classical SAINT VENANT body,NEWTON body,KELVIN body and HOOKE body,could be used to comprehensively describe the creep characteristics of the soft rock structural surface.Its mechanical parameter values will vary owing to the different surface roughness of the structural surface.The parameters of GH,GK and ηL are positively linearly correlative to the surface roughness.The surface roughness and m are negative exponential function correlation.The long-term strength τS is positively correlative to the surface roughness.

  6. The study of FTO surface texturing fabrication using Argon plasma etching technique for DSSC applications

    Science.gov (United States)

    Jayanti, Lindha; Kusumandari; Sujitno, Tjipto; Suryana, Risa

    2016-02-01

    This paper is aimed to investigate the fabrication of the fluorine-doped tin oxide (FTO) texturing by using Argon (Ar) plasma etching. The pressure and temperature of Ar gas during plasma etching were 1.6 mbar and 240-285oC, respectively. The plasma etching time was varied from 3 and 10 min. We also prepared without etching samples as reference. UV-Vis spectrophotometer showed that the transmittances of etching samples are higher than the without etching samples. The root mean square roughness (Rq) of etching samples are lower than the without etching samples. It is considered that the Ar ions bombardment can modify the FTO surfaces. However, the etching time does not significantly affect the FTO surfaces for 3 min and 10 min. The Rq of the without etching sample, the etching sample for 3 min, and the etching sample for 10 min are 11.697 nm, 9.859 nm, and 9.777 nm, respectively. These results are good agreement with the four point probe measurement that indicated that the sheet resistance (RS) for each the without sample, the etching sample for 3 min, and the etching sample for 10 min are 16.817 Ωsq, 16.067 Ω/sq, and 15.990 Ω/sq. In addition, the optical transmittance of the etching sample for 3 min and the etching sample for 10 min at wavelengths of 350 - 850 nm are almost similar. This is evidence that the etching time below 10 min cannot significantly change the morphology, optical and electrical properties.

  7. The Textured Growth Characteristics of Diamond Films on CoSi2 (001)

    Institute of Scientific and Technical Information of China (English)

    C.Z.Gu; X.Jiang

    2000-01-01

    Epitaxial CoSi2 (001) layers, deposited on Si (001) substrate by molecular beam allotaxy (MBA), were used as substrate for diamond deposition in order to realise new applications. The results indicate that, in a microwave plasma chamber, diamond can be nucleated with a higher density on CoSi2 at lower temperatures using a bias enhanced method. High quality, [001]-textured diamond films can be synthesized on CoSi2 (001) using the [001] textured growth conditions. So far an epitaxial growth of diamond on CoSi2 cannot be observed. Statistically, a rotating angle distribution of diamond grains around the [001] axis in an [001]-textured film shows, however, preferred in-plane orientations of 13°, 22°, 45° and 77° relative to the CoSi2 [011]axis. The structural and chemical analyses show that no Co and Si element diffusion from the CoSi2 substrate into the diamond film can be detected.

  8. Antiferromagnetic textures and dynamics on the surface of a heavy metal

    OpenAIRE

    Zarzuela, Ricardo; Tserkovnyak, Yaroslav

    2017-01-01

    We investigate the formation and dynamics of spin textures in antiferromagnetic insulators adjacent to a heavy-metal substrate with strong spin-orbit interactions. Exchange coupling to conduction electrons engenders an effective anisotropy, Dzyaloshinskii-Moriya interactions, and a magnetoelectric effect for the N\\'{e}el order, which can conspire to produce nontrivial antiferromagnetic textures. Current-driven spin transfer enabled by the heavy metal, furthermore, triggers ultrafast (THz) osc...

  9. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions.

    Science.gov (United States)

    Zhao, Lingzhou; Mei, Shenglin; Chu, Paul K; Zhang, Yumei; Wu, Zhifen

    2010-07-01

    Hierarchical hybrid micro/nano-textured titanium surface topographies with titania nanotubes were produced by simple acid etching followed by anodization to mimic the hierarchical structure of bone tissues. Primary rat osteoblasts were used to evaluate the bioactivity. The microtopography formed by acid etching of titanium induced inconsistent osteoblast functions with initial cell adhesion and osteogenesis-related gene expression being dramatically enhanced while other cell behaviors such as proliferation, intracellular total protein synthesis and alkaline phosphatase activity, collagen secretion, and extracellular matrix mineralization being depressed. In comparison, addition of nanotubes to the microtopography led to enhancement of multiple osteoblast functions. Nearly all the cell functions investigated in this study were retained or promoted. Compared to a microtopography, the enhancement of multiple cell functions observed from the hierarchical micro/nano-textured surfaces is expected to lead to faster bone maturation around the titanium implants without compromising the bone mass. In addition, the hierarchical micro/nano-textured surfaces still retain the mechanical interlocking ability of the microtopography thereby boding well for osseointegration. Our study reveals a synergistic role played by the micro and nanotopographies in osteoblast functions and provides insight to the design of better biomedical implant surfaces.

  10. Euler Characteristic and Quadrilaterals of Normal Surfaces

    Indian Academy of Sciences (India)

    Tejas Kalelkar

    2008-05-01

    Let be a compact 3-manifold with a triangulation . We give an inequality relating the Euler characteristic of a surface normally embedded in with the number of normal quadrilaterals in . This gives a relation between a topological invariant of the surface and a quantity derived from its combinatorial description. Secondly, we obtain an inequality relating the number of normal triangles and normal quadrilaterals of , that depends on the maximum number of tetrahedrons that share a vertex in .

  11. Pressure-induced topological insulator in NaBaBi with right-handed surface spin texture

    Science.gov (United States)

    Sun, Yan; Wang, Qing-Ze; Wu, Shu-Chun; Felser, Claudia; Liu, Chao-Xing; Yan, Binghai

    2016-05-01

    Starting from the three-dimensional Dirac semimetal in Na3Bi , we found a topological insulator (TI) in the known compound of NaBaBi by extra pressure. The TI of NaBaBi can be viewed as the distorted version of Na3Bi with breaking inversion symmetry. When the exchange-correlation energy is considered in generalized gradient approximation (GGA), the TI phase has a band inversion between the Bi-p and Na-s orbitals. Since GGA often overestimates the band inversion, we also performed more accurate calculations by using hybrid functional theory (HSE). From HSE calculations we found that NaBaBi exhibits as a trivial insulator at zero pressure, and the other TI phase with p -d inversion can be achieved by pressure. Though both of two TI phases have Dirac-cone-type surface states, they have opposite spin textures. In the upper cone, a lefthanded spin texture exists for the s -p inverted phase (similar to a common TI, e.g., Bi2Se3 ), whereas a righthanded spin texture appears for the p -d inverted phase. This work presents a prototype model of a TI exhibits righthanded spin texture.

  12. Wear Characterization of Cemented Carbides (WC–CoNi Processed by Laser Surface Texturing under Abrasive Machining Conditions

    Directory of Open Access Journals (Sweden)

    Shiqi Fang

    2017-06-01

    Full Text Available Cemented carbides are outstanding engineering materials widely used in quite demanding material removal applications. In this study, laser surface texturing is implemented for enhancing, at the surface level, the intrinsic bulk-like tribological performance of these materials. In this regard, hexagonal pyramids patterned on the cutting surface of a tungsten cemented carbide grade (WC–CoNi have been successfully introduced by means of laser surface texturing. It simulates the surface topography of conventional honing stones for abrasive application. The laser-produced structure has been tested under abrasive machining conditions with full lubrication. Wear of the structure has been characterized and compared, before and after the abrasive machining test, in terms of changes in geometry aspect and surface integrity. It is found that surface roughness of the machined workpiece was improved by the laser-produced structure. Wear characterization shows that laser treatment did not induce any significant damage to the cemented carbide. During the abrasive machining test, the structure exhibited a high wear resistance. Damage features were only discerned at the contacting surface, whereas geometrical shape of pyramids remained unchanged.

  13. Computer Texture Mapping for Laser Texturing of Injection Mold

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2014-04-01

    Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.

  14. Histological evaluation of capsules formed by silicon implants coated with polyurethane foam and with a textured surface in rats.

    Science.gov (United States)

    Silva, Eduardo Nascimento; Ribas-Filho, Jurandir Marcondes; Czeczko, Nicolau Gregori; Pachnicki, Jan Pawel Andrade; Netto, Mário Rodrigues Montemor; Lipinski, Leandro Cavalcante; Noronha, Lucia de; Colman, Joelmir; Zeni, João Otavio; Carvalho, Caroline Aragão de

    2016-12-01

    To assess the capsules formed by silicone implants coated with polyurethane foam and with a textured surface. Sixty-four Wistar albinus rats were divided into two groups of 32 each using polyurethane foam and textured surface. The capsules around the implants were analyzed for 30, 50, 70 and 90 days. Were analyzed the following parameters: foreign body reaction, granulation tissue, presence of myofibroblasts, neoangiogenesis, presence of synovial metaplasia, capsular thickness, total area and collagen percentage of type I and III, in capsules formed around silicone implants in both groups. The foreign body reaction was only present in the four polyurethane subgroups. The formation of granulation tissue and the presence of myofibroblasts were higher in the four polyurethane subgroups. Regarding to neoangiogenesis and synovial metaplasia, there was no statistical difference between the groups. Polyurethane group presented (all subgroups) a greater capsule thickness, a smaller total area and collagen percentage of type I and a higher percentage area of type III, with statistical difference. The use of polyurethane-coated implants should be stimulated by the long-term results in a more stable capsule and a lower incidence of capsular contracture, despite developing a more intense and delayed inflammatory reaction in relation to implants with textured surface.

  15. Image Texture Dependence Upon Sensing and Calculation Parameters

    Science.gov (United States)

    Rodionova, N. V.

    2013-08-01

    This paper analyzes various parameters influence on the textural properties of digital remote sensing images using the statistical method of texture description (grey-level co-occurrence matrix (GLCM)). The parameters may be grouped to external (primary) parameters determined by surface and sensor characteristics (radar frequency, polarization, speckle filtering, spatial and radiometric resolution of the sensor, multispectral (MS) band, etc.), and internal (secondary) parameters determined by the texture calculation algorithm.SAR, MS and panchromatic images are used for illustration.

  16. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    Science.gov (United States)

    Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina

    2016-08-01

    This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600-800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm-1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the dominance of cavities to grains of similar size, and develops in a similar manner at higher temperatures.

  17. Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies

    Directory of Open Access Journals (Sweden)

    Arti Chauhan

    2016-12-01

    Full Text Available This study examined the effects of whole amaranth substitutions at various proportions and evaluated the cookies baking behavior. Six types of formulations of cookies were prepared with whole amaranth flour ranging from 20, 40, 60, 80, and 100%. These cookies were evaluated for physical (thickness, diameter, spread ratio, and bake loss, textural, and organoleptic attributes. The diameter and spread ratios were found to be higher in whole amaranth flour cookies 52.20 mm and 6.46, respectively, as compared to other blends (20–80% of cookies from 51.37 to 51.92 mm and 6.13 to 6.36, respectively. Textural measurement showed that hardness of cookies decreased with the addition of amaranth flour. Whole amaranth flour cookies required least snap force (72.4 N compared to control (whole-wheat flour cookies (145 N. Sensory data indicated that the amaranth cookies with up to 60% were acceptable, while additional amaranth flour resulted in a decreased mean score for overall acceptability.

  18. SPECTRAL AND TEXTURAL CHARACTERISTICS OF THE LOWLAND TROPICAL RAIN FOREST OF JAMBI, SUMATERA

    Directory of Open Access Journals (Sweden)

    UPIK ROSALINA WASRIN

    1999-01-01

    Full Text Available Analyses of Landsat TM and SPOT multispectral data were performed with a very detailed description of the vegetation cover in the field to get a relevancy and consistency of digital image classification in a semi-automatic approach. Three main vegetation types, i.e. primary forest, logged-over forest and secondary forest after clear cut were analyzed and the microclimatic parameters were also measured to describe the ecological condition of the vegetation. Spectral and textural analysis of data obtained from field measurements and spectral reflectance values of the remote sensing data are the main topic of this report as one aspect of study on the Digital Method of Detection and Monitoring on Forest Ecosystem Change Using High Resolution Satellite Data funded by the Indonesian National Research Council. This study shows that spectral reflectance values alone cannot differentiate the logged-over forest from the primary forest, but it is very sharply distinguished from the secondary forest. As for the texture analysis, it is possible to distinguish the logged-over forest from the primary forest, as shown by different values of degree of Entropy, although spatially, it is still doubtful.

  19. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants.

    Science.gov (United States)

    Wassmann, Torsten; Kreis, Stefan; Behr, Michael; Buergers, Ralf

    2017-12-01

    This study aims to investigate bacterial adhesion on different titanium and ceramic implant surfaces, to correlate these findings with surface roughness and surface hydrophobicity, and to define the predominant factor for bacterial adhesion for each material. Zirconia and titanium specimens with different surface textures and wettability (5.0 mm in diameter, 1.0 mm in height) were prepared. Surface roughness was measured by perthometer (R a ) and atomic force microscopy, and hydrophobicity according to contact angles by computerized image analysis. Bacterial suspensions of Streptococcus sanguinis and Staphylococcus epidermidis were incubated for 2 h at 37 °C with ten test specimens for each material group and quantified with fluorescence dye CytoX-Violet and an automated multi-detection reader. Variations in surface roughness (R a ) did not lead to any differences in adhering S. epidermidis, but higher R a resulted in increased S. sanguinis adhesion. In contrast, higher bacterial adhesion was observed on hydrophobic surfaces than on hydrophilic surfaces for S. epidermidis but not for S. sanguinis. The potential to adhere S. sanguinis was significantly higher on ceramic surfaces than on titanium surfaces; no such preference could be found for S. epidermidis. Both surface roughness and wettability may influence the adhesion properties of bacteria on biomaterials; in this context, the predominant factor is dependent on the bacterial species. Wettability was the predominant factor for S. epidermidis and surface texture for S. sanguinis. Zirconia did not show any lower bacterial colonization potential than titanium. Arithmetical mean roughness values R a (measured by stylus profilometer) are inadequate for describing surface roughness with regard to its potential influence on microbial adhesion.

  20. Is It Possible to Classify Topsoil Texture Using a Sensor Located 800 km Away from the Surface?

    Directory of Open Access Journals (Sweden)

    José Alexandre Melo Demattê

    Full Text Available ABSTRACT It is often difficult for pedologists to “see” topsoils indicating differences in properties such as soil particle size. Satellite images are important for obtaining quick information for large areas. However, mapping extensive areas of bare soil using a single image is difficult since most areas are usually covered by vegetation. Thus, the aim of this study was to develop a strategy to determine bare soil areas by fusing multi-temporal satellite images and classifying them according to soil textures. Three different areas located in two states in Brazil, with a total of 65,000 ha, were evaluated. Landsat images of a specific dry month (September over five consecutive years were collected, processed, and subjected to atmospheric correction (values in surface reflectance. Non-vegetated areas were discriminated from vegetated ones using the Linear Spectral Mixture Model (LSMM and Normalized Difference Vegetation Index (NDVI. Thus, we were able to fuse images with only bare soil. Field samples were taken from bare soil pixel areas. Pixels of soils with different textures (soil texture classifications were used for supervised classification in which all areas with exposed soil were classified. Single images reached an average of 36 % bare soil, where the mapper could only “see” these points. After using the proposed methodology, we reached a maximum of 85 % in bare areas; therefore, a pedologist would have proper conditions for generating a continuous map of spatial variations in soil properties. In addition, we mapped soil textural classes with accuracy up to 86.7 % for clayey soils. Overall accuracy was 63.8 %. The method was tested in an unknown area to validate the accuracy of our classification method. Our strategy allowed us to discriminate and categorize different soil textures in the field with 90 % accuracy using images. This method can assist several professionals in soil science, from pedologists to mappers of soil

  1. Texturing in titanium grade 2 surface irradiate with ultrashort pulse laser; Texturizacao em superficies de titanio grau 2 irradiadas com laser com pulsos ultracurtos

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Alessandro Francelino

    2015-07-01

    The texturing laser micromachining is an important alternative to improve the bonding adhesion between composites and titanium, which are applied to structural components in the aerospace industry. The texturing running on titanium plates is due to the fact that the preferred joining technique for many composite materials is the adhesive bonding. In this work, titanium plates were texturized using laser ultrashort pulses temporal widths of femtoseconds. This process resulted in minimal heat transfer to the material, avoiding deformation of the titanium plate surface as well as the formation of resolidified material in the ablated region. These drawbacks have occurred with the use of nanoseconds pulses. Were performed three types of texturing using laser with femtosecond pulses, with variations in the distances between the machined lines. The analysis of the obtained surfaces found that the wettability increases when there is the increased distance between the texturing lines. Advancing in the analysis by optical profilometry of textured surfaces was observed that there is substantial increase in the volume available for penetration of structural adhesive when the distances between the textured lines are diminished. In tensile tests conducted it was observed that there is an increase in shear strength of the adhesive joint by reducing the distance between the textured lines. (author)

  2. Dry etch method for texturing silicon and device

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, Talia S.; Haight, Richard A.; Kim, Jeehwan; Lee, Yun Seog

    2017-07-25

    A method for texturing silicon includes loading a silicon wafer into a vacuum chamber, heating the silicon wafer and thermal cracking a gas to generate cracked sulfur species. The silicon wafer is exposed to the cracked sulfur species for a time duration in accordance with a texture characteristic needed for a surface of the silicon wafer.

  3. Photoconductive terahertz generation from textured semiconductor materials.

    Science.gov (United States)

    Collier, Christopher M; Stirling, Trevor J; Hristovski, Ilija R; Krupa, Jeffrey D A; Holzman, Jonathan F

    2016-01-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating-as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials.

  4. Textural and Mineralogical Characteristics of Microbial Fossils in Modern and Ancient Iron (oxyhydr)oxides

    Science.gov (United States)

    Potter, S. L.; Chan, M. A.; McPherson, B. J.

    2012-12-01

    The Jurassic Brushy Basin Member of the Morrison Formation contains extensive alkaline saline lacustrine deposits rich in diagenetic iron (oxyhydr)oxides that are well exposed on the Colorado Plateau of the southwestern USA. These early diagenetic iron (oxyhydr)oxide minerals are associated with preserved diatoms and other algal forms, identified via scanning electron microscope (SEM) in thin sections of representative samples. The minerals are also associated with macroscopic bioturbation features (e.g., charophytes, burrows and fossilized dinosaur bones). Algal forms with cellular elaboration are identified by HF dissolution of bioturbation structures and examination with SEM. Collectively, these features suggest biomediated textures are preserved in early diagenetic iron (oxyhydr)oxides, and can persist for tens of millions of years. Modern microbially precipitated iron (oxyhydr)oxides and ~100ka tufa terraces from a cold spring system along Ten Mile Graben in southern Utah, USA are compared with the Morrison examples to identify modern microbial fossils and document any differences and preservation changes during diagenesis over geologic time. Two distinct suites of elements (1. C, Fe, As and 2. C, S, Se) are associated with microbial fossils in both the modern and ancient tufas, as well as the ancient Morrison specimens. The occurrence of these distinctive trace element configurations in the iron (oxyhydr)oxide minerals suggest the suites could be potential markers for biosignatures. The presence of ferrihydrite in ~100ka fossil microbial mats suggests this thermodynamically unstable mineral may also be used as a biomarker. Diagnostic trace element suites and unusual mineral phases warrant further study for their potential as biomarkers. These terrestrial iron (oxyhydr)oxide examples will: 1) document specific biomediated textures and what their origins might be (related to different processes or species), 2) show how they might persist or respond to

  5. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bramowicz, Miroslaw [University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Oczapowskiego 11, 10-719 Olsztyn (Poland); Braic, Laurentiu [National Institute for Optoelectronics, 409 Atomistilor, 077125, Magurele (Romania); Azem, Funda Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, 35397, Izmir (Turkey); Kulesza, Slawomir [University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer Science, Sloneczna 54, 10-710 Olsztyn (Poland); Birlik, Isil [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, 35397, Izmir (Turkey); Vladescu, Alina, E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor, 077125, Magurele (Romania)

    2016-08-30

    Highlights: • Hydroxyapatite were prepared at temperatures in the range from 400 to 800 °C. • The coatings prepared at 800 °C is closer to the stoichiometric hydroxyapatite. • Hardness and elastic modulus decreased with increasing deposition temperature. • The surface morphology strongly depends on the deposition temperature. • Mesokurtic height distribution pulled towards larger heights were formed at high temperature. - Abstract: This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600–800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm{sup −1}, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the

  6. Variations in Surface Texture of the North Polar Residual Cap of Mars

    Science.gov (United States)

    Milkovich, S. M.; Byrne, S.; Russell, P. S.

    2011-01-01

    The northern polar residual cap (NPRC) of Mars is a water ice deposit with a rough surface made up of pits, knobs, and linear depressions on scales of tens of meters. This roughness manifests as a series of bright mounds and dark hollows in visible images; these bright and dark patches have a characteristic wavelength and orientation. Spectral data indicate that the surface of the NPRC is composed of large-grained (and therefore old) water ice. Due to the presence of this old ice, it is thought that the NPRC is in a current state of net loss of material a result potentially at odds with impact crater statistics, which suggest ongoing deposition over the past 10-20 Kyr.

  7. Variations in Surface Texture of the North Polar Residual Cap of Mars

    Science.gov (United States)

    Milkovich, S. M.; Byrne, S.; Russell, P. S.

    2011-01-01

    The northern polar residual cap (NPRC) of Mars is a water ice deposit with a rough surface made up of pits, knobs, and linear depressions on scales of tens of meters. This roughness manifests as a series of bright mounds and dark hollows in visible images; these bright and dark patches have a characteristic wavelength and orientation. Spectral data indicate that the surface of the NPRC is composed of large-grained (and therefore old) water ice. Due to the presence of this old ice, it is thought that the NPRC is in a current state of net loss of material a result potentially at odds with impact crater statistics, which suggest ongoing deposition over the past 10-20 Kyr.

  8. Spatial Interpolation of Soil Texture Using Compositional Kriging and Regression Kriging with Consideration of the Characteristics of Compositional Data and Environment Variables

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shi-wen; SHEN Chong-yang; CHEN Xiao-yang; YE Hui-chun; HUANG Yuan-fang; LAI Shuang

    2013-01-01

    The spatial interpolation for soil texture does not necessarily satisfy the constant sum and nonnegativity constraints. Meanwhile, although numeric and categorical variables have been used as auxiliary variables to improve prediction accuracy of soil attributes such as soil organic matter, they (especially the categorical variables) are rarely used in spatial prediction of soil texture. The objective of our study was to comparing the performance of the methods for spatial prediction of soil texture with consideration of the characteristics of compositional data and auxiliary variables. These methods include the ordinary kriging with the symmetry logratio transform, regression kriging with the symmetry logratio transform, and compositional kriging (CK) approaches. The root mean squared error (RMSE), the relative improvement value of RMSE and Aitchison’s distance (DA) were all utilized to assess the accuracy of prediction and the mean squared deviation ratio was used to evaluate the goodness of fit of the theoretical estimate of error. The results showed that the prediction methods utilized in this paper could enable interpolation results of soil texture to satisfy the constant sum and nonnegativity constraints. Prediction accuracy and model fitting effect of the CK approach were better, suggesting that the CK method was more appropriate for predicting soil texture. The CK method is directly interpolated on soil texture, which ensures that it is optimal unbiased estimator. If the environment variables are appropriately selected as auxiliary variables, spatial variability of soil texture can be predicted reasonably and accordingly the predicted results will be satisfied.

  9. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Science.gov (United States)

    Zupančič, Matevž; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-01

    Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20-40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  10. Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture

    CERN Document Server

    Mehrabani, Homayun; Tse, Kyle; Evangelista, Dennis

    2014-01-01

    Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g. Antarctic anchor ice), or in environments with moisture and cold air (e.g. plants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We screened biological and artifical samples for ice formation and accretion in submerged conditions using previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. It appears surface texture plays only a small role in delaying the onset of ice formation: a stripe featur...

  11. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  12. Yield and Textural Characteristics of Panela Cheeses Produced with Dairy-Vegetable Protein (Soybean or Peanut) Blends Supplemented with Transglutaminase.

    Science.gov (United States)

    Salinas-Valdés, Alicia; De la Rosa Millán, Julián; Serna-Saldívar, Sergio O; Chuck-Hernández, Cristina

    2015-12-01

    The study evaluated panela cheeses made from dairy-plant protein blends, using soybean or peanut protein isolates, supplemented with transglutaminase (TG). Plant proteins were isolated using an alkaline extraction method followed by acid precipitation, and added to the dairy system in order to increase 50% or 100% the protein concentration. The total protein extraction for peanut and soybean isolates was 30.3% and 54.6%, respectively (based on initial protein content of sources), and no impairment of their essential amino acid profile was detected. Cheeses supplemented with TG and soybean showed the highest moisture and crude yield (>67.8% and 20.7%, respectively), whereas protein content was higher in the peanut isolate--added samples without TG (>67.4%). Cheese solids yield (ratio between final and initial solids) was higher for treatments with TG and 100% of plant protein addition (>50.7%). Regarding texture, 4 parameters were measured: hardness, cohesiveness, chewiness, and springiness. All cheeses containing soybean isolates and TG presented the highest chewiness and cohesiveness values, similar to those of the control treatment. Springiness was similar for all treatments, but hardness was higher in cheeses prepared with the peanut protein isolate added with TG. From these results it can be concluded that panela cheeses can be elaborated following a traditional procedure, but with the addition of soybean or peanut protein to the dairy ingredients. Cheeses containing these protein isolates showed higher protein than the milk control cheese and similar textural characteristics.

  13. Effects of Encapsulated Fish Oil by Polymerized Whey Protein on the Textural and Sensory Characteristics of Low-Fat Yogurt

    Directory of Open Access Journals (Sweden)

    Liu Diru

    2016-07-01

    Full Text Available Five types of polymerized whey protein (PWP1, PWP2, PWP3, PWP4 and PWP5 containing different amounts of fish oil were added to low-fat yogurt as fat replacers. The texture, apparent viscosity, and sensory properties of the yogurts were analyzed in comparison with full-fat ( 3.0%, w/w, fat and low-fat (1.5%, w/w; and 1.2%, w/w milk yogurt controls. The majority (~85% of the particle size distribution was in the range of 1106±158 nm. Thermal property analysis indicated PWP was thermally stable between 50°C and 90°C. Yogurts formulated with 12% of PWP4 and 14% of PWP5 demonstrated higher firmness, springiness and adhesiveness (P<0.05, and lower cohesiveness (P<0.05 than the low-fat milk yogurt controls. There was no fat separation and they had less fishy smell. Yogurts incorporated with 12% of PWP4 had comparable sensory and textural characteristics to the full- -fat milk yogurt control.

  14. Effect of starter culture and inulin addition on microbial viability, texture, and chemical characteristics of whole or skim milk Kefir

    Directory of Open Access Journals (Sweden)

    Flávia Daiana Montanuci

    2012-12-01

    Full Text Available The effect of inulin addition and starters (Kefir grains or commercial starter culture on the microbial viability, texture, and chemical characteristics of Kefir beverages prepared with whole or skim milk was evaluated during refrigerated storage. The type of starter did not influence microbial viability during the storage of the beverages, but the chemical and textural changes (decreases in pH, lactose concentration, and inulin and increased acidity, firmness, and syneresis were more pronounced in the formulations fermented with grains than those fermented with the starter culture. The addition of inulin did not influence acidity or viability of lactic acid bacteria, but in general, its effect on the survival of acetic acid bacteria, Lactococcus and yeasts, firmness, and syneresis depended on the type of milk and starter culture used. Generally, the yeast, acetic acid bacteria, and Leuconostoc counts increased or remained unchanged, while the total population of lactic acid bacteria and Lactococcus were either reduced by 1 to 2 logs or remained unchanged during storage.

  15. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars' tops on the contact time.

    Science.gov (United States)

    Li, Xiying; Ma, Xuehu; Lan, Zhong

    2010-04-06

    We have fabricated a series of textured silicon surfaces decorated by square arrays of pillars whose radius and pitch can be adjusted independently. These surfaces possessed a hydrophobic/superhydrophobic property after silanization. The dynamic behavior of water droplets impacting these structured surfaces was examined using a high-speed camera. Experimental results validated that the remaining liquid film on the pillars' tops gave rise to a wet surface instead of a dry surface as the water droplet began to recede away from the textured surfaces. Also, experimental results demonstrated that the difference in the contact time was subjected to the solid fraction referred to as the ratio of the actual area contacting with the liquid to its projected area on the textured surface. Because the mechanism by which the residual liquid film emerges on the pillars' tops can essentially be ascribed to the pinch-off of the liquid threads, we further addressed the changes in the contact time in terms of the characteristic time of pinch-off of an imaginary liquid cylinder whose radius is related to the solid fraction and the maximum contact area. The match of the theoretical analysis and the experimental results substantiates the assumption aforementioned.

  16. Wetting Characteristics of Insect Wing Surfaces

    Institute of Scientific and Technical Information of China (English)

    Doyoung Byun; Jongin Hong; Saputra; Jin Hwan Ko; Young Jong Lee; Hoon Cheol Park; Bong-Kyu Byun; Jennifer R. Lukes

    2009-01-01

    Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves, which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces. We investigated the micro-scale and nano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancing the hydrophobicity. After examining 10 orders and 24 species of flying Pterygotan insects, we found that micro-scale and nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects. The tiny structures such as denticle or setae on the insect wings enhance the hydrophobicity, thereby enabling the wings to be cleaned more easily. And the hydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20. In order to examine the wetting characteristics on a rough surface, a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer,which exhibits the same behavior as the insect wing, with the Cassie-Wenzel transition occurring consistently around a pitch/width value of 20.

  17. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2017-07-01

    Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.

  18. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars

    Science.gov (United States)

    Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2016-06-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars.

  19. Surface morphology and physical properties of partially melt textured Mn doped Bi-2223

    Directory of Open Access Journals (Sweden)

    Indu Verma

    2011-09-01

    Full Text Available The samples of Bi2Sr2Ca2Cu3-xMnxO10+δ (x = 0.0 to 0.30 were prepared by the standard solid-state reaction method. The phase identification characteristics of synthesized (HTSC materials were explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters a = 5.4053 Å, b = 5.4110 Å and c = 37.0642 Å up to Mn concentration of x = 0.30. The critical temperature (Tc measured by standard four probe method has been found to depress from 108 K to 70 K as Mn content (x increases from 0.00 to 0.30. The effects of sintering temperature on the surface morphology of Bi2Sr2Ca2Cu3-xMnxO10+δ have also been investigated. The surface morphology investigated through scanning electron microscope and atomic force microscopy (SEM & AFM results that voids are decreasing but grains size increases as the Mn concentration increases besides, nanosphere like structures on the surface of the Mn doped Bi2Sr2Ca2Cu3-xMnxO10+δ (Bi-2223 samples.

  20. Polyspecies biofilm formation on implant surfaces with different surface characteristics

    Directory of Open Access Journals (Sweden)

    Patrick R. SCHMIDLIN

    2013-01-01

    Full Text Available Objective To investigate the microbial adherence and colonization of a polyspecies biofilm on 7 differently processed titanium surfaces. Material and Methods Six-species biofilms were formed anaerobically on 5-mm-diameter sterilized, saliva-preconditioned titanium discs. Material surfaces used were either machined, stained, acid-etched or sandblasted/acid-etched (SLA. Samples of the latter two materials were also provided in a chemically modified form, with increased wettability characteristics. Surface roughness and contact angles of all materials were determined. The discs were then incubated anaerobically for up to 16.5 h. Initial microbial adherence was evaluated after 20 min incubation and further colonization after 2, 4, 8, and 16.5 h using non-selective and selective culture techniques. Results at different time points were compared using ANOVA and Scheffé post hoc analysis. Results The mean differences in microorganisms colonizing after the first 20 min were in a very narrow range (4.5 to 4.8 log CFU. At up to 16.5 h, the modified SLA surface exhibited the highest values for colonization (6.9±0.2 log CFU, p<0.05 but increasing growth was observed on all test surfaces over time. Discrepancies among bacterial strains on the differently crafted titanium surfaces were very similar to those described for total log CFU. F. nucleatum was below the detection limit on all surfaces after 4 h. Conclusion Within the limitations of this in vitro study, surface roughness had a moderate influence on biofilm formation, while wettability did not seem to influence biofilm formation under the experimental conditions described. The modified SLA surface showed the highest trend for bacterial colonization.

  1. The effect of laser surface texturing on the tribological performance of different Sialon ceramic phases

    Institute of Scientific and Technical Information of China (English)

    Bhupendra Joshi; Khagendra Tripathi; Gobinda Gyawali; Soo Wohn Lee

    2016-01-01

    A tribological performance was carried out on different types of hot press Sialon ceramics regarding the phases, i.e., theα-Sialon phase, theβ-Sialon phase, and theα/β-Sialon composite phase. The different phases of Sialon ceramics were analyzed by XRD patterns. For the tribological performance, the Sialon ceramics were laser textured and the starved lubrication method was applied with different dimple pitches under a load of 10 N at room temperature. The material having a dimple pitch of 200μm shows the lowest coefficient of friction. Theα/β-Sialon composite phase shows the least coefficient of friction i.e. 0.04 and 0.1 for the textured and polished (without being textured) samples, respectively. The Sialon ceramics show mild wear and therefore, the wear rate of the steel ball (mating partner) was taken into account for the wear analysis. Theα-Sialon phase having a higher hardness shows the least wear in comparison to theα/β-Sialon composite phase and theβ-Sialon phase.

  2. Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers.

    Science.gov (United States)

    Erdoğan, Mutlu; Öktem, Bülent; Kalaycıoğlu, Hamit; Yavaş, Seydi; Mukhopadhyay, Pranab K; Eken, Koray; Ozgören, Kıvanç; Aykaç, Yaşar; Tazebay, Uygar H; Ilday, F Ömer

    2011-05-23

    We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns.

  3. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    Science.gov (United States)

    Dinca, V.; Alloncle, P.; Delaporte, P.; Ion, V.; Rusen, L.; Filipescu, M.; Mustaciosu, C.; Luculescu, C.; Dinescu, M.

    2015-10-01

    Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan-collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  4. Investigation of the Influence of Shapes-Texture on Surface Deformation of UHMWPE as a Bearing Material in Static Normal Load and Rolling Contact

    Science.gov (United States)

    Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.

    2017-05-01

    Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.

  5. Research on texture feature of RS image based on cloud model

    Science.gov (United States)

    Wang, Zuocheng; Xue, Lixia

    2008-10-01

    This paper presents a new method applied to texture feature representation in RS image based on cloud model. Aiming at the fuzziness and randomness of RS image, we introduce the cloud theory into RS image processing in a creative way. The digital characteristics of clouds well integrate the fuzziness and randomness of linguistic terms in a unified way and map the quantitative and qualitative concepts. We adopt texture multi-dimensions cloud to accomplish vagueness and randomness handling of texture feature in RS image. The method has two steps: 1) Correlativity analyzing of texture statistical parameters in Grey Level Co-occurrence Matrix (GLCM) and parameters fuzzification. GLCM can be used to representing the texture feature in many aspects perfectly. According to the expressive force of texture statistical parameters and by Correlativity analyzing of texture statistical parameters, we can abstract a few texture statistical parameters that can best represent the texture feature. By the fuzziness algorithm, the texture statistical parameters can be mapped to fuzzy cloud space. 2) Texture multi-dimensions cloud model constructing. Based on the abstracted texture statistical parameters and fuzziness cloud space, texture multi-dimensions cloud model can be constructed in micro-windows of image. According to the membership of texture statistical parameters, we can achieve the samples of cloud-drop. By backward cloud generator, the digital characteristics of texture multi-dimensions cloud model can be achieved and the Mathematical Expected Hyper Surface(MEHS) of multi-dimensions cloud of micro-windows can be constructed. At last, the weighted sum of the 3 digital characteristics of micro-window cloud model was proposed and used in texture representing in RS image. The method we develop is demonstrated by applying it to texture representing in many RS images, various performance studies testify that the method is both efficient and effective. It enriches the cloud

  6. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  7. Surface nano-texturing of silicon by picosecond laser irradiation through TiO2 nanotube arrays

    Science.gov (United States)

    Babu, K. E. Sarath Raghavendra; Duraiselvam, Muthukannan

    2015-10-01

    This article presents, nano-texturing of crystalline silicon by irradiating picosecond laser with variable spatial intensity, caused by optically non-linear TiO2 nanotube arrays (TNTA). Along with micro-scale surface structure, highly ordered laser-induced periodic surface structures (LIPSS) was observed at nano-scale. The periodicity (Λ) of the LIPSS generated was near to the laser wavelength (532 nm). Surface morphology at micro-level was characterized by optical microscopy (OM) and white light interferometer (WLI) and at the nano-scale by scanning electron microscope (SEM) and atomic force microscope (AFM). The results highlight the potential use of TNTA as a single step process to produce micro/nanostructures without any gas/liquid medium under ambient condition.

  8. Dispersion and surface characteristics of nanosilica suspensions.

    Science.gov (United States)

    Kumar, Ranganathan; Milanova, Denitsa

    2009-04-01

    Nanofluids consisting of nanometer-sized particles dispersed in base liquids are known to be effective in extending the saturated boiling regime and critical heat flux in pool boiling. The heat transfer characteristics of nanosilica suspensions with particle sizes of 10 and 20 nm in pool boiling with a suspended heating Nichrome wire have been analyzed. The pH value of the nanosuspensions is important from the point of view that it determines the stability of the particles and their mutual interactions toward the suspended heated wire. When silica is suspended in water with no additives, the surface potential of the nanoparticles determines their movement toward the electrodes. Particles continuously deposit on the wire and extend the burnout heat flux, influenced by the chemical composition of the nanofluids. This agglomeration allows high heat transfer through interagglomerate pores, resulting in a nearly threefold increase in burnout heat flux. Particle size, zeta potential, and the burnout heat flux values under different volume concentrations are provided. The burnout heat flux of the wire does not increase monotonically with concentration, but depends on the agglomeration characteristics, particle shape, and the hydroxylated surface of the nanoparticles.

  9. Determination of crystal grain orientations by optical microscopy at textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lausch, D.; Gläser, M.; Hagendorf, C. [Team Mikrostrukturdiagnostik und Analytik, Fraunhofer-Center für Silizium-Photovoltaik CSP, Walter-Hülse-Straße 1 Halle (Saale), Sachsen-Anhalt D-06120 (Germany)

    2013-11-21

    In this contribution, a new method to determine the crystal orientation with the example of chemical treated silicon wafers by means of optical microscopy has been demonstrated. The introduced procedure represents an easy method to obtain all relevant parameters to describe the crystal structure of the investigated material, i.e., the crystal grain orientation and the grain boundary character. The chemical treatment is a standard mono-texture for solar cells, well known in the solar industry. In general, this concept can also be applied to other crystalline materials, i.e., GaAs, SiC, etc., the only thing that needs to be adjusted is the texturing method to reveal specific crystal planes and the calculation model. In conclusion, an application of this method is shown with the example of the defect classification of recombination active defects in mc-Si solar cell. The introduced method demonstrates a simple and quick opportunity to improve the crystallization process and the quality of electronic devices by means of an optical microscope and a chemical treatment of the material.

  10. Textural and Geochemical Characteristics of Proglacial Sediments:A Case Study in the Foreland of the Nelson Ice Cap, Antarctica

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaodong; SUN Liguang; YIN Xuebin

    2004-01-01

    This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modem Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sediments are characteristic of glacigenic deposits, but very different from those of aeolian and lacustrine sediments. Moreover, the grain size distributions of the proglacial sediments are fractal with a dimension of about 2.9, and the fractal dimensions can be used as another summary statistical parameter for quantifying the relative amounts of coarse and fine materials.Correlations between the absolute element abundances of the proglacial sediments are very weak due to mineral partitioning and other effects of glacial processes, but correlations between the element/Rb ratios are statistically significant. This finding indicates that element/Rb ratios can be used to reduce or eliminate the effects of glacial processes,evaluate geochemical data and determine the sediment provenance in the foreland of Antarctic glacier. Comparisons on the element concentrations among different environments suggest that the proglaciai sediments are derived predominantly from local bedrocks and appear to be natural in origin. Thus these natural sediments can be used to study chemical weathering in the progiacial foreland of modern glacier.

  11. Deposition of Ultrathin Nano-Hydroxyapatite Films on Laser Micro-Textured Titanium Surfaces to Prepare a Multiscale Surface Topography for Improved Surface Wettability/Energy

    Directory of Open Access Journals (Sweden)

    Maria Surmeneva

    2016-10-01

    Full Text Available The primary aim of this study was to analyse the correlation between topographical features and chemical composition with the changes in wettability and the surface free energy of microstructured titanium (Ti surfaces. Periodic microscale structures on the surface of Ti substrates were fabricated via direct laser interference patterning (DLIP. Radio-frequency magnetron sputter deposition of ultrathin nanostructured hydroxyapatite (HA films was used to form an additional nanoscale grain morphology on the microscale-structured Ti surfaces to generate multiscale surface structures. The surface characteristics were evaluated using atomic force microscopy and contact angle and surface free energy measurements. The structure and phase composition of the HA films were investigated using X-ray diffraction. The HA-coated periodic microscale structured Ti substrates exhibited a significantly lower water contact angle and a larger surface free energy compared with the uncoated Ti substrates. Control over the wettability and surface free energy was achieved using Ti substrates structured via the DLIP technique followed by the deposition of a nanostructured HA coating, which resulted in the changes in surface chemistry and the formation of multiscale surface topography on the nano- and microscale.

  12. Reflectance Spectral Characteristics of Lunar Surface Materials

    Institute of Scientific and Technical Information of China (English)

    Yong-Liao Zou; Jian-Zhong Liu; Jian-Jun Liu; Tao Xu

    2004-01-01

    Based on a comprehensive analysis of the mineral composition of major lunar rocks (highland anorthosite, lunar mare basalt and KREEP rock), we investigate the reflectance spectral characteristics of the lunar rock-forming minerals, including feldspar, pyroxene and olivine. The affecting factors, the variation of the intensity of solar radiation with wavelength and the reflectance spectra of the lunar rocks are studied. We also calculate the reflectivity of lunar mare basalt and highland anorthosite at 300 nm, 415 nm, 750 nm, 900 nm, 950 nm and 1000 nm.It is considered that the difference in composition between lunar mare basalt and highland anorthosite is so large that separate analyses are needed in the study of the reflectivity of lunar surface materials in the two regions covered by mare basalt and highland anorthosite, and especially in the region with high Th contents, which may be the KREEP-distributed region.

  13. 10 CFR 960.5-2-8 - Surface characteristics.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Surface characteristics. 960.5-2-8 Section 960.5-2-8... Closure § 960.5-2-8 Surface characteristics. (a) Qualifying condition. The site shall be located such that, considering the surface characteristics and conditions of the site and surrounding area, including...

  14. The effects of sous-vide cooking parameters on texture and cell wall modifications in two apple cultivars: A response surface methodology approach.

    Science.gov (United States)

    Ortiz, Abel; Le Meurlay, Dominique; Lara, Isabel; Symoneaux, Ronan; Madieta, Emmanuel; Mehinagic, Emira

    2017-03-01

    This work aimed at evaluating the effects of sous-vide cooking parameters, such as time and temperature and their interactions, on textural attributes of 'Mondial Gala' and 'Granny Smith' apple cultivars. For this, different response surface methodology-based models were developed. This methodology proved a suitable means for the assessment of changes in textural parameters and cell wall modifications during the processing of apples. 'Mondial Gala' fruit displayed better aptitude for the preservation of textural properties after high-temperature processing conditions and were therefore apparently more suited to sous-vide cooking than 'Granny Smith' apples. Pectin methylesterase activity levels in 'Mondial Gala' apples were enhanced at mild temperatures and pectins in this cultivar displayed a lower degree of methylation. Therefore, the establishment of calcium-mediated linkages between cell wall polymers might have been favoured in 'Mondial Gala' apples, thus reinforcing tissues and improving the preservation of textural attributes, in comparison to 'Granny Smith' samples.

  15. Mechanical performance and texture characteristic of an IF steel containing Nb and Ti by double cold rolling

    Institute of Scientific and Technical Information of China (English)

    Ling-yun Wang; Peng Zhang; Wei Li; Guang-jie Huang

    2009-01-01

    Single cold rolling and double cold rolling were applied to hot rolled strips with different reduction ratios.The evolutions of { 100},{ 111 } and Goss face texture during double rolling were investigated by comparing the orientation distribution function (ODF) of the double rolled sample with that of the single rolled one.The double cold rolling texture is characterized by a higher T-texture and a lower a-texture,and the { 111 } component is improved remarkably.Based on the TEM observation and me-chanical properties test,it is found that the reduction ratio assignment significantly affects the texture variation,as-annealing micro-structures,and properties of the double cold rolled samples.These results may provide a theoretical guide for the industrial produc-tion of double cold rolled IF steel.

  16. The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics.

    Science.gov (United States)

    Koppel, Kadri; Gibson, Michael; Alavi, Sajid; Aldrich, Greg

    2014-05-23

    The pet food industry is an important portion of the food and feed industries in the US. The objectives of this study were (1) to determine cooking method (baking or extrusion), meat inclusion (0 or 20%), and extrusion thermal to mechanical energy ratios (low, medium, and high) effects on sensory and volatile properties of pet foods, and (2) to determine associations among sensory and volatile characteristics of baked and extruded pet foods. Descriptive sensory analysis and gas chromatography-mass spectrometry were used to analyze the pet food samples. It was found that baked samples were lighter in color (2.0-2.6 baked vs. 3.5-4.3 extruded, color intensity scale 0-15), and had lower levels of attributes that indicated rancidity (i.e., fishy flavor; 0.3-0.6 baked, 0.6-1.5 extruded, scale 0-15), whereas extruded pet foods were more cohesive in mass, more friable, hard, and crisp, but less powdery than baked samples. Fresh meat inclusion tended to decrease bitterness and increase fishy flavor and cohesiveness of pet foods. High thermal to mechanical energy ratio during extrusion resulted in less musty and more porous kibbles. The main volatile compounds included aldehydes, such as hexanal and heptanal, ketones, and alcohols. Extruded samples did not contain methylpyrazine, while baked samples did not contain 2-butyl furan. Future studies should consider evaluating the relationship between sensory results and animal palatability for these types of foods.

  17. The Synergistic Effect of Leukocyte Platelet-Rich Fibrin and Micrometer/Nanometer Surface Texturing on Bone Healing around Immediately Placed Implants: An Experimental Study in Dogs

    Science.gov (United States)

    Neiva, Rodrigo F.; Gil, Luiz Fernando; Tovar, Nick; Janal, Malvin N.; Marao, Heloisa Fonseca; Pinto, Nelson; Coelho, Paulo G.

    2016-01-01

    Aims. This study evaluated the effects of L-PRF presence and implant surface texture on bone healing around immediately placed implants. Methods. The first mandibular molars of 8 beagle dogs were bilaterally extracted, and implants (Blossom™, Intra-Lock International, Boca Raton, FL) were placed in the mesial or distal extraction sockets in an interpolated fashion per animal. Two implant surfaces were distributed per sockets: (1) dual acid-etched (DAE, micrometer scale textured) and (2) micrometer/nanometer scale textured (Ossean™ surface). L-PRF (Intraspin system, Intra-Lock International) was placed in a split-mouth design to fill the macrogap between implant and socket walls on one side of the mandible. The contralateral side received implants without L-PRF. A mixed-model ANOVA (at α = 0.05) evaluated the effect of implant surface, presence of L-PRF, and socket position (mesial or distal), individually or in combination on bone area fraction occupancy (BAFO). Results. BAFO values were significantly higher for the Ossean relative to the DAE surface on the larger mesial socket. The presence of L-PRF resulted in higher BAFO. The Ossean surface and L-PRF presence resulted in significantly higher BAFO. Conclusion. L-PRF and the micro-/nanometer scale textured surface resulted in increased bone formation around immediately placed implants. PMID:28042577

  18. Comparative Study of Textural Characteristics on Methane Adsorption for Carbon Spheres Produced by CO2 Activation

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2014-01-01

    Full Text Available Resorcinol-formaldehyde resin polymer was used as raw material for preparation of carbon spheres. Samples were treated with CO2 flow at 850°C by varying activation times. The CO2 activation granted better pore development of pore structure. The experimental data of CH4 adsorption as a function of equilibrium pressure was fitted by Langmuir and Dubinin-Astakhov (D-A models. It was concluded that the high surface area and micropore volume of carbon spheres did unequivocally determine methane capacities. In addition, a thermodynamic study of the heat of adsorption of CH4 on the carbon spheres was carried out. Adsorption of CH4 on carbon spheres showed a decrease in the adsorption heat with CH4 occupancy, and the heat of adsorption fell from 20.51 to 12.50 kJ/mol at 298 K and then increased to a little higher values at a very high loading (>0.70, indicating that CH4/CH4 interactions within the adsorption layer became significant.

  19. The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics

    Directory of Open Access Journals (Sweden)

    Kadri Koppel

    2014-05-01

    Full Text Available The pet food industry is an important portion of the food and feed industries in the US. The objectives of this study were (1 to determine cooking method (baking or extrusion, meat inclusion (0 or 20%, and extrusion thermal to mechanical energy ratios (low, medium, and high effects on sensory and volatile properties of pet foods, and (2 to determine associations among sensory and volatile characteristics of baked and extruded pet foods. Descriptive sensory analysis and gas chromatography-mass spectrometry were used to analyze the pet food samples. It was found that baked samples were lighter in color (2.0–2.6 baked vs. 3.5–4.3 extruded, color intensity scale 0–15, and had lower levels of attributes that indicated rancidity (i.e., fishy flavor; 0.3–0.6 baked, 0.6–1.5 extruded, scale 0–15, whereas extruded pet foods were more cohesive in mass, more friable, hard, and crisp, but less powdery than baked samples. Fresh meat inclusion tended to decrease bitterness and increase fishy flavor and cohesiveness of pet foods. High thermal to mechanical energy ratio during extrusion resulted in less musty and more porous kibbles. The main volatile compounds included aldehydes, such as hexanal and heptanal, ketones, and alcohols. Extruded samples did not contain methylpyrazine, while baked samples did not contain 2-butyl furan. Future studies should consider evaluating the relationship between sensory results and animal palatability for these types of foods.

  20. Influence of the “Fire jet” finishing method of stone claddings on the mineralogical and textural characteristics and physical properties of ''pink Porriño'' granite

    Directory of Open Access Journals (Sweden)

    Calleja Escudero, Lope

    1986-09-01

    Full Text Available The effect of an industrial process of surface treatment ("fire jet" of ornamental rock slabs upon the mineralogical and textural characteristics of an igneous rock known commercially as "Pink Porriño" (Rosa Porriño rom Galicia (NW Spain, has been studied by optical and electron microscopy. The most important physical properties of both treated and non-treated rocks have also been determined. As a result, it may be concluded that no significant changes in the mineralogical or textural characteristics, or in the physical properties, are caused by the proper application of the process. The refrigeration of the rock is essential: without it, the properties of samples change significantly.

    Se ha realizado el estudio de los efectos provocados por un método industrial de preparación superficial de losetas de rocas ornamentales, denominado "chorro de fuego", sobre la mineralogía, textura y algunas propiedades físicas de una roca granítica gallega ampliamente utilizada como material de revestimiento y conocida comercialmente con el nombre de "Rosa Porriño". Para el estudio de los parámetros petrográficos se han utilizado varias técnicas microscópicas: microscopía óptica de polarización (luz transmitida y microscopía electrónica de barrido (S.E.M.. De los resultados obtenidos se deduce que las características mineralógico-texturales y las propiedades físicas de muestras de losetas (obtenidas mediante aserrado industrial de grandes bloques con flejes metálicos, permanecen prácticamente sin cambios antes y después de la correcta aplicación del "chorro de fuego". Se comprueba, además, la importancia de la refrigeración con agua de la roca durante el tratamiento; así, al suprimirla, las muestras sufren una importante degradación en sus propiedades.

  1. Buffer layers on metal surfaces having biaxial texture as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  2. High fidelity replication of surface texture and geometric form of a high aspect ratio aerodynamic test component

    Science.gov (United States)

    Walton, Karl; Fleming, Leigh; Goodhand, Martin; Racasan, Radu; Zeng, Wenhan

    2016-06-01

    This paper details, assesses and validates a technique for the replication of a titanium wind tunnel test aerofoil in polyurethane resin. Existing resin replication techniques are adapted to overcome the technical difficulties associated with casting a high aspect ratio component. The technique is shown to have high replication fidelity over all important length-scales. The blade chord was accurate to 0.02%, and the maximum blade thickness was accurate to 2.5%. Important spatial and amplitude areal surface texture parameter were accurate to within 2%. Compared to an existing similar system using correlation areal parameters the current technique is shown to have lower fidelity and this difference is discussed. The current technique was developed for the measurement of boundary layer flow ‘laminar to turbulent’ transition for gas turbine compressor blade profiles and this application is illustrated.

  3. Dependence of the textural properties and surface species of ZnO photocatalytic materials on the type of precipitating agent used in the hydrothermal synthesis

    Indian Academy of Sciences (India)

    I STAMBOLOVA; V BLASKOV; D STOYANOVA; I AVRAMOVA; L DIMITROV; K MILENOVA; K BALASHEV; S SIMEONOVA; A TZONEV; L ALEKSANDROV; A ELIYAS

    2017-06-01

    Three different precipitating agents (NaOH, NH$_4$(H)CO$_3$ and CO(NH$_2$)$_2$) have been applied for the hydrothermalsynthesis of ZnO powder materials, aiming at obtaining various types of porosity and surface species on ZnO. The synthesis procedures were carried out in the presence and in the absence of tri-block copolymer Pluronic (P123,EO20PO70EO20). These materials were characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM)–energy-dispersive X-ray spectroscopy (EDX), BET method and TG–differential thermal analysis (DTA) method, and their photocatalytic activities were tested in the removal azo dye Reactive Black 5 (RB5). The urea precipitant yields spongy-like surface forms and the greatest share of mesopores. It has the highest specific surface area, highest degree of crystallinity of wurtzite ZnO phase and largest content of surface OHgroups in comparison with the other two precipitants. The zinc hydroxycarbonate intermediate phase is missing in the case of NaOH as precipitating agent; therefore, it manifests poorer textural characteristics. The morphology of P123-modified sample is different and consists of needle-shaped particles. The urea-precipitated samples display superior performance inthe photocatalytic oxidation reaction, compared with the other precipitated samples. The other two precipitating agents are inferior in regard to their photocatalytic activity due to greater share of micropores (not well-illuminated inner surface) and different surface morphologies.

  4. Modification of wetting property of Inconel 718 surface by nanosecond laser texturing

    Science.gov (United States)

    Yang, Z.; Tian, Y. L.; Yang, C. J.; Wang, F. J.; Liu, X. P.

    2017-08-01

    Topographic and wetting properties of Inconel 718 (IN718) surfaces were modified via nanosecond laser treatment. In order to investigate surface wetting behavior without additional post treatment, three kinds of microstructures were created on IN718 surfaces, including line pattern, grid pattern and spot pattern. From the viewpoint of surface morphology, the results show that laser ablated grooves and debris significantly altered the surface topography as well as surface roughness compared with the non-treated surfaces. The effects of laser parameters, such as laser scanning speed and laser power, on surface features were also discussed. We have observed the laser treated surfaces of IN718 showed very high hydrophilicity just after laser ablation under ambient air condition. And this hydrophilic property has changed rapidly to the other state, very high hydrophobicity over about 20 days. Further experiments and analysis have been carried out so as to investigate this phenomenon. Based on the XPS analysis, the results indicate that the change of wetting property from hydrophilic to hydrophobic over time may be due to the surface chemistry modifications, especially carbon content. After the contact angles reached steady state, the maximum water contact angle (WCA) for line-patterned and grid-patterned surfaces increased to 152.3 ± 1.2° and 156.8 ± 1.1° with the corresponding rolling angle (RA) of 8.8 ± 1.1° and 6.5 ± 0.8°, respectively. These treated IN718 surfaces exhibited superhydrophobic property. However, the maximum WCA for the spot-patterned surfaces just increased to 140.8 ± 2.8° with RA above 10°. Therefore, it is deduced that laser-inscribed modification of surface wettability has high sensitivity to surface morphology and surface chemical compositions. This work can be utilized to optimize the laser processing parameters so as to fabricate desired IN718 surfaces with hydrophobic or even superhydrophobic property and thus extend the applications

  5. The impact of a Leidenfrost drop on a spoked surface texture

    Science.gov (United States)

    Shiri, Samira; Patterson, Colin; Bird, James

    2016-11-01

    Liquid drops can bounce when they impact non-wetting surfaces. Recently, studies have demonstrated that the time that the bouncing drop contacts a superhydrophobic surface can be reduced by incorporating ridged macrotextures on the surface. Yet the existing models aimed at explaining this phenomenon offer incompatible predictions of the contact time when a drop impacts multiple intersecting macrotextures, or spokes. Furthermore, it is unclear whether the effects of the macrotexture on the drop hydrodynamics extend to non-wetting surfaces in which direct contact is avoided by a thin vapor layer. Here we demonstrate that the phenomenon observed for macrotextured, superhydrophobic surfaces extends to macrotextured, wettable surfaces above the Leidenfrost temperature. We show that the number of droplets and overall residence time both depend on the number of intersecting spokes. Finally, we compare and contrast our results with mechanistic models to rationalize various elements of the phenomenon.

  6. Quantifying Surface Characteristics of Ice Crystals using High-Resolution Imagery and Wavelet-based Image Processing Techniques

    Science.gov (United States)

    Brown, T.

    2015-12-01

    The surface characteristics of ice crystals have a considerable impact on the bulk scattering properties of ice clouds. Here, 2.3 μm-resolution silhouettes of crystals imaged by a Cloud Particle Imager (CPI) obtained from the Tropical Warm Pool - International Cloud and Mixed Phase Arctic Cloud Experiments are combined with wavelet analysis to characterize crystal surfaces. Wavelet analysis is a multiresolution tool that is applied to reveal underlying textural details of crystal images on several spatial scales. Images are defined as matrices in which each pixel corresponds to a gray level intensity value. Wavelet functions are used to decompose crystal images into a set of approximation and detail components by applying high and low-pass filters to the rows and columns of the image matrix. Following each level of decomposition, gray level intensity histograms are produced by calculating the frequency distribution of pixel intensities from the detailed coefficients, which contain artifacts, but also important textural information. First-order statistics are calculated from gray level histograms of the detailed coefficients to estimate variability across crystal surfaces, but lack information on the spatial distribution of pixel intensities. Thus, a second-order statistical measure, the gray level co-occurrence matrix (GLCM), is also extracted from the detailed coefficients to provide a more precise measure of surface texture. GLCMs are calculated by how often pairs of pixels with specific values and in certain spatial relationships occur in an image. Several degrees of texture are defined by first and second-order statistics to investigate how the surface texture of crystals varies with environmental conditions. Estimations of surface roughness using the proposed methods may have implications for improving bulk scattering calculations used in satellite retrieval algorithms and global climate model parameterizations.

  7. Non-textured laser modification of silica glass surface: Wettability control and flow channel formation

    Science.gov (United States)

    Aono, Yuko; Hirata, Atsushi; Tokura, Hitoshi

    2016-05-01

    Local wettability of silica glass surface is modified by infrared laser irradiation. The silica glass surface exhibits hydrophobic property in the presence of sbnd CF3 or sbnd (CH3)2 terminal functional groups, which are decomposed by thermal treatment, and degree of the decomposition depends on the applied heat. Laser irradiation can control the number of remaining functional groups according to the irradiation conditions; the contact angle of deionized water on the laser modified surfaces range from 100° to 40°. XPS analysis confirms that the variation in wettability corresponds to the number of remaining sbnd CF3 groups. The laser irradiation achieves surface modification without causing any cracks or damages to the surface, as observed by SEM and AFM; moreover, surface transparency to visible light and surface roughness remains unaffected. The proposed method is applied to plane flow channel systems. Dropped water spreads only on the hydrophilic and invisible line modified by the laser irradiation without formation of any grooves. This indicates that the modified line can act as a surface channel. Furthermore, self-transportation of liquid is also demonstrated on a channel with gradually-varied wettability along its length. A water droplet on a hydrophobic side is self-transported to a hydrophilic side due to contact-angle hysteresis force without any actuators or external forces.

  8. Wetting property of smooth and textured hydrophobic surfaces under condensation condition

    Science.gov (United States)

    Hao, PengFei; Lv, CunJing; Yao, ZhaoHui; Niu, FengLei

    2014-11-01

    Static and dynamic wetting behaviors of sessile droplet on smooth, microstructured and micro/nanostructured surface under condensation condition are systematically studied. In contrast to the conventional droplet wetting on such natural materials by dropping, we demonstrate here that when dropwise condensation occurs, the sessile droplet will transit from the Cassie-Baxter wetting state to the Wenzel wetting state or partial Cassie-Baxter wetting state on the microstructured surface or the micro/nanostructured surface, which leads to a strong adhesion between the droplet and the substrate. In contrast, the apparent contact angle and the sliding angle on the smooth surface changes a little before and after the condensation because of small roughness. Theoretical analysis shows that the roughness factor controls the adhesion force of the droplet during condensation, and a theoretical model is constructed which will be helpful for us to understand the relationship between the adhesion force and the geometry of the surface.

  9. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Directory of Open Access Journals (Sweden)

    Daniel F. Miranda

    2014-05-01

    Full Text Available A fluorinated and hydrophobic ionic liquid (IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyltriethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  10. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi, E-mail: a.hozumi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan); Yagihashi, Makoto [Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta-ku, Nagoya 456-0058 (Japan)

    2014-05-01

    A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  11. Role of roughness parameters on the tribology of randomly nano-textured silicon surface.

    Science.gov (United States)

    Gualtieri, E; Pugno, N; Rota, A; Spagni, A; Lepore, E; Valeri, S

    2011-10-01

    This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (Ra, Rdq) and profile periodicity (Rsk, Rku, Ic) that influence asperity-asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing Ra is justifiable by a more consistent increasing of kurtosis Rku.

  12. Effect of energy drinks on the surface texture of nanoflled composite resin.

    Science.gov (United States)

    Al-Samadani, Khalid H

    2013-09-01

    To study the effect of three energy drinks on the surface roughness of nanoflled composite resins after different periods of aging time. Composite resin disks, 6 mm diameter, 3 mm thickness were prepared from Filtec Z350 XT, Tetric EvoCeram and Filtec Z250 XT. Specimens fr/8om each material were tested after aging with Red Bull, Bison and Power Horse energy drinks and distilled water as a control. Specimens were stored at 37°C in dark containers for 1, 3 and 6 months. Surface roughness Ra was assessed using a surface scanning interferometry before and after each storage period. Surface roughness differences ΔRa and Ra among specimens were measured. Mean values were statistically analyzed using multiple repeated measured (ANOVA), variance and multiple comparisons of the mean values were done with Bonferroni test, with p energy drinks was signifcantly different for all tested materials at all three times p Energy drinks used in this study had surface degradation effect on the tested composite resin materials. The surface roughness increased with aging time however, it was clinically acceptable in all test groups after 6 months. The effect of energy drinks solutions on the surface roughness parameter of resin composites depends on type of solution and its acidity contents.

  13. Texture characteristics analysis of ultra-high pressure instant porridge based on texture profile analysis%基于质构曲线解析法的超高压方便粥质地分析

    Institute of Scientific and Technical Information of China (English)

    刘春娟; 丁亚西; 李东升; 张守勤; 侯丽丽

    2011-01-01

    Texture characteristics of three kinds of porridge with a single material(shelled corn,kidney bean and brown rice respectively)were analysed by Texture Profile Analysis(TPA).The results showed that ultra-high pressure processing could significantly reduce the extent of the retrogradation of porridge,and the hardness and gumminess of different cereal in porridge were decreased by ultra-high pressure processing.This effect was not obvious in the early storage,but apparent in the later.After the longtime process of storage,the texture characteristics of the samples processed at the condition of 300MPa for 5 minutes were similar to those of just cooked porridge compared with other conditions.%对玉米、芸豆和糙米三种单一原料高压方便粥采用质构曲线解析法进行质地分析,分析结果显示高压处理能缓解粥存储过程中的回生程度,主要表现在降低粥的硬度及胶着度,这种作用在存储初期并不明显,但随货架期的延长,压力处理样与未压力处理样在这两个指标上有明显区别。经过长时间放置后,300MPa处理5min样的各项质地指标最为接近新鲜米粥。

  14. Anti-adhesion effects of liquid-infused textured surfaces on high-temperature stainless steel for soft tissue

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Zhang, Deyuan

    2016-11-01

    Soft tissue adhesion on the electrosurgical instruments can induce many serious complications, such as failure of hemostasis and damage to the surrounding soft tissue. The soft tissue adhesion is mainly caused by the high temperature on the instrument surface generally made of stainless steel. Nepenthes inspired liquid-infused surfaces (LIS), highly promising for anti-adhesion, have attracted considerable interests. In this paper, we investigated the anti-adhesion effects of LIS on high-temperature stainless steel for soft tissue for the first time, aiming to develop a new approach to solve the soft tissue adhesion problem. The textured surface, acting as the holding structures, was fabricated by photolithography-assisted chemical etching. Silicone oil, with good biocompatibility and high-temperature resistance, was chosen as the infused liquid. The adhesion force measurements for soft tissue on the LIS at high temperatures indicated that the soft tissue adhesion force was decreased by approximately 80% at 250 °C. Besides, the cycle tests of soft tissue adhesion force demonstrated the excellent stability of prepared LIS. We anticipate that LIS will be of great promise for practical applications on the electrosurgical instruments.

  15. Atomically flat surface of (0 0 1) textured FePt thin films by residual stress control

    Science.gov (United States)

    Liu, S. H.; Hsiao, S. N.; Chou, C. L.; Chen, S. K.; Lee, H. Y.

    2015-11-01

    Single-layered Fe52Pt48 films with thickness of 10 nm were sputter-deposited on glass substrates. Rapid thermal annealing with different heating rates (10-110 K/s) was applied to transform as-deposited fcc phase into L10 phase and meanwhile to align [0 0 1]-axis of L10 crystal along plane normal direction. Based on X-ray diffractometry using synchrotron radiation source, the texture coefficient of (0 0 1)-plane increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress analyzed by asymmetric sin2 ψ method. Furthermore, it was revealed by atomic force microscopy that the dewetting process occurred as heating rate was raised up to 80 K/s and higher. The change in the microstructure due to stress relaxation leads to the degradation of (0 0 1) orientation and magnetic properties. Surface roughness is closely related to the in-plane tensile stress. Enhanced perpendicular magnetic anisotropy and atomically flat surface were achieved for the samples annealed at 40 K/s, which may be suitable for further practical applications. This work also suggests a feasible way for surface engineering by controlling internal stress of the FePt without introducing cap layer.

  16. Textural and geochemical characteristics of marine sediments in the SW Gulf of Mexico: implications for source and seasonal change.

    Science.gov (United States)

    Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Martinez-Serrano, Raymundo G; Alatorre, Miguel Angel; Armstrong-Altrin, John S

    2015-04-01

    Two oceanographic cruises were taken during the winter (SAV I, November and December 2007) and summer (SAV II, July and August 2008) across the mouth of the Papaloapan River in the Gulf of Mexico. Surficial sediment samples were collected from shallow (16-30 m), intermediate (30 to 80 m), and deeper areas (≥300 m). Shallow water sediments are coarser, better-sorted, and primarily composed of sands during the winter, while those found in the summer are finer. At depths greater than 30 m, sediments are primarily fine-grained no matter the season. Major element analysis from shallow areas indicates higher SiO2 concentrations during the windy season with negative correlation against Al2O3 during both seasons, following the respective abundances of sand and muds. High organic carbon content was observed in shallow areas during the summer. Trace metals V, Ni, Cu, Zn, Pb, Li, Cr, Co, and Ba were evaluated. The first six metals showed higher average concentration in the deeper areas, although the highest values at some individual sampling sites for Cr, Co, Cu, and Ba were observed in the coastal area. Factor and cluster analysis were used to explain the sediment distribution pattern and the factors that determine the sediment characteristics within the study area. In shallow areas, four clusters were observed during the winter and five during the summer. The geochemical characteristics of the samples in each cluster suggest association with fluvial sediment input, textural characteristics, heavy minerals, and Cu and Ba concentration. To evaluate the variations in heavy metal concentration, metal enrichment factors (EFs) were calculated. Enrichment in V, Cr, Co, Zn, Ba, and Pb was detected at certain sites, whereas Cu behaved differently. The distribution of Cu enrichment suggests that it may be of natural origin, associated with the lithology of the volcanic continental area. The minor enrichment observed for other elements may be associated with river discharge

  17. Experimental study of surface texture and resonance mechanism of booming sand

    Institute of Scientific and Technical Information of China (English)

    QU; JianJun; ZHANG; KeCun; SUN; Bo; JIANG; ShengXiang; DONG; GuangRong; ZU; RuiPing; FANG; HaiYan

    2007-01-01

    The sound-producing mechanism of booming sand has long been a pending problem in the blown sand physics. Based on the earlier researches, the authors collected some silent sand samples from Tengger Desert, Australian Desert, Kuwait Desert, beaches of Hainan Island and Japanese coast as well as the soundless booming sand samples from the Mingsha Mountain in Dunhuang to make washing experiments. In the meantime the chemical corrosion experiment of glass micro-spheres, surface coating experiment and SEM examination were also conducted. The experimental results show that the sound production of booming sand seems to have nothing to do with the presence of SiO2 gel on the surface of sand grains and unrelated to the surface chemical composition of sand grains but is related to the resonance cavities formed by porous (pit-like) physical structure resulting from a number of factors such as wind erosion, water erosion, chemical corrosion and SiO2 gel deposition, etc. Its resonance mechanism is similar to that of Hemholz resonance cavity. Under the action of external forces, numerous spherical and sand grains with smooth surface and porous surface are set in motion and rub with each other to produce extremely weak vibration sound and then become audible sound by human ears through the magnification of surface cavity resonance. However the booming sands may lose their resonance mechanism and become silent sand due to the damping action caused by the invasion of finer particles such as dust and clay into surface holes of sand grains. Therefore, clearing away fine pollutants on the quartz grain surface is an effective way to make silent sand emit audible sound.

  18. 表面结构的分类与识别%Classification and Recognition of Surface Texture

    Institute of Scientific and Technical Information of China (English)

    MURALIKRISHNAN B; BUI Son H; RAJA J

    2004-01-01

    Measurement and characterization of surface texture is an important aspect of precision metrology.Historically this has involved partitioning a profile into different wavelength regimes referred to as roughness,waviness and form followed by numerical quantization.Parameters computed are then inspected for tolerance compliance to ensure a part performs its intended function.This approach is satisfactory when the specification has been carefully determined and the process is sta ble.However,when the manufacturing process is under development or when instability or modifications to the process in validate specifications,there is a need to study surface finish parameters in relation to functional performance or process measures.In this context,the problem of surface texture classification and recognition are discussed.Advanced techniques developed for this purpose along with applications are presented.Also,the techniques discussed here will be useful across large bandwidth,from the characterization of nano scale to traditional micro scale surfaces.%表面结构的测量与特征描述是精密计量技术的一个重要方面,传统上包括将轮廓情况根据不同的波长范围划分为粗糙度、波纹度和形状及后续的数字量化.按算得的参数检查它是否为公差允许,以保证零件执行其指定的功能.当技术特性已经经过仔细确定,并且其过程稳定时,该方法是令人满意的;但是,当制造过程正在进行中或过程的不稳定、过程变化使技术特性失效时,就需要研究和功能表现及过程评定相关的表面参数.讨论了表面结构的分类与识别问题.同时阐述了为此目的而开发的先进技术及其应用.所研究的技术对从纳米尺度到传统的微米尺度的较大带宽范围内的表面特征描述都是有效的.

  19. Alkali-aided protein extraction from chicken dark meat: textural properties and color characteristics of recovered proteins.

    Science.gov (United States)

    Omana, D A; Moayedi, V; Xu, Y; Betti, M

    2010-05-01

    Textural properties, water-holding capacity, and color characteristics of alkali-extracted chicken dark meat have been studied. Alkali extraction was carried out at 4 different pH values (10.5, 11.0, 11.5, and 12.0). At higher pH of extraction, cooking loss and water loss were found to be significantly decreased (P extraction pH values. Protein samples extracted at higher pH values were found to be harder, and the maximum (4,956 g of force) value was shown by samples prepared at pH 11.5. Chewiness values were significantly increased (P protein samples extracted at pH values of 11.5 and 12.0. Dynamic viscoelastic behavior of samples was assessed in the temperature range of 7 to 100 degrees C. The dynamic viscoelastic behavior of raw chicken dark meat as revealed by storage modulus indicated considerable gel-forming ability. The maximum storage modulus (G') value of 439 kPa was measured at 66.7 degrees C. Storage modulus was found to decrease for the recovered protein samples and be lowest at higher pH values. However, the recovered protein samples did show substantial gel-forming ability when stored with cryoprotectants. Tan delta values denoted 2 clear transitions for raw dark meat; however, only 1 major transition at 50.1 degrees C was evident for pH-treated samples, probably reflecting the loss of collagen in processing. In conclusion, this process of protein recovery may offer the possibility to use the underused poultry resources for preparation of functional foods.

  20. Contact of surfaces and contact characteristics of offset surfaces

    Institute of Scientific and Technical Information of China (English)

    Lixin CAO; Hu GONG; Jian LIU

    2008-01-01

    Based on differential geometry, the contact problems of two surfaces are discussed in this paper. The relationship between the contact status of two sur-faces and that of offset surfaces are also analyzed. For a 5-axis NC machining, some research such as optimization of cutter location and calculation of the geometrical cusp height are important. The research results indicate that the relative normal curvature is an important geometrical invariant for describing the contact state of two surfaces. For point contact two surfaces, the calculation equation for the second order remained error is given. For line contact two surfaces, the condition of the second order line contact is that the principal directions and curvatures of the two surfaces are the same along the contact curve. If two surfaces keep the second order line contact, their two offset surfaces will also keep the second order line contact, and their third order remained errors are also uniform with that of the two offset surfaces.

  1. Assessment of Drying Characteristics and Texture in 
Relation with Micromorphological Traits of Carob 
(Ceratonia silliqua L.) Pods and Seeds

    OpenAIRE

    Benković, Maja; Srečec, Siniša; Bauman, Ingrid; Ježek, Damir; Karlović, Sven; Kremer, Dario; Karlović, Ksenija; Erhatić, Renata

    2016-01-01

    Carob tree (Ceratonia siliqua L.) is a perennial leguminous evergreen tree native to the coastal regions of the Mediterranean basin and is considered to be an important component of vegetation for economic and environmental reasons. Two constituents of the pod, pulp and seeds, can be used as feed or in food production. In this study, drying characteristics, texture and microstructure of carob pods were studied. Three different carob samples were prepared: whole carob pod, carob pod parts and ...

  2. Wetting property of smooth and textured hydrophobic surfaces under condensation condition

    Institute of Scientific and Technical Information of China (English)

    HAO PengFei; LV CunJing; YAO ZhaoHui; NIU FengLei

    2014-01-01

    Static and dynamic wetting behaviors of sessile droplet on smooth,microstructured and micro/nanostructured surface under condensation condition are systematically studied.In contrast to the conventional droplet wetting on such natural materials by dropping,we demonstrate here that when dropwise condensation occurs,the sessile droplet will transit from the Cassie-Baxter wetting state to the Wenzel wetting state or partial Cassie-Baxter wetting state on the microstructured surface or the micro/nanostructured surface,which leads to a strong adhesion between the droplet and the substrate.In contrast,the apparent contact angle and the sliding angle on the smooth surface changes a little before and after the condensation because of small roughness.Theoretical analysis shows that the roughness factor controls the adhesion force of the droplet during condensation,and a theoretical model is constructed which will be helpful for us to understand the relationship between the adhesion force and the geometry of the surface.

  3. Texture coding in the rat whisker system: slip-stick versus differential resonance.

    Directory of Open Access Journals (Sweden)

    Jason Wolfe

    2008-08-01

    Full Text Available Rats discriminate surface textures using their whiskers (vibrissae, but how whiskers extract texture information, and how this information is encoded by the brain, are not known. In the resonance model, whisker motion across different textures excites mechanical resonance in distinct subsets of whiskers, due to variation across whiskers in resonance frequency, which varies with whisker length. Texture information is therefore encoded by the spatial pattern of activated whiskers. In the competing kinetic signature model, different textures excite resonance equally across whiskers, and instead, texture is encoded by characteristic, nonuniform temporal patterns of whisker motion. We tested these models by measuring whisker motion in awake, behaving rats whisking in air and onto sandpaper surfaces. Resonant motion was prominent during whisking in air, with fundamental frequencies ranging from approximately 35 Hz for the long Delta whisker to approximately 110 Hz for the shorter D3 whisker. Resonant vibrations also occurred while whisking against textures, but the amplitude of resonance within single whiskers was independent of texture, contradicting the resonance model. Rather, whiskers resonated transiently during discrete, high-velocity, and high-acceleration slip-stick events, which occurred prominently during whisking on surfaces. The rate and magnitude of slip-stick events varied systematically with texture. These results suggest that texture is encoded not by differential resonant motion across whiskers, but by the magnitude and temporal pattern of slip-stick motion. These findings predict a temporal code for texture in neural spike trains.

  4. A 2-year report on maxillary and mandibular fixed partial dentures supported by Astra Tech dental implants. A comparison of 2 implants with different surface textures

    DEFF Research Database (Denmark)

    Karlsson, U; Gotfredsen, K; Olsson, C

    1998-01-01

    In 50 partially edentulous patients, 133 (48 maxillary; 85 mandibular) Astra Tech dental implants of 2 different surface textures (machined; TiO-blasted) were alternately installed, supporting 52 fixed partial dentures (FPDs). Before abutment connection 2 machined implants (1 mandibular; 1...

  5. Nickel replicas as calibration reference standards for industrial surface texture instruments

    DEFF Research Database (Denmark)

    Sammatini-Malberg, Maria-Pia

    The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale.......The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale....

  6. Texture of Frozen Food

    Science.gov (United States)

    Wani, Kohmei

    Quantitative determination of textural quality of frozen food due to freezing and storage conditions is complicated,since the texture is consisted of multi-dimensiona1 factors. The author reviewed the importance of texture in food quality and the factors which is proposed by a priori estimation. New classification of expression words of textural properties by subjective evaluation and an application of four elements mechanical model for analysis of physical characteristics was studied on frozen meat patties. Combination of freezing-thawing condition on the subjective properties and physiochemical characteristics of beef lean meat and hamachi fish (Yellow-tail) meat was studied. Change of the plasticity and the deformability of these samples differed by freezing-thawing rate and cooking procedure. Also optimum freezing-thawing condition was differed from specimens.

  7. Nickel replicas as calibration reference standards for industrial surface texture instruments

    DEFF Research Database (Denmark)

    Sammatini-Malberg, Maria-Pia

    The present report is a documentation of measurements carried out at DTU on Nickel replicas. The research is performed in the frame of the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale....

  8. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  9. SUPPLEMENTARY COMPARISON - EUROMET.L-S11 comparison on surface texture

    DEFF Research Database (Denmark)

    Koenders, L.; Andreasen, Jan Lasson; De Chiffre, Leonardo

    2004-01-01

    The measurement of roughness of technical surfaces is important in research and for industry. There are a lot of 2D roughness parameters that are defined and standardized by ISO. Calibration standards can be used to calibrate the instruments and ensure traceability to the SI unit of length. Most ...

  10. Modification of Activated Carbon by Means of Microwave Heating and Its Effects on the Pore Texture and Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2013-02-01

    Full Text Available Two kinds of typical activated carbons (coal based AC and coconut shell based AC were modified in a flow of N2 gas has been carried out using a microwave device operating at 2450 MHz and different input power, instead of a conventional furnace. The samples were analyzed by means of low temperature N2 adsorption, elemental analysis and Boehm titration. The results show that microwave heating is an effective means of activated carbon modification. The temperature of activated carbon increases rapidly under microwave heating and then gradual increase to a quasi-stationary temperature. The pore texture of activated carbon changes slightly after microwave treatment and the two activated carbons still keep rich pore structure. The oxygen functional groups decompose and evolve with the form of CO and CO2. This in turn gives rise to a significant decrease in oxygen content. These changes of oxygen contents increase as the microwave input power increases. During microwave treatment, a gradual decrease in the surface acidic functional groups is observed. More important, with the removal of the surface acidic groups, the number of the basic group increased gradually, the activated carbon with oxygen functional groups become basic properties material.

  11. Modification of Activated Carbon by Means of Microwave Heating and Its Effects on the Pore Texture and Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Bing Li

    2013-02-01

    Full Text Available Two kinds of typical Activated Carbons (coal based AC and coconut shell based AC were modified in a flow of N0 gas has been carried out using a microwave device operating at 2450 MHz and different input power, instead of a conventional furnace. The samples were analyzed by means of low temperatureN0 adsorption, elemental analysis and Boehm titration. The results show that microwave heating is an effective means of activated carbon modification. The temperature of activated carbon increases rapidly under microwave heating and then gradual increase to a quasi-stationary temperature. The pore texture of activated carbon changes slightly after microwave treatment and the two activated carbons still keep rich pore structure. The oxygen functional groups decompose and evolve with the form of CO and CO2. This in turn gives rise to a significant decrease in oxygen content. These changes of oxygen contents increase as the microwave input power increases. During microwave treatment, a gradual decrease in the surface acidic functional groups is observed. More important, with the removal of the surface acidic groups, the number of the basic group increased gradually, the activated carbon with oxygen functional groups become basic properties material.

  12. Surface textured molybdenum doped zinc oxide thin films prepared for thin film solar cells using pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C., E-mail: ielinyc@cc.ncue.edu.tw; Wang, B.L.; Yen, W.T.; Shen, C.H.

    2011-06-01

    In this study, we examined the effect of etching on the electrical properties, transmittance, and scattering of visible light in molybdenum doped zinc oxide, ZnO:Mo (MZO) thin films prepared by pulsed direct current magnetron sputtering. We used two different etching solutions - KOH and HCl - to alter the surface texture of the MZO thin film so that it could trap light. The experimental results showed that an MZO film with a minimum resistivity of about 8.9 x 10{sup -4} {Omega} cm and visible light transitivity of greater than 80% can be obtained without heating at a Mo content of 1.77 wt.%, sputtering power of 100 W, working pressure of 0.4 Pa, pulsed frequency of 10 kHz, and film thickness of 500 nm. To consider the effect of resistivity and optical diffuse transmittance, we performed etching of an 800 nm thick MZO thin film with 0.5 wt.% HCl for 3-6 s at 300 K. Consequently, we obtained a resistivity of 1.74-2.75 x 10{sup -3} {Omega} cm, total transmittance at visible light of 67%-73%, diffuse transmittance at visible light of 25.1%-28.4%, haze value of 0.34-0.42, and thin film surface crater diameters of 220-350 nm.

  13. Surface characteristics of PLA and PLGA films

    Energy Technology Data Exchange (ETDEWEB)

    Paragkumar N, Thanki [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France); Edith, Dellacherie [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France); Six, Jean-Luc [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France)]. E-mail: Jean-Luc.Six@ensic.inpl-nancy.fr

    2006-12-30

    Surface segregation and restructuring in polylactides (poly(D,L-lactide) and poly(L-lactide)) and poly(D,L-lactide-co-glycolide) (PLGA) films of various thicknesses were investigated using both attenuated total reflection FTIR (ATR-FTIR) and contact angle relaxation measurements. In case of poly(D,L-lactide) (DLPLA), it was observed that the surface segregation and the surface restructuring of methyl side groups are influenced by the polymer film thickness. This result has been confirmed by X-ray photoelectron spectroscopy (XPS). In the same way, PLGA thick films were also characterized by an extensive surface segregation of methyl side groups. Finally, surface restructuring was investigated by dynamic contact angle measurements and it was observed when film surface comes into contact with water. In parallel, we also found that poly(L-lactide) (PLLA) thin and clear films with thickness {approx}15 {mu}m undergo conformational changes on the surface upon solvent treatment with certain solvents. The solvent treated surface of PLLA becomes hazy and milky white and its hydrophobicity increases compared to untreated surface. FTIR spectroscopic analysis indicated that polymer chains at the surface undergo certain conformational changes upon solvent treatment. These changes are identified as the restricted motions of C-O-C segments and more intense and specific vibrations of methyl side groups. During solvent treatment, the change in water contact angle and FTIR spectrum of PLLA is well correlated.

  14. Contrast negation and texture synthesis differentially disrupt natural texture appearance.

    Science.gov (United States)

    Balas, Benjamin

    2012-01-01

    Natural textures have characteristic image statistics that make them discriminable from unnatural textures. For example, both contrast negation and texture synthesis alter the appearance of natural textures even though each manipulation preserves some features while disrupting others. Here, we examined the extent to which contrast negation and texture synthesis each introduce or remove critical perceptual features for discriminating unnatural textures from natural textures. We find that both manipulations remove information that observers use for distinguishing natural textures from transformed versions of the same patterns, but do so in different ways. Texture synthesis removes information that is relevant for discrimination in both abstract patterns and ecologically valid textures, and we also observe a category-dependent asymmetry for identifying an "oddball" real texture among synthetic distractors. Contrast negation exhibits no such asymmetry, and also does not impact discrimination performance in abstract patterns. We discuss our results in the context of the visual system's tuning to ecologically relevant patterns and other results describing sensitivity to higher-order statistics in texture patterns.

  15. SUPPLEMENTARY COMPARISON - EUROMET.L-S11 comparison on surface texture

    DEFF Research Database (Denmark)

    Koenders, L.; Andreasen, Jan Lasson; De Chiffre, Leonardo

    2004-01-01

    of those used are traced back to SI by national metrology institutes (NMi), which should participate in international comparison to proof the validation of measurement results. Sixteen NMi from the EUROMET region carried out measurements on standards between May 2001 and March 2003. The set of standards......The measurement of roughness of technical surfaces is important in research and for industry. There are a lot of 2D roughness parameters that are defined and standardized by ISO. Calibration standards can be used to calibrate the instruments and ensure traceability to the SI unit of length. Most...... used complied with ISO 5436-1 and consisted of one depth-setting standard of type A, three calibration standards of type C, three standards of type D1 and one standard of type D2. The participants aimed to measure 50 surface roughness parameters. These included the most interesting parameters...

  16. Imaging of surface spin textures on bulk crystals by scanning electron microscopy.

    Science.gov (United States)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-22

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  17. Functional anatomy of the equine temporomandibular joint: Collagen fiber texture of the articular surfaces.

    Science.gov (United States)

    Adams, K; Schulz-Kornas, E; Arzi, B; Failing, K; Vogelsberg, J; Staszyk, C

    2016-11-01

    In the last decade, the equine masticatory apparatus has received much attention. Numerous studies have emphasized the importance of the temporomandibular joint (TMJ) in the functional process of mastication. However, ultrastructural and histological data providing a basis for biomechanical and histopathological considerations are not available. The aim of the present study was to analyze the architecture of the collagen fiber apparatus in the articular surfaces of the equine TMJ to reveal typical morphological features indicating biomechanical adaptions. Therefore, the collagen fiber alignment was visualized using the split-line technique in 16 adult warmblood horses without any history of TMJ disorders. Within the central two-thirds of the articular surfaces of the articular tubercle, the articular disc and the mandibular head, split-lines ran in a correspondent rostrocaudal direction. In the lateral and medial aspects of these articular surfaces, the split-line pattern varied, displaying curved arrangements in the articular disc and punctual split-lines in the bony components. Mediolateral orientated split-lines were found in the rostral and caudal border of the articular disc and in the mandibular fossa. The complex movements during the equine chewing cycle are likely assigned to different areas of the TMJ. The split-line pattern of the equine TMJ is indicative of a relative movement of the joint components in a preferential rostrocaudal direction which is consigned to the central aspects of the TMJ. The lateral and medial aspects of the articular surfaces provide split-line patterns that indicate movements particularly around a dorsoventral axis.

  18. Functional anatomy of the equine temporomandibular joint: Collagen fiber texture of the articular surfaces

    OpenAIRE

    Adams, K.; Schulz-Kornas, E; Arzi, B.; Failing, K.; Vogelsberg, J; Staszyk, C

    2016-01-01

    In the last decade, the equine masticatory apparatus has received much attention. Numerous studies have emphasized the importance of the temporomandibular joint (TMJ) in the functional process of mastication. However, ultrastructural and histological data providing a basis for biomechanical and histopathological considerations are not available. The aim of the present study was to analyze the architecture of the collagen fiber apparatus in the articular surfaces of the equine TMJ to reveal ty...

  19. The spectral emittance and stability of coatings and textured surfaces for thermophotovoltaic (TPV) radiator applications

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.; Hollenbeck, J.L.

    2000-11-01

    Coatings or surface modifications are needed to improve the surface emissivity of materials under consideration for TPV radiator applications to a value of 0.8 or higher. Vacuum plasma spray coatings (ZrO{sub 2} + 18% TiO{sub 2} + 10% Y{sub 2}O{sub 3}, ZrC, Fe{sub 2}TiO{sub 5}, ZrTiO{sub 4}, ZrO{sub 2} + 8% Y{sub 2}O{sub 3} + 2% HfO{sub 2}, and Al{sub 2}O{sub 3} + TiO{sub 2}) and a chemical vapor deposited coating of rhenium whiskers were used to increase the surface emissivity of refractory metal and nickel-base materials. Emittance measurements following 4000 hours of vacuum annealing at 1100 C show that only the ZrO{sub 2} + 18% TiO{sub 2} + 10% Y{sub 2}O{sub 3}, ZrC, and Al{sub 2}O{sub 3} + TiO{sub 2} coatings have the desired thermal stability, and maintain emissivity values higher than 0.8. These coatings are graybody emitters, and provide a high emissivity value in the wavelength range that is relevant to the TPV cells. The highest emissivity values were observed for the Al{sub 2}O{sub 3} + TiO{sub 2} coatings, with post-anneal values higher than graphite.

  20. Modeling Characteristics Of Surfaces For Radar Polarimetry

    Science.gov (United States)

    Van Zyl, Jakob J.; Zebker, Howard A.; Durden, Stephen L.

    1992-01-01

    Paper reviews mathematical models of polarimetric radar backscattering characteristics of various types of terrain; forests, grasslands, and lava fields. Represents approach to imaging radar polarimetry in which one accumulates models predicting realistic polarization signatures and represent distinct scattering processes, without attempting full vector solutions of Maxwell's equations in all cases. Idea to develop ability to invert models to identify unknown terrain depicted in polarimetric radar images. Describes models, major scattering characteristics predicted by models, and interpretation of characteristics in terms of dominant scattering mechanisms. Models predict realistic polarization signatures.

  1. Mechanical seal with textured sidewall

    Energy Technology Data Exchange (ETDEWEB)

    Khonsari, Michael M.; Xiao, Nian

    2017-02-14

    The present invention discloses a mating ring, a primary ring, and associated mechanical seal having superior heat transfer and wear characteristics. According to an exemplary embodiment of the present invention, one or more dimples are formed onto the cylindrical outer surface of a mating ring sidewall and/or a primary ring sidewall. A stationary mating ring for a mechanical seal assembly is disclosed. Such a mating ring comprises an annular body having a central axis and a sealing face, wherein a plurality of dimples are formed into the outer circumferential surface of the annular body such that the exposed circumferential surface area of the annular body is increased. The texture added to the sidewall of the mating ring yields superior heat transfer and wear characteristics.

  2. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    OpenAIRE

    Hiroshi Akamine; So Okumura; Sahar Farjami; Yasukazu Murakami; Minoru Nishida

    2016-01-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualis...

  3. Textural and physico-chemical characteristics of white brined goat cheeses made from frozen milk and curd. The use of square I - distance statistics

    Directory of Open Access Journals (Sweden)

    Nemanja Kljajevic

    2017-01-01

    Full Text Available Objective of this study was to investigate the effect of short term frozen storage of milk and curd on textural properties and physico-chemical composition of white brined goat cheese. Raw milk and curds (at various stages of pressing were frozen and kept for seven days at -27 °C. Following the freezing, all the experimental cheeses were manufactured by the standard procedure, the same that was used for the control cheese sample which did not undergo freezing at any stage of production. The Square I - distance was used in order to rank the cheeses according to their similarity to the control cheese in terms of texture attributes and physico-chemical characteristics. The results show that, in terms of all examined variables, the cheese made from frozen milk is the most similar to the control cheese.

  4. Wave optical simulation of the light trapping properties of black silicon surface textures.

    Science.gov (United States)

    Bett, Alexander Jürgen; Eisenlohr, Johannes; Höhn, Oliver; Repo, Päivikki; Savin, Hele; Bläsi, Benedikt; Goldschmidt, Jan Christoph

    2016-03-21

    Due to their low reflectivity and effective light trapping properties black silicon nanostructured surfaces are promising front side structures for thin crystalline silicon solar cells. For further optimization of the light trapping effect, particularly in combination with rear side structures, it is necessary to simulate the optical properties of black silicon. Especially, the angular distribution of light in the silicon bulk after passage through the front side structure is relevant. In this paper, a rigorous coupled wave analysis of black silicon is presented, where the black silicon needle shaped structure is approximated by a randomized cone structure. The simulated absorptance agrees well with measurement data. Furthermore, the simulated angular light distribution within the silicon bulk shows that about 70% of the light can be subjected to internal reflection, highlighting the good light trapping properties.

  5. Characterization of solar cells for space applications. Volume 7: Electrical characteristics of Spectrolab HEWAC BSF, textured, 10 ohm-cm, 225 micron solar cells as a function of intensity and temperature

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1979-01-01

    Electrical characteristics of Spectrolab HEWAC BSF, textured, 10 ohm cm, 225 micron solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature.

  6. Surface texture change on-demand and microfluidic devices based on thickness mode actuation of dielectric elastomer actuators (DEAs)

    Science.gov (United States)

    Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan

    2017-04-01

    Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.

  7. Imaging textural variation in the acoustoelastic coefficient of aluminum using surface acoustic waves.

    Science.gov (United States)

    Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G

    2015-11-01

    Much interest has arisen in nonlinear acoustic techniques because of their reported sensitivity to variations in residual stress, fatigue life, and creep damage when compared to traditional linear ultrasonic techniques. However, there is also evidence that the nonlinear acoustic properties are also sensitive to material microstructure. As many industrially relevant materials have a polycrystalline structure, this could potentially complicate the monitoring of material processes when using nonlinear acoustics. Variations in the nonlinear acoustoelastic coefficient on the same length scale as the microstructure of a polycrystalline sample of aluminum are investigated in this paper. This is achieved by the development of a measurement protocol that allows imaging of the acoustoelastic response of a material across a samples surface at the same time as imaging the microstructure. The development, validation, and limitations of this technique are discussed. The nonlinear acoustic response is found to vary spatially by a large factor (>20) between different grains. A relationship is observed when the spatial variation of the acoustoelastic coefficient is compared to the variation in material microstructure.

  8. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  9. Topography Battles Surface Texture: An Experimental Study of Pool-riffle Formation

    Science.gov (United States)

    Chartrand, S. M.; Hassan, M. A.; Jellinek, M.

    2016-12-01

    Pool-riffles are perhaps the most common streambed shape found in streams and rivers, and not surprisingly, they are essential to salmon ecology, and are a central focus of many restoration actions. Yet, when an applied earth scientist or engineer is faced with developing a pool-riffle design, there is a lack of clear and rigorously developed design guidelines. Given the volumes of money spent annually within the restoration industry, this is a real problem. Recognition of this problem is growing, however, and an increasing level of attention has been directed to questions of pool-riffle formation in the past decade. At this point and given certain landscape characteristics, it is well established that streamwise gradients in channel width are associated with pool-riffles. Specifically, pools are associated with negative gradients in width, and riffles with positive gradients. Importantly, these associations have now been documented from field-derived data, as well as via experimental and numerical investigations. There is much to build from the present knowledge base, and central to this are questions related to (a) how pool-riffles evolve during the formative process, (b) what are the basic set of ingredients necessary for pool-riffle formation within systems characterized by relatively non-erodible channel margins, and (c) do pool-riffles persist, once formed, under a broad range of forcing conditions? We have completed four physical experiments examining the process and evolution of pool-riffle formation under a large range of upstream boundary, as well as physical channel conditions. We will report on two of the completed experiments. Our work will highlight two new non-dimensional channel evolution numbers, derived to help describe and characterize bedform development, as well as response to perturbations from near-equilibrium conditions. The channel evolution numbers lay the foundation for development of a new regime diagram, which quantifies the basic

  10. The reflectance characteristics of snow covered surfaces

    Science.gov (United States)

    Batten, E. S.

    1979-01-01

    Data analysis techniques were developed to most efficiently use available satellite measurements to determine and understand components of the surface energy budget for ice and snow-covered areas. The emphasis is placed on identifying the important components of the heat budget related to snow surfaces, specifically the albedo and the energy consumed in the melting process. Ice and snow charts are prepared by NOAA from satellite observations which map areas into three relative reflectivity zones. Field measurements are analyzed of the reflectivity of an open snow field to assist in the interpretation of the NOAA reflectivity zones.

  11. Assessment of Drying Characteristics and Texture in 
Relation with Micromorphological Traits of Carob 
(Ceratonia silliqua L.) Pods and Seeds.

    Science.gov (United States)

    Benković, Maja; Srečec, Siniša; Bauman, Ingrid; Ježek, Damir; Karlović, Sven; Kremer, Dario; Karlović, Ksenija; Erhatić, Renata

    2016-12-01

    Carob tree (Ceratonia siliqua L.) is a perennial leguminous evergreen tree native to the coastal regions of the Mediterranean basin and is considered to be an important component of vegetation for economic and environmental reasons. Two constituents of the pod, pulp and seeds, can be used as feed or in food production. In this study, drying characteristics, texture and microstructure of carob pods were studied. Three different carob samples were prepared: whole carob pod, carob pod parts and carob seed. The drying experiments and the modelling showed that carob seeds had the highest drying rate, followed by pod parts and the whole, intact carob fruit. Texture studies showed that the maximum compression force depended on the area of the carob fruit on which compression tests were performed. The seeds showed the highest compression force, followed by the stem zone, the tip and the centre of the fruit. Differences in drying behaviour and texture of carob pods can successfully be interpreted by the micromorphology of the carob pods and seeds. Determining the drying rate, maximum compressive force and micromorphological traits is of great importance for further carob processing (e.g. milling, sieving, carob bean gum production or usage in food or feed products).

  12. Assessment of Drying Characteristics and Texture in 
Relation with Micromorphological Traits of Carob 
(Ceratonia silliqua L.) Pods and Seeds

    Science.gov (United States)

    Benković, Maja; Srečec, Siniša; Ježek, Damir; Karlović, Sven; Kremer, Dario; Karlović, Ksenija; Erhatić, Renata

    2016-01-01

    Summary Carob tree (Ceratonia siliqua L.) is a perennial leguminous evergreen tree native to the coastal regions of the Mediterranean basin and is considered to be an important component of vegetation for economic and environmental reasons. Two constituents of the pod, pulp and seeds, can be used as feed or in food production. In this study, drying characteristics, texture and microstructure of carob pods were studied. Three different carob samples were prepared: whole carob pod, carob pod parts and carob seed. The drying experiments and the modelling showed that carob seeds had the highest drying rate, followed by pod parts and the whole, intact carob fruit. Texture studies showed that the maximum compression force depended on the area of the carob fruit on which compression tests were performed. The seeds showed the highest compression force, followed by the stem zone, the tip and the centre of the fruit. Differences in drying behaviour and texture of carob pods can successfully be interpreted by the micromorphology of the carob pods and seeds. Determining the drying rate, maximum compressive force and micromorphological traits is of great importance for further carob processing (e.g. milling, sieving, carob bean gum production or usage in food or feed products). PMID:28115900

  13. Effect of finishing technique on the microleakage and surface texture of resin-modified glass ionomer restorative materials.

    Science.gov (United States)

    Wilder, A D; Swift, E J; May, K N; Thompson, J Y; McDougal, R A

    2000-07-01

    The purpose of this study was to evaluate the effects of wet and dry finishing/polishing procedures on the microleakage and surface texture of resin-modified glass ionomer (RMGI) restorative materials. Class V cavity preparations were made at the cemento-enamel junction (CEJ) on the buccal and lingual surface of 30 extracted human molars. The teeth were restored in three groups of 10 (20 preparations in each group) using Fuji II LC and Vitremer, both RMGIs, and Fuji II, a capsulated conventional glass ionomer cement (control). One restoration per tooth was finished/polished with copious applications of water and the other was finished/polished without water. All restorations were finished/polished using a sequence of four abrasive disks. Finishing/polishing was initiated according to manufacturers' instructions-immediately after light-curing Fuji II LC and Vitremer, and 15min after placement for Fuji II. The specimens were thermocycled and subjected to a silver nitrate leakage test. Each tooth was sectioned buccolingually and examined with an optical microscope at 40x to determine the extent of microleakage at enamel and dentin margins. The data were subjected to a non-parametric statistical analysis. To evaluate surface roughness after polishing, three disks each of Vitremer and Fuji II LC were fabricated in Teflon molds. One disk of each material was not finished/polished (control). The others were finished/polished using Sof-Lex abrasive disks. One specimen of each material was kept wet during all finishing/polishing procedures, while the other was kept dry. Atomic force microscopy was used to determine the average roughness (R(a)) of the specimens. For each material, microleakage at the enamel margin was very slight. Leakage of the conventional glass ionomer Fuji II was severe at dentin margins. Statistical analysis indicated that both Vitremer and Fuji II LC had significantly less leakage than Fuji II, and that Vitremer had significantly less leakage than Fuji

  14. Improved broadband antireflection in Schottky-like junction of conformal Al-doped ZnO layer on chemically textured Si surfaces

    Science.gov (United States)

    Saini, C. P.; Barman, A.; Kumar, M.; Sahoo, P. K.; Som, T.; Kanjilal, A.

    2014-09-01

    Chemically textured Si with improved absorption in the complete range of solar spectrum is investigated by ultraviolet/visible/near-infrared (UV/Vis/NIR) spectroscopy, showing an average specular reflectance of ˜0.4% in the wavelength of 500-3000 nm. The pyramidal structures on such solar-blind Si can reduce the reflectance further below 0.1% in the UV region by conformal growth of granular Al-doped ZnO (AZO) films. X-ray diffraction analyses suggest the growth of polycrystalline AZO on faceted-Si. Moreover, marginal increase in electrical conductivity of AZO is found on textured surfaces, whereas rise in leakage current in Schottky-like Ag/AZO/Si/Ag heterostructure devices is noticed with increasing Si surface area.

  15. Effects of Purple-fleshed Sweet Potato (Ipomoera batatas Cultivar Ayamurasaki) Powder Addition on Color and Texture Properties and Sensory Characteristics of Cooked Pork Sausages during Storage

    OpenAIRE

    Sang-Keun Jin; Yeong-Jung Kim; Jae Hong Park; In-Chul Hur; Sang-Hae Nam; Daekeun Shin

    2012-01-01

    This study was conducted to evaluate the effects of adding purple-fleshed sweet potato (PFP) powder on the texture properties and sensory characteristics of cooked pork sausage. Sodium nitrite alone and sodium nitrite in combination with PFP were added to five different treatments sausages (CON (control) = 0.01% sodium nitrite, SP25 = 0.005% sodium nitrite and 0.25% purple-fleshed sweet potato powder combination, SP50 = 0.005% sodium nitrite and 0.5% purple-fleshed sweet potato powder combina...

  16. Spatial characteristics of ocean surface waves

    Science.gov (United States)

    Gemmrich, Johannes; Thomson, Jim; Rogers, W. Erick; Pleskachevsky, Andrey; Lehner, Susanne

    2016-08-01

    The spatial variability of open ocean wave fields on scales of O (10km) is assessed from four different data sources: TerraSAR-X SAR imagery, four drifting SWIFT buoys, a moored waverider buoy, and WAVEWATCH III Ⓡ model runs. Two examples from the open north-east Pacific, comprising of a pure wind sea and a mixed sea with swell, are given. Wave parameters attained from observations have a natural variability, which decreases with increasing record length or acquisition area. The retrieval of dominant wave scales from point observations and model output are inherently different to dominant scales retrieved from spatial observations. This can lead to significant differences in the dominant steepness associated with a given wave field. These uncertainties have to be taken into account when models are assessed against observations or when new wave retrieval algorithms from spatial or temporal data are tested. However, there is evidence of abrupt changes in wave field characteristics that are larger than the expected methodological uncertainties.

  17. The Development of Laser Texturing and Laser Strength System of Roller Surface%轧辊表面激光毛化/强化系统的研制

    Institute of Scientific and Technical Information of China (English)

    钟如涛; 牟文广; 王靓; 莫衡阳

    2013-01-01

    The system used to laser texturing and laser strength on roller surface was developed,This was composed of IPG5000 fiber laser,texturing system,strength system,processing machine and control system,The technology of Chopping disc,prism and the vibration mirror were used,The integration technology of laser hardening function and laser texturing function and disordered texturing technology were solved.The results show that the system has higher precision,stable and reliable.The system is suitable for laser texturing and laser strengthen for roller of Less than 800 mm in diameter and less than 5 500 mm in length or flat workpieces of less than 5 500 mm in length.%研制开发了轧辊表面激光毛化/强化组合系统,此系统由IPG 5000光纤激光器、毛化系统、强化系统、加工机床和控制系统组成,采用了斩光盘、棱镜组合以及振镜技术,解决了激光强化和激光毛化功能的集成以及无序毛化等难点问题.结果表明:此系统精度高,性能稳定、可靠;适用于直径小于800 mm,长度小于5 500 mm轧辊或长度小于5 500ram平面工件的激光毛化和激光强化.

  18. Emotional effects of dynamic textures

    NARCIS (Netherlands)

    Toet, A.; Henselmans, M.; Lucassen, M.P.; Gevers, T.

    2011-01-01

    This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely

  19. Crossmodal interactions of haptic and visual texture information in early sensory cortex.

    Science.gov (United States)

    Eck, Judith; Kaas, Amanda L; Goebel, Rainer

    2013-07-15

    Both visual and haptic information add to the perception of surface texture. While prior studies have reported crossmodal interactions of both sensory modalities at the behavioral level, neuroimaging studies primarily investigated texture perception in separate visual and haptic paradigms. These experimental designs, however, only allowed to identify overlap in both sensory processing streams but no interaction of visual and haptic texture processing. By varying texture characteristics in a bimodal task, the current study investigated how these crossmodal interactions are reflected at the cortical level. We used fMRI to compare cortical activation in response to matching versus non-matching visual-haptic texture information. We expected that passive simultaneous presentation of matching visual-haptic input would be sufficient to induce BOLD responses graded with varying texture characteristics. Since no cognitive evaluation of the stimuli was required, we expected to find changes primarily at a rather early processing stage. Our results confirmed our assumptions by showing crossmodal interactions of visual-haptic texture information in early somatosensory and visual cortex. However, the nature of the crossmodal effects was slightly different in both sensory cortices. In early visual cortex, matching visual-haptic information increased the average activation level and induced parametric BOLD signal variations with varying texture characteristics. In early somatosensory cortex only the latter was true. These results challenge the notion that visual and haptic texture information is processed independently and indicate a crossmodal interaction of sensory information already at an early cortical processing stage. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Change of texture, microdeformation and hardness in surface layer of TiNi alloy depending on the number of pulses of electron beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Markov, A. B., E-mail: a.markov@hq.tsc.ru; Yakovlev, E. V., E-mail: yakovev@lve.hcei.tsc.ru; Ozur, G. E., E-mail: ozur@lve.hcei.tsc.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Rotshtein, V. P., E-mail: vrotshtein@yahoo.com [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Tomsk State Pedagogical University, Tomsk, 634050 (Russian Federation); Mironov, Yu. P., E-mail: myp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    This work comprises a study of the influence of the pulse number of low-energy high-current electron beam (LEHCEB) exposure on the value and character of distribution of residual elastic stresses, texturing effects and the relationship between structural-phase states and physical and mechanical properties of the modified surface layers of TiNi alloy. LEHCEB processing of the surface of TiNi samples was carried out using a RITM-SP [3] installation. Energy density of electron beam was constant at E{sub s} = 3.9 ± 0.5 J/cm{sup 2}; pulse duration was 2.8 ± 0.3 μs. The number of pulses in the series was changeable, (n = 2–128). It was shown that as the result of multiple LEHCEB processing of TiNi samples, hierarchically organized multilayer structure is formed in the surface layer. The residual stress field of planar type is formed in the modified surface layer as following: in the direction of the normal to the surface the strain component ε{sub ⊥} < 0 (compressing strain), and in a direction parallel to the surface, the strain component ε{sub ||} > 0 (tensile deformation). Texturing effects and the level of residual stresses after LEHCEB processing of TiNi samples with equal energy density of electron beam (∼3.8 J/cm{sup 2}) depend on the number of pulses and increase with the rise of n > 10.

  1. [Visual Texture Agnosia in Humans].

    Science.gov (United States)

    Suzuki, Kyoko

    2015-06-01

    Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.

  2. Application des ondelettes à l'analyse de texture et à l'inspection de surface industrielle

    Science.gov (United States)

    Wolf, D.; Husson, R.

    1993-11-01

    This paper presents a method of texture analysis based on multiresolution wavelets analysis. We discuss the problem of theoretical and experimental choice of the wavelet. Statistical modelling of wavelet images is treated and it results in considering statistical distribution to be a generalized Gaussian law. An algorithm for texture classification is developed with respect of the variances of different wavelet images. An industrial application of this algorithm illustrates its quality and proves its aptitude for automation of certain tasks in industrial control. Nous présentons une méthode d'analyse de texture fondée sur l'analyse multirésolution par ondelettes. Nous discutons du problème du choix théorique et expérimental de l'ondelette. Le problème de la modélisation statistique des images d'ondelettes est traité et aboutit à considérer la distribution statistique comme une loi de Gauss généralisée. Un algorithme de classification de texture est construit à l'aide de la variance des différentes images d'ondelettes. Enfin, une application industrielle de cet algorithme illustre ses qualités et démontre son aptitude à l'automatisation de certaines tâches de contrôle industriel.

  3. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  4. Effects of Er,Cr:YSGG laser irradiation on the surface characteristics of titanium discs: an in vitro study.

    Science.gov (United States)

    Ercan, Esra; Arin, Tuna; Kara, Levent; Çandirli, Celal; Uysal, Cihan

    2014-05-01

    Lasers are used to modify the surfaces of dental implants or to decontaminate exposed implant surfaces. However, research is lacking on whether the laser causes any change on the surfaces of titanium implants. We aimed to determine the effects of laser treatment on the surface characteristics of titanium discs. Nine discs were fabricated using grade-V titanium with resorbable blast texturing surface characteristics. The discs were irradiated with an erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser under different experimental conditions (R1-9). Scanning electron microscopy was used to evaluate implant surface topography qualitatively, and a mechanical contact profilometer was used to evaluate surface roughness. The R3 and R5 parameters caused no measurable change. Minor cracks and grooves were observed in discs treated with the R1, R2, R4, R7 and R9 parameters. Major changes, such as melting, flattening and deep crack formation, were observed in discs subjected to R6 (2 W, 30 Hz, 2 mm. distance, 30 s) and R8 (3 W, 25 Hz, 2 mm. distance, 45 s) parameters. The lowest surface roughness value was obtained with the R8 parameter. Irradiation distance, duration, frequency and power were the most significant factors affecting surface roughness. Parameters such as wavelength, output power, energy, dose and duration should be considered during irradiation. The results of this study indicate that the distance between the laser tip and the irradiated surface should also be considered.

  5. Surface characteristics and degradational history of debris aprons in the Tempe Terra/Mareotis fossae region of Mars

    Science.gov (United States)

    Chuang, Frank C.; Crown, David A.

    2005-12-01

    We have documented the surface characteristics and degradational history of a population of 65 lobate debris aprons in the Tempe Terra/Mareotis fossae region of Mars. These aprons were compared to other martian debris aprons to evaluate similarities and differences among different populations, which can provide insight into the dominant controls on apron development. Tempe/Mareotis debris aprons, found at the bases of isolated or clustered massifs, escarpments, and crater interior walls, were studied using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets in a GIS database. Six textures related to degradation of apron surfaces are identified in MOC images, and they are divided into two groups: an upper-surface group and a lower-surface group. Degradation occurs within an inferred smooth, upper surface mantle of ice and debris, producing a sequence of pitted, ridge and valley, and knobby textures of the upper-surface group. Where upper-surface materials have been removed, smooth and ridged textures of the lower-surface group are exposed. Degradation to various depths may expose lower-surface materials, which may consist of the main apron mass, remnants of mantling deposits, or both. A combination of geologic processes may have caused the degradation, including ice sublimation, ice melt, and eolian activity. Apron surfaces have lower maximum thermal inertias and mean surface temperatures than adjacent plains surfaces, which may be explained by the trapping of unconsolidated materials in low-lying pits and valleys formed by surface degradation or from the disruption of crusts on degraded portions of apron surfaces. One feature observed only on Tempe/Mareotis debris aprons are broad ridges, which mimic the shape of massif bases for tens of kilometers. We propose these to be constructional features that could have formed during cycles of increased debris production. Apron morphometric parameters including area, volume, slope, thickness, relief, and H

  6. Effects of surface texturing on the performance of biocompatible UHMWPE as a bearing material during in vitro lubricated sliding/rolling motion.

    Science.gov (United States)

    López-Cervantes, Adrián; Domínguez-López, Iván; Barceinas-Sánchez, José Dolores Oscar; García-García, Adrián Luis

    2013-04-01

    The effect of surface texturing on the performance of biocompatible ultra-high molecular weight polyethylene (UHMWPE) as a bearing material has been investigated using the kinematic range of motions reported for a knee-joint replacement. An experimental apparatus consisting of a ball and a disk rotating independently from each other was used to compare the performance of UHMWPE textured versus plain surfaces, under different combinations of sliding and rolling motion, better known as sliding-to-rolling ratio (SRR). Performance was evaluated through the coefficient of traction of a tribosystem comprising a steel ball on a flat UHMWPE disk and distilled water at 36°C, acting as lubricant. A square array of cavities with diameter D=0.397mm and center-to-center spacing of 1.5D was machined on UHMWPE disks. The experimental design considered two levels for cavity depth, D and D/2, and two for the applied load, 17 and 25N. The SRR was varied from 1 to 11% and the mean speed range was set from 5 to 55mm/s, covering the kinematics and contact pressure conditions of a sauntering cycle on a knee-joint replacement. Stribeck curves of the plain and textured surfaces were obtained and compared against one another. The results demonstrate that the proposed surface pattern reduces the coefficient of traction of the tribological system for the 17N load in the entire kinematic range explored, while for the 25N load the effects were more noticeable at low mean speed and SRR, corresponding to the beginning of motion.

  7. Super-hydrophobic characteristics of butterfly wing surface

    Institute of Scientific and Technical Information of China (English)

    CONG Qian; CHEN Guang-hua; FANG Yan; REN Lu-quan

    2004-01-01

    Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super-hydrophobic characteristic by means of Confocal Light Microscopy, Scanning Electron Microscopy and Contact Angle Measurement. The contact angles of water droplets on the butterfly wing surface were consistently measured to be about 150° and 100° with and without the squamas, respectively. The dust on the surface can be easily cleaned by moving spherical droplets when the inclining angle is larger than 3°. It can be concluded that the butterfly wing surface possess a super-hydrophobic, water-repellent,self-cleaning, or "Lotus-effect" characteristic. The contact angle measurement of water droplets on the wing surface with and without the squamas showed that the water-repellent characteristic is a consequence of the microstructure of the squamas.Each water droplet (diameter 2 mm) can cover about 700 squamas with a size of 40 μm×80 μm of each squama. The regular riblets with a width of 1000 nm to 1500 nm are clearly observed on each single squama. Such nanostructure should play a very important role in their super-hydrophobic and self-cleaning characteristic.

  8. Study on the tribological properties of the amphiphobic textured metal surface%金属微结构双疏表面的摩擦特性研究

    Institute of Scientific and Technical Information of China (English)

    王莉; 严诚平; 王权岱; 郭方亮; 郝秀清

    2012-01-01

    University of Science and Technology, Wuhan 430074, China) Abstract Microstructure arrays on tin-bronze and bearing steel substrates have been obtained through laser surface texturing technology and then the fluoride treatment on the textured surface was performed, which results in the metal surface with amphiphobic(hydrophobic/oleophobic) property. The tribological properties of the fabricated specimens have been investigated experimentally including the effect of texturing shape, load, and sliding speed. The results show that the textured surfaces could obtain lower friction coefficient than smooth surfaces under the same lubricated conditions and the lowest friction coefficients are 0. 037 and 0. 026 for tin-bronze and bearing steel respectively. Among specimens with various texture shape of surface, the texture with circle shape is optimal for friction reduction. Besides, the effect of the load on friction coefficient varies with the different property of substrate materials. In addition, the friction property of the specimens with various pattern densities on surface shows a visible transition in the same manner from a high-friction coefficient at the lowest speed to lower values then to little higher values as the speed increases, which is consistent with the Stribeck curve in a manner.%通过激光加工在锡青铜(ZQSn6.50.1)和轴承钢(GCr15)表面制备了微结构阵列,并进行低表面能处理,得到了2种金属双疏(疏水/疏油)表面.对制备的试样进行摩擦学性能实验研究,分别考察2种试样表面不同微结构形状、载荷及摩擦速度对其摩擦学性能的影响.结果表明:在相同润滑条件下,锡青铜和轴承钢双疏表面摩擦系数均比各自光滑试样表面低,最低分别为0.037和0.026;2种金属双疏表面具有圆形微凹坑阵列结构时,具有最优的减阻效果;载荷对试件摩擦系数的影响因材料特性不同而不同;随着速度的增加,不同图案密度微结构表面

  9. Sucrose Replacement by Sweeteners in Strawberry, Raspberry, and Cherry Jams: Effect on the Textural Characteristics and Sensorial Profile—A Chemometric Approach

    Directory of Open Access Journals (Sweden)

    Alice Vilela

    2015-01-01

    Full Text Available Sucrose is the main sugar used in jams preparation; however his excessive consumption has been related to several diseases; therefore its replacement by alternative sweeteners is an attractive solution. Nonetheless, substitution of sucrose in jam’s preparation can cause changes in texture, structure, and flavor, making them less attractive to the consumers. Thus, the aim of this work was to develop strawberry, raspberry, and cherry jams with more adequate nutritional profile, maintaining their textural and flavor characteristics in comparison with the traditional formulation. Sucrose was replaced by fructose, sorbitol, or fructooligosaccharides (FOS, given the product different nutritional profiles: potential low glycemic index, reduced calories in the case of sorbitol and FOS, and enrichment with dietary fiber, in the case of FOS. After sensorial and rheological evaluation we found that the sweeteners used interfered, significantly, in the parameters measured. Fructose was the alternative sweetener yielding jams more similar to those of sucrose; however, the use of formulations containing fructose and FOS or sorbitol and FOS resulted in a 51% to 68% decrease of the energy value. Nevertheless, consumer sensorial tests are needed to evaluate, in a more consistent way, the use of these alternative sweeteners for jams production at industrial level.

  10. Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates

    Energy Technology Data Exchange (ETDEWEB)

    Springer, J. [Forschungszentrum Julich GmbH, Julich (Germany). Institute of Photovoltaics; Academy of Sciences of the Czech Republic, Prague (Czech Republic). Institute of Physics; Rech, B.; Reetz, W.; Muller, J. [Forschungszentrum Julich GmbH, Julich (Germany). Institute of Photovoltaics; Vanecek, M. [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Institute of Physics

    2005-01-01

    Influence of front TCO thickness, surface texture and different back reflectors on short-circuit current density and fill factor of thin film silicon solar cells were investigated. For the front TCO studies, we used ZnO layers of different thickness and applied wet chemical etching in diluted HCl. This approach allowed us to adjust ZnO texture and thickness almost independently. Additionally, we used optical modeling to calculate optical absorption losses in every layer. Results show that texture and thickness reduction of front ZnO increase quantum efficiency over the whole spectral range. The major gain is in the red/IR region. However, the higher sheet resistance of the thin ZnO causes a reduction in fill factor. In the back reflector studies, we compared four different back reflectors: ZnO/Ag, Ag, ZnO/Al and Al. ZnO/Ag yielded the best, Al the worst light trapping properties. Furthermore, the Ag back contact turned out to be superior to ZnO/Al for microcrystalline cells. Finally, the smooth ZnO/Ag back contact showed a higher reflectivity than the rough one. We prepared pin cells with rough and smooth ZnO/Ag interface, leaving the roughness of all other interfaces unchanged. (author)

  11. A cytocompatible micro/nano-textured surface with Si-doped titania mesoporous arrays fabricated by a one-step anodization.

    Science.gov (United States)

    Liu, Huibing; Huang, Xiaobo; Yu, Hanwu; Yang, Xiaoning; Zhang, Xiangyu; Hang, Ruiqiang; Tang, Bin

    2017-04-01

    To mimic the hierarchical structure of bone tissues, a hybrid micro/nano-textured titanium surface with Si-doped TiO2 mesoporous arrays is fabricated by a one-step high current anodization (HCA). Specifically, the HCA is carried out in a electrolyte containing NO3(-) and SiO3(2-). The NO3(-) in the electrolyte is demonstrated to play a key role in mediating the formation of honeycombed TiO2 mesoporous arrays, which are different than the nanotubes formed by the mediating of F(-) ion in the conventional anodization. This unique structure endows the coating with improved mechanical properties compared to the nanotube layer. In addition, the Si is incorporated into the coating in a concentration-dependent manner. With the increase of Si doping amount in the coating, both the hydrophilic properties and surface free energy of coatings are obviously enhanced. The cell culture test shows that the osteoblast behaviors on this surface are positively influenced by the doped Si. Therefore, this micro/nano-textured surface coating doped with Si may endow the Ti-based implants long-term stability and good osseointegration.

  12. Mapping Soil Texture of a Plain Area Using Fuzzy-c-Means Clustering Method Based on Land Surface Diurnal Temperature Difference

    Institute of Scientific and Technical Information of China (English)

    WANG De-Cai; ZHANG Gan-Lin; PAN Xian-Zhang; ZHAO Yu-Guo; ZHAO Ming-Song; WANG Gai-Fen

    2012-01-01

    The use of landscape covariates to estimate soil properties is not suitable for the areas of low relief due to the high variability of soil properties in similar topographic and vegetation conditions.A new method was implemented to map regional soil texture (in terms of sand,silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input.To examine this hypothesis,the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period,i.e.,after a heavy rainfall between autumn harvest and autumn sowing,were classified using fuzzy-c-means (FCM) clustering.Six classes were generated,and for each class,the sand (> 0.05 mm),silt (0.002-0.05 mm) and clay (< 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class.A weighted average model was then used to digitally map soil texture.The results showed that the predicted map quite accurately reflected the regional soil variation.A validation dataset produced estimates of error for the predicted maps of sand,silt and clay contents at root mean of squared error values of 8.4%,7.8% and 2.3%,respectively,which is satisfactory in a practical context.This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.

  13. Influence of shear velocity on frictional characteristics of rock surface

    Indian Academy of Sciences (India)

    T N Singh; A K Verma; Tanmay Kumar; Avi Dutt

    2011-02-01

    Understanding the fundamental issues related with the effect of shear velocity on frictional characteristics at the interface of rock surfaces is an important issue. In this paper, strain-rate dependence on friction is investigated in relation to sliding behaviour under normal load. The phenomenon of stick-slip of granite and shaly sandstone with a tribometer at constant rate of strain under normal loads was observed. Friction at the interface of the rock samples was developed by increasing shear strain at a constant rate by applying constant velocity using the tribometer. For shaly sandstone, state parameters ( and ) played a major role in determining the friction values and roughness of the contact surfaces as well. Higher values of for shaly sandstone may be attributed to the fact that its surface had a greater number of pronounced asperities. Rubbing between the surfaces does not mean that surface becomes smoother. This is because of variation of friction between surfaces.

  14. Effect of egg freshness on texture and baking characteristics of batter systems formulated using egg, flour and sugar.

    Science.gov (United States)

    Xing, Liting; Niu, Fuge; Su, Yujie; Yang, Yanjun

    2016-04-01

    The aim of this work was to evaluate the effects of egg freshness on baking properties and final qualities in batter systems. Batters were made with eggs of different freshness, and the properties of batter systems were studied through rheological analysis, rapid viscosity analysis (RVA), differential scanning calorimetry (DSC), batter density and expansion rate during the baking and cooling processes. Moreover, the qualities of final baked systems were investigated, including specific volume and texture profile analysis (TPA). The flow behavior of batters showed that the consistency index (K) decreased as the Haugh unit (HU) value decreased, while the flow behavior index (n) increased. Both the storage modulus (G') and loss modulus (G″) determined by mechanical spectra at 20 °C decreased with decreasing HU. RVA and DSC determinations revealed that lower-HU samples had a lower viscosity in the baking process and a shorter time for starch gelatinization and egg protein denaturation. Observation of the batter density revealed an increasing change, which was reflected by a decrease in the specific volume of final models. TPA showed significant differences in hardness and chewiness, but no significant differences in springiness and cohesiveness were found. The egg freshness affected the properties of batter systems. © 2015 Society of Chemical Industry.

  15. Characteristics of Corona Textures in the Huangtuling Granulite in the Dabie Comples,China and Their Implications for Tectonic Settings

    Institute of Scientific and Technical Information of China (English)

    王江海; 常向阳; 等

    1996-01-01

    Widely developed in the Dabie complex are various disequilibrium textures which provide direct evidence for the evolution of metamorphism and late-stage uplifting history.The typical mineral assemblasge in the Opx-Gt-Pl-Bi gneiss in Huangtuling,Luotian County,Hubei Province,Is Opx(I)+Gt+Pl(I)+Bi(I)+Q.The corona composed of cordierite and orthopyroxene(Ⅱ)growing around garnets in the granulite makes it clear that there occurres the following metamorphic reaction:Gt+Q→Cd+Opx(Ⅱ).It is estimated that the gran ulite-forming temperature(T)and pressure(P)are 857-998℃ and 1.18-1.23Gpa,respectively,and the corona was formed under the following conditions:T=829-911℃ and P=0.52-0.59GPa.The above results indicate that There occurred a rapid and nearly adiabatic uplifting event and a decompressional metamorphism in the Dabie complex after the formation of granulite.As compared with the granulites worldwidely distributed in 90 locations(Harley 1989),the Huangtuling granulite should belong to the high-pressure type,which represents the composition of the crust at a depth of more than 40 kilometers.

  16. 考虑粗糙度影响的表面织构最优参数设计模型%Optimal design model of surface texture with surface roughness considered

    Institute of Scientific and Technical Information of China (English)

    马晨波; 朱华; 孙见君

    2011-01-01

    为考察表面粗糙度对织构表面摩擦学性能的影响,采用求解基于平均雷诺方程的表面织构润滑计算模型的方法,研究综合粗糙度和方向参数等对摩擦系数及最优织构参数的影响规律.结果表明:当织构表面具有横向粗糙条纹时具有较优的摩擦学性能表现;当综合粗糙度σ〈0.5μm时,摩擦系数和最优织构深度不随综合粗糙度的变化而变化,当σ≥0.5μm时,摩擦系数和最优织构深度随粗糙度的增大而增大;最优织构直径随综合粗糙度的增大而增大,最优织构面积比与综合粗糙度之间不相关,最优织构参数不随方向参数的变化而变化.在仿真结果的基础上,建立考虑粗糙度影响时表面织构的最优参数设计模型,试验验证所建立的模型是合理的和正确的.%In order to investigate the frictional performance of textured surfaces when its surface roughness was considered,the influences of composite root-mean-square(RMS) and the orientation parameter on the friction coefficient as well as the optimal parameters of textured surfaces were studied by solving the lubrication computation model of surface texture based on the average Reynolds equation.The results show that: the textured surfaces with the traverse surface roughness have the perfect frictional performance;the friction coefficient and the optimal depth of surface texture increase with the accretion of the composite RMS(σ) when σ0.5 μm,while the friction coefficient and the optimal depth of surface texture do not change with the composite RMS when σ≥0.5 μm;the larger the composite RMS,the larger the optimal diameter of surface texture,the optimal area ratio is not related to the composite RMS,the optimal parameters are not bound up with the orientation parameter.An optimal design model of surface texture is established based on the computational results,and the validation of the model is also verified.

  17. [Effects of cooking and steep time of nixtamalized corn grain (sea mayz L.) on the physicochemical, rheological, structural and textural characteristics of grain, mass and tortillas].

    Science.gov (United States)

    Arámbula Villa, G; Barrón Avila, L; González Hernández, J; Moreno Martínez, E; Luna Bárcenas, G

    2001-06-01

    The corn tortilla is elaborated using corn grain masa processed by the traditional nixtamalization method, which consists of two steps: cooking and steeping. In these steps the physicochemical and structural properties are strongly affected, resulting in changes in the textural characteristics of the tortilla produced. In this work the effects of cooking and steeping time on the moisture content, amylographic profiles, crystallinity, weigh loss from masa to tortilla, starch damage, rollability, elasticity and cutting force for grain, masa and corn tortillas, were evaluated. The milling of the nixtamalized grain and the cooking of tortilla conditions were the same in all treatments. All tortillas samples showed a good rollability. The results show that the moisture content of corn grain was increased up to 42 g/100 g during the total cooking time (45 min), and it further increased to 52-53 g/100 g after when the cooked grain was steeped for 4 h. All evaluated parameters showed high correlation coefficients with the texture properties of tortillas. The starch damage was the variable with the best correlation among all evaluated parameters. The correlation coefficients between starch damage and moisture content, weigh loss and maximum viscosity for corn grain, masa and tortillas were larger than 0.92 (p tortillas were produced using nixtamal with the follow characteristics: moisture content of nixtamal, 42-44 g/100 g and tortilla, 43-44 g/100 g; adhesiveness of masa, 30-50 g; maximum viscosity of nixtamal, 860-880 cp and tortilla 490-510 cp; starch damage of nixtamal, 14 g/100 g and tortilla, 35-37 g/100 g, and weigh loss of tortilla during cooking, 16 g/100 g.

  18. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  19. LOCAL TEXTURE DESCRIPTION FRAMEWORK FOR TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    R. Reena Rose

    2014-02-01

    Full Text Available Texture descriptors have an important role in recognizing face images. However, almost all the existing local texture descriptors use nearest neighbors to encode a texture pattern around a pixel. But in face images, most of the pixels have similar characteristics with that of its nearest neighbors because the skin covers large area in a face and the skin tone at neighboring regions are same. Therefore this paper presents a general framework called Local Texture Description Framework that uses only eight pixels which are at certain distance apart either circular or elliptical from the referenced pixel. Local texture description can be done using the foundation of any existing local texture descriptors. In this paper, the performance of the proposed framework is verified with three existing local texture descriptors Local Binary Pattern (LBP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs for the five issues viz. facial expression, partial occlusion, illumination variation, pose variation and general recognition. Five benchmark databases JAFFE, Essex, Indian faces, AT&T and Georgia Tech are used for the experiments. Experimental results demonstrate that even with less number of patterns, the proposed framework could achieve higher recognition accuracy than that of their base models.

  20. Zero Cycles on Certain Surfaces in Arbitrary Characteristic

    Indian Academy of Sciences (India)

    G V Ravindra

    2006-02-01

    Let be a field of arbitrary characteristic. Let be a singular surface defined over with multiple rational curve singularities and suppose that the Chow group of zero cycles of its normalisation $\\overline{S}$ is finite dimensional. We give numerical conditions under which the Chow group of zero cycles of is finite dimensional.

  1. 纳观纹理表面往复滑动接触磨损问题研究进展%Advances on nanoscale wear mechanism in reciprocating sliding contacts of textured surfaces

    Institute of Scientific and Technical Information of China (English)

    佟瑞庭

    2013-01-01

    纳米器件滑动接触过程中,由于黏附磨损而很快失效,很难应用于工程实际.表面纹理通过降低比表面来减小磨损,在往复滑动接触过程中,伴随着材料的迁移,接触条件不断更新,使得往复滑动接触磨损问题的研究变的更加困难.为此,对观纹理表面往复滑动接触磨损问题的试验研究和数值模拟研究进行了综述,介绍了纳观纹理表面往复滑动接触磨损问题试验研究相关成果,探讨了影响摩擦磨损性能的表面纹理参数及其他相关因素,分析了试验研究可能存在的问题.阐述了分子动力学模拟研究该问题的发展现状,介绍了多尺度方法的发展历程,并给出了多尺度方法模拟该问题的算例.最后,探讨了该问题未来可能的发展方向.%Nanoscale apparatus will be failed soon during the sliding contact process because of adhesive wear,which makes nanoscale apparatus hard to be widely used in practice.Surface-to-volume ratio is reduced to improve wear characteristics of surface texture.During the reciprocating sliding contacts,atoms on the contact surfaces are moved,and contact conditions vary all the time,which makes studies on nanoscale wear mechnism in reciprocating sliding contacts of textured surfaces more difficult.The recent development of the experimental investigations and numerical methods for the aboving problems is given in this paper.Some experimental results on nanoscale wear mechnism in reciprocating sliding contacts of textured surfaces are introduced.The parameters and other factors which affect the friction or wear characteristics are also discussed,and the limits of experimental studies are analyzed.The development of molecular dynamics simulation on this problem is given.The history of multiscale method is introduced in detail,and the reciprocating sliding contacts of textured surfaces solved by multiscale method are shown as examples.Finally,the future development trend on reciprocating

  2. Characteristics of surface waves in anisotropic left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Yong-Yuan; Shi Hong-Yan; Zhang Yong-Qiang; Hou Chun-Feng; Sun Xiu-Dong

    2007-01-01

    We report the coexistence of TE and TM surface modes in certain same frequency domain at the interface between one isotropic regular medium and another biaxially anistotropic left-handed medium. The conditions for the existence of TE and TM polarized surface waves in biaxially anisotropic left-handed materials are identified, respectively.The Poynting vector and the energy density associated with surface modes are calculated. Depending on the system parameters, either TE or TM surface modes can have the time averaged Poynting vector directed to or opposite to the mode phase velocity. It is seen that the characteristics of surface waves in biaxially anisotropic left-handed media are significantly different from that in isotropic left-handed media.

  3. Ellipsometry characterization of polycrystalline ZnO layers with the modeling of carrier concentration gradient: Effects of grain boundary, humidity, and surface texture

    Energy Technology Data Exchange (ETDEWEB)

    Sago, Keisuke; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Center of Innovative Photovoltaic Systems (CIPS), Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Kuramochi, Hideto; Iigusa, Hitoshi; Utsumi, Kentaro [Tokyo Research Laboratory, TOSOH Co., Ltd., 2743-1 Hayakawa, Ayase-shi, Kanagawa 252-1123 (Japan)

    2014-04-07

    Spectroscopic ellipsometry (SE) has been applied to study the effects of grain boundary, humidity, and surface texture on the carrier transport properties of Al-doped ZnO layers fabricated by dc and rf magnetron sputtering. In the SE analysis, the variation in the free carrier absorption toward the growth direction, induced by the ZnO grain growth on foreign substrates, has been modeled explicitly by adopting a multilayer model in which the optical carrier concentration (N{sub opt}) varies continuously with a constant optical mobility (μ{sub opt}). The effect of the grain boundary has been studied by comparing μ{sub opt} with Hall mobility (μ{sub Hall}). The change in μ{sub Hall}/μ{sub opt} indicates a sharp structural transition of the ZnO polycrystalline layer at a thickness of d ∼ 500 nm, which correlates very well with the structure confirmed by transmission electron microscopy. In particular, below the transition thickness, the formation of the high density grain boundary leads to the reduction in the μ{sub Hall}/μ{sub opt} ratio as well as N{sub opt}. As a result, we find that the thickness dependence of the carrier transport properties is almost completely governed by the grain boundary formation. On the other hand, when the ZnO layer is exposed to wet air at 85 °C, μ{sub Hall} reduces drastically with a minor variation of μ{sub opt} due to the enhanced grain boundary scattering. We have also characterized textured ZnO:Al layers prepared by HCl wet etching by SE. The analysis revealed that the near-surface carrier concentration increases slightly after the etching. We demonstrate that the SE technique can be applied to distinguish various rough textured structures (size ∼ 1 μm) of the ZnO layers prepared by the HCl etching.

  4. Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios; Saroyan, Hayarpi; Lazaridis, Nikolaos; Deliyanni, Eleni

    2016-04-01

    Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption. Dimitrios Giannakoudakis1, Hayarpi Saroyan2, Nikolaos Lazaridis2, Eleni Deliyanni2 1 City College of New York, Chemistry Department, 160 Convent Avenue, New York, United States 2 Laboratory of General and oInorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece In this study, the effect of preparation route of a mesoporous magnetic activated carbon on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of the magnetic activated carbon was achieved both with (i) impregnation method (Bmi), and (ii) co-precipitation with two precipitation agents: NaOH (Bm) and NH4OH (Bma). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved in order to testify the effect of the preparation route on its textural and surface properties. It was shown that after the precipitation method the prepared carbon presented a collapsed texture and small magnetic properties. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic carbons. The adsorption evaluation of the magnetic activated carbon presented higher adsorption capacity of Bmi carbon (350 mg/g) and lower of Bm (150 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔHο, ΔGο and ΔSο). The characterization with various techniques revealed the possible interactions/forces of dye-composite system.

  5. Emotional Effects of Dynamic Textures

    Directory of Open Access Journals (Sweden)

    Alexander Toet

    2011-12-01

    Full Text Available This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely unknown, despite their natural ubiquity and increasing use in digital media. Participants watched a set of dynamic textures, representing either water or various different media, and self-reported their emotional experience. Motion complexity was found to have mildly relaxing and nondominant effects. In contrast, motion change complexity was found to be arousing and dominant. The speed of dynamics had arousing, dominant, and unpleasant effects. The amplitude of dynamics was also regarded as unpleasant. The regularity of the dynamics over the textures' area was found to be uninteresting, nondominant, mildly relaxing, and mildly pleasant. The spatial scale of the dynamics had an unpleasant, arousing, and dominant effect, which was larger for textures with diverse content than for water textures. For water textures, the effects of spatial contrast were arousing, dominant, interesting, and mildly unpleasant. None of these effects were observed for textures of diverse content. The current findings are relevant for the design and synthesis of affective multimedia content and for affective scene indexing and retrieval.

  6. Feature-aware natural texture synthesis

    KAUST Repository

    Wu, Fuzhang

    2014-12-04

    This article presents a framework for natural texture synthesis and processing. This framework is motivated by the observation that given examples captured in natural scene, texture synthesis addresses a critical problem, namely, that synthesis quality can be affected adversely if the texture elements in an example display spatially varied patterns, such as perspective distortion, the composition of different sub-textures, and variations in global color pattern as a result of complex illumination. This issue is common in natural textures and is a fundamental challenge for previously developed methods. Thus, we address it from a feature point of view and propose a feature-aware approach to synthesize natural textures. The synthesis process is guided by a feature map that represents the visual characteristics of the input texture. Moreover, we present a novel adaptive initialization algorithm that can effectively avoid the repeat and verbatim copying artifacts. Our approach improves texture synthesis in many images that cannot be handled effectively with traditional technologies.

  7. Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits.

    Science.gov (United States)

    Srivastava, Prateeti; Indrani, D; Singh, R P

    2014-11-01

    Pomegranate (Punica granatum) peel is rich source of dietary fiber and bioactive compounds, hence could be used in the development of functional food formulations. Attempt was made to see the effect of dried pomegranate peel powder (DPPP) and emulsifiers on the rheological, nutritional and quality characteristics of biscuits. Incorporation of DPPP from 0 to 10% increased farinograph water absorption, decreased dough stability, increased amylograph pasting temperature and peak viscosity of wheat flour; increased hardness and decreased cohesiveness of biscuit dough; decreased spread ratio and increased breaking strength of biscuits. Sensory evaluation showed that biscuits incorporated with 7.5% DPPP were acceptable. Among emulsifiers, sodium stearoyl lactylate significantly improved the quality characteristics of 7.5% DPPP incorporated biscuits. Addition of 7.5% DPPP increased the protein, dietary fibre, minerals, anti-oxidant activity and β-carotene contents of biscuits. The studies indicated the possibility of utilizing DPPP to improve the nutritional characteristics of biscuits.

  8. Characteristics of the Surface-Intrinsic Josephson Junction

    Institute of Scientific and Technical Information of China (English)

    YANG Li; XU Wei-wei; YE Su-li; GUO Da-yuan; YOU Li-xing; WU Pei-heng

    2006-01-01

    During the fabrication of intrinsic Josephson junctions (IJJs) with Bi2Sr2CaCu2O8+δ(BSCCO) single crystals,the superconductivity of the surface Cu-O layer is degraded because of a deposited metal film on top of the stack.Thus,the characteristics of the surface junction consisting of the surface Cu-O double layers remarkably differ from those of the junctions deep in the stack,which will be referred to as ordinary IJJs.The electrical transport characteristics of the surface junction,such as I-V,I'c-T,and R-T,show that the critical temperature T'c of the surface junction is always lower than that of ordinary IJJs,and that the change of its critical current I'c with temperature is different from that of ordinary IIJs.Furthermore,by shunting! the surface junction resistively,we are able to observe the AC Josephson effect at 3-mm waveband.

  9. Quantitative Morphologic Analysis of Boulder Shape and Surface Texture to Infer Environmental History: A Case Study of Rock Breakdown at the Ephrata Fan, Channeled Scabland, Washington

    Science.gov (United States)

    Ehlmann, Bethany L.; Viles, Heather A.; Bourke, Mary C.

    2008-01-01

    Boulder morphology reflects both lithology and climate and is dictated by the combined effects of erosion, transport, and weathering. At present, morphologic information at the boulder scale is underutilized as a recorder of environmental processes, partly because of the lack of a systematic quantitative parameter set for reporting and comparing data sets. We develop such a parameter set, incorporating a range of measures of boulder form and surface texture. We use standard shape metrics measured in the field and fractal and morphometric classification methods borrowed from landscape analysis and applied to laser-scanned molds. The parameter set was pilot tested on three populations of basalt boulders with distinct breakdown histories in the Channeled Scabland, Washington: (1) basalt outcrop talus; (2) flood-transported boulders recently excavated from a quarry; and (3) flood-transported boulders, extensively weathered in situ on the Ephrata Fan surface. Size and shape data were found to distinguish between flood-transported and untransported boulders. Size and edge angles (approximately 120 degrees) of flood-transported boulders suggest removal by preferential fracturing along preexisting columnar joints, and curvature data indicate rounding relative to outcrop boulders. Surface textural data show that boulders which have been exposed at the surface are significantly rougher than those buried by fan sediments. Past signatures diagnostic of flood transport still persist on surface boulders, despite ongoing overprinting by processes in the present breakdown environment through roughening and fracturing in situ. Further use of this quantitative boulder parameter set at other terrestrial and planetary sites will aid in cataloging and understanding morphologic signatures of environmental processes.

  10. Quantitative Morphologic Analysis of Boulder Shape and Surface Texture to Infer Environmental History: A Case Study of Rock Breakdown at the Ephrata Fan, Channeled Scabland, Washington

    Science.gov (United States)

    Ehlmann, Bethany L.; Viles, Heather A.; Bourke, Mary C.

    2008-01-01

    Boulder morphology reflects both lithology and climate and is dictated by the combined effects of erosion, transport, and weathering. At present, morphologic information at the boulder scale is underutilized as a recorder of environmental processes, partly because of the lack of a systematic quantitative parameter set for reporting and comparing data sets. We develop such a parameter set, incorporating a range of measures of boulder form and surface texture. We use standard shape metrics measured in the field and fractal and morphometric classification methods borrowed from landscape analysis and applied to laser-scanned molds. The parameter set was pilot tested on three populations of basalt boulders with distinct breakdown histories in the Channeled Scabland, Washington: (1) basalt outcrop talus; (2) flood-transported boulders recently excavated from a quarry; and (3) flood-transported boulders, extensively weathered in situ on the Ephrata Fan surface. Size and shape data were found to distinguish between flood-transported and untransported boulders. Size and edge angles (approximately 120 degrees) of flood-transported boulders suggest removal by preferential fracturing along preexisting columnar joints, and curvature data indicate rounding relative to outcrop boulders. Surface textural data show that boulders which have been exposed at the surface are significantly rougher than those buried by fan sediments. Past signatures diagnostic of flood transport still persist on surface boulders, despite ongoing overprinting by processes in the present breakdown environment through roughening and fracturing in situ. Further use of this quantitative boulder parameter set at other terrestrial and planetary sites will aid in cataloging and understanding morphologic signatures of environmental processes.

  11. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation.

    Science.gov (United States)

    Xu, Jia-Yun; Chen, Xian-Shuai; Zhang, Chun-Yu; Liu, Yun; Wang, Jing; Deng, Fei-Long

    2016-11-01

    Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P<0.05) and higher total protein contents on the 14th day (P<0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P<0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes.

  12. Magnetic texture of Nd2Fe14B solidified in the surface layer of anisotropic sintered-magnets

    Institute of Scientific and Technical Information of China (English)

    PAN Jing; LIU Xincai; TU Fenghua

    2006-01-01

    The arrangements of the easy magnetization axis [001] of columnar Nd2Fe14B crystals in the laser scanned layer on anisotropic sintered Nd15Fe77B8 magnets were investigated by XRD and the Bitter method. The results show that the common effects of both the heat flux and the substrate magnetization orientation constrain the columnar Nd2Fe14B solidified from the laser melting pool to form the c -axis texture orientated with the same direction as that of the substrate, when the geometric relationship between the heat flux in the laser scanning layer and c -axis texture orientation of the substrate is perpendicular to each other, and if the laser scanning velocity is no less than 25 mm·min-1 . The c -axes of columnar Nd2Fe14B crystals are no longer randomly distributed in the plane normal to their preferential growing direction as they are randomly done in both ingots cooled by water-cooling copper mould and directionally solidified Nd-Fe-B rods.

  13. Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films.

    Science.gov (United States)

    Kumar, Manjeet; Kumar, Akshay; Abhyankar, A C

    2015-02-18

    For the first time, a new facile approach based on simple and inexpensive chemical spray pyrolysis (CSP) technique is used to deposit Tungsten (W) doped nanocrystalline SnO2 thin films. The textural, optical, structural and sensing properties are investigated by GAXRD, UV spectroscopy, FESEM, AFM, and home-built sensing setup. The gas sensing results indicate that, as compared to pure SnO2, 1 wt % W-doping improves sensitivity along with better response (gas at operating temperatures of ∼225 °C. The optimal composition of 1 wt % W-doped films exhibit lowest crystallite size of the order of ∼8-10 nm with reduced energy band gap and large roughness values of 3.82 eV and 3.01 nm, respectively. Reduction in texture coefficient along highly dense (110) planes with concomitant increase along loosely packed (200) planes is found to have prominent effect on gas sensing properties of W-doped films.

  14. The characteristics of machined surface controlled by multi tip arrayed tool and high speed spindle.

    Science.gov (United States)

    Kim, Yong Woo; Choi, Soo Chang; Park, Jeong Woo; Lee, Deug Woo

    2010-07-01

    In this study, we propose one of the ultra-precision machining methods that can be adapted brittle material as well as soft material by using multi arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because particles of grinding tools are irregular size and material can be fragile. Therefore we were able to design tool paths and machine controlled pattern on surface by multi arrayed diamond tips which has uniform size made in MEMS fabrication and high speed spindle of which maximum speed is about 300,000 rpm. We defined several parameters that can have effect on machining surface. Those are multi array of diamond tips (n * n), speed of the air spindle, and feeding rate. Surface roughness and surface texture can be controlled by those parameters for micro machining.

  15. Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material

    Institute of Scientific and Technical Information of China (English)

    Yong-Woo KIM; Soo-Chang CHOI; Jeung-Woo PARK; Deug-Woo LEE

    2009-01-01

    One of the ultra-precision machining methods was adapted for brittle material as well as soft material by using multi-arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because the particles of grinding tools are irregular size and material can be fragile. Therefore, we were able to design tool paths and machine controlled pattern on surface by multi-arrayed diamond tips with uniform size made in MEMS fabrication and high speed spindle, and the maximum speed was about 3×105 r/min. We defined several parameters that can affect the machining surface. Those were multi-array of diamond tips (n×n), speed of air spindle and feeding rate. The surface roughness and surface texture can be controlled by those parameters for micro machining.

  16. Anatomical characteristics of the cerebral surface in bulimia nervosa.

    Science.gov (United States)

    Marsh, Rachel; Stefan, Mihaela; Bansal, Ravi; Hao, Xuejun; Walsh, B Timothy; Peterson, Bradley S

    2015-04-01

    The aim of this study was to examine morphometric features of the cerebral surface in adolescent and adult female subjects with bulimia nervosa (BN). Anatomical magnetic resonance images were acquired from 34 adolescent and adult female subjects with BN and 34 healthy age-matched control subjects. We compared the groups in the morphological characteristics of their cerebral surfaces while controlling for age and illness duration. Significant reductions of local volumes on the brain surface were detected in frontal and temporoparietal areas in the BN compared with control participants. Reductions in inferior frontal regions correlated inversely with symptom severity, age, and Stroop interference scores in the BN group. These findings suggest that local volumes of inferior frontal regions are smaller in individuals with BN compared with healthy individuals. These reductions along the cerebral surface might contribute to functional deficits in self-regulation and to the persistence of these deficits over development in BN. © 2014 Society of Biological Psychiatry.

  17. Surface characteristics of carbon fibers modified by direct oxyfluorination.

    Science.gov (United States)

    Seo, Min-Kang; Park, Soo-Jin

    2009-02-01

    The effect of oxyfluorinated conditions on the surface characteristics of carbon fibers was investigated. Infrared (IR) spectroscopy results indicated that the oxyfluorinated carbon fibers showed carboxyl/ester groups (CO) at 1632 cm(-1) and hydroxyl groups (OH) at 3450 cm(-1) and had a higher OH peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results for the fibers also showed that oxyfluorination introduced a much higher oxygen concentration onto the fiber surfaces than fluorination with F(2) only. Additionally, contact-angle results showed that the surface was better wetted by following oxyfluorination and that the polarity of the surface was increased by increasing the oxyfluorination temperature.

  18. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants.

    Science.gov (United States)

    Sezin, M; Croharé, L; Ibañez, J C

    2016-01-01

    To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm(2) was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces..

  19. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants

    Science.gov (United States)

    Sezin, M.; Croharé, L.; Ibañez, J.C.

    2016-01-01

    Objective: To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Materials and Methods: Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. Results: The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm2 was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). Conclusion: The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces.. PMID:27335615

  20. Textured ZnO thin films by RF magnetron sputtering

    CERN Document Server

    Ginting, M; Kang, K H; Kim, S K; Yoon, K H; Park, I J; Song, J S

    1999-01-01

    Textured thin films ZnO has been successfully grown by rf magnetron sputtering method using a special technique of introducing a small amount of water and methanol on the deposition chamber. The grain size of the textured surface is highly dependent on the argon pressure during the deposition. The pressure in this experiment was varied from 50 mTorr down to 5 mTorr and the highest grain size of the film is obtained at 5 mTorr. The total transmittance of the films are more than 85% in the wavelength of 400 to 800 nm, and haze ratio of about 14% is obtained at 400 nm wavelength. Beside the textured surface, these films also have very low resistivity, which is lower than 1.4x10 sup - sup 3 OMEGA centre dot cm. X-ray analysis shows that the films with textured surface have four diffraction peaks on the direction of (110), (002), (101) and (112), while the non-textured films have only (110) and (002) peaks. Due to the excellent characteristics of this film, it will make the film very good TCO alternatives for the ...

  1. Surface Evolution of Nano-Textured 4H–SiC Homoepitaxial Layers after High Temperature Treatments: Morphology Characterization and Graphene Growth

    Directory of Open Access Journals (Sweden)

    Xingfang Liu

    2015-09-01

    Full Text Available Nano-textured 4H–SiC homoepitaxial layers (NSiCLs were grown on 4H–SiC(0001 substrates using a low pressure chemical vapor deposition technique (LPCVD, and subsequently were subjected to high temperature treatments (HTTs for investigation of their surface morphology evolution and graphene growth. It was found that continuously distributed nano-scale patterns formed on NSiCLs which were about submicrons in-plane and about 100 nanometers out-of-plane in size. After HTTs under vacuum, pattern sizes reduced, and the sizes of the remains were inversely proportional to the treatment time. Referring to Raman spectra, the establishment of multi-layer graphene (MLG on NSiCL surfaces was observed. MLG with sp2 disorders was obtained from NSiCLs after a high temperature treatment under vacuum at 1700 K for two hours, while MLG without sp2 disorders was obtained under Ar atmosphere at 1900 K.

  2. Methods for analyzing surface texture effects of volcanoes with Plinian and subplinian eruptions types: Cases of study Lascar (23 S) and Chaiten (42 S), Chile

    CERN Document Server

    Fernandez, L; Salinas, R

    2016-01-01

    This paper presents a new methodology that provides the analysis of surface texture changes in areas adjacent to the volcano and its impact product of volcanic activity. To do this, algorithms from digital image processing such as the co-occurrence matrix and the wavelet transform are used. These methods are working on images taken by the Landsat satellite platform sensor 5 TM and Landsat 7 ETM + sensor, and implemented with the purpose of evaluating superficial changes that can warn of surface movements of the volcano. The results were evaluated by similarity metrics for grayscale images, and validated in two different scenarios that have the same type of eruption, but differ, essentially, in climate and vegetation. Finally, the proposed algorithm is presented, setting the parameters and constraints for implementation and use.

  3. Reflection characteristics of a composite planar AMC surface

    Directory of Open Access Journals (Sweden)

    Ruey-Bing Hwang

    2012-03-01

    Full Text Available This study investigates the reflection characteristics of a composite Artificial Magnetic Conductor (AMC surface consisting of multiple orthogonal gradient AMC surfaces arranged in a two-dimensional periodic pattern. The gradient AMC surface in this study consists of square metal patches of variable size printed on a grounded dielectric substrate. Due to the orthogonal placement of the gradient AMC surface, the incident energy of a plane wave normally incident on the composite AMC surface will be reflected into four major lobes away from the impinging direction. To achieve a systematical design, a simple formula based on array antenna theory was developed to determine the reflection pattern of the gradient AMC surface illuminated by a normal incident plane wave. A time-domain full-wave simulation was also carried out to calculate the electromagnetic fields in the structure and the far-field patterns. The scattering patterns of the structure were measured in an electromagnetic anechoic chamber. Results confirm the design principle and procedures in this research. Since such a composite AMC surface can be easily fabricated using the standard printed circuit board technique without via-hole process, it may have potential applications in beam-steering and radar cross section reduction.

  4. Textures and Properties of Hot Rolled High Strength Ti-IF Steels

    Institute of Scientific and Technical Information of China (English)

    GUO Yan-hui; WANG Zhao-dong; ZOU Wen-wen; LIU Xiang-hua; WANG Guo-dong

    2008-01-01

    The texture evolution in a high strength Ti-IF steel during the processing of hot rolling,cold rolling,and annealing is studied.For comparison,both ferrite rolling and austenite rolling are employed.It is found that the texture type is the.same after ferrite rolling and austenite rolling,but the texture intensity is much higher in the ferriterolled sample.Furthermore,texture characteristics at the surface are absolutely different from those at the mid-section in both ferrite rolled and austenite rolled samples,as well as under the cold rolled and annealed conditions.The shear texture {110} disappears and orientation rotates along {110} →{554}→{111}→{111}→{223} during cold rolling.Compared to the austenite rolled sample,the properties of the cold rolled and annealed sheet which is subjected to ferrite rolling are higher.

  5. Plasma-surface modification vs air oxidation on carbon obtained from peach stone: Textural and chemical changes and the efficiency as adsorbents

    Science.gov (United States)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.

    2016-10-01

    Carbons were prepared from peach stones (Prunus persica) using different carbonization temperatures (600, 800 and 1000 °C). A selected sample was modified by oxidation using conventional oxidation techniques (thermal treatment in air atmosphere) and with cold oxygen plasma oxidation, under different conditions. Samples were characterized using elemental analysis, FT-IR spectroscopy, nitrogen adsorption isotherms at -196 °C, SEM/EDX analysis, potentiometric titration and XPS analysis. Carbons with and without oxidation were employed in the adsorption of Pb2+ in aqueous solution. Results obtained indicated that the materials with high contents of acidic oxygen groups were more efficient in the removal of Pb2+, values as high as approx. 40 mg g-1 being obtained for the best performing carbon. Textural properties of the original, un-oxidized carbon were significantly altered only after oxidation under air atmosphere at 450 °C. On the other hand, the samples oxidized with plasma show little changes in the textural parameters and a slight increase in the specific surface was observed for the sample treated at high RF power (100 W). Additionally, a significant increment of the oxygen content was observed for the plasma oxidized samples, as measured by XPS.

  6. Application of Response Surface Methodology to Study the Effects of Brisket Fat, Soy Protein Isolate, and Cornstarch on Nutritional and Textural Properties of Rabbit Sausages

    Directory of Open Access Journals (Sweden)

    Joseph M. Wambui

    2017-01-01

    Full Text Available The effects of brisket fat, soy protein isolate, and cornstarch on chemical and textural properties of rabbit sausages were studied using surface response methodology. Sausage samples were prepared using a five-level three-variable Central Composite Rotatable Design with 16 combinations, including two replicates of the center point, carried out in random order. The level of brisket fat (BF, soy protein isolate (SPI, and cornstarch (CS in the sausage formulation ranged within 8.3–16.7%, 0.7–2.3%, and 1.3–4.7%, respectively. Increasing BF decreased moisture and ash contents but increased protein and fat contents of the sausages (p<0.05. Increasing SPI increased moisture content but decreased ash and carbohydrate contents of the sausages (p<0.05. Increasing CS increased carbohydrate content (p<0.05. Increasing BF increased hardness, adhesiveness, cohesiveness, and chewiness but decreased springiness (p<0.05. SPI addition increased springiness but decreased adhesiveness, cohesiveness, and chewiness (p<0.05. In conclusion, varying the levels of BF and SPI had a more significant effect on chemical and textural properties of rabbit sausages than CS.

  7. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-07-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  8. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  9. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  10. The roles of fluid transport and surface reaction in reaction-induced fracturing, with implications for the development of mesh textures in serpentinites

    Science.gov (United States)

    Shimizu, Hiroyuki; Okamoto, Atsushi

    2016-09-01

    The distinct element method was used to simulate chemical-mechanical-hydraulic processes that occur during serpentinization (volume-increasing hydration) within the oceanic lithosphere. The proposed model considers water transported in two ways: advective flow along fractures and through matrices. Variations in fracture pattern and system evolution were examined using two nondimensional parameters: the ratios of the rates of flow in fracture ( Ψ F) and matrix ( Ψ M) to the surface reaction rate. In cases of fixed Ψ F and Ψ M with sufficiently low reaction rates, the fracture pattern is not dependent on the surface reaction rate. Otherwise, the fracture pattern varies systematically as a function of Ψ F and Ψ M. At low Ψ F (≤1) and low Ψ M (≤1), the reaction proceeds from the boundaries inward and forms fine fractures layer by layer. At high Ψ F (≥10,000) and low Ψ M (≤10), the reaction proceeds from the boundaries inward and forms polygonal fracture networks. As Ψ M increases (>100), the reaction tends to proceed homogeneously from the boundaries without fracturing. A comparison of natural and simulated textures reveals that the following conditions are necessary to develop mesh textures during serpentinization in the oceanic lithosphere. (1) The surface reaction rate must be similar to or higher than the fluid flow rate in the matrix (or than the diffusive transport of water), and much lower than the fluid flow rate along fractures. (2) Original olivine grain boundaries act as pathways for fluid transport; these pathways may result from thermal or tectonic stress-induced cracking prior to serpentinization.

  11. 太阳能级多晶硅片表面制绒的研究%Research of Texturization on Multi-crystalline Silicon Surface for Solar Cell

    Institute of Scientific and Technical Information of China (English)

    管世兵; 殷伟琦; 严俊; 顾顺超

    2013-01-01

    主要研究多晶硅太阳能电池片工业制绒的酸腐蚀过程,腐蚀液是由HNO3、HF和H2 SiF6组成的混合液,未添加其他试剂作为反应缓释剂;采用SEM和紫外分光光度计对多晶硅片表面制绒形貌进行观察和检测分析.实验过程中,按照工业生产的实际模型,首先研究确定了最佳腐蚀时间为2 min,之后主要研究了酸腐蚀过程中的H2SiF6浓度对多晶硅表面制绒效果的影响,优化得到H2SiF6的最低含量为2%,并确定最佳腐蚀工艺条件,为进一步回收利用腐蚀废液提供依据.%The acid etching process for industrial texturing of multi-crystalline silicon solar cells was studied. In this process, multi-crystalline silicon wafers were textured in acid solution, which was constituted with HNO3, HF and H2SiF6, without any other reagents as release agent. By using the SEM and UV spectrophotometer, detailed study of the surface morphology and optical properties of the different etched surfaces were carried out. During the experiment, the study was focused on the etching time at first, and obtained a best etching time of 2 min. Then the influence of H2SiF6 concentration in the acid solution on multi-crystalline silicon surface texturing effect was studied, with the actual model of industrial productioa From the analytical results, H2SiF6 content and etching conditions were optimized, which would be the basis for further recycling of waste solution.

  12. Nonequilibrium spin texture within a thin layer below the surface of current-carrying topological insulator Bi2 Se3 : A first-principles quantum transport study

    Science.gov (United States)

    Chang, Po-Hao; Nikolic, Branislav; Markussen, Troels; Smidstrup, Søren; Stokbro, Kurt

    Using extension of nonequilibrium Green function combined with density functional theory (NEGF+DFT) formalism to situations involving noncollinear spins and spin-orbit coupling, we investigate microscopic details (on the 1 ° A scale) of nonequilibrium spin density S(r) driven by unpolarized charge current injection into a ballistic thin film of Bi 2 Se 3 as prototypical topological insulator (TI) material. We find large nonzero component of S(r) in the direction transverse to current flow on the metallic surfaces of TI, as well as within few bulk atomic layers near the surfaces because of penetration of evanescent wavefunctions from the metallic surfaces into the bulk. In addition, an order of magnitude smaller components emerge in the perpendicular (within surfaces and nearly bulk regions of TI) and longitudinal (within bulk region of TI near its surface) directions, thereby creating a complex nonequilibrium spin texture. We also demonstrate how DFT calcula- tions with properly optimized local orbital basis set can precisely match putatively more accurate calculations with plane wave basis set for the supercell of Bi 2 Se 3 . P.-H.C. and B.K.N. were supported by NSF Grant No. 281 FQ ECCS 1509094. The supercomputing time was provided by 282 XSEDE, which is supported by NSF Grant No. ACI-1053575. 283 QuantumWise acknowledges support from the Danish Inno-284 vation Fund Grant No.

  13. ZnO多晶薄膜绒面结构及陷光特性分析%Surface morphology and light trapping properties of textured ZnO films

    Institute of Scientific and Technical Information of China (English)

    林小园; 黄茜; 张德坤; 牟村; 赵颖; 张存善; 张晓丹

    2013-01-01

    Light trapping technique plays an important role in the high-performance thin film solar cells. In the present study, highly textured ZnO: Al (AZO) films are prepared by medium frequency impulsed magnetron sputtering and wet etching technology which are influenced by film thickness and etching time. The high-quality textured AZO surface is formed by wet etching after the films are deposited by magnetron sputtering technology. The effects of film thickness and etching-time on the textured structure and light-trapping characteristics are investigated. AZO films with different thicknesses are obtained by changing sputtering time,Precise etching time control leads to different textured structure with various light trapping properties. This textured surface morphology leads to a high haze factor which provides high light trapping efficiency. In addition, the electrical properties of AZO films are also enhanced with higher carrier concentration and mobility as thickness increases. Layers with outstanding electrical (resistivity less than 3×10-4 Ω·cm),optical (average total transmittance higher than 81% from 400 nm to 1 100 nm),haze (84. 3% and 73. 8% at 500 nm and 750 nm respectively) and morphological (RMS higher than 143 nm,after a 180 s etching process) properties have been obtained, satisfying the demands of photoelectric property of front contact in thin film silicon solar cells and illustrating a good potential application in mass production for large area expansibility.%针对当前薄膜太阳电池对光管理的迫切需求,采用磁控溅射及后腐蚀技术制备获得了高性能绒面铝掺杂氧化锌(AZO,ZnO:Al)前电极.深入分析了ZnO多晶薄膜厚度及腐蚀时间对绒面结构及陷光特性的影响.研究结果表明,随多晶薄膜厚度的增加,晶粒尺寸增大,腐蚀后获得的弹坑状表面结构的粒径亦随之增大,绒度增大;随后腐蚀时间的增加,弹坑状粒径及绒度均具有先增大而后趋于饱和的趋势.

  14. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available is often accompanied by numerous shortcomings which either lead to poor surface quality or residual surface damage of the workpiece. In this sense, this work focuses on the application of a pulsed mode, nanosecond Nd:YAG laser system for the surface...

  15. Factors Involved in Tactile Texture Perception through Probes

    Science.gov (United States)

    Yoshioka, Takashi; Zhou, Julia

    2008-01-01

    An understanding of texture perception by robotic systems can be developed by examining human texture perception through a probe. Like texture perception through direct touch with the finger, texture perception by indirect means of a probe is multi-dimensional, comprising rough, hard, and sticky texture continua. In this study, we describe the individual subject variability in probe-mediated texture perception, and compare similarities and differences of texture perception between direct touch and indirect touch. The results show variability among subjects, as individual subjects may choose to rely on different degrees of three texture dimensions and do so at different scanning velocities. Despite this variability between scanning conditions within each subject, the subjects make consistently reliable discriminations of textures and subjective magnitude estimates along texture continua when indirectly exploring texture surfaces with a probe. These data contribute information that is valuable to the design of robotic sensory systems, and to the understanding of sensory feedback, which is essential in teleoperations. PMID:19617927

  16. A 2-year report on maxillary and mandibular fixed partial dentures supported by Astra Tech dental implants. A comparison of 2 implants with different surface textures

    DEFF Research Database (Denmark)

    Karlsson, U; Gotfredsen, K; Olsson, C

    1998-01-01

    In 50 partially edentulous patients, 133 (48 maxillary; 85 mandibular) Astra Tech dental implants of 2 different surface textures (machined; TiO-blasted) were alternately installed, supporting 52 fixed partial dentures (FPDs). Before abutment connection 2 machined implants (1 mandibular; 1...... maxillary) were found to be non-osseointegrated and were replaced. Another implant could not be restored due to a technical complication. Two FPDs were remade because of technical complications, both because of abutment fractures. Thus, after 2 years in function, the cumulative survival rates were 97.......7% and 95.7% for implants and prostheses, respectively. There was no statistically significant difference in survival rate between the 2 types of implants, 100% (TiO-blasted) vs 95.3% (machined), P = 0.24. After 2 years in function, when both jaw and type of implants were combined, the mean (SD) marginal...

  17. Response surface methodology for studying the effect of processing conditions on some nutritional and textural properties of bambara groundnuts (Voandzei subterranea) during canning.

    Science.gov (United States)

    Afoakwa, Emmanuel Ohene; Budu, Agnes Simpson; Merson, Alan Bullock

    2007-06-01

    The response surface methodology and central composite rotatable design for K=3 was used to study the combined effect of blanching, soaking and sodium hexametaphosphate salt concentration on moisture, ash, leached solids, phytates, tannins and hardness of bambara groundnut during canning. Regression models were developed to predict the effects of the processing parameters on the studied indices. Significant interactions were observed between all the factors with high regression coefficients (64.4-82.6%). Blanching and soaking of the seeds prior to canning led to increases in moisture content and leached solids, while significant decreases were observed for phytates, tannins and hardness of the canned bambara groundnuts. Increasing the concentration of sodium salt added during soaking caused significant (Pcanning treatments of blanching, soaking and sodium hexametaphosphate salt addition can be used to effectively reduce the phytates, tannin levels with minimal mineral (ash) loss and enhanced textural integrity of the canned bambara groundnuts.

  18. CRUMB TEXTURE OF SPELT BREAD

    Directory of Open Access Journals (Sweden)

    Joanna Korczyk-Szabó

    2013-12-01

    Full Text Available Abstract The bread quality is considerably dependent on the texture characteristic of bread crumb. Crumb texture is an important quality indicator, as consumer prefer different bread taste. Texture analysis is primarily concerned with the evaluation of mechanical characteristics where a material is subjected to a controlled force from which a deformation curve of its response is generated. It is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what inform on the baking suitability of the flour, as raw material. This is why the texture analysis is one of the most helpful analytical methods of the product development. In the framework of our research during the years 2008 – 2009 were analyzed selected indicators for bread texture quality of five Triticum spelta L. varieties – Altgold, Oberkulmer Rotkorn, Ostro, Rubiota and Franckenkorn grown in an ecological system. The bread texture quality was evaluated on texture analyzer TA.XT Plus (Stable Micro Systems, Surrey, UK, following the AACC (74-09 standard method and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%. Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was achieved in Rubiota, whereas bread crumb samples from Franckenkorn and Altgold were the most firm and stiff. Correlation analysis showed strong negative correlation between relative elasticity and bread crumb firmness as well as bread stiffness (-0.81++, -0.78++. The spelt grain can be a good source for making bread flour, but is closely dependent on choice of spelt variety. The spelt wheat bread crumb texture need further investigation as it can be a reliable quality parameter.

  19. Dynamic corona characteristics of water droplets on charged conductor surface

    Science.gov (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-03-01

    The formation of the Taylor cone of a water droplet on the surface of the conductor in a line-ground electrode system is captured using a high-speed camera, while the corona current is synchronously measured using a current measurement system. Repeated Taylor cone deformation is observed, yielding regular groupings of corona current pulses. The underlying mechanism of this deformation is studied and the correlation between corona discharge characteristics and cone deformation is investigated. Depending on the applied voltage and rate of water supply, the Taylor cone may be stable or unstable and has a significant influence on the characteristics of the corona currents. If the rate of water supply is large enough, the Taylor cone tends to be unstable and generates corona-current pulses of numerous induced current pulses with low amplitudes. In consequence, this difference suggests that large rainfall results in simultaneously lower radio interference and higher corona loss.

  20. Lubrication and thermal characteristics of mechanical seal with porous surface based on cavitation

    Science.gov (United States)

    Huilong, Chen; Muzi, Zuo; Tong, Liu; Yu, Wang; Cheng, Xu; Qiangbo, Wu

    2014-04-01

    The theory model of mechanical seals with laser-textured porous surface (LST-MS) was established. The liquid film of LST-MS was simulated by the Fluent software, using full cavitation model and non-cavitation model separately. Dynamic mesh technique and relationship between viscosity and temperature were applied to simulate the internal flow field and heat characteristics of LST-MS, based on the more accurate cavitation model. Influence of porous depth ratio porous diameter ɛ and porous density SP on lubrication performance and the variation of lubrication and thermal properties with shaft speed and sealing pressure were analyzed. The results indicate that the strongest hydrodynamic pressure effect and the biggest thickness of liquid film are obtained when ɛ and SP are respectively about 0.025 and 0.5 which were thought to be the optimum value. The frictional heat leads to the increase of liquid film temperature and the decrease of medium viscosity with the shaft speed increasing. The hydrodynamic pressure effect increases as shaft speed increasing, however it decreases as the impact of frictional heat.

  1. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt); Mekhemer, Gamal A.H.; Fouad, Nasr E. [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt); Jagadale, Tushar C. [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Ogale, Satishchandra B., E-mail: sb.ogale@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)

    2010-10-15

    The surface properties of sol-gel synthesized anatase titania (TiO{sub 2}) nanoparticles are probed by sorptiometry, infrared absorption spectroscopy, UV-vis diffuse reflectance spectroscopy and high resolution transmission electron microscopy. The results reveal strong correlations of the surface area, porosity, pyridine adsorption capacity and strength, and catalytic methylbutynol decomposition activity.

  2. Surface Textures and Features Indicative of Endogenous Growth at the McCartys Flow Field, NM, as an Analog to Martian Volcanic Plains

    Science.gov (United States)

    Bleacher, Jacob E.; Crumpler, L. S.; Garry, W. B.; Zimbelman, J. R.; Self, S.; Aubele, J. C.

    2012-01-01

    Basaltic lavas typically form channels or tubes, which are recognized on the Earth and Mars. Although largely unrecognized in the planetary community, terrestrial inflated sheet flows also display morphologies that share many commonalities with lava plains on Mars. The McCartys lava flow field is among the youngest (approx.3000 yrs) basaltic flows in the continental United States. The southwest sections of the flow displays smooth, flat-topped plateaus with irregularly shaped pits and hummocky inter-plateau units that form a polygonal surface. Plateaus are typically elongate in map view, up to 20 m high and display lineations within the glassy crust. Lineated surfaces occasionally display small < 1m diameter lava coils. Lineations are generally straight and parallel each other, sometimes for over 100 meters. The boundaries between plateaus and depressions are also lineated and tilted to angles sometimes approaching vertical. Plateau-parallel cracks, sometimes containing squeeze-ups, mark the boundary between tilted crust and plateau. Some plateau depressions display level floors with hummocky surfaces, while some are bowl shaped with floors covered in broken lava slabs. The lower walls of pits sometimes display lateral, sagged lava wedges. Infrequently, pit floors display the upper portion of a tumulus from an older flow. In some places the surface crust has been disrupted forming a slabby texture. Slabs are typically on the scale of a meter or less across and no less than 7-10 cm thick. The slabs preserve the lineated textures of the undisturbed plateau crust. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within preferred regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Rough surfaces represent inflation-related disruption of pahoehoe lava and not a a lava. Depressions are often the result of non-inflation and can be clearly identified by lateral

  3. Full polarization scattering characteristics of sea fractal surface

    Institute of Scientific and Technical Information of China (English)

    Xie Tao; He Yijun; Nan Chengfeng

    2006-01-01

    In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.

  4. Magnetic Characteristics of Surface Sediments of Liaodong Bay, China

    Institute of Scientific and Technical Information of China (English)

    WANG ShuangP; WANG Yonghong; LIU Jian; YU Yiyong

    2015-01-01

    Analysis of magnetic properties of marine surface sediments has been gradually proved to be one of the effective means for researching the source of marine sediments. In this paper, samples from 39 sites in Liaodong Bay were collected to analyze the magnetic characteristics of the surface sediments. Magnetic study indicated that the surface sediments of the Liaodong Bay are char-acterized by magnetite. In the middle and eastern part and the southwest corner of the Bay, the main magnetic grains were coarse multi-domain and pseudo-single-domain particles, while in other areas single-domain and pseudo-single-domain particles constitute the majority. Based on grain size and environmental magnetism data, the content of magnetic minerals has a positive correlation with the hydrodynamic environment when the magnetic mineral domain is finer. However, the content of magnetic minerals is in a complex relationship with the hydrodynamic environment in the coarse magnetic domain of magnetic minerals found in central Liaodong Bay and places outside the Fuzhou Bay, implying that the strong hydrodynamic environment accelerates the sedimentation of coarse magnetic minerals. Based on geographic pattern of magnetic properties, it can be inferred that the main provenance of the surface sediments of the Liaodong Bay is the surrounding rivers, and the comparative analysis indicates that Yellow River substances maybe also exist in the bay.

  5. Texturing a pyramid-like structure on a silicon surface via the synergetic effect of copper and Fe(III) in hydrofluoric acid solution

    Science.gov (United States)

    Cao, Ming; Li, Shaoyuan; Deng, Jianxin; Li, Yuping; Ma, Wenhui; Zhou, Yang

    2016-05-01

    An innovative approach is proposed to texture a pyramid structure on a silicon surface via Cu-catalyzed chemical etching in the HF/FeCl3 system. The surface and cross-section morphologies of the formed pyramid structure were examined by scanning electron microscopy and atomic force microscopy. The results revealed that numerous silicon pyramid-like structures with hemlines of 0.1 ∼ 3 μm and height of 0.1 ∼ 2 μm are close together, and the top angle of the pyramid structure is 90°. Additionally, the systematic study of the effects of the etching time and the concentration of FeCl3 on the pyramid-like structures by the atom configuration model of silicon crystal faces demonstrated that the etching proceeds preferentially along the directions of silicon. A formation mechanism of the pyramid-like structure is proposed. The results imply that the synergetic effect of Cu nanoparticles and Fe(III) could conveniently generate a pyramid-like architecture on the surface of silicon in hydrofluoric acid solution.

  6. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO_{3}.

    Science.gov (United States)

    Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc

    2016-04-15

    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100  meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

  7. Surface texture modification of spin-coated SiO2 xerogel thin films by TMCS silylation

    Indian Academy of Sciences (India)

    Yogesh S Mhaisagar; Bhavana N Joshi; A M Mahajan

    2012-04-01

    The SiO2 xerogel thin films were deposited successfully by sol–gel technique via the acid-catalyzed hydrolysis and condensation of tetraethylorthosilicate (TEOS) with ethanol as a solvent. Further, the deposited thin films were treated wet chemically by trimethylchlorosilane (TMCS) and hexane solution with 10% and 15% volume ratio to remove the hydroxyl groups from the surface of deposited SiO2 thin films. These as deposited and surfacemodified films were characterized by ellipsometer, Fourier transform infrared (FTIR) spectrometer and contact angle meter. The presence of 2900 and 850 cm-1 peaks of CH3 vibrations in FTIR spectra of surface-modified films confirms the hydrphobisation of SiO2 surface. The maximum contact angle of 108.7° was observed for the surface-modified film at 10% TMCS.

  8. The effect of surface texture on total reflection of neutrons and X-rays from modified interfaces

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Hughes, A.

    2002-01-01

    X-ray and neutron scattering from macroscopically rough surfaces and interfaces is considered and a new method of analysis based on the variation of the shape of the total reflection edge in the reflectivity profile is proposed. It was shown that in the limit that the correlation length and the h......X-ray and neutron scattering from macroscopically rough surfaces and interfaces is considered and a new method of analysis based on the variation of the shape of the total reflection edge in the reflectivity profile is proposed. It was shown that in the limit that the correlation length...... and the height of the surface roughness are larger than the wavelength (at least 100 times bigger) of the incoming beam, the total reflection edge in the reflection profile becomes rounded. This technique allows direct analysis of the variation of the reflectivity pro le in terms of the structure of the surface...

  9. Texture and wettability of metallic lotus leaves

    Science.gov (United States)

    Frankiewicz, C.; Attinger, D.

    2016-02-01

    Superhydrophobic surfaces with the self-cleaning behavior of lotus leaves are sought for drag reduction and phase change heat transfer applications. These superrepellent surfaces have traditionally been fabricated by random or deterministic texturing of a hydrophobic material. Recently, superrepellent surfaces have also been made from hydrophilic materials, by deterministic texturing using photolithography, without low-surface energy coating. Here, we show that hydrophilic materials can also be made superrepellent to water by chemical texturing, a stochastic rather than deterministic process. These metallic surfaces are the first analog of lotus leaves, in terms of wettability, texture and repellency. A mechanistic model is also proposed to describe the influence of multiple tiers of roughness on wettability and repellency. This demonstrated ability to make hydrophilic materials superrepellent without deterministic structuring or additional coatings opens the way to large scale and robust manufacturing of superrepellent surfaces.Superhydrophobic surfaces with the self-cleaning behavior of lotus leaves are sought for drag reduction and phase change heat transfer applications. These superrepellent surfaces have traditionally been fabricated by random or deterministic texturing of a hydrophobic material. Recently, superrepellent surfaces have also been made from hydrophilic materials, by deterministic texturing using photolithography, without low-surface energy coating. Here, we show that hydrophilic materials can also be made superrepellent to water by chemical texturing, a stochastic rather than deterministic process. These metallic surfaces are the first analog of lotus leaves, in terms of wettability, texture and repellency. A mechanistic model is also proposed to describe the influence of multiple tiers of roughness on wettability and repellency. This demonstrated ability to make hydrophilic materials superrepellent without deterministic structuring or additional

  10. The texture-structure relationship in Ti-Al-Nb multilayered composites processed by accumulative roll bonding

    Science.gov (United States)

    Zhou, Liming

    Multilayered Ti/Al/Nb composites were processed by the accumulative roll bonding (ARB) process using elemental foils of titanium, aluminum, and niobium. The rolled multilayered composites (MLCs) were prepared by ARB process up to two ARB cycles. The microstructure and texture evolution of the Ti, Al, and Nb in the MLCs were studied utilizing X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with electron backscattered diffraction (EBSD). The characterizations of crystallographic texture and microstructure were conducted using a creative approach; a layer by layer method on the rolling plane. Texture evolution in the MLCs produced by symmetric rolling and asymmetric rolling was also studied in a layer by layer manner. In addition to studying the texture evolution of the Nb in the MLCs produced by the ARB process, the Bingham distribution was used to model the orientation distribution function (ODF) by employing MTEX, a quantitative texture analysis toolbox for Matlab RTM. This provided a bridge for the gap between experiments and Bingham modeling in terms of the crystallographic texture. As the numbers of ARB cycles increased, the microstructures tended to be heterogeneous through the thickness. Also, the texture development of the mating layers in the MLCs exhibited multiple texture domination rather than random. Furthermore, the developed textures of the layers in the MLCs during the ARB process were significantly different from that produced by conventional rolling. The characteristic textures formed in the MLCs subjected to the ARB process implied that the partial recrystallization and recovery occurred as a result of the adiabatic heat. The shear and compressive strain distributions were inhomogeneous through the thickness. Thus, the texture developments of the layers in the MLCs suggested a strong locational dependence. Where, the surface and the middle layers tended to form textures attributed to the shear, while, the transitory layers

  11. Unusual dynamic dewetting behavior of smooth perfluorinated hybrid films: potential advantages over conventional textured and liquid-infused perfluorinated surfaces.

    Science.gov (United States)

    Urata, Chihiro; Masheder, Benjamin; Cheng, Dalton F; Hozumi, Atsushi

    2013-10-08

    From a viewpoint of reducing the burden on the environment and human health, an alternative method for preparing liquid-repellent surfaces without relying on the long perfluorocarbons (C((X-1)/2)F(X), X ≥ 17) has been strongly demanded lately. In this study, we have successfully demonstrated that dynamic dewettability toward various probe liquids (polar and nonpolar liquids with high or low surface tension) can be tuned by not only controlling surface chemistries (surface energies) but also the physical (solid-like or liquid-like) nature of the surface. We prepared smooth and transparent organic-inorganic hybrid films exhibiting unusual dynamic dewetting behavior toward various probe liquids using a simple sol-gel reaction based on the co-hydrolysis and co-condensation of a mixture including a range of perfluoroalkylsilanes (FASX, C((X-1)/2)F(X)CH2CH2Si(OR)3, where X = 3, 9, 13, and 17) and tetramethoxysilane (Si(OCH3)4, TMOS). Dynamic contact angle (CA) and substrate tilt angle (TA) measurements confirmed that our FASX-hybrid films exhibited excellent dynamic dewetting properties and were mostly independent of the length of perfluoroalkyl (Rf) groups. For example, 10 μL droplets of ultralow surface tension liquids (e.g., diethyl ether (γ = 16.26 dyn/cm) and n-pentane (γ = 15.51 dyn/cm)) could move easily on our FAS9-, FAS13-, and FAS17-hybrid film surfaces at low substrate TAs (dynamic dewetting behavior appeared only when TMOS molecules were added to the precursor solutions; we assume this is due to co-condensed TMOS-derived silica species working as spacers between the neighboring Rf chains, enabling them to rotate freely and in doing so provide a surface with liquid-like properties. This led to the distinguished dynamic dewettability of our hybrid films, regardless of the small static CAs. Our FASX-hybrid films also displayed excellent chemical and physical durability against thermal stress (~250 °C), high-temperature (150 °C) oil vapor, and various

  12. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration

    Science.gov (United States)

    Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J. P.; Olaizola, S. M.; Martín-Palma, R. J.

    2016-11-01

    The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.

  13. Novel chemical cleaning of textured crystalline silicon for realizing surface recombination velocity <0.2 cm/s using passivation catalytic CVD SiN x /amorphous silicon stacked layers

    Science.gov (United States)

    Thanh Nguyen, Cong; Koyama, Koichi; Higashimine, Koichi; Terashima, Shigeki; Okamoto, Chikao; Sugiyama, Shuichiro; Ohdaira, Keisuke; Matsumura, Hideki

    2017-05-01

    In this study, the development of a novel chemical cleaning method suitable for textured surfaces of crystalline silicon (c-Si) used for solar cells is demonstrated. To remove contaminants from such textured structures, chemicals have to penetrate into their complicated fine structures. Thus, the viscosity, reaction activity, and surface tension of the chemicals are adjusted by increasing the reaction temperature or introducing a surfactant. Actually, the use of concentrated (conc.) sulfuric acid (H2SO4) of 140 °C and the introduction of methanol (CH3OH) to other chemicals contribute to the improvement of the cleaning ability in textured structures. The present cleaning method in conjunction with plasma-damage-less catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD passivation with silicon-nitride (SiN x )/amorphous silicon (a-Si) stacked layers, also contributes to the decrease in the surface recombination velocity (SRV) of c-Si. The maximum estimated SRV (SRVmax), evaluated under the assumed absence of recombination in bulk c-Si, is less than 1.1 cm/s for textured surfaces, and the real SRV, evaluated by changing the c-Si substrate thickness, is less than 0.2 cm/s.

  14. Starvation-induced effects on bacterial surface characteristics.

    Science.gov (United States)

    Kjelleberg, S; Hermansson, M

    1984-09-01

    Changes in bacterial surface hydrophobicity, charge, and degree of irreversible binding to glass surfaces of seven marine isolates were followed during starvation. The degree of hydrophobicity was measured by hydrophobic interaction chromatography and by two-phase separation in a hexadecane-water system, whereas changes in charge were measured by electrostatic interaction chromatography. All isolates underwent the starvation-induced responses of fragmentation, which is defined as division without growth, and continuous size reduction, which results in populations with increased numbers of smaller cells. The latter process was also responsible for a significant proportion of the total drop in cell volume; this was observed by noting the biovolume (the average cell multiplied by the number of bacteria) of a population after various times of starvation. Four strains exhibited increases in both hydrophobicity and irreversible binding, initiated after different starvation times. The most hydrophilic and most hydrophobic isolates both showed a small increase in the degree of irreversible binding after only 5 h, followed by a small decrease after 22 h. Their hydrophobicity remained constant, however, throughout the entire starvation period. On the other hand, one strain, EF190, increased its hydrophobicity after 5 h of starvation, although the degree of irreversible binding remained constant. Charge effects could not be generally related to the increase in irreversible binding. Scanning electron micrographs showed a large increase in surface roughness throughout the starvation period for all strains that showed marked changes in physicochemical characteristics.

  15. Surface and Texture Properties of Tb-Doped Ceria-Zirconia Solid Solution Prepared by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The three-way catalysts (TWCs) promoters Ce0.6Zr0.4-xTbxO2-y were prepared by sol-gel method. BET surface areas analysis indicated that an increase of the dopant Tb content from x=0.05 to x=0.15 favors an increase of surface area from 66.8 to 80.4 m2·g-1 compared with the undoped sample Ce0.60Zr0.40O2 65.1 m2·g-1 after calcination at 650 ℃. Transmission electron microscopy (TEM) observation indicated that the doped samples have a higher thermal stability. The XRD and Raman spectra confirmed that the Ce0.6Zr0.4-xTbxO2-y cubic solid solution is formed. XPS analysis revealed that Ce and Tb mainly existed in the form of Ce4+ and Tb3+, and Zr existed in the form of Zr4+ on the surface of the samples. The doped samples were homogenous in composition;the introduction of Tb into the CeO2-ZrO2 promoters resulted in the formation of a solid solution, and the concentration of surface lattice oxygen was increased.

  16. Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments.

    Science.gov (United States)

    Němec, Michal; Syrová, Michaela; Dokoupilová, Lenka; Veselý, Petr; Šmilauer, Petr; Landová, Eva; Lišková, Silvie; Fuchs, Roman

    2015-01-01

    We compared the responses of the nesting red-backed shrikes (Lanius collurio) to three dummies of a common nest predator, the Eurasian jay (Garrulus glandarius), each made from a different material (stuffed, plush, and silicone). The shrikes performed defensive behaviour including attacks on all three dummies. Nevertheless, the number of attacks significantly decreased from the stuffed dummy through the plush dummy and finally to the silicone dummy. Our results show that wild birds use not only colours but also other surface features as important cues for recognition and categorization of other bird species. Moreover, the silicone dummy was attacked only when presented after the stuffed or plush dummy. Thus, we concluded that the shrikes recognized the jay only the stuffed (with feathered surface) and plush (with hairy surface) dummies during the first encounter. Recognition of the silicon dummy (with glossy surface) was facilitated by previous encounters with the more accurate model. This process resembles the effect of perceptual priming, which is widely described in the literature on humans.

  17. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available Traditional abrasive techniques such as grinding and lapping have long been used in the surface conditioning of engineering materials. However, in the processing of hard and brittle materials like silicon nitride (Si(sub3)N(sub4)), machining...

  18. The effect of one-step and multi-step polishing systems on surface texture of two different resin composites

    Directory of Open Access Journals (Sweden)

    Bashetty Kusum

    2010-01-01

    Full Text Available Objective: The purpose of this in-vitro study was to evaluate the surface roughness of two direct resin composites polished with one-step and multi-step polishing systems. Materials and Methods: The resin composites examined in this study include minifill-hybrid composite Esthet-X (DENTSPLY/Caulk, Milford, DE, USA and packable composite Solitaire II (Heraeus Kulzer, Inc., Southbend. A total of 42 discs (10 3 2 mm, 21 specimens of each restorative material were fabricated. Seven specimens per composite group received no polishing treatment and served as control. For each composite group, the specimens were randomly divided into two polishing systems: One-step PoGo (Dentsply/Caulk, Milford, DE, USA and multi-step Super Snap (Shofu, Inc. Kyoto, Japan. Polishing systems were applied according to the manufacturer′s instructions after being ground wet with 1200 grit silicon carbide paper. The surface roughness values were determined using a profilometer. Results: Data was subjected to student′s t test at a significance level of 0.05. The smoothest surfaces were achieved under Mylar strips in both the composite groups. Mean Ra values ranged from 0.09 to 0.3 mm for Esthet-X group and from 0.18 to 0.3 mm for Solitaire II with different polishing systems. The ranking of the order of surface roughness on the basis of the type of composite was as follows: Esthet-X , Solitaire II for PoGo system and Esthet-X 5 Solitaire II for Super Snap; and the ranking for the polishing system was: PoGo , Super Snap (P # 0.05. Conclusion: The one-step polishing system (PoGo produced better surface quality in terms of roughness than the multi-step system (Super Snap for minifill-hybrid composite (Esthet-X, and it was equivalent to Super Snap for packable composites (Solitaire II. Minifill-hybrid presented a better surface finish than Solitaire II when PoGo polishing system was used. No significant difference was present in surface roughness between both

  19. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  20. Light, shadows and surface characteristics: the multispectral Portable Light Dome

    Science.gov (United States)

    Watteeuw, Lieve; Hameeuw, Hendrik; Vandermeulen, Bruno; Van der Perre, Athena; Boschloos, Vanessa; Delvaux, Luc; Proesmans, Marc; Van Bos, Marina; Van Gool, Luc

    2016-11-01

    A multispectral, multidirectional, portable and dome-shaped acquisition system is developed within the framework of the research projects RICH (KU Leuven) and EES (RMAH, Brussels) in collaboration with the ESAT-VISICS research group (KU Leuven). The multispectral Portable Light Dome (MS PLD) consists of a hemispherical structure, an overhead camera and LEDs emitting in five parts of the electromagnetic spectrum regularly covering the dome's inside surface. With the associated software solution, virtual relighting and enhancements can be applied in a real-time, interactive manner. The system extracts genuine 3D and shading information based on a photometric stereo algorithm. This innovative approach allows for instantaneous alternations between the computations in the infrared, red, green, blue and ultraviolet spectra. The MS PLD system has been tested for research ranging from medieval manuscript illuminations to ancient Egyptian artefacts. Preliminary results have shown that it documents and measures the 3D surface structure of objects, re-visualises underdrawings, faded pigments and inscriptions, and examines the MS results in combination with the actual relief characteristics of the physical object. Newly developed features are reflection maps and histograms, analytic visualisations of the reflection properties of all separate LEDs or selected areas. In its capacity as imaging technology, the system acts as a tool for the analysis of surface materials (e.g. identification of blue pigments, gold and metallic surfaces). Besides offering support in answering questions of attribution and monitoring changes and decay of materials, the PLD also contributes to the identification of materials, all essential factors when making decisions in the conservation protocol.

  1. Contrast-negation and texture synthesis differentially disrupt natural texture appearance

    Directory of Open Access Journals (Sweden)

    Benjamin J Balas

    2012-11-01

    Full Text Available Natural textures have characteristic image statistics that make them discriminable from unnatural textures. For example, both contrast-negation and texture synthesis alter the appearance of natural textures even though each manipulation preserves some features while disrupting others. Here, we examined the extent to which contrast-negation and texture synthesis each introduce or remove critical perceptual features for discriminating unnatural textures from natural textures. We find that both manipulations remove information that observers use for distinguishing natural textures from transformed versions of the same patterns, but do so in different ways. Texture synthesis removes information that is relevant for discrimination in both abstract patterns and ecologically valid textures, and we also observe a category-dependent asymmetry for identifying an oddball real texture among synthetic distractors. Contrast negation exhibits no such asymmetry, and also does not impact discrimination performance in abstract patterns. We discuss our results in the context of the visual system’s tuning to ecologically relevant patterns and other results describing sensitivity to higher-order statistics in texture patterns.

  2. Texture Image Classification Based on Gabor Wavelet

    Institute of Scientific and Technical Information of China (English)

    DENG Wei-bing; LI Hai-fei; SHI Ya-li; YANG Xiao-hui

    2014-01-01

    For a texture image, by recognizining the class of every pixel of the image, it can be partitioned into disjoint regions of uniform texture. This paper proposed a texture image classification algorithm based on Gabor wavelet. In this algorithm, characteristic of every image is obtained through every pixel and its neighborhood of this image. And this algorithm can achieve the information transform between different sizes of neighborhood. Experiments on standard Brodatz texture image dataset show that our proposed algorithm can achieve good classification rates.

  3. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces

    Science.gov (United States)

    Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana

    2017-07-01

    One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and

  4. Characteristics of surface sterilization using electron cyclotron resonance plasma

    Science.gov (United States)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  5. Colloidal aspects of texture perception

    NARCIS (Netherlands)

    Vliet, van T.

    2010-01-01

    The perception of complex textures in food is strongly related to the way food is processed during eating, and is modulated by other basic characteristics, such as taste and aroma. An understanding at the colloidal level of the basic processes in the mouth is essential in order to link the compositi

  6. A MIXED LUBRICATION MODEL MODIFIED BY SURFACES' FRACTAL CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    孟凡明; 张有云

    2003-01-01

    Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D, compared with the oil film thickness to roughness ratio h/Rq. As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.

  7. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  8. ISOTROPIC TEXTURING OF POLYCRYSTALLINE SILICON WAFERS

    Institute of Scientific and Technical Information of China (English)

    L. Wang; H. Shen; Y.F. Hu

    2005-01-01

    An isotropic etching technique of texturing silicon solar cells has been applied to polycrystalline silicon wafers with different acid concentrations. Optimal etching conditions have been determined by etching rate calculation, scanning electron microscope (SEM) image and reflectance measurement. The surface morphology of the textured wafers varies in accordance with the different etchant concentration which in turn leads to the dissimilarity of etching speed. Textured polycrystalline silicon wafer surfaces display randomly located etched pits which can reduce the surface reflection and enhance the light absorption. The special relationship between reflectivity and etching rate was studied. Reflectance measurements show that isotropic texturing is one of the suitable techniques for texturing polycrystalline silicon wafers and benefits solar cells performances.

  9. The role of the centre of projection in the estimation of slant from texture of planar surfaces

    OpenAIRE

    Tibau, Stefaan; Willems, B.; Van den Bergh, Erik; Wagemans, Johan

    2001-01-01

    Displays were presented consisting of a perspective projection of a regular square grid, made up of vertical and horizontal equally spaced white lines, that was slanted in depth. The surface was viewed monocularly, through a circular aperture. A range of slants was shown (0 degrees, 10 degrees, 20 degrees, 30 degrees, 40 degrees, 50 degrees, or 60 degrees) and the observers' task was to match the slant by means of a mouse-driven probe. The viewing distance (50, 75, or 100 cm) as well as the f...

  10. Modeling Changes in Bed Surface Texture and Aquatic Habitat Caused by Run-of-River Hydropower Development

    Science.gov (United States)

    Fuller, T. K.; Venditti, J. G.; Nelson, P. A.; Popescu, V.; Palen, W.

    2014-12-01

    Run-of-river (RoR) hydropower has emerged as an important alternative to large reservoir-based dams in the renewable energy portfolios of China, India, Canada, and other areas around the globe. RoR projects generate electricity by diverting a portion of the channel discharge through a large pipe for several kilometers downhill where it is used to drive turbines before being returned to the channel. Individual RoR projects are thought to be less disruptive to local ecosystems than large hydropower because they involve minimal water storage, more closely match the natural hydrograph downstream of the project, and are capable of bypassing trapped sediment. However, there is concern that temporary sediment supply disruption may degrade the productivity of salmon spawning habitat downstream of the dam by causing changes in the grain size distribution of bed surface sediment. We hypothesize that salmon populations will be most susceptible to disruptions in sediment supply in channels where; 1) sediment supply is high relative to transport capacity prior to RoR development, and 2) project design creates substantial sediment storage volume. Determining the geomorphic effect of RoR development on aquatic habitat requires many years of field data collection, and even then it can be difficult to link geomorphic change to RoR development alone. As an alternative, we used a one-dimensional morphodynamic model to test our hypothesis across a range of pre-development sediment supply conditions and sediment storage volumes. Our results confirm that coarsening of the median surface grain-size is greatest in cases where pre-development sediment supply was highest and sediment storage volumes were large enough to disrupt supply over the course of the annual hydrograph or longer. In cases where the pre-development sediment supply is low, coarsening of the median surface grain-size is less than 2 mm over a multiple-year disruption period. When sediment supply is restored, our results

  11. Relationship Between Iron Oxides and Surface Charge Characteristics in Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; WANGWEI-JUN

    1991-01-01

    The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.

  12. Effects of texture on the damping characteristics of cold-rolled and annealed Ti50Ni40Cu10 shape memory alloy

    Directory of Open Access Journals (Sweden)

    S. H. Chang

    2015-10-01

    Full Text Available Cold-rolled and annealed Ti50Ni40Cu10 shape memory alloy possesses a major (110[001] texture along the rolling direction and a minor {111} γ-fiber texture along the normal direction. The damping capacity of the B2→B19 and B19→B2 martensitic transformation internal friction peaks for the Ti50Ni40Cu10 shape memory alloy was more pronounced in the rolling direction than in the transverse direction due to the effects of the cold-rolled and annealed textures. The damping capacity of the B19→B19’ and B19’→B19 martensitic transformation internal friction peaks was not noticeable affected by the orientation of the specimen.

  13. Laser surface texturing of cast iron steel: dramatic edge burr reduction and high speed process optimisation for industrial production using DPSS picosecond lasers

    Science.gov (United States)

    Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris

    2015-07-01

    In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.

  14. Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing

    Science.gov (United States)

    Sugiura, N.; Yoshinaga, N.; Ushioda, K.

    2015-04-01

    Electro-deposited pure Fe has a characteristic of having very sharp isotropic ND// fiber texture with a needle-like shaped fine grain elongated to ND. This Fe exhibits a surprisingly high r-value of over 7; however, such a high r-value might not be rationalized only from texture. Careful slip analyses reveal that restricted slips take place in the specific {110} slip planes, which are perpendicular to the sheet surface. Since grain boundaries with columnar structure are also perpendicular to the sheet surface, the slip plane in a certain grain may easily connect to the slip plane in adjacent grains having within ±30 degree rotation relationship around the common axis of ND//. The operation of such a slip system is considered to cause the width strain much larger than the thickness strain. Furthermore, the texture evolution during cold-rolling and subsequent annealing was investigated using electro-deposited pure Fe as a starting material. Regardless of the amount of cold-rolling reduction, 65% to 90%, {111} cold-rolling texture developed. After recrystallization, {111} texture remained when material is cold-rolled by 65%, while {111} texture developed when materials are cold-rolled by 80% and 90%. From the investigation into the mechanism on the development of recrystallization texture, the oriented nucleation and selective growth theories are concluded to contribute to the evolution of annealing texture.

  15. 基于光谱和纹理特征的ALOS影像土地利用信息提取%Study on Information Extraction of Land Use from ALOS Image Based on Spectral and Texture Characteristics

    Institute of Scientific and Technical Information of China (English)

    刘恩勤; 周万村; 周介铭; 莫开林

    2012-01-01

    High resolution remote sensing images were rich in texture information. ALOS image was classified by spectral and texture characteristics of the land objects in this paper. It aims to find method suitable for extracting land use information from ALOS images. Taking the images of hills area of East Sichuan as example, the texture information extracted based on GLCM method was fused into one band represented the texture information by weighted stack. And the texture band was classified together with the spectral characteristic information by objects-oriented method. The results showed that the object-oriented classification considered texture information improved the classification results evidently and raised the Kappa accuracy by 0. 12 compared to the maximum likelihood classification. It avoided the phenomenon of salt and pepper noise. The boundaries of the land objects endowed with better semantic representation were more accurately accorded the spatial distribution of the reality. The building land and forest possessed obvious texture characteristic while the dry land possessed less. In addition,not only can this method classified six basis land use types, but also was able to classified more details to the types of forest and building land. It means that texture information can improve the accuracy of image classification. Object-oriented classification using spectral and textural information is suitable for ALOS images.%针对高分辨率遥感影像易于反映地物纹理特征的特点,综合利用地物的光谱和纹理特征进行分类,探讨适用于ALOS影像的土地利用信息提取方法.以川东丘陵地区影像为例,基于GLCM提取纹理信息,将提取的纹理特征向量采用赋权值法融合为一个综合纹理信息波段,然后采用面向对象法将其与光谱特征信息共同参与分类.与最大似然法的提取结果对比表明,考虑了纹理特征的面向对象分类方法能明显提

  16. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  17. Tailoring the textured surface of porous nanostructured NiO thin films for the detection of pollutant gases

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R., E-mail: raj.kumar@ing.unibs.it [CNR-INO SENSOR Lab., Via Branze 35, 25133 Brescia (Italy); University of Brescia, Dept. of Information Engineering, Via Valotti, 9, 25133 Brescia (Italy); Baratto, C.; Faglia, G.; Sberveglieri, G. [CNR-INO SENSOR Lab., Via Branze 35, 25133 Brescia (Italy); University of Brescia, Dept. of Information Engineering, Via Valotti, 9, 25133 Brescia (Italy); Bontempi, E.; Borgese, L. [INSTM and Chemistry for Technologies Laboratory, University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze, 38, 25133 Brescia (Italy)

    2015-05-29

    In the present article, an experimental approach to detect pollutant gases in presence of humidity was applied for gas sensors based on p-type NiO thin films. NiO thin films were deposited by radio frequency magnetron sputtering in inert atmosphere using a NiO target. Thin films were investigated by scanning electron microscopy to observe their surface morphology. Crystal structure and vibrational study were investigated by X-ray diffraction and micro-Raman spectroscopy, respectively. It was observed that deposition temperature played a crucial role in the structural and surface morphology of NiO thin films. Sensing response of the nanostructured thin films to reducing and oxidizing gas was studied as a function of gas concentration and operating temperature. A double digit (12.3) response was observed towards ozone at 200 °C, while maximum response to ethanol and acetone was recorded at 400 °C. A correlation was established between sensing response and crystalline dimension for ozone sensing. The result showed that NiO thin films can be used as p-type metal oxide material for the fabrication of solid state gas sensors to detect low concentrations of ozone (70 ppb). - Highlights: • Nickel oxide phase was confirmed by X-ray diffraction. • Raman signal of nickel oxide was recorded by micro-Raman spectroscopy. • Best sensing response was recorded for 70 ppb ozone at 200 °C working temperature. • Sensing response towards ozone increases as the crystalline dimension decreases. • Nickel oxide is a p-type oxide material.

  18. 工艺参数对激光冲击微造型效果的影响%Process Parameters Analysis on Surface Texturing under Laser Shock Peening

    Institute of Scientific and Technical Information of China (English)

    黄志辉; 刘会霞; 沈宗宝; 李品; 胡杨; 刘辉; 杜道忠; 王霄

    2012-01-01

    Laser surface texturing (LST) is widely used in surface micro-forming, but its main problem is that the ablation process causes melting, cracking and changing of the surface microstructure. By using laser shock processing (LSP) micro dents are fabricated on A17075 surface, which not only overcomes the weakness of LST, but also inherits the advantage of LSP. Choosing AxioCSM700 true color confocal scanning microscopy and Vecco WYKO surface morphology, the geometry morphology of micro dents are observed. With HXD-1000TMSC/LCD MH-VK double press heads, the interior and surface micro-hardness of micro dents are measured. Experimental results show that the diameter and the depth of micro dents change with laser pulse energy, the times of laser shock, focal length and thickness of confined layer K9 glass. The hardness of micro dent increases gradually along radial direction and the biggest hardness occurs in the center, which effectively improves the wear resistance of material.%激光表面织构(LST)是一种广泛应用的表面微造型方法,然而其主要缺点是消融过程会导致材料熔化、断裂以及改变表面微观组织.基于激光冲击强化(LSP)技术在Al7075表面开展微凹坑造型研究,其特点是既能克服激光表面织构的缺点,又能继承激光冲击强化的优点.使用AxioCSM700真彩色共聚焦扫描显微镜和VeccoWYKO表面形貌仪观察微凹坑的几何形貌,用HXD-1000TMSC/LCD MH-VK双压头显微硬度计测量微凹坑的内部以及周围表面的硬度.实验结果表明,微凹坑的直径和深度随激光的脉冲能量、冲击次数、离焦量、约束层K9玻璃厚度的变化呈现一定的变化规律;微凹坑的影响区域,沿着凹坑径向方向硬度逐渐增加,中心位置硬度最大,这有利于提高材料的抗磨损能力.

  19. Using texture synthesis in fractal pattern design

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Traditional fractal pattern design has some disadvantages such as inability to effectively reflect the characteristics of real scenery and texture. We propose a novel pattern design technique combining fractal geometry and image texture synthesis to solve these problems. We have improved Wei and Levoy (2000)'s texture synthesis algorithm by first using two-dimensional autocorrelation function to analyze the structure and distribution of textures, and then determining the size of L neighborhood.Several special fractal sets were adopted and HSL (Hue, Saturation, and Light) color space was chosen. The fractal structure was used to manipulate the texture synthesis in HSL color space where the pattern's color can be adjusted conveniently. Experiments showed that patterns with different styles and different color characteristics can be more efficiently generated using the new technique.

  20. Combination of 3D skin surface texture features and 2D ABCD features for improved melanoma diagnosis.

    Science.gov (United States)

    Ding, Yi; John, Nigel W; Smith, Lyndon; Sun, Jiuai; Smith, Melvyn

    2015-10-01

    Two-dimensional asymmetry, border irregularity, colour variegation and diameter (ABCD) features are important indicators currently used for computer-assisted diagnosis of malignant melanoma (MM); however, they often prove to be insufficient to make a convincing diagnosis. Previous work has demonstrated that 3D skin surface normal features in the form of tilt and slant pattern disruptions are promising new features independent from the existing 2D ABCD features. This work investigates that whether improved lesion classification can be achieved by combining the 3D features with the 2D ABCD features. Experiments using a nonlinear support vector machine classifier show that many combinations of the 2D ABCD features and the 3D features can give substantially better classification accuracy than using (1) single features and (2) many combinations of the 2D ABCD features. The best 2D and 3D feature combination includes the overall 3D skin surface disruption, the asymmetry and all the three colour channel features. It gives an overall 87.8 % successful classification, which is better than the best single feature with 78.0 % and the best 2D feature combination with 83.1 %. These demonstrate that (1) the 3D features have additive values to improve the existing lesion classification and (2) combining the 3D feature with all the 2D features does not lead to the best lesion classification. The two ABCD features not selected by the best 2D and 3D combination, namely (1) the border feature and (2) the diameter feature, were also studied in separate experiments. It found that inclusion of either feature in the 2D and 3D combination can successfully classify 3 out of 4 lesion groups. The only one group not accurately classified by either feature can be classified satisfactorily by the other. In both cases, they have shown better classification performances than those without the 3D feature in the combinations. This further demonstrates that (1) the 3D feature can be used to