WorldWideScience

Sample records for surface tension heat

  1. Surface tension and specific heat of liquid Ni70.2Si29.8 alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Haipeng; WEI Bingbo

    2005-01-01

    The surface tension and specific heat of stable and metastable liquid Ni70.2Si29.8 eutectic alloy were measured by electromagnetic levitation oscillating drop method and drop calorimetry. The surface tension depends on temperature linearly within the experimental undercooling regime of 0-182 K (0.12 TE). Its value is 1.693 N·m-1 at the eutectic temperature of 1488 K, and the temperature coefficient is -4.23×10-4 N·m-1·K-1. For the specific heat measurement, the maximum undercooling is up to 253 K (0.17 TE). The specific heat is determined as a polynomial function of temperature in the experimental temperature regime. On the basis of the measured data of surface tension and specific heat, the temperature-dependent density, excess volume and sound speed of liquid Ni70.2Si29.8 alloy are predicted theoretically.

  2. Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Tae; Lim, Dae Ho; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)

    2014-08-15

    Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02-0.1 m/s), liquid viscosity (0.1-3 Pa·s) and surface tension (66.1-72.9x10{sup -3} N/m) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; h=2502U{sub G}{sup 0.236}{sub L}{sup -0.250}{sub L}{sup -}0{sup .028} Nu=3.25Re{sup 0.180}Pr{sup -0.067}We{sup 0.028}.

  3. Dynamic surface tension of heat transfer additives suitable for use in steam condensers and absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Yong-Du [Department of Mechanical and Automotive Engineering, Kongju National University, Kongju, Chungnam, 314-701 (Korea); Kim, Kwang J.; Kennedy, John M. [Department of Mechanical Engineering, University of Nevada-Reno, MS 312, Reno, NV 89557 (United States)

    2010-03-15

    Additives are often effectively used in enhancing heat transfer by creating a surface tension gradient on the surface of a condensate film to induce Marangoni driven ''dropwise-like'' condensation. The objective of the current study is to use the Maximum Bubble Pressure Method (MBPM) to evaluate dynamic behavior of the surface tension of solutions of three different additives (2-ethoxy ethanol, isobutylamine, and 2-ethyl-1-hexanol) of varying concentrations with water. It was shown that the effects of 2-ethoxy ethanol on surface tension was primarily dependent on solute concentration and showed little dependence on time (i.e. surface age of bubble). While both isobutylamine and 2-ethyl-1-hexanol showed strong dependence on both concentration and time, the effects of the later were far more dramatic. The results for all solutions are presented as functions of concentration and time (i.e. surface age of bubble). (author)

  4. Heat Transfer in a Liquid-Solid Circulating Fluidized Bed Reactor with Low Surface Tension Media

    Institute of Scientific and Technical Information of China (English)

    HR Jin; H Lim; DH Lim; Y Kang; Ki-Won Jun

    2013-01-01

    Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid cir-culation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid veloc-ity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.

  5. Surface Tension of Spacetime

    Science.gov (United States)

    Perko, Howard

    2017-01-01

    Concepts from physical chemistry and more specifically surface tension are introduced to spacetime. Lagrangian equations of motion for membranes of curved spacetime manifold are derived. The equations of motion in spatial directions are dispersion equations and can be rearranged to Schrodinger's equation where Plank's constant is related to membrane elastic modulus. The equation of motion in the time-direction has two immediately recognizable solutions: electromagnetic waves and corpuscles. The corpuscular membrane solution can assume different genus depending on quantized amounts of surface energy. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found that satisfies general relativity. Application of the surface tension to quantum electrodynamics and implications for quantum chromodynamics are discussed. Although much work remains, it is suggested that spacetime surface tension may provide a classical explanation that combines general relativity with field theories in quantum mechanics and atomic particle physics.

  6. Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces

    Science.gov (United States)

    Rykaczewski, Konrad; Paxson, Adam T.; Staymates, Matthew; Walker, Marlon L.; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H.; Chinn, Jeff; Scott, John Henry J.; Varanasi, Kripa K.

    2014-03-01

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.

  7. Introducing surface tension to spacetime

    Science.gov (United States)

    Perko, H. A.

    2017-05-01

    Concepts from physical chemistry of surfaces and surface tension are applied to spacetime. More specifically, spacetime is modeled as a spatial fluid continuum bound together by a multi-dimensional membrane of time. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found. Equations of motion for an infinitesimal unit of spacetime are derived. The equation of motion in a time-like direction is a Klein-Gordon type equation. The equations of motion in space-like directions take the form of Schrodinger’s equation where Plank’s constant is related to membrane elastic modulus. Although much work remains, it is suggested that the spacetime surface tension may serve as a mechanical model for many phenomena in quantum mechanics and atomic particle physics.

  8. Surface tension of evaporating nanofluid droplets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruey-Hung [Univ. of Central Florida, Orlando, FL (United States); Phuoc, Tran X. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Martello, Donald [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-05-01

    Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe2O3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower values of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.

  9. Surface Tension Driven Convection Experiment Completed

    Science.gov (United States)

    Jacobson, Thomas P.; Sedlak, Deborah A.

    1997-01-01

    The Surface Tension Driven Convection Experiment (STDCE) was designed to study basic fluid mechanics and heat transfer on thermocapillary flows generated by temperature variations along the free surfaces of liquids in microgravity. STDCE first flew on the USML-1 mission in July 1992 and was rebuilt for the USML-2 mission that was launched in October 1995. This was a collaborative project with principal investigators from Case Western Reserve University (CWRU), Professors Simon Ostrach and Yasuhiro Kamotani, along with a team from the NASA Lewis Research Center composed of civil servants and contractors from Aerospace Design & Fabrication, Inc. (ADF), Analex, and NYMA, Inc.

  10. Axelrod's Model with Surface Tension

    CERN Document Server

    Pace, Bruno

    2012-01-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding non-interacting neighbours from the set of neighbours out of which an agent is drawn for potential cultural interactions. Although the alteration proposed does not alter topologically the configuration space, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behaviour is considerably richer, and cultural regions have become stable leading to the formation of different spatio-temporal structures. A new metastable "glassy" phase emerges between the globalised phase and the polarised, multicultural phase.

  11. Surface tension profiles in vertical soap films

    CERN Document Server

    Adami, N

    2013-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed introducing deformable elastic objets in the films. The shape adopted by those objects set in the film can be related to the surface tension value at a given vertical position by numerical solving of adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position in the soap film can be reproduced by simple modeling taking into account film thickness measurements.

  12. On Surface Tension for Compact Stars

    Indian Academy of Sciences (India)

    R. Sharma; S. D. Maharaj

    2007-06-01

    In an earlier analysis it was demonstrated that general relativity gives higher values of surface tension in strange stars with quark matter than neutron stars. We generate the modified Tolman–Oppenheimer–Volkoff equation to incorporate anisotropic matter and use this to show that pressure anisotropy provides for a wide range of behaviour in the surface tension than is the case with isotropic pressures. In particular, it is possible that anisotropy drastically decreases the value of the surface tension.

  13. Surface Tension Calculation of Undercooled Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.

  14. The surface tension of liquid gallium

    Science.gov (United States)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  15. Surface tension profiles in vertical soap films

    Science.gov (United States)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  16. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  17. Surface tension effects in breaking wave noise.

    Science.gov (United States)

    Deane, Grant B

    2012-08-01

    The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m s(-1) for wind speeds less than 10 m s(-1) and typical values of surfactant film pressure within sea slicks.

  18. Statistical Mechanics of Multilayer Sorption: Surface Tension.

    Science.gov (United States)

    Wexler, Anthony S; Dutcher, Cari S

    2013-05-16

    Mathematical models of surface tension as a function of solute concentration are needed for predicting the behavior of surface processes relevant to the environment, biology, and industry. Current aqueous surface tension-activity models capture either solutions of electrolytes or those of nonelectrolytes, but a single equation has not yet been found that represents both over the full range of compositions. In prior work, we developed an accurate model of the activity-concentration relationship in solutions over the full range of compositions by extending the BET (Brunauer, Emmett, Teller) and GAB (Guggenheim, Anderson, de Boer) isotherms to multiple monolayers of solvent molecules sorbed to solutes. Here, we employ similar statistical mechanical tools to develop a simple equation for the surface tension-activity relationship that differs remarkably from prior formulations in that it (1) works equally well for nonelectrolyte and electrolyte solutes and (2) is accurate over the full range of concentrations from pure solvent to pure solute.

  19. Surface-tension properties of hyaluronic Acid.

    Science.gov (United States)

    Knepper, P A; Covici, S; Fadel, J R; Mayanil, C S; Ritch, R

    1995-06-01

    The maintenance of flow channels in the trabecular meshwork is dependent, in part, on the patency of the trabecular spaces. Because the amount of hyaluronic acid decreases in the trabecular meshwork of patients with primary open-angle glaucoma, a change in surface tension may be one of the effects of hyaluronic acid on aqueous outflow. The surface-active properties of hyaluronic acid (concentration of 0.156-2.5 mg/ml; molecular weights of 100,000, 500,000, and 4,000,000) in deionized water, Ringer's lactate, Ringer's lactate plus 0.06 mg/ml bovine serum albumin, and mock aqueous solution were tested using the drop volume method. At a hyaluronic acid concentration of 0.312 mg/ml, surface tension decreased; at higher concentrations, a further decrease in surface tension was observed. In the presence of Ringer's lactate, the 100,000-MW hyaluronic acid was more active than the 4,000,000-MW hyaluronic acid. In the presence of Ringer's lactate plus bovine serum albumin or mock aqueous solution, the influence of surface tension of the 100,000-MW hyaluronic acid was moderated: with lower hyaluronic acid concentrations, the decline in surface tension was more than with Ringer's lactate, but with higher hyaluronic acid concentrations, the decline in surface tension was less than with Ringer's lactate. At high concentration, hyaluronic acid behaves like a non-Newtonian fluid, becomes more viscous, and may act to "seal" the trabecular space. The results of this study indicate that hyaluronic acid possesses surface-active properties, which is just one of several properties of hyaluronic acid that may influence aqueous outflow resistance.

  20. Dynamic Surface Tensions of Fluorous Surfactant Solutions

    Institute of Scientific and Technical Information of China (English)

    高艳安; 侯万国; 王仲妮; 李干佐; 韩布兴; 张高勇; 吕锋锋

    2005-01-01

    Dynamic surface properties of aqueous solutions of cationic fluorous surfactant CF3CF2CF20(CF(CF3)CF2O)2CF(CF3)CONH(CHE)3N+(C2H5)2CH3I- (abbrev. FC-4 ) were reported. The critical micelle concentration (cmc)(3.6×10-5 mol/L) and equilibdum surface tensions γeq were measured by Krtlss K12 tension apparatus. Dynamic surface tension γ(t) was measured in the range of 15 ms to 200 s using the MBP tensiometer. The surface excess Γ,as a function of concentration, was obtained from equilibrium tensiometry using the Gibbs equation. Data from these experiments were combined to analyze the γ(t) decays according to the asymptotic Ward and Tordai equation.The results show that at the initial adsorption stage, the dynamic surface tension data were all consistent with this diffusion-controlled mechanism, and at the end of the adsorption process, there were some evidences for an adsorption barrier, suggesting a mixed diffusion-controlled adsorption mechanism. Using measured quantities, the barrier strength was estimated as between 25 and 35 kJ/mol at 25℃. The surface pressure plays an important role in contributing to the barrier.

  1. Surface and interfacial tension measurement, theory, and applications

    CERN Document Server

    Hartland, Stanley

    2004-01-01

    This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such a

  2. Steady periodic gravity waves with surface tension

    CERN Document Server

    Walsh, Samuel

    2009-01-01

    In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.

  3. Effect of surface tension on SiO2 -methanol nanofluids

    Science.gov (United States)

    Bhuiyan, M. H. U.; Saidur, R.; Amalina, M. A.; Mostafizur, R. M.

    2015-09-01

    Surface tension, the cohesive energy of an interface dominated the transportation behaviour of the liquids play an important role in the heat transfer performance. A new class of heat transfer fluid denoting “Nanofluids” with impressive thermo-physical properties, proved its promising potentiality in the heat transfer performance. However, very few numbers of studies observed for the effect of nanoparticles on the surface tension of liquids, also noted controversial results. In the present study, SiO2 nanoparticles dispersed in methanol solution to investigate the effect of surface tension with the change of concentration and their sizes. The most common Du-Nouy ring method was used to measure the surface tension of methanol based nanofluids by an automatic surface tensiometer.The results denote that the surface tension of the nanofluids increases with increase in concentration. On the other hand, the results indicate that the surface tension decreases with the increase in temperatures. Besides, the surface tension of SiO2-methanol nanofluids enhances compared to pure methanol. All in all, the enhancement observed 1.7% to 8.9% of the variation of volume fractions (0.05 Vol % to 0.25 Vol %) and the temperature change of 25 °C to 50 °C.

  4. Theoretical and experimental study on surface tension and dynamic surface tension of aqueous lithium bromide and water with additive

    Institute of Scientific and Technical Information of China (English)

    程文龙; 陈则韶; 秋泽淳; 胡芃; 柏木孝夫

    2003-01-01

    The surface tensions of water and aqueous lithium bromide (LiBr) with 2-ethyl-1-hexa- nol (2EH) and 1-octanol were measured using Wilhelmy plate method, and the oscillation of surface tension under the open condition for LiBr solution was observed. The dynamic surface tensions of water and LiBr solution in the presence of the 2EH and 1-octanol vapor were measured in this paper. The results showed that the additives vapor could obviously affect surface tension. For water, the dynamic surface tension was also affected by the mass of the tested liquid; however, for LiBr solution, the dynamic surface tension was not related to the mass of the tested solution. According to the experimental results, the hypothesis that surface tension varies linearly with the surface excess concentration is advanced, which could overcome the limit of Gibbs equation. The equations of surface absorption and desorption are modified, the units of the adsorption coefficient and desorption coefficient are unified; the effects of the liquid and vapor of additive on the surface tension are unified; the theoretical relations of the static surface tension and dynamic surface tension with the relative contents of the liquid and vapor of additive are obtained under the combined actions of them; the theoretical equations are validated by the experiments results.

  5. Surface tension propulsion of fungal spores.

    Science.gov (United States)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2009-09-01

    Most basidiomycete fungi actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed a detailed mechanical analysis of the three stages of spore ejection: the transfer of energy from the drop to the spore, the work of fracture required to release the spore from its supporting structure and the kinetic energy of the spore after ejection. High-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeasts revealed that drop coalescence takes place over a short distance ( approximately 5 microm) and energy transfer is completed in less than 4 mus. Based on these observations, we developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system and shown to predict the initial spore velocity accurately (predicted velocity: 1.2 m s(-1); observed velocity: 0.8 m s(-1) for A. auricula). Using calibrated microcantilevers, we also demonstrate that the work required to detach the spore from the supporting sterigma represents only a small fraction of the total energy available for spore ejection. Finally, our observations of this unique discharge mechanism reveal a surprising similarity with the mechanics of jumping in animals.

  6. Surface tension of ionic liquids and ionic liquid solutions.

    Science.gov (United States)

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  7. Modifying horizon thermodynamics by surface tensions

    CERN Document Server

    Chen, Deyou

    2016-01-01

    The modified first laws of thermodynamics at the black hole horizon and the cosmological horizon of the Schwarzschild de Sitter black hole and the apparent horizon of the Friedmann-Robertson-Walker cosmology are derived by the surface tensions, respectively. The corresponding Smarr relations are obeyed. For the black hole, the cosmological constant is first treated as a fixed constant, and then as a variable associated to the pressure. The law at the apparent horizon takes the same form as that at the cosmological horizon, but is different from that at the black hole horizon. The positive temperatures guarantee the appearance of the worked terms in the modified laws at the cosmological and apparent horizons. While they can disappear at the black hole horizon.

  8. Dropwise Condensation of Low Surface Tension Fluids on iCVD Grafted Polymer Films

    Science.gov (United States)

    Khalil, Karim; Gleason, Karen; Varanasi, Kripa

    2016-11-01

    A large majority of the work devoted to surface engineering for promoting dropwise condensation heat transfer has focused on steam. Much less attention has been dedicated to the condensation of low surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants, which are used in several industrial applications, including LNG storage and organic Rankine cycles used for heat recovery from low temperature sources such as biomass combustion, industrial waste, or geothermal heat sources. Most hydrophobic modifiers used previously to promote dropwise condensation are silane-based monolayers that have been shown to rapidly degrade under industrial conditions. Here we investigate condensation behavior of a variety of low surface tension liquids on durable covalently-grafted polymer films deposited using initiated chemical vapor deposition (iCVD) on metals such as titanium. We observe a four to seven-fold improvement in the vapor-side heat transfer coefficient by promoting dropwise condensation of low surface tension fluids on these stable films.

  9. Tunable Superomniphobic Surfaces for Sorting Droplets by Surface Tension

    Science.gov (United States)

    Movafaghi, Sanli; Wang, Wei; Metzger, Ari; Williams, Desiree; Williams, John; Kota, Arun

    2016-11-01

    Manipulation of liquid droplets on super-repellent surfaces (i.e., surfaces that are extremely repellent to liquids) has been widely studied because droplets exhibit high mobility on these surfaces due to the ultra-low adhesion, which leads to minimal sample loss and contamination. Although droplet manipulation has been demonstrated using electric fields, magnetic fields, guiding tracks and wettability gradients, to the best of our knowledge, there are no reports of droplet manipulation methods that can sort droplets by surface tension on super-repellent surfaces. In this work, we utilized tunable superomniphobic surfaces (i.e., surfaces that are extremely repellent to virtually all liquids) to develop a simple device with precisely tailored solid surface energy domains that, for the first time, can sort droplets by surface tension. Droplet sorting occurs on our device entirely due to a balance between the work done by gravity and the work expended due to adhesion, without the need for any external energy input. Our device can be fabricated easily in a short time and is particularly useful for in-the-field and on-the-go operations, where complex analysis equipment is unavailable. We envision that our methodology for droplet sorting will enable inexpensive and energy-efficient analytical devices for personalized point-of-care diagnostic platforms and lab-on-a-chip systems.

  10. Surface tension and long range corrections of cylindrical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bourasseau, E. [CEA/DAM DIF, F-91297 Arpajon Cedex (France); Malfreyt, P. [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr [Institut de Physique de Rennes, UMR 6251 CNRS, Université de Rennes 1, 263 avenue Général Leclerc, 35042 Rennes (France)

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.

  11. Tension-independent heat in rabbit papillary muscle.

    Science.gov (United States)

    Alpert, N R; Blanchard, E M; Mulieri, L A

    1989-07-01

    1. Heat and force were measured from isometrically contracting (0.2 Hz) rabbit papillary muscles at 21 degrees C during a single contraction-relaxation cycle using antimony-bismuth thermopiles and a capacitance force transducer. 2. Tension-independent heat (TIH) associated with excitation-contraction coupling was isolated from the initial heat by eliminating tension and tension-dependent heat with a Krebs-Ringer solution containing 2,3-butanedione monoxime (BDM) and mannitol. 3. A strategy for testing the validity of this new method for measuring TIH in heart muscle is described and the test confirms that the BDM-hypertonic solution partitioning method properly estimates the magnitude of the TIH component of initial heat. 4. TIH at the time of complete mechanical relaxation is 1.00 +/- 0.17 mJ/g wet weight and the data suggest that calcium cycling is complete by this time. Conversion of TIH to calcium cycled, assuming that 87% of TIH is due to calcium pumping by the sarcoplasmic reticulum, indicates that approximately 52 nmol calcium/g wet weight are required to support a single cycle of mechanical activity (0.2 Hz, 21 degrees C). 5. The length and frequency dependence of excitation-contraction coupling were demonstrated. TIH is reduced by shortening muscle length and by increasing the interval between stimuli. These steady-state data suggest that only a portion (approximately 40%) of TIH is directly related to activation of the contractile apparatus. 6. TIH in the first twitch following a 45 min rest period is significantly reduced by approximately 30%. 7. With subsequent twitches in the positive treppe following the rest period, TIH does not increase as steeply as expected suggesting that tension rise in twitches 1-10 may be modulated by competitive binding of calcium rather than increased calcium delivery.

  12. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  13. Surface tension of molten tin investigated with sessile drop method

    Institute of Scientific and Technical Information of China (English)

    LI Jing; YUAN Zhang-fu; FAN Jian-feng; KE Jia-jun

    2005-01-01

    The surface tension of molten tin was determined by a set of self-developed digital equipment with sessile drop method at oxygen partial pressure of 1.0 × 10-6 MPa under different temperatures, and the dependence of surface tension of molten tin on temperature was also discussed. The emphasis was placed on the comparison of surface tension of the same molten tin sample measured by using different equipments with sessile drop method. Results of the comparison indicate that the measurement results with sessile drop method under the approximate experimental conditions are coincident, and the self-developed digital equipment for surface tension measurement has higher stability and accuracy. The relationships of surface tension of molten tin and its temperature coefficient with temperature and oxygen partial pressure were also elucidated from the thermodynamic equilibrium analysis.

  14. Energy conversion by surface-tension driven charge separation

    CERN Document Server

    Pini, Cesare; Dietzel, Mathias

    2016-01-01

    In this work, the shear-induced electrokinetic streaming potential present in free-surface electrolytic flows subjected to a gradient in surface tension is assessed. Firstly, for a Couette flow with fully resolved electric double layer (EDL), the streaming potential per surface stress as a function of the Debye parameter and surface potential is analyzed. By contrast to the Smoluchowski limit in pressure-driven channel flow, the shear-induced streaming potential vanishes for increasing Debye parameter (infinitely thin EDL), unless the free surface contains (induced) surface charge or the flow at the charged, solid wall is permitted to slip. Secondly, a technical realization of surface-tension induced streaming is proposed, with surface stress acting on the free (slipping) surfaces of a micro-structured, superhydrophobic wall. The streaming potential is analyzed with respect to the slip parameter and surface charge. Finally, the surface tension is assumed to vary with temperature (thermocapillarity) or with su...

  15. Geometric Interpretation of Surface Tension Equilibrium in Superhydrophobic Systems

    Directory of Open Access Journals (Sweden)

    Michael Nosonovsky

    2015-07-01

    Full Text Available Surface tension and surface energy are closely related, although not identical concepts. Surface tension is a generalized force; unlike a conventional mechanical force, it is not applied to any particular body or point. Using this notion, we suggest a simple geometric interpretation of the Young, Wenzel, Cassie, Antonoff and Girifalco–Good equations for the equilibrium during wetting. This approach extends the traditional concept of Neumann’s triangle. Substances are presented as points, while tensions are vectors connecting the points, and the equations and inequalities of wetting equilibrium obtain simple geometric meaning with the surface roughness effect interpreted as stretching of corresponding vectors; surface heterogeneity is their linear combination, and contact angle hysteresis is rotation. We discuss energy dissipation mechanisms during wetting due to contact angle hysteresis, the superhydrophobicity and the possible entropic nature of the surface tension.

  16. The effects of ambient impurities on the surface tension

    Directory of Open Access Journals (Sweden)

    Ponce-Torres A.

    2016-01-01

    Full Text Available A liquid bridge is a liquid column held captive between two coaxial and parallel solid disks. It is an excellent test bench where measuring the surface tension. In this paper, we used this fluid configuration to examine experimentally the effects of ambient impurities on the surface tension over time. For this purpose, the liquid bridge equilibrium shape was analyzed when the liquid bridge was surrounded by three environments: the uncontrolled ambient, and both air and argon encapsulated in a small glass cover. Ambient contamination produced a sharp decrease of the surface tension of ultra-pure water. The presence of an anionic surfactant in the free surface of an aqueous solution did not inhibit the action of impurities coming from the ambient. Impurities can influence the dynamical behavior of the free surface in flows dominated by the surface tension. Therefore, a careful control of that influence can be crucial in many applications of fluid mechanics.

  17. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  18. Molecular dynamics simulation of liquid-vapor surface tension

    Institute of Scientific and Technical Information of China (English)

    王德; ZENG; Danling; 等

    2002-01-01

    A molecular dynamics simulation model is established based on the well-known Lennard-Jones 12-6 potential function to determine the surface tension of a Lennard-Jones liquid-vapor interface.The simulation is carried out with argon as the working fluid of a given molecular number at different temperature and different truncated radius.It is found that the surface tension of a Lennard-Jones fluid is likely to be bigger for a bigger truncated radius,and tends to be constant after the truncated radius increased to a certain value.It is also found that the surface tension becomes smaller as the temperature increases.

  19. Surface Tension of Molten Ni and Ni-Co Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG; Kiyoshi NOGI

    2005-01-01

    Surface tension of molten Ni and Ni-Co (5 and 10 mass fraction) alloys was measured at the temperature range of 1773~1873 K using an improved sessile drop method with an alumina substrate in an Ar+3%H2 atmosphere. The error of the data obtained was analyzed. The surface tension of molten Ni and Ni-Co (5 and 10 mass fraction) alloys decreases with increasing temperature. The influence of Co on the surface tension of Ni-Co alloys is little in the studied Co concentration range.

  20. Surface tension of liquid Au-Bi-Sn alloys

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The surface tension of a promising lead-free solder Au-Bi-Sn alloys was investigated both by the sessile-drop method and calculation. Experimental measurements were carried out for two cross-sections with the constant gold to bismuth ration of 1:1 and 1:2. For all the investigated compositions, decrease of the surface tension is observed with increasing temperature. Meanwhile, the surface tension values were also calculated based on Butler's equation, with using the newest research on thermodynamics data of...

  1. Surface tension of molecular liquids: Lattice gas approach

    CERN Document Server

    Maslechko, A; Kulinskii, V

    2016-01-01

    The approach of global isomorphism between the fluid and the Ising model is applied to obtain an expression for the surface tension of the Lennard-Jones fluid on the basis of the information about the Ising model. This is done in a broad interval of temperatures along the phase coexistence, and is valid both in 2D and 3D. The relation between the critical amplitudes of the surface tension of the fluid and the Ising model is derived in the vicinity of the critical point. The obtained theoretical estimates agree well with the literature results for the surface tension. The methodology is demonstrated for the 2D LJ fluid on the basis of the exact solution of the 2D Ising model and is tested for the 3D LJ fluid. As a result, an expression for the surface tension without any fitting parameter is derived.

  2. Molecular Dynamic Simulations on Surface Tension of Methanol

    Science.gov (United States)

    Obeidat, Abdalla

    2015-04-01

    Molecular dynamic simulations have been performed to study the surface tension of methanol at low temperatures. Six different models of methanol have been studied to compute the surface tension of different models. The models have been used to predict the surface tensions are: OPLS, Gromos 96, H1, J1, J2, and van Leeuwen model. Our results show that the most accurate model compared to true methanol was van Leeuwen model. The results were fitted to a straight line to predict other data of surface tension at specific temperature. The simulation were performed using the Gromacs package at temperatures: 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, and 300 K. This work is supported by JUST.

  3. Second Inflection Point of the Surface Tension of Water

    Science.gov (United States)

    Kalova, Jana; Mares, Radim

    2012-06-01

    The theme of a second inflection point of the temperature dependence of the surface tension of water remains a subject of controversy. Using data above 273 K, it is difficult to get a proof of existence of the second inflection point, because of experimental uncertainties. Data for the surface tension of supercooled water and results of a molecular dynamics study were included into the exploration of existence of an inflection point. A new term was included into the IAPWS equation to describe the surface tension in the supercooled water region. The new equation describes the surface tension values of ordinary water between 228 K and 647 K and leads to the inflection point value at a temperature of about 1.5 °C.

  4. Surface tension of compositions of polyhexametyleneguanidine hydrochloride - surfactants

    Directory of Open Access Journals (Sweden)

    S. Kumargaliyeva

    2012-12-01

    Full Text Available We made up songs bactericidal polyhexamethyleneguanidine hydrochloride (metacyde with the surface-active substances - anionic sodium dodecylsulfate, cationic cetylpyridinium bromide, and nonionic Tween-80 and measured the surface tension of water solutions. The study showed that the composition metacyde with surface-active agents have a greater surface activity than the individual components.

  5. Scraped surface heat exchangers.

    Science.gov (United States)

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  6. Surface tension of calcium hydroxide associated with different substances

    OpenAIRE

    Carlos Estrela; Cyntia Rodrigues de Araújo Estrela; Luiz Fernando Guimarães; Reginaldo Santana Silva; Jesus Djalma Pécora

    2005-01-01

    The purpose of this study was to evaluate the surface tension of calcium hydroxide (CH) associated with different substances (deionized distilled water, camphorated paramonochlorophenol, 2% chlorhexidine digluconate, Otosporin, 3% sodium lauryl ether sulphate; Furacin, PMC Furacin) using tensiometer. The action of the substances studied on the dentinal structure enhances the property of surface tension. This method consists in the application of force to separate a platinum ring immersed in t...

  7. Surface Tension between Kaon Condensate and Normal Nuclear Matter Phase

    OpenAIRE

    Christiansen, Michael B.; Glendenning, Norman K.; Schaffner-Bielich, Jurgen

    2000-01-01

    We calculate for the first time the surface tension and curvature coefficient of a first order phase transition between two possible phases of cold nuclear matter, a normal nuclear matter phase in equilibrium with a kaon condensed phase, at densities a few times the saturation density. We find the surface tension is proportional to the difference in energy density between the two phases squared. Furthermore, we show the consequences for the geometrical structures of the mixed phase region in ...

  8. Surface tension with Normal Curvature in Curved Space-Time

    CERN Document Server

    kumar, Himanshu; Ahmad, Suhail

    2012-01-01

    With an aim to include the contribution of surface tension in the action of the boundary, we define the tangential pressure in terms of surface tension and Normal curvature in a more naturally geometric way. First, we show that the negative tangential pressure is independent of the four-velocity of a very thin hyper-surface. Second, we relate the 3-pressure of a surface layer to the normal curvature and the surface tension. Third, we relate the surface tension to the energy of the surface layer. Four, we show that the delta like energy flows across the hyper-surface will be zero for such a representation of intrinsic 3-pressure. Five, for the weak field approximation and for static spherically symmetric configuration, we deduce the classical Kelvin's relation. Six, we write a modified action for the boundary having contributions both from surface tension and normal curvature of the surface layer. Also we propose a method to find the physical action assuming a reference background, where the background is not ...

  9. Surface Tensions and Their Variations with Temperature and Impurities

    Science.gov (United States)

    Hardy, S. C.; Fine, J.

    1985-01-01

    The surface tensions in this work were determined using the sessile drop technique. This method is based on a comparison of the profile of a liquid drop with the profile calculated by solving the Young-Laplace equation. The comparison can be made in several ways; the traditional Bashforth-Adams procedure was used in conjunction with recently calculated drop shape tables which virtually eliminate interpolation errors. Although previous study has found little difference in measurements with pure and oxygen doped silicon, there is other evidence suggesting that oxygen in dilute concentrations severely depresses the surface tension of silicon. The surface tension of liquid silicon in purified argon atmospheres was measured. A temperature coefficient near -0.28 mJ/square meters K was found. The experiments show a high sensitivity of the surface tension to what is believed are low concentrations of oxygen. Thus one cannot rule out some effect of low levels of oxygen in the results. However, the highest surface tension values obtained in conditions which minimized the residual oxygen pressure are in good agreement with a previous measurement in pure hydrogen. Therefore, depression of the surface tension by oxygen is insignificant in these measurements.

  10. Surface tension of liquid metals and alloys--recent developments.

    Science.gov (United States)

    Egry, I; Ricci, E; Novakovic, R; Ozawa, S

    2010-09-15

    Surface tension measurements are a central task in the study of surfaces and interfaces. For liquid metals, they are complicated by the high temperatures and the consequently high reactivity characterising these melts. In particular, oxidation of the liquid surface in combination with evaporation phenomena requires a stringent control of the experimental conditions, and an appropriate theoretical treatment. Recently, much progress has been made on both sides. In addition to improving the conventional sessile drop technique, new containerless methods have been developed for surface tension measurements. This paper reviews the experimental progress made in the last few years, and the theoretical framework required for modelling and understanding the relevant physico-chemical surface phenomena.

  11. Measurement of dynamic surface tension by mechanically vibrated sessile droplets

    Science.gov (United States)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  12. Multiscale surface roughening of commercial purity titanium during uniaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Panin, Alexey, E-mail: pav@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kazachenok, Marina, E-mail: kms@ispms.tsc.ru; Kozelskaya, Anna, E-mail: annakozelskaya@gmail.com; Sinyakova, Elena, E-mail: mea@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Lider, Andrey, E-mail: lider@tpu.ru; Sklyarova, Elena, E-mail: skea@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The mechanisms of the surface roughening of the titanium specimens during uniaxial tension were demonstrated. By means of optical profilometry and electron backscattered diffraction it was shown that the formation of surface roughening is a multilevel process. The correlation between the density of slip in some grains, and grain rotation, and their displacement towards the free surface was investigated.

  13. Surface borehole synthesis tension deformation fracture time-space rule

    Institute of Scientific and Technical Information of China (English)

    Liu Jianzhong; Sun Haitao; Hu Qianting

    2012-01-01

    In order to release the tension and shear effect of the superjacent rock strata movement during excavation in coal mine,protect the surface borehole case from fracturing fast and make a good use of the surface borehole during goaf methane drawing,a common synthesis tension deformation fracture model was set up based on the synthesis tension effect of the rock strata,and the deformation rule of the surface borehole case with time and space was researched.The results suggest that,to reduce the deformation the surface borehole should be built between the boundary of the stope and the knee of subsidence curve.At the same time,a 3DEC simulation model and an engineering example were carried out to examine the rules of theoretical model.The result suggests that the model and the rules accord to the test and have good building and protection engineering application values to the surface borehole.

  14. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... in the pore water. Incorporation of MgSO4 into calcite, which is energetically favored, decreases surface tension and releases polar oil compounds......., where particles are smaller than the smallest droplet? We investigated the energy required to exchange Mg2+ and SO4 2- from aqueous solution into calcite {10.4} surfaces using density functional theory. Mg2+ substitution for Ca2+ is favored but only when SO4 2- is also present and MgSO4 incorporates...

  15. Decay of viscous surface waves without surface tension

    CERN Document Server

    Guo, Yan

    2010-01-01

    Consider a viscous fluid of finite depth below the air. In the absence of the surface tension effect at the air-fluid interface, the long time behavior of a free surface with small amplitude has been an intriguing question since the work of Beale \\cite{beale_1}. In this monograph, we develop a new mathematical framework to resolve this question. If the free interface is horizontally infinite, we establish that it decays to a flat surface at an algebraic rate. On the other hand, if the free interface is periodic, we establish that it decays at an almost exponential rate, i.e. at an arbitrarily fast algebraic rate determined by the smallness of the data. Our framework contains several novel techniques, which include: (1) a local well-posed theory of the Navier-Stokes equations in the presence of a moving boundary; (2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order energy, the latter of which is necessary to balance out the growth of the highest derivatives o...

  16. Quantitative Structure-Property Relationship on Prediction of Surface Tension of Nonionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A quantitative structure-property relationship (QSPR) study has been made for the prediction of the surface tension of nonionic surfactants in aqueous solution.The regressed model includes a topological descriptor,the Kier & Hall index of zero order (KH0) of the hydrophobic segment of surfactant and a quantum chemical one,the heat of formation () of surfactant molecules.The established general QSPR between the surface tension and the descriptors produces a correlation coefficient of multiple determination,=0.9877,for 30 studied nonionic surfactants.

  17. Why is surface tension a force parallel to the interface?

    CERN Document Server

    Marchand, Antonin; Snoeijer, Jacco H; Andreotti, Bruno

    2012-01-01

    A paperclip can float on water. Drops of mercury refuse to spread on a surface. These capillary phenomena are macroscopic manifestations of molecular interactions, and can be explained in terms of surface tension. For students, the concept of surface tension is quite challenging since the microscopic intuition is often in conflict with the common macroscopic interpretations. In this paper we address a number of conceptual questions that are often encountered when teaching capillarity. By answering these questions we provide a perspective that reconciles the macroscopic viewpoints, from thermodynamics or fluid mechanics, and the microscopic perspective from statistical physics.

  18. Surface tension driven flow in glass melts and model fluids

    Science.gov (United States)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  19. Surface tension of highly magnetized degenerate quark matter

    CERN Document Server

    Lugones, G

    2016-01-01

    We study the surface tension of highly magnetized three flavor quark matter within the formalism of multiple reflection expansion (MRE). Quark matter is described as a mixture of free Fermi gases composed by quarks $u$, $d$, $s$ and electrons, in chemical equilibrium under weak interactions. Due to the presence of strong magnetic fields the particles' transverse motion is quantized into Landau levels, and the surface tension has a different value in the parallel and transverse directions with respect to the magnetic field. We calculate the transverse and longitudinal surface tension for different values of the magnetic field and for quark matter drops with different sizes, from a few fm to the bulk limit. For baryon number densities between $2-10$ times the nuclear saturation density, the surface tension falls in the range $2 - 20$ MeV /fm$^{2}$. The largest contribution comes from strange quarks which have a surface tension an order of magnitude larger than the one for $u$ or $d$ quarks and more than two ord...

  20. Surface tension regularizes the crack singularity of adhesion

    NARCIS (Netherlands)

    Karpitschka, Stefan; van Wijngaarden, L.; van Wijngaarden, L.; Snoeijer, Jacobus Hendrikus

    2016-01-01

    The elastic and adhesive properties of a solid surface can be quantified by indenting it with a rigid sphere. Indentation tests are classically described by the JKR-law when the solid is very stiff, while recent work highlights the importance of surface tension for exceedingly soft materials. Here

  1. Why is surface tension a force parallel to the interface?

    NARCIS (Netherlands)

    Marchand, Antonin; Weijs, Joost H.; Weijs, Joost; Snoeijer, Jacobus Hendrikus; Andreotti, Bruno

    2011-01-01

    A paperclip can float on water. Drops of mercury do not spread on a surface. These capillary phenomena are macroscopic manifestations of molecular interactions and can be explained in terms of surface tension. We address several conceptual questions that are often encountered when teaching

  2. Surface tension of the Widom-Rowlinson model.

    Science.gov (United States)

    de Miguel, E; Almarza, N G; Jackson, G

    2007-07-21

    We consider the computation of the surface tension of the fluid-fluid interface for the Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] binary mixture from direct simulation of the inhomogeneous system. We make use of the standard mechanical route, in which the surface tension follows from the computation of the normal and tangential components of the pressure tensor of the system. In addition to the usual approach, which involves simulations of the inhomogeneous system in the canonical ensemble, we also consider the computation of the surface tension in an ensemble where the pressure perpendicular (normal) to the planar interface is kept fixed. Both approaches are seen to provide consistent values of the interfacial tension. The issue of the system-size dependence of the surface tension is addressed. In addition, simulations of the fluid-fluid coexistence properties of the mixture are performed in the semigrand canonical ensemble. Our results are compared with existing data of the Widom-Rowlinson mixture and are also examined in the light of the vapor-liquid equilibrium of the thermodynamically equivalent one-component penetrable sphere model.

  3. The Role of Bag Surface Tension in Color Confinement

    CERN Document Server

    Bugaev, K A

    2011-01-01

    We discuss here the novel view at the color confinement which, on the one hand, allows us to find out the surface tension coefficient of quark gluon bags and, under a plausible assumption, to determine the endpoint temperature of the QCD phase diagram, on the other hand. The present model considers the confining color tube as the cylindrical quark gluon bag with non-zero surface tension. A close inspection of the free energies of elongated cylindrical bag and the confining color tube that connects the static quark-antiquark pair allows us to find out the string tension in terms of the surface tension, thermal pressure and the bag radius. Using the derived relation it is possible to estimate the bag surface tension at zero temperature directly from the lattice QCD data and to estimate the (tri)critical endpoint temperature. In the present analysis the topological free energy of the cylindrical bag is accounted for the first time. The requirement of positive entropy density of such bags leads to negative values...

  4. Molecular simulation of the surface tension of real fluids

    CERN Document Server

    Werth, Stephan; Hasse, Hans

    2016-01-01

    Molecular models of real fluids are validated by comparing the vapor-liquid surface tension from molecular dynamics (MD) simulation to correlations of experimental data. The considered molecular models consist of up to 28 interaction sites, including Lennard-Jones sites, point charges, dipoles and quadrupoles. They represent 38 real fluids, such as ethylene oxide, sulfur dioxide, phosgene, benzene, ammonia, formaldehyde, methanol and water, and were adjusted to reproduce the saturated liquid density, vapor pressure and enthalpy of vaporization. The models were not adjusted to interfacial properties, however, so that the present MD simulations are a test of model predictions. It is found that all of the considered models overestimate the surface tension. In most cases, however, the relative deviation between the simulation results and correlations to experimental data is smaller than 20 %. This observation corroborates the outcome of our previous studies on the surface tension of 2CLJQ and 2CLJD fluids where a...

  5. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  6. Research of some marks contemporary hydrocarbon fuel surface tension

    Directory of Open Access Journals (Sweden)

    С.В. Бойченко

    2005-01-01

    Full Text Available  The  surface  tension  of  some  marks  domestic  and  foreign  gasoline’s  and  jet  fuels  is  investigated  depending  on  distillation. Dependences  of  surface  tension,  composition,  boiling  points  liquid  fuel  experimentally  are  received.

  7. Instantons and surface tension at a first-order transition

    Science.gov (United States)

    Gupta, Sourendu

    1994-04-01

    We study the dynamics of the first-order phase transition in the two-dimensional 15-state Potts model, both at and off equilibrium. We find that phase changes take place through nucleation in both cases, and finite volume effects are described well through an instanton computation. Thus a dynamical measurement of the surface tension is possible. We find that the order-disorder surface tension is compatible with perfect wetting. An accurate treatment of fluctuations about the instanton solution is seen to be of great importance. Current Address: Theory Group, TIFR, Homi Bhabha Road, Bombay 400005, India.

  8. Estimation of the surface tension of ocular cornea

    Science.gov (United States)

    Zhang, Xueyong; Ma, Jianguo; Lu, Rongsheng; Xia, Ruixue

    2008-12-01

    Considering the potential clinical importance, the surface tension of ocular cornea under the action of normal physiological intraocular pressure is estimated, and a novel technique and a simple mechanical model for determining the tension are also presented in this paper. An instrument embodying mainly a CCD camera, an optical staff gauge and a manometer was developed primarily to measure both the surface point displacement and intraocular pressure of the cornea. A simple theoretical model was used to characterize the tensions of the ocular corneas under the action of the intraocular pressure. Due to the difficulty in obtaining the human cornea, laboratory experiments were carried out on porcine cornea specimens. The thickness of the specimens was accurately measured by optical coherence tomography. The matrix and collagen properties within the corneal tissue were manifested in the experiment. Experimental results on porcine corneas showed that the present technique is applicable to estimate the surface tension. In the normal physiological intraocular pressure range, both meridian and circumference tensions of the porcine corneas along the radial coordinate distribute are not uniform.

  9. Surface pore tension and adsorption characteristics of polluted sediment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Most natural sediment particles have numerous pores and a complex surface texture which facilitates their adsorption of contaminants. Particle surface structure,therefore,is an important instrumental factor in the transport of contaminants,especially in water environments. This paper reports on the results of adsorption-desorption experiments to analyze polluted sediment surface pore tension characteristics performed on samples from the bottom of Guanting Reservoir. In our analysis,the Frenkel-Halsey-Hill(FHH) equation is applied to calculate the fractal dimensions of particles to quantify the surface roughness and pore tension characteristics. The results show that the surface fractal dimensions of sediment particle surfaces normally measure from 2.6 to 2.85. The volume of pores smaller than 10 nm changes significantly after being contaminated with pollutants and the fractal dimension decreases because the pores adsorb the contaminants.

  10. New thermodynamics for evaluating the surface-phase enrichment in the lower surface tension component.

    Science.gov (United States)

    Santos, M Soledade C S; Reis, João Carlos R

    2014-09-15

    Regarding the surface phase of liquid mixtures as a thermodynamic phase, ideal surface phases are designed so that at fixed bulk-phase composition, real and ideal surface phases have the same chemical composition and identical limiting slopes for the dependence of surface tension on mole fraction. Standard chemical potentials are introduced for surface phase components, and quasi-exact expressions are worked out to compute ideal surface tensions and surface-phase compositions of real liquid mixtures. Guidelines for choosing molecular models to estimate the molar surface area of pure constituents are given. Ideal and excess surface tensions are calculated by using literature data for aqueous ethanol solutions at 298 K. These results show treatment based on Butler's equations grossly overestimate predicted surface tensions, thus leading to lower ethanol content in the surface phase. These inaccuracies are ascribed to the use of molar surface areas in model equations that are too small.

  11. Motion driven by the interface. [pendant drop surface tension in microgravity

    Science.gov (United States)

    Jayaraj, K.; Cole, R.; Subramanian, R. S.

    1983-01-01

    Due to the reduction in buoyant forces aboard orbiting spacecraft such as the Space Shuttle, fluid motion driven by gradients in interfacial tension will be important in the processing of materials in space. In this paper, preliminary results from a study of surface tension driven flow in a pendant drop are reported. The drop is heated from above, and the resulting temperature gradients on the drop surface give rise to interfacial tension gradients. These, in turn, drive a circulation in the drop which is made visible by suitable tracers. The velocities are measured using a video technique, and the data on core velocities are found to agree well with results from a predictive theoretical model.

  12. Surface tension effects on immersed electrosprays

    CERN Document Server

    Marin, Alvaro G; Barrero, Antonio

    2012-01-01

    Electrosprays are a powerful technique to generate charged micro/nanodroplets. In the last century, the technique received extensive study and successful applications, including a Nobel price in Chemistry. However, nowadays its use in microfluidic devices is still limited mainly due to a lack of knowledge of the phenomenon when the dispersing fluid is immersed in another inmiscible liquid. The "immersed electrosprays" share almost identical properties as their counterparts in air. Things however change when surface active agents are added to the host liquid, which are normally used in lab-on-chip applications to stabilize the generated emulsions. In this work, we review the main properties of the immersed electrosprays in liquid baths with no surfactant, and we methodically study the behavior of the system for increasing surfactant concentrations. The different regimes found are then analyzed and compared with both classical and more recent experimental, theoretical and numerical studies. A very rich phenomen...

  13. Three-Dimensional Smoothed Particle Hydrodynamics Simulation for Liquid Droplet with Surface Tension

    OpenAIRE

    Terissa, Hanifa; Barecasco, Agra; Naa, Christian Fredy

    2013-01-01

    We provide a basic method of Smoothed Particle Hydrodynamics (SPH) to simulate liquid droplet with surface tension in three dimensions. Liquid droplet is a simple case for surface tension modeling. Surface tension works only on fluid surface. In SPH method, we simply apply the surface tension on the boundary particles of liquid. The particle on the 3D boundary was detected dynamically using Free-Surface Detection algorithm. The normal vector and curvature of the boundary surface were calculat...

  14. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies

    2009-11-01

    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  15. Dynamic surface tension of surfactant TA: experiments and theory.

    Science.gov (United States)

    Otis, D R; Ingenito, E P; Kamm, R D; Johnson, M

    1994-12-01

    A bubble surfactometer was used to measure the surface tension of an aqueous suspension of surfactant TA as a function of bubble area over a range of cycling rates and surfactant bulk concentrations. Results of the surface tension-interfacial area loops exhibited a rich variety of phenomena, the character of which varied systematically with frequency and bulk concentration. A model was developed to interpret and explain these data and for use in describing the dynamics of surface layers under more general circumstances. Surfactant was modeled as a single component with surface tension taken to depend on only the interfacial surfactant concentration. Two distinct mechanisms were considered for the exchange of surfactant between the bulk phase and interface. The first is described by a simple kinetic relationship for adsorption and desorption that pertains only when the interfacial concentration is below its maximum equilibrium value. The second mechanism is "squeeze-out" by which surfactant molecules are expelled from an interface compressed past a maximum packing state. The model provided good agreement with experimental measurements for cycling rates from 1 to 100 cycles/min and for bulk concentrations between 0.0073 and 7.3 mg/ml.

  16. Surface tension dominates insect flight on fluid interfaces.

    Science.gov (United States)

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air.

  17. Effects of Induced Surface Tension in Nuclear and Hadron Matter

    CERN Document Server

    Sagun, V V; Ivanytskyi, A I; Oliinychenko, D R; Mishustin, I N

    2016-01-01

    Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.

  18. Effects of Induced Surface Tension in Nuclear and Hadron Matter

    Directory of Open Access Journals (Sweden)

    Sagun V.V.

    2017-01-01

    Full Text Available Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.

  19. Comparing contact angle measurements and surface tension assessments of solid surfaces.

    Science.gov (United States)

    Cwikel, Dory; Zhao, Qi; Liu, Chen; Su, Xueju; Marmur, Abraham

    2010-10-05

    Four types of contact angles (receding, most stable, advancing, and "static") were measured by two independent laboratories for a large number of solid surfaces, spanning a large range of surface tensions. It is shown that the most stable contact angle, which is theoretically required for calculating the Young contact angle, is a practical, useful tool for wettability characterization of solid surfaces. In addition, it is shown that the experimentally measured most stable contact angle may not always be approximated by an average angle calculated from the advancing and receding contact angles. The "static" CA is shown in many cases to be very different from the most stable one. The measured contact angles were used for calculating the surface tensions of the solid samples by five methods. Meaningful differences exist among the surface tensions calculated using four previously known methods (Owens-Wendt, Wu, acid-base, and equation of state). A recently developed, Gibbsian-based correlation between interfacial tensions and individual surface tensions was used to calculate the surface tensions of the solid surfaces from the most stable contact angle of water. This calculation yielded in most cases higher values than calculated with the other four methods. On the basis of some low surface energy samples, the higher values appear to be justified.

  20. Transparent, Superhydrophobic Surface with Varied Surface Tension Responsiveness in Wettability Based on Tunable Porous Silica Structure for Gauging Liquid Surface Tension.

    Science.gov (United States)

    Wang, Yan; Zhu, Yingjie; Zhang, Chunyang; Li, Jun; Guan, Zisheng

    2017-02-01

    Any solid surface can spontaneously exhibit variational wettability toward liquids with varied surface tension (γ). However, this correspondence has seldom been proposed or used on an artificial superhydrophobic surface, which should be more remarkable and peculiar. Herein, we fabricated robust, transparent superhydrophobic surfaces utilizing acid- and base-catalyzed silica (AC- and BC-silica) particles combined with candle soot template for structural construction and the CVD process for chemical modification. Three types of porous silica structures were devised, which presented distinctive surface tension responsiveness in wettability. Interestingly, all types of surfaces (i.e., AC-, AC/BC-, and BC-silica) show high repellence to high surface tension liquid (γ > 35 mN/m), and small differences are observed. With decreasing γ of the ethanol-water mixtures (γ superhydrophobic surfaces.

  1. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  2. Effects of varying interfacial surface tension on macroscopic polymer lenses

    Science.gov (United States)

    Zimmerman, Charlotte; White, Mason; Baylor, Martha-Elizabeth

    2015-09-01

    We investigate macroscopic polymer lenses (0.5- to 2.5-cm diameter) fabricated by dropping hydrophobic photocurable resin onto the surface of various hydrophilic liquid surfaces. Due to the intermolecular forces along the interface between the two liquids, a lens shape is formed. We find that we can vary the lens geometry by changing the region over which the resin is allowed to spread and the surface tension of the substrate to produce lenses with theoretically determined focal lengths ranging from 5 to 25 mm. These effects are varied by changing the container width, substrate composition, and substrate temperature. We present data for five different variants, demonstrating that we can control the lens dimensions for polymer lens applications that require high surface quality.

  3. On the surface tension of neutron star matter

    CERN Document Server

    Rueda, Jorge A; Wu, Yuan-Bin; Xue, She-Sheng

    2013-01-01

    It has been recently shown that taking into account strong, weak, electromagnetic, and gravitational interactions, and fulfilling the global charge neutrality of the system, a transition layer will happen between the core and crust of neutron stars, at the nuclear saturation density. We use relativistic mean field theory together with the Thomas-Fermi approximation to study the detailed structure of this transition layer and calculate its surface and Coulomb energy. We find that the surface tension is proportional to a power-law function of the baryon number density in the core bulk region. We also analyze the influence of the gravitational field and the electron component on the structure of the transition layer and the value of the surface tension to compare and contrast with known phenomenological results in nuclear physics. Based on the above results we study the instability against Bohr-Wheeler surface deformations in the case of neutron stars obeying global charge neutrality. Assuming the core-crust tra...

  4. Surface tension and quasi-emulsion of cavitation bubble cloud.

    Science.gov (United States)

    Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun

    2017-03-01

    A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Surface tension of molten Al-Si alloy at temperatures ranging from 92.3 to 112.3 K

    Institute of Scientific and Technical Information of China (English)

    DOU Lei; YUAN ZhangFu; LI JianQiang; LI Jing; WANG XiaoQiang

    2008-01-01

    The surface tension of molten AlSi20 alloy has been measured by using the sessile drop method at 923-1123 K under argon atmosphere in both heating-up and cooling processes. The result shows that the surface tension of this alloy decreases as long as temperature increases. The results of surface tension and contact angles in heating-up process have differences from those obtained in cooling process, because the metal microstructures have some changes at different temperatures based on the metal genetic theory. The surface tension of molten AISi20 alloy and that of molten pure aluminum have been compared as well, and the temperature coefficient of AlSi20 alloy is slightly lower than that of Al. The result has been analyzed by the linear scanning analysis with ESEM. The concentration of silicon in most region of the bulk is lower than that of the surface and the addition of Si to pure Al decreases the surface tension of molten pure Al.

  6. Steady needle growth with 3-D anisotropic surface tension

    Institute of Scientific and Technical Information of China (English)

    Xiao-jun CHEN; Yong-qiang CHEN; Jian-pu XU; Jian-jun XU

    2008-01-01

    The effect of the anisotropic interracial en-ergy on dendritic growth has been an important sub-ject, and has preoccupied many researchers in the field of materials science and condensed matter physics. The present paper is dedicated to the study of the effect of full 3-D anisotropic Surface tension on the steady state solution of dendritic growth. We obtain the analytical form of the first order approximation solution in the reg-ular asymptotic expansion around the Ivantsov's nee-dle growth solution, which extends the steady needle growth solution of the system with isotropic surface ten-sion obtained by Xu and Yu (J. J. Xu and D. S. Yu, J. Cryst. Growth, 1998, 187: 314; J. J. Xu, Interfa-cial Wave Theory of Pattern Formation: Selection of Dendrite Growth and Viscous Fingering in a Hele-Shaw Flow, Berlin: Springer-Verlag, 1997).The solution is expanded in the general Laguerre se-ries in any finite region around the needle-tip, and it is also expanded in a power series in the far field behind the tip. Both solutions are then numerically matched in the intermediate region. Based on this global valid solution, the dependence of Peclet number Pe and the interface's morphology on the anisotropy parameter of surface ten-sion as well as other physical parameters involved are determined. On the basis of this global valid solution, we explore the effect of the anisotropy parameter on the Peclet number of growth, as well as the morphology of the interface.

  7. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    B Mathew; G A Adebayo

    2011-12-01

    We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at = 3.32 Å. It was observed that the attraction of the molecules in the liquid surface which produces a resistance to penetration decreases with temperature. This may be attributed to the greater average separation of molecules at higher temperature.

  8. Drop formation by thermal fluctuations at an ultralow surface tension.

    Science.gov (United States)

    Hennequin, Y; Aarts, D G A L; van der Wiel, J H; Wegdam, G; Eggers, J; Lekkerkerker, H N W; Bonn, Daniel

    2006-12-15

    We present experimental evidence that drop breakup is caused by thermal noise in a system with a surface tension that is more than 10(6) times smaller than that of water. We observe that at very small scales classical hydrodynamics breaks down and the characteristic signatures of pinch-off due to thermal noise are observed. Surprisingly, the noise makes the drop size distribution more uniform, by suppressing the formation of satellite droplets of the smallest sizes. The crossover between deterministic hydrodynamic motion and stochastic thermally driven motion has repercussions for our understanding of small-scale hydrodynamics, important in many problems such as micro- or nanofluidics and interfacial singularities.

  9. Experiments on buoyancy and surface tension following Galileo Galilei

    Science.gov (United States)

    Straulino, S.; Gambi, C. M. C.; Righini, A.

    2011-01-01

    We analyze passages of Galileo's writings on aspects of floating. Galileo encountered peculiar effects such as the "floating" of light objects made of dense material and the creation of large drops of water that were difficult to explain because they are related to our current understanding of surface tension. Even though Galileo could not understand the phenomenon, his proposed explanations and experiments are interesting from an educational point of view. We replicate the experiment on water and wine that was described by Galileo in his Two New Sciences.

  10. Surface tension propulsion of fungal spores by use of microdroplets

    CERN Document Server

    Noblin, Xavier; Dumais, Jacques

    2010-01-01

    Many edible mushrooms eject their spores (about 10 microns in size) at high speed (about 1 m/s) using surface tension forces in a few microseconds. Basically the coalescence of a droplet with the spore generates the necessary momentum to eject the spore. We have detailed this mechanism in \\cite{noblin2}. In this article, we give some details about the high speed movies (up to 250000 fps) of mushrooms' spores ejection attached to this submission. This video was submitted as part of the Gallery of Fluid Motion 2010 which is showcase of fluid dynamics videos.

  11. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy......, line height and distance, and temperature. Focus of the work has been on predicting the equilibrium geometries with FEM simulations using as input measured adhesive wetting angles, different adhesive line distances and height. The studied substrates are glass microscope slides, PEEK and PMMA....... The studied adhesives are DYMAX 9-20318-F, 3070, 9001 version 3.5, and Sylgard 184 PDMS....

  12. Using surface tension measurement in applications; Oberflaechenspannungsmesstechnik fuer den Prozesseinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Haberland, R.; Krause, W. [SITA Messtechnik GmbH, Gostritzer Strasse 61-63, 01217 Dresden (Germany)

    2003-07-01

    When cleaning surfaces it is crucial for the process stability that the optimum surfactant concentration is maintained. The concentration of free surfactants can be measured by determining the surface tension. SITA Messtechnik has developed an innovative sensor based on the bubble pressure method. This sensor makes it possible to continuously measure surface tension with a high reliability. With this application for monitoring cleaning baths the potential to save money arises in regard to the use of raw materials, waste disposal and the costs resulting from undiscovered production failures. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Bei der Reinigung von Oberflaechen ist das Einhalten der optimalen Tensidkonzentration fuer die Prozesssicherheit entscheidend. Die Konzentration der freien Tenside ist messbar, indem die Oberflaechenspannung erfasst wird. Die SITA Messtechnik GmbH hat einen neuartigen Sensor auf der Basis der Blasendifferenzdruckmethode entwickelt, der eine kontinuierliche Messung der Oberflaechenspannung bei hoher Standzeit ermoeglicht. Mit dessen Anwendung zum Ueberwachen von Reinigungsbaedern ergeben sich Einsparpotentiale hinsichtlich Rohstoffeinsatz, Entsorgung und Fehlerfolgekosten. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    CERN Document Server

    Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...

  14. Functional Design and Qualification of Surface Tension Propellant Tanks

    Science.gov (United States)

    Figus, C.; Haddad, D.; Ounougha, L.; Autric, J.

    2004-10-01

    During two decades, EADS Astrium has designed and qualified the surface tension device used in the propellant tanks equipping the Eurostar telecommunication satellites platforms. Recent re- orbiting phases of Eurostar E2000 satellites, have allowed to validate those designs and to graveyard the spacecraft with less than 1 kg of propellant left per tank. Moreover, with the emergence of new powerful satellites with full chemical or mixed chemical-plasma propulsion subsystems, EADS Astrium has designed a new larger and improved surface tension propellant tank. Such challenging performances require analyses, and tests in order to assess and confirm the predicted performances. The present article shows the recent development of a new enlarged Eurostar E3000 propellant tanks for Eurostar 3000 satellites and presents the main functional analyses and neutral buoyancy tests results obtained for this new propellant tank These last two years, have contributed to improve this background with the successful graveyard of the first Eurostar spacecraft with less than 1 kg of liquid propellant per tank at the end of the manoeuvre. Moreover, a new enlarged E3000 propellant tank has been designed and qualified in order to cope with the future 12 kW telecom spacecraft applications. This tank designed by EADS-ASTRIUM, is manufactured by EADS-Space transportation. This paper presents the performances and tests results obtained on this new propellant tank.

  15. The surface tension effect on viscous liquid spreading along a superhydrophobic surface

    Science.gov (United States)

    Aksenov, A. V.; Sudarikova, A. D.; Chicherin, I. S.

    2017-01-01

    Within the Stokes film approximation, unsteady plane-parallel spreading of a thin layer of a heavy viscous fluid along a horizontal superhydrophobic surface is studied. The forced spreading regimes induced by the mass supply are considered. Plane-parallel flow along the principal direction of the slip tensor of the superhydrophobic surface is studied in case that the corresponding slip tensor component is a power function of the spatial coordinate. An evolution equation for the film thickness is derived taking into account surface tension that is dependent on the spatial coordinate. The group classification problem is solved. Self-similar and invariant solutions are constructed for power and exponent time dependences on mass supply respectively at a special form of the surface tension coefficient. Surface tension is shown to have a significant influence on the character of the liquid spreading.

  16. Well-posedness for the Classical Stefan Problem and the Zero Surface Tension Limit

    Science.gov (United States)

    Hadžić, Mahir; Shkoller, Steve

    2016-11-01

    We develop a framework for a unified treatment of well-posedness for the Stefan problem with or without surface tension. In the absence of surface tension, we establish well-posedness in Sobolev spaces for the classical Stefan problem. We introduce a new velocity variable which extends the velocity of the moving free-boundary into the interior domain. The equation satisfied by this velocity is used for the analysis in place of the heat equation satisfied by the temperature. Solutions to the classical Stefan problem are then constructed as the limit of solutions to a carefully chosen sequence of approximations to the velocity equation, in which the moving free-boundary is regularized and the boundary condition is modified in a such a way as to preserve the basic nonlinear structure of the original problem. With our methodology, we simultaneously find the required stability condition for well-posedness and obtain new estimates for the regularity of the moving free-boundary. Finally, we prove that solutions of the Stefan problem with positive surface tension {σ} converge to solutions of the classical Stefan problem as {σ to 0}.

  17. On the modelling of semi-insulating GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, W.; Duderstadt, F.

    2004-07-01

    Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)

  18. Effect of surface tension on the mode selection of vertically excited surface waves in a circular cylindrical vessel

    Institute of Scientific and Technical Information of China (English)

    Jian Yong-Jun; E Xue-Quan; Zhang Jie; Meng Jun-Min

    2004-01-01

    Singular perturbation theory of two-time-scale expansions was developed in inviscid fluids to investigate patternforming, structure of the single surface standing wave, and its evolution with time in a circular cylindrical vessel subject to a vertical oscillation. A nonlinear slowly varying complex amplitude equation, which involves a cubic nonlinear term,an external excitation and the influence of surface tension, was derived from the potential flow equation. Surface tension was introduced by the boundary condition of the free surface in an ideal and incompressible fluid. The results show that when forced frequency is low, the effect of surface tension on the mode selection of surface waves is not important.However, when the forced frequency is high, the surface tension cannot be neglected. This manifests that the function of surface tension is to cause the free surface to return to its equilibrium configuration. In addition, the effect of surface tension seems to make the theoretical results much closer to experimental results.

  19. Size dependence of the surface tension of a free surface of an isotropic fluid

    Science.gov (United States)

    Burian, Sergii; Isaiev, Mykola; Termentzidis, Konstantinos; Sysoev, Vladimir; Bulavin, Leonid

    2017-06-01

    We report on the size dependence of the surface tension of a free surface of an isotropic fluid. The size dependence of the surface tension is evaluated based on the Gibbs-Tolman-Koenig-Buff equation for positive and negative values of curvatures and the Tolman lengths. For all combinations of positive and negative signs of curvature and the Tolman length, we succeed to have a continuous function, avoiding the existing discontinuity at zero curvature (flat interfaces). As an example, a water droplet in the thermodynamical equilibrium with the vapor is analyzed in detail. The size dependence of the surface tension and the Tolman length are evaluated with the use of experimental data of the International Association for the Properties of Water and Steam. The evaluated Tolman length of our approach is in good agreement with molecular dynamics and experimental data.

  20. Surface tension and reactive wetting in solder connections

    Energy Technology Data Exchange (ETDEWEB)

    Wedi, Andre; Schmitz, Guido [Institut fuer Materialphysik, Westf. Wilhelms-Universitaet, Wilhelm-Klemm-Strasse 10, 48149 Muenster (Germany)

    2011-07-01

    Wetting is an important pre-requisite of a reliable solder connection. However, it is only an indirect measure for the important specific energy of the reactive interface between solder and base metallization. In order to quantify this energy, we measured wetting angles of solder drops as well as surface tension of SnPb solders under systematic variation of composition and gaseous flux at different reflow temperatures. For the latter, we used the sessile drop method placing a solder drop on a glas substrate. From the two independent data sets, the important energy of the reactive interface is evaluated based on Young's equation. Remarkably, although both, the tension between the solder and flux and the wetting angle, reveal significant dependence on solder composition. So the adhesion energy reveals distinguished plateaus which are related to different reaction products in contact to the solder. TEM analysis and calculations of phase stabilities show that there is no Cu6Sn5 for high lead concentrations. The experiments confirm a model of reactive wetting by Eustathopoulos.

  1. Three-Dimensional Smoothed Particle Hydrodynamics Simulation for Liquid Droplet with Surface Tension

    CERN Document Server

    Terissa, Hanifa; Naa, Christian Fredy

    2013-01-01

    We provide a basic method of Smoothed Particle Hydrodynamics (SPH) to simulate liquid droplet with surface tension in three dimensions. Liquid droplet is a simple case for surface tension modeling. Surface tension works only on fluid surface. In SPH method, we simply apply the surface tension on the boundary particles of liquid. The particle on the 3D boundary was detected dynamically using Free-Surface Detection algorithm. The normal vector and curvature of the boundary surface were calculated simultaneously with 3D boundary surface reconstruction using Moving Least-Squares (MLS) method. Before the reconstruction, the coordinate system was transformed into a local coordinate system. Afterwards, the surface tension force which depends on curvature of the surface, was calculated and applied on the boundary particles of the droplet. We present the simulation result of droplet motion with gravity force. By using the basic method of SPH for fluid modeling, and a combination of 3D Free-Surface Detection algorithm ...

  2. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    Science.gov (United States)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  3. Structures and surface tensions of fluids near solid surfaces: an integral equation theory study.

    Science.gov (United States)

    Xu, Mengjin; Zhang, Chen; Du, Zhongjie; Mi, Jianguo

    2012-06-07

    In this work, integral equation theory is extended to describe the structures and surface tensions of confined fluids. To improve the accuracy of the equation, a bridge function based on the fundamental measure theory is introduced. The density profiles of the confined Lennard-Jones fluids and water are calculated, which are in good agreement with simulation data. On the basis of these density profiles, the grand potentials are then calculated using the density functional approach, and the corresponding surface tensions are predicted, which reproduce the simulation data well. In particular, the contact angles of water in contact with both hydrophilic and hydrophobic walls are evaluated.

  4. Calculation of Surface Tensions of Polar Mixtures with a Simplified Gradient Theory Model

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    Key Words: Thermodynamics, Simplified Gradient Theory, Surface Tension, Equation of state, Influence Parameter.In this work, assuming that the number densities of each component in a mixture across the interface between the coexisting vapor and liquid phases are linearly distributed, we developed...... surface tensions of 34 binary mixtures with an overall average absolute deviation of 3.46%. The results show good agreement between the predicted and experimental surface tensions. Next, the SGT model was applied to correlate surface tensions of binary mixtures containing alcohols, water or/and glycerol...

  5. Onset of initial planar instability with surface-tension anisotropy during directional solidification.

    Science.gov (United States)

    Wang, Zhijun; Wang, Jincheng; Yang, Gencang

    2009-11-01

    A simple model is presented to describe the variation of the onset of the initial planar instability with surface tension anisotropy during directional solidification. The effect of surface-tension anisotropy on the incubation time and the initial average wavelength of planar instability are predicted by the simple model quantitatively, which are also verified by phase field simulation. Investigation results reveal that surface-tension anisotropy is one of important factors in the dynamic process of planar instability. The contribution of surface-tension anisotropy to the tilting modulation is also analyzed by comparing the results from the present simple model with those from phase field simulation.

  6. Surface tension of polymer melts - experimental investigations of its effect on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    The surface tension of polymer melts is important for the bond strength of two component polymer parts through their roles in the process of wetting, adsorption and adhesion. This investigation deals with the influence of the melt surface tension and substrate surface energy on the polymer...

  7. Surface tension effects on the onset of double-diffusive convection

    Science.gov (United States)

    Chen, C. F.

    Experiments have been carried out to determine the critical thermal Rayleigh number for onset of convection in a horizontal layer of density-stratified fluid with a free surface when heated from below. Three different aqueous solutions were used: salt, glycerol, and acetic acid. The rates of change in surface tension with concentration for these three solutions are positive, nearly zero, and negative, respectively. Compared to the rigid-rigid boundaries, the critical thermal Rayleigh number was found to be larger by 11.2 percent for the salt solution and smaller by 10.0 percent for the glycerol solution. With the acetic acid solution, however, the effect of the free surface was found to be negligible.

  8. Tensioned Fabric Structures with Surface in the Form of Chen-Gackstatter

    Directory of Open Access Journals (Sweden)

    Yee Hooi Min

    2016-01-01

    Full Text Available Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and prestress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Chen-Gackstatter. Computational form-finding using nonlinear analysis method is used to determine the Chen-Gackstatter form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Chen-Gackstatter applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface.

  9. MHD-convection in a plane horizontal layer with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Liyepinya, V.R.

    1978-01-01

    The relation between critical values of the Marangoni number, the Rayleigh number, and the Hartmann number, expressed in terms of series whose convergence becomes slower with higher values of the Hartmann number, is extended to the case of thermal contact without perturbations between a horizontal layer of fluid and a solid heat conductor of finite thickness underneath. Heat transfer at the free upper boundary of this layer occurs according to Newton's law, and the boundary conditions here take into account surface tension as well as its temperature dependence. The limits of monotonic instability in a magnetic field are calculated from a numerical solution to this problem. 5 references, 1 figure, 1 table.

  10. Surface tension of molten Ni-(Cr, Co, W) alloys and segregation of elements

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; LIU Lan-xiao; YANG Ren-hui; ZHAO Hong-kai; FANG Liang; ZHANG Chi

    2008-01-01

    Surface tension of molten Ni-(Cr, Co, W) alloys was measured at the temperature of 1 773-1 873 K in an Ar+3%H2 atmosphere using an improved sessile drop method. The segregation of Cr, Co and W in alloy was calculated and analyzed using Butler's equation. The results show a good agreement between measured and calculated data. The surface tension of molten Ni-(Cr,Co, W) alloys decreases with increasing temperature. In Ni-(Cr, Co, W) alloys, the element with lower surface tension tends to segregate on the surface of molten alloy while that with higher surface tension tends to segregate inside of the molten alloy. The larger the differences in surface tension, atom radius and electron configuration between solvent and solute are, the more significant the segregation is. As a result, Ni segregates onto the surface and Co and W segregate inside the alloys.

  11. Survismeter, 3-in-1 Instrument for Simultaneous Measurements of Surface Tension, Inter Facial Tension (IFT and Viscosity

    Directory of Open Access Journals (Sweden)

    Man Singh

    2007-12-01

    Full Text Available The article presents Inter Facial Tension (IFT (ift, N m-1 of benzene-water; surface tensions (, N m-1 and viscosities (, N s m-2 of ethanol, glycerol, ethyl acetate, n-hexane, diethyl ether, chloroform, benzene, carbon tetrachloride [CCl4], formic acid, measured with Survismeter with ± 1.1x10-5 N m-1, ± 1.3x10-5 N m-1 and ± 1.1x10-6 N s m-2 accuracies respectively. Also the surface tension and viscosities of carboxymethylcellulose (CMC, dodecylbenzenesulfonicacid (DBSA and tetramethylammoniumhydroxide (TMAH in aqueous media have been measured with survismeter at 298.15 K. IFT of water and benzene interface was determined with survismeter. The survismeter saves resources, user’s efforts and infrastructure more than 80 % as compared to usual methods and prevents 80% disposal of materials to environment. It very accurately measures surface tension and IFT of volatile and poisonous liquids at any desired temperatures as liquids are jacked (jacketed in closed glass made bulbs.

  12. Mapping surface tension induced menisci with application to tensiometry and refractometry.

    Science.gov (United States)

    Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve

    2015-07-28

    In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.

  13. Prediction of viscosities and surface tensions of fuels using a new corresponding states model

    DEFF Research Database (Denmark)

    Queimada, A.J.; Rolo, L.I.; Caco, A.I.

    2006-01-01

    While some properties of diesels are cheap, easy and fast to measure, such as densities, others such as surface tensions and viscosities are expensive and time consuming. A new approach that uses some basic information such as densities to predict viscosities and surface tensions is here proposed...

  14. The influence of gradients in surface tension on the mass transfer in gas liquid systems

    NARCIS (Netherlands)

    Klooster, Hubertus Willem van der

    1978-01-01

    In this investigation attention has been paid to the influence of surface tensions gradients on the performance of a packed column. From earlier investigations it is known that surface tensions have a considerable influence on the magnitude of the effective interfacial area. The work presented here

  15. Criticality and surface tension in rotating horizon thermodynamics

    Science.gov (United States)

    Hansen, Devin; Kubizňák, David; Mann, Robert B.

    2016-08-01

    We study a modified horizon thermodynamics and the associated criticality for rotating black hole spacetimes. Namely, we show that under a virtual displacement of the black hole horizon accompanied by an independent variation of the rotation parameter, the radial Einstein equation takes a form of a ‘cohomogeneity two’ horizon first law, δ E=Tδ S+{{Ω }}δ J-σ δ A, where E and J are the horizon energy (an analogue of the Misner-Sharp mass) and the horizon angular momentum, Ω is the horizon angular velocity, A is the horizon area, and σ is the surface tension induced by the matter fields. For fixed angular momentum, the above equation simplifies and the more familiar (cohomogeneity one) horizon first law δ E=Tδ S-Pδ V is obtained, where P is the pressure of matter fields and V is the horizon volume. A universal equation of state is obtained in each case and the corresponding critical behavior is studied.

  16. Criticality and Surface Tension in Rotating Horizon Thermodynamics

    CERN Document Server

    Hansen, Devin; Mann, Robert B

    2016-01-01

    We study a modified horizon thermodynamics and the associated criticality for rotating black hole spacetimes. Namely, we show that under a virtual displacement of the black hole horizon accompanied by an independent variation of the rotation parameter, the radial Einstein equation takes a form of a "cohomogeneity two" horizon first law, $dE=TdS+\\Omega dJ-\\sigma dA$, where $E$ and $J$ are the horizon energy (an analogue of the Misner-Sharp mass) and the horizon angular momentum, $\\Omega$ is the horizon angular velocity, $A$ is the horizon area, and $\\sigma$ is the surface tension induced by the matter fields. For fixed angular momentum, the above equation simplifies and the more familiar (cohomogeneity one) horizon first law $dE=TdS-PdV$ is obtained, where $P$ is the pressure of matter fields and $V$ is the horizon volume. A universal equation of state is obtained in each case and the corresponding critical behavior is studied.

  17. Effects of alternative electromagnetic field on surface tension and filling ability of molten metal

    Institute of Scientific and Technical Information of China (English)

    HE Hong-liang; KANG Fu-wei; WANG Li-ping

    2005-01-01

    Surface tension and filling ability of molten metal play an important role on the shaping of the molten metal. The surface tension was calculated from wetting angles of the molten metal by the sessile drop method. The specimen for filling ability was designed and the filling ability experiments under the alternative electromagnetic field were performed. The results show that the intensity and frequency of the alternative electromagnetic field have significant effects on the surface tension of the molten metal. The surface tension of Al-6%Si alloy decreases with increasing the intensity of the electromagnetic field. For pure Sn, the surface tension decreases gradually when the frequency of electromagnetic field is reduced. The filling ability is improved by applying the alternative electromagnetic field.

  18. Thermodynamic Modeling of Surface Tension of Aqueous Electrolyte Solution by Competitive Adsorption Model

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Kamali

    2015-01-01

    Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.

  19. Molecular modelling and simulation of the surface tension of real quadrupolar fluids

    CERN Document Server

    Werth, Stephan; Klein, Peter; Küfer, Karl-Heinz; Horsch, Martin; Hasse, Hans

    2014-01-01

    Molecular modelling and simulation of the surface tension of fluids with force fields is discussed. 29 real fluids are studied, including nitrogen, oxygen, carbon dioxide, carbon monoxide, fluorine, chlorine, bromine, iodine, ethane, ethylene, acetylene, propyne, propylene, propadiene, carbon disulfide, sulfur hexafluoride, and many refrigerants. The fluids are represented by two-centre Lennard-Jones plus point quadrupole models from the literature. These models were adjusted only to experimental data of the vapour pressure and saturated liquid density so that the results for the surface tension are predictions. The deviations between the predictions and experimental data for the surface tension are of the order of 20 percent. The surface tension is usually overestimated by the models. For further improvements, data on the surface tension can be included in the model development. A suitable strategy for this is multi-criteria optimization based on Pareto sets. This is demonstrated using the model for carbon d...

  20. Surface tension of polymer melts - experimental investigations of its effect on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    The surface tension of polymer melts is important for the bond strength of two component polymer parts through their roles in the process of wetting, adsorption and adhesion. This investigation deals with the influence of the melt surface tension and substrate surface energy on the polymer......-polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEl, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies....... The results and discussion presented in this paper reflect the temperature dependent behaviours of the surface tension and surface energy of polymers and their effects on the polymer-polymer bond strength....

  1. Surface tension of polymer melts - experimental investigations of its effects on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Jankova Atanasova, Katja; Hansen, Hans Nørgaard

    The surface tension of polymer melts is important for the bond strength of two component polymer parts through their roles in the process of wetting, adsorption and adhesion. This investigation deals with the influence of the melt surface tension and substrate surface energy on the polymer......-polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEI, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies....... The results and discussion presented in this paper reflect the temperature dependent behaviours of the surface tension and surface energy of polymers and their effects on the polymer-polymer bond strength....

  2. Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer

    Science.gov (United States)

    Dilmohamud, B. A.; Seeneevassen, J.; Rughooputh, S. D. D. V.; Ramasami, P.

    2005-11-01

    An apparatus was devised using the Traube Stalagmometer for the determination of the surface tension of the alcohols methanol, ethanol, propan-1-ol and butan-1-ol. Measurements were made under atmospheric pressure at temperatures between 288.15 K and 313.15 K. The surface tension values were correlated with temperature and surface thermodynamic parameters, namely surface entropy and surface enthalpy, were also calculated. The results obtained are in agreement with the literature and they are promising for the use of this low cost arrangement for accurate measurement of surface tension. Surface tension values were obtained with a maximum error of 0.5 mN m-1 and a maximum standard deviation of 0.8 mN m-1. We recommend this arrangement for students in advanced university courses and it can also be used for research work.

  3. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  4. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid

    KAUST Repository

    Schroeder, Craig

    2012-02-01

    We present a method for applying semi-implicit forces on a Lagrangian mesh to an Eulerian discretization of the Navier Stokes equations in a way that produces a sparse symmetric positive definite system. The resulting method has semi-implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension as a semi-implicit Lagrangian force, the resulting method benefits from improved stability and the ability to take larger time steps. The resulting discretization is also able to maintain parasitic currents at low levels. © 2011.

  5. Type the title of your paper here Effect of the focused light from the xenon arc lamp on the surface tension of the molten enamel

    Science.gov (United States)

    Aleutdinov, A. D.; Ghyngazov, S. A.; Mylnikova, T. S.; Aleutdinov, K. A.

    2016-02-01

    The effect of exposure to the focused light from the xenon arc lamp on the surface tension of molten enamels was studied with a designed light beam setup as compared to that observed in conventional heating in a resistance furnace. The objects under investigation were enamels No. 261, UES-200 and UES-300. The power density of the light beam was varied in the range of (30-80) W/cm2. When exposed to light, the surface tension is shown to be an order of magnitude lower than that obtained in conventional furnace heating.

  6. Effect of Viscosity on the GTA Welds Bead Penetration in Relation with Surface Tension Elements

    Directory of Open Access Journals (Sweden)

    K. Touileb

    2016-04-01

    Full Text Available The aim of this paper is to study the effect of the viscous dissipation on the surface tension and its role on the shape of weld pool. Experiments were conducted on four different casts of ferritic stainless steel with different content in the sulfur and titanium. The results show in particular that the presence of titanium solid compounds affects the role of sulfur as surfactant element. Titanium in the presence of carbon and oxygen, titanium forms solid compounds which affect the Marangoni convection due to the sulfur element in the weld pool. The viscous dissipation due to these compounds alters the flow rate of the molten metal. We expect that the viscosity of metal liquid was altered by these solid compounds. The viscous dissipation due to these compounds contributes to heat the molten metal leading to larger weld bead.

  7. An Unusual Variation of Surface Tension with Concentration of.Mixed Cationic-anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    肖进新; 暴艳霞

    2001-01-01

    There are two platforms in the surface tension vs. concentration curve (γ-lgC curve) of cationic-anionic surfactant mixtures. The first platform is the same as that of common surfactant solution, and the cross point is the CMC. After the CMC, the mixtures form precipitate. At higher concentration, the mixtures form homogeneous sloution.When the mixtures form homogeneous solution at high concentration. surface tension increases with concentration, the becomes constant.So the γ-lgC curve exhibits the second platform. The surface tension at the second platform increases by increasing molar ratio of two surfactants and polar group size of surfactants, and decreases with adding inorganic salts.

  8. The role of surface tension on the elastic decohesion of polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Hassager, Ole

    2001-01-01

    We simulate the rapid extension of polymeric filaments between parallel plates with special attention to the role of surface tension in the symmetry breaking aximuthal instability that may occur near the end plates. The instability is viewed as a precursor to the eventual elastic decohesion...... of the filament from the plate. It is demonstrated that high Deborah numbers are needed to initiate the instability and that surface tension provides a wavenumber selection. Moreover, the surface tension has a stabilising effect on the end plate instability....

  9. A surface tension based method for measuring oil dispersant concentration in seawater.

    Science.gov (United States)

    Cai, Zhengqing; Gong, Yanyan; Liu, Wen; Fu, Jie; O'Reilly, S E; Hao, Xiaodi; Zhao, Dongye

    2016-08-15

    This work developed a new method to determine concentration of Corexit EC9500A, and likely other oil dispersants, in seawater. Based on the principle that oil dispersants decrease surface tension, a linear correlation was established between the dispersant concentration and surface tension. Thus, the dispersant concentration can be determined by measuring surface tension. The method can accurately analyze Corexit EC9500A in the concentration range of 0.5-23.5mg/L. Minor changes in solution salinity (oil dispersants in water/seawater, which has been desired by the oil spill research community and industries.

  10. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    Science.gov (United States)

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  11. [Determination of critical surface tension--a comparison of 2 methods].

    Science.gov (United States)

    Lippold, B C; Ohm, A

    1988-03-01

    Two methods for the determination of the critical surface tension (gamma c) of pharmaceutical powders are compared: the so called "sinking-technique", which works by measuring the complete sinking of powders in liquids of varying surface tension and the determination of the critical surface tension by measuring the contact angle in dependence on the surface tension of wetting solvent/water-mixtures by means of the sessile drop-technique. The simple sinking-technique gives gamma c-values which only show a moderate degree of agreement with those determined by the sessile drop-technique. Thus the values determined by the sinking-technique are usually 1-3 mN/m higher than those determined by the sessile drop-technique.

  12. Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets

    National Research Council Canada - National Science Library

    Ollila, O H Samuli; Lamberg, Antti; Lehtivaara, Maria; Koivuniemi, Artturi; Vattulainen, Ilpo

    2012-01-01

    .... Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface...

  13. A Surface Tension Model for Liquid Mixtures Based on NRTL Equation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new equation for predicting surface tension is proposed based on the thermodynamic definition of surface tension and the expression of the Gibbs free energy of the system. Using the NRTL equation to represent the excess Gibbs free energy, a two-parameter surface tension equation is derived. The feasibility of the new equation has been tested in terms of 124 binary and 16 multicomponent systems(13-ternary and 3-quaternary) with absolute relative deviations of 0.59% and 1.55% respectively. This model is also predictive for the temperature dependence of surface tension of liquid mixtures. It is shown that, with good accuracy, this equation is simple and reliable for practical use.

  14. Molecular dynamics simulations of the surface tension of oxygen-supersaturated water

    Directory of Open Access Journals (Sweden)

    S. Jain

    2017-04-01

    Full Text Available In this work, non-reactive molecular dynamic simulations were conducted to determine the surface tension of water as a function of the concentration of the dissolved gaseous molecules (O2, which would in turn help to predict the pressure inside the nanobubbles under supersaturation conditions. Knowing the bubble pressure is a prerequisite for understanding the mechanisms behind the spontaneous combustion of the H2/O2 gases inside the nanobubbles. First, the surface tension of pure water was determined using the planar interface method and the Irving and Kirkwood formula. Next, the surface tension of water containing four different supersaturation concentrations (S of O2 gas molecules was computed considering the curved interface of a nanobubble. The surface tension of water was found to decrease with an increase in the supersaturation ratio or the concentration of the dissolved O2 gas molecules.

  15. Computing masses and surface tension from effective transfer matrices

    CERN Document Server

    Hasenbusch, M; Pinn, K

    1994-01-01

    We propose an effective transfer-matrix method that allows a measurement of tunnelling correlation lengths that are orders of magnitude larger than the lattice extension. Combining this method with a particularly efficient implementation of the multimagnetical algorithm we were able to determine the interface tension of the 3D Ising model close to criticality with a relative error of less than 1 per cent.

  16. Critical-point analysis of the liquid-vapor interfacial surface tension

    Science.gov (United States)

    Salvino, R. E.

    1990-01-01

    The interfacial surface tension of the liquid-vapor system is analyzed near the critical point in a manner similar to bulk thermodynamic critical-point analyses. This is accomplished by a critical-point analysis of the single-phase hard-wall surface tension. Both a Landau expansion and a scaling theory equation of state are investigated. Some general exponent relations are derived and, in addition, some thermodynamically defined correlation lengths are discussed.

  17. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species.

    Science.gov (United States)

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T; Mussone, Paolo G

    2011-04-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus aucuparia over 3 months. We measured the instantaneous surface tension and followed changes over a period of 0.5-5 h using the pendant drop technique. In all three species the instantaneous surface tension was equal to or within a few percent of that of pure water. Further, in B. papyrifera and S. aucuparia the change over time following drop establishment, although significant, was very small. In P. tremuloides, however, there was a steep decline in surface tension over time that leveled off towards values 21-27% lower than that of pure water. This indicated the presence of surfactants. The values were lower for thinner distal branch segments than for proximal ones closer to the trunk. In some species it appears valid to assume that the surface tension of xylem sap is equal to that of water. However, in branch segments of P. tremuloides close to the terminal bud and hence potentially in other species as well, it may be necessary to take into account the presence of surfactants that reduce the surface tension over time.

  18. Surface tension of nitric oxide and its binary mixtures with krypton, methane, and ethene

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Santos Mendonca, A.F.S. dos; Saramago, B.J.V.; Soares, V.A.M. [Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural

    1997-05-15

    The surface tension of three binary liquid mixtures of NO with Kr, CH{sub 4}, and C{sub 2}H{sub 4} has been determined as a function of composition in the temperature range 102.0 to 119.0 K. These measurements are a contribution to the study of binary liquid mixtures in which one component is unassociated while the molecules of the other can associate between themselves. Nitric oxide is the simplest molecule capable of forming dimers, but not larger aggregates. This results in the surface tension of liquid nitric oxide having a strong temperature dependence: when the temperature increases the degree of dimerization decreases, contributing to a larger decrease of the surface tension. The surface tension of NO mixtures shows strong deviations from ideality. The mixtures containing Kr and CH{sub 4} exhibit negative deviations, while for the NO + C{sub 2}H{sub 4} system the surface tension shows a complex dependence on the composition. This strong departure from ideality had already been found for the bulk properties of these three systems. The surface tension of the CH{sub 4} + Kr system, already well characterized in the literature, was also measured to test the equipment.

  19. Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae.

    Science.gov (United States)

    Xie, Wei-Hua; Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao

    2014-01-01

    Surface wrinkling of mucosae is crucial for the biological functions of many living tissues. In this paper, we investigate the instability of a cylindrical tube consisting of a mucosal layer and a submucosal layer. Our attention is focused on the effects of internal pressure and surface tension on the critical condition and mode number of surface wrinkling induced by tissue growth. It is found that the internal pressure plays a stabilizing role but basically has no effect on the critical mode number. Surface tension also stabilizes the system and reduces the critical mode number of surface patterns. Besides, the thinner the mucosal layer, the more significant the effect of surface tension. This work may help gain insights into the surface wrinkling and morphological evolution of such tubular organs as airways and esophagi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Surface Tension, Surface Stiffness, and Surface Width of the 3-dimensional Ising Model on a Cubic Lattice

    CERN Document Server

    Hasenbusch, M.; Hasenbusch, Martin; Pinn, Klaus

    1992-01-01

    We compute properties of the interface of the 3-dimensional Ising model for a wide range of temperatures and for interface extensions up to 64 by 64. The interface tension sigma is obtained by integrating the surface energy density over the inverse temperature beta. The surface stiffness coefficient kappa is determined. We also study universal quantities like xi^2 sigma and xi^2 kappa. The behavior of the interfacial width on lattices up to 512 times 512 times 27 is also investigated.

  1. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.

    Science.gov (United States)

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-03-07

    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.

  2. Quantification of surface tension and internal pressure generated by single mitotic cells.

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A; Jülicher, Frank; Müller, Daniel J; Helenius, Jonne

    2014-08-29

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.

  3. Prediction of surface and interfacial tension based on thermodynamic data and CALPHAD approach

    Institute of Scientific and Technical Information of China (English)

    QIAO Zhiyu; CAO Zhanmin; Tanaka Toshihiro

    2006-01-01

    In this article, following a brief introduction concerning experimental measurements of surface and interfacial tensions, methods for calculating surface tension and surface segregation for binary, ternary, and multicomponent high-temperature melts based on Bulter's original treatment [1 ] and on available physical properties and thermodynamic data, especially excess Gibbs free energies of bulk phase and surface phase versus temperature obtained from thermodynamic databases using the calculation of phase diagram (CALPHAD) approach, with special attention to the model parameter β, have been described. In addition, the geometric models can be extended to predict surface tensions of multicom ponent systems from those of sub-binary systems. For illustration, some calculated examples, including Pb-free soldering systems and phase-diagram evaluation of binary alloys in nanoparticle systems are given. On the basis of surface tensions of high-temperature melts, interfacial tensions between liquid alloy and molten slag as well as molten slag and molten matter can be calculated using the Girifalco-Good equation [2]. Modifications are suggested in the Nishizawa's model [3] for estimation of interfacial tension in liquid metal (A)/ceramics (MX) systems so that the calculations can be carried out based on the sublattice model and thermodynamic data, without deliberately differentiating the phase of MX at high temperature. Finally, the derivation of an approximate expression for predicting interfacial tension between the high-temperature multicomponent melts, employing Becket's model [4] in conjunction with Bulter's equation and interfacial tension data of the simple systems is described, and some examples concerning pyrometallurgical systems are given for better understanding.

  4. Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory

    CERN Document Server

    Markovich, Tomer; Podgornik, Rudi

    2016-01-01

    We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.

  5. A novel optimal sensitivity design scheme for yarn tension sensor using surface acoustic wave device.

    Science.gov (United States)

    Lei, Bingbing; Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Haoxin

    2014-08-01

    In this paper, we propose a novel optimal sensitivity design scheme for the yarn tension sensor using surface acoustic wave (SAW) device. In order to obtain the best sensitivity, the regression model between the size of the SAW yarn tension sensor substrate and the sensitivity of the SAW yarn tension sensor was established using the least square method. The model was validated too. Through analyzing the correspondence between the regression function monotonicity and its partial derivative sign, the effect of the SAW yarn tension sensor substrate size on the sensitivity of the SAW yarn tension sensor was investigated. Based on the regression model, a linear programming model was established to gain the optimal sensitivity of the SAW yarn tension sensor. The linear programming result shows that the maximum sensitivity will be achieved when the SAW yarn tension sensor substrate length is equal to 15 mm and its width is equal to 3mm within a fixed interval of the substrate size. An experiment of SAW yarn tension sensor about 15 mm long and 3mm wide was presented. Experimental results show that the maximum sensitivity 1982.39 Hz/g was accomplished, which confirms that the optimal sensitivity design scheme is useful and effective. Copyright © 2014. Published by Elsevier B.V.

  6. Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.A.; Chien, P.S.J.

    1982-10-01

    Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups.

  7. Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.A.; Chien, P.S.J.

    1982-10-01

    Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups.

  8. Surface Tension of Acid Solutions: Fluctuations beyond the Nonlinear Poisson-Boltzmann Theory.

    Science.gov (United States)

    Markovich, Tomer; Andelman, David; Podgornik, Rudi

    2017-01-10

    We extend our previous study of surface tension of ionic solutions and apply it to acids (and salts) with strong ion-surface interactions, as described by a single adhesivity parameter for the ionic species interacting with the interface. We derive the appropriate nonlinear boundary condition with an effective surface charge due to the adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero loop (mean field) corresponds of the full nonlinear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension and the one-loop contribution gives a generalization of the Onsager-Samaras result. Adhesivity significantly affects both contributions to the surface tension, as can be seen from the dependence of surface tension on salt concentration for strongly absorbing ions. Comparison with available experimental data on a wide range of different acids and salts allows the fitting of the adhesivity parameter. In addition, it identifies the regime(s) where the hypotheses on which the theory is based are outside their range of validity.

  9. Surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardana, U.R.; Christian, S.D.; Tucker, E.E.; Taylor, R.W.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))

    1993-09-01

    A new method has been developed for determining binding constants of complexes of cyclodextrins with surface-active compounds, including water-soluble ionic surfactants. The technique requires measuring the change in surface tension caused by addition of a cyclodextrin (CD) to aqueous solutions of the surfactant; the experimental results lead directly to inferred values of the thermodynamic activity of the surfactant. Surface tension results are reported for three different surfactants sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and cetyltrimethylammonium bromide (CTAB) in the presence and in the absence of added [beta]-CD. Data for CPC have been obtained at surfactant concentrations below and above the critical micelle concentration. Correlations between surface tension and surfactant activity are expressed by the Szyszkowski equation, which subsumes the Langmuir adsorption model and the Gibbs equation. It is observed that the surface tension increases monotonically as [beta]-cyclodextrin is added to ionic surfactant solutions. At concentrations of CD well in excess of the surfactant concentration, the surface tension approaches that of pure water, indicating that neither the surfactant-CD complexes nor CD itself are surface active. Binding constants are inferred from a model that incorporates the parameters of the Szyszkowski equation and mass action constants relating to the formation of micelles from monomers of the surfactant and the counterion. Evidence is given that two molecules of CD can complex the C-16 hydrocarbon chain of the cetyl surfactants. 30 refs., 5 figs., 1 tab.

  10. Experimental evaluation of apparent tissue surface tension based on the exact solution of the Laplace equation

    Science.gov (United States)

    Norotte, C.; Marga, F.; Neagu, A.; Kosztin, I.; Forgacs, G.

    2008-02-01

    The notion of apparent tissue surface tension offered a systematic way to interpret certain morphogenetic processes in early development. It also allowed deducing quantitative information on cellular and molecular parameters that is otherwise difficult to obtain. To accurately determine such tensions we combined novel experiments with the exact solution of the Laplace equation for the profile of a liquid drop under the employed experimental conditions and used the exact solution to evaluate data collected on tissues. Our results confirm that tissues composed of adhesive and motile cells indeed can be characterized in terms of well-defined apparent surface tension. Our experimental technique presents a way to measure liquid interfacial tensions under conditions when known methods fail.

  11. On the measurement of surface tension in binders used for moulding sands

    Directory of Open Access Journals (Sweden)

    B. Hutera

    2008-07-01

    Full Text Available The surface tension of foundry binders is a very important parameter affecting the properties of a sand-binder system. Combined with other parameters, its value determines an outcome of the process of moulding sand preparation and the mechanical properties of the ready moulding composition. The problem of how to measure the surface tension of binders used in preparation of moulding sands is discussed only occasionally. Indirectly, the surface tension is characterised by the value of a contact angle, but it never means that these two parameters can be considered identical. Numerous methods are available and used at present to measure the surface tension, among others, the capillary rise method, the spinning drop method, the sessile drop method, the pendant drop method, the method of pulled out ring (or plate, or frame. There is also a rich variety of devices offered with different measuring methods. The devices are modern and represent a high level of the technical skill and art. Unfortunately, also their price is high. It is, however, possible to obtain the reliable results of the surface tension measurement using relatively simple methods, viz. the stalagmometric method and the capillary rise method. What is necessary are proper conditions of the measurement, directly related with the specific properties of binders. The present paper gives examples of the results obtained during measurement of the surface tension of some selected binders. Attention was drawn to the methods of taking measurements, and the obtained results were discussed and analysed. The possibilities of detemining the surface tension of the examined binders from the results of the contact angle measurements using the “sessile drop” and “pendant drop” methods were outlined.

  12. Effect of Dynamic Surface Tension on Droplet Formation of Surfactant Solution Injected from a Capillary Tube

    OpenAIRE

    山本, 剛宏; 加藤, 有樹; 山下, 敦史; Takehiro, YAMAMOTO; Yuki, Kato; Atsushi, Yamashita; 阪大院工; Osaka University

    2008-01-01

    Effects of dynamic surface tension on the droplet formation of surfactant solutions were studied. Aqueous solutions of CTAB at several surfactant concentrations were used as test fluids. A droplet formed when a surfactant solution was injected from a capillary tube was investigated and the relation between the droplet diameter and the injection velocity was measured. The diameter increased with increasing the velocity at relatively low velocities because the dynamic tension also increased. Ho...

  13. Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature.

    Science.gov (United States)

    Karapetsas, George; Sahu, Kirti Chandra; Sefiane, Khellil; Matar, Omar K

    2014-04-22

    We study the thermocapillary-driven spreading of a droplet on a nonuniformly heated substrate for fluids associated with a non-monotonic dependence of the surface tension on temperature. We use lubrication theory to derive an evolution equation for the interface that accounts for capillarity and thermocapillarity. The contact line singularity is relieved by using a slip model and a Cox-Voinov relation; the latter features equilibrium contact angles that vary depending on the substrate wettability, which, in turn, is linked to the local temperature. We simulate the spreading of droplets of fluids whose surface tension-temperature curves exhibit a turning point. For cases wherein these turning points correspond to minima, and when these minima are located within the droplet, then thermocapillary stresses drive rapid spreading away from the minima. This gives rise to a significant acceleration of the spreading whose characteristics resemble those associated with the "superspreading" of droplets on hydrophobic substrates. No such behavior is observed for cases in which the turning point corresponds to a surface tension maximum.

  14. Surface Tensions of Ionic Liquids: Non-Regular Trend Along the Number of Cyano Groups

    Science.gov (United States)

    Almeida, Hugo F. D.; Carvalho, Pedro J.; Kurnia, Kiki A.; Lopes-da-Silva, José A.; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of –CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15 to 343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN]-, [N(CN)2]−, [C(CN)3]− and [B(CN)4]-anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2]- > [SCN]- > [C(CN)3]- > [B(CN)4]-. Therefore, the surface tension of this homologous series does not decrease with the increase of the number of –CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS). PMID:27642224

  15. Surface tension of water and acid gases from Monte Carlo simulations.

    Science.gov (United States)

    Ghoufi, A; Goujon, F; Lachet, V; Malfreyt, P

    2008-04-21

    We report direct Monte Carlo (MC) simulations on the liquid-vapor interfaces of pure water, carbon dioxide, and hydrogen sulfide. In the case of water, the recent TIP4P/2005 potential model used with the MC method is shown to reproduce the experimental surface tension and to accurately describe the coexistence curves. The agreement with experiments is also excellent for CO(2) and H(2)S with standard nonpolarizable models. The surface tensions are calculated by using the mechanical and the thermodynamic definitions via profiles along the direction normal to the surface. We also discuss the different contributions to the surface tension due to the repulsion-dispersion and electrostatic interactions. The different profiles of these contributions are proposed in the case of water.

  16. Surface tension of expanded slag from steel manufacturing in electrical furnace

    Directory of Open Access Journals (Sweden)

    J. Łabaj

    2011-07-01

    Full Text Available In the article a research on the surface tension of slag was conducted from the process of obtaining steel in the electric furnace. Melting in the graphite melting crucible caused the slag to foam. The measurement of the surface tension is being conducted with method of rejection. They make the measurement of maximum power needed for the liquid to reject the working element of the apparatus from the surface. The research was conducted in the temperature of 1 673 – 1 723 K. The results of the measurements allowed to determine the surface tension of slag, which in the analysed scope of the temperature is being changed from 454 to 345 mN•m-1.

  17. Ternary Free Energy Lattice Boltzmann Model with Tunable Surface Tensions and Contact Angles

    CERN Document Server

    Semprebon, Ciro; Kusumaatmaja, Halim

    2015-01-01

    We present a new ternary free energy lattice Boltzmann model. The distinguishing feature of our model is that we are able to analytically derive and independently vary all fluid-fluid surface tensions and the solid surface contact angles. We carry out a number of benchmark tests: (i) double emulsions and liquid lenses to validate the surface tensions, (ii) ternary fluids in contact with a square well to compare the contact angles against analytical predictions, and (iii) ternary phase separation to verify that the multicomponent fluid dynamics is accurately captured. Additionally we also describe how the model here presented here can be extended to include an arbitrary number of fluid components.

  18. Effect of concentration and temperature on surface tension of sodium hyaluronate saline solutions.

    Science.gov (United States)

    Ribeiro, Walkiria; Mata, José Luis; Saramago, Benilde

    2007-06-19

    The effect of concentration and temperature on the surface tension of sodium hyaluronate (NaHA) saline solutions was investigated using the technique of the shape of pendant drops. The decay rate of the surface tension with the increase of NaHA concentration was well-described by the empirical Hua-Rosen equation. Adsorption at the air-liquid interface was estimated using the Gibbs equation. The temperature dependence of a dilute solution and a semidilute entangled solution was numerically fitted with a second-order polynomial equation. The surface behavior of the NaHA saline solutions was interpreted in terms of their known viscoelastic properties.

  19. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  20. Dynamic calcium requirements for activation of rabbit papillary muscle calculated from tension-independent heat.

    Science.gov (United States)

    Blanchard, E M; Mulieri, L A; Alpert, N R

    1990-04-03

    The heat generated by right ventricular papillary muscles of rabbits was measured after adenosine triphosphate (ATP) splitting by the contractile proteins was chemically inhibited. This tension-independent heat (TIH) (1 mJ/g wet weight) was used to calculate the total calcium (Ca) cycled in a muscle twitch by assuming that 87% of TIH was due to Ca2+ transport by the sarcoplasmic reticulum with a coupling ratio of 2 Ca2+/ATP split; the enthalpy of creatine phosphate hydrolysis buffering ATP was taken as -34 KJ/mol. The estimated Ca turnover per muscle twitch at 21 degrees C, 0.2 Hz pacing rate, and 2.5 mM Ca in the Krebs solution was approximately equal to 50 nmol/g wet weight. There was a tight positive correlation between TIH and mechanical activation during steady-state measurements but no correlation during the sharp increase in mechanical activation (treppe) when stimulation was resumed after a rest period. It is suggested that while total Ca cycling remains unchanged during the initial period of tension treppe, the free Ca2+ transient and mechanical activation increase sharply due to resaturation of high affinity Ca2+ buffers, other than troponin C, depleted of Ca2+ during the rest period.

  1. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  2. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Directory of Open Access Journals (Sweden)

    A. N. Schwier

    2013-01-01

    Full Text Available Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as cloud condensation nuclei (CCN ability. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2–6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well-described by a weighted Szyszkowski–Langmuir (S–L model which was first presented by Henning et al. (2005. Two approaches for modeling the effects of salt were tested: (1 the Tuckermann approach (an extension of the Henning model with an additional explicit salt term, and (2 a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2 for surface tension modeling because the Henning model (using data obtained from organic-inorganic systems and Tuckermann approach provide similar modeling fits and goodness of fit (χ2 values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  3. Line tension and its influence on droplets and particles at surfaces

    Science.gov (United States)

    Law, Bruce M.; McBride, Sean P.; Wang, Jiang Yong; Wi, Haeng Sub; Paneru, Govind; Betelu, Santigo; Ushijima, Baku; Takata, Youichi; Flanders, Bret; Bresme, Fernando; Matsubara, Hiroki; Takiue, Takanori; Aratono, Makoto

    2017-02-01

    In this review we examine the influence of the line tension τ on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution τatom (∼1 nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |τvdW| ∼ 1-100 pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution τgrav ∼ +1-10 μN. τgrav is always positive, whereas, τvdW can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review.

  4. Surface-tension phenomena in organismal biology: an introduction to the symposium.

    Science.gov (United States)

    Bourouiba, Lydia; Hu, David L; Levy, Rachel

    2014-12-01

    Flows driven by surface tension are both ubiquitous and diverse, involving the drinking of birds and bees, the flow of xylem in plants, the impact of raindrops on animals, respiration in humans, and the transmission of diseases in plants and animals, including humans. The fundamental physical principles underlying such flows provide a unifying framework to interpret the adaptations of the microorganisms, animals, and plants that rely upon them. The symposium on "Surface-Tension Phenomena in Organismal Biology" assembled an interdisciplinary group of researchers to address a large spectrum of topics, all articulated around the role of surface tension in shaping biology, health, and ecology. The contributions to the symposium and the papers in this issue are meant to be a starting point for novices to familiarize themselves with the fundamentals of flows driven by surface tension; to understand how they can play a governing role in many settings in organismal biology; and how such understanding of nature's use of surface tension can, in turn, inspire humans to innovate.

  5. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of interface dynamics

    CERN Document Server

    Li, Q

    2013-01-01

    In this paper, we aim to address an important issue about the pseudopotential lattice Boltzmann (LB) model, which has attracted much attention as a mesoscopic model for simulating interfacial dynamics of complex fluids, but suffers from the problem that the surface tension cannot be tuned independently of the density ratio. In the literature, a multi-range potential was devised to adjust the surface tension [Sbragaglia et al., Phys. Rev. E, 2007, 75, 026702; Sbragaglia et al. Soft Matter, 2012, 8, 10773]. However, this approach was found to be unable to keep the density ratio unchanged when the surface tension is adjusted. An alternative approach is therefore proposed in the present work. The basic strategy is to add a new source term to the LB equation so as to tune the surface tension of the pseudopotential LB model. The proposed approach can guarantee that the adjustment of the surface tension does not affect the mechanical stability condition of the pseudopotential LB model, and thus provides a separate c...

  6. Modeling phase distribution of water-soluble organics in aqueous solutions using surface tension data

    Science.gov (United States)

    Cline, B.; Hiatt, J.; Aumann, E.; Cabrera, J.; Tabazadeh, A.

    2006-12-01

    A good fraction (greater than 30 percent) of submicron particle mass in the atmosphere is often composed of water-soluble organic carbon. Identifiable, water-miscible organics, such as, known sugars, small alcohols, small diacids, etc. comprise only a small fraction of the water-soluble mass (about 1-2 percent). Most of the water-soluble mass is often composed of unidentifiable, humic-like materials, which are commonly refereed to as HULIS. Humic substances are known to form colloids in aqueous solutions at very low aqueous concentrations. Thus, it is likely for HULIS to also be colloid-forming in aqueous solutions. Here, we present surface tension measurements of water-miscible and colloid-forming organics, using methanol and sodium laurate as analogs, respectively. By relating the change in surface tension to chemical potential of the solution, we determine a relationship between surface tension and the surface excess of solute; that is, the number of molecules of solute adsorbed at the surface. Assuming surface acts as a monolayer, we model the adsorption with a Langmuir isotherm to extract the surface excess as a function of solute mole fraction. This relationship allows us to calculate the solute's distribution between bulk and surface phases for methanol, and in bulk, surface and colloid phases for sodium laurate. A colloid of sodium laurate contains approximately 100 laurate anions in a spherical cluster. We present adsorption constants for methanol and sodium laurate (derived from our surface tension data), critical micelle concentration for sodium laurate (derived from our surface tension data), and all the other thermocehmical constants (obtained from the literature) required to constrain a model for determining phase partitioning of organics in aqueous solutions.

  7. Ternary solution of sodium chloride, succinic acid and water; surface tension and its influence on cloud droplet activation

    Directory of Open Access Journals (Sweden)

    J. Vanhanen

    2008-08-01

    Full Text Available Surface tension of ternary solution of sodium chloride, succinic acid and water was measured as a function of both composition and temperature by using the capillary rise technique. Both sodium chloride and succinic acid are found in atmospheric aerosols, the former being main constituent of marine aerosol. Succinic acid was found to decrease the surface tension of water already at very low concentrations. Sodium chloride increased the surface tension linearly as a function of the concentration. Surface tensions of both binary solutions agreed well with the previous measurements. Succinic acid was found to lower the surface tension even if sodium chloride is present, indicating that succinic acid, as a surface active compound, tends to concentrate to the surface. An equation based on thermodynamical relations was fitted to the data and extrapolated to the whole concentration range by using estimated surface tensions for pure compounds. As a result, we obtained an estimate of surface tensions beyond solubility limits in addition to a fit to the experimental data. The parameterization can safely be used at temperatures from 10 to 30°C. These kinds of parameterizations are important for example in atmospheric nucleation models. To investigate the influence of surface tension on cloud droplet activation, the surface tension parameterization was included in an adiabatic air parcel model. Usually in cloud models the surface tension of pure water is used. Simulations were done for characteristic marine aerosol size distributions consisting of the considered ternary mixture. We found that by using the surface tension of pure water, the amount of activated particles is underestimated up to 8% if particles contain succinic acid and overestimated it up to 8% if particles contain only sodium chloride. The surface tension effect was found to increase with increasing updraft velocity.

  8. Surface tension in the cold and dense chiral transition and astrophysical applications

    CERN Document Server

    Palhares, L F

    2011-01-01

    The surface tension of cold and dense QCD phase transitions has appeared recently as a key ingredient in different astrophysical scenarios, ranging from core-colapse supernovae explosions to compact star structure. If the surface tension is low enough, observable consequences are possible. Its value is however not known from first-principle methods in QCD, calling for effective approaches. Working within the framework of homogeneous nucleation by Langer, we discuss the steps that are needed to obtain the nucleation parameters from a given effective potential. As a model for deriving the effective potential for the chiral transition, we adopt the linear sigma model with constituent quarks at very low temperatures, which provides an effective description for the thermodynamics of the strong interaction in cold and dense matter, and predict a surface tension of Sigma ~ 5--15 MeV/fm^2, well below previous estimates. Including temperature effects and vacuum logarithmic corrections, we find a clear competition betw...

  9. Surface tensions in horizon thermodynamics of Anti-de Sitter and de Sitter spacetimes

    CERN Document Server

    Chen, Deyou; Tao, Jun

    2016-01-01

    Adopting the surface tensions, we review the horizon thermodynamics of a Reissner-Nordstrom Anti-de Sitter black hole and a pure de Sitter spacetime. The modified first laws of thermodynamics, which obeys the corresponding Smarr relations, are gotten. For the black hole, the law is written as $\\delta E = T \\delta S - \\sigma\\delta A$ when the cosmological constant is fixed, where $E$ and $\\sigma$ are the Misner-Sharp mass and the surface tension, respectively. Treating the cosmological constant as an variable associated to the pressure, we rewrite the law as $\\delta E_0 = T \\delta S - \\sigma_{eff}\\delta A +V\\delta P$. The effective surface tension and pressure are obtained. The form of the modified first law of the de Sitter spacetime is different from that of the black hole.

  10. A new curvature technique calculation for surface tension contribution in PLIC-VOF method

    Science.gov (United States)

    Martinez, J.-M.; Chesneau, X.; Zeghmati, B.

    2006-01-01

    The volume of fluid (VOF) methods have been used for numerous numerical simulations. Among these techniques used to define the moving interface, the piecewise linear interface reconstruction (PLIC-VOF) is one of the most accurate. A study of the superficial tension impact on two-phase flow with free surface is presented. A new method based on direct staggered grid is developped to include surface tension in PLIC-VOF. The new numerical curvature calculation method doesn't need smoothed colour function and leads to less “spurious current”. This technique is applied to the calculus of surface tension force in the case of the rise of air bubble in viscous liquid and the fall of liquid drop in the same liquid on free surface. Droplets, thin layer and capillarity waves are observed after the free surface rupture for different Bond number. The influence of surface tension calculus is then obvioused and when the drop hit the free surface, wavelets propagate toward the virtual boundaries imposed.

  11. Density, Molar Volume, and Surface Tension of Liquid Al-Ti

    Science.gov (United States)

    Wessing, Johanna Jeanette; Brillo, Jürgen

    2017-02-01

    Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.

  12. Accuracy of surface tension measurement from drop shapes: the role of image analysis.

    Science.gov (United States)

    Kalantarian, Ali; Saad, Sameh M I; Neumann, A Wilhelm

    2013-11-01

    Axisymmetric Drop Shape Analysis (ADSA) has been extensively used for surface tension measurement. In essence, ADSA works by matching a theoretical profile of the drop to the extracted experimental profile, taking surface tension as an adjustable parameter. Of the three main building blocks of ADSA, i.e. edge detection, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure, only edge detection (that extracts the drop profile line from the drop image) needs extensive study. For the purpose of this article, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure will only require a minor effort. It is the aim of this paper to investigate how far the surface tension accuracy of drop shape techniques can be pushed by fine tuning and optimizing edge detection strategies for a given drop image. Two different aspects of edge detection are pursued here: sub-pixel resolution and pixel resolution. The effect of two sub-pixel resolution strategies, i.e. spline and sigmoid, on the accuracy of surface tension measurement is investigated. It is found that the number of pixel points in the fitting procedure of the sub-pixel resolution techniques is crucial, and its value should be determined based on the contrast of the image, i.e. the gray level difference between the drop and the background. On the pixel resolution side, two suitable and reliable edge detectors, i.e. Canny and SUSAN, are explored, and the effect of user-specified parameters of the edge detector on the accuracy of surface tension measurement is scrutinized. Based on the contrast of the image, an optimum value of the user-specified parameter of the edge detector, SUSAN, is suggested. Overall, an accuracy of 0.01mJ/m(2) is achievable for the surface tension determination by careful fine tuning of edge detection algorithms.

  13. Surface tension-driven convection patterns in two liquid layers

    CERN Document Server

    Juel, A; McCormick, W D; Swift, J B; Swinney, H L; Juel, Anne; Burgess, John M.; Swinney, Harry L.

    1999-01-01

    Two superposed liquid layers display a variety of convective phenomena that are inaccessible in the traditional system where the upper layer is a gas. We consider several pairs of immiscible liquids. Once the liquids have been selected, the applied temperature difference and the depths of the layers are the only independent control parameters. Using a perfluorinated hydrocarbon and silicone oil system, we have made the first experimental observation of convection with the top plate hotter than the lower plate. Since the system is stably stratified, this convective flow is solely due to thermocapillary forces. We also have found oscillatory convection at onset in an acetonitrile and n-hexane system heated from below.

  14. Calculation of Surface Tensions of Polar Mixtures with a Simplified Gradient Theory Model

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    Key Words: Thermodynamics, Simplified Gradient Theory, Surface Tension, Equation of state, Influence Parameter.In this work, assuming that the number densities of each component in a mixture across the interface between the coexisting vapor and liquid phases are linearly distributed, we developed...... a simplified gradient theory (SGT) model for computing surface tensions. With this model, it is not required to solve the time-consuming density profile equations of the gradient theory model. The SRK EOS was applied to calculate the properties of the homogeneous fluid. First, the SGT model was used to predict...

  15. A collocation method for surface tension calculations with the density gradient theory

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M.

    2016-01-01

    Surface tension calculations are important in many industrial applications and over a wide range of temperatures, pressures and compositions. Empirical parachor methods are not suitable over a wide condition range and the combined use of density gradient theory with equations of state has been...... proposed in literature. Often, many millions of calculations are required in the gradient theory methods, which is computationally very intensive. In this work, we have developed an algorithm to calculate surface tensions an order of magnitude faster than the existing methods, with no loss of accuracy...

  16. Surface tension measurements of aqueous ammonium chloride (NH4Cl) in air

    Science.gov (United States)

    Lowry, S. A.; Mccay, M. H.; Mccay, T. D.; Gray, P. A.

    1989-01-01

    Aqueous NH4Cl's solidification is often used to model metal alloy solidification processes. The present determinations of the magnitude of the variation of aqueous NH4Cl's surface tension as a function of both temperature and solutal concentration were conducted at 3, 24, and 40 C over the 72-100 wt pct water solutal range. In general, the surface tension increases 0.31 dyn/cm per percent decrease in wt pct of water, and decreases 0.13 dyn/cm for each increase in deg C. Attention is given to the experimental apparatus employed.

  17. Cloud droplet activation and surface tension of mixtures of slightly soluble organics and inorganic salt

    Directory of Open Access Journals (Sweden)

    S. Henning

    2004-11-01

    Full Text Available Critical supersaturations for internally mixed particles of adipic acid, succinic acid and sodium chloride were determined experimentally for dry particles sizes in the range 40–130 nm. Surface tensions of aqueous solutions of the dicarboxylic acids and sodium chloride corresponding to concentrations at activation were measured and parameterized as a function of carbon content. The activation of solid particles as well as solution droplets were studied and particle phase was found to be important for the critical supersaturation. Experimental data were modelled using Köhler theory modified to account for limited solubility and surface tension lowering.

  18. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  19. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    Science.gov (United States)

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles.

  20. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning.

    Science.gov (United States)

    Schötz, Eva-Maria; Burdine, Rebecca D; Jülicher, Frank; Steinberg, Malcolm S; Heisenberg, Carl-Philipp; Foty, Ramsey A

    2008-02-01

    This study provides direct functional evidence that differential adhesion, measurable as quantitative differences in tissue surface tension, influences spatial positioning between zebrafish germ layer tissues. We show that embryonic ectodermal and mesendodermal tissues generated by mRNA-overexpression behave on long-time scales like immiscible fluids. When mixed in hanging drop culture, their cells segregate into discrete phases with ectoderm adopting an internal position relative to the mesendoderm. The position adopted directly correlates with differences in tissue surface tension. We also show that germ layer tissues from untreated embryos, when extirpated and placed in culture, adopt a configuration similar to those of their mRNA-overexpressing counterparts. Down-regulating E-cadherin expression in the ectoderm leads to reduced surface tension and results in phase reversal with E-cadherin-depleted ectoderm cells now adopting an external position relative to the mesendoderm. These results show that in vitro cell sorting of zebrafish mesendoderm and ectoderm tissues is specified by tissue interfacial tensions. We perform a mathematical analysis indicating that tissue interfacial tension between actively motile cells contributes to the spatial organization and dynamics of these zebrafish germ layers in vivo.

  1. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry

    NARCIS (Netherlands)

    Danov, Krassimir D.; Stanimirova, Rumyana D.; Kralchevsky, Peter A.; Marinova, Krastanka G.; Stoyanov, Simeon D.; Blijdenstein, Theodorus B.J.; Cox, Andrew R.; Pelan, Eddie G.

    2016-01-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are

  2. Fabrication of heterogeneous microlenses using self-surface tension

    Science.gov (United States)

    Chiang, Cheng-Han; Su, Guo-Dung J.

    2014-09-01

    Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling nonconventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.

  3. Effect of Undulations on Surface Tension in Simulated Bilayers

    NARCIS (Netherlands)

    Marrink, S.J.; Mark, A.E.

    2001-01-01

    To understand the effect of the finite size of simulation cells on the equilibrium properties of bilayers, an extensive series of glycerolmonoolein bilayer molecular dynamics simulations in which the surface area and system size were systematically changed have been conducted. Systems ranging from

  4. Passive heating of the ground surface

    Science.gov (United States)

    Tyburczyk, Anna

    2016-03-01

    The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  5. Passive heating of the ground surface

    Directory of Open Access Journals (Sweden)

    Tyburczyk Anna

    2016-01-01

    Full Text Available The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  6. SURFACE TENSION OF MOLTEN IF STEEL CONTAINING Ti AND ITS INTERFACIAL PROPERTIES WITH SOLID ALUMINA

    Institute of Scientific and Technical Information of China (English)

    L.C. Zhong; M. Zeze; K. Mukai

    2004-01-01

    Surface tension of molten IF steel containing Ti and contact angle between the liquid steel and solid alumina were measured with sessile droplet method under Ar gas atmosphere at 1500, 1575 and 1600℃. The results show that titanium decreases the surface tension of the molten IF steel and the contact angle. The interfacial tension between the molten IF steel containing Ti and solid alumina decreases with increase in titanium content. The work of adhesion between molten IF steel containing Ti and solid alumina decreases slightly at 1550℃, but increases at 1600℃ with increasing titanium content. It can be deduced that fine bubbles and fine alumina inclusions are easily entrapped in solidifying interface for IF steel containing Ti.

  7. Constrained sessile drop as a new configuration to measure low surface tension in lung surfactant systems.

    Science.gov (United States)

    Yu, Laura M Y; Lu, James J; Chan, Yawen W; Ng, Amy; Zhang, Ling; Hoorfar, Mina; Policova, Zdenka; Grundke, Karina; Neumann, A Wilhelm

    2004-08-01

    Existing methodology for surface tension measurements based on drop shapes suffers from the shortcoming that it is not capable to function at very low surface tension if the liquid dispersion is opaque, such as therapeutic lung surfactants at clinically relevant concentrations. The novel configuration proposed here removes the two big restrictions, i.e., the film leakage problem that is encountered with such methods as the pulsating bubble surfactometer as well as the pendant drop arrangement, and the problem of the opaqueness of the liquid, as in the original captive bubble arrangement. A sharp knife edge is the key design feature in the constrained sessile drop that avoids film leakage at low surface tension. The use of the constrained sessile drop configuration in conjunction with axisymmetric drop shape analysis to measure surface tension allows complete automation of the setup. Dynamic studies with lung surfactant can be performed readily by changing the volume of a sessile drop, and thus the surface area, by means of a motor-driven syringe. To illustrate the validity of using this configuration, experiments were performed using an exogenous lung surfactant preparation, bovine lipid extract surfactant (BLES) at 5.0 mg/ml. A comparison of results obtained for BLES at low concentration between the constrained sessile drop and captive bubble arrangement shows excellent agreement between the two approaches. When the surface area of the BLES film (0.5 mg/ml) was compressed by about the same amount in both systems, the minimum surface tensions attained were identical within the 95% confidence limits.

  8. Effect of temperature and concentration on the surface tension of chia seed mucilage

    Science.gov (United States)

    Fu, Yuting; Arye, Gilboa

    2017-04-01

    The production of mucilage by the seed coat during hydration is a common adaptation of many different plant species. The mucilage may play many ecological roles in adaptation and seed germination in diverse environments, especially in extreme desert conditions. The major compound of the seed mucilage is polysaccharides (e.g. pectins and hemicelluloses), which makes it highly hydrophilic. Consequently, it can hydrate quickly in the presence of water; forming a gel like coating surrounding the seed. However, the seed mucilage also reported to contain small amounts of protein and lipid which may exhibit surface activity at the water-air interface. As a result, decay in the surface tension of water can be occur and consequently a reduction in soil capillary pressure. This in turn may affect the water retention and transport during seed germination. The physical properties of the seeds mucilage have been studied mainly in conjunction with its rheological properties. To the best of our knowledge, its surface activity at the water-air interface has been reported mainly in the realms of food engineering, using a robust method of extraction. The main objective of this study was to quantify the effect of temperature and concentration on the surface tension of seed mucilage. The mucilage in this study was extracted from chia (Salvia hispanica L.) seeds, using distilled water (1:20 w/w) by shaking for 12 h at 4°C. The extracts were freeze dried after centrifuge (5000rpm for 20min). Fresh samples of different concentrations, ranging from 0.5 to 6 mg/ml, were prepared before each surface tension measurements. The equilibrium surface tension was measured by the Wilhelmy plate method using a tensiometer (DCAT 11, Data Physics) with temperature control unit. For a given mucilage concentration, surface tension measurements carried out at 5, 15, 25, 35, 45 °C. The quantitative and thermodynamic analysis of the results will be presented and discussed.

  9. Pool Boiling Heat Transfer on structured Surfaces

    Science.gov (United States)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  10. Line Tension of Twist-Free Carbon Nanotube Lyotropic Liquid Crystal Microdroplets on Solid Surfaces.

    Science.gov (United States)

    Jamali, Vida; Biggers, Evan G; van der Schoot, Paul; Pasquali, Matteo

    2017-09-12

    Line tension, i.e., the force on a three-phase contact line, has been a subject of extensive research due to its impact on technological applications including nanolithography and nanofluidics. However, there is no consensus on the sign and magnitude of the line tension, mainly because it only affects the shape of small droplets, below the length scale dictated by the ratio of line tension to surface tension σ/τ. This ratio is related to the size of constitutive molecules in the system, which translates to a nanometer for conventional fluids. Here, we show that this ratio is orders of magnitude larger in lyotropic liquid crystal systems comprising micrometer-long colloidal particles. Such systems are known to form spindle-shaped elongated liquid crystal droplets in coexistence with the isotropic phase, with the droplets flattening when in contact with flat solid surfaces. We propose a method to characterize the line tension by fitting measured droplet shape to a macroscopic theoretical model that incorporates interfacial forces and elastic deformation of the nematic phase. By applying this method to hundreds of droplets of carbon nanotubes dissolved in chlorosulfonic acid, we find that σ/τ ∼ -0.84 ± 0.06 μm. This ratio is 2 orders of magnitude larger than what has been reported for conventional fluids, in agreement with theoretical scaling arguments.

  11. A numerical study of three-dimensional surface tension driven convection with fre surface deformation

    Science.gov (United States)

    Hsieh, Kwang-Chung

    1992-01-01

    The steady three-dimensional thermocapillary motion with a deformable free surface is studied numerically in both normal and zero gravity environments. Flow configurations consist of a square cavity heated from the side. In the analysis, the free surface is allowed to deform and the grid distribution is adapted to the surface deformation. The divergence-free condition is satisfied by using a dual time-stepping approach in the numerical scheme. Convective flux derivatives are evaluated using a third-order accurate upwind-biased flux-split differencing technique. The numerical solutions at the midplane of the square cavity are compared with the results from two-dimensional calculations. In addition, numerial results for cases under zero and normal gravity conditions are compared. Significantly different flow structures and surface deformation have been observed. The comparison of calculated results will be compared with experimental data in the updated version of this paper.

  12. Surface tension of heptane, decane, hexadecane, eicosane, and some of their binary mixtures

    DEFF Research Database (Denmark)

    Rolo, Lara I.; Caco, Ana I.; Queimada, Antonio;

    2002-01-01

    Surface tension measurements were performed by the Wilhelmy plate method. Measured systems included pure heptane, decane, hexadecane, eicosane, and some of their binary mixtures at temperatures from 293.15 K to 343.15 K with an average absolute deviation of 1.6%. The results were compared with a ...

  13. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  14. The role of surface tension on the elastic decohesion of polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Hassager, Ole

    2001-01-01

    We simulate the rapid extension of polymeric filaments between parallel plates with special attention to the role of surface tension in the symmetry breaking aximuthal instability that may occur near the end plates. The instability is viewed as a precursor to the eventual elastic decohesion of th...

  15. On surface tension of a bubble under presence of electrostatic force

    Directory of Open Access Journals (Sweden)

    Chen Rou-Xi

    2015-01-01

    Full Text Available The surface tension of a bubble is described by Young-Laplace equation, which becomes, however, invalid under the presence of electrostatic force, and a modified one is obtained, which can be widely applied for Bubbfil spinning process.

  16. Measurement and Modeling of Surface Tensions of Asymmetric Systems: Heptane, Eicosane, Docosane, Tetracosane and their Mixtures

    DEFF Research Database (Denmark)

    Queimada, Antonio; Silva, Filipa A.E; Caco, Ana I.;

    2003-01-01

    To extend the surface tension database for heavy or asymmetric n-alkane mixtures, measurements were performed using the Wilhelmy plate method. Measured systems included the binary mixtures heptane + eicosane, heptane + docosane and heptane + tetracosane and the ternary mixture heptane + eicosane...

  17. Characterization of the surface tension and solubility parameter of epoxy resin by using inverse gas chromatography.

    Science.gov (United States)

    Shi, Fenghui; Dai, Zhishuang; Zhang, Baoyan

    2010-07-01

    Inverse gas chromatography (IGC) was used to measure the surface tension and solubility parameter of E51 epoxy resin in this work. By using the Schultz method, decane, nonane, octane and heptane were chosen as the neutral probes to calculate the dispersive surface tensions (gamma(D)). Based on the Good-van Oss equation, the specific surface tension (gamma(SP)) of E51 epoxy resin was calculated with the acidic probe of dichloromethane and the basic probe of toluene. The results showed that the gamma(D) and gamma(SP) of the E51 resin decreased linearly with the increase of temperature. According to the Flory-Huggins parameters (chi) between the resin and a series of probes, the solubility parameters (delta) of E51 resin at different temperatures were estimated using the method developed by DiPaola-Baranyi and Guillet. It was found that the values of delta of the E51 resin were 11.78, 11.57, 11.48 and 11.14 MPa1/2 at 30, 40, 50 and 60 degrees C, respectively. The dispersive component (delta(D)) and the specific component (delta(SP)) of solubility parameter at different temperatures of the E51 resin were investigated according to the relationships between surface tension, cohesion energy and solubility parameter. The results showed that the values of delta(D) were higher than those of delta(SP) for the epoxy resin, and both of them decreased with the increase of temperature.

  18. Dynamic surface tension measured with an integrated sensor-actuator using electrolytically generated gas bubbles

    NARCIS (Netherlands)

    Olthuis, Wouter; Volanschi, Alex; Bergveld, Piet

    1998-01-01

    In this paper, a new, simple method to determine dynamic surface tension in aqueous solutions is reported, explained and experimentally verified. By function integration, a small device is obtained. Apart from control and interface electronics no external components or systems are necessary. Instead

  19. Dynamic surface tension measured with an integrated sensor-actuator device using electrolytically generated gas bubbles

    NARCIS (Netherlands)

    Olthuis, Wouter; Volanschi, Alex; Bergveld, Piet

    1997-01-01

    In this paper, a new, simple method to determine dynamic surface tension in aqueous solutions is reported, explained and experimentally verified. By function integration, a small device is obtained; apart from control and interface electronics no external components or systems are necessary. Instead

  20. Development of corresponding states model for estimation of the surface tension of chemical compounds

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Eslamimanesh, Ali; Sattari, Mehdi;

    2013-01-01

    include critical temperature or temperature/critical volume/acentric factor/critical pressure/reduced temperature/reduced normal boiling point temperature/molecular weight of the compounds. Around 1,300 surface tension data of 118 random compounds are used for developing the first model (a four...

  1. On the interfacial behavior of ionic liquids: surface tensions and contact angles.

    Science.gov (United States)

    Restolho, José; Mata, José L; Saramago, Benilde

    2009-12-01

    In this work the liquid/vapour and the solid/liquid interfaces of a series of ionic liquids: 1-ethyl-3-methylpyridinium ethyl sulfate, [EMPy][EtSO4], 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM][EtSO4], 1-ethanol-3-methylimidazolium tetrafluoroborate, [C2OHMIM][BF4], 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], and 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF4], were investigated. The surface tension was measured in a wide temperature range, (298-453) K. The contact angles were determined on substrates of different polarities. Both on the polar (glass) and the non-polar substrates ((poly-(tetrafluoroethylene) and poly-(ethylene)), the liquids with maximum and minimum surface tensions lead, respectively, to the highest and the lowest contact angles. The dispersive, gamma(L)(d), and non-dispersive, gamma(L)(nd), components of the liquid surface tension, gamma(L), were calculated from the contact angles on the non-polar substrates using the Fowkes approach. The polarity fraction, gamma(L)(nd)/gamma(L), was compared with the polarity parameter, k, obtained from the fitting of the surface tension vs. temperature data to the Eötvös equation. Good agreement was found for the extreme cases: [OMIM][BF4] exhibits the lowest polarity and [BMIM][BF4], the highest. When compared with the polarity fractions of standard liquids considered as "polar" liquids, the ionic liquids studied may be considered as moderately polar.

  2. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mulero, A [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Galan, C [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Cuadros, F [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain)

    2003-04-16

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs.

  3. Tension and heat production during isometric contractions and shortening in the anterior byssus retractor muscle of Mytilus edulis.

    Science.gov (United States)

    Gilbert, S H

    1978-09-01

    1. Tension and heat production were measured during phasic isometric contractions and isovelocity shortening in the anterior byssus retractor muscle (ABRM) of Mytilus edulis at 20 degrees C. 2. Isometric tension at lo was 550 +/- 40 mN/mm2 (S.D. for 173 observations in nine muscles), while the isometric maintenance heat rate was 1.0 +/- 0.2 mW/g wet wt. (S.D. for seventy-eight observations in eight muscles). 3. Isometric tension and heat production were measured as functions of muscle length over a range of 0.79--1.14 lo and were found to bear a linear relation to each other. 4. The force-velocity relation was determined in isovelocity releases imposed during tetanic stimulation and was found to fit the Hill equation with parameters alpha/Po = 0.07 +/- 0.01 and b/lo = 0.016 +/- 0.0007 sec-1 (S.E. from non-linear least-squares regression of the pooled data from seven experiments). 5. Heat production measured in the same experiments showed that shortening heat is produced with a shortening heat coefficient alpha/Po of 0.15. Shortening heat does not appear to be force-dependent, and separate experiments confirmed that it is a linear function of the amount of shortening.

  4. Dual active surface heat flux gage probe

    Science.gov (United States)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  5. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    Science.gov (United States)

    Bachmann, B.; Siewert, E.; Schein, J.

    2012-05-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30 000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m-1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m-3, respectively.

  6. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, C.D.; Outcalt, S.L. [National Institute of Standards and Technology, Boulder, CO (United States)

    1997-12-31

    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m{sup 3}, and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of {+-}0.02 K, pressures with a precision of {+-}0.1% of full scale, densities with a precision of {+-}0.5 kg/m{sup 3}, surface tensions with a precision of {+-}0.2 mN/m, and compositions with a precision of {+-}0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus.

  7. Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

    Science.gov (United States)

    Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin

    2017-07-01

    A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.

  8. Derivation of a viscous KP including surface tension, and related equations

    CERN Document Server

    Meur, Hervé Le

    2015-01-01

    The aim of this article is to derive surface wave models in the presence of surface tension and viscosity. Using the Navier-Stokes equations with a free surface, flat bottom and surface tension, we derive the viscous 2D Boussinesq system with a weak transverse variation. The assumed transverse variation is on a larger scale than along the main propagation direction. This Boussinesq system is only an intermediate result that enables us to derive the Kadomtsev-Petviashvili (KP) equation which is a 2D generalization of the KdV equation. In addition, we get the 1D KdV equation, and lastly the Boussinesq equation. All these equations are derived for non-vanishing initial conditions.

  9. Tension induced surface plasmon-polaritons at graphene-based structure

    Science.gov (United States)

    Khalandi, G.; Namdar, A.; Entezar, S. Roshan

    2017-02-01

    Dispersion properties and field distributions of TM (or p-polarized) surface plasmon-polaritons have been investigated in the system that a strained graphene sheet cladded by two dielectrics. The outcomes show that graphene TM surface plasmon-polaritons are bound confined modes, and the field components penetrate into the dielectric layers in the rang that is very smaller than the wavelength in the free space. At low photon energies, when the tension is along the zigzag (armchair) direction and parallel (perpendicular) to the tangential electric field, the wavelength, propagation length and penetration depth of TM surface plasmon-polaritons increase (decrease) with increasing the strain. Changing the angle between the tension direction and tangential electric field at cases with the constant strain, cause to existence of TM surface plasmon-polaritons in the wider range of frequency.

  10. Spreading of oil on water in the surface-tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.; Berg, J.C.

    1987-11-01

    Data which describe the unidirectional spreading of several pure oils and oil-surfactant mixtures on water in the surface-tension regime are reported. Leading-edge position and profiles of velocity, thickness and film tension are given as functions of time. The data are consistent with the numerical similarity solution of Foda and Cox (1980), although the measured dependence of the film tension on the film thickness often differs from the equilibrium relationship. The configuration of the oil film near the spreading origin may be either a coherent multimolecular layer or a multitude of thinning, outward-moving lenses surrounded by monolayer. The pure oils show an acceleration zone connecting the slow-moving inner region to a fast-moving outer region, while the oil-surfactant mixtures show a much more gradual increase in film velocity.

  11. Account for the surface tension in hydraulic modeling of the weir with a sharp threshold

    Directory of Open Access Journals (Sweden)

    Medzveliya Manana Levanovna

    Full Text Available In the process of calculating and simulating water discharge in free channels it is necessary to know the flow features in case of small values of Reynolds and Weber numbers. The article considers the influence of viscosity and surface tension on the coefficient of a weir flow with sharp threshold. In the article the technique of carrying out experiments is stated, the equation is presented, which considers the influence of all factors: pressure over a spillway threshold, threshold height over a course bottom, speed of liquid, liquid density, dynamic viscosity, superficial tension, gravity acceleration, unit discharge, the width of the course. The surface tension and liquid density for the applied liquids changed a little. In the rectangular tray (6000x100x200 spillway with a sharp threshold was established. It is shown that weir flow coefficient depends on Reynolds number (in case Re < ~ 2000 and Webers number. A generalized expression for determining weir flow coefficient considering the influence of the forces of viscosity and surface tension is received.

  12. Surface tension of polytetrafluoroethylene and its wetting by aqueous solution of some surfactants and their mixtures

    Science.gov (United States)

    Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław

    2017-01-01

    Measurements of the contact angle of aqueous solution of rhamnolipid (RL) mixture with n-octyl-β-D-glucopyranoside (OGP), Triton X-100 (TX-100) or/and sodium dodecylsulfate (SDDS) on polytetrafluoroethylene (PTFE) were made. To this aim there was used a plate whose surface topography was analyzed by means of optical profilometry method. Additionally, plate surface chemistry was studied employing the Fourier transform infrared spectroscopy. The obtained values of contact angle were discussed based on the PTFE surface tension (γSV) as well as the Lifshitz-van der Waals component of the water surface tension (γWLW). The contact angle of aqueous solution of several surfactants and their mixtures on PTFE was also considered on the basis of γSV and γWLW . It occured that by using the values of γSV , γWLW and surface tension of the aqueous solution of surfactants and their mixtures, the contact angle on PTFE can be predicted. It also occured that changes of adhesion tension of aqueous solutions of surfactants as a function of their concentration can be determined by the exponential function of the first or second order. Using such functions Gibbs surface excess concentration of surfactants at the PTFE-water interface, mole fraction of surfactant in the mixed monolayer and fraction of the area occupied by given surfactants in the monolayer were determined. Gibbs surface free energy of adsorption of a given surfactant in the presence of another one and adhesion work of the aqueous solution of surfactants to the PTFE surface were also evaluated.

  13. The effect of surface tension reduction on the clinical performance of sodium hypochlorite in endodontics.

    Science.gov (United States)

    Rossi-Fedele, G; Prichard, J W; Steier, L; de Figueiredo, J A P

    2013-06-01

    Sodium hypochlorite (NaOCl) is recommended as an endodontic irrigant in view of its broad antimicrobial and tissue dissolution capacities. To enhance its penetration into inaccessible areas of root canals and to improve its overall effect, the addition of surface-active agents has been suggested. The aim of this investigation was to review the effect of the reduction of the surface tension on the performance of NaOCl in endodontics. A search was performed in the Medline electronic database (articles published up to 28 July 2012, in English) with the search terms and combinations as follows: 'sodium hypochlorite AND surface tension or interfacial force or interfacial tension or surface-active agent or amphiphilic agent or surface active agent or surfactant or tenside or detergent'. The purpose of this search was to identify publications that compared NaOCl alone and NaOCl modified with the addition of a surface-active agent in endodontics. A hand search of articles published online ('in-press' and 'early view'), and appearing in the reference list of the articles included, was further performed, using the same search criteria as the electronic search. The search identified 302 publications, of which 11 fulfilled the inclusion/exclusion criteria of the review. The evidence available suggests that surface-active agents improve the penetration of NaOCl in the main canal and have no effect on its pulp tissue dissolution ability. There are, however, insufficient data to enable a sound conclusion to be drawn regarding the effect of modifying NaOCl's surface tension on lubrication, antimicrobial and smear layer or debris removal abilities. © 2012 International Endodontic Journal.

  14. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentia...... of interfacial tension becomes significant for particles with a radius of similar to 5 nm, when the area per molecule in the surface region is...

  15. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  16. The effects of nonuniform surface tension on the axisymmetric gravity-driven spreading of a thin liquid drop

    Directory of Open Access Journals (Sweden)

    E. Momoniat

    2005-01-01

    surface tension can be represented as a power law in r. The effect of this nonuniformity is to reduce the surface tension at the centre of the drop and increase it at the foot of the drop. This results in a deflection away from the solution for spreading under gravity only and the formation of a capillary ridge.

  17. Dynamics of surface tension driven mixing of an alcohol droplet with water

    Science.gov (United States)

    Dandekar, Raj; Pant, Anurag; Puthenveettil, Baburaj

    2016-11-01

    We study the flow induced by the surface tension driven spreading of an ethanol droplet of radius rd on the surface of a 5mm water layer, visualizing the flow using aluminium flakes on the surface of the water layer with backlighting and high speed imaging. The concentration of tracer aluminium particles was found to have no effect on the scaling law for spreading.The drop,when brought in contact with the water surface causes a local depression in surface tension ,resulting in a thin circular region to expand radially outwards.We observe that the dimensionless radius of the expanding front (r* =r/rd) scales with the dimensionless time (t* = μ rd/ Δγ) , as r* t*1/4,where μ is the viscosity of water and Δγ is the surface tension difference between water and the ethanol droplet.A scaling analysis taking the viscous and the marangoni forces into account explains the observed scaling law.Our observations differ from that in the case of continuous alcohol supply where the observed scaling law is r* t*1/2. The expanding front radius reaches a maximum value and then decreases with time.

  18. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  19. Surface tension driven processes densify and retain permeability in magma and lava

    Science.gov (United States)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.

    2016-01-01

    We offer new insights into how an explosive eruption can transition into an effusive eruption. Magma containing >0.2 wt% dissolved water has the potential to vesiculate to a porosity in excess of 80 vol.% at atmospheric pressure. Thus all magmas contain volatiles at depth sufficient to form foams and explosively fragment. Yet gas is often lost passively and effusive eruptions ensue. Magmatic foams are permeable and understanding permeability in magma is crucial for models that predict eruptive style. Permeability also governs magma compaction models. Those models generally imply that a reduction in magma porosity and permeability generates an increased propensity for explosivity. Here, our experimental results show that surface tension stresses drive densification without creating an impermeable 'plug', offering an additional explanation of why dense magmas can avoid explosive eruption. In both an open furnace and a closed autoclave, we subject pumice samples with initial porosity of ∼70 vol.% to a range of isostatic pressures (0.1-11 MPa) and temperatures (350-950 °C) relevant to shallow volcanic environments. Our experimental data and models constrain the viscosity, permeability, timescales, and length scales over which densification by pore-scale surface tension stresses competes with density-driven compaction. Where surface tension dominates the dynamics, densification halts at a plateau connected porosity of ∼25 vol.% for our samples. SEM, pycnometry and micro-tomography show that in this process (1) microporous networks are destroyed, (2) the relative pore network surface area decreases, and (3) a remaining crystal framework enhances the longevity of macro-pore connectivity and permeability critical for sustained outgassing. We propose that these observations are a consequence of a surface tension-driven retraction of viscous pore walls at areas of high bubble curvature (micro-vesicular network terminations), and that this process drives bulk

  20. Wetting Angle and Surface Tension of Germanium Melts on Different Substrate Materials

    Science.gov (United States)

    Kaiser, N.; Croell, A.; Szofran, F. R.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The sessile drop technique has been used to measure the wetting angle and the surface tension of molten germanium (Ge) on various substrate materials. Sapphire, fused silica, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AlN, Si3N4, and CVD diamond were used as substrate materials. In addition, the effects of different cleaning procedures and surface treatments on the wetting behavior were investigated. The highest wetting angles with values around 170 deg. were found for pBN substrates under active vacuum or with a slight overpressure of 5N Argon or forming gas (2% Hydrogen in 5N Argon). The measurement of the surface tension and its temperature dependence for Ge under a forming gas atmosphere resulted in gamma(T) = 591 - 0.077 (T-T(sub m).

  1. From density to interface fluctuations: the origin of wavelength dependence in surface tension.

    Science.gov (United States)

    Hiester, Thorsten

    2008-12-01

    The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension gamma(q) can be defined and expressed in terms of the direct correlation function c(r,r;{'}) , the equilibrium density profile rho_{0}(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or gamma(q) , respectively. This result generalizes the Mecke-Dietrich surface tension gamma_{MD}(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning gamma_{MD}(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].

  2. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.

    2017-07-06

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift towards single crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization (ITC). Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br-, I-) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (~5-10 µm). Our work paves the way to control the crystallization process of perovskites, including thin film deposition, which is essential to advance the performance benchmarks of perovskite optoelectronics.

  3. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    Science.gov (United States)

    Jones, W. R., Jr.

    1986-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220 C in room air. The critical surface energy of spreading (gamma /sub c/) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma /sub LV/). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma /sub c/). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  4. Role of viscosity and surface tension of zebrafish embryonic tissues in tissue flows during gastrulation.

    Science.gov (United States)

    Schoetz, E. M.; Bacarian, T.; Steinberg, M. S.; Burdine, R. D.; Bialek, W.; Heisenberg, C. P.; Foty, R. A.; Julicher, F.

    2007-03-01

    At the onset of gastrulation in zebrafish, complex flows and cell movements occur, which are not well understood. Here, we study the material properties of zebrafish embryonic tissues which are important for the tissue dynamics. We found that these tissues behave viscoelastic and exhibit liquid-like properties on long time scales. They relax internal stress caused by compressive forces or, in the absence of external forces, round up and fuse into spheres to minimize their free surface. Quantitative differences in the adhesivity between different types of tissues result in their immiscibility and sorting behavior analogous to that of ordinary immiscible liquids. When mixed, cells segregate into discrete phases, and the position adopted correlates with differences in the aggregate surface tensions for these phases. Surface tensions were measured with a tissue surface tensiometer. Aggregates were compressed and their force response and shape were recorded as a function of time. From the analysis of the force-relaxation curves, we determined the surface tensions, relaxation times, tissue viscosities and shear moduli. Furthermore, by 4D-cell tracking, we measured kinetic parameters such as cell speed, directionality and persistence of cell movement.

  5. Role of surface tension and roughness on the wettability of Er:YAG laser irradiated dentin: In vitro study

    OpenAIRE

    2013-01-01

    Introduction: The aim of this “in vitro” study was to evaluate the role of surface tension and surface roughness in the wettability, considered essential for a good adhesion, comparing Er:YAG laser - to bur-prepared dentin.

  6. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  7. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Science.gov (United States)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.

    2017-06-01

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  8. Neutron-skin thickness determines the surface tension of a compressible nuclear droplet

    Science.gov (United States)

    Horiuchi, W.; Ebata, S.; Iida, K.

    2017-09-01

    We systematically investigate the neutron-skin thickness of neutron-rich nuclei within a compressible droplet model, which includes several parameters characterizing the surface tension and the equation of state (EOS) of asymmetric nuclear matter as well as corrections due to the surface diffuseness. Such a systematic analysis helps towards constraining the EOS parameters of asymmetric nuclear matter and the poorly known density dependence of the surface tension; the latter is estimated with help of available experimental data for the neutron and proton density distributions and the nuclear masses. Validity of the present approach is confirmed by calculating realistic density distributions of Ca, Ni, Zr, Sn, Yb, and Pb isotopes within a microscopic Skyrme-Hartree-Fock+BCS method for various sets of the effective nuclear force. Our macroscopic model accompanied by the diffuseness corrections works well in the sense that it well reproduces the evolution of the microscopically deduced neutron-skin thickness with respect to the neutron number for selected sets of the effective nuclear force. We find that the surface tension of the compressible nuclear droplet is a key to bridging a gap between microscopic and macroscopic approaches.

  9. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Directory of Open Access Journals (Sweden)

    Z. Li

    2011-07-01

    Full Text Available The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS, and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2 dyn cm−1 in pure water and 62(±1 dyn cm−1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  10. Superficial composition in binary solid solutions A(B): Drastic effect of pure element surface tensions

    Science.gov (United States)

    Rolland, A.; Aufray, B.

    1985-10-01

    This paper deals with a comparative study of surface segragation of Pb and Ni respectively from Ag(Pb)(111) and Ag(Ni)(111) solid solutions. A high level of segregation of the solute is observed for both systems characterized by very low solute solubility. However, the superficial composition strongly depends on the relative surface tensions of the pure elements: the solute atoms are strictly on superficial sites when γ solute is smaller than γ solvent; in contrast uppermost layer consists purely of solvent when γ solute is greater than γ solvent. Two schematic distributions in close proximity to the surface are proposed in the last case.

  11. Application of the Zisman Critical Surface Tension Technique to Textile Materials Using Contact Angle Measurements

    Institute of Scientific and Technical Information of China (English)

    江红; 迟克栋; 吴慧莉

    2001-01-01

    This is the first one that applies the Zisman critical surface tension technique successfully to textile materials. It was accomplished by carefully determination of the contact angle of fabric. The deviation caused by the porous structure of the fabric will be taken into account. To do so, a Jens equation is applied, and the measured contact angles can be corrected. The surface porosity was determined by measurement and approximate calculation, and the chemical composition of the surface was characterized by means of attenuated total reflection Fourier-transform infrared(FTIR/ATR).

  12. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water

    Science.gov (United States)

    Rogers, T. Ryan; Leong, Kai-Yang; Wang, Feng

    2016-09-01

    Contrary to the historical data, several recent experiments indicate that the surface tension of supercooled water follows a smooth extrapolation of the IAPWS equation in the supercooled regime. It can be seen, however, that a small deviation from the IAPWS equation is present in the recent experimental measurements. It is shown with simulations using the WAIL water potential that the small deviation in the experimental data is consistent with the tail of an exponential growth in surface tension as temperature decreases. The emergence temperature, Te, of a substantial deviation from the IAPWS equation is shown to be 227 K for the WAIL water and 235 K for real water. Since the 227 K Te is close to the Widom line in WAIL water, we argue that real water at 235 K approaches a similar crossover line at one atmospheric pressure.

  13. Discrepancies over the onset of surfactant monomer aggregation interpreted by fluorescence, conductivity and surface tension methods

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Carvalho Costa

    1998-06-01

    Full Text Available Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac of polymer-surfactant complexes and the critical micellar concentration (cmc of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS mixtures, solutions containing poly(ethylene oxide-SDS, poly(vinylpyrrolidone-SDS and poly(acrylic acid-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.

  14. Synthesis and Surface Tension Properties of Polyethyleneimine—Polyethylene Oxide Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    张剑; LONNIE,Bryant

    2003-01-01

    This peper describes the synthesis,surface tension and dispersancy properties of block copolymer nonionic surfactants comprised of polyethyleneimine(PEI) and polyethlene oxide(PEO) blocks of selected lengths.These block copolymers were prepared by a threestep synthetic sequence.Firstly,PEO glycol was converted to its dimethanesulphonylester (dimesyl) derivative by reacting with methanesulphonyl chloride.Then a tri-block polymer was preparaed by the ring-opening polymerization of 2-methly-2-oxazoline(MeOZO)with the dimesyl PEO derivative.Lastly,linear PEI blocks were obtained by subsequent hydrolysis and purification.1H NMR spectra confirmed the structures of the intermediate,final products and their purities(>99%).The utility of these block copolymers is described in terms of their surface tension and clay dispersancy measurements as a function of copolymer chain and block length.

  15. Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics

    Science.gov (United States)

    Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.

    2017-06-01

    Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2 +1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y -, X -, and H -shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.

  16. Surface Tension of Methanol as a Function of cut-off Radius and Temperature Controllers

    Science.gov (United States)

    Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra

    Molecular dynamics is used to calculate the surface tension of van Leeuwen methanol. The van Leeuwen model of methanol is chosen over other models of methanol, since this model is widely used to study nucleation at low temperature. Usually, scientists use the cut-off radius to be three order of magnitude of segment diameter. In this study, we varied the cut-off radius to estimate the best cut-off at which the surface tension reaches its plateau. After deciding the best cut-off radius for van der Waals and Coulomb interactions (CUT-OFF and PME were used for Coulomb interaction), we varied the temperature controller (van-Housen, Berendsen, and v-rescale) to decide the best temperature controller to be used to study methanol. In all simulations, Gromacs is used at T =200-300K with periodic boundary conditions in all dimensions. JUST.

  17. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.

  18. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  19. Let’s not forget the critical role of surface tension in xylem water relations

    Science.gov (United States)

    Jean-Christophe Domec

    2011-01-01

    The widely supported cohesion–tension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the air–water interface to retreat into the cellulose matrix of the plant cell...

  20. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    Science.gov (United States)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  1. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube

    Energy Technology Data Exchange (ETDEWEB)

    Deendarlianto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No.2 Yogyakarta 55281 (Indonesia); Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Ousaka, Akiharu [Department of Mechanical Engineering, The University of Tokushima, 2-1 Minami Josanjima, Tokushima 770-8506 (Japan); Indarto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No.2 Yogyakarta 55281 (Indonesia); Kariyasaki, Akira [Department of Chemical Engineering, Fukuoka University, 8-19-1, Jyonan-ku, Fukuoka 814-0180 (Japan); Lucas, Dirk; Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Vierow, Karen; Hogan, Kevin [Department of Nuclear Engineering Texas A and M University, 129 Zachry Engineering Center, 3133 TAMU College Station, TX 77843-3133 (United States)

    2010-10-15

    The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined at 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)

  2. Modeling of ultrasound contrast agents bubble dynamics with modified surface tension coefficient

    Institute of Scientific and Technical Information of China (English)

    ZHENG LuJie; TU Juan; CHEN WeiZhong

    2009-01-01

    The current work proposes a model describing the dynamics of coated microbubbles, which simplifies the traditional three-layer model to a two-layer one by introducing a visco-elastic interface with variable surface tension coefficients to connect the gas zone and the liquid zone. In the modified model, the traditional two interfaces boundary conditions are combined into one to simplify the description of the bubble. Moreover, the surface tension coefficient is defined as a function of bubble radius with lower and upper limits, which are related to the buckling and rupture mechanisms of the bubble. Further discussion is made regarding the effects resulting from the change of the surface tension coefficient on bubble dynamics. The dynamic responses of Optison and Sonozoid microbubbles, measured experimentally based on light scattering technology (adapted from previously published work), are simulated using both classic three-layer models (e.g. Church's model) and simplified model. The resuits show that our simplified model works as well as the Church's model.

  3. Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation

    CERN Document Server

    Bruot, Nicolas

    2016-01-01

    Surface tension is a macroscopic manifestation of the cohesion of matter, and its value $\\sigma_\\infty$ is readily measured for a flat liquid-vapor interface. For interfaces with a small radius of curvature $R$, the surface tension might differ from $\\sigma_\\infty$. The Tolman equation, $\\sigma(R) = \\sigma_\\infty / (1 + 2 \\delta/R)$, with $\\delta$ a constant length, is commonly used to describe nanoscale phenomena such as nucleation. Here we report experiments on nucleation of bubbles in ethanol and n-heptane, and their analysis in combination with their counterparts for the nucleation of droplets in supersaturated vapors, and with water data. We show that neither a constant surface tension nor the Tolman equation can consistently describe the data. We also investigate a model including $1/R$ and $1/R^2$ terms in $\\sigma(R)$. We describe a general procedure to obtain the coefficients of these terms from detailed nucleation experiments. This work explains the conflicting values obtained for the Tolman length i...

  4. Two Surface-Tension Formulations For The Level Set Interface-Tracking Method

    Energy Technology Data Exchange (ETDEWEB)

    Shepel, S.V.; Smith, B.L

    2005-03-01

    The paper describes a comparative study of two surface-tension models for the Level Set interface tracking method. In both models, the surface tension is represented as a body force, concentrated near the interface, but the technical implementation of the two options is different. The first is based on a traditional Level Set approach, in which the surface tension is distributed over a narrow band around the interface using a smoothed Delta function. In the second model, which is based on the integral form of the fluid-flow equations, the force is imposed only in those computational cells through which the interface passes. Both models have been incorporated into the Finite-Element/Finite-Volume Level Set method, previously implemented into the commercial Computational Fluid Dynamics (CFD) code CFX-4. A critical evaluation of the two models, undertaken in the context of four standard Level Set benchmark problems, shows that the first model, based on the smoothed Delta function approach, is the more general, and more robust, of the two. (author)

  5. The roles of wettability and surface tension in droplet formation during inkjet printing.

    Science.gov (United States)

    He, Bing; Yang, Sucui; Qin, Zhangrong; Wen, Binghai; Zhang, Chaoying

    2017-09-19

    This paper describes a lattice Boltzmann-based binary fluid model for inkjet printing. In this model, a time-dependent driving force is applied to actuate the droplet ejection. As a result, the actuation can be accurately controlled by adjusting the intensity and duration of the positive and negative forces, as well as the idle time. The present model was verified by reproducing the actual single droplet ejection process captured by fast imaging. This model was subsequently used to investigate droplet formation in piezoelectric inkjet printing. It was determined that the wettability of the nozzle inner wall and the surface tension of the ink are vital factors controlling the print quality and speed. Increasing the contact angle of the nozzle inner delays the droplet breakup time and reduces the droplet velocity. In contrast, higher surface tension values promote earlier droplet breakup and faster drop velocity. These results indicate that the hydrophilic modification of the nozzle inner wall and the choice of inks with high surface tensions will improve printing quality.

  6. Surface Tension and Lamellar Spacing in Polyelectrolyte Blends and Block Copolymers

    Science.gov (United States)

    Sing, Charles; Olvera de La Cruz, Monica

    2015-03-01

    Heterogeneous polymer systems such as block copolymers (BCPs) are governed primarily by a competition between the surface tension between different chemical species and the entropic stretching of the polymer chains. Charged BCPs represent a class of materials that is currently of great interest to the polymer community due to the promise of charged BCPs as nanostructured membranes for batteries and fuel cells. The inclusion of charge presents a powerful way to tune the structure of BCPs, and we develop our understanding of how to do so by investigating the interfacial properties (surface tension and microstructure size) of polyelectrolyte blends and block copolymers. We use a new method that combines the features of liquid state (LS) theory and self consistent field theory (SCFT) into a multiscale LS-SCFT theory that provides beyond-mean-field predictions of polyelectrolyte systems. We find that charge size, charge correlations, and the fraction of charged monomers plays a crucial role in determining surface tension, and we therefore demonstrate how BCP structure changes upon inclusion of charges. Finally, we will show that these predictions provide the ideal basis for comparison to experiment and subsequent refinement of LS-SCFT theory.

  7. Variant of a volume-of-fluid method for surface tension-dominant two-phase flows

    Indian Academy of Sciences (India)

    G Biswas

    2013-12-01

    The capabilities of the volume-of-fluid method for the calculation of surface tension-dominant two-phase flows are explained. The accurate calculation of the interface remains a problem for the volume-of-fluid method if the density ratios of the fluids in different phases are high. The simulations of bubble growth is performed in water at near critical pressure for different degrees of superheat using combined levelset and volume-of fluid (CLSVOF) method. The effect of superheat on the frequency of bubble formation was analyzed. A deviation from the periodic bubble release is observed in the case of superheat of 20 K in water. The vapor-jet-like columnar structure is observed. Effect of heat flux on the slender vapor column has also been explained.

  8. The interfacial surface tension of a quark-gluon plasma fireball in a hadronic medium

    Indian Academy of Sciences (India)

    R Ramanathan; K K Gupta; Agam K Jha; S S Singh

    2007-05-01

    We calculate the interfacial surface tension of a QGP-fireball in a hadronic medium in the Ramanathan et al statistical model. The constancy of the ratio of the surface tension with the cube of the critical transition temperature is in overall accordance with lattice QCD findings. It is in complete agreement with a recent MIT bag model calculation of surface tension. The velocity of sound in the QGP droplet is predicted to be in the range (0.27 ± 0.02) times the velocity of light in vacuum and this value is independent of both the value of the transition temperature and the model parameters.

  9. Surface Tension and Negative Pressure Interior of a Non-Singular `Black Hole'

    CERN Document Server

    Mazur, Pawel O

    2015-01-01

    The constant density interior Schwarzschild solution for a static, spherically symmetric collapsed star has a divergent pressure when its radius $R\\le\\frac{9}{8}R_s=\\frac{9}{4}GM$. We show that this divergence is integrable, and induces a non-isotropic transverse stress with a finite redshifted surface tension on a spherical surface of radius $R_0=3R\\sqrt{1-\\frac{8}{9}\\frac{R}{R_s}}$. For $r < R_0$ the interior Schwarzschild solution exhibits negative pressure. When $R=R_s$, the surface is localized at the Schwarzschild radius itself, $R_0=R_s$, and the solution has constant negative pressure $p =-\\bar\\rho$ everywhere in the interior $rsurface tension of the condensate star surface is given by $\\tau_s=\\Delta\\kappa/8\\pi G$, where $\\Delta\\kappa=\\kappa_+-\\kappa_-=2\\kappa_+=1/R_s$ is the difference of equal and opposite surface grav...

  10. The anisotropy of the surface tension at the magnetic-field-induced phase transformations

    CERN Document Server

    Cebers, A

    2002-01-01

    The surface properties of the magnetic colloid phases arising at the magnetic-field-induced phase separation in the Hele-Shaw cell are considered. By the numerical resolution of the equation for the concentration distribution in the transition layer between the phases, the anisotropy of the surface tension is calculated. The anisotropic shapes of the droplets of the concentrated phase are found by the Wulff construction and are compared with that obtained by the numerical simulation of the kinetics of the magnetic colloid phase separation in the Hele-Shaw cell.

  11. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.

    Science.gov (United States)

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex

    2012-06-15

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such

  12. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    Directory of Open Access Journals (Sweden)

    Deng Zhenghua

    2013-03-01

    Full Text Available Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in the formation of surface oxide film. In this present work, the ignition temperature and the surface tension of Mg-9wt.%Al alloy with different Ce concentrations were studied. Surface tensions was measured using the maximum bubble pressure method (MBPM. Ignition temperature was measured using NiCr-NiSi type thermocouples and was monitored and recorded via a WXT-604 desk recording device. The results show that the ignition point of Mg-9wt.%Al alloy can be effectively elevated by adding Ce. The ignition temperature reaches its highest point of 720 ℃ when the addition of Ce is 1wt.%. The surface tension of the molten Mg-9wt.%Al alloy decreases exponentially with the increase of Ce addition at the same temperature. Similarly, the experiment also shows that the surface tension of Mg-9wt.%Al alloy decreases exponentially with the increase of temperature.

  13. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Directory of Open Access Journals (Sweden)

    Z. Li

    2011-11-01

    Full Text Available The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS, and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(±2 dyn cm−1 in pure water (a 10% surface tension reduction from that of pure water and 62(±1 dyn cm−1 in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  14. Model HULIS compounds in nanoaerosol clusters - investigations of surface tension and aggregate formation using molecular dynamics simulations

    National Research Council Canada - National Science Library

    T. Hede; X. Li; C. Leck; Y. Tu; H. Ågren

    2011-01-01

    .... In this study we use molecular dynamics simulations to show that model humic-like substances (HULIS) in systems containing 10 000 water molecules mimic experimental data well referring to reduction of surface tension...

  15. Surface tension of a coal extract in an organic solvent; Sekitan chushutsu seibun no kaigo to hyomen choryoku

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T.; Hayasaka, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    The behavior and properties of associated bodies were studied through measurement of surface tension considering acetone-soluble fraction relatively light among various solvent extracts of coal. In experiment, the acetone-soluble fraction was extracted from the substances extracted from Upper Freeport coal as standard specimen using the mixed solvent of carbon disulfide (CS2) and N-methyl-2-pyrrolidinone (NMP), and it was dissolved into NMP after drying. Surface tension was measured by Wilhelmy method. The experimental results are as follows. Equilibrium surface tension is equal to the surface tension of pure solvent in a low concentration range of solution, and decreases with an increase in concentration approaching a fixed value at 0 in log concentration, nearly showing an S curve. Adsorption of species with non-polar aromatic ring of the acetone-soluble fraction on a solution surface probably decreases surface tension. Change with time in surface tension is observed which suggests fast initial reaction and slow subsequent reaction. 4 figs.

  16. Effect of surface modification on interfacial nanobubble morphology and contact line tension.

    Science.gov (United States)

    Rangharajan, Kaushik K; Kwak, Kwang J; Conlisk, A T; Wu, Yan; Prakash, Shaurya

    2015-07-14

    Past research has confirmed the existence of surface nanobubbles on various hydrophobic substrates (static contact angle >90°) when imaged in air-equilibrated water. Additionally, the use of solvent exchange techniques (based on the difference in saturation levels of air in various solvents) also introduced surface nanobubbles on hydrophilic substrates (static contact angle static contact angle of 81.1°), bromo-terminated silica (BTS; static contact angle of 85.5°), and fluoro-terminated silica (FTS; static contact angle of 105.3°) surfaces when immersed in air-equilibrated water without solvent exchange. Nanobubbles formed on the above three substrates were characterized on the basis of Laplace pressure, bubble density, and contact line tension. Results reported here show that (1) the Laplace pressures of all nanobubbles formed on both BTS and polycarbonate were an order of magnitude higher than those of FTS, (2) the nanobubble number density per unit area decreased with an increase in substrate contact angle, and (3) the contact line tension of the nanobubbles was calculated to be positive for both BTS and polycarbonate (lateral radius, Rs 50 nm for all nanobubbles). The nanobubble morphology and distribution before and after using the solvent exchange method (ethanol-water), on the bulk polycarbonate substrate was also characterized. Analysis for these polycarbonate surface nanobubbles showed that both the Laplace pressure and nanobubble density reduced by ≈98% after ethanol-water exchange, accompanied by a flip in the magnitude of contact line tension from positive (0.19 nN) to negative (-0.11 nN).

  17. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall

    Science.gov (United States)

    Misyura, S. Y.

    2017-08-01

    Water evaporation in a wide range of droplet diameters and wall temperatures on the structured and smooth surfaces were studied experimentally. Linear dependence of evaporation rate (dV/dt) on a droplet radius varies when the volume is greater than 40-60 μl. The static contact angles on the structured surface vary with a droplet diameter for high wall superheating. Dependence of the contact angle on diameter for the corrugated surface is defined by a change in both potential energy barrier U and three-phase contact line tension τcl. This energy barrier for the structured wall changes with an increase in the initial droplet diameter and becomes constant for the large droplets. For high wall superheating, the power in the law of evaporation increases from 1 to 1.45 with an increase in the initial droplet diameter. Depending on the droplet radius, number of droplets and heater length, four different characters of evaporation are realized. Complete droplet evaporation time on structured surface is less than smooth wall. Heat transfer coefficient is greater for structured wall than smooth one. When simulating droplet evaporation and heat transfer, it is necessary to take into account free convection of air and vapor.

  18. Online measurements of surface tensions and viscosities based on the hydrodynamics of Taylor flow in a microchannel

    Science.gov (United States)

    Sun, Yanhong; Guo, Chaohong; Jiang, Yuyan; Wang, Tao; Zhang, Lei

    2016-11-01

    This paper demonstrates an online measurement technique which can measure both surface tension and viscosity for confined fluids in microfluidic systems. The surface tension and viscosity are determined by monitoring the liquid film thickness deposited in a microchannel based on the hydrodynamics of Taylor flow. Measurements were carried out for pure liquids and binary aqueous liquid mixtures. The results agreed well with reference data and theoretical models. This novel method has considerable potential for measuring dynamic interfacial tension of complex mixtures. Furthermore, it offers opportunity for integrating property measurement with two-phase flow in microchannel, opening new lines of applications.

  19. Simultaneous measurement of contact angle and surface tension using axisymmetric drop-shape analysis-no apex (ADSA-NA).

    Science.gov (United States)

    Kalantarian, A; David, R; Chen, J; Neumann, A W

    2011-04-05

    Axisymmetric drop-shape analysis-no apex (ADSA-NA) is a recent drop-shape method that allows the simultaneous measurement of contact angles and surface tensions of drop configurations without an apex (i.e., a sessile drop with a capillary protruding into the drop). Although ADSA-NA significantly enhanced the accuracy of contact angle and surface tension measurements compared to that of original ADSA using a drop with an apex, it is still not as accurate as a surface tension measurement using a pendant drop suspended from a holder. In this article, the computational and experimental aspects of ADSA-NA were scrutinized to improve the accuracy of the simultaneous measurement of surface tensions and contact angles. It was found that the results are relatively insensitive to different optimization methods and edge detectors. The precision of contact angle measurement was enhanced by improving the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. To optimize the experimental design, the capillary was replaced with an inverted sharp-edged pedestal, or holder, to control the drop height and to ensure the axisymmetry of the drops. It was shown that the drop height is the most important experimental parameter affecting the accuracy of the surface tension measurement, and larger drop heights yield lower surface tension errors. It is suggested that a minimum nondimensional drop height (drop height divided by capillary length) of 1.7 is required to reach an error of less than 0.2 mJ/m(2) for the measured surface tension. As an example, the surface tension of water was measured to be 72.46 ± 0.04 at 24 °C by ADSA-NA, compared to 72.39 ± 0.01 mJ/m(2) obtained with pendant drop experiments.

  20. Some remarks on the solid surface tension determination from contact angle measurements

    Science.gov (United States)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław

    2017-05-01

    The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  1. Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension

    Science.gov (United States)

    Stevens, Ben

    2016-11-01

    Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.

  2. Effect of increased surface tension and assisted ventilation on /sup 99m/Tc-DTPA clearance

    Energy Technology Data Exchange (ETDEWEB)

    Jefferies, A.L.; Kawano, T.; Mori, S.; Burger, R.

    1988-02-01

    Experiments were performed to determine the effects of conventional mechanical ventilation (CMV) and high-frequency oscillation (HFO) on the clearance of technetium-99m-labeled diethylenetriamine pentaacetate (/sup 99m/Tc-DTPA) from lungs with altered surface tension properties. A submicronic aerosol of /sup 99m/Tc-DTPA was insufflated into the lungs of anesthetized, tracheotomized rabbits before and 1 h after the administration of the aerosolized detergent dioctyl sodium sulfosuccinate (OT). Rabbits were ventilated by one of four methods: 1) spontaneous breathing; 2) CMV at 12 cmH2O mean airway pressure (MAP); 3) HFO at 12 cmH2O MAP; 4) HFO at 16 cmH2O MAP. Administration of OT resulted in decreased arterial PO2 (PaO2), increased lung wet-to-dry weight ratios, and abnormal lung pressure-volume relationships, compatible with increased surface tension. /sup 99m/Tc-DTPA clearance was accelerated after OT in all groups. The post-OT rate of clearance (k) was significantly faster (P less than 0.05) in the CMV at 12 cmH2O MAP (k = 7.57 +/- 0.71%/min (SE)) and HFO at 16 cmH2O MAP (k = 6.92 +/- 0.61%/min) groups than in the spontaneously breathing (k = 4.32 +/- 0.55%/min) and HFO at 12 cmH2O MAP (4.68 +/- 0.63%/min) groups. The clearance curves were biexponential in the former two groups. We conclude that pulmonary clearance of /sup 99m/Tc-DTPA is accelerated in high surface tension pulmonary edema, and this effect is enhanced by both conventional ventilation and HFO at high mean airway pressure.

  3. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  4. Measurement and Modeling of Surface Tensions of Asymmetric Systems: Heptane, Eicosane, Docosane, Tetracosane and their Mixtures

    DEFF Research Database (Denmark)

    Queimada, Antonio; Silva, Filipa A. E.; Caco, Ana I.;

    2003-01-01

    To extend the surface tension database for heavy or asymmetric n-alkane mixtures, measurements were performed using the Wilhelmy plate method. Measured systems included the binary mixtures heptane + eicosane, heptane + docosane and heptane + tetracosane and the ternary mixture heptane + eicosane...... was assessed. It is shown that using a new generalized combining rule for the critical temperature, the data can be described with deviations of about 1% that is within the experimental uncertainty of the measurements. (C) 2003 Elsevier B.V. All rights reserved....

  5. A new experimental method for determining liquid density and surface tension

    Science.gov (United States)

    Chou, Kjo-Chih; Hu, Jian-Hong

    1991-02-01

    A summary concerning the measurement of liquid density relying on the Archimedes principle has been presented, based on which a new effective method with a specially designed bob for determining liquid density has been suggested. The application of this method to ethyl alcohol solution and liquid glycerol, as well as a theoretical error analysis, shows that this new method is significant, because not only can it simplify the procedure of measurement but it can also offer more precise results. Besides, this method can further provide surface tension or contact angle simultaneously. It is expected that this new method will find its application in hightemperature melts.

  6. The Dynamic Role of Melt-Vapor Surface Tension in Magmatic Degassing

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2004-05-01

    It is well known from classical nucleation theory that melt-vapor surface tension (σ ) critically influences both the supersaturation pressure needed to initiate eruptive degassing (Δ Pcritical) and the rate of gas bubble nucleation (J ). Here we highlight an important aspect of melt-vapor surface tension that is generally ignored, namely, that σ is dynamic quantity responsive to the changes in melt composition, water content, and temperature that occur during magma storage and ascent. Crystallization, degassing, and cooling impart a time-dependency to σ that must be considered in any effort to accurately model eruption processes. In this study, we document changes to σ in natural, water-saturated dacitic melt at 200 MPa and 950-1055° C and 5.7-4.8 wt% H2O. Rather than traditional macroscopic measurements (sessile drop, capillarity, detachment techniques), we experimentally determine the Δ Pcritical of bubble nucleation during depressurization from 200 MPa as a function of T and wt% H2O (techniques as in Mangan and Sisson, E&PSL, 2000), and then solve for σ at those conditions using classical nucleation theory (Blander and Katz, AIChE Jour., 1975). Meshing experiment and theory gives σ = 42 (±3), 60 (±7), 73 (±3) mN/m at T= 950, 1000, 1055° C, and H2O = 5.7 (±0.1), 5.3 (±0.2), 4.8 (±0.1) wt%, respectively. Our data show a negative dependence of σ on dissolved water content of -33 mN/m/wt% H2O and a positive dependence of σ on temperature of +0.30 mN/m/° C. Comparable relationships between σ and changing water content and temperature were obtained in sessile-drop style experiments using hydrous haplogranite melts (Bagdassarov et al., Amer. Mineral., 2000). To illustrate how the observed σ -H2O-T dependencies might impact degassing models we consider two idealized regimes. The first is a storage regime in which isobaric cooling and crystallization in the magma chamber gradually increases the H2O content of the residual melt. Surface tension is

  7. Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles

    Science.gov (United States)

    Stein, Peter; Zhao, Ying; Xu, Bai-Xiang

    2016-11-01

    The size- and shape-dependency of the chemo-mechanical behavior of spherical and ellipsoidal nanoparticles in Li-ion battery electrodes are investigated by a stress-assisted diffusion model and 3D finite element simulations. The model features surface tension, a direct coupling between diffusion and elasticity, concentration-dependent diffusivity, and a Butler-Volmer relation for the description of electrochemical reactions that is modified to account for mechanical effects. Simulation results on spherical particles reveal that surface tension causes additional pressure fields in the particles, shifting the stress state towards the compressive regime. This provides mechanical stabilization, allowing, in principle, for higher charge/discharge rates. However, due to this pressure the attainable lithiation for a given potential difference is reduced during insertion, whereas a higher amount of ions is given off during extraction. Ellipsoidal particles with an aspect ratio deviating from that of a sphere with the same volume expose a larger surface area to the intercalation reactions. Consequently, they exhibit accelerated (dis)charge rates. However, due to the enhanced pressure in regions with high curvature, the accessible capacity of ellipsoidal particles is less than that of spherical particles.

  8. Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level

    Science.gov (United States)

    Lu, Gui; Duan, Yuan-Yuan; Wang, Xiao-Dong

    2014-09-01

    Nanofluids are suspensions of nanometer-sized particles which significantly modify the properties of the base fluids. Nanofluids exhibit attractive properties, such as high thermal conductivity, tunable surface tension, viscosity, and rheology. Various attempts have been made to understand the mechanisms for these property modifications caused by adding nanoparticles; however, due to the lack of direct nanoscale evidence, these explanations are still controversial. This work calculated the surface tension, viscosity, and rheology of gold-water nanofluids using molecular dynamics simulations which provide a microscopic interpretation for the modified properties on the molecular level. The gold-water interaction potential parameters were changed to mimic various nanoparticle types. The results show that the nanoparticle wettability is responsible for the modified surface tension. Hydrophobic nanoparticles always tend to stay on the free surface so they behave like a surfactant to reduce the surface tension. Hydrophilic nanoparticles immersed into the bulk fluid impose strong attractive forces on the water molecules at the free surface which reduces the free surface thickness and increases the surface tension of the nanofluid. Solid-like absorbed water layers were observed around the nanoparticles which increase the equivalent nanoparticle radius and reduce the mobility of the nanoparticles within the base fluid which increases the nanofluid viscosity. The results show the water molecule solidification between two or many nanoparticles at high nanoparticle loadings, but the solidification effect is suppressed for shear rates greater than a critical shear rate; thus Newtonian nanofluids can present shear-thinning non-Newtonian behavior.

  9. Empirical correlation of the surface tension versus the viscosity for saturated normal liquids

    CERN Document Server

    Li, Xia; Mulero, A

    2016-01-01

    In 1966 Pelofsky proposed an empirical linear correlation between the natural logarithm of the surface tension and the reciprocal viscosity, which seems to work adequately for a wide range of fluids. In particular, it has been shown that it is useful in the case of n-alkanes and their binary and ternary mixtures. More recently however, it has been found not to work for several ionic liquids unless the reciprocal viscosity is raised to a power. The exponent of this power was fixed to be 0.3, at least for the studied ionic fluids. In the present work, the performance and accuracy of both the original Pelofsky correlation and the modified expression including the exponent are studied for 56 non-ionic fluids of different kinds over a broad range of temperatures. Also, the temperature range is delimited for which each expression reproduces the surface tension values with average absolute deviations below 1%. The needed coefficients are given for both the broad and the delimited temperature range for each expressio...

  10. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  11. A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension

    Science.gov (United States)

    Fechter, Stefan; Munz, Claus-Dieter; Rohde, Christian; Zeiler, Christoph

    2017-05-01

    The numerical approximation of non-isothermal liquid-vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  12. Quantum Magnetic Oscillations of the Surface Tension at a Metal-Insulator Interface

    Science.gov (United States)

    Dubovskii, L. B.

    2016-03-01

    Any metal-insulator transition (MI transition) in a crystalline material must be a transition from a situation in which electronic bands overlap to a situation when they do not (Mott, Metal-insulator, 2nd edn. Taylor@Francis, London, 1990). For this case the self-consistent equations for the two-band conductor are formulated (cf. Dubovskii, JETP Lett. 99(1):22-26, 2014). The description of the MI phase transition is based on two order parameters. The first one is the material density distribution at the MI boundary ρ ({vec {r}}). The second one is a four-component complex vector in spin space Upsilon ({vec {r}}). The value Upsilon ({vec {r}}) determines the electron density in the metallic or semimetallic phase in the presence of an external magnetic field. Two different components of the vector describe possible spin states of electrons and holes inserted in the external magnetic field. The solution gives a singular behavior of the surface tension at the MI interface in the vicinity of the MI phase transition. At low temperature quantum oscillations of the surface tension in the magnetic field take place.

  13. Conditions necessary for capillary hysteresis in porous media: Tests of grain size and surface tension influences

    Science.gov (United States)

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-05-01

    Hysteresis in the relation between water saturation and matric potential is generally regarded as a basic aspect of unsaturated porous media. However, the nature of an upper length scale limit for saturation hysteresis has not been previously addressed. Since hysteresis depends on whether or not capillary rise occurs at the grain scale, this criterion was used to predict required combinations of grain size, surface tension, fluid-fluid density differences, and acceleration in monodisperse systems. The Haines number (Ha), composed of the aforementioned variables, is proposed as a dimensionless number useful for separating hysteretic (Ha 15) behavior. Vanishing of hysteresis was predicted to occur for grain sizes greater than 10.4 ± 0.5 mm, for water-air systems under the acceleration of ordinary gravity, based on Miller-Miller scaling and Haines' original model for hysteresis. Disappearance of hysteresis was tested through measurements of drainage and wetting curves of sands and gravels and occurs between grain sizes of 10 and 14 mm (standard conditions). The influence of surface tension was tested through measurements of moisture retention in 7 mm gravel, without and with a surfactant (sodium dodecylbenzenesulfonate (SDBS)). The ordinary water system (Ha = 7) exhibited hysteresis, while the SDBS system (Ha = 18) did not. The experiments completed in this study indicate that hysteresis in moisture retention relations has an upper limit at Ha = 16 ± 2 and show that hysteresis is not a fundamental feature of unsaturated porous media.

  14. Thin Film Morphology of Block Copolymers Containing Polydimethylsiloxane as a Function of the Surface Tension of the Opposing Block

    Science.gov (United States)

    Wadley, Maurice; Cavicchi, Kevin

    2008-03-01

    The self-assembly of block copolymers into ordered nanostructures such as spheres, cylinders, and lamellae in the range of 10-100 nm makes them interesting materials for patterning surfaces. Thin films of block copolymers containing poly(dimethylsiloxane) (PDMS) are attractive for patterning due to their high oxygen etch resistance compared to other polymers. The main disadvantage of these polymers for patterning is the low surface tension of PDMS. This causes the preferential migration of PDMS to the air/film interface driving the formation of domains parallel to the interface and surface wetting layers. In this work a series of AB block copolymers containing PDMS have been prepared where the surface tension of the opposing block was varied. The effect of changing the surface tension mismatch between the blocks on the thin film morphology will be discussed.

  15. STUDIES ON SURFACE TENSION OF SELECTED MOUTHWASH FORMULATION BY DROP NUMBER METHOD USING TRAUBE’S STALAGMOMETER TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Ghindora Ghanshayam L

    2011-02-01

    Full Text Available The selected marketed mouthwash formulations was carried out using Traube’s stalagmometer technique by drop number method to determine their individual surface tension for further identification, structure elucidation and chemical constituents. The formulation I (Potassium nitrate & sodium fluoride, formulation II (Chlorhexidine gluconate, formulation III (Thymol, eucalyptol and menthol were selected for the case study. These formulations were also evaluated to their same quantity mixture ratio with distilled water combination for estimation of different percent composition. The main aim and rationale of the study was to evaluate the surface tension of three selected formulations with distilled water. In individual surface tension study, it was noted that formulation II (48.29 dyne/cm showed highest value and formulation III (40.81 dyne/cm showed lowest value comparison between the three formulations under laboratory conditions. The 50% formulation mixture with distilled water showed minimum surface tension (49.20 dyne/cm and 90% formulation mixture with distilled water showed maximum surface tension (54.30 dyne/cm amongst other composition. In our present study, all the percent composition values were less than standard surface tension value. The 20% (50.31 dyne/cm, 70% (50.64 dyne/cm, 80% (50.26 dyne/cm and 30% (49.30 dyne/cm, 50% (49.20 dyne/cm and also 40% (51.73 dyne/cm, 60% (51.26 dyne/cm formulation mixture with distilled water showed approximately same surface tension values.

  16. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  17. The electrical conductivity, density and surface tension of molten salts containing zirconium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Katyshev, S F; Teslyuk, L M; Eltsova, N V [Urals State Technical University-UPI, 19 Mira Str., Ekaterinburg 620002 (Russian Federation)], E-mail: tnv@htf.ustu.ru, E-mail: ksf@mail.ustu.ru

    2008-02-15

    The temperature dependencies of specific electric conductivity, density and surface tension of molten LiF-KF-ZrF{sub 4} mixtures in a wide concentration range were investigated using relative capillary method and method of maximum pressure in a gas bubble. The obtained values of molar electric conductivity, molar volumes and excess thermodynamic functions of melt surface layer have noticeable deviations from those calculated for ideal mixtures. This phenomenon can be explained by some specific interaction between the components of studied ternary mixtures. Mixing the components in such melts is accompanied by a noticeable interaction with predominant formation of stable zirconium fluoride complex ions. The values of deviations depend on the ionic composition of the salt mixtures.

  18. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  19. A free energy-based surface tension force model for simulation of multiphase flows by level-set method

    Science.gov (United States)

    Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.

    2017-09-01

    In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.

  20. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  1. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H. [Toyo Construction Co. Ltd., Tokyo (Japan)

    1996-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  2. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H. [Toyo Construction Co. Ltd., Tokyo (Japan)

    1996-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  3. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    Science.gov (United States)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  4. Effects of polar cortical cytoskeleton and unbalanced cortical surface tension on intercellular bridge thinning during cytokinesis

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Mei-Wen An; Xiao-Na Li; Fang Yang; Yang Liu

    2011-01-01

    To probe the contributions of polar cortical cytoskeleton and the surface tension of daughter cells to intercellular bridgethinning dynamics during cytokinesis,we applied cytochalasin D (CD) or colchicine (COLC) in a highly localized manner to polar regions of dividing normal rat kidney (NRK) cells.We observed cellular morphological changes and analyzed the intercellular bridge thinning trajectories of dividing cells with different polar cortical characteristics.Global blebbistatin (BS) application was used to obtain cells losing active contractile force groups.Our results show that locally released CD or colchicine at the polar region caused inhibition of cytokinesis before ingression.Similar treatment at phases after ingression allowed completion of cytokinesis but dramatically influenced the trajectories of intercellular bridge thinning.Disturbing single polar cortical actin induced transformation of the intercellular bridge thinning process,and polar cortical tension controlled deformation time of intercellular bridges.Our study provides a feasible framework to induce and analyze the effects of local changes in mechanical properties of cellular components on single cellular cytokinesis.

  5. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  6. Performing chemical reactions in virtual capillary of surface tension-confined microfluidic devices

    Indian Academy of Sciences (India)

    Angshuman Nag; Biswa Ranjan Panda; Arun Chattopadhyay

    2005-10-01

    In this paper we report a new method of fabrication of surface tension-confined microfluidic devices on glass. We have also successfully carried out some well-known chemical reactions in these fluidic channels to demonstrate the usefulness of these wall-less microchannels. The confined flow path of liquid was achieved on the basis of extreme differences in hydrophobic and hydrophilic characters of the surface. The flow paths were fabricated by making parallel lines using permanent marker pen ink or other polymer on glass surfaces. Two mirror image patterned glass plates were then sandwiched one on top of the other, separated by a thin gap - created using a spacer. The aqueous liquid moves between the surfaces by capillary forces, confined to the hydrophilic areas without wetting the hydrophobic lines, achieving liquid confinement without physical side-walls. We have shown that the microfluidic devices designed in such a way can be very useful due to their simplicity and low fabrication cost. More importantly, we have also demonstrated that the minimum requirement of such a working device is a hydrophilic line surrounded by hydrophobic environment, two walls of which are constituted of air and the rest is made of a hydrophobic surface.

  7. Laplacian drop shapes and effect of random perturbations on accuracy of surface tension measurement for different drop constellations.

    Science.gov (United States)

    Saad, Sameh M I; Neumann, A Wilhelm

    2015-08-01

    Theoretical drop shapes are calculated for three drop constellations: pendant drops, constrained sessile drops, and unconstrained sessile drops. Based on total Gaussian curvature, shape parameter and critical shape parameter are discussed as a function of different drop sizes and surface tensions. The shape parameter is linked to physical parameters for every drop constellation. The as yet unavailable detailed dimensional analysis for the unconstrained sessile drop is presented. Results show that the unconstrained sessile drop shape depends on a dimensionless volume term and the contact angle. Random perturbations are introduced and the accuracy of surface tension measurement is assessed for precise and perturbed profiles of the three drop constellations. It is concluded that pendant drops are the best method for accurate surface tension measurement, followed by constrained sessile drops. The unconstrained sessile drops come last because they tend to be more spherical at low and moderate contact angles. Of course, unconstrained sessile drops are the only option if contact angles are to be measured.

  8. On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension

    CERN Document Server

    Rohde, Christian

    2016-01-01

    We consider a sharp-interface approach for the inviscid isothermal dynamics of compressible two-phase flow, that accounts for phase transition and surface tension effects. To fix the mass exchange and entropy dissipation rate across the interface kinetic relations are frequently used. The complete uni-directional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers, that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.

  9. Modeling of a Curvilinear Planar Crack with a Curvature-Dependent Surface Tension

    KAUST Repository

    Zemlyanova, A. Y.

    2012-01-01

    An approach to modeling fracture incorporating interfacial mechanics is applied to the example of a curvilinear plane strain crack. The classical Neumann boundary condition is augmented with curvature-dependent surface tension. It is shown that the considered model eliminates the integrable crack-tip stress and strain singularities of order 1/2 present in the classical linear fracture mechanics solutions, and also leads to the sharp crack opening that is consistent with empirical observations. Unlike for the case of a straight crack, for a general curvilinear crack some components of the stresses and the derivatives of the displacements may still possess weaker singularities of a logarithmic type. Generalizations of the present study that lead to complete removal of all crack-tip singularities, including logarithmic, are the subject of a future paper. © 2012 Society for Industrial and Applied Mathematics.

  10. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.

  11. New correlations between viscosity and surface tension for saturated normal fluids

    CERN Document Server

    Zheng, Mengmeng; Mulero, A

    2016-01-01

    New correlations between viscosity and surface tension are proposed and checked for saturated normal fluids. The proposed correlations contain three or four adjustable coefficients for every fluid. They were obtained by fitting 200 data points, ranging from the triple point to a point very near to the critical one. Forty substances were considered, including simple fluids (such as rare gases), simple hydrocarbons, refrigerants, and some other substances such as carbon dioxide and water. Two correlation models with three adjustable coefficients were checked, and the results showed that the one based on the modified Pelofsky expression gives the better overall results. A new 4-coefficient correlation is then proposed which clearly improves the results, giving the lowest overall deviations for 32 out of the 40 substances considered and absolute average deviations below 10% for all of them.

  12. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  13. Surface tension at the liquid-vapor interface of screened ionic mixtures

    Directory of Open Access Journals (Sweden)

    M.González-Melchor

    2004-01-01

    Full Text Available The liquid-vapor interface of binary mixtures of charged particles is studied using molecular dynamics (MD simulations. The interaction between particles is given by a short-range repulsive potential plus an attractive/repulsive Yukawa term, which models screened electrostatic interactions. To obtain the components of the pressure tensor two methods were used: a hybrid MD method which combines the hard sphere and continuous forces and a standard continuous MD method where the hard sphere was replaced by a soft interaction. We show that both models give essentially the same results. As the range of interaction decreases, the critical temperature and surface tension increase. The comparison with the restricted primitive model of ionic fluids is discussed.

  14. Improved Correlation for Viscosity from Surface Tension Data for Saturated Normal Fluids

    CERN Document Server

    Tian, Jianxiang

    2016-01-01

    Several correlations between viscosity and surface tension for saturated normal fluids have been proposed in the literature. Usually, they include three or four adjustable coefficients for every fluid and give generally good results. In this paper we propose a new and improved four-coefficient correlation which was obtained by fitting data ranging from the triple point to a point very near to the critical one. Fifty four substances were considered, including simple fluids (such as rare gases), simple hydrocarbons, refrigerants, and some other substances such as carbon dioxide, water or ethanol. The new correlation clearly improves the results obtained with those previously available since it gives absolute average deviations below1% for 40 substances and below 2.1% for 10 substances more.

  15. Recommended Correlations for the Surface Tension of Aliphatic, Carboxylic, and Polyfunctional Organic Acids

    Science.gov (United States)

    Mulero, A.; Cachadiña, I.; Sanjuán, E. L.

    2016-09-01

    In previous papers, we have proposed specific correlations to reproduce the surface tension values for several sets of fluids and for wide ranges of temperatures. In this paper, we focus our attention on organic fatty (aliphatic, carboxylic, and polyfunctional) acids. We have taken into account the available data and values in the DIPPR and DETHERM databases and also Wohlfarth and Wohlfarth's (1997) book. In some cases we have also considered new data published elsewhere. All the data and values have been carefully filtered and subsequently fitted with the use of the model currently implemented in NIST's REFPROP program, calculating two or four adjustable coefficients for each fluid. As a result, we propose recommended correlations for 99 acids, providing mean absolute percentage deviations below 1.6% in all cases.

  16. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  17. Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface

    Science.gov (United States)

    Schmitz, J.; Brillo, J.; Egry, I.

    2014-02-01

    For the study of the interaction of a liquid alloy with differently oriented single crystalline sapphire surfaces precise surface tension data of the liquid are fundamental. We measured the surface tension of liquid Al-Cu contactlessly on electromagnetically levitated samples using the oscillating drop technique. Data were obtained for samples covering the entire range of composition and in a broad temperature range. The surface tensions can be described as linear functions of temperature with negative slopes. Moreover, they decrease monotonically with an increase of aluminium concentration. The observed behaviour with respect to both temperature and concentration is in agreement with a thermodynamic model calculation using the regular solution approximation. Surface tensions were used to calculate interfacial energies from the contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) surfaces of an α-Al2O3 substrate. The contact angles were measured by means of the sessile drop method at 1380 K. In the Cu/α-Al2O3 system, no anisotropy is evident neither for the contact angles nor for the interfacial energies of different surfaces. The work of adhesion of this system is isotropic, too.

  18. Role of radiogenic heat generation in surface heat flow formation

    Science.gov (United States)

    Khutorskoi, M. D.; Polyak, B. G.

    2016-03-01

    Heat generation due to decay of long-lived radioactive isotopes is considered in the Earth's crust of the Archean-Proterozoic and Paleozoic provinces of Eurasia and North America. The heat flow that forms in the mantle is calculated as the difference between the heat flow observed at the boundary of the solid Earth and radiogenic heat flow produced in the crust. The heat regime in regions with anomalously high radiogenic heat generation is discussed. The relationship between various heat flow components in the Precambrian and Phanerozoic provinces has been comparatively analyzed, and the role of erosion of the surfaceheat- generating layer has been estimated.

  19. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    Science.gov (United States)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  20. A method for the determination of the surface tension of cellulosic fibres in their natural state and its relation with chemical composition

    NARCIS (Netherlands)

    Hazendonk, van J.M.; Putten, van der I.C.; Keurentjes, J.T.F.

    1995-01-01

    The surface tensions of several natural cellulosic fibres like flax, hemp, kenaf and cotton and a synthetic cellulosic fibre have been determined using the so-called floating test. This method determines the liquid surface tension δF at which fibres placed on a liquid surface remain just floating.

  1. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    Science.gov (United States)

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein

    2017-08-01

    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  2. Spontaneous Pattern Formation Induced by Bénard-Marangoni Convection for Sol-Gel-Derived Titania Dip-Coating Films: Effect of Co-solvents with a High Surface Tension and Low Volatility.

    Science.gov (United States)

    Uchiyama, Hiroaki; Matsui, Tadayuki; Kozuka, Hiromitsu

    2015-11-17

    Evaporation-driven surface tension gradient in the liquid layer often causes the convective flow, i.e., Bénard-Marangoni convection, resulting in the formation of cell-like patterns on the surface. Here, we prepared sol-gel-derived titania films from Ti(OC3H7(i))4 solutions by dip coating and discussed the effect of the addition of co-solvents with a high surface tension and low volatility on the spontaneous pattern formation induced by Bénard-Marangoni convection. Propylene glycol (PG, with a surface tension of 38.6 mN m(-1)) and dipropylene glycol (DPG, with a surface tension of 33.9 mN m(-1)) were added to the coating solutions containing 2-propanol (2-Pr, with a surface tension of 22.9 mN m(-1)) for controlling the evaporation-driven surface tension gradient in the coating layer on a substrate. During dip coating at a substrate withdrawal speed of 50 cm min(-1) in a thermostatic oven at 60 °C, linearly arranged cell-like patterns on a micrometer scale were spontaneously formed on the titania gel films, irrespective of the composition of coating solutions. Such surface patterns remained even after the heat treatment at 200 and 600 °C, where the densification and crystallization of the titania films progressed. The width and height of the cell-like patterns increased with increasing PG and DPG contents in the coating solutions, where the addition of PG resulted in the formation of cells with a larger height than DPG.

  3. Surface Tension and Viscosity of the Ni-Based Superalloys LEK94 and CMSX-10 Measured by the Oscillating Drop Method on Board a Parabolic Flight

    Science.gov (United States)

    Wunderlich, Rainer K.; Fecht, Hans-Jörg; Lohöfer, Georg

    2017-02-01

    The surface tension and viscosity of the Ni-based superalloys LEK94 and CMSX-10 were measured by the oscillating drop method in a containerless electromagnetic processing device on board a parabolic flight airplane. Surface oscillations were recorded by 150 and 200 Hz frame rate digital cameras positioned in two perpendicular directions and by the inductive coupling between the oscillating sample surface and the oscillating circuit of the radio frequency heating and positioning generator. The surface tension as a function of temperature of LEK94 and CMSX-10 was obtained as σ( T) = 1.73 - 4.51 × 10-4 [ T—1656 K (1383 °C)] Nm-1 and σ( T) = 1.71 - 5.80 × 10-4 [( T—1683 K (1410 °C)] Nm-1, respectively. The viscosity at the liquidus temperatures as 9.8 and 7.8 mPa.s, respectively. In addition, some basic thermophysical properties such as solidus and liquidus temperatures, densities at room temperature, and thermal expansion in the solid phase are reported.

  4. Newtonian and general relativistic contribution of gravity to surface tension of strange stars

    CERN Document Server

    Bagchi, M; Dey, M; Dey, J; Bhowmick, S; Bagchi, Manjari; Sinha, Monika; Dey, Mira; Dey, Jishnu; Bhowmick, Siddhartha

    2005-01-01

    Surface tension (S) is due to the inward force experienced by particles at the surface and usually gravitation does not play an important role in this force. But in compact stars the gravitational force on the particles is very large and S is found to depend not only on the interactions in the strange quark matter, but also on the structure of the star, i.e. on its mass and radius. Indeed, it has been claimed recently that 511 keV photons observed by the space probe INTEGRAL from the galactic bulge may be due to electron-positron annihilation, and their source may be the positron cloud outside of an antiquark star. Such stars, if they exist, may also go a long way towards explaining away the antibaryon deficit of the universe. For that to happen S must be high enough to allow for survival of quark/antiquark stars born in early stages of the formation of the universe. High value of S may also assist explanation of delayed gamma-ray burst after a supernova explosion, as conversion from normal matter to strange ...

  5. CALCULATION OF CONTACT TENSIONS IN CONJUGATE SURFACES IN SPHERE GLOBOIDAL RUSK SYNCHRONOUS CARDAN HINGE

    Directory of Open Access Journals (Sweden)

    A. M. Saniotsky

    2015-01-01

    Full Text Available The paper presents  a calculation of contact tensions between conjugate surfaces in sphere globoidal rusk synchronous cardan hinge on the condition that there is power balance at the constant torque on the output shaft. The required torque effect on the intake shaft at the constant angular velocity  has been calculated with the help of the Hertz’s theory of contact deformations . The maximum contact pressure has been ascertained through the torque which determines strength of the cardan hinge, its durability, wear rate in  the conjugate friction pair. The paper investigates transmission dependence of the maximum torque while changing  material quality and according to various typical sizes of the cardan hinge. Dependences of the calculated maximum torque value on material strength have been demonstrated graphically  in the logarithmic coordinate system.  A formula for maximum contact pressure value has been derived and it determines  strength of the hinge mechanism, its durability and wear rate  in the conjugate friction pair.The effect of geometrical relationship between a spherical cam radius and a globoidal  surface radius of a hinge contact has been determined with the purpose to analyze optimal design parameters of the sphere globoidal rusk synchronous cardan hinge. It has been established that permissible torque in the hinge mechanism grows with a quadratic dependence while increasing a cam radius and  the torque is proportionally growing while increasing an axis radius of globoidal rusk surface on which spherical cams are set. The maximum permissible torque value grows with a cubic dependence while using qualitative material with thermally treated surface and application of lubrication materials which tolerates significant (up to [σ] = 1000 MPa contact loads.  Two-fold increase of typical size of the sphere globoidal rusk synchronous cardan hinge leads to an 8-fold increase of the permissible transmitted torque.

  6. Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium.

    Science.gov (United States)

    Jiang, Lifang; Shen, Chong; Long, Xuwei; Zhang, Guoliang; Meng, Qin

    2014-12-01

    Biosurfactant rhamnolipids have been claimed to show biological activities of inhibiting the proliferation of cancer cells. In this study, the cytotoxicity of rhamnolipids was examined on four cancer cells (HepG2, Caco-2, Hela, MCF-7 cells) and two normal cells (HK-2 cell, primary hepatocyte). Interestingly, both cancer cells and normal cells exhibited similar sensitivities to the addition of rhamnolipids in culture medium, and the cytotoxicity was largely attenuated by the presence of fetal bovine serum (FBS) in culture medium. In correlation of the mono-/di-rhamnolipid cytotoxicity with the surface tension of culture medium, it was found that rhamnolipids triggered cytotoxicity whenever the surface tension of culture medium decreased below 41 mN/m irrespective of the FBS content in culture medium, cell line, or rhamnolipid congener. Similarly, each chemical surfactant (Tween-80, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate) could cause cytotoxicity on HepG2 cells whenever its addition made the surface tension under 41 mN/m in culture medium with or without the presence of FBS. It seems that rhamnolipids, like chemical surfactants, exhibited cytotoxicity by reducing the surface tension of culture medium rather than by changing its specific molecular structure, which had no selection on tumor cells. This study could offer helps to correct the misleading biological activity of rhamnolipids and to avoid the possible large wastes of time and expenses on developing the applications in antitumor drugs.

  7. Surface tension and its temperature coefficient of molten tin determined with the sessile drop method at different oxygen partial pressures.

    Science.gov (United States)

    Yuan, Zhang Fu; Mukai, Kusuhiro; Takagi, Katsuhiko; Ohtaka, Masahiko; Huang, Wen Lai; Liu, Qiu Sheng

    2002-10-15

    The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P(O(2))) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed. At P(O(2))=2.85 x 10(-19) and 1.06 x 10(-15) MPa, the surface tension decreases linearly with the increase of temperature and its temperature coefficients are -0.151 and -0.094 mN m(-1) K(-1), respectively. However, at high P(O(2)) (3.17 x 10(-10), 8.56 x 10(-6) MPa), the surface tension increases with the temperature near the melting point (505 K) and decreases above 723 K. The surface tension decrease with increasing P(O(2)) is much larger near the melting point than at temperatures above 823 K. The contact angle between the molten tin and the alumina substrate is 158-173 degrees, and the wettability is poor.

  8. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    Science.gov (United States)

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  9. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    NARCIS (Netherlands)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S.M.|info:eu-repo/dai/nl/074974424; Nieken, U.

    2016-01-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting

  10. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    NARCIS (Netherlands)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S.M.; Nieken, U.

    2016-01-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynam

  11. Modelling the cloud condensation nucleus activity of organic acids on the basis of surface tension and osmolality measurements

    Directory of Open Access Journals (Sweden)

    Z. Varga

    2007-09-01

    Full Text Available In this study vapour pressure osmometry was used to determine water activity in the solutions of organic acids. The surface tension of the solutions was also monitored in parallel and then Köhler curves were calculated for nine organic acids (oxalic, malonic, succinic, glutaric, adipic, maleic, malic, citric and cis-pinonic. Surface tension depression is negligible for most of the organic acids in dilute (≤1 w/w% solutions. Therefore, these compounds affect equilibrium vapour pressure only in the beginning phase of droplet formation when the droplet solution is more concentrated but not necessarily at the critical size. An exception is cis-pinonic acid which remarkably depress surface tension also in dilute (0.1 w/w% solution and hence at the critical point. The surface tension of organic acid solutions is influenced by the solubility of the compound, the length of the carbon chain and also by the polar functional groups present in the molecule. Similarly to surface tension solubility plays an important role also in water activity: compounds with higher solubility (e.g. malonic, maleic and glutaric acid reduce water activity significantly in the early phase of droplet formation while less soluble acids (e.g. succinic and adipic acid are saturated in small droplets and the solution starts diluting only in bigger droplets. As a consequence, compounds with lower solubility have a minor effect on water activity in the early phase of droplet formation. To deduce the total effect Köhler curves were calculated and critical supersaturations (Sc were determined for the organic acids using measured surface tension and water activity. It was found that critical supersaturation grew with growing carbon number. Oxalic acid had the lowest critical supersaturation in the size range studied and it was comparable to the activation of ammonium sulphate. The Sc values obtained in this study were compared to data from CCNC

  12. Identification of the Heat Transfer Coefficient at the Charge Surface Heated on the Chamber Furnace

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2017-06-01

    Full Text Available The inverse method was applied to determine the heat flux reaching the charge surface. The inverse solution was based upon finding the minimum of the error norm between the measured and calculated temperatures. The charge temperature field was calculated with the finite element method by solving the heat transfer equation for a square charge made of 15HM steel heated on all its surfaces. On the basis of the mean value of heat flux, the value of the heat transfer coefficient at each surface was determined depending on the surface temperature of the material heated.

  13. Measurement and Analyses of Molten Nickel-Cobalt Alloy Surface Tension%熔融Ni-Co合金表面张力的测量与分析

    Institute of Scientific and Technical Information of China (English)

    肖锋; 刘兰霄; 方亮; 杨仁辉; 傅亚; 赵红凯

    2008-01-01

    Ni-Co super-alloy is widely used in high temperature and corrosive environments such as gas turbine engines and heat exchangers. The surface tensions of molten Ni and Ni-Co (5 and 10 mass fraction) alloys were measured at the temperature range of 1773~1873 K using an improved sessile drop method with an alumina substrate in an Ar+3%H2 atmosphere. The surface tensions of molten Ni and Ni-Co (5 and 10 mass fiaction) alloys decrease with increasing of temperature. On the basis of experimental data, the surface tension was also theoretically deduced both as functions of concentration and temperature using a model of Butler' equation. The alloy element segregation in this system was calculated. Cobalt concentration on surface of alloys is lower than that in bulk.%Ni-Co高温合金广泛用于生产燃气涡轮机叶片和热交换器等工作于高温和腐蚀环境的零部件,采用改良静滴法测定了1773~1873K温度范围内熔融Ni,Ni-(5~10)%Co合金在Al2O3基板上Ar+3%H2气氛下的表面张力.熔融Ni,Ni-(5~10)%Co合金的表面张力随着温度的升高而降低.在此基础上采用Butler模型推导了表面张力随温度与浓度的变化,计算了合金体系中元素的偏聚.结果表明,Co在合金表面的浓度低于在体相的浓度.

  14. A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers.

    Science.gov (United States)

    Ferrando, Nicolas; Lachet, Véronique; Pérez-Pellitero, Javier; Mackie, Allan D; Malfreyt, Patrice; Boutin, Anne

    2011-09-15

    We propose a new transferable force field to simulate phase equilibrium and interfacial properties of systems involving ethers and glycol ethers. On the basis of the anisotropic united-atom force field, only one new group is introduced: the ether oxygen atom. The optimized Lennard-Jones (LJ) parameters of this atom are identical whatever the molecule simulated (linear ether, branched ether, cyclic ether, aromatic ether, diether, or glycol ether). Accurate predictions are achieved for pure compound saturated properties, critical properties, and surface tensions of the liquid-vapor interface, as well as for pressure-composition binary mixture diagrams. Multifunctional molecules (1,2-dimethoxyethane, 2-methoxyethanol, diethylene glycol) have also been studied using a recently proposed methodology for the calculation of the intramolecular electrostatic energy avoiding the use of additional empirical parameters. This new force field appears transferable for a wide variety of molecules and properties. It is furthermore worth noticing that binary mixtures have been simulated without introducing empirical binary parameters, highlighting also the transferability to mixtures. Hence, this new force field gives future opportunities to simulate complex systems of industrial interest involving molecules with ether functions.

  15. Influence of the local morphology on the surface tension of injection molded polypropylene

    Science.gov (United States)

    Gomes, M.; Pontes, A. J.; Viana, J. C.

    2014-05-01

    In this work, we investigate the development of the morphology of an injection molding polypropylene under the local thermomechanical environment imposed during processing, and its effect on the contact angle and, hence, on the surface tension of the moldings. Melt and mold temperatures were varied in two levels. The local thermomechanical environment was characterized by mold filling computational simulations that allow the calculation of thermomechanical variables (e.g., local temperatures, shear stresses) and indices (related to the local morphology development). In order to investigate the structural hierarchy variations of the moldings in the thickness direction, samples from skin to core were used. The molecular orientation and degree of crystallinity were determined as function of the thickness, as well as the contact angle. The variations of the degree of crystallinity were assessed by differential scanning calorimetry. The level of molecular orientation was evaluated by birefringence measurements. The contact angles were measured in deionized water by sessile drop (needle in) method at room temperature, to determine the wettability of the samples. The contact angles were found to vary along the molding thickness in the skin, transition and core layers. These variations are related to the local morphologies developed. Results suggest that water contact angle increases with the level of molecular orientation and for finer microstructures.

  16. The self-interaction of a fluid interface, the wavevector dependent surface tension and wedge filling

    Science.gov (United States)

    Parry, Andrew O.; Rascón, Carlos

    2011-01-01

    We argue that whenever an interface, separating bulk fluid phases, adopts a non-planar configuration (induced by a confining geometry or thermal fluctuations, say), the energy cost of it will contain a non-local self-interaction term. For systems with short-ranged forces and Ising symmetry, we determine the self-interaction by integrating out bulk-like degrees of freedom from a more microscopic Landau-Ginzburg-Wilson model. The self-interaction can be written in a simple diagrammatic form involving integrals over effective two-body forces acting at the interface and consistently accounts for a number of known features of the microscopic model, including the wavevector dependence of the surface tension describing the fluctuations of a near planar interface. When applied to wedge filling transitions, the self-interaction describes the attraction between the wetting films on either side of the wedge. We show that, for sufficiently acute wedges, this can alter the order of the filling phase transition.

  17. The self-interaction of a fluid interface, the wavevector dependent surface tension and wedge filling

    Energy Technology Data Exchange (ETDEWEB)

    Parry, Andrew O [Department of Mathematics, Imperial College London, London SW7 2BZ (United Kingdom); Rascon, Carlos [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, 28911 Leganes, Madrid (Spain)

    2011-01-12

    We argue that whenever an interface, separating bulk fluid phases, adopts a non-planar configuration (induced by a confining geometry or thermal fluctuations, say), the energy cost of it will contain a non-local self-interaction term. For systems with short-ranged forces and Ising symmetry, we determine the self-interaction by integrating out bulk-like degrees of freedom from a more microscopic Landau-Ginzburg-Wilson model. The self-interaction can be written in a simple diagrammatic form involving integrals over effective two-body forces acting at the interface and consistently accounts for a number of known features of the microscopic model, including the wavevector dependence of the surface tension describing the fluctuations of a near planar interface. When applied to wedge filling transitions, the self-interaction describes the attraction between the wetting films on either side of the wedge. We show that, for sufficiently acute wedges, this can alter the order of the filling phase transition.

  18. The utilization of round window membrane surface tension in facilitating slim electrodes insertion during cochlear implantation.

    Science.gov (United States)

    Nada, Ihab; Abdelhamid, Ahmed Nabil; Negm, Ahmed

    2017-06-24

    This is a prospective randomized study aimed to evaluate the round window membrane (RWM) surface tension in facilitating slim electrodes insertion during cochlear implantation. A total number of (118) children were included in this study (118 implantations). Mean age was 36.72 months (range from 18 to 60 months). This study was conducted from January 2015 to September 2016 at a cochlear implant centre in a tertiary referral hospital. Slit incision in the anterosuperior quadrant of the RWM was done in 70 cases, While RWM cruciate incision was done in 48 cases. Of the 48 patients who underwent RWM cruciate incision, 13 cases had no problem, while in 35 cases, we faced difficult insertion. When slit incision of the RWM was done (70 cases), 68 cases showed smooth insertion, meanwhile, we faced increased operative time due to flopping of the electrode in 2 cases only. Moreover, residual low-frequency hearing preservation was more achieved when slit incision of the RWM was done. Tensile strength of the round window membrane after slit incision of the RWM offers support to slim electrodes during introduction, decreasing incidence of kinking and floppiness, hence shortening the maneuver time and minimizing the number of trials. This facilitates easy smooth slim electrodes introduction, decreasing intracochlear trauma. Moreover, slit incision of the RWM may offer better residual hearing preservations than cruciate incision of the RWM during slim electrodes introduction.

  19. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  20. The self-interaction of a fluid interface, the wavevector dependent surface tension and wedge filling.

    Science.gov (United States)

    Parry, Andrew O; Rascón, Carlos

    2011-01-12

    We argue that whenever an interface, separating bulk fluid phases, adopts a non-planar configuration (induced by a confining geometry or thermal fluctuations, say), the energy cost of it will contain a non-local self-interaction term. For systems with short-ranged forces and Ising symmetry, we determine the self-interaction by integrating out bulk-like degrees of freedom from a more microscopic Landau-Ginzburg-Wilson model. The self-interaction can be written in a simple diagrammatic form involving integrals over effective two-body forces acting at the interface and consistently accounts for a number of known features of the microscopic model, including the wavevector dependence of the surface tension describing the fluctuations of a near planar interface. When applied to wedge filling transitions, the self-interaction describes the attraction between the wetting films on either side of the wedge. We show that, for sufficiently acute wedges, this can alter the order of the filling phase transition.

  1. New procedure to measure simultaneously the surface tension and contact angle

    Science.gov (United States)

    Champmartin, S.; Ambari, A.; Le Pommelec, J. Y.

    2016-05-01

    This paper proposes a new procedure to simultaneously measure the static contact angle and the surface tension of a liquid using a spherical geometry. Unlike the other existing methods, the knowledge of one of both previous parameters and the displacement of the sphere are not mandatory. The technique is based on the measurement of two simple physical quantities: the height of the meniscus formed on a sphere at the very contact with a liquid bath and the resulting vertical force exerted on this object at equilibrium. The meniscus height, whose exact value requires the numerical resolution of the Laplace equation, is often estimated with an approximate 2D model, valid only for very large spheres compared to the capillary length. We develop instead another simplified solution of the Young-Laplace equation based on the work of Ferguson for the meniscus on a cylinder and adapted for the spherical shape. This alternative model, which is less restrictive in terms of the sphere size, is successfully compared to numerical solutions of the complete Young-Laplace equation. It appears to be accurate for sphere radii larger than only two capillary lengths. Finally the feasibility of the method is experimentally tested and validated for three common liquids and two "small" steel spheres.

  2. Heat kernel measures on random surfaces

    CERN Document Server

    Klevtsov, Semyon

    2015-01-01

    The heat kernel on the symmetric space of positive definite Hermitian matrices is used to endow the spaces of Bergman metrics of degree k on a Riemann surface M with a family of probability measures depending on a choice of the background metric. Under a certain matrix-metric correspondence, each positive definite Hermitian matrix corresponds to a Kahler metric on M. The one and two point functions of the random metric are calculated in a variety of limits as k and t tend to infinity. In the limit when the time t goes to infinity the fluctuations of the random metric around the background metric are the same as the fluctuations of random zeros of holomorphic sections. This is due to the fact that the random zeros form the boundary of the space of Bergman metrics.

  3. Study on Surface Heat Budget of Various Pavements for Urban Heat Island Mitigation

    Directory of Open Access Journals (Sweden)

    Hideki Takebayashi

    2012-01-01

    Full Text Available The surface heat budgets of various pavement surfaces are studied with the aim of mitigating the urban heat island effect. In this study, the thermal characteristics of pavements are examined using data from observations. The net radiation, surface temperature, temperature under the surface, conduction heat flux, and core weight for each experimental surface are recorded, together with the weather conditions at the time of observation. The latent heat flux is estimated from the observed weight of the cores. The surface heat budget under the same weather conditions is examined, and the sensible heat flux from each target surface is calculated. The parameters that influence the surface heat budget, for example, solar reflectance (albedo, evaporative efficiency, heat conductivity, and heat capacity, are examined. On a typical summer day, the maximum reduction in the sensible heat flux from that on a normal asphalt surface is about 150 W/m2 for an asphalt surface with water-retaining material and about 100 W/m2 for a cement concrete surface with water-retaining material, depending on the albedo of each surface.

  4. Effect of surface tension on a liquid-jet produced by the collapse of a laser-induced bubble against a rigid boundary

    Science.gov (United States)

    Liu, Xiu Mei; He, Jie; Lu, Jian; Ni, Xiao Wu

    2009-02-01

    The effect of surface tension on the behavior of a liquid-jet is investigated experimentally by means of a fiber-coupled optical beam deflection (OBD) technique. It is found that a target under water is impacted in turn by a laser-plasma ablation force and by a high-speed liquid-jet impulse induced by bubble collapse in the vicinity of a rigid boundary. The liquid-jet impact is found to be the main damage mechanism in cavitation erosion. Furthermore, the liquid-jet increases monotonously with surface tension, so cavitation erosion rises sharply with increasing surface tension. Surface tension also reduces bubble collapse duration. From the experimental results and the modified Rayleigh theory, the maximum bubble radius is obtained and it is found to reduce with increasing surface tension.

  5. Assessment of Numerical Treatments in Interface Capturing Simulations for Surface-Tension-Driven Interface Motion

    Directory of Open Access Journals (Sweden)

    Abhinav Dhar

    2015-03-01

    Full Text Available Effects of numerical treatments for the surface tension evaluation on predictions of the motions of droplets ranging from micron to sub-micron meters were investigated. Various combinations of schemes for evaluating the normal to the interface and interface curvature were examined, i.e. the ALE (arbitrary Lagrangian-eulerian like scheme and BFA (balanced-force algorithm for the normal vector and CSF (continuum surface force and HF (height function for the interface curvature. The interface motion was predicted using THAINC (tangent of hyperbola with adaptive slope for interface capturing proposed in our previous study. Numerical errors in pressure and velocity were examined for neutrally buoyant drops of 1 mm in radius to validate the code, which confirmed that the results were similar to those reported in literature: the combination of BFA and HF gave the lowest errors. The droplet size was reduced to 0.1 mm to investigate the accuracy of the schemes for droplet sizes found in industrial coating processes. The static contact angle was then taken into account in the code. The effect of implementation on the errors was examined. The reduction of droplet sizes and implementation of contact angle had no substantial effect on the order of errors. A model for the dynamic contact angle was also implemented and the wetting behaviour of a drop of 1.14 mm in radius was well predicted. Finally a simulation of the wetting behaviour of a sub-micron meter droplet demonstrated that the present code combining BFA, HF and the dynamic contact angle model is accurate in predicting the motion of sub-micron meter droplets.

  6. Investigations of the surface tension of coal ash slags under gasification conditions; Untersuchungen zur Oberflaechenspannung von Kohleschlacken unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, Tobias

    2011-10-26

    In the context of CO{sub 2}-emission-induced global warming, greenhouse gases resulting from the production of electricity in coal-fired power plants gain increasing attention. One possible way to reduce such emissions is to gasify coal instead of burning it. The corresponding process is referred to as Integrated Gasification Combined Cycle and allows for the separation of CO{sub 2} before converting a synthesis gas into electrical energy. However, further improvements in efficiency and availability of this plant technology are needed to render the alternative generation of electricity sensible from an economic point of view. One corresponding approach introduces hot gas cleaning facilities to the gasification plant which guarantee a removal of slag particles from the synthesis gas at high temperatures. The development of such filters depends on the availability of data on the material properties of the coal ash slags to be withdrawn. In this respect, the surface tension is a relevant characteristic. Currently, the surface tension of real coal ash slags as well as of synthetic model systems was measured successfully by means of the sessile drop and the maximum bubble pressure method. With regard to the sessile drop technique, those experiments were conducted in a gasification-like atmosphere at temperatures of up to 1500 C. Furthermore, the pressure inside the experimental vessel was raised to 10 bar in order to allow for deriving the influence of this variable on the surface tension. In contrast, maximum bubble pressure trials were realised at atmospheric pressure while the gas atmosphere assured inert conditions. For performing sessile drop measurements, a corresponding apparatus was set up and is described in detail in this thesis. Three computer algorithms were employed to calculate surface tensions out of the photos of sessile drops and their individual performance was evaluated. A very good agreement between two of the codes was found while the third one

  7. A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion.

    Science.gov (United States)

    Yan, J H; Zhang, X B; Zhao, J; Liu, G F; Cai, H G; Pan, Q M

    2015-08-04

    The highly agile and efficient water-surface locomotion of the water strider has stimulated substantial interest in biomimetic research. In this paper, we propose a new miniature surface tension-driven robot inspired by the water strider. A key feature of this robot is that its actuating leg possesses an ellipse-like spatial trajectory similar to that of a water strider by using a cam-link mechanism. Simplified models are presented to discuss the leg-water interactions as well as critical conditions for a leg penetrating the water surface, and simulations are performed on the robot's dynamic properties. The final fabricated robot weighs about 3.9 g, and can freely and stably walk on water at different gaits. The maximum forward and turning speeds of the robot are measured as 16 cm s(-1) and 23°/s, respectively. Furthermore, a similarity analysis with Bond number and Weber number demonstrates that the locomotion of this robot is quite analogous to that of a real water strider: the surface tension force dominates the lifting force and plays a major role in the propulsion force. This miniature surface tension-driven robot might have potential applications in many areas such as water quality monitoring and aquatic search and rescue.

  8. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: Surface tension depression and secondary organic products

    CERN Document Server

    Li, Zhi; Sareen, Neha; McNeill, V Faye

    2011-01-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(\\pm2) dyn/cm in pure water and 62(\\pm1) dyn/cm in AS solutions. Surface t...

  9. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  10. A modified stanton number for heat transfer through fabric surface

    Directory of Open Access Journals (Sweden)

    Zhang Shen-Zhong

    2015-01-01

    Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.

  11. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.

    Science.gov (United States)

    Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J

    2016-11-15

    Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diametersoperations for power generation, which also take advantage of the high heating value of the emulsion components. The ability of CML to stabilize emulsions and to contribute in their combustion was tested with light fuels (kerosene, diesel, and jet fuel) after formulation of high internal phase systems (70% oil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results highlight the possibilities in high volume application for lignin biomacromolecules.

  12. Molecular Dynamics Simulation of Surface Tension of NaCl Aqueous Solution at 298.15K: from Diluted to Highly Supersaturated Concentrations

    Science.gov (United States)

    Wang, Xiaoxiang; Chen, Chuchu; Poeschl, Ulirch; Su, Hang; Cheng, Yafang

    2017-04-01

    Sodium chloride (NaCl) is one of the key components of atmospheric aerosol particles. Concentration-depend surface tension of aqueous NaCl solution is essential to determine the equilibrium between droplet NaCl solution and water vapor, which is important in regards to aerosol-cloud interaction and aerosol climate effects. Although supersaturated NaCl droplets can be widely found under atmospheric conditions, the experimental determined concentration dependency of surface tension is limited up to the saturated concentration range due to technical difficulties, i.e., heterogeneous nucleation since nearly all surface tension measurement techniques requires contact of the sensor and solution surface. In this study, the surface tension of NaCl aqueous solution with solute mass fraction from 0 to 1 was calculated using molecular dynamics (MD) simulation. The surface tension increases monotonically and near linearly when mass fraction of NaCl (xNaCl) is lower than 0.265 (saturation point), which follows theoretical predictions (e.g., E-AIM, SP parameterization, and PK parameterization). Once entering into the supersaturated concentration range, the calculated surface tension starts to deviate from the near-linear extrapolation and adopts a slightly higher increasing rate until xNaCl of 0.35. We found that these two increasing phases (xNaCl 0.35) is mainly driven by the increase of excessive surface enthalpy when the solution becomes concentrated. After that, the surface tension remains almost unchanged until xNaCl of 0.52. This phenomenon is supported by the results from experiment based Differential Koehler Analyses. The stable surface tension in this concentration range is attributed to a simultaneous change of surface excess enthalpy and entropy at similar degree. When the NaCl solution is getting more concentrated than xNaCl of 0.52, the simulated surface tension regains an even faster growing momentum and shows the tendency of ultimately approaching the surface

  13. The measurement of surface heat flux using the Peltier effect

    Energy Technology Data Exchange (ETDEWEB)

    Shewen, E.C. (Pavement Management Systems Ltd., Cambridge, Ontario (Canada)); Hollands, K.G.T., Raithby, G.D. (Univ. of Waterloo, Ontario (Canada))

    1989-08-01

    Calorimetric methods for measuring surface heat flux use Joulean heating to keep the surface isothermal. This limits them to measuring the heat flux of surfaces that are hotter than their surroundings. Presented in this paper is a method whereby reversible Peltier effect heat transfer is used to maintain this isothermality, making it suitable for surfaces that are either hotter or colder than the surroundings. The paper outlines the theory for the method and describes physical models that have been constructed, calibrated, and tested. The tested physical models were found capable of measuring heat fluxes with an absolute accuracy of 1 percent over a wide range of temperature (5-50C) and heat flux (15-500 W/m{sup 2}), while maintaining isothermality to within 0.03 K. A drawback of the method is that it appears to be suited only for measuring the heat flux from thick metallic plates.

  14. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  15. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, Taha Jibril

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  16. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of

  17. Wetting Angles and Surface Tension of Ge(1-x)Si(x) Melts on Different Substrate Materials

    Science.gov (United States)

    Croell, A.; Kaiser, N.; Szofran, F. R.; Cobb, S. D.; Volz, M. P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The wetting angles and the surface tension of Ge(1-x)Si(x) melts (0.02 less than x less than 0.13) have been measured on various substrate materials using the sessile drop technique. Fused quartz, sapphire, SiC, glassy carbon, pBN, AIN, and Si3N4 have been used as substrates. The highest and most stable wetting angles were found for pBN substrates with 164 +/- 8 deg., either under forming gas with an additional carbon getter in the system or under active vacuum. The surface tension measurements resulted in a value of +2.2 x 10(exp -3) N/m.at%Si for the concentration dependence delta(gamma)/(delta)C. For the composition range measured, the temperature dependence (delt)gamma/(delta)T showed values similar to those of pure Ge, on average -0.07 x 10(exp -3) N/mK.

  18. Influence of Zinc on the Surface Tension, Density and Molar Volume of (Ag-Sneut +Zn Liquid Alloys

    Directory of Open Access Journals (Sweden)

    Gąsior W.

    2016-03-01

    Full Text Available The dilatometric and maximum bubble pressure methods were applied for the measurements of the density and surface tension of liquid (Ag-Sneut +Zn lead-free solders. The experiments were carried out in the temperature range from 515 to 1223 K for the alloys of the zinc concentration equaling 0.01, 0.02, 0.04, 0.05, 0.1 and 0.2 of the mole fraction. It was found that the temperature dependence of both the density and the surface tension could be thought as linear, so they were interpreted by straight line equations. The experimental data of the molar volume of the investigated alloys were described by the polynomial dependent on the composition and temperature.

  19. The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack

    KAUST Repository

    Zemlyanova, A. Y.

    2013-03-08

    A problem of an interface crack between two semi-planes made out of different materials under an action of an in-plane loading of general tensile-shear type is treated in a semi-analytical manner with the help of Dirichlet-to-Neumann mappings. The boundaries of the crack and the interface between semi-planes are subjected to a curvature-dependent surface tension. The resulting system of six singular integro-differential equations is reduced to the system of three Fredholm equations. It is shown that the introduction of the curvature-dependent surface tension eliminates both classical integrable power singularity of the order 1/2 and an oscillating singularity present in a classical linear elasticity solutions. The numerical results are obtained by solving the original system of singular integro-differential equations by approximating unknown functions with Taylor polynomials. © 2013 The Author.

  20. Growth of a Gas Bubble in a Supersaturated Liquid Under the Effect of Variant Cases of Surface Tension

    Science.gov (United States)

    Mohammadein, S. A.; Mohamed, K. G.

    In this paper, the growth of a gas bubble in a supersaturated liquid is discussed for a constant and variable cases of surface tension effect. The mathematical model is solved analytically by using the method of Plesset and Zwick18 after modified it. The growth process is affected by: diffusion coefficient D, Jacob number Ja, surface tension σ, adjustment factor b and void fraction ϕ0. The famous formula of Plesset and Zwick is produced as a special case of the results at some values of the adjustment factors. Moreover, for some values of the adjustment factors, good approximation is obtained when a comparison between our results and the result that produced by Hashemi et al., 9 who solved the problem with the method of combining variables.

  1. Low-Bond Axisymmetric Drop Shape Analysis for Surface Tension and Contact Angle Measurements of Sessile Drops

    OpenAIRE

    Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D; T. Blu; Unser, M

    2010-01-01

    A new method based on the Young-Laplace equation for measuring contact angles and surface tensions is presented. In this approach, a first-order perturbation technique helps to analytically solve the Young-Laplace equation according to photographic images of axisymmetric sessile drops. When appropriate, the calculated drop contour is extended by mirror symmetry so that reflection of the drop into substrate allows the detection of position of the contact points. To keep a wide range of applica...

  2. Conditions necessary for capillary hysteresis in porous media: Tests of grain-size and surface tension influences

    OpenAIRE

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-01-01

    Hysteresis in the relation between water saturation and matric potential is generally regarded as a basic aspect of unsaturated porous media. However, the nature of an upper length scale limit for saturation hysteresis has not been previously addressed. Since hysteresis depends on whether or not capillary rise occurs at the grain scale, this criterion was used to predict required combinations of grain size, surface tension, fluid-fluid density differences, and acceleration in monodisper...

  3. Wetting and Interfacial Tension Dynamics of Oil-Nanofluids-Surface Minerals System

    Science.gov (United States)

    Bai, L.; Li, C.; Darnault, C. J. G.; Korte, C.; Ladner, D.; Daigle, H.

    2015-12-01

    Among the techniques used in enhanced oil recovery (EOR), chemical injection involves the injection of surfactants to increase the oil mobility and decrease the interfacial tension (IFT). With the nanotechnology revolution, the use of nanoparticles has shown unique opportunities in petroleum engineering due to their physico-chemical properties. Our research examines the potential application of nanoparticles as a means of EOR by studying the influence of silicon oxide nanoparticles on the wettability and IFT of oil-nanofluids-surface systems. Batch studies were conducted to assess the stability of the nanoparticle suspensions of different concentrations (0, 0.001, 0.005, 0.01, 0.05 and 0.1 wt. %) in different reservoir conditions with and without the addition of surfactants (i.e. 5% brine, and Tween 20 at 0.5 and 2 cmc). Testing of oil-nanofluids and oil-nanofluids-minerals interactions was performed using crude oils from West Texas (light, API 40), Prudhoe Bay (medium, API 28), and Lloydminster (heavy, API 20). The dynamic behavior of IFT was measured using a pendant drop method. Results for 5% brine-nanoparticle systems indicated that 0.001 and 0.01 wt.% of nanoparticles contributed to a significant decrease of IFT for West Texas and Prudhoe Bay oils, while the highest decrease of IFT for Lloydminster was reported with 0.1 wt.% nanoparticles. IFT decrease was also enhanced by surfactant, and the addition of nanoparticles at 0.001 wt.% to surfactant resulted in significant decrease of IFT in most of the tested oil-nanofluid systems. The sessile drop method was used to measure the dynamic behavior of the contact angle of these oil droplets on minerals surface made of thin sections from Berea and Boise sandstone cores through a wetting test. Different nanofluid and surfactant concentrations were tested for the optimization of changes in wettability, which is a critical phase in assessing the behavior of nanofluids for optimal EOR with the selected crude oils.

  4. Multiphase Allen-Cahn and Cahn-Hilliard models and their discretizations with the effect of pairwise surface tensions

    Science.gov (United States)

    Wu, Shuonan; Xu, Jinchao

    2017-08-01

    In this paper, the mathematical properties and numerical discretizations of multiphase models that simulate the phase separation of an N-component mixture are studied. For the general choice of phase variables, the unisolvent property of the coefficient matrix involved in the N-phase models based on the pairwise surface tensions is established. Moreover, the symmetric positive-definite property of the coefficient matrix on an (N - 1)-dimensional hyperplane - which is of fundamental importance to the well-posedness of the models - can be proved equivalent to some physical condition for pairwise surface tensions. The N-phase Allen-Cahn and N-phase Cahn-Hilliard equations can then be derived from the free-energy functional. A natural property is that the resulting dynamics of concentrations are independent of phase variables chosen. Finite element discretizations for N-phase models can be obtained as a natural extension of the existing discretizations for the two-phase model. The discrete energy law of the numerical schemes can be proved and numerically observed under some restrictions pertaining to time step size. Numerical experiments including the spinodal decomposition and the evolution of triple junctions are described in order to investigate the effect of pairwise surface tensions.

  5. Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2015-08-01

    Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. © 2014 Elsevier B.V.

  6. Surface tensions, densities and refractive indexes of mixtures of dibutyl ether and 1-alkanol at T=298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Rilo, Esther; Freire, Sonia; Segade, Luisa; Cabeza, Oscar. E-mail: oscabe@udc.es; Franjo, Carlos; Jimenez, Eulogio

    2003-05-01

    The aim of our present work is to present measurements of the surface tension, density and refractive index for binary mixtures of dibutyl ether with eight 1-alcohols {l_brace}C{sub 4}H{sub 9}OC{sub 4}H{sub 9}+C{sub 3}H{sub 7}OH,+C{sub 4}H{sub 9}OH,+C{sub 5}H{sub 11}OH,+C{sub 6}H{sub 13}OH,+C{sub 7}H{sub 15}OH,+C{sub =} 8H{sub 17}OH,+C{sub 9}H{sub 19}OH and +C{sub 10}H{sub 21}OH{r_brace} at the temperature of 298.15 K and atmospheric pressure. The experimental data are correlated by means of suitable empirical expressions, which relate the surface tension and refractive index of a mixture with its corresponding density. Also, calculated are the surface tension deviations and excess molar volumes from the measured data for all binary mixtures. The results of the study attending to the number of carbon atoms of the 1-alcohol are discussed.

  7. Improvements of the experimental apparatus for measurement of the surface tension of supercooled liquids using horizontal capillary tube

    Directory of Open Access Journals (Sweden)

    Vinš Václav

    2016-01-01

    Full Text Available An experimental apparatus with a horizontal capillary tube for measurement of the surface tension of supercooled liquids, i.e. liquids in a metastable state below the equilibrium freezing point, was designed and tested in the previous study [V. Vinš et al., EPJ Web Conf. 92, 02108 (2015]. In this work, recent modifications of both the experimental setup and the measurement analysis are described. The main aim is to improve the accuracy and the reproducibility of measured surface tension and to achieve higher degrees of supercooling. Temperature probes measuring the temperature of cooling medium near the horizontal capillary tube were calibrated in the relevant temperature range from – 31 °C to + 45 °C. An additional pressure transducer was installed in the helium distribution setup at the position close to the capillary tube. The optical setup observing the liquid meniscus at the open end of the horizontal capillary tube together with the video analysis were thoroughly revised. The red laser illuminating the liquid meniscus, used at the original apparatus, was replaced by a fiber optic light source, which significantly improved the quality of the meniscus image. The modified apparatus was used for the measurement of surface tension of supercooled water at temperatures down to – 11 °C. The new data have a lower scatter compared to the previous horizontal measurements and show a good agreement with the other data obtained with a different measurement technique based on the modified capillary rise method.

  8. Automated Hybrid Microwave Heating for Lunar Surface Solidification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project addresses the need for a system that will provide automated lunar surface stabilization via hybrid microwave heating. Surface stabilization is...

  9. Long-Wavelength Rupturing Instability in Surface-Tension-Driven Benard Convection

    Science.gov (United States)

    Swift, J. B.; Hook, Stephen J. Van; Becerril, Ricardo; McCormick, W. D.; Swinney, H. L.; Schatz, Michael F.

    1999-01-01

    A liquid layer with a free upper surface and heated from below is subject to thermocapillary-induced convective instabilities. We use very thin liquid layers (0.01 cm) to significantly reduce buoyancy effects and simulate Marangoni convection in microgravity. We observe thermocapillary-driven convection in two qualitatively different modes, short-wavelength Benard hexagonal convection cells and a long-wavelength interfacial rupturing mode. We focus on the long-wavelength mode and present experimental observations and theoretical analyses of the long-wavelength instability. Depending on the depths and thermal conductivities of the liquid and the gas above it, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. Linear stability theory gives good agreement to the experimental measurements of onset as long as sidewall effects are taken into account. Nonlinear theory correctly predicts the subcritical nature of the bifurcation and the selection between the dry spot and high spots.

  10. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  11. Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension

    Science.gov (United States)

    Su, Jun; Zhang, Jun

    2016-12-01

    In this work, three types of coupling agents: isopropyl trioleic titanate (NDZ105), vinyltriethoxysilane (SG-Si151), 3-aminopropyltriethoxysilane (KH550) were applied to modify the surface tension of Barium titanate (BaTiO3) particles. The Fourier transform infrared (FT-IR) spectra confirm the chemical adherence of coupling agents to the particle surface. The long hydrocarbon chains in NDZ105 can cover the particle surface and reduce the polar surface tension of BaTiO3 from 37.53 mJ/m2 to 7.51 mJ/m2, turning it from hydrophilic to oleophilic properties. The short and non-polar vinyl groups in SG-Si151 does not influence the surface tension of BaTiO3, but make BaTiO3 have both hydrophilic and oleophilic properties. The polar amino in KH550 can keep BaTiO3 still with hydrophilic properties. It is found that SG-Si151 modified BaTiO3 has the lowest interaction with HDPE matrix, lowering the storage modulus of HDPE composites to the greatest extent. As for mechanical properties, the polar amino groups in KH550 on BaTiO3 surface can improve the adhesion of BaTiO3 with HDPE matrix, which increases the elongation at break of HDPE composites to the greatest extent. In terms of electrical properties, the polar amino groups on surface of BaTiO3 can boost the dielectric properties of HDPE/BaTiO3 composites and decrease the volume resistivity of HDPE/BaTiO3 composites. The aim of this study is to investigate how functional groups affect the rheological, mechanical and electrical properties of HDPE composites and to select a coupling agent to produce HDPE/BaTiO3 composites with low dielectric loss, high dielectric constant and elongation at break.

  12. Effect of the heating surface enhancement on the heat transfer coefficient for a vertical minichannel

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2016-01-01

    Full Text Available The aim of the paper is to estimate effect of the heating surface enhancement on FC-72 flow boiling heat transfer for a vertical minichannel 1.7 mm deep, 24 mm wide and 360 mm long. Two types of enhanced heating surfaces were used: one with minicavities distributed unevenly, and the other with capillary metal fibrous structure. It was to measure temperature field on the plain side of the heating surface by means of the infrared thermography and to observe the two-phase flow patterns on the enhanced foil side. The paper analyses mainly the impact of the microstructured heating surface on the heat transfer coefficient. The results are presented as heat transfer coefficient dependences on the distance along the minichannel length. The data obtained using two types of enhanced heating surfaces in experiments was compared with the data when smooth foil as the heating surface was used. The highest local values of heat transfer coefficient were obtained using enhanced foil with minicavities - in comparison to other cases. Local values of heat transfer coefficient received for capillary fibrous structure were the lowest, even compared with data obtained for smooth foil. Probably this porous structure caused local flow disturbances.

  13. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  14. The Mechanical of the Small Axisymmetric Oscillations of the Liquid with the Surface Tension Forces in Elastic Tank

    Directory of Open Access Journals (Sweden)

    D. A. Goncharov

    2015-01-01

    Full Text Available In this paper we investigate small axisymmetric oscillations of a liquid in an elastic tank. We also take into account the influence of surface tension forces. For this, we turn to the mechanical analogue of the considered mechanical system. To realize the transition to mechanical analogue we use the energy method: postulating the equality of kinetic and potential energy for the investigated mechanical system and the mechanical system analog. Due to this transition we can further investigate the oscillations of a mechanical analogue. As a mechanical analogue, we consider the oscillator in the spring. The mass of the oscillator is calculated as the weight of the fluid to make oscillations. The oscillator spring constant is calculated using the identity of equations, namely, equation of free small oscillations of the oscillator and equation of free small oscillations of the system under investigation: the fluid in the elastic tank. The identity of equations allows us to draw conclusion about the identity of the natural frequencies for the source mechanical system and the system of a mechanical analogue. Next, we take into consideration the action of the surface tension. We record the Laplace condition for excess pressure because of the forces of surface tension. Then we compile the expression for the generalized force, taking into account the phenomenon of the surface tension. Next, we write the equation of oscillations of a mechanical analogue. The surface tension, due to the introduction of the generalized force in the equation for small oscillations of the mechanical analogue will change the natural frequency of the mechanical analogue. The paper presents the appropriate dependencies. The abovementioned allows us to investigate the stability of small motions of fluid in microgravity or low gravity by studying the stability of small motions of mechanical analogue. The latter is especially important due to the design and development of advanced

  15. Hydraulic Performance Modifications of a Zeolite Membrane after an Alkaline Treatment: Contribution of Polar and Apolar Surface Tension Components

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2015-01-01

    Full Text Available Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids on Na-mordenite films seeded onto alumina plates (flat membranes. A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals interactions in condensated state, surface modifications are investigated and a variation of the polar component of the material surface tension is observed. After the alkaline treatment, the electron-donor contribution (mainly due to the two remaining lone electron pairs of the oxygen atoms present in the zeolite extra frameworks decreases and an increase of the electron-receptor contribution is observed and quantified. The contribution of the polar component to the surface tension is attributed to the presence of surface defaults, which increase the surface hydrophilicity. The estimated modifications of the surface interaction energy between the solvent (water and the Na-mordenite active layer are in good agreement with the decrease of the hydraulic permeability observed after a mild alkaline treatment.

  16. A multiphase three-dimensional multi-relaxation time (MRT) lattice Boltzmann model with surface tension adjustment

    Science.gov (United States)

    Ammar, Sami; Pernaudat, Guillaume; Trépanier, Jean-Yves

    2017-08-01

    The interdependence of surface tension and density ratio is a weakness of pseudo-potential based lattice Boltzmann models (LB). In this paper, we propose a 3D multi-relaxation time (MRT) model for multiphase flows at large density ratios. The proposed model is capable of adjusting the surface tension independently of the density ratio. We also present the 3D macroscopic equations recovered by the proposed forcing scheme. A high order of isotropy for the interaction force is used to reduce the amplitude of spurious currents. The proposed 3D-MRT model is validated by verifying Laplace's law and by analyzing its thermodynamic consistency and the oscillation period of a deformed droplet. The model is then applied to the simulation of the impact of a droplet on a dry surface. Impact dynamics are determined and the maximum spread factor calculated for different Reynolds and Weber numbers. The numerical results are in agreement with data published in the literature. The influence of surface wettability on the spread factor is also investigated. Finally, our 3D-MRT model is applied to the simulation of the impact of a droplet on a wet surface. The propagation of transverse waves is observed on the liquid surface.

  17. Fabrication of durable super-repellent surfaces on cotton fabric with liquids of varying surface tension: Low surface energy and high roughness

    Science.gov (United States)

    Singh, Arun K.; Singh, Jayant K.

    2017-09-01

    In this study, we have developed super-repellent surface on cotton fabric via a facile and eco-friendly strategy using zirconia particles with water-soluble siloxane emulsion. The coated fabric using zirconia-siloxane (ZS) coating showed super-repellency of liquids with surface tension >47.7 mN/m, like water, mixtures of isopropyl alcohol with deionized water (2% and 5%, v/v), and ethylene glycol with contact angle of 158°, 155°, 153° and 152°, respectively. Furthermore, the coated fabric displays low sliding angle, materials with ability to repel water in the presence of oily pollutants are very useful in application related to sea water. Thus as-prepared coated fabric, with dual functionality, is a promising material for many applications including anti-wetting, self-cleaning, support for aquatic floating devices and as a filtration material for rapid and continuous oil-water separation.

  18. Effect of surface tension on self-termination in Au tip fabrication for tip-enhanced Raman spectroscopy

    Science.gov (United States)

    Chaunchaiyakul, Songpol; Yano, Takeshi; Krukowski, Pawel; Kuwahara, Yuji

    2016-09-01

    The effect of surface tension on the fabrication of Au tips was investigated. When using a 12 M HCl aqueous solution, the etching process did not consistently self-terminate after the lower part of the wire dropped, resulting in the poor reproducibility of the tip sharpness. However, using an ethanolic solution of 12 mol/l HCl, a self-terminating etching process was always observed, resulting in the improved reproducibility of sharp tips. We attribute this to the reduced surface compared to that of aqueous HCl. The obtained tips were used in tip-enhanced Raman spectroscopy experiments, in which significant signal enhancement was observed.

  19. Solid/liquid interfacial tension as a tool to study stability of lysozyme on adsorption to solid surfaces

    Science.gov (United States)

    Krishnan, C. A.; Maheshwari, R.; Dhathathreyan, A.

    2006-01-01

    This work proposes the use of solid/liquid interfacial tension to study the stability of adsorbed lysozyme films on a solid surface using the contact angle of a liquid at the three phase contact line, in the presence of a denaturant, urea. Results suggest a direct correlation between this method with a standard technique like the fluorescence emission spectra and is measured with the same observable error as in the spectral methods. Further the technique provides a simple and direct handle to evaluate the homogeneity and degree of polarity of protein films on solid surfaces.

  20. Link between Surface and Subsurface Urban Heat Islands

    Science.gov (United States)

    Benz, Susanne; Bayer, Peter; Olesen, Folke; Goettsche, Frank; Blum, Philipp

    2016-04-01

    Urban heat islands exist in all diverse layers of modern cities, such as surface and subsurface. While both layers are typically investigated separately, the coupling of surface and subsurface urban heat islands is insufficiently understood. Hence, this study focuses on the interrelation of both zones and the influence of additional underground heat sources, such as heated basements, on this interaction. Using satellite derived land surface temperatures and interpolated groundwater temperature measurements the spatial properties of both heat islands are compared. Significant correlations of 0.5 up to more than 0.8 are found between surface and subsurface urban heat islands. If groundwater flow is considered this correlation increases by approximately 10%. Next we analyzed the dissimilarities between both heat islands in order to understand the interaction between the urban surface and subsurface. We find that local groundwater hotspots under the city center and industrial areas are not revealed in satellite derived land surface temperatures. Overall groundwater temperatures are higher than land surface temperatures in 95% of the analyzed area due to the influence of below ground anthropogenic heat sources such as sewage systems, district heating systems, and especially elevated basement temperatures. Thus, an estimation method is proposed that relates groundwater temperatures to mean annual land surface temperatures, building density, and elevated basement temperatures. Using this method regional groundwater temperatures can be accurately estimated with a mean absolute error of 0.9 K. Since land surface temperatures and building densities are available from remote sensing, this method has the potential for a large scale estimations of urban groundwater temperatures. Thus, it is feasible to detect subsurface urban heat islands on a global level and to investigate sustainable geothermal potentials using satellite derived data.

  1. Flow impinging effect of critical heat flux and nucleation boiling heat transfer on a downward facing heating surface

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Huai-En; Chen, Mei-Shiue; Chen, Jyun-Wei; Lin, Wei-Keng; Pei, Bau-Shei [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science

    2015-05-15

    Boiling heat transfer has a high heat removal capability in convective cooling. However, the heat removal capability of downward-facing boiling is significantly worse than that of upward-facing cases because of the confined buoyancy effect. This study was inspired by the conception of external reactor vessel cooling (ERVC) condition relevant to the in-vessel retention (IVR) design of Westinghouse AP1000 plant. In the present study, a small-scale test facility had been established to investigate the local phenomena of boiling heat transfer under a downward-facing horizontal heated surface with impinging coolant flow. In this study, the surface temperature, heat flux information and several specific scenes of bubbles are taken down throughout the boiling processes for detailed investigation. It is observed that bubbles are confined under the downward-facing heated surface, which causes a worse heat transfer rate and a lower critical heat flux (CHF) limit than upward-facing boiling. Nevertheless, the impinging coolant flow is found to disturb the thermal boundary layer formed by the heated surface, so the CHF increases with an increase of coolant flow rate. In addition, during nucleate boiling, it is discovered that the growth, combination and dissipation of bubbles induce turbulent wakes and therefore enhance the heat transfer capability.

  2. Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces

    CERN Document Server

    Betz, Amy Rachel; Kim, Chang-Jin 'CJ'; Attinger, Daniel

    2012-01-01

    With recent advances in micro- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics of fluids on these surfaces have been well characterized. However, few investigations have been made into the potential of these surfaces to control and enhance other transport phenomena. In this article, we characterize pool boiling on surfaces with wettabilities varied from superhydrophobic to superhydrophilic, and provide nucleation measurements. The most interesting result of our measurements is that the largest heat transfer coefficients are reached not on surfaces with spatially uniform wettability, but on biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. We develop an analytical model that describes how biphilic surfaces effectively manage the vapor and liquid transport, delaying critical heat flux and maximizing the heat transfer coefficient. Finally, we manufacture and test the first superbiphilic surfaces (juxtaposing superhydrophobic ...

  3. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M

    2013-01-01

    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  4. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  5. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  6. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation

    Science.gov (United States)

    Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik

    2017-07-01

    A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.

  7. Morphology observation for surface orange peel and fracture in tension sample of aluminum-alloy sheet and characterization of nano hardness

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; Mei Huashen; Lu Hongzhou; Yang Hongya; Wu Emei; Zhou Mingbo

    2012-01-01

    The tension property of aluminum-alloy sheet with different microstructures is measured, and the surface and tension fracture morphology of tension sample with and without orange peel are observed by using scanning electron microscope (SEM). Surface roughness and nano hardness of tension sample are measured. The results show that the average elongation of the samples with orange peel is lower than that without orange peel ; especially the r value of per- pendicular to the rolling direction is much lower than that without orange peel. The tension surface of the orange peel samples is very rough; various parameters of surface roughness are higher. Under the observation of SEM, a wider slid- ing band with a micro crack on the surface of orange peel sample can be found. The various parameters of surface rough- ness without orange peel sample are near to zero, the sliding band is narrow and without micro cracks. The dimple width in tensile fracture of orange peel sample is larger than that without orange peel sample, but shear lip is narrower. The nano hardness testing results show that samples with orange peel behave high elastic modulus, high hardness, and high maximum load, but low plastic deformation depth. These mentioned features can completely describe surface and frac- ture morphology of tension samt31es with oranze peel.

  8. Surface tension of decane binary and ternary mixtures with eicosane, docosane, and tetracosane

    DEFF Research Database (Denmark)

    Queimada, Antonio; Cao, A.I.; Marrucho, I.M.

    2005-01-01

    -C24H50 and the ternary n-C10H22 + n-C20H42 + n-C24H50 were measured from 293.15 K (or above the solution melting temperature) up to 343.15 K. An average absolute deviation of 1.3% was obtained in comparison with pure component literature data. No mixture information for the reported systems was found......A tensiometer operating on the Wilhelmy plate method was employed to measure liquid-vapor interfacial tensions of three binary mixtures and one ternary mixture of decane with eicosane, docosane, and tetracosane. Tensions of binary mixtures n-C10H22 + n-C20H42, n-C10H22 + n-C22H46, and n-C10H22 + n...

  9. Direct Monte Carlo Measurement of the Surface Tension in Ising Models

    CERN Document Server

    Hasenbusch, M

    1992-01-01

    I present a cluster Monte Carlo algorithm that gives direct access to the interface free energy of Ising models. The basic idea is to simulate an ensemble that consists of both configurations with periodic and with antiperiodic boundary conditions. A cluster algorithm is provided that efficently updates this joint ensemble. The interface tension is obtained from the ratio of configurations with periodic and antiperiodic boundary conditions, respectively. The method is tested for the 3-dimensional Ising model.

  10. Boiling Heat Transfer on Porous Surfaces with Vapor Channels

    Institute of Scientific and Technical Information of China (English)

    吴伟; 杜建华; 王补宣

    2002-01-01

    Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.

  11. Effect of surface tension, viscosity, and process conditions on polymer morphology deposited at the liquid-vapor interface.

    Science.gov (United States)

    Haller, Patrick D; Bradley, Laura C; Gupta, Malancha

    2013-09-17

    We have observed that the vapor-phase deposition of polymers onto liquid substrates can result in the formation of polymer films or particles at the liquid-vapor interface. In this study, we demonstrate the relationship between the polymer morphology at the liquid-vapor interface and the surface tension interaction between the liquid and polymer, the liquid viscosity, the deposition rate, and the deposition time. We show that the thermodynamically stable morphology is determined by the surface tension interaction between the liquid and the polymer. Stable polymer films form when it is energetically favorable for the polymer to spread over the surface of the liquid, whereas polymer particles form when it is energetically favorable for the polymer to aggregate. For systems that do not strongly favor spreading or aggregation, we observe that the initial morphology depends on the deposition rate. Particles form at low deposition rates, whereas unstable films form at high deposition rates. We also observe a transition from particle formation to unstable film formation when we increase the viscosity of the liquid or increase the deposition time. Our results provide a fundamental understanding about polymer growth at the liquid-vapor interface and can offer insight into the growth of other materials on liquid surfaces. The ability to systematically tune morphology can enable the production of particles for applications in photonics, electronics, and drug delivery and films for applications in sensing and separations.

  12. Rapid infrared heating of a surface

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

    2002-01-01

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  13. Rapid infrared heating of a surface

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

    2001-01-01

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  14. Rapid infrared heating of a surface

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K.; Blue, Craig A.; Ohriner, Evan Keith

    2003-12-23

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  15. Butler-Sugimoto monomolecular bilayer interface model: the effect of oxygen on the surface tension of a liquid metal and its wetting of a ceramic.

    Science.gov (United States)

    Yen, Pei-Shan; Datta, Ravindra

    2014-07-15

    The influence of oxygen on liquid-gas surface tension of molten metals has been well-investigated experimentally and modeled theoretically via the Szyszkowski equation, derivable from the Butler molecular monolayer interface model. However, there is no corresponding model describing the experimentally observed profound effect of oxygen partial pressure on solid-liquid surface tension as well as on contact angle of molten metals on ceramic substrates. Here, we utilize the Butler-Sugimoto thermodynamic approach based on a monomolecular bilayer interface model to investigate the effect of oxygen partial pressure on liquid-gas as well as solid-liquid surface tension of molten Cu/Al2O3 and molten Ag/Al2O3 systems. It is shown that both liquid-gas and solid-liquid surface tension are a strong function of oxygen activity in the melt, which, in turn, depends on gas-phase oxygen partial pressure, in conformity with experiments. The change in solid-liquid surface tension and wetting is also greatly affected by the change in liquid-gas surface tension. This improved understanding is of practical significance in many applications.

  16. Investigation of Enhanced Boiling Heat Transfer from Porous Surfaces

    Institute of Scientific and Technical Information of China (English)

    LinZhiping; MaTongze; 等

    1994-01-01

    Experimental investigations of boiling heat transfer from porous surfaces at atmospheric pressure were performne.The porous surfaces are plain tubes coverd with metal screens.V-shaped groove tubes covered with screens,plain tubes sintered with screens.and V-shaped groove tubes sintered with screens,The experimental results show that sintering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer,The boiling hystesis was observed in the experiment.This paper discusses the mechanism of the boiling heat transfer from those kinds of porous surfaces stated above.

  17. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  18. Heat transfer between elastic solids with randomly rough surfaces.

    Science.gov (United States)

    Volokitin, A I; Lorenz, B; Persson, B N J

    2010-01-01

    We study the heat transfer between elastic solids with randomly rough surfaces.We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the non-contact regions.We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

  19. [Study of the surface tear tension and evaluation of its importance for the retinal physiology and pathology in contact correction and in adaptation to soft contact lenses].

    Science.gov (United States)

    Cherepnin, A I; Smoliakova, G P; Sorokin, E L

    2003-01-01

    The surface lachrymal-fluid (LF) tension was investigated by teardrop dissection in 115 patients with myopia before they were prescribed soft contact lenses (SCL). Such tension was found to be of clinical importance for the development of SCL adaptation disorders. A longer adaptation period in patients with myopia was associated with a low surface LF tension. A high surface LF tension concurrent with the teardrop dissection mode of the destruction type was typical of the pathological nature of SCL adaptation (12.1% of patients). The obtained data are needed to detect timely the risk of dysadaptation disorders and corneal complications before SCL prescription for the purpose of undertaking the pathogenetically substantiated medication to prevent such complications.

  20. Model HULIS compounds in nanoaerosol clusters – investigations of surface tension and aggregate formation using molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    T. Hede

    2011-07-01

    Full Text Available Cloud condensation nuclei act as cores for water vapour condensation, and their composition and chemical properties may enhance or depress the ability for droplet growth. In this study we use molecular dynamics simulations to show that model humic-like substances (HULIS in systems containing 10 000 water molecules mimic experimental data well referring to reduction of surface tension. The model HULIS compounds investigated in this study are cis-pinonic acid (CPA, pinic acid (PAD and pinonaldehyde (PAL. The structural properties examined show the ability for the model HULIS compounds to aggregate inside the nanoaerosol clusters.

  1. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Vinš Václav

    2015-01-01

    Full Text Available New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  2. Barents Sea heat – transport, storage and surface fluxes

    Directory of Open Access Journals (Sweden)

    Ø. Skagseth

    2009-07-01

    Full Text Available Sensitivity of the Barents Sea to variation in ocean heat transport and surface fluxes is explored using a 1-D column model. Mean monthly ocean transport and atmospheric forcing are synthesised and force model results that reproduce the observed winter convection and surface warming and freshening well. Model results are compared to existing estimates of the ocean to air heat fluxes and horizontally averaged profiles for the southern and northern Barents Sea. Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production. The northern Barents Sea, the major part of the area, receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss in the north, the balance is achieved by long wave loss removing most of the solar heating, and the model also suggests a positive sensible heat gain. During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. Despite large changes the Barents Sea heat loss remains robust, the temperature adjusts, and the yearly cycle remains. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport probably leads to a spreading of warm water further north.

  3. The elimination of water-borne contaminants by a surface-tension based absorption system; Elimination de contaminants dans l`eau a l`aide d`un systeme d`absorption agissant sur la tension de surface

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, J.; Panasuk, S.; Cote, B. [Sanexen Services Environnementaux inc., Longueuil, PQ (Canada)

    1997-12-31

    A new filtration method designed to remove colloidal or emulsified contaminants in water was described. The method, called Ultrasorption{sup T}M, employs an absorption technique by which the surface tension of water is increased. The method can successfully treat millions of litres of contaminated water in situations that would be problematic with conventional methods. Many water-borne contaminants such as polychlorinated biphenyls (PCBs), chlorophenols and low-polarity hydrocarbons such as polycyclic aromatic hydrocarbons (PAHs) are hydrophobic. The Ultrasorption method is based on the hydrophobic nature of these contaminants. It employs a special solvation agent that is integrated into the filtration matrix and is designed to capture the hydrophobic contaminants in the water. The solvation agent acts as both a demulsifier by increasing the surface tension of the water and as a fluid to allow the dissolution and retention of the contaminants. Results of trials at several sites in Quebec including Saint-Basile-le-Grand, Manic II, Saint-Amable and Smithville were presented. 5 refs., 3 tabs.

  4. DESIGN AND CALCULATION OF AERODROMECOAING WITH HEATED SURFACE LAYERS

    Directory of Open Access Journals (Sweden)

    Vadim G. Piskunov

    2009-04-01

    Full Text Available  The developed constructions with heated by surface layers for aerodromes and auto roads when developed composition of electroconductive concrete reinforced with chemical electrical conductive fibres being used was researched. The experimentally obtained characteristics of ended conductive concrete reinforced with fibers were presented. Calculation by developed heated construction of shell was made.

  5. Effect of electric potential and heating on surface of KCI

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The purpose of the work is research of morphology of structural changes of a surface { 100} crystals KCl under action of heating and electric field potential enclosed to one of fasets of a crystal.

  6. Effect of electric potential and heating on surface of KCI

    Institute of Scientific and Technical Information of China (English)

    Feodorov; Victor; A.; Sterelukhin; Andrey; A.; Karyev; Leonid; G.

    2005-01-01

    The purpose of the work is research of morphology of structural changes of a surface { 100} crystals KCl under action of heating and electric field potential enclosed to one of fasets of a crystal.……

  7. Surface renewal method for estimating sensible heat flux

    African Journals Online (AJOL)

    2008-09-18

    Sep 18, 2008 ... Keywords: surface energy balance, sensible heat flux, latent energy flux, evaporation ... Hill et al., 1992; Thiermann and Grassl, 1992; Green et al.,. 1994; De ...... the time traces over rangeland grass near Ione (California).

  8. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  9. EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER THE DIMPLED SURFACE

    Directory of Open Access Journals (Sweden)

    Dr. Sachin L. Borse

    2012-08-01

    Full Text Available Over the past couple of years the focus on using concavities or dimples provides enhanced heat transfer has been documented by a number of researchers. Dimples are used on the surface of internal flow passages because they produce substantial heat transfer augmentation. This project work is concerned with experimentalinvestigation of the forced convection heat transfer over the dimpled surface. The objective of the experiment is to find out the heat transfer and air flow distribution on dimpled surfaces and all the results obtained are compared with those from a flat surface. The varying parameters were i Dimple arrangement on the plate i.e.staggered and inline arrangement and ii Heat input iiiDimple density on the plate. Heat transfer coefficients and Nusselt number were measured in a channel with one side dimpled surface. Thespherical type dimples were fabricated, and the diameter and the depth of dimple were 6 mm and 3 mm, respectively. Channel height is 25.4mm, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 5000 to 15000.Study shown that thermal performance is increasing with Reynolds number. With the inline and staggered dimple arrangement, the heat transfer coefficients, Nusselt number and the thermal performance factors were higher for the staggered arrangement.

  10. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2006-11-01

    Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited.  Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions.  Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied.  The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was composition dependent. For more "realistic" higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus, it would appear that in order to model

  11. Wind-Speed—Surface-Heat-Flux Feedback in Dust Devils

    Science.gov (United States)

    Ito, Junshi; Niino, Hiroshi

    2016-06-01

    Strong winds associated with dust devils can induce locally large heat fluxes from the surface, and resulting enhanced buoyancy may further intensify the dust devils. This positive wind—surface-heat-flux feedback is studied using a large-eddy simulation of a convective boundary layer. A comparison of the results with and without the feedback process for the same environment demonstrates the significance of the feedback process for simulated dust devils.

  12. Surfaces for high heat dissipation with no Leidenfrost limit

    Science.gov (United States)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  13. Condensation heat transfer on two-tier superhydrophobic surfaces

    Science.gov (United States)

    Cheng, Jiangtao; Vandadi, Aref; Chen, Chung-Lung

    2012-09-01

    We investigated water vapor condensation on a two-tier superhydrophobic surface in an environmental scanning electron microscope (ESEM) and in a customer-designed vapor chamber. We have observed continuous dropwise condensation (DWC) on the textured surface in ESEM. However, a film layer of condensate was formed on the multiscale texture in the vapor chamber. Due to the filmwise condensation, the condensation heat transfer coefficient of the superhydrophobic surface is lower than that of a flat hydrophobic surface especially under high heat flux situations. Our studies indicate that adaptive and prompt condensate droplet purging is the dominant factor for sustaining long-term DWC.

  14. Surface tension of dilute alcohol-aqueous binary fluids: n-Butanol/water, n-Pentanol/water, and n-Hexanol/water solutions

    Science.gov (United States)

    Cheng, Kuok Kong; Park, Chanwoo

    2017-01-01

    Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.

  15. Inverse Estimation of Transient Heat Flux to Slab Surface

    Institute of Scientific and Technical Information of China (English)

    CUI Miao; YANG Kai; LIU Yun-fei; GAO Xiao-wei

    2012-01-01

    The transient heat flux was calculated using a model for inverse heat conduction problems based on temper- ature measurements. The unknown heat flux was taken as an optimization variable and solved by minimizing the differences between the calculated temperatures and the measured ones. Several examples were given to show the ef- fectiveness and the accuracy of the inverse algorithm in estimating the transient heat flux to a slab surface. The re sults show that the inverse approach can be applied in the steel industry or in other areas where the target of investi- gation is inaccessible to direct measurements or difficult to be directly modeled.

  16. Heat transfer crisis on sintered porous surfaces – experimental investigations

    Directory of Open Access Journals (Sweden)

    Wojcik Tadeusz Michal

    2012-04-01

    Full Text Available There were presented the results of theoretical analysis of boiling heat transfer on heating surfaces covered with thin-layered capillary porous structures. The paper discussed the results of experimental investigations into intralayer boiling crisis and accompanying phenomena. It was observed that the structural parameters of the porous covering affected the course of the process. Hysteresis phenomenon manifested itself when the heat flux initiating intralayer heat crisis was reached. The crisis mechanism hypotheses, the description of which was available in literature, were discussed.

  17. Combined Effect of Surface Tension, Gravity and van der Waals Force Induced by a Non-Contact Probe Tip on the Shape of Liquid Surface

    Institute of Scientific and Technical Information of China (English)

    LIU Nan; BAI Yi-Long; XIA Meng-Fen; KE Fu-Jiu

    2005-01-01

    @@ Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly gov erned by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.

  18. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  19. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  20. The surface tension of a solid at the solid-vacuum interface, an evaluation from adsorption and wall potential calculations.

    Science.gov (United States)

    Jakubov, Tim S; Mainwaring, David E

    2007-03-15

    A method for the evaluation of quantities that are experimentally inaccessible such as the surface tension at the solid-vacuum interface and the superficial tension of the fluid in contact with the solid is presented. The approach is based on consideration of an equilibrium of a fluid in solid capillary wherein a balance between surface and capillary forces has been replaced by conceptual alternative interfacial and centrifugal forces. This approach involves the simultaneous numerical solution one the special forms of the Gibbs equation for solid-fluid interface and a generalized Kelvin equation derived earlier. The latter equation takes into account interactions between the solid thick cylindrical wall and confined fluid, this body-body interaction potential has been primarily calculated using the Lennard-Jones (6-12) expression for the atom-atom pair potentials and expressed by hypergeometrical functions having good convergences. All numerical calculations shown here have been performed for the model graphite-argon system at 90 K. Finally, an analysis of the accuracy of the proposed method is considered.

  1. Buoyancy-driven detachment of a wall-bound pendant drop: Interface shape at pinchoff and nonequilibrium surface tension

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2015-09-01

    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90∘, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000), 10.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  2. Density, viscosity, surface tension, and spectroscopic properties for binary system of 1,2-ethanediamine + diethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lihua; Zhang, Jianbin, E-mail: tadzhang@pku.edu.cn; Li, Qiang; Guo, Bo; Zhao, Tianxiang; Sha, Feng

    2014-08-20

    Graphical abstract: Excess property of the binary system 1,2-ethanediamine (EDA) + diethylene glycol (DEG). - Highlights: • Densities and viscosities of EDA + DEG at 298.15–318.150 K were listed. • Thermodynamics data of EDA + DEG at 298.15–318.15 K were calculated. • Surface tension of EDA + DEG at 298.15 K was measured. • Intermolecular interaction of EDA with DEG was discussed. - Abstract: This paper reports density and viscosity data at T = 298.15, 303.15, 308.15, 313.15, and 318.15 K and surface tension data at 298.15 K for the binary system 1,2-ethanediamine (EDA) + diethylene glycol (DEG) as a function of composition under atmospheric pressure. From the experimental density and viscosity data, the excess molar volume and viscosity deviation were calculated, and the results were fitted to a Redlich–Kister equation to obtain the coefficients and to estimate the standard deviations between the experimental and calculated quantities. Based on the kinematic viscosity data, enthalpy of activation for viscous flow, entropy of activation for the viscous flow, and Gibbs energies of activation of viscous flow were calculated. In addition, based on Fourier transform infrared spectra, UV–vis spectra, and electrical conductivity for the system EDA + DEG with various concentrations, intermolecular interaction of EDA with DEG was discussed.

  3. Buoyancy-driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension.

    Science.gov (United States)

    Lamorgese, A; Mauri, R

    2015-09-01

    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90^{∘}, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000)JFLSA70022-112010.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  4. Pressure and surface tension of an active simple liquid: a comparison between kinetic, mechanical and free-energy based approaches.

    Science.gov (United States)

    Marini Bettolo Marconi, Umberto; Maggi, Claudio; Melchionna, Simone

    2016-06-29

    We discuss different definitions of pressure for a system of active spherical particles driven by a non-thermal coloured noise. We show that mechanical, kinetic and free-energy based approaches lead to the same result up to first order in the non-equilibrium expansion parameter. The first prescription is based on a generalisation of the kinetic mesoscopic virial equation and expresses the pressure exerted on the walls in terms of the average of the virial of the inter-particle forces. In the second approach, the pressure and the surface tension are identified with the volume and area derivatives, respectively, of the partition function associated with the known stationary non-equilibrium distribution of the model. The third method is a mechanical approach and is related to the work necessary to deform the system. The pressure is obtained by comparing the expression of the work in terms of local stress and strain with the corresponding expression in terms of microscopic distribution. This is determined from the force balance encoded in the Born-Green-Yvon equation. Such a method has the advantage of giving a formula for the local pressure tensor and the surface tension even in inhomogeneous situations. By direct inspection, we show that the three procedures lead to the same values of the pressure, and give support to the idea that the partition function, obtained via the unified coloured noise approximation, is more than a formal property of the system, but determines the stationary non-equilibrium thermodynamics of the model.

  5. COMPARISON OF INTERFACIAL SURFACE TENSION AND CAPILLARITY OF MAXILLARY COMPLETE DENTURES, FABRICATED BY CONVENTIONAL CUVETTE TECHNIQUE AND INJECTION MOLDING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kalina Georgieva

    2016-09-01

    Full Text Available Purpose: The purpose of this in vivo study is to register the forces necessary to displace maxillary complete dentures fabricated by compression molding and injection molding techniques on one and the same patient and to compare the interfacial surface tension and capillarity which are achieved by both techniques. Material/Methods: Two maxillary complete dentures are made for each patient (total number of patients is 30 using both technologies. The magnitude of dislodging force is measured by a dynamometer. Results: Mean ± standard deviation for conventional cuvette technique is 17,53N ± 12,11N. Mean ± standard deviation for injection molding technique is 20,73N ± 13,89N. Analysis of variance (ANOVA revealed statistically significant differences in results achieved by conventional cuvette technique and injection molding technology. The results of injection technique were higher than those of compression molding technique (F=123,676, p< 0,001. Conclusions: Based on the results we suggest a standard for dislodging force of maxillary complete dentures fabricated by conventional cuvette technique- 13N, and by injection molding technology-15,5N. These values would guarantee good interfacial surface tension and capillarity. The injection molding technique was found to produce better fitting maxillary complete dentures when compared to compression molding technique. This would ensure better retention, less traumatic manifestations after insertion and higher patient’s comfort and satisfaction.

  6. Tracking ocean heat uptake during the surface warming hiatus.

    Science.gov (United States)

    Liu, Wei; Xie, Shang-Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep into the Atlantic and Southern Oceans during the recent hiatus of global warming. Here we show that the deep heat penetration in these two basins is not unique to the hiatus but is characteristic of anthropogenic warming and merely reflects the depth of the mean meridional overturning circulation in the basin. We find, however, that heat redistribution in the upper 350 m between the Pacific and Indian Oceans is closely tied to the surface warming hiatus. The Indian Ocean shows an anomalous warming below 50 m during hiatus events due to an enhanced heat transport by the Indonesian throughflow in response to the intensified trade winds in the equatorial Pacific. Thus, the Pacific and Indian Oceans are the key regions to track ocean heat uptake during the surface warming hiatus.

  7. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  8. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...

  9. Urban Surfaces and Heat Island Mitigation Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Akbari, Hashem; Shea Rose, Leanna

    2007-06-14

    Data on materials and surface types that comprise a city, i.e. urban fabric, are needed in order to estimate the effects of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city. We discuss the results of a semi-automatic statistical approach used to develop data on surface-type distribution and urban-fabric makeup using aerial color orthophotography, for four metropolitan areas of Chicago, IL, Houston, TX, Sacramento, CA, and Salt Lake City, UT. The digital high resolution (0.3 to 0.5-m) aerial photographs for each of these metropolitan areas covers representative urban areas ranging from 30 km{sup 2} to 52 km{sup 2}. Major land-use types examined included: commercial, residential, industrial, educational, and transportation. On average, for the metropolitan areas studied, vegetation covers about 29-41% of the area, roofs 19-25%, and paved surfaces 29-39%. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the tree canopies, vegetation covers about 20-37% of the area, roofs 20-25%, and paved surfaces 29-36%.

  10. Surface tension and disjoining pressure of free-standing smectic films above the bulk smectic-A-isotropic transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A. V., E-mail: avz0911@yahoo.com [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation); Śliwa, Izabela, E-mail: izasliwa@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan (Poland)

    2014-03-28

    We have carried out a numerical study of both the structural and thermodynamic properties of free-standing smectic films for the case of enhanced pair interaction in the bounding layers. Calculations, based upon the extended McMillan's mean-field theory with anisotropic forces, show that the layer-thinning transitions are characterized by abrupt drops to lower values, both for a disjoining pressure and a fluctuation-induced long-range interaction between the smectic film surfaces, and then continues to increase with a larger positive slope. Reasonable agreement between the theoretically predicted and the experimentally obtained data on the surface tension of the partially fluorinated 5-n-alkyl-2-(4-n-(perfluoroalkyl-metheleneoxy)phenyl) film has been obtained.

  11. Heat Flux Apportionment to Heterogeneous Surfaces Using Flux Footprint Analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Heat flux data collected from the Baiyangdian Heterogeneous Field Experiment were analyzed using the footprint method. High resolution (25 m) Landsat-5 satellite imaging was used to determine the land cover as one of four surface types: farmland, lake, wetland, or village. Data from two observation sites in September 2005 were used. One site (Wangjiazhai) was characterized by highly heterogeneous surfaces in the central area of the Baiyangdian: lake/wetland. The other site (Xiongxian) was on land with more uniform surface cover. An improved Eulerian analytical flux footprint model was used to determine "source areas" of the heat fluxes measured at towers located at each site from surrounding landscapes of mixed surface types.In relative terms results show that wetland and lake areas generally contributed most to the observed heat flux at Wangjiazhai, while farmland contributed most at Xiongxian. Given the areal distribution of surface type contributions, calculations were made to obtain the magnitudes of the heat flux from lake, wetland and farmland to the total observed flux and apportioned contributions of each surface type to the sensible and latent heat fluxes. Results show that on average the sensible heat flux from wetland and farmland were comparable over the diurnal cycle, while the latent heat flux from farmland was somewhat larger by about 30-50 W m-2 during daytime. The latent and sensible fluxes from the lake source in daytime were about 50 W m-2 and 100 W m-2 less, respectively, than from wetland and farmland. The results are judged reasonable and serve to demonstrate the potential for flux apportionment over heterogeneous surfaces.

  12. Aerodynamic heat transfer to RSI tile surfaces and gap intersections. [Reusable Surface Insulation

    Science.gov (United States)

    Dunavant, J. C.; Throckmorton, D. A.

    1974-01-01

    Review of the results of aerothermal heating tests of a simulated reusable surface insulation (RSI) tile array, performed on the sidewall of a Mach-10 hypersonic tunnel. In particular, the heating characteristics of the tile array, such as they result from heating inside the tile-expansion-space providing gaps between individual tiles, are investigated. The results include the finding that heating on the upstream face of a tile is strongly affected by the interacting longitudinal gap flow.

  13. The surface heat flow of the Arabian Shield in Jordan

    Science.gov (United States)

    Förster, A.; Förster, H.-J.; Masarweh, R.; Masri, A.; Tarawneh, K.; Desert Group

    2007-04-01

    Surface heat flow in southern Jordan (western part of the Arabian Plate) was determined in a dense cluster of five, up to 900-m-deep boreholes that have encountered sedimentary rocks of Paleozoic (Ordovician and Silurian) age. These rocks are underlain by an igneous and metamorphic basement, which has been studied for its radiogenic heat production, along the eastern margin of the Dead Sea Transform (DST) fault system. The heat flow, calculated from continuous temperature logs and laboratory-measured thermal conductivity of drillcores and surface samples, averages to 60.3 ± 3.4 mW m -2 and contrasts the common view of the late Proterozoic-consolidated Arabian Shield constituting a low heat-flow province of ⩽45 mW m -2. Although only characterizing an area of about 300 km 2, this average is unlikely representing a positive local anomaly caused by voluminous HHP granites/rhyolites at shallow depths. Instead, a heat flow of 60 mW m -2 is considered a robust estimate of the Phanerozoic conductive surface heat flow not only for Jordan, but for the Arabian Shield in areas unaffected by younger reactivation. The large variation in conductive heat flow (36-88 mW m -2) previously observed in Jordan, southern Syria, and Saudi Arabia is irreconcilable with their broad similarity in lithosphere structure and composition and rather reflects a combination of factors including low-quality temperature data and insufficient knowledge on thermal rock properties.

  14. Modeling of Surface Tension and Viscosity for Non-electrolyte Systems by Means of the Equation of State for Square-well Chain Fluids with Variable Interaction Range

    Institute of Scientific and Technical Information of China (English)

    LI Jinlong; HE Changchun; MA Jun; PENG Changjun; LIU Honglai; HU Ying

    2011-01-01

    The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of surface tension and viscosity of common fluids and ionic liquids(ILs).A model of surface tension for multi-component mixtures is presented by combining the SWCF-VR EOS and the scaled particle theory and used to produce the surface tension of binary and ternary mixtures.The predicted surface tensions are in excellent agreement with the experimental data with an overall average absolute relative deviation(AAD)of 0.36%.A method for the calculation of dynamic viscosity of common fluids and ILs at high pressure is presented by combining Eyring’s rate theory of viscosity and the SWCF-VR EOS.The calculated viscosities are in good agreement with the experimental data with the overall AAD of 1.44% for 14 fluids in 84 cases.The salient feature is that the molecular parameters used in these models are self-consistent and can be applied to calculate different thermodynamic properties such as pVT,vapor-liquid equilibrium,caloric properties,surface tension,and viscosity.

  15. Surface tension of non-ideal binary and ternary liquid mixtures at various temperatures and p = 81.5 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, A.A., E-mail: rafati_aa@yahoo.co [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of); Bagheri, A. [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of); Najafi, M. [Department of Material Engineering, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of)

    2011-03-15

    Experimental surface tensions for binary mixtures (1,2-ethandiol + water), (1,2-ethandiol + acetonitrile), and (acetonitrile + water) at temperatures of 283.15 K, 298.15 K, and 308.15 K and the ternary mixture (1,2-ethandiol/water/acetonitrile) at 298.15 K have been measured with the Du Nouey ring tensiometer. The surface tension of the above mentioned binary and ternary systems were correlated with empirical and thermodynamic based models. The methods of Pando et al. and Ku et al. were used to correlate the ternary surface tension data. The Fu et al., Kalies et al. and Wang et al. models were also applied to predict surface tension in the ternary system. The mean average absolute deviations obtained from the comparison of experimental and calculated surface tension values for ternary system with three models are less than 2.4%, which leads to concluding that these models show a good accuracy in different situations in comparison with other predictive equations.

  16. Surface heat loads on the ITER divertor vertical targets

    Science.gov (United States)

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R. A.; Corre, Y.; Dejarnac, R.; Firdaouss, M.; Kočan, M.; Komm, M.; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-04-01

    The heating of tungsten monoblocks at the ITER divertor vertical targets is calculated using the heat flux predicted by three-dimensional ion orbit modelling. The monoblocks are beveled to a depth of 0.5 mm in the toroidal direction to provide magnetic shadowing of the poloidal leading edges within the range of specified assembly tolerances, but this increases the magnetic field incidence angle resulting in a reduction of toroidal wetted fraction and concentration of the local heat flux to the unshadowed surfaces. This shaping solution successfully protects the leading edges from inter-ELM heat loads, but at the expense of (1) temperatures on the main loaded surface that could exceed the tungsten recrystallization temperature in the nominal partially detached regime, and (2) melting and loss of margin against critical heat flux during transient loss of detachment control. During ELMs, the risk of monoblock edge melting is found to be greater than the risk of full surface melting on the plasma-wetted zone. Full surface and edge melting will be triggered by uncontrolled ELMs in the burning plasma phase of ITER operation if current models of the likely ELM ion impact energies at the divertor targets are correct. During uncontrolled ELMs in pre-nuclear deuterium or helium plasmas at half the nominal plasma current and magnetic field, full surface melting should be avoided, but edge melting is predicted.

  17. Bacterial deposition to fluoridated and non-fluoridated polyurethane coatings with different elastic modulus and surface tension in a parallel plate and a stagnation point flow chamber

    NARCIS (Netherlands)

    Bakker, D.P.; Huijs, F.M.; Vries, J. de; Klijnstra, J.W.; Busscher, H.J.; Mei, H.C. van der

    2003-01-01

    Deposition of three marine bacterial strains with different cell surface hydrophobicities from artificial seawater to polyurethane coatings on glass with different surface tensions and elastic modulus was studied in situ in a parallel plate (PP) and stagnation point (SP) flow chamber. Different surf

  18. Sea Spray Effects on Surface Heat and Moisture Fluxes

    Science.gov (United States)

    2016-06-07

    Andreas, E. L., and E. C. Monahan, 1999: The role of whitecap bubbles in air- sea heat and moisture exchange. J. Phys. Oceanogr., in press. ...1 Sea Spray Effects on Surface Heat and Moisture Fluxes Edgar L Andreas U. S. Army Cold Regions Research and Engineering Laboratory 72 Lyme Road...www.crrel.usace.army.mil LONG-TERM GOAL The goal is to investigate, theoretically and through analyzing existing data, the role that sea spray plays in

  19. Critical heat flux maxima during boiling crisis on textured surfaces

    Science.gov (United States)

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  20. 静滴法测表面张力中各参数的确定%Parameters in Surface Tension Measured by Sessile Drop Method

    Institute of Scientific and Technical Information of China (English)

    陈安涛; 张胜全; 王胜

    2013-01-01

    Combining digital photography with AutoCAD and Proe,the parameters in surface tension measured by sessile drop method was determined.The results show that the method for calculating the surface tension has high accuracy,which can provide computer aid for adopting sessile drop method measuring high temperature metal surface tension.%应用致码撮影与电脑软件AutoCAD和Proe相结合的方法,确定静滴法计算表面张力公式中的各参数值.结果表明,该方法计算的表面张力具有较高精度,为静滴法测量高温金属表面张力提供电脑辅助.

  1. Improvements, testing and development of the ADM-{\\tau} sub-grid surface tension model for two-phase LES

    CERN Document Server

    Aniszewski, Wojciech

    2016-01-01

    In this paper, a specific subgrid term occurring in Large Eddy Simulation (LES) of two-phase flows is investigated. This and other subgrid terms are presented, we subsequently elaborate on the existing models for those and re-formulate the ADM-{\\tau} model for sub-grid surface tension previously published by these authors. This paper presents a substantial, conceptual simplification over the original model version, accompanied by a decrease in its computational cost. At the same time, it addresses the issues the original model version faced, e.g. introduces non-isotropic applicability criteria based on resolved interface's principal curvature radii. Additionally, this paper introduces more throughout testing of the ADM-{\\tau}, in both simple and complex flows.

  2. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    Science.gov (United States)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  3. Molecular dynamics determination of the surface tension of silver-gold liquid alloys and the Tolman length of nanoalloys

    Science.gov (United States)

    Calvo, F.

    2012-04-01

    Using molecular dynamics simulations, an embedded-atom model potential, and the mechanistic route, we have computed the pressure tensor and the surface tension γ of Ag-Au liquid alloys. Although the model generally underestimates γ for pure metals, calculations for a bulk planar slab exhibit nonlinear variations of γ with increasing gold concentration, which agree with experiments and can be accounted for by a perfect solution model. Calculations for various nanoscale droplets containing between 100 and 3200 atoms show a systematic decrease of γ with increasing droplet radius R. The positive Tolman length of the alloy determined from these size variations is estimated to vary slightly with gold concentration. The effects of temperature in the range 1300-1700 K are discussed.

  4. Determining the association constant and adsorption properties of ion pairs in water by fitting surface tension data.

    Science.gov (United States)

    Pradines, Vincent; Lavabre, Dominique; Micheau, Jean-Claude; Pimienta, Véronique

    2005-11-22

    Association constants and adsorption parameters of tetraalkylammoniumdodecyl sulfate (TAADS) ion pairs in water were determined. We have analyzed water/air surface tension measurements obtained for mixtures of sodium dodecyl sulfate (SDS) and tetraalkylammonium bromide of increasing chain lengths (TMAB, TEAB, TPAB, and TBAB). To reproduce the experimental isotherms, we coupled the association equilibrium of the ion pairs to the equations proposed by Fainerman and co-workers to model the adsorption of binary mixtures of surfactants (SDS and TAADS) with different molar areas at a nonideal surface layer. The parameters found showed that the model is not convenient to describe the effect of the addition of TMAB but a clear coherency was obtained for the three longer compounds. Ranging from TEADS to TBADS increasing hydrophobic interactions give rise to a higher associability but to a lower surface activity. Self-interactions coefficients extracted by the fitting procedure confirmed the importance of attractive interactions between the ion pairs. The calculated surface coverage showed that in every case the compound mainly adsorbed at the interface was the ion pair. For TBADS strong attractive interactions result in a phase transition at very low concentration.

  5. Simultaneous decay of contact-angle and surface-tension during the rehydration of air-dried root mucilage

    Science.gov (United States)

    Arye, Gilboa; Chen, Fengxian

    2016-04-01

    Plants can extract or exude water and solutes at their root surface. Among the root exudates, the mucilage exhibits a surfactant like properties - depressing the surface-tension (ST, mN/m) at the water-air interface. The amphipathic nature of some of the mucilage molecules (e.g. lipids) is thought to be the reason for its surfactant like behavior. As the rhizosphere dries out, re-orientation and/or re-configuration of amphipathic molecules at the solid-air interface, may impart hydrophobic nature to the rhizosphere. Our current knowledge on the ST of natural and/or model root mucilage is based on measurements of the equilibrium ST. However, adsorption of amphipathic molecules at the water-air interface is not reached instantaneously. The hydrophobic nature of the rhizosphere was deduced from the initial advancing CA, commonly calculated from the first few milliseconds up to few seconds (depending on the method employed). We hypothesized that during the rehydration of the root mucilage; both quantities are dynamic. Processes such as water absorbance and dissolution, may vary the interfacial tensions as a function of time. Consequently, simultaneous reduction of both CA and ST as a function of time can be expected. The main objective of this study was to characterize and quantify the extent, persistency and dynamic of the CA and ST during rehydration of air-dried root mucilage. The study was involved with measurements of dynamic and equilibrium ST using the pedant drop or Wilhelmy plate method, respectively. Glass slides were coated with naturally occurring or model root mucilage and the CA of a sessile drop was measured optically, as a function of time. The results were analyzed based on the Young-Dupré and Young-Laplace equations, from which the simultaneous decay of CA and ST was deduced. The implication for the wettability and water flow in the rhizosphere will be discussed.

  6. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  7. The influence of a radiated heat exchanger surface on heat transfer

    Science.gov (United States)

    Morel, Sławomir

    2015-09-01

    The experiment leads to establish the influence of radiated surface development heat exchangers on the values of heat flux transferred with water flowing through the exchangers and placed in electric furnace chamber. The values of emissivity coefficients are given for the investigated metal and ceramic coatings. Analytical calculations have been made for the effect of the heating medium (flame) - uncoated wall and then heating medium (flame) - coated wall reciprocal emissivity coefficients. Analysis of the values of exchanged heat flux were also realized. Based on the measurement results for the base coating properties, these most suitable for spraying the walls of furnaces and heat exchangers were selected, and determined by the intensification of heat exchange effect. These coatings were used to spray the walls of a laboratory waste-heat boiler, and then measurements of fluxes of heat absorbed by the cooling water flowing through the boiler tubes covered with different type coatings were made. Laboratory tests and calculations were also confirmed by the results of full-scale operation on the metallurgical equipment.

  8. The influence of a radiated heat exchanger surface on heat transfer

    Directory of Open Access Journals (Sweden)

    Morel Sławomir

    2015-09-01

    Full Text Available The experiment leads to establish the influence of radiated surface development heat exchangers on the values of heat flux transferred with water flowing through the exchangers and placed in electric furnace chamber. The values of emissivity coefficients are given for the investigated metal and ceramic coatings. Analytical calculations have been made for the effect of the heating medium (flame – uncoated wall and then heating medium (flame – coated wall reciprocal emissivity coefficients. Analysis of the values of exchanged heat flux were also realized. Based on the measurement results for the base coating properties, these most suitable for spraying the walls of furnaces and heat exchangers were selected, and determined by the intensification of heat exchange effect. These coatings were used to spray the walls of a laboratory waste-heat boiler, and then measurements of fluxes of heat absorbed by the cooling water flowing through the boiler tubes covered with different type coatings were made. Laboratory tests and calculations were also confirmed by the results of full-scale operation on the metallurgical equipment.

  9. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  10. Investigation of Si(001) stable surfaces in alternating current heating

    Science.gov (United States)

    Doi, T.; Koguchi, M.

    2016-11-01

    The topography of a Si(001) vicinal surface is investigated using reflection electron microscopy (REM) during alternating current (AC) heating of the surface in ultra-high vacuum. The normal direction of the surface is slightly tilted from the [001] direction at θx or θy on the x or y axis (they are orthogonal directions in the Si(001) surface), and the average widths of the terraces (a or b in x or y axis) are determined by θx or θy; the direction perpendicular to the incidence electron beam on the surface is selected as the x (horizontal) axis in each REM image. Alternating current heating changes each initial surface from stable to double-domain (DD), in which 2 × 1 and 1 × 2 terraces are arranged regularly with approximately equal width, at its transition temperature Tc; the dimer rows are parallel to the x or y axis in the 1 × 2 or 2 × 1 terraces. There are two types of stable surfaces in the vicinal surface. At temperatures below its Tc, the surface with horizontally (vertically) long terraces, where b a), changes to a 2 × 1 (1 × 2) surface with wide 2 × 1 (1 × 2) and narrow 1 × 2 (2 × 1) terraces. The terrace, the short side of which is parallel to its dimer row direction, grows to create a stable surface by thermal diffusion of Si atoms at temperatures below Tc. During AC heating, thermal diffusion plays a key role in analyzing the kinetics of the atoms on the surface because the thermal effect acts as the driving force for the atoms that have not yet evaporated from the surface. Then, by evaporating atoms from the vicinal surface, AC heating creates a DD surface at temperatures between its Tc and 1100 °C and a rugged surface consisting of small 2 × 1 and 1 × 2 terraces at temperatures above 1100 °C.

  11. 1983-2004 Heat Treatment Embraces Surface Engineering

    Institute of Scientific and Technical Information of China (English)

    Tom Bell

    2004-01-01

    The origins of surface engineering lie in antiquity, with the practices in ancient Greece and China of hardening,tempering and crude form of case hardening using solid organic materials. The formation of the International Federation for Heat Treatment in 1971 later to include Surface Engineering has been pre-eminent in the globalisation of the rapidly developing discipline of surface engineering. The dominant effect of environmental aspects of surface engineering are discussed regarding the impact for change to light weight materials and the adoption of environmentally friendly plasma technologies.

  12. Molecular-Level Insight of the Effect of Hofmeister Anions on the Interfacial Surface Tension of a Model Protein

    Energy Technology Data Exchange (ETDEWEB)

    Willow, Soohaeng Yoo; Xantheas, Sotiris S.

    2017-03-21

    The effect of the Hofmeister anion series on the structure and stability of proteins is often discussed using simple systems such as a water-vapor interface with the assumption that the vapor region mimics the hydrophobic surface. Microscopic theories suggest that the Hofmeister anion series is highly correlated with the different contributions of the various ions to the surface tension of such a water-vapor interface. Proteins, however, have both hydrophobic and hydrophilic regions rather than just a pure hydrophobic one. Using a solvated parallel β -sheet layer consisting of both hydrophobic and positively charged hydrophilic surfaces as a more realistic model to represent a protein surface, we investigated the interaction of such a system with hydrophilic-like (SO42-) and hydrophobic-like (ClO4-) anions via Born-Oppenheimer Molecular Dynamics (BOMD) simulations. We found that both the SO42- and ClO4- anions prefer to reside on the hydrophilic rather than on the hydrophobic surface of the parallel β -sheet layer. In addition, our simulations suggest that the ClO4- ions not only penetrate towards the peptide groups through the hydrophilic residues, but also allow water molecules to penetrate as well to form water-peptide hydrogen bonds, while the SO42- ions stabilize the interface of the water-hydrophilic surface. Our results render a plausible explanation of why hydrophobic-like Hofmeister anions act as protein denaturants. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  13. Limitations of floor heating - optimum heating surface design. Grenzen der Deckenheizung - optimale Heizflaechengestaltung

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, B.

    1994-06-01

    The publication on the use of cooling floors for heating purposes has resulted in the following questions amongst the professionals: Can rooms with relatively poor thermal insulation and customary outside air filtration, also be thermophysiologically heated in a permissible manner with radiant floor surfaces How do corner areas behave Can the radiator design be optimized where radiated temperature distribution is concerned The effects and the present limitations are indicated by means of practical examples. (orig.)

  14. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    Science.gov (United States)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S. M.; Nieken, U.

    2016-04-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynamics of interfaces and contact lines on the continuum scale, appropriate formulations must be developed. While the Continuum Surface Force (CSF) model is well-engineered for the description of interfaces, there is still a lack of treatment of contact lines, which are defined by the intersection of an ending fluid interface and a solid boundary surface. In our approach we use a balance equation for the contact line and extend the Navier-Stokes equations in analogy to the extension of a two-phase interface in the CSF model. Since this model depicts a physically motivated approach on the continuum scale, no fitting parameters are introduced and the deterministic description leads to a dynamical evolution of the system. As verification of our theory, we show a Smoothed Particle Hydrodynamics (SPH) model and simulate the evolution of droplet shapes and their corresponding contact angles.

  15. The surface heat island of Rotterdam and its relationship with urban surface characteristics

    NARCIS (Netherlands)

    Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E.

    2012-01-01

    Thermal infrared high resolution satellite images from Landsat sensors were used to spatially quantify the surface heat island (SHI) of Rotterdam in the Netherlands. Based on surface temperature maps retrieved on 15 summer days since 1984, the average surface temperature of each district and neighbo

  16. CFD analysis of Newtonian and non-Newtonian droplets impinging on heated hydrophilic and hydrophobic surfaces

    Science.gov (United States)

    Khojasteh, Danial; Mousavi, Seyed Mahmood; Kamali, Reza

    2016-11-01

    In the present study, the behaviors of Newtonian and shear-thinning non-Newtonian droplets impinging on heated hydrophilic and hydrophobic surfaces have been investigated numerically using Ansys-Fluent. In this context, the volume-of-fluid technique is applied to track the free-surface of the liquid, and variable time-step is also utilized to control the Courant number. Furthermore, we have considered the dependence of viscosity, density and surface tension on temperature during the simulation. The results are compared to available experimental data at the same conditions, such as boundary conditions. The results demonstrate that there is a good agreement between the obtained results and the experimental trends, concerning normalized diameter profiles at various Weber numbers. Therefore, the focus of the present study is an assessment of the effects of variations in Weber number, contact angle and surface temperature for Newtonian and non-Newtonian liquids on dynamics behavior of droplet in collision with hydrophobic and hydrophilic surfaces. The results represent that the behaviors of Newtonian and non-Newtonian droplets are totally different, indicating the droplet sensitivity to the working parameters.

  17. Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W.; Hogendoorn, K. J.; Versteeg, G. F.

    2005-01-01

    The physical solubility of N2O in and the density and viscosity of aqueous piperazine solutions have been measured over a temperature range of (293.15 to 323.15) K for piperazine concentrations ranging from about (0.6 to 1.8) kmol·mr-3. Furthermore, the present study contains experimental surface

  18. Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W.; Hogendoorn, K. J.; Versteeg, G. F.

    2005-01-01

    The physical solubility of N2O in and the density and viscosity of aqueous piperazine solutions have been measured over a temperature range of (293.15 to 323.15) K for piperazine concentrations ranging from about (0.6 to 1.8) kmol·mr-3. Furthermore, the present study contains experimental surface t

  19. Flow Regimes of Mesoscale Circulations Forced by Inhomogeneous Surface Heating

    CERN Document Server

    Hossain, M Alamgir

    2016-01-01

    Urbanization is one of the extreme process that increases uncertainty in future climate projections. Flow regimes of mesoscale circulations associated with surface heating due to urbanization have been investigated using a wavelet based computational fluid dynamics~(CFD) model. The results of our numerical model have been validated against that of a laboratory model, as well as reference numerical simulations. Characteristics of urban induced circulations have been studied for surface heat flux perturbation ($H_0$) between $28.93$Wm$^{-2}$ and $925.92$Wm$^{-2}$, and the results have been analyzed against available boundary layer measurements under similar physical conditions. Our primary study shows that urban/rural heat flux anomalies introduce strong oscillations in the convective boundary layer (CBL), and transfers a fraction of the turbulent kinetic energy vertically through internal waves. Such results complement previous investigators' hypothesis that temporal oscillations in urban-induced mesoscale cir...

  20. Heat Flow for the Minimal Surface with Plateau Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    Kung Ching CHANG; Jia Quan LIU

    2003-01-01

    The heat flow for the minimal surface under Plateau boundary condition is defined to be aparabolic variational inequality, and then the existence, uniqueness, regularity, continuous dependenceon the initial data and the asymptotics are studied. It is applied as a deformation of the level sets inthe critical point theory.

  1. Convective boundary layers driven by nonstationary surface heat fluxes

    NARCIS (Netherlands)

    Van Driel, R.; Jonker, H.J.J.

    2011-01-01

    In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change

  2. Curvature effects on the surface thickness and tension at the free interface of $^4$He systems

    OpenAIRE

    Szybisz, Leszek; Urrutia, Ignacio

    2003-01-01

    The thickness $W$ and the surface energy $\\sigma_A$ at the free interface of superfluid $^4$He are studied. Results of calculations carried out by using density functionals for cylindrical and spherical systems are presented in a unified way, including a comparison with the behavior of planar slabs. It is found that for large species $W$ is independent of the geometry. The obtained values of $W$ are compared with prior theoretical results and experimental data. Experimental data favor results...

  3. Basic surface properties of Aedes albopictus cells: effect of Mayaro virus infection on electrostatic charge and surface tension.

    Science.gov (United States)

    Mezêncio, J M; Costa e Silva Filho, F; Rebello, M A

    1997-01-01

    Aedes albopictus cells possess a negative cell surface charge of -12.7 mV with an isoelectrophoretic point (IEP) located between pH 3.0 and 4.0. Infection with Mayaro virus rendered the surface of A. albopictus cells less negative reaching a zeta-potential value of -9.7 mV after 100 h of infection. Concomitantly, the IEP of the infected cells were also altered from 3.0-4.0 to 4.0-5.0. Furthermore, the contact angle measurements clearly showed qualitative alterations in the cell surface of infected cells.

  4. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2007-01-01

    Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was dependent on the composition of the solutes present. For more atmospherically representative higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus

  5. Impact of a Liquid Drop on a Granular Medium: inertia, viscosity and surface tension effects on the drop deformation

    CERN Document Server

    Nefzaoui, Elyes

    2010-01-01

    An experimental study of liquid drop impacts on a granular medium is proposed. Four fluids were used to vary physical properties: pure distilled water, water with glycerol at 2 concentrations 1:1 and 1:2 v/v and water with Tween 20 at the concentration of 0.1g/l. The drop free fall height was varied to obtain a Weber number (We) between 10 and 2000. Results showed that obtained crater morphologies highly depend on the impacting drop kinetic energy E_{K}. Different behaviours during the drop spreading, receding and absorption are highlighted as function of the fluids viscosity and surface tension. Experimental absorption times are also commented and compared with a simplified theoretical model. Drops maximal extensions and craters diameters were found to scale as $We^{1/5}$ and $E_K^{1/5}$ respectively. In both cases, found dependencies are smaller than those reported in literature: $We^{1/4}$ for drop impacts on solid or granular surfaces and $E_K^{1/4}$ for spherical solid impacts on granular media.

  6. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  7. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    Science.gov (United States)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2016-10-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  8. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    Science.gov (United States)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  9. Selective surface functionalization of silicon nanowires via nanoscale joule heating.

    Science.gov (United States)

    Park, Inkyu; Li, Zhiyong; Pisano, Albert P; Williams, R Stanley

    2007-10-01

    In this letter, we report a novel approach to selectively functionalize the surface of silicon nanowires located on silicon-based substrates. This method is based upon highly localized nanoscale Joule heating along silicon nanowires under an applied electrical bias. Numerical simulation shows that a high-temperature (>800 K) with a large thermal gradient can be achieved by applying an appropriate electrical bias across silicon nanowires. This localized heating effect can be utilized to selectively ablate a protective polymer layer from a region of the chosen silicon nanowire. The exposed surface, with proper postprocessing, becomes available for surface functionalization with chemical linker molecules, such as 3-mercaptopropyltrimethoxysilanes, while the surrounding area is still protected by the chemically inert polymer layer. This approach is successfully demonstrated on silicon nanowire arrays fabricated on SOI wafers and visualized by selective attachment of gold nanoparticles.

  10. On the characterization of host-guest complexes : Surface tension, calorimetry, and molecular dynamics of cyclodextrins with a non-ionic surfactant

    NARCIS (Netherlands)

    Pineiro, Angel; Banquy, Xavier; Perez-Casas, Silvia; Tovar, Edgar; Garcia, Abel; Villa, Alessandra; Amigo, Alfredo; Mark, Alan E.; Costas, Miguel

    2007-01-01

    Three host-guest systems have been characterized using surface tension (sigma), calorimetry, and molecular dynamics simulations (MD). The hosts were three native cyclodextrins (CD) and the guest the non-ionic carbohydrate surfactant octyl-beta-d-glucopyranoside. It is shown that, for any host-guest

  11. On the characterization of host-guest complexes : Surface tension, calorimetry, and molecular dynamics of cyclodextrins with a non-ionic surfactant

    NARCIS (Netherlands)

    Pineiro, Angel; Banquy, Xavier; Perez-Casas, Silvia; Tovar, Edgar; Garcia, Abel; Villa, Alessandra; Amigo, Alfredo; Mark, Alan E.; Costas, Miguel

    2007-01-01

    Three host-guest systems have been characterized using surface tension (sigma), calorimetry, and molecular dynamics simulations (MD). The hosts were three native cyclodextrins (CD) and the guest the non-ionic carbohydrate surfactant octyl-beta-d-glucopyranoside. It is shown that, for any host-guest

  12. Density gradient theory combined with the PC-SAFT equation of state used for modeling the surface tension of associating systems

    Directory of Open Access Journals (Sweden)

    Vinš Václav

    2014-03-01

    Full Text Available The density gradient theory (GT combined with a SAFT-type (Statistical Associating Fluid Theory equation of state has been used for modeling the surface tension of associating fluids represented by a series of six alkanols ranging from methanol to 1-pentanol. The effect of nonzero dipole moment of the selected alkanols on the predicted surface tension was investigated in this study. Results of the GT + non-polar Perturbed Chain (PC SAFT equation of state were compared to predictions of GT combined with the PC-polar-SAFT, i.e. PCP-SAFT, equation. Both GT + PC-SAFT and GT + PCP-SAFT give reasonable prediction of the surface tension for pure alkanols. Results of both models are comparable as no significant difference in the modeled saturation properties and in the predicted surface tension using GT was found. Consideration of dipolar molecules of selected alkanols using PCP-SAFT had only minor effect on the predicted properties compared to the non-polar PC-SAFT model.

  13. 表面张力系数实验的应用研究%On the Application of Liquid Surface Tension Coefficient Experiment

    Institute of Scientific and Technical Information of China (English)

    葛素红; 孙桂华; 王雅丽

    2014-01-01

    The surface tension coefficient of saline water and sweet water in the same temperature and different densities was measured using the FD-NST-I liquid surface tension coefficient measuring instrument. And the surface tension coefficient of tap -water and purified water in different temperatures was also measured using the same instrument. Results show that the surface tension coefficient is related to temperature and density.%应用拉脱法测量了食盐和白糖溶液的表面张力系数,发现:盐溶液的表面张力系数随着溶液密度的增大而增大,糖溶液的表面张力系数随着浓度的增大而减小。测量了自来水与纯净水在不同环境温度下的表面张力系数,验证了液体表面张力系数随着温度的升高而降低的物理规律。

  14. Improvement of Wetting Tension Values of Battery Foil Surface%电池箔表面润湿张力值的提高

    Institute of Scientific and Technical Information of China (English)

    陈志轩; 刘英超

    2015-01-01

    Measurement method of wetting tension of battery foil surface was introduced, as well as dyne value, liquid dyne, wettability, surface tension, contact angle and so on theoretical knowledge. The effect of rolling oil on surface wetting tension values was analyzed. Experiments show that the surface wetting tension value of the battery foil products can be improved using A70 base oil and about 8% additive proportion.%分析了轧制油对表面润湿张力值的影响,并根据基础油及添加剂比例配置了不同油样,设计了实验,验证不同油样对于产品表面润湿张力值的影响.实验表明,采用A70基础油和8%左右的添加剂比例可以提升电池箔产品的表面润湿张力值.

  15. Effect of carbon nanofiber surface morphology on convective heat transfer from cylindrical surface: Synthesis, characterization and heat transfer measurement

    NARCIS (Netherlands)

    Taha, T.J.; Mojet, Barbara; Lefferts, Leonardus; van der Meer, Theodorus H.

    2016-01-01

    In this work, heat transfer surface modification is made by layers of carbon nanofiber (CNF) on a 50 μm nickel wire using Thermal chemical vapor deposition process (TCVD). Three different CNF layer morphologies are made, at 500 °C, 600 °C and 700 °C, to investigate the influence of morphology on hea

  16. Vapor bubble evolution on a heated surface containing open microchannels

    Science.gov (United States)

    Forster, Christopher J.; Glezer, Ari; Smith, Marc K.

    2011-11-01

    Power electronics require cooling technologies capable of high heat fluxes at or below the operating temperatures of these devices. Boiling heat transfer is an effective choice for such cooling, but it is limited by the critical heat flux (CHF), which is typically near 125 W/cm2 for pool boiling of water on a flat plate at standard pressure and gravity. One method of increasing CHF is to incorporate an array of microchannels into the heated surface. Microchannels have been experimentally shown to improve CHF, and the goal of this study is to determine the primary mechanisms associated with the microchannels that allow for the increased CHF. While the use of various microstructures is not new, the emphasis of previous work has been on heat transfer aspects, as opposed to the fluid dynamics inside and in the vicinity of the microchannels. This work considers the non-isothermal fluid motion during bubble growth and departure by varying channel geometry, spacing, and heat flux input using a level-set method including vaporization and condensation. These results and the study of the underlying mechanisms will aid in the design optimization of microchannel-based cooling devices. Supported by ONR.

  17. Analysis of selected surface characteristics and latent heat storage for passive solar space heating

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.; Leigh, R.

    1981-12-01

    Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.

  18. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  19. Curvature effects on the surface thickness and tension at the free interface of 4He systems

    Science.gov (United States)

    Szybisz, Leszek; Urrutia, Ignacio

    2003-08-01

    The thickness W and the surface energy σA at the free interface of superfluid 4He are studied. Results of calculations carried out using density functionals for cylindrical and spherical systems are presented in a unified way, including a comparison with the behavior of planar slabs. It is found that for large species W is independent of the geometry. The obtained values of W are compared with prior theoretical results and experimental data. Experimental data favor results evaluated by adopting finite range approaches. The behavior of σA and WσA exhibits overshoots similar to that found previously for the central density, and the trend of these observables towards their asymptotic values is examined.

  20. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  1. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  2. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating.

    Science.gov (United States)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-03-11

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  3. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  4. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  5. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-09-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  6. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  7. Embedded water-based surface heating part 2: experimental validation

    DEFF Research Database (Denmark)

    Karlsson, Henrik

    2010-01-01

    : hybrid 3D numerical model. Journal of Building Physics 33: 357-391). The thermal response of the system is tested in both long (16 h) and short (30 min) cycle experiments where the water flow alters between on and off. Temperature distribution, within the floor construction, and the heat exchange process...... are studied throughout the test cycles. The model underestimates the steady-state heat exchange from the pipe loop by 16% when boundary conditions and thermal properties according to the reference case are applied. Temperatures at the floor surface are assessed with good precision while temperatures......The transient operation of an embedded water-based floor heating system has been studied by means of a numerical simulation tool. Prior to this study, Caccavelli and Richard (Caccavelli D, Richard P (1994) Etude portant sur le dimensionnement d'un plancher chauffant a eau chaude en CIC. Rapport n...

  8. Investigation of wettability to evaluate the morphology and surface tension wood filler

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2017-01-01

    Full Text Available In this paper, we propose a new scheme of a highly efficient line for preparing safflower grains for processing consisting of an air-sieve separator, a magnetic separator, an ovary, a puppet, and a stone picker. The new after vortex separator is a vibroseparator for separating the products close in physical properties, grinding Machine with a duo-aspirator, a photoseparator and a device for moisture-thermal treatment. Advantages of the proposed line for preparation of safflower grain for processing are that an additional plant in front of the photocarerator of the grinding machine and duo-espirator allows the crest to separate and remove or refine the shell of the seed in the form of a shell layer for more efficient subsequent spectral point analysis, which determines the grain composition for the purpose of sorting it On the basis of chemical composition and color in the photo separator, and sequential placement after the stone separator of a vibro separator for separation of products close in physical properties, a grinding machine with a duo-aspirator, a photoseparator and a device for moisture-thermal treatment, provides an intensification of the technological process of efficient separation of safflower from impurities and its preparation for further processing and Due to the rational layout of equipment.A highly efficient photocell separator is also provided, the advantages of which are that the installation of a storage and vibrating feeder in relation to the slanting tray from the back side and the execution of a smooth curved transition to the vibrating feeder in the upper part of the pitcher allows improving the separation of grain products by reducing the amplitude of grain oscillations, Caused by a rebound from the surface of the tray during the loading of the sorted material from the vibrating feeder.

  9. Viscosity and surface tension effects during multiphase flow in propped fractures

    Science.gov (United States)

    Dzikowski, Michał; Dąbrowski, Marcin

    2017-04-01

    Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants

  10. Coarse-grained simulation of surface tension of perfiuorocarbons%粗粒化尺度模拟全氟烷烃的界面张力

    Institute of Scientific and Technical Information of China (English)

    杜球; 杨晓宁

    2011-01-01

    通过分子动力学模拟方法,采用构建的粗粒化模型,对全氟烷烃(C6F14和C9F20)的界面性质进行了模拟计算.模拟得到的体系界面密度分布能清楚地反映界面结构及分子分布情况.通过与不同温度下实验值进行了比较,模拟的界面张力与实验数据十分吻合,并呈现随温度升高而减小的趋势.研究表明:所构建的粗粒化模型能够准确描述全氟烷烃的表面张力性质.%The interfacial tension properties of perfluorocarbons, including C6F14 and C9F20, were simulated by using a new coarse-grained model. The obtained interface density distribution clearly displayed the structure of gas-liquid interface. The simulated surface tensions of perfluorocarbons were compared with the corresponding experimental data. Results showed that the simulated surface tensions agreed well with the experimental data. The surface tensions showed a decreasing trend with the temperature increasing. It was demonstrated that the proposed coarse-grained model could be used for further simulation.

  11. Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2012-04-01

    Full Text Available The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72 that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.

  12. Effects of elasticity and surface tension on the spreading dynamics of a thin film under the influence of intermolecular forces

    Science.gov (United States)

    Young, Yuan-Nan; Stone, Howard

    2016-11-01

    The spreading dynamics of a thin layer of viscous Newtonian fluid between an elastic sheet and a wetting solid substrate is examined using the lubrication theory. On the wetting substrate an ultra thin film (precursor film) develops as a result of the intermolecular force between the fluid and the wetting solid substrate. Such a precursor film prevents the stress singularity associated with a moving contact line. Following the methodology by, the effects of elasticity on the macroscopic contact line structure in the quasistatic limit are elucidated by an ordinary differential equation derived from an analysis of the energy and its dissipation. Similar to the case of a regular fluid interface with surface tension (capillary spreading), the elasto-capillary thin film profile also consists of a core at the center, an ultra thin film in the far field, and a contact line region where the core film profile connects smoothly to the precursor film. For capillary spreading, the precursor film transitions monotonically to the core film. Due to the interfacial elasticity, a spatial oscillation of film height in the contact line region is found. In addition, it is found that elasticity causes the sliding motion of the thin film: the contact angle close to zero as

  13. Surface-tension-driven convection in pure liquid layers evaporating into ambient air: influence of liquid volatility

    Science.gov (United States)

    Chauvet, Fabien; Dehaeck, Sam; Colinet, Pierre

    2011-11-01

    The spontaneous surface-tension-driven convective patterns induced by evaporation of a pure liquid layer are studied experimentally. A volatile liquid layer placed in a cylindrical container is left free to evaporate into air at rest under ambient conditions. The thermal dynamics of the evaporating liquid layer is visualized using an infrared camera. Evaporation rate and liquid thickness are measured by weighting. We focus on the transition between the convective state and the conductive state appearing at a certain instant during the drying of the liquid layer. The critical Marangoni number Mac associated to this transition is estimated from evaporation rate and layer thickness measurements at this instant. The effect of the evaporation rate on Mac and kc (the critical wavenumber) has been investigated by changing the container height and, separately, the effect of the liquid volatility has been studied by using different liquids. Interestingly, it appears that Mac does not depend on the evaporation rate while it depends strongly on the liquid volatility. Given the typical uncertainties associated with liquid properties, a quite reasonable agreement is found with a ``one-sided'' linear stability analysis of this problem. Supported by ESA & BELSPO, by the EU, by ULB, and by FRS - FNRS.

  14. Evaluation of scale formation in waterwall heated surfaces

    Directory of Open Access Journals (Sweden)

    Taylasheva Tatiana

    2017-01-01

    Full Text Available This paper presents the possibility of forecasting assessments of the speed and the time of formation of depositions in the evaporator-tube elements of double-drum boilers. The values of thermal flow in the wall region of tank screens of boiler furnace are obtained, besides the velocity values of scaling metal corrosion products are obtained. Conclusions about the ability of forecasting unnominal situations and emergency risks dependent with damage to the screen surface heating pipes are made.

  15. Diesel particulate filter regeneration via resistive surface heating

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  16. Structural modification of heat treated steel 10Mn2VNbAl and its properties under tension

    Science.gov (United States)

    Derevyagina, Lyudmila S.; Pochivalov, Yurii I.; Gordienko, Antonina I.

    2016-11-01

    The paper reports the investigation results on the structure of low-carbon steel 10Mn2VNbAl after heat treatment by steel heating up to temperatures 900-1100°C and subsequent accelerated oil cooling. It studies the steel tensile properties in the mechanical test temperature range from +20 to -196°C, and fracture micromechanisms in the initial and heat treated states of steel. After heat treatment the steel structure consists of bainitic (martensitic) transformation elements: martensite lamellae arranged in packets, single ferrite grains, regions of residual austenite, and carbide particles. The structural transformation causes an almost two-fold increase in the strength properties (the ultimate strength increased from 650 to 1100-1200 MPa depending on the austenization temperature). The best combination of strength properties and plasticity was achieved after steel ageing at 900°C. Low-temperature tensile tests revealed that plasticity of the heat treated steel increases at the test temperature reduction from -50 to -196°C. This is evidently related to the occurrence of an additional micromechanism of martensite deformation through twinning.

  17. Impact inducted surface heating by planetesimals on early Mars

    CERN Document Server

    Maindl, T I; Lammer, H; Güdel, M; Schäfer, C; Speith, R; Odert, P; Erkaev, N V; Kislyakova, K G; Pilat-Lohinger, E

    2014-01-01

    We investigate the influence of impacts of large planetesimals and small planetary embryos on the early Martian surface on the hydrodynamic escape of an early steam atmosphere that is exposed to the high soft X-ray and EUV flux of the young Sun. Impact statistics in terms of number, masses, velocities, and angles of asteroid impacts onto the early Mars are determined via n-body integrations. Based on these statistics, smoothed particle hydrodynamics (SPH) simulations result in estimates of energy transfer into the planetary surface material and according surface heating. For the estimation of the atmospheric escape rates we applied a soft X-ray and EUV absorption model and a 1-D upper atmosphere hydrodynamic model to a magma ocean-related catastrophically outgassed steam atmosphere with surface pressure values of 52 bar H2O and 11 bar CO2. The estimated impact rates and energy deposition onto an early Martian surface can account for substantial heating. The energy influx and conversion rate into internal ener...

  18. Penetrative turbulence associated with mesoscale surface heat flux variations

    CERN Document Server

    Alam, Jahrul M

    2015-01-01

    This article investigates penetrative turbulence in the atmospheric boundary layer. Using a large eddy simulation approach, we study characteristics of the mixed layer with respect to surface heat flux variations in the range from 231.48 W/m$^2$ to 925.92 W/m$^2$, and observe that the surface heterogeneity on a spatial scale of $20$ km leads to downscale turbulent kinetic energy cascade. Coherent fluctuations of mesoscale horizontal wind is observed at 100m above the ground. Such a surface induced temporal oscillations in the horizontal wind suggest a rapid jump in mesocale wind forecasts, which is difficult to parameterize using traditional one-dimensional ensemble-mean models. Although the present work is idealized at a typical scale (20km) of surface heterogeneity, the results help develop effective subgrid scale parameterization schemes for classical weather forecasting mesoscale models.

  19. Application of Three-Dimensionally Printed Probe and Reservoir to Critical Micelle Concentration Determination by Microvolume Surface Tension Measurement.

    Science.gov (United States)

    Horiuchi, Shohei; Choda, Naoki; Takahashi, Haruyuki; Sato, Tomomi; Taira, Hikaru; Mukai, Kei

    2016-08-01

    It is important to determine a critical micelle concentration (CMC) of a surfactant in a protein formulation for stabilizing the protein at maximum by preventing it from interfacial denaturation. There are several techniques for CMC determination. Among them, surface tensiometry is the most common approach because this has a long history and much data at many research fields. However, large amount of sample solution is usually required for the measurement (e.g., more than 1 mL is necessary when a standard reservoir like a glass petri dish is used). This is one of the hurdles for protein formulators because only a small amount of protein could be used at the early-stage development. In this research, we tried to minimize the required amount of sample solution for surface tension measurement by developing appropriate probe and reservoir using a three-dimensional printer (3D printer). The advantages and capabilities of 3D printer are (1) to control the shape and size of the printed material precisely, (2) to change the figure freely, and (3) to prepare the prototype quickly. After the experiments and thereby the refinement of probe as well as reservoir, we found that CMCs of polysorbate 20, polysorbate 80, and poloxamer 188 in water and protein formulations could be precisely detected using a probe 0.5 mm in diameter and small reservoir with a pocket of 7.5 mm in diameter/0.25 mm in depth which were made by a 3D printer. Furthermore, the required sample solution per each measurement could be reduced to 80 μL, which means more than 90% reduction against a standard reservoir.

  20. Thermal and Physical Properties and Deposit Structure of Power Equipment Heating Surfaces

    Directory of Open Access Journals (Sweden)

    A. V. Nerezko

    2007-01-01

    Full Text Available The paper shows influence of heating surface material, design peculiarities, operational conditions of heat exchangers and water-chemical regime on chemical and structural composition of deposits, their heat conduction and porosity.

  1. Surface Tension of Molten Nickel-Tungsten Alloy%熔融Ni-W合金的表面张力研究

    Institute of Scientific and Technical Information of China (English)

    肖锋; 刘兰霄; 杨仁辉; 傅亚; 方亮; 赵红凯

    2008-01-01

    Surface tension of molten Ni-(5~10)W (mass fraction,%)alloys was measured at the temperature range of 1773~1873 K using an improved sessile drop method with an alumina substrate in an Ar+3%H2 atmosphere.The surface tension of molten Ni-W alloys decreases with increasing of temperature.On the basis of experimental data,the surface tension of molten Ni-W alloys was also theoretically deduced both as functions of concentration and temperature using a model of Butler's equation.The surface segregation in Ni-W system was calculated.The measured results agree well with a model for the surface tension.The surface concentration oftungsten is lower than that in bulk.%采用改进静滴法测定了1773~1873 K温度范围内熔融Ni-(5~10)W(质量分数,%)合金在Al2O3基板上于Ar+3%H2气氛下的表面张力数据.熔融Ni-W合金的表面张力随着温度的升高而降低.在此基础上采用Butler模型推导了表面张力随温度与浓度的变化情况,计算了合金体系中元素的偏聚情况.表面张力的计算结果与测量值的符合度较高.W在合金表面的浓度低于体相浓度.

  2. Surface modification by alkali and heat treatments in titanium alloys.

    Science.gov (United States)

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  3. Research on Tension Control System for Aluminum Strip Air-cushion Heat Treatment line%铝带气垫式热处理线张力控制系统研究

    Institute of Scientific and Technical Information of China (English)

    付天亮; 韦云松; 王昭东; 李家栋

    2015-01-01

    针对国内某厂铝合金汽车板用气垫式连续热处理线,分析主要工艺设备张力工作特点,采用间接、直接两种张力控制模式对传动系统实施速度和转矩控制,建立了典型工艺设备张力控制方法及整线张力平衡控制策略,构建了以工艺数学模型为核心的张力控制系统.实测表明,静态张力控制精度为-0.05%~0.65%,动态张力控制精度为-3.65%~3.75%,满足热处理线对张力控制精度的需求.%Based on domestic air-cushion continuous heat treatment line for aluminum alloy automobile sheet, tension work characteristics of the main process equipment is analyzed, indirect and direct tension control mode are adopted for dirve system's velocity and torque control. And tension control method for typical process equipment and whole line tension balance control strategy are established, tension control system which centered on process mathematic model is constructed. The results show that static tension control precision is -0.05%~0.65%, and dynamic tension control percision is -3.65%~3.75%, both of which meet the needs of heat treatment line for tension control percision.

  4. Nanofluid flow and forced convection heat transfer over a stretching surface considering heat source

    Science.gov (United States)

    Mohammadpour, M.; Valipour, P.; Shambooli, M.; Ayani, M.; Mirparizi, M.

    2015-07-01

    In this paper, magnetic field effects on the forced convection flow of a nanofluid over a stretching surface in the presence of heat generation/absorption are studied. The equations of continuity, momentum and energy are transformed into ordinary differential equations and solved numerically using the fourth-order Runge-Kutta integration scheme featuring the shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titania (TiO2) with water as their base fluid has been considered. The influence of significant parameters, such as magnetic parameter, volume fraction of the nanoparticles, heat generation/absorption parameter, velocity ratio parameter and temperature index parameter on the flow and heat transfer characteristics are discussed. The results show that the values of temperature profiles increase with increasing heat generation/absorption and volume fraction of the nanoparticles but they decrease with increasing velocity ratio parameter and temperature index parameter. Also, it can be found that selecting silver as nanoparticle leads to the highest heat transfer enhancement.

  5. Surface urban heat island across 419 global big cities.

    Science.gov (United States)

    Peng, Shushi; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Ottle, Catherine; Bréon, François-Marie; Nan, Huijuan; Zhou, Liming; Myneni, Ranga B

    2012-01-17

    Urban heat island is among the most evident aspects of human impacts on the earth system. Here we assess the diurnal and seasonal variation of surface urban heat island intensity (SUHII) defined as the surface temperature difference between urban area and suburban area measured from the MODIS. Differences in SUHII are analyzed across 419 global big cities, and we assess several potential biophysical and socio-economic driving factors. Across the big cities, we show that the average annual daytime SUHII (1.5 ± 1.2 °C) is higher than the annual nighttime SUHII (1.1 ± 0.5 °C) (P urban area and suburban area, while the distribution of daytime SUHII correlates negatively across cities with the difference of vegetation cover and activity between urban and suburban areas. Our results emphasize the key role of vegetation feedbacks in attenuating SUHII of big cities during the day, in particular during the growing season, further highlighting that increasing urban vegetation cover could be one effective way to mitigate the urban heat island effect.

  6. 修正表面张力算法的SPH方法及其实现%Smoothed Particle Hydrodynamics Method with Modified Surface Tension and Its Implementation

    Institute of Scientific and Technical Information of China (English)

    强洪夫; 陈福振; 高巍然

    2011-01-01

    Modified equations for surface tension are derived by modifying normal and curvature with corrected smoothed particle method (CSPM). It is based on smoothed particle hydrodynamics (SPH) method with surface tension proposed by Morris. Both Morris and our method are tested via a semicircular problem. Factors that affect accuracy are investigated including surface definition, normal and curvature calculation. Smoothed length in curvature calculation is also confirmed reasonable. Furthermore, formation of a liquid drop with initial square shape under surface tension is simulated. Compared with Morris method and grid-based volume of fluid method,it is proved that the accuracy of our method is higher and particle distribution is more homogeneous. Finally, coalescence process of two oil drops in water under surface tension is simulated.%在Morris提出的表面张力SPH方法基础上,通过引入CSPM方法对边界法向的计算和曲率的计算进行修正,得到表面张力修正方程组;通过半圆形算例测试方法和Morris方法在边界定位、法向计算和曲率计算等影响表面张力关键因素的求解精度,研究曲率计算中应采用的光滑长度值.模拟初始方形液滴在表面张力作用下的自然变化过程,并与Morris方法及VOF有限体积法进行对比,表明方法精度较高,稳定性较好.最后,模拟水溶液中两个油滴的互溶过程.

  7. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    Science.gov (United States)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  8. Heat transfer and pressure drop characteristics of dry tower extended surfaces. Part I. Heat transfer and pressure drop data

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    A compilation is presented of heat transfer and pressure drop data which were collected from literature reports on extended surface heat exchangers. The type of extended surfaces considered are tubular finned tubes as distinct from compact heat exchangers. These surfaces have a base tube to which additional surface was added by mechanical means. This additional surface is in the form of fins attached to the outside surface of the tube. These tubes are normally employed for heat transfer between a liquid and a gas. The liquid flows inside the tubes and the gas, normally air, flows outside the tubes. The fins are oriented so that their surface is transverse to the axis of the tubes. The gas flows across the tubes in a direction parallel to the fin surface.

  9. A Variational Method for Estimating Near-Surface Soil Moisture and Surface Heat Fluxes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; ZHANG Weidong; QIU Chongjian

    2007-01-01

    A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, I.e., the differences of wind, potential temperature, and specific humidity gradient between observations and those computed by the profile method, the difference of latent heat fluxes calculated using the ECMWF land surface evaporation scheme and the profile method, and a weak constraint for surface energy balance. By using an optimal algorithm, the best solutions are found. The method is tested with the data collected at Feixi Station (31.41°N, 117.08°E) supported by the China Heavy Rain Experiment and Study (HeRES) during 7-30 June 2001. The results show that estimated near-surface soil moistures can quickly respond to rainfall, and their temporal variation is consistent with that of measurements of average soil moisture over 15-cm top depth with a maximum error less than 0.03 m3 m-3. The surface heat fluxes calculated by this method are consistent with those by the Bowen ratio method, but at the same time it can overcome the instability problem occurring in the Bowen ratio method when the latter is about -1. Meanwhile, the variational method is more accurate than the profile method in terms of satisfying the surface energy balance. The sensitivity tests also show that the variational method is the most stable one among the three methods.

  10. Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification.

    Science.gov (United States)

    Wang, Jiong; Ouyang, Wanlu

    2017-02-01

    Inefficient mitigation of excessive heat is attributed to the discrepancy between the scope of climate research and conventional planning practice. This study approaches this problem at both domains. Generally, the study, on one hand, claims that the climate research of the temperature phenomenon should be at local scale, where implementation of planning and design strategies can be more feasible. On the other hand, the study suggests that the land surface factors should be organized into zones or patches, which conforms to the urban planning and design manner. Thus in each zone, the land surface composition of those excessively hot places can be compared to the zonal standard. The comparison gives guidance to the modification of the land surface factors at the target places. Specifically, this study concerns the Land Surface Temperature (LST) in Wuhan, China. The land surface is classified into Local Thermal Zones (LTZ). The specifications of temperature sensitive land surface factors are relative homogeneous in each zone and so is the variation of the LST. By extending the city scale analysis of Urban Heat Island into local scale, the Local Surface Urban Heat Islands (LSUHIs) are extracted. Those places in each zone that constantly maintain as LSUHI and exceed the homogenous LST variation are considered as target places or hotspots with higher mitigation or adaptation priority. The operation is equivalent to attenuate the abnormal LST variation in each zone. The framework is practical in the form of prioritization and zoning, and mitigation strategies are essentially operated locally.

  11. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat

  12. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat

  13. Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer

    Science.gov (United States)

    Maftouni, Negin; Amininasab, Mehriar; Ejtehadi, Mohammad Reza; Kowsari, Farshad; Dastvan, Reza

    2013-02-01

    The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5-microsecond coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment of lateral pressure in each monolayer. Our simulations reveal that the insertion of CTX A3 into one monolayer results in an asymmetrical change in the lateral pressure and corresponding spatial distribution of surface tension of the individual bilayer leaflets. The relative variation in the surface tension of the two monolayers as a result of a change in the contribution of the various intermolecular forces may potentially be expressed morphologically.

  14. Densities, viscosities, refractive indices, and surface tensions for binary and ternary mixtures of 2-propanol, tetrahydropyran, and 2,2,4-trimethylpentane

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Y.-C. [Department of Applied Chemistry, Providence University, Shalu 43301, Taiwan (China); Tu, C.-H., E-mail: chtu@pu.edu.t [Department of Applied Chemistry, Providence University, Shalu 43301, Taiwan (China)

    2011-02-15

    Densities, viscosities, refractive indices, and surface tensions of the ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) at T = 303.15 K and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane, and tetrahydropyran + 2,2,4-trimethylpentane) at T = (293.15, 303.15, 313.15, and 323.15) K were measured at atmospheric pressure. Densities were determined using a vibrating-tube densimeter. Viscosities were measured with an automatic microviscometer based on the rolling-ball principle. Refractive indexes were measured using a digital Abbe-type refractometer. Surface tensions were determined by the Wilhelmy-plate method. From these data, excess molar volumes, deviations in viscosity, deviations in refractive index, and deviations in surface tension were calculated. The results for the binary and ternary systems were fitted to the Redlich-Kister equation and the variable-degree polynomials in terms of compositions, respectively. The experimental and calculated quantities are used to study the nature of mixing behaviour between mixture components.

  15. Observational & modeling analysis of surface heat and moisture fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E. [Florida State Univ., Tallahassee, FL (United States)

    1995-09-01

    An observational and modeling study was conducted to help assess how well current GCMs are predicting surface fluxes under the highly variable cloudiness and flow conditions characteristic of the real atmosphere. The observational data base for the study was obtained from a network of surface flux stations operated during the First ISLSCP Field Experiment (FIFE). The study included examination of a surface-driven secondary circulation in the boundary layer resulting from a persistent cross-site gradient in soil moisture, to demonstrate the sensitivity of boundary layer dynamics to heterogeneous surface fluxes, The performance of a biosphere model in reproducing the measured surface fluxes was evaluated with and without the use of satellite retrieval of three key canopy variables with RMS uncertainties commensurate with those of the measurements themselves. Four sensible heat flux closure schemes currently being used in GCMs were then evaluated against the FIFE observations. Results indicate that the methods by which closure models are calibrated lead to exceedingly large errors when the schemes are applied to variable boundary layer conditions. 4 refs., 2 figs.

  16. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    QUAN ZhenHua; CHEN YongChang; MA ChongFang

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface.The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su-persaturated solution.Based on experimental results of the fouling process,the deposition and removal rates of the mixing fouling were expressed.Furthermore,the coupling effect of temperature with the fouling process was considered in the physics model.As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions.The results showed that the present model could give a good prediction of fouling process,and the deviation was less than 15% of the experimental data in most cases.The new model is credible to predict the fouling process.

  17. Droplet Impact on a Heated Surface under a Depressurized Environment

    Science.gov (United States)

    Hatakenaka, Ryuta; Tagawa, Yoshiyuki

    2016-11-01

    Behavior of a water droplet of the diameter 1-3mm impacting on a heated surface under depressurized environment (100kPa -1kPa) has been studied. A syringe pump for droplet generation and a heated plate are set into a transparent acrylic vacuum chamber. The internal pressure of the chamber is automatically controlled at a target pressure with a rotary pump, a pressure transducer, and an electrical valve. A silicon wafer of the thickness 0.28 mm is mounted on the heater plate, whose temperature is directly measured by attaching a thermocouple on the backside. The droplet behavior is captured using a high-speed camera in a direction perpendicular to droplet velocity. Some unique behaviors of droplet are observed by decreasing the environmental pressure, which are considered to be due to two basic elements: Enhancement of evaporation due to the lowered saturation temperature, and shortage of pneumatic spring effect between the droplet and heated wall due to the lowered pressure of the air.

  18. Heat Transfer in a Forced Wall Jet on a heated Rough Surface

    Institute of Scientific and Technical Information of China (English)

    Marie-FrancoiseScibilia

    2000-01-01

    In this paper,an experimental investigation of a laminar wall jet in the presence of a heated wall with stationary particles on its surface,is reproted.The wall jet was submitted to external acoustic vibration amplifying the coherent structures appearing in the laminar region.A wind tunnel was used at very low Reynolds number,Mean velocity and turbulence intensity were measured by a constant temperature anemometer .Measurements were taken in the transition and turbulent regions.Embedded particles were outside the vissous sublayer and it was observed that their presence modifies significantly the flow characteristics in particular the boundary layer is thickened.This study can bring a better understanding of the structure of a flow when it is heated and forced on a rough wall.

  19. Research and Development on Heat Pipes and Related Thermal Engineering Technologies in Japan

    OpenAIRE

    OSHIMA, Koichi

    1989-01-01

    Five advanced heat pipe systems utilizing phase changing heat transfer concept are introduced, which are; a separate type heat pipe heat exchanger, a heat pipe turbine, micro heat pipes, a thermocapillary loop system and mass-produced tubes with inner fin. Inside of these heat pipes, contrary to the conventional heat transfer tubes, evaporation and condensation processes are heavily influenced by the surface tension effect. This effect is also dominant in the heat pipes operating under micro-...

  20. Dry heat exposures of surface exposed and embedded Bacillus spores

    Science.gov (United States)

    Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts. Often, manufacturing procedures require heating flight hardware to high temperatures for purposes other than planetary protection DHMR. The existing specifications, however, do not allow for additional planetary protection bioburden reduction credit if the hardware is exposed without controlled relative humidity. The intent of this study was to provide adequate data on the DHMR technique to support modification of four aspects of current requirements; expansion of acceptable time and temperature combinations used for spacecraft dry heat microbial reduction processes above 125° C, determining the effect that humidity has on spore lethality as a function of temperature, understanding the lethality for spores with exceptionally high thermal resistance and to investigate the extended exposure requirement for materials that might contain embedded microorganisms. Spores from two bacterial species were tested, B. atrophaeus ATCC 9372 and B. sp. ATCC 29669, under three conditions encompassing 5 temperature points. Embedded experiments utilized a silicone rubber polymer that is commonly used on robotic spacecraft, and surface exposed experiments were performed under both ambient and vacuum-controlled humidity conditions. The results obtained support the use of DHMR protocols that extend the maximum temperature range from 125° C to 170° C, with either controlled or ambient humidity. If implemented, this will give projects bioburden reduction credit for shorter treatments at extended temperatures, and allow spacecraft to be processed in more readily available and less expensive facilities that do not have humidity control, with significant cost and schedule benefits. The study also demonstrated that the required heating time for materials presumed to have embedded bioburden is conservative.