WorldWideScience

Sample records for surface temperatures averaged

  1. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  2. 1994 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  3. 1993 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the NOAA...

  4. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    Science.gov (United States)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  5. Forecast of sea surface temperature off the Peruvian coast using an autoregressive integrated moving average model

    Directory of Open Access Journals (Sweden)

    Carlos Quispe

    2013-04-01

    Full Text Available El Niño connects globally climate, ecosystems and socio-economic activities. Since 1980 this event has been tried to be predicted, but until now the statistical and dynamical models are insuffi cient. Thus, the objective of the present work was to explore using an autoregressive moving average model the effect of El Niño over the sea surface temperature (TSM off the Peruvian coast. The work involved 5 stages: identifi cation, estimation, diagnostic checking, forecasting and validation. Simple and partial autocorrelation functions (FAC and FACP were used to identify and reformulate the orders of the model parameters, as well as Akaike information criterium (AIC and Schwarz criterium (SC for the selection of the best models during the diagnostic checking. Among the main results the models ARIMA(12,0,11 were proposed, which simulated monthly conditions in agreement with the observed conditions off the Peruvian coast: cold conditions at the end of 2004, and neutral conditions at the beginning of 2005.

  6. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    Science.gov (United States)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  7. Average nuclear surface properties

    International Nuclear Information System (INIS)

    Groote, H. von.

    1979-01-01

    The definition of the nuclear surface energy is discussed for semi-infinite matter. This definition is extended also for the case that there is a neutron gas instead of vacuum on the one side of the plane surface. The calculations were performed with the Thomas-Fermi Model of Syler and Blanchard. The parameters of the interaction of this model were determined by a least squares fit to experimental masses. The quality of this fit is discussed with respect to nuclear masses and density distributions. The average surface properties were calculated for different particle asymmetry of the nucleon-matter ranging from symmetry beyond the neutron-drip line until the system no longer can maintain the surface boundary and becomes homogeneous. The results of the calculations are incorporated in the nuclear Droplet Model which then was fitted to experimental masses. (orig.)

  8. Using Bayesian Model Averaging (BMA) to calibrate probabilistic surface temperature forecasts over Iran

    Energy Technology Data Exchange (ETDEWEB)

    Soltanzadeh, I. [Tehran Univ. (Iran, Islamic Republic of). Inst. of Geophysics; Azadi, M.; Vakili, G.A. [Atmospheric Science and Meteorological Research Center (ASMERC), Teheran (Iran, Islamic Republic of)

    2011-07-01

    Using Bayesian Model Averaging (BMA), an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM), with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME) of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009) over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast. (orig.)

  9. Using Bayesian Model Averaging (BMA to calibrate probabilistic surface temperature forecasts over Iran

    Directory of Open Access Journals (Sweden)

    I. Soltanzadeh

    2011-07-01

    Full Text Available Using Bayesian Model Averaging (BMA, an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM, with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP Global Forecast System (GFS and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009 over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.

  10. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  11. Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

    DEFF Research Database (Denmark)

    Goutam, Shovon; Timmermans, Jean-Marc; Omar, Noshin

    2014-01-01

    This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel...

  12. MN Temperature Average (1961-1990) - Line

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...

  13. MN Temperature Average (1961-1990) - Polygon

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...

  14. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    Science.gov (United States)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  15. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

  16. Modeling and Forecasting Average Temperature for Weather Derivative Pricing

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2015-01-01

    Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.

  17. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  18. Perceived Average Orientation Reflects Effective Gist of the Surface.

    Science.gov (United States)

    Cha, Oakyoon; Chong, Sang Chul

    2018-03-01

    The human ability to represent ensemble visual information, such as average orientation and size, has been suggested as the foundation of gist perception. To effectively summarize different groups of objects into the gist of a scene, observers should form ensembles separately for different groups, even when objects have similar visual features across groups. We hypothesized that the visual system utilizes perceptual groups characterized by spatial configuration and represents separate ensembles for different groups. Therefore, participants could not integrate ensembles of different perceptual groups on a task basis. We asked participants to determine the average orientation of visual elements comprising a surface with a contour situated inside. Although participants were asked to estimate the average orientation of all the elements, they ignored orientation signals embedded in the contour. This constraint may help the visual system to keep the visual features of occluding objects separate from those of the occluded objects.

  19. A spectral measurement method for determining white OLED average junction temperatures

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah

    2016-09-01

    The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.

  20. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  1. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  2. Human-experienced temperature changes exceed global average climate changes for all income groups

    Science.gov (United States)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  3. ISLSCP II Sea Surface Temperature

    Data.gov (United States)

    National Aeronautics and Space Administration — Sea surface temperature (SST) is an important indicator of the state of the earth climate system as well as a key variable in the coupling between the atmosphere and...

  4. Average Potential Temperature of the Upper Mantle and Excess Temperatures Beneath Regions of Active Upwelling

    Science.gov (United States)

    Putirka, K. D.

    2006-05-01

    The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and

  5. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality.

    Science.gov (United States)

    Pinheiro, Samya de Lara Lins de Araujo; Saldiva, Paulo Hilário Nascimento; Schwartz, Joel; Zanobetti, Antonella

    2014-12-01

    OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure to different levels of

  6. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality

    Directory of Open Access Journals (Sweden)

    Samya de Lara Lins de Araujo Pinheiro

    2014-12-01

    Full Text Available OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25 and 1.60% (0.74;2.46, respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure to different levels of

  7. SEASONAL CHANGES IN TITAN'S SURFACE TEMPERATURES

    International Nuclear Information System (INIS)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.; Carlson, R. C.; Gorius, N. J. P.; Coustenis, A.; Tokano, T.

    2011-01-01

    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer measured surface radiances at 19 μm in two time periods: one in late northern winter (LNW; L s = 335 deg.) and another centered on northern spring equinox (NSE; L s = 0 deg.). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between LNW and NSE a shift occurred in the temperature distribution, characterized by a warming of ∼0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was at 93.4 K. We measured a seasonal lag of ΔL S ∼ 9 0 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 0 S in the relatively cloud-free zone between the mid-latitude and southern cloud regions.

  8. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  9. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  10. Evaluation of Surface Fatigue Strength Based on Surface Temperature

    Science.gov (United States)

    Deng, Gang; Nakanishi, Tsutomu

    Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.

  11. The international surface temperature initiative

    Science.gov (United States)

    Thorne, P. W.; Lawrimore, J. H.; Willett, K. M.; Allan, R.; Chandler, R. E.; Mhanda, A.; de Podesta, M.; Possolo, A.; Revadekar, J.; Rusticucci, M.; Stott, P. A.; Strouse, G. F.; Trewin, B.; Wang, X. L.; Yatagai, A.; Merchant, C.; Merlone, A.; Peterson, T. C.; Scott, E. M.

    2013-09-01

    The aim of International Surface Temperature Initiative is to create an end-to-end process for analysis of air temperature data taken over the land surface of the Earth. The foundation of any analysis is the source data. Land surface air temperature records have traditionally been stored in local, organizational, national and international holdings, some of which have been available digitally but many of which are available solely on paper or as imaged files. Further, economic and geopolitical realities have often precluded open sharing of these data. The necessary first step therefore is to collate readily available holdings and augment these over time either through gaining access to previously unavailable digital data or through data rescue and digitization activities. Next, it must be recognized that these historical measurements were made primarily in support of real-time weather applications where timeliness and coverage are key. At almost every long-term station it is virtually certain that changes in instrumentation, siting or observing practices have occurred. Because none of the historical measures were made in a metrologically traceable manner there is no unambiguous way to retrieve the true climate evolution from the heterogeneous raw data holdings. Therefore it is desirable for multiple independent groups to produce adjusted data sets (so-called homogenized data) to adequately understand the data characteristics and estimate uncertainties. Then it is necessary to benchmark the performance of the contributed algorithms (equivalent to metrological software validation) through development of realistic benchmark datasets. In support of this, a series of successive benchmarking and assessment cycles are envisaged, allowing continual improvement while avoiding over-tuning of algorithms. Finally, a portal is proposed giving access to related data-products, utilizing the assessment results to provide guidance to end-users on which product is the most suited to

  12. NOAA Global Surface Temperature (NOAAGlobalTemp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land–ocean surface temperature analysis (formerly known as MLOST) (link is external). It is...

  13. GODAE, SFCOBS - Surface Temperature Observations, 1998-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  14. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  15. Temperature dependence of nuclear surface properties

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1982-01-01

    Thermal properties of nuclear surface are investigated in a semi-infinite medium. Explicit analytical expression are given for the temperature dependence of surface thickness, surface energy and surface free energy. In this model the temperature effects depend critically on the nuclear incompressibility and on the shape of the effective mass at the surface. To illustrate the relevance of these effects we made an estimate of the temperature dependence of the fission barrier height. (orig.)

  16. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  17. An algorithm to retrieve Land Surface Temperature using Landsat-8 ...

    African Journals Online (AJOL)

    Ayodeji Ogunode;Mulemwa Akombelwa

    The results show temperature variation over a long period of time can be ... Remote sensing of LST using infrared radiation gives the average surface temperature of the scene ... advantage over previous Landsat series. ..... Li, F., Jackson, T. J., Kustas, W. P., Schmugge, T. J., French, A. N., Cosh, M. H. & Bindlish, R. 2004.

  18. The Pacific sea surface temperature

    International Nuclear Information System (INIS)

    Douglass, David H.

    2011-01-01

    The Pacific sea surface temperature data contains two components: N L , a signal that exhibits the familiar El Niño/La Niña phenomenon and N H , a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F S ; (2) N H is phase locked directly to F S while N L is frequently phase locked to the 2nd or 3rd subharmonic of F S . At least ten distinct subharmonic time segments of N L since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N L is the familiar El Niño/La Niña effect. ► The second N H component has a period of 1 cycle/year. ► N L can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  19. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  20. The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel

    Science.gov (United States)

    Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin

    2016-06-01

    On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.

  1. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    Science.gov (United States)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  2. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  3. Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas

    International Nuclear Information System (INIS)

    Guo Yonghui; Duan Yaoyong; Kuai Bin

    2007-01-01

    The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)

  4. Dataset demonstrating the temperature effect on average output polarization for QCA based reversible logic gates

    Directory of Open Access Journals (Sweden)

    Md. Kamrul Hassan

    2017-08-01

    Full Text Available Quantum-dot cellular automata (QCA is a developing nanotechnology, which seems to be a good candidate to replace the conventional complementary metal-oxide-semiconductor (CMOS technology. In this article, we present the dataset of average output polarization (AOP for basic reversible logic gates presented in Ali Newaz et al. (2016 [1]. QCADesigner 2.0.3 has been employed to analysis the AOP of reversible gates at different temperature levels in Kelvin (K unit.

  5. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  6. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  7. Effect of average diurnal barn airspace temperatures on prediction of their development during the day

    Directory of Open Access Journals (Sweden)

    Gustav Chládek

    2011-01-01

    Full Text Available A year-round (i.e. 365 days experiment was performed at the Mendel University Training Farm in Žabčice, Czech Republic (GPS 49°0’51.967”N and 16°36’14.614”E, the altitude 179 m with the aim to quantify the effect of the variation of average diurnal barn airspace temperatures on prediction of their changes during the day. Barn airspace temperatures were monitored daily in one-hour intervals and the recorded values were used for calculations of average diurnal temperatures. These were classified into 7 categories (i.e. below 0 °C; 0.1 to 5 °C; 5.1 to 10 °C; 10.1 to 15 °C; 15.1 to 20 °C; 20.1 to 25 °C and above 25 °C. Regarding this classification system, all differences between temperatures measured at identical hours but within various limits were statistically highly significant. The statistical analysis involved also the calculation of the third degree polynomial regression equations, which enabled to characterise the relationship between the temperature and the hour of measurement within the aforementioned categories of diurnal temperatures. Individual equations were markedly different and ranged from y = − 0.0019x3 + 0.0596x2 − 0.3797x − 1.2169 (for temperatures below 0 °C to y = − 0.0108x3 + 0.3297x2 − 1.9367x + 24.3931 (for temperatures above 25 °C. Correlation coefficients (r and coefficients of determination (R2 of these regression equations were generally very high and ranged from 0.872 to 0.976 and from 0.760 to 0.953, respectively. Regarding high values of both coefficients it can be concluded that the calculated equations enable a good and reliable prediction of the diurnal development of barn airspace temperatures.

  8. Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Seung Hwa; Lee, Su Ryong; Lee, Choong Hoon [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2015-01-15

    The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100 .deg .C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD. The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased. When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100 .deg. C.

  9. Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter

    International Nuclear Information System (INIS)

    Yeo, Seung Hwa; Lee, Su Ryong; Lee, Choong Hoon

    2015-01-01

    The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100 .deg .C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD. The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased. When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100 .deg. C.

  10. Average output polarization dataset for signifying the temperature influence for QCA designed reversible logic circuits.

    Science.gov (United States)

    Abdullah-Al-Shafi, Md; Bahar, Ali Newaz; Bhuiyan, Mohammad Maksudur Rahman; Shamim, S M; Ahmed, Kawser

    2018-08-01

    Quantum-dot cellular automata (QCA) as nanotechnology is a pledging contestant that has incredible prospective to substitute complementary metal-oxide-semiconductor (CMOS) because of its superior structures such as intensely high device thickness, minimal power depletion with rapid operation momentum. In this study, the dataset of average output polarization (AOP) for fundamental reversible logic circuits is organized as presented in (Abdullah-Al-Shafi and Bahar, 2017; Bahar et al., 2016; Abdullah-Al-Shafi et al., 2015; Abdullah-Al-Shafi, 2016) [1-4]. QCADesigner version 2.0.3 has been utilized to survey the AOP of reversible circuits at separate temperature point in Kelvin (K) unit.

  11. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    Science.gov (United States)

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  12. Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    International Nuclear Information System (INIS)

    Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Burley, J.D.; Johnston, H.S.

    1992-01-01

    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE 11 satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions

  13. Inverse analysis of inner surface temperature history from outer surface temperature measurement of a pipe

    International Nuclear Information System (INIS)

    Kubo, S; Ioka, S; Onchi, S; Matsumoto, Y

    2010-01-01

    When slug flow runs through a pipe, nonuniform and time-varying thermal stresses develop and there is a possibility that thermal fatigue occurs. Therefore it is necessary to know the temperature distributions and the stress distributions in the pipe for the integrity assessment of the pipe. It is, however, difficult to measure the inner surface temperature directly. Therefore establishment of the estimation method of the temperature history on inner surface of pipe is needed. As a basic study on the estimation method of the temperature history on the inner surface of a pipe with slug flow, this paper presents an estimation method of the temperature on the inner surface of a plate from the temperature on the outer surface. The relationship between the temperature history on the outer surface and the inner surface is obtained analytically. Using the results of the mathematical analysis, the inverse analysis method of the inner surface temperature history estimation from the outer surface temperature history is proposed. It is found that the inner surface temperature history can be estimated from the outer surface temperature history by applying the inverse analysis method, even when it is expressed by the multiple frequency components.

  14. Ra and the average effective strain of surface asperities deformed in metal-working processes

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Petersen, A. S

    1975-01-01

    Based upon a slip-line analysis of the plastic deformation of surface asperities, a theory is developed determining the Ra-value (c.l.a.) and the average effective strain in the surface layer when deforming asperities in metal-working processes. The ratio between Ra and Ra0, the Ra-value after...... and before deformation, is a function of the nominal normal pressure and the initial slope γ0 of the surface asperities. The last parameter does not influence Ra significantly. The average effective strain View the MathML sourcege in the deformed surface layer is a function of the nominal normal pressure...... and γ0. View the MathML sourcege is highly dependent on γ0, View the MathML sourcege increasing with increasing γ0. It is shown that the Ra-value and the strain are hardly affected by the normal pressure until interacting deformation of the asperities begins, that is until the limit of Amonton's law...

  15. evaluation of land surface temperature parameterization ...

    African Journals Online (AJOL)

    user

    Surface temperature (Ts) is vital to the study of land-atmosphere interactions and ... representation of Ts in Global Climate Models using available ..... Obviously, the influence of the ambient .... diurnal cycle over land under clear and cloudy.

  16. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  17. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  18. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  19. NOAA Daily Optimum Interpolation Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is an analysis constructed by combining observations from different platforms...

  20. Evaluation of Flat Surface Temperature Probes

    Science.gov (United States)

    Beges, G.; Rudman, M.; Drnovsek, J.

    2011-01-01

    The objective of this paper is elaboration of elements related to metrological analysis in the field of surface temperature measurement. Surface temperature measurements are applicable in many fields. As examples, safety testing of electrical appliances and a pharmaceutical production line represent case studies for surface temperature measurements. In both cases correctness of the result of the surface temperature has an influence on final product safety and quality and thus conformity with specifications. This paper deals with the differences of flat surface temperature probes in measuring the surface temperature. For the purpose of safety testing of electrical appliances, surface temperature measurements are very important for safety of the user. General requirements are presented in European standards, which support requirements in European directives, e.g., European Low Voltage Directive 2006/95/EC and pharmaceutical requirements, which are introduced in official state legislation. This paper introduces a comparison of temperature measurements of an attached thermocouple on the measured surface and measurement with flat surface temperature probes. As a heat generator, a so called temperature artifact is used. It consists of an aluminum plate with an incorporated electrical heating element with very good temperature stability in the central part. The probes and thermocouple were applied with different forces to the surface in horizontal and vertical positions. The reference temperature was measured by a J-type fine-wire (0.2 mm) thermocouple. Two probes were homemade according to requirements in the European standard EN 60335-2-9/A12, one with a fine-wire (0.2 mm) thermocouple and one with 0.5mm of thermocouple wire diameter. Additional commercially available probes were compared. Differences between probes due to thermal conditions caused by application of the probe were found. Therefore, it can happen that measurements are performed with improper equipment or

  1. Field test analysis of concentrator photovoltaic system focusing on average photon energy and temperature

    Science.gov (United States)

    Husna, Husyira Al; Ota, Yasuyuki; Minemoto, Takashi; Nishioka, Kensuke

    2015-08-01

    The concentrator photovoltaic (CPV) system is unique and different from the common flat-plate PV system. It uses a multi-junction solar cell and a Fresnel lens to concentrate direct solar radiation onto the cell while tracking the sun throughout the day. The cell efficiency could reach over 40% under high concentration ratio. In this study, we analyzed a one year set of environmental condition data of the University of Miyazaki, Japan, where the CPV system was installed. Performance ratio (PR) was discussed to describe the system’s performance. Meanwhile, the average photon energy (APE) was used to describe the spectrum distribution at the site where the CPV system was installed. A circuit simulator network was used to simulate the CPV system electrical characteristics under various environmental conditions. As for the result, we found that the PR of the CPV systems depends on the APE level rather than the cell temperature.

  2. Variability of emissivity and surface temperature over a sparsely vegetated surface

    International Nuclear Information System (INIS)

    Humes, K.S.; Kustas, W.P.; Moran, M.S.; Nichols, W.D.; Weltz, M.A.

    1994-01-01

    Radiometric surface temperatures obtained from remote sensing measurements are a function of both the physical surface temperature and the effective emissivity of the surface within the band pass of the radiometric measurement. For sparsely vegetated areas, however, a sensor views significant fractions of both bare soil and various vegetation types. In this case the radiometric response of a sensor is a function of the emissivities and kinetic temperatures of various surface elements, the proportion of those surface elements within the field of view of the sensor, and the interaction of radiation emitted from the various surface components. In order to effectively utilize thermal remote sensing data to quantify energy balance components for a sparsely vegetated area, it is important to examine the typical magnitude and degree of variability of emissivity and surface temperature for such surfaces. Surface emissivity measurements and ground and low-altitude-aircraft-based surface temperature measurements (8-13 micrometer band pass) made in conjunction with the Monsoon '90 field experiment were used to evaluate the typical variability of those quantities during the summer rainy season in a semiarid watershed. The average value for thermal band emissivity of the exposed bare soil portions of the surface was found to be approximately 0.96; the average value measured for most of the varieties of desert shrubs present was approximately 0.99. Surface composite emissivity was estimated to be approximately 0.98 for both the grass-dominated and shrub-dominated portions of the watershed. The spatial variability of surface temperature was found to be highly dependent on the spatial scale of integration for the instantaneous field of view (IFOV) of the instrument, the spatial scale of the total area under evaluation, and the time of day

  3. TWO METHODS FOR REMOTE ESTIMATION OF COMPLETE URBAN SURFACE TEMPERATURE

    Directory of Open Access Journals (Sweden)

    L. Jiang

    2017-09-01

    Full Text Available Complete urban surface temperature (TC is a key parameter for evaluating the energy exchange between the urban surface and atmosphere. At the present stage, the estimation of TC still needs detailed 3D structure information of the urban surface, however, it is often difficult to obtain the geometric structure and composition of the corresponding temperature of urban surface, so that there is still lack of concise and efficient method for estimating the TC by remote sensing. Based on the four typical urban surface scale models, combined with the Envi-met model, thermal radiant directionality forward modeling and kernel model, we analyzed a complete day and night cycle hourly component temperature and radiation temperature in each direction of two seasons of summer and winter, and calculated hemispherical integral temperature and TC. The conclusion is obtained by examining the relationship of directional radiation temperature, hemispherical integral temperature and TC: (1 There is an optimal angle of radiation temperature approaching the TC in a single observation direction when viewing zenith angle is 45–60°, the viewing azimuth near the vertical surface of the sun main plane, the average absolute difference is about 1.1 K in the daytime. (2 There are several (3–5 times directional temperatures of different view angle, under the situation of using the thermal radiation directionality kernel model can more accurately calculate the hemispherical integral temperature close to TC, the mean absolute error is about 1.0 K in the daytime. This study proposed simple and effective strategies for estimating TC by remote sensing, which are expected to improve the quantitative level of remote sensing of urban thermal environment.

  4. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  5. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  6. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  7. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  8. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  9. Thermal inertia and radiating average Temperature. A brief analysis of some causes of discomfort; Inercia Termica y Temperatura media radiante. Un breve analisis de algunas causas de disconfort

    Energy Technology Data Exchange (ETDEWEB)

    Arroba, M.

    2008-07-01

    Radiant average temperature in walls is as important as dry air temperature to achieve thermal comfort of users of a local. An excessive discrepancy between these levels, or an asymmetric distribution of the surface temperature of fences, may cause localized thermal discomfort, an effect impossible to compensate by rising dry air temperature. Thermal inertia and its concentration must be properly studied in order to handle this parameters, inside or outside the building, on both sides of the cladding or none depending on the weather, the bio climatic strategies used, heating and air conditioning systems and planned use of the building. (Author)

  10. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  11. Surface temperature measurement with radioactive kryptonates

    International Nuclear Information System (INIS)

    Pruzinec, J.; Piatrik, M.

    1976-01-01

    The preparation and use of radioactive kryptonates is described for measuring surface temperatures within the region of 45 to 70 degC. Two samples each were prepared of kryptonated beechwood and hydroquinone on a paper carrier. One sample served as the standard which during the experiment was placed in a thermostat at a constant temperature of 45 degC. The second sample was placed in another thermostat where the temperature changed from 45 to 70 degC. Both samples were in the thermostat for 30 mins. The temperature was raised in steps of 2.5 degC and the time of measurement was constant in both samples. The dependences are given of the drop in activity on temperature for both types of samples. The difference was determined of the drop in activity between the standard and the second sample and the relation for measuring the temperature of the sample was determined therefrom. (J.B.)

  12. Low temperature surface chemistry and nanostructures

    Science.gov (United States)

    Sergeev, G. B.; Shabatina, T. I.

    2002-03-01

    The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4-10 and 70-100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.

  13. GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid V1.00

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpT) contains zonal means and related...

  14. Estimation of muscle fatigue by ratio of mean frequency to average rectified value from surface electromyography.

    Science.gov (United States)

    Fernando, Jeffry Bonar; Yoshioka, Mototaka; Ozawa, Jun

    2016-08-01

    A new method to estimate muscle fatigue quantitatively from surface electromyography (EMG) is proposed. The ratio of mean frequency (MNF) to average rectified value (ARV) is used as the index of muscle fatigue, and muscle fatigue is detected when MNF/ARV falls below a pre-determined or pre-calculated baseline. MNF/ARV gives larger distinction between fatigued muscle and non-fatigued muscle. Experiment results show the effectiveness of our method in estimating muscle fatigue more correctly compared to conventional methods. An early evaluation based on the initial value of MNF/ARV and the subjective time when the subjects start feeling the fatigue also indicates the possibility of calculating baseline from the initial value of MNF/ARV.

  15. Table for monthly average daily extraterrestrial irradiation on horizontal surface and the maximum possible sunshine duration

    International Nuclear Information System (INIS)

    Jain, P.C.

    1984-01-01

    The monthly average daily values of the extraterrestrial irradiation on a horizontal surface (H 0 ) and the maximum possible sunshine duration are two important parameters that are frequently needed in various solar energy applications. These are generally calculated by scientists each time they are needed and by using the approximate short-cut methods. Computations for these values have been made once and for all for latitude values of 60 deg. N to 60 deg. S at intervals of 1 deg. and are presented in a convenient tabular form. Values of the maximum possible sunshine duration as recorded on a Campbell Stoke's sunshine recorder are also computed and presented. These tables should avoid the need for repetition and approximate calculations and serve as a useful ready reference for solar energy scientists and engineers. (author)

  16. Extended averaging phase-shift schemes for Fizeau interferometry on high-numerical-aperture spherical surfaces

    Science.gov (United States)

    Burke, Jan

    2010-08-01

    Phase-shifting Fizeau interferometry on spherical surfaces is impaired by phase-shift errors increasing with the numerical aperture, unless a custom optical set-up or wavelength shifting is used. This poses a problem especially for larger numerical apertures, and requires good error tolerance of the phase-shift method used; but it also constitutes a useful testing facility for phase-shift formulae, because a vast range of phase-shift intervals can be tested in a single measurement. In this paper I show how the "characteristic polynomials" method can be used to generate a phase-shifting method for the actual numerical aperture, and analyse residual cyclical phase errors by comparing a phase map from an interferogram with a few fringes to a phase mpa from a nulled fringe. Unrelated to the phase-shift miscalibration, thirdharmonic error fringes are found. These can be dealt with by changing the nominal phase shift from 90°/step to 60°/step and re-tailoring the evaluation formula for third-harmonic rejection. The residual error has the same frequency as the phase-shift signal itself, and can be removed by averaging measurements. Some interesting features of the characteristic polynomials for the averaged formulae emerge, which also shed some light on the mechanism that generates cyclical phase errors.

  17. Elevated CO2 reduced floret death in wheat under warmer average temperatures and terminal drought.

    Directory of Open Access Journals (Sweden)

    Eduardo eDias de Oliveira

    2015-11-01

    Full Text Available Elevated CO2 often increases grain yield in wheat by enhancing grain number per ear, which can result from an increase in the potential number of florets or a reduction in the death of developed florets. The hypotheses that elevated CO2 reduces floret death rather than increases floret development, and that grain size in a genotype with more grains per unit area is limited by the rate of grain filling, were tested in a pair of sister lines contrasting in tillering capacity (restricted- vs free-tillering. The hypotheses were tested under elevated CO2, combined with +3 C above ambient temperature and terminal drought, using specialized field tunnel houses. Elevated CO2 increased net leaf photosynthetic rates and likely the availability of carbon assimilates, which significantly reduced the rates of floret death and increased the potential number of grains at anthesis in both sister lines by an average of 42%. The restricted-tillering line had faster grain-filling rates than the free-tillering line because the free-tillering line had more grains to fill. Furthermore, grain-filling rates were faster under elevated CO2 and +3 C above ambient. Terminal drought reduced grain yield in both lines by 19%. Elevated CO2 alone increased the potential number of grains, but a trade-off in yield components limited grain yield in the free-tillering line. This emphasizes the need for breeding cultivars with a greater potential number of florets, since this was not affected by the predicted future climate variables.

  18. Elevated CO2 Reduced Floret Death in Wheat Under Warmer Average Temperatures and Terminal Drought

    Science.gov (United States)

    Dias de Oliveira, Eduardo; Palta, Jairo A.; Bramley, Helen; Stefanova, Katia; Siddique, Kadambot H. M.

    2015-01-01

    Elevated CO2 often increases grain yield in wheat by enhancing grain number per ear, which can result from an increase in the potential number of florets or a reduction in the death of developed florets. The hypotheses that elevated CO2 reduces floret death rather than increases floret development, and that grain size in a genotype with more grains per unit area is limited by the rate of grain filling, were tested in a pair of sister lines contrasting in tillering capacity (restricted- vs. free-tillering). The hypotheses were tested under elevated CO2, combined with +3°C above ambient temperature and terminal drought, using specialized field tunnel houses. Elevated CO2 increased net leaf photosynthetic rates and likely the availability of carbon assimilates, which significantly reduced the rates of floret death and increased the potential number of grains at anthesis in both sister lines by an average of 42%. The restricted-tillering line had faster grain-filling rates than the free-tillering line because the free-tillering line had more grains to fill. Furthermore, grain-filling rates were faster under elevated CO2 and +3°C above ambient. Terminal drought reduced grain yield in both lines by 19%. Elevated CO2 alone increased the potential number of grains, but a trade-off in yield components limited grain yield in the free-tillering line. This emphasizes the need for breeding cultivars with a greater potential number of florets, since this was not affected by the predicted future climate variables. PMID:26635837

  19. Determination of an optimum reactor coolant system average temperature within the licensed operating window

    International Nuclear Information System (INIS)

    Thaulez, F.; Basic, I.; Vrbanic, I.

    2003-01-01

    The Krsko modernization power uprate analyses have been performed in such a way as to cover plant operation in a range of average reactor coolant temperatures (Tavg) of 301.7 deg C to 307.4 deg C, with steam generator tube plugging levels of up to 5%. The upper bound is temporarily restricted to 305.7 deg C, as long as Zirc-4 fuel is present in the core. (It is, however,acceptable to operate at 307.4 deg C with a few Zirc-4 assemblies, if meeting certain conditionsand subjected to a corrosion and rod internal pressure evaluation in the frame of the cyclespecificnuclear core design.) The Tavg optimization method takes into account two effects, that are opposed to each other: the impact of steam pressure on the electrical power output versus the impact of Tavg on the cost of reactor fuel. The positive economical impact of a Tavg increase through the increase in MWe output is around 6 to 8 times higher than the corresponding negative impact on the fuel cost. From this perspective, it is desirable to have Tavg as high as possible. This statement is not affected by a change in the relationship between steam pressure and Tavg level. However, there are also other considerations intervening in the definition of the optimum. This paper discusses the procedure for selection of optimal Tavg for the forthcoming cycle in relation to the impacts of change in Tavg level and/or variations of the steam pressure versus Tavg relationship. (author)

  20. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to iso...

  1. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  2. ALMA observation of Ceres' Surface Temperature.

    Science.gov (United States)

    Titus, T. N.; Li, J. Y.; Sykes, M. V.; Ip, W. H.; Lai, I.; Moullet, A.

    2016-12-01

    Ceres, the largest object in the main asteroid belt, has been mapped by the Dawn spacecraft. The mapping includes measuring surface temperatures using the Visible and Infrared (VIR) spectrometer at high spatial resolution. However, the VIR instrument has a long wavelength cutoff at 5 μm, which prevents the accurate measurement of surface temperatures below 180 K. This restricts temperature determinations to low and mid-latitudes at mid-day. Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) [1], while having lower spatial resolution, are sensitive to the full range of surface temperatures that are expected at Ceres. Forty reconstructed images at 75 km/beam resolution were acquired of Ceres that were consistent with a low thermal inertia surface. The diurnal temperature profiles were compared to the KRC thermal model [2, 3], which has been extensively used for Mars [e.g. 4, 5]. Variations in temperature as a function of local time are observed and are compared to predictions from the KRC model. The model temperatures are converted to radiance (Jy/Steradian) and are corrected for near-surface thermal gradients and limb effects for comparison to observations. Initial analysis is consistent with the presence of near-surface water ice in the north polar region. The edge of the ice table is between 50° and 70° North Latitude, consistent with the enhanced detection of hydrogen by the Dawn GRaND instrument [6]. Further analysis will be presented. This work is supported by the NASA Solar System Observations Program. References: [1] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [2] Kieffer, H. H., et al. (1977) JGR, 82, 4249-4291. [3] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, 118(3), 451-470. [4] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [5] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773[6] Prettyman, T. et al. (2016) LPSC 47, #2228.

  3. Relation between 1m depth temperature and average geothermal gradient at 75cm depth in geothermal fields

    OpenAIRE

    江原, 幸雄

    2009-01-01

    Shallow ground temperatures such as 1m depth temperature have been measured to delineate thermal anomalies of geothermal fields and also to estimate heat discharge rates from geothermal fields. As a result, a close linear relation between 1m depth temperature and average geothermal gradient at 75cm depth has been recognized in many geothermal fields and was used to estimate conductive heat discharge rates. However, such a linear relation may show that the shallow thermal regime in geothermal ...

  4. Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae

    Science.gov (United States)

    Kanamori, Katsuhiro

    2016-07-01

    An endoscopic image processing technique for enhancing the appearance of microstructures on translucent mucosae is described. This technique employs two pairs of co- and cross-polarization images under two different linearly polarized lights, from which the averaged subtracted polarization image (AVSPI) is calculated. Experiments were then conducted using an acrylic phantom and excised porcine stomach tissue using a manual experimental setup with ring-type lighting, two rotating polarizers, and a color camera; better results were achieved with the proposed method than with conventional color intensity image processing. An objective evaluation method that uses texture analysis was developed and used to evaluate the enhanced microstructure images. This paper introduces two types of online, rigid-type, polarimetric endoscopic implementations using a polarized ring-shaped LED and a polarimetric camera. The first type uses a beam-splitter-type color polarimetric camera, and the second uses a single-chip monochrome polarimetric camera. Microstructures on the mucosa surface were enhanced robustly with these online endoscopes regardless of the difference in the extinction ratio of each device. These results show that polarimetric endoscopy using AVSPI is both effective and practical for hardware implementation.

  5. Hot surface temperatures of domestic appliances.

    Science.gov (United States)

    Bassett, Malcolm; Arild, Anne-Helene

    2002-09-01

    Domestic appliances are burning people. In the European Union, accidents requiring hospital treatment due to burns from hot objects account for between 0 and 1% of all such accidents. Young children are particularly at risk. These reported accidents requiring hospital treatment are also likely to be a small proportion of the total number of burns from hot objects. There is a lack of hard evidence about the level of accidents, typical consumer expectation and use, and on the state of the art of appliances. Results of technical laboratory tests carried out on products are used to demonstrate the state of the art and also show how consumer expectations could be changing. Results of a survey into accidents, based on a written questionnaire following telephone contact, provide information on non-hospital cases. Results of tests on products show that there are significant differences in the temperatures of touchable surfaces, even in products of the same type. Typically, these differences are due to variations in design and/or materials of construction. Some products are hot enough to burn skin. Accident research indicates that non-hospital medical practices are treating burn injuries, which are therefore not being included into the current accident statistics. For products with the same function, some types of design or materials of construction are safer, with lower surface temperatures. Many product standards have no or unnecessarily high limits on surface temperatures. Many standards do not address the realities of who is using their products, for what purpose or where they are located. Some standards use unreasonable general limitations and exclusions that allow products with higher surface temperatures than they should have. Many standards rely on the experience factor for avoiding injury that is no longer valid, with the increased availability of safer products of the same type. A major field of work ahead is to carry out more surveys and in-depth studies of non

  6. Ensemble forecasts of road surface temperatures

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Bližňák, Vojtěch; Sedlák, Pavel; Zacharov, Petr, jr.; Pešice, Petr; Škuthan, M.

    2017-01-01

    Roč. 187, 1 May (2017), s. 33-41 ISSN 0169-8095 R&D Projects: GA ČR GA13-34856S; GA TA ČR(CZ) TA01031509 Institutional support: RVO:68378289 Keywords : ensemble prediction * road surface temperature * road weather forecast Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.778, year: 2016 http://www.sciencedirect.com/science/article/pii/S0169809516307311

  7. LOFT fuel rod surface temperature measurement testing

    International Nuclear Information System (INIS)

    Eaton, A.M.; Tolman, E.L.; Solbrig, C.W.

    1978-01-01

    Testing of the LOFT fuel rod cladding surface thermocouples has been performed to evaluate how accurately the LOFT thermocouples measure the cladding surface temperature during a loss-of-coolant accident (LOCA) sequence and what effect, if any, the thermocouple would have on core performance. Extensive testing has been done to characterize the thermocouple design. Thermal cycling and corrosion testing of the thermocouple weld design have provided an expected lifetime of 6000 hours when exposed to reactor coolant conditions of 620 K and 15.9 MPa and to sixteen thermal cycles with an initial temperature of 480 K and peak temperatures ranging from 870 to 1200K. Departure from nucleate boiling (DNB) tests have indicated a DNB penalty (5 to 28% lower) during steady state operation and negligible effects during LOCA blowdown caused by the LOFT fuel rod surface thermocouple arrangement. Experience with the thermocouple design in Power Burst Facility (PBF) and LOFT nonnuclear blowdown testing has been quite satisfactory. Tests discussed here were conducted using both stainless steel and zircaloy-clad electrically heated rod in the LOFT Test Support Facility (LTSF) blowdown simulation loop

  8. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  9. Titan's Surface Temperatures Maps from Cassini - CIRS Observations

    Science.gov (United States)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2009-09-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L

  10. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    Science.gov (United States)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  11. Stratospheric Impact of Varying Sea Surface Temperatures

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  12. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  13. Temperature variations of average o-Ps lifetime in porous media

    CERN Document Server

    Goworek, T; Jasinska, B; Wawryszczuk, J

    2000-01-01

    Modification of the Tao-Eldrup model is proposed in order to extend its usefulness to the case of porous media. The modification consists in the transition from spherical to capillary geometry and in inclusion of pick-off annihilation from the excited states of a particle in the well. Approximated equations for pick-off constant in these states are given. The model was tested by observing the temperature dependences of o-Ps lifetime in various media. In the case of silica gels and Vycor glass with narrow pores, the model seems to work well, while for larger pores in Vycor unexpectedly long lifetimes appear in the range of lowest temperatures.

  14. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    Science.gov (United States)

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  15. Self-consistent transport coefficients for average collective motion at moderately high temperatures

    International Nuclear Information System (INIS)

    Yamaji, Shuhei; Hofmann, H.; Samhammer, R.

    1987-01-01

    Linear response theory is applied to compute the coefficients for inertia, friction and local stiffness for slow, large scale nuclear collective motion. It is shown how these coefficients can be defined within a locally harmonic approximation. The latter allows to study the implications arising from a finite local collective frequency. It is only for temperatures around 2 MeV that the zero frequency limit becomes a fair approximation. Friction is found to have a marked temperature dependence. The numerical computations are performed on the basis of a two-center shell model, but allowing the particles and holes to become dressed through effects of the medium. The dependence of the transport coefficients on the parameters of these self-energies is studied. It is argued that the uncertainties are smaller than a factor of 2. (orig.)

  16. Analysis of the Slab Temperature, Thermal Stresses and Fractures Computed with the Implementation of Local and Average Boundary Conditions in the Secondary Cooling Zones

    Directory of Open Access Journals (Sweden)

    Hadała B.

    2016-12-01

    Full Text Available The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners.

  17. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  18. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature dataset derived from the International...

  19. NOAA Global Surface Temperature Dataset, Version 4.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is derived from two independent analyses: the Extended Reconstructed Sea Surface Temperature (ERSST)...

  20. Surface layer temperature inversion in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Gopalakrishna, V.V.; Muraleedharan, P.M.; Reddy, G.V.; Araligidad, N.; Shenoy, Shrikant

    Surface layer temperature inversion occurring in the Bay of Bengal has been addressed. Hydrographic data archived in the Indian Oceanographic Data Center are used to understand various aspects of the temperature inversion of surface layer in the Bay...

  1. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  2. Standard Deviation of Spatially-Averaged Surface Cross Section Data from the TRMM Precipitation Radar

    Science.gov (United States)

    Meneghini, Robert; Jones, Jeffrey A.

    2010-01-01

    We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.

  3. Estimation of land surface temperature of Kaduna metropolis ...

    African Journals Online (AJOL)

    Estimation of land surface temperature of Kaduna metropolis, Nigeria using landsat images. Isa Zaharaddeen, Ibrahim I. Baba, Ayuba Zachariah. Abstract. Understanding the spatial variation of Land Surface Temperature (LST), will be helpful in urban micro climate studies. This study estimates the land surface temperature ...

  4. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel, P.; Minguez, E.

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range of plasma conditions considered in this work. -- Highlights: ► We compute the average ionization, cooling rates and emissivities of carbon plasmas. ► We compare LTE and NLTE calculations of these magnitudes. ► We perform a parametrization of these magnitudes in a wide range of plasma conditions. ► We provide information about where LTE regime assumption is accurate

  5. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  6. The effects of sea surface temperature gradients on surface turbulent fluxes

    Science.gov (United States)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  7. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  8. [The reaction of human surface and inside body temperature to extreme hypothermia].

    Science.gov (United States)

    Panchenko, O A; Onishchenko, V O; Liakh, Iu Ie

    2011-01-01

    The dynamics of changes in the parameters of the surface and core body temperature under the systematic impact of ultra-low temperature is described in this article. As a source of ultra-low temperature was used (Cryo Therapy Chamber) Zimmer Medizin Systeme firm Zimmer Electromedizin (Germany) (-110 degrees C). Surface and internal body temperature was measured by infrared thermometer immediately before visiting cryochamber and immediately after exiting. In the study conducted 47,464 measurements of body temperature. It was established that the internal temperature of the human body under the influence of ultra-low temperatures in the proposed mode of exposure remains constant, and the surface temperature of the body reduces by an average of 11.57 degrees C. The time frame stabilization of adaptive processes of thermoregulation under the systematic impact of ultra-low temperature was defined in the study.

  9. Satellite-derived ice data sets no. 2: Arctic monthly average microwave brightness temperatures and sea ice concentrations, 1973-1976

    Science.gov (United States)

    Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.

    1987-01-01

    A summary data set for four years (mid 70's) of Arctic sea ice conditions is available on magnetic tape. The data include monthly and yearly averaged Nimbus 5 electrically scanning microwave radiometer (ESMR) brightness temperatures, an ice concentration parameter derived from the brightness temperatures, monthly climatological surface air temperatures, and monthly climatological sea level pressures. All data matrices are applied to 293 by 293 grids that cover a polar stereographic map enclosing the 50 deg N latitude circle. The grid size varies from about 32 X 32 km at the poles to about 28 X 28 km at 50 deg N. The ice concentration parameter is calculated assuming that the field of view contains only open water and first-year ice with an ice emissivity of 0.92. To account for the presence of multiyear ice, a nomogram is provided relating the ice concentration parameter, the total ice concentration, and the fraction of the ice cover which is multiyear ice.

  10. Sensitivity of LUCC on the Surface Temperature of Tibetan Plateau

    Science.gov (United States)

    Qi, W.; Deng, X.; Wu, F.

    2016-12-01

    The Tibetan Plateau has an important effect on the ecological security in China, even in Asia, which makes the region become the hot spot in recently research. Under the joint influence of global change and human activities, ecosystem destabilizing and the increasing pressure on resources and environment emerge on the Tibetan Plateau, but the potential spatial sensitivity of land use and land cover changes(LUCC) on surface temperature has not been quantitatively analyzed. This study analyzed the mainly types of LUCC, urbanization, grassland degradation, deforestation on Tibetan Plateau along with Representative Concentration Pathways (RCPs) of the Intergovernmental Panel on Climate Change (IPCC). The LUCC in recent decades was first quantitatively analyzed in this study to give the basic fact with a significant increase in temperatures, reduced precipitation and increased evaporation. This study focused on the future spatio-temporal heterogeneity of the temperature and precipitation. Finally, the influencing factors with LUCC on Tibetan Plateau were simulated with the Weather Research and Forecasting (WRF) model, and the sensitivity of different land use types was spatially analyzed with Singular Value Decomposition (SVD). The results indicate that the large-area alpine grassland plays a more important role in alleviating global warming than other vegetation types do. The changes of the landscape structure resulting from the urban expansion play a significant role in intensifying regional temperature increase. In addition, the effects of LUCC on monthly average temperature change would vary from month to month with obviously spatial heterogeneity.

  11. estimation of land surface temperature of kaduna metropolis, nigeria

    African Journals Online (AJOL)

    Zaharaddeen et. al

    Land surface temperature can provide noteworthy information about the surface ... modelling the surface energy balance (Kalma, et al., 2008; ... Landsat, in addition some of the Landsat data have cloud cover and ..... The Impact Of Urban.

  12. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven

    Directory of Open Access Journals (Sweden)

    Mustafa MUTLU

    2016-04-01

    Full Text Available In this study, the IR heated stress relieve oven was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with a 6.5 % average error. It is shown that mathematical models can be used to estimate the surface temperatures when the oven is operated under different conditions.

  13. Intraseasonal sea surface temperature variability in Indonesian seas

    Science.gov (United States)

    Napitu, A. M.; Gordon, A. L.; Yuan, X.

    2012-12-01

    The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an average SST standard deviation (STD) between 0.4-0.5°C, with strongest signature during boreal winter. What physical processes force the SST ISV variability within the Indonesian seas? Ocean process, sea-air interaction, or both? To help identify the main forcing, the satellite derived outgoing longwave radiation (OLR) and wind stress data in the region are examined. The OLR shows robust intraseasonal variations and is significantly correlated with the SST, particularly for variability with periods of 30-60 days, with OLR accounting for ~60-70% of the SST variance. The OLR is also maximum during boreal winter. Conversely, the surface wind may play insignificant role in perturbing the SST at intraseasonal timescales as shown by weak correlation between wind stress and SST. We thus suspect that the surface solar flux (suggested by the OLR) is likely more dominant than the surface turbulent heat flux (indicated by the surface wind) as the main source for the ISV in the SST in Indonesian seas. Furthermore the maximum OLR phase, coupled with a period of minimum mixed layer depth, may explain the strong SST variation during boreal winter in Indonesian seas. The influence of the Madden-Julian Oscillation (MJO) on the OLR and SST variability is currently being evaluated.

  14. Automated analysis of art object surfaces using time-averaged digital speckle pattern interferometry

    Science.gov (United States)

    Lukomski, Michal; Krzemien, Leszek

    2013-05-01

    Technical development and practical evaluation of a laboratory built, out-of-plane digital speckle pattern interferometer (DSPI) are reported. The instrument was used for non-invasive, non-contact detection and characterization of early-stage damage, like fracturing and layer separation, of painted objects of art. A fully automated algorithm was developed for recording and analysis of vibrating objects utilizing continuous-wave laser light. The algorithm uses direct, numerical fitting or Hilbert transformation for an independent, quantitative evaluation of the Bessel function at every point of the investigated surface. The procedure does not require phase modulation and thus can be implemented within any, even the simplest, DSPI apparatus. The proposed deformation analysis is fast and computationally inexpensive. Diagnosis of physical state of the surface of a panel painting attributed to Nicolaus Haberschrack (a late-mediaeval painter active in Krakow) from the collection of the National Museum in Krakow is presented as an example of an in situ application of the developed methodology. It has allowed the effectiveness of the deformation analysis to be evaluated for the surface of a real painting (heterogeneous colour and texture) in a conservation studio where vibration level was considerably higher than in the laboratory. It has been established that the methodology, which offers automatic analysis of the interferometric fringe patterns, has a considerable potential to facilitate and render more precise the condition surveys of works of art.

  15. EFFECTS OF PAVEMENT SURFACE TEMPERATURE ON THE MODIFICATION OF URBAN THERMAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    SARAT, Adebayo-Aminu

    2012-07-01

    Full Text Available Urban centres continue to experience escalating average summer temperature over the last fifty years. Temperature in the urban core cites have been rising due to rapid growth of urbanization in the latter half of the twentieth century (Akbari et al., 1989. Outdoor experiments were conducted to investigate the effects of different movement of materials on the urban thermal environment. Meteorological conditions such as air temperature, pavement surface temperature, Relative humidity and wind velocity were recorded to determine temperature differences among Asphalt/concrete, interlocking bricks and grass surfaces.

  16. Ground surface temperature and continental heat gain: uncertainties from underground

    International Nuclear Information System (INIS)

    Beltrami, Hugo; Matharoo, Gurpreet S; Smerdon, Jason E

    2015-01-01

    Temperature changes at the Earth's surface propagate and are recorded underground as perturbations to the equilibrium thermal regime associated with the heat flow from the Earth's interior. Borehole climatology is concerned with the analysis and interpretation of these downward propagating subsurface temperature anomalies in terms of surface climate. Proper determination of the steady-state geothermal regime is therefore crucial because it is the reference against which climate-induced subsurface temperature anomalies are estimated. Here, we examine the effects of data noise on the determination of the steady-state geothermal regime of the subsurface and the subsequent impact on estimates of ground surface temperature (GST) history and heat gain. We carry out a series of Monte Carlo experiments using 1000 Gaussian noise realizations and depth sections of 100 and 200 m as for steady-state estimates depth intervals, as well as a range of data sampling intervals from 10 m to 0.02 m. Results indicate that typical uncertainties for 50 year averages are on the order of ±0.02 K for the most recent 100 year period. These uncertainties grow with decreasing sampling intervals, reaching about ±0.1 K for a 10 m sampling interval under identical conditions and target period. Uncertainties increase for progressively older periods, reaching ±0.3 K at 500 years before present for a 10 m sampling interval. The uncertainties in reconstructed GST histories for the Northern Hemisphere for the most recent 50 year period can reach a maximum of ±0.5 K in some areas. We suggest that continuous logging should be the preferred approach when measuring geothermal data for climate reconstructions, and that for those using the International Heat Flow Commission database for borehole climatology, the steady-state thermal conditions should be estimated from boreholes as deep as possible and using a large fitting depth range (∼100 m). (letter)

  17. Determination of averaged axisymmetric flow surfaces according to results obtained by numerical simulation of flow in turbomachinery

    Directory of Open Access Journals (Sweden)

    Bogdanović-Jovanović Jasmina B.

    2012-01-01

    Full Text Available In the increasing need for energy saving worldwide, the designing process of turbomachinery, as an essential part of thermal and hydroenergy systems, goes in the direction of enlarging efficiency. Therefore, the optimization of turbomachinery designing strongly affects the energy efficiency of the entire system. In the designing process of turbomachinery blade profiling, the model of axisymmetric fluid flows is commonly used in technical practice, even though this model suits only the profile cascades with infinite number of infinitely thin blades. The actual flow in turbomachinery profile cascades is not axisymmetric, and it can be fictively derived into the axisymmetric flow by averaging flow parameters in the blade passages according to the circular coordinate. Using numerical simulations of flow in turbomachinery runners, its operating parameters can be preliminarily determined. Furthermore, using the numerically obtained flow parameters in the blade passages, averaged axisymmetric flow surfaces in blade profile cascades can also be determined. The method of determination of averaged flow parameters and averaged meridian streamlines is presented in this paper, using the integral continuity equation for averaged flow parameters. With thus obtained results, every designer can be able to compare the obtained averaged flow surfaces with axisymmetric flow surfaces, as well as the specific work of elementary stages, which are used in the procedure of blade designing. Numerical simulations of flow in an exemplary axial flow pump, used as a part of the thermal power plant cooling system, were performed using Ansys CFX. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 kW to 1000 kW in the territory of South and Southeast Serbia

  18. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    Science.gov (United States)

    Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.

    2018-03-01

    As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin surface

  19. Patellar Skin Surface Temperature by Thermography Reflects Knee Osteoarthritis Severity

    Directory of Open Access Journals (Sweden)

    Anna E. Denoble

    2010-01-01

    Full Text Available Background Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA. Methods A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA participated in this study. Infrared imaging was performed with a Meditherm Med2000™ Pro infrared camera. The reproducibility of infrared imaging of the knee was evaluated through determination of intraclass correlation coefficients (ICCs for temperature measurements from two images performed 6 months apart in Controls whose knee status was not expected to change. The average cutaneous temperature for each of five knee regions of interest was extracted using WinTes software. Knee x-rays were scored for severity of rOA based on the global Kellgren-Lawrence grading scale. Results The knee infrared thermal imaging procedure used here demonstrated long-term reproducibility with high ICCs (0.50–0.72 for the various regions of interest in Controls. Cutaneous temperature of the patella (knee cap yielded a significant correlation with severity of knee rOA (R = 0.594, P = 0.02. Conclusion The skin temperature of the patellar region correlated with x-ray severity of knee OA. This method of infrared knee imaging is reliable and as an objective measure of a sign of inflammation, temperature, indicates an interrelationship of inflammation and structural knee rOA damage.

  20. Patellar skin surface temperature by thermography reflects knee osteoarthritis severity.

    Science.gov (United States)

    Denoble, Anna E; Hall, Norine; Pieper, Carl F; Kraus, Virginia B

    2010-10-15

    Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA). A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA) participated in this study. Infrared imaging was performed with a Meditherm Med2000™ Pro infrared camera. The reproducibility of infrared imaging of the knee was evaluated through determination of intraclass correlation coefficients (ICCs) for temperature measurements from two images performed 6 months apart in Controls whose knee status was not expected to change. The average cutaneous temperature for each of five knee regions of interest was extracted using WinTes software. Knee x-rays were scored for severity of rOA based on the global Kellgren-Lawrence grading scale. The knee infrared thermal imaging procedure used here demonstrated long-term reproducibility with high ICCs (0.50-0.72 for the various regions of interest) in Controls. Cutaneous temperature of the patella (knee cap) yielded a significant correlation with severity of knee rOA (R = 0.594, P = 0.02). The skin temperature of the patellar region correlated with x-ray severity of knee OA. This method of infrared knee imaging is reliable and as an objective measure of a sign of inflammation, temperature, indicates an interrelationship of inflammation and structural knee rOA damage.

  1. Precambrian Surface Temperatures and Molecular Phylogeny

    Science.gov (United States)

    Schwartzman, David; Lineweaver, Charles H.

    2004-06-01

    The timing of emergence of major organismal groups is consistent with the climatic temperature being equal to their upper temperature limit of growth (T_{max}), implying a temperature constraint on the evolution of each group, with the climatic temperature inferred from the oxygen isotope record of marine cherts. Support for this constraint comes from the correlation of T_{max} with the rRNA molecular phylogenetic distance from the last common ancestor (LCA) for both thermophilic Archaea and Bacteria. In particular, this correlation for hyperthermophilic Archaea suggests a climatic temperature of about 120°C at the time of the LCA, likely in the Hadean.

  2. Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry.

    Science.gov (United States)

    Demoli, Nazif; Vukicevic, Dalibor

    2004-10-15

    A method of detecting displacements of a surface from its steady-state position to its equilibrium position while it is vibrating has been developed by use of time-average digital holographic interferometry. This method permits extraction of such a hidden deformation by creating two separated systems of interferogram fringes: one corresponding to a time-varying resonantly oscillating optical phase, the other to the stationary phase modification. A mathematical description of the method and illustrative results of experimental verification are presented.

  3. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature

    International Nuclear Information System (INIS)

    Shen Suhung; Leptoukh, Gregory G

    2011-01-01

    Surface air temperature (T a ) is a critical variable in the energy and water cycle of the Earth–atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T a from satellite remotely sensed land surface temperature (T s ) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T a and MODIS T s . The relationships between the maximum T a and daytime T s depend significantly on land cover types, but the minimum T a and nighttime T s have little dependence on the land cover types. The largest difference between maximum T a and daytime T s appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T a were estimated from 1 km resolution MODIS T s under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T a were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T a varies from 2.4 °C over closed shrublands to 3.2 °C over grasslands, and the MAE of the estimated minimum T a is about 3.0 °C.

  4. Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer

    Science.gov (United States)

    Comiso, Josefino C.

    1994-01-01

    Monthly surface temperatures in the Arctic and Antarctic regions have been derived from the 11.5 micrometer thermal infrared channel of the Nimbus 7 temperature humidity infrared radiometer (THIR) for a whole year in 1979 and for a winter and a summer month from 1980 through 1985. The data set shows interannual variability and provides spatial details that allow identification of temperature patterns over sea ice and ice sheet surfaces. For example, the coldest spot in the southern hemisphere is observed to be consistently in the Antarctic plateau in the southern hemisphere, while that in the northern hemisphere is usually located in Greenland, or one of three other general areas: Siberia, the central Arctic, or the Canadian Archipelago. Also, in the southern hemisphere, the amplitude of the seasonal fluctuation of ice sheet temperatures is about 3 times that of sea ice, while in the northern hemisphere, the corresponding fluctuations for the two surfaces are about the same. The main sources of error in the retrieval are cloud and other atmospheric effects. These were minimized by first choosing the highest radiance value from the set of measurements during the day taken within a 30 km by 30 km grid of each daily map. Then the difference of daily maps was taken and where the difference is greater than a certain threshold (which in this case is 12 C), the data element is deleted. Overall, the monthly maps derived from the resulting daily maps are spatially and temporally consistent, are coherent with the topograph y of the Antarctic continent and the location of the sea ice edge, and are in qualitative agreement with climatological data. Quantitatively, THIR data are in good agreement with Antarctic ice sheet surface air temperature station data with a correlation coefficient of 0.997 and a standard deviation of 2.0 C. The absolute values are not as good over the sea ice edges, but a comparison with Russian 2-m drift station temperatures shows very high correlation

  5. Mesoscale surface equivalent temperature (T E) for East Central USA

    Science.gov (United States)

    Younger, Keri; Mahmood, Rezaul; Goodrich, Gregory; Pielke, Roger A.; Durkee, Joshua

    2018-04-01

    The purpose of this research is to investigate near surface mesoscale equivalent temperatures (T E) in Kentucky (located in east central USA) and potential land cover influences. T E is a measure of the moist enthalpy composed of the dry bulb temperature, T, and absolute humidity. Kentucky presents a unique opportunity to perform a study of this kind because of the observational infrastructure provided by the Kentucky Mesonet (www.kymesonet.org). This network maintains 69 research-grade, in-situ weather and climate observing stations across the Commonwealth. Equivalent temperatures were calculated utilizing high-quality observations from 33 of these stations. In addition, the Kentucky Mesonet offers higher spatial and temporal resolution than previous research on this topic. As expected, the differences (T E - T) were greatest in the summer (smallest in the winter), with an average of 35 °C (5 °C). In general, the differences were found to be the largest in the western climate division. This is attributed to agricultural land use and poorly drained land. These differences are smaller during periods of drought, signifying less influence of moisture.

  6. Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE

    National Research Council Canada - National Science Library

    Gentemann, Chelle L; Wick, Gary A; Cummings, James; Bayler, Eric

    2004-01-01

    ...) sensors and to then demonstrate the impact of these improved sea surface temperatures (SSTs) on operational ocean models, numerical weather prediction, and tropical cyclone intensity forecasting...

  7. Temperature sensitive surfaces and methods of making same

    Science.gov (United States)

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  8. Surface alloying in Sn/Au(111) at elevated temperature

    Science.gov (United States)

    Sadhukhan, Pampa; Singh, Vipin Kumar; Rai, Abhishek; Bhattacharya, Kuntala; Barman, Sudipta Roy

    2018-04-01

    On the basis of x-ray photoelectron spectroscopy, we show that when Sn is deposited on Au(111) single crystal surface at a substrate temperature TS=373 K, surface alloying occurs with the formation of AuSn phase. The evolution of the surface structure and the surface morphology has been studied by low energy electron diffraction and scanning tunneling microscopy, respectively as a function of Sn coverage and substrate temperatures.

  9. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  10. Correlation between average tissue depth data and quantitative accuracy of forensic craniofacial reconstructions measured by geometric surface comparison method.

    Science.gov (United States)

    Lee, Won-Joon; Wilkinson, Caroline M; Hwang, Hyeon-Shik; Lee, Sang-Mi

    2015-05-01

    Accuracy is the most important factor supporting the reliability of forensic facial reconstruction (FFR) comparing to the corresponding actual face. A number of methods have been employed to evaluate objective accuracy of FFR. Recently, it has been attempted that the degree of resemblance between computer-generated FFR and actual face is measured by geometric surface comparison method. In this study, three FFRs were produced employing live adult Korean subjects and three-dimensional computerized modeling software. The deviations of the facial surfaces between the FFR and the head scan CT of the corresponding subject were analyzed in reverse modeling software. The results were compared with those from a previous study which applied the same methodology as this study except average facial soft tissue depth dataset. Three FFRs of this study that applied updated dataset demonstrated lesser deviation errors between the facial surfaces of the FFR and corresponding subject than those from the previous study. The results proposed that appropriate average tissue depth data are important to increase quantitative accuracy of FFR. © 2015 American Academy of Forensic Sciences.

  11. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  12. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    Science.gov (United States)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  13. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar

    Science.gov (United States)

    Meneghini, Robert; Kim, Hyokyung

    2016-01-01

    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  14. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  15. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  16. Direct evaluation of transient surface temperatures and heat fluxes

    International Nuclear Information System (INIS)

    Axford, R.A.

    1975-08-01

    Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations

  17. Outdoor surface temperature measurement: ground truth or lie?

    Science.gov (United States)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  18. Urban surface temperature behaviour and heat island effect in a tropical planned city

    Science.gov (United States)

    Ahmed, Adeb Qaid; Ossen, Dilshan Remaz; Jamei, Elmira; Manaf, Norhashima Abd; Said, Ismail; Ahmad, Mohd Hamdan

    2015-02-01

    Putrajaya is a model city planned with concepts of a "city in the garden" and an "intelligent city" in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.

  19. Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions

    Science.gov (United States)

    Conley, A. J.; Westervelt, D. M.; Lamarque, J.-F.; Fiore, A. M.; Shindell, D.; Correa, G.; Faluvegi, G.; Horowitz, L. W.

    2018-03-01

    Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multicentury perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200 year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for northern hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of (0.0036, 0.0078). We examine global and regional responses in SO4 burdens, aerosol optical depths (AODs), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (United States), the temperature response is spread over the northern hemisphere with amplification of the temperature increase toward the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the ERF of U.S. SO2 emissions is found to differ from the models' sensitivity to radiative forcing of doubled CO2.

  20. Low temperature self-cleaning properties of superhydrophobic surfaces

    Science.gov (United States)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  1. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    Science.gov (United States)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  2. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    Science.gov (United States)

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  3. ATSR sea surface temperature data in a global analysis with TOPEX/POSEIDON altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Knudsen, Thomas

    1996-01-01

    Along Track Scanning Radiometer (ATSR) data from the ERS 1 satellite mission are used in a global analysis of the surface temperature of the oceans. The data are the low resolution 0.5 degrees by 0.5 degrees average temperatures and cover about 24 months. At global scales a significant seasonal...... variability is found. On each of the hemispheres the surface temperatures reach their maximum after summer heating. The seasonal sea level variability, as observed from TOPEX/POSEIDON, reaches its maximum 1.1-1.4 months later....

  4. Global surface temperature in relation to northeast monsoon rainfall ...

    Indian Academy of Sciences (India)

    is observed that the meridional gradient in surface air temperature anomalies between Europe and ... Surface air tempera- ture is one of the factors that influence monsoon variability. The distribution of surface air temper- ature over land and sea determines the locations ..... Asia, north Indian Ocean, northeast Russia and.

  5. Low-temperature plasma techniques in surface modification of biomaterials

    International Nuclear Information System (INIS)

    Feng Xiangfen; Xie Hankun; Zhang Jing

    2002-01-01

    Since synthetic polymers usually can not meet the biocompatibility and bio-functional demands of the human body, surface treatment is a prerequisite for them to be used as biomaterials. A very effective surface modification method, plasma treatment, is introduced. By immobilizing the bio-active molecules with low temperature plasma, polymer surfaces can be modified to fully satisfy the requirements of biomaterials

  6. Surface temperature retrieval in a temperate grassland with multiresolution sensors

    Science.gov (United States)

    Goetz, S. J.; Halthore, R. N.; Hall, F. G.; Markham, B. L.

    1995-12-01

    Radiometric surface temperatures retrieved at various spatial resolutions from aircraft and satellite measurements at the FIFE site in eastern Kansas were compared with near-surface temperature measurements to determine the accuracy of the retrieval techniques and consistency between the various sensors. Atmospheric characterizations based on local radiosonde profiles of temperature, pressure, and water vapor were used with the LOWTRAN-7 and MODTRAN atmospheric radiance models to correct measured thermal radiances of water and grassland targets for atmospheric attenuation. Comparison of retrieved surface temperatures from a helicopter-mounted modular multispectral radiometer (MMR) (˜5-m "pixel"), C-130 mounted thematic mapper simulator (TMS) (NS001, ˜20-m pixel), and the Landsat 5 thematic mapper (TM) (120-m pixel) was done. Differences between atmospherically corrected radiative temperatures and near-surface measurements ranged from less than 1°C to more than 8°C. Corrected temperatures from helicopter-MMR and NS001-TMS were in general agreement with near-surface infrared radiative thermometer (IRT) measurements collected from automated meteorological stations, with mean differences of 3.2°C and 1.7°C for grassland targets. Much better agreement (within 1°C) was found between the retrieved aircraft surface temperatures and near-surface measurements acquired with a hand-held mast equipped with a MMR and IRT. The NS001-TMS was also in good agreement with near-surface temperatures acquired over water targets. In contrast, the Landsat 5 TM systematically overestimated surface temperature in all cases. This result has been noted previously but not consistently. On the basis of the results reported here, surface measurements were used to provide a calibration of the TM thermal channel. Further evaluation of the in-flight radiometric calibration of the TM thermal channel is recommended.

  7. Dependence of the coefficient of environmental thermal losses of radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid from their average operating and ambient temperatures

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    The approximation formula is derived for calculating the normalized coefficient of thermal losses of flat solar collectors (FSCs) for heating heat-transfer fluid (HTF). These are used in hot water supply systems in the warmer part of the year, depending on the average working surface temperature of their radiation-absorbing thermal exchange panels (RATEPs) (t"-_w_s_r) and the ambient temperature (t_a_m_b) in their realistic variation range. (author)

  8. Recent Development on the NOAA's Global Surface Temperature Dataset

    Science.gov (United States)

    Zhang, H. M.; Huang, B.; Boyer, T.; Lawrimore, J. H.; Menne, M. J.; Rennie, J.

    2016-12-01

    Global Surface Temperature (GST) is one of the most widely used indicators for climate trend and extreme analyses. A widely used GST dataset is the NOAA merged land-ocean surface temperature dataset known as NOAAGlobalTemp (formerly MLOST). The NOAAGlobalTemp had recently been updated from version 3.5.4 to version 4. The update includes a significant improvement in the ocean surface component (Extended Reconstructed Sea Surface Temperature or ERSST, from version 3b to version 4) which resulted in an increased temperature trends in recent decades. Since then, advancements in both the ocean component (ERSST) and land component (GHCN-Monthly) have been made, including the inclusion of Argo float SSTs and expanded EOT modes in ERSST, and the use of ISTI databank in GHCN-Monthly. In this presentation, we describe the impact of those improvements on the merged global temperature dataset, in terms of global trends and other aspects.

  9. Performance analysis of PV panel under varying surface temperature

    Directory of Open Access Journals (Sweden)

    Kumar Tripathi Abhishek

    2018-01-01

    Full Text Available The surface temperature of PV panel has an adverse impact on its performance. The several electrical parameters of PV panel, such as open circuit voltage, short circuit current, power output and fill factor depends on the surface temperature of PV panel. In the present study, an experimental work was carried out to investigate the influence of PV panel surface temperature on its electrical parameters. The results obtained from this experimental study show a significant reduction in the performance of PV panel with an increase in panel surface temperature. A 5W PV panel experienced a 0.4% decrease in open circuit voltage for every 1°C increase in panel surface temperature. Similarly, there was 0.6% and 0.32% decrease in maximum power output and in fill factor, respectively, for every 1°C increase in panel surface temperature. On the other hand, the short circuit current increases with the increase in surface temperature at the rate of 0.09%/°C.

  10. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  11. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  12. Temperature profiles on the gadolinium surface during electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-03-01

    The distributions of surface temperature of gadolinium in a water-cooled copper crucible during electron beam evaporation were measured by optical pyrometry. The surface temperatures were obtained from the radiation intensity ratio of the evaporating surface and a reference light source using Planck`s law of radiation. The emitted radiation from the evaporating surface and a reference source was detected by a CCD sensor through a band pass filter of 650 nm. The measured surface temperature generally agreed with those estimated from the deposition rate and the data of the saturated vapor pressure. At high input powers, it was found that the measured value had small difference with the estimated one due to variation of the surface condition. (author).

  13. Temperature profiles on the gadolinium surface during electron beam evaporation

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    1995-01-01

    The distributions of surface temperature of gadolinium in a water-cooled copper crucible during electron beam evaporation were measured by optical pyrometry. The surface temperatures were obtained from the radiation intensity ratio of the evaporating surface and a reference light source using Planck's law of radiation. The emitted radiation from the evaporating surface and a reference source was detected by a CCD sensor through a band pass filter of 650 nm. The measured surface temperature generally agreed with those estimated from the deposition rate and the data of the saturated vapor pressure. At high input powers, it was found that the measured value had small difference with the estimated one due to variation of the surface condition. (author)

  14. Optimal Estimation of Sea Surface Temperature from AMSR-E

    Directory of Open Access Journals (Sweden)

    Pia Nielsen-Englyst

    2018-02-01

    Full Text Available The Optimal Estimation (OE technique is developed within the European Space Agency Climate Change Initiative (ESA-CCI to retrieve subskin Sea Surface Temperature (SST from AQUA’s Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E. A comprehensive matchup database with drifting buoy observations is used to develop and test the OE setup. It is shown that it is essential to update the first guess atmospheric and oceanic state variables and to perform several iterations to reach an optimal retrieval. The optimal number of iterations is typically three to four in the current setup. In addition, updating the forward model, using a multivariate regression model is shown to improve the capability of the forward model to reproduce the observations. The average sensitivity of the OE retrieval is 0.5 and shows a latitudinal dependency with smaller sensitivity for cold waters and larger sensitivity for warmer waters. The OE SSTs are evaluated against drifting buoy measurements during 2010. The results show an average difference of 0.02 K with a standard deviation of 0.47 K when considering the 64% matchups, where the simulated and observed brightness temperatures are most consistent. The corresponding mean uncertainty is estimated to 0.48 K including the in situ and sampling uncertainties. An independent validation against Argo observations from 2009 to 2011 shows an average difference of 0.01 K, a standard deviation of 0.50 K and a mean uncertainty of 0.47 K, when considering the best 62% of retrievals. The satellite versus in situ discrepancies are highest in the dynamic oceanic regions due to the large satellite footprint size and the associated sampling effects. Uncertainty estimates are available for all retrievals and have been validated to be accurate. They can thus be used to obtain very good retrieval results. In general, the results from the OE retrieval are very encouraging and demonstrate that passive microwave

  15. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    Directory of Open Access Journals (Sweden)

    A. C. Adolph

    2018-03-01

    Full Text Available As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of −0.4 °C, spanning a range of temperatures from −35 to −5 °C (RMSE  =  1.6 °C and mean bias  =  −0.7 °C prior to cloud masking. For our study area and time series

  16. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  17. High-temperature morphology of stepped gold surfaces

    International Nuclear Information System (INIS)

    Bilalbegovic, G.; Tosatti, E.; Ercolessi, F.

    1992-04-01

    Molecular dynamics simulations with a classical many-body potential are used to study the high-temperature stability of stepped non-melting metal surfaces. We have studied in particular the Au(111) vicinal surfaces in the (M+1, M-1, M) family and the Au(100) vicinals in the (M, 1, 1) family. Some vicinal orientations close to the non-melting Au(111) surface become unstable close to the bulk melting temperature and facet into a mixture of crystalline (111) regions and localized surface-melted regions. On the contrary, we do not find high-temperature faceting for vicinals close to Au(100), also a non-melting surface. These (100) vicinal surfaces gradually disorder with disappearance of individual steps well below the bulk melting temperature. We have also studied the high-temperature stability of ledges formed by pairs of monoatomic steps of opposite sign on the Au(111) surface. It is found that these ledges attract each other, so that several of them merge into one larger ledge, whose edge steps then act as a nucleation site for surface melting. (author). 43 refs, 8 figs

  18. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    Science.gov (United States)

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  19. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  20. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  1. OW NOAA GOES-POES Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains blended satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellites (GOES)...

  2. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  3. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  4. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  5. Tropical sea surface temperature variability near the Oligocene - Miocene boundary

    Science.gov (United States)

    Zhang, Y.; Pagani, M.

    2010-12-01

    The Oligocene/Miocene (O-M) boundary is characterized by a period of rapid and intense glaciation labeled Mi-1 at ~ 23.1 Ma. An abrupt 1.5‰ increase in the benthic foraminifera oxygen isotope composition that characterizes Mi-1 may indicate a (1) significant deep-water temperature decrease; (2) major ice-sheet expansion, or the combination of both. Current coarse Mg/Ca-based temperature estimations for the early Miocene suggests that deep-ocean temperatures were ~2°C warmer than Today [1, 2]. However, Mg/Ca based temperatures can also be influenced by changes in the carbonate ion concentration, vital effects, and diagenesis. In particular, recent evidence from mid-ocean ridge flank carbonate veins shows dramatic seawater Mg/Ca ratio changes during the Neogene (Mg/Ca from ~2.2 to 5.3, [3]), which further challenges the application of Mg/Ca thermometry. Owing to poor temperature constraints, current ice volume estimations for the late Oligocene/early Miocene range from 125% of the present-day East Antarctic Ice Sheet (EAIS) to a nearly complete collapse of the Antarctic glaciers [4]. Here we present tropical sea surface temperatures (SSTs) records based on TEX86 and alkenone UK37 near the O-M boundary. Sediment samples from Ocean Drilling Program (ODP) Site 926 in the Ceara Rise (tropical Atlantic) and Site 1148 in the South China Sea (tropical Pacific) were subject to lipid extraction, separation, gas chromatography, and liquid chromatography-mass spectrometry analysis. TEX86-based SST indicates that the tropics were ~3-4°C warmer than today and relatively stable during Mi-1. This suggests that ice-sheet dynamics, rather than temperature, might be responsible for the observed oxygen isotope changes during the O-M boundary. Further, O-M boundary averaged temperatures recorded at site 926 is ~ 0.5°C higher relative to the late Eocene from site 925 (a nearby site [5]). Given late Oligocene benthic δ18O that suggests at least 1‰ enrichment relative to the late

  6. Afforestation in China cools local land surface temperature

    OpenAIRE

    Peng, Shu-Shi; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Zhou, Liming; Li, Laurent Z. X.; Myneni, Ranga B.; Yin, Yi; Zeng, Hui

    2014-01-01

    International audience; China has the largest afforested area in the world (~62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjace...

  7. Coherent changes of wintertime surface air temperatures over North Asia and North America.

    Science.gov (United States)

    Yu, Bin; Lin, Hai

    2018-03-29

    The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.

  8. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mamoutkine, A. [ADNET Systems, Inc., Bethesda, MD 20817 (United States); Gorius, N. J. P. [The Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Universität zu Köln, Albertus-Magnus-Platz, D-50923 Köln (Germany)

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  9. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    International Nuclear Information System (INIS)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E.; Mamoutkine, A.; Gorius, N. J. P.; Coustenis, A.; Tokano, T.

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation

  10. Temperature dependence of rippled corrugations induced on the Rh(1 1 0) surface via ion sputtering

    International Nuclear Information System (INIS)

    Molle, Alessandro; Buatier de Mongeot, F.; Granone, F.; Buzio, R.; Firpo, G.; Boragno, C.; Valbusa, U.

    2005-01-01

    Metal surfaces can be easily nanopatterned via ion sputtering: mounds or ripples can be created depending on the surface symmetry and temperature. However, in many cases these structures are unstable at room temperature and above, due to the adatom fast diffusion. This fact prevents the use of such systems as substrate or nanostamps for a technological implementation. In this paper we present a spot profile analysis low energy electron diffraction (SPA-LEED) study on the nanopatterning of a Rh(1 1 0) single crystal. Like the other (1 1 0) metal surfaces, previously investigated, also Rh(1 1 0) shows for increasing temperatures a transition between different rippled morphologies. The main advantage of this system is its stability at room temperature. From SPA-LEED data we can measure the structural features (average periodicity and local faceting) of the observed rippled structures

  11. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  12. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  13. Long term persistence in the sea surface temperature fluctuations

    OpenAIRE

    Monetti, Roberto A.; Havlin, Shlomo; Bunde, Armin

    2002-01-01

    We study the temporal correlations in the sea surface temperature (SST) fluctuations around the seasonal mean values in the Atlantic and Pacific oceans. We apply a method that systematically overcome possible trends in the data. We find that the SST persistence, characterized by the correlation $C(s)$ of temperature fluctuations separated by a time period $s$, displays two different regimes. In the short-time regime which extends up to roughly 10 months, the temperature fluctuations display a...

  14. Surface kinetic temperature mapping using satellite spectral data in ...

    African Journals Online (AJOL)

    The result revealed that despite the limited topographic differences of the rift lakes and their proximity, the surface kinetic temperature difference is high, mainly due to groundwater and surface water fluxes. From thermal signature analysis two hot springs below the lake bed of Ziway were discovered. The various hot springs ...

  15. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature.

    Science.gov (United States)

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

  16. Predicting top-of-atmosphere radiance for arbitrary viewing geometries from the visible to thermal infrared: generalization to arbitrary average scene temperatures

    Science.gov (United States)

    Florio, Christopher J.; Cota, Steve A.; Gaffney, Stephanie K.

    2010-08-01

    In a companion paper presented at this conference we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) may be used in conjunction with a limited number of runs of AFRL's MODTRAN4 radiative transfer code, to quickly predict the top-of-atmosphere (TOA) radiance received in the visible through midwave IR (MWIR) by an earth viewing sensor, for any arbitrary combination of solar and sensor elevation angles. The method is particularly useful for large-scale scene simulations where each pixel could have a unique value of reflectance/emissivity and temperature, making the run-time required for direct prediction via MODTRAN4 prohibitive. In order to be self-consistent, the method described requires an atmospheric model (defined, at a minimum, as a set of vertical temperature, pressure and water vapor profiles) that is consistent with the average scene temperature. MODTRAN4 provides only six model atmospheres, ranging from sub-arctic winter to tropical conditions - too few to cover with sufficient temperature resolution the full range of average scene temperatures that might be of interest. Model atmospheres consistent with intermediate temperature values can be difficult to come by, and in any event, their use would be too cumbersome for use in trade studies involving a large number of average scene temperatures. In this paper we describe and assess a method for predicting TOA radiance for any arbitrary average scene temperature, starting from only a limited number of model atmospheres.

  17. Measuring the Surface Temperature of the Cryosphere using Remote Sensing

    Science.gov (United States)

    Hall, Dorothy K.

    2012-01-01

    A general description of the remote sensing of cryosphere surface temperatures from satellites will be provided. This will give historical information on surface-temperature measurements from space. There will also be a detailed description of measuring the surface temperature of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data which will be the focus of the presentation. Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate data record, trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the MODIS IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now freely available to download at 6.25-km spatial resolution on a polar stereographic grid. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends of the duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The consistency of this IST record, with temperature and melt records from other sources will be discussed.

  18. Surface temperature measurement of plasma facing components in tokamaks

    International Nuclear Information System (INIS)

    Amiel, Stephane

    2014-01-01

    During this PhD, the challenges on the non-intrusive surface temperature measurements of metallic plasma facing components in tokamaks are reported. Indeed, a precise material emissivity value is needed for classical infrared methods and the environment contribution has to be known particularly for low emissivities materials. Although methods have been developed to overcome these issues, they have been implemented solely for dedicated experiments. In any case, none of these methods are suitable for surface temperature measurement in tokamaks.The active pyrometry introduced in this study allows surface temperature measurements independently of reflected flux and emissivities using pulsed and modulated photothermal effect. This method has been validated in laboratory on metallic materials with reflected fluxes for pulsed and modulated modes. This experimental validation is coupled with a surface temperature variation induced by photothermal effect and temporal signal evolvement modelling in order to optimize both the heating source characteristics and the data acquisition and treatment. The experimental results have been used to determine the application range in temperature and detection wavelengths. In this context, the design of an active pyrometry system on tokamak has been completed, based on a bicolor camera for a thermography application in metallic (or low emissivity) environment.The active pyrometry method introduced in this study is a complementary technique of classical infrared methods used for thermography in tokamak environment which allows performing local and 2D surface temperature measurements independently of reflected fluxes and emissivities. (author) [fr

  19. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  20. Mathematical model of the metal mould surface temperature optimization

    International Nuclear Information System (INIS)

    Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek

    2015-01-01

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article

  1. Quantative determination of surface temperatures using an infrared camera

    International Nuclear Information System (INIS)

    Hsieh, C.K.; Ellingson, W.A.

    1977-01-01

    A method is presented to determine the surface-temperature distribution at each point in an infrared picture. To handle the surface reflection problem, three cases are considered that include the use of black coatings, radiation shields, and band-pass filters. For uniform irradiation on the test surface, the irradiation can be measured by using a cooled, convex mirror. Equations are derived to show that this surrounding irradiation effect can be subtracted out from the scanned radiation; thus the net radiation is related to only emission from the surface. To provide for temperature measurements over a large field, the image-processing technique is used to digitize the infrared data. The paper spells out procedures that involve the use of a computer for making point-by-point temperature calculations. Finally, a sample case is given to illustrate applications of the method. 6 figures, 1 table

  2. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  3. Growth studies of Mytilus californianus using satellite surface temperatures and chlorophyll data for coastal Oregon

    Science.gov (United States)

    Price, J.; Lakshmi, V.

    2013-12-01

    -a concentration, and mussel body growth were collected for eight study sites along the coast of Oregon, USA for a 12 year period from 2000 through 2011. Differences in surface temperatures, chlorophyll-a concentration, and mussel body growth were seen across study sites. The northernmost study site, Cape Meares, had the highest average SST and the lowest average chlorophyll-a concentration. Interestingly, it also had high average mussel growth. Whereas, Cape Arago and Cape Blanco, the two southernmost study sites, had the lowest average SST and lowest average mussel growth, but had higher average chlorophyll-a concentrations. Furthermore, some study sites showed that mussel growth was related to temperature and at other study sites chlorophyll-a concentration was related to mussel growth. The strongest relationship between either temperature or chlorophyll-a concentration, was found at Boiler Bay, Oregon. Approximately 81% of the variations in mean size-specific mussel growth was explained by mean annual LST anomalies. This means that at Boiler Bay, cooler LST years resulted in less mussel growth and warmer years resulted in higher mussel growth. Results suggest that SST may influence mussel body growth more than chlorophyll-a concentration.

  4. Influence of engine speed and the course of the fuel injection characteristics on forming the average combustion temperature in the cylinder of turbo diesel engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2007-01-01

    Full Text Available Average combustion temperatures inside a turbo diesel engine for the same load and the same total doze of fuel for two rotational speeds: 2004 [rpm] and 4250 [rpm] are presented in this paper. The aim of this work is also the evaluation of the influence of the temporary course of the fuel injection characteristics on forming temperature in theengine cylinder space for these temperatures. The calculations were carried out by means of two zone combustion model.

  5. Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box-averaged mixing ratios

    Directory of Open Access Journals (Sweden)

    R. Sinreich

    2013-06-01

    Full Text Available We present a novel parameterization method to convert multi-axis differential optical absorption spectroscopy (MAX-DOAS differential slant column densities (dSCDs into near-surface box-averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort, while retrieving ~ 1 degree of freedom. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed. The method is applied to NO2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006 measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3° are compared to volume mixing ratios measured by two long-path (LP-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by the MAX-DOAS and LP-DOAS instruments. In particular, a vertical gradient in NO2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near-surface emission inside street canyons. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way, and emphasizes the need of vertically resolved measurements.

  6. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...

  7. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  8. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  9. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  10. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  11. Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil

    Science.gov (United States)

    Frigo, Everton; Antonelli, Francesco; da Silva, Djeniffer S. S.; Lima, Pedro C. M.; Pacca, Igor I. G.; Bageston, José V.

    2018-04-01

    Quasi-periodic variations in solar activity and galactic cosmic rays (GCRs) on decadal and bidecadal timescales have been suggested as a climate forcing mechanism for many regions on Earth. One of these regions is southern Brazil, where the lowest values during the last century were observed for the total geomagnetic field intensity at the Earth's surface. These low values are due to the passage of the center of the South Atlantic Magnetic Anomaly (SAMA), which crosses the Brazilian territory from east to west following a latitude of ˜ 26°. In areas with low geomagnetic intensity, such as the SAMA, the incidence of GCRs is increased. Consequently, possible climatic effects related to the GCRs tend to be maximized in this region. In this work, we investigate the relationship between the ˜ 11-year and ˜ 22-year cycles that are related to solar activity and GCRs and the annual average temperature recorded between 1936 and 2014 at two weather stations, both located near a latitude of 26° S but at different longitudes. The first of these stations (Torres - TOR) is located in the coastal region, and the other (Iraí - IRA) is located in the interior, around 450 km from the Atlantic Ocean. Sunspot data and the solar modulation potential for cosmic rays were used as proxies for the solar activity and the GCRs, respectively. Our investigation of the influence of decadal and bidecadal cycles in temperature data was carried out using the wavelet transform coherence (WTC) spectrum. The results indicate that periodicities of 11 years may have continuously modulated the climate at TOR via a nonlinear mechanism, while at IRA, the effects of this 11-year modulation period were intermittent. Four temperature maxima, separated by around 20 years, were detected in the same years at both weather stations. These temperature maxima are almost coincident with the maxima of the odd solar cycles. Furthermore, these maxima occur after transitions from even to odd solar cycles, that is

  12. MERRA 2D IAU Diagnostic, Surface Fluxes, Time Average 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXFLX or tavg1_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  13. State Averages

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...

  14. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  15. Data-Model Comparison of Pliocene Sea Surface Temperature

    Science.gov (United States)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  16. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  17. Sea surface temperature trends in the coastal ocean

    OpenAIRE

    Amos, C.L.; Al-Rashidi, Thamer B.; Rakha, Karim; El-Gamily, Hamdy; Nicholls, R.J.

    2013-01-01

    Sea surface temperature (SST) trends in the coastal zone are shown to be increasing at rates that exceed the global trends by up to an order of magnitude. This paper compiles some of the evidence of the trends published in the literature. The evidence suggests that urbanization in the coastal hinterland is having a direct effect on SST through increased temperatures of river and lake waters, as well as through heated run-off and thermal effluent discharges from coastal infrastructure. These l...

  18. Long-term changes in sea surface temperatures

    International Nuclear Information System (INIS)

    Parker, D.E.

    1994-01-01

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales

  19. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    Science.gov (United States)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  20. Effect of average growing season temperature on seedling germination, survival and growth in jack pine (Pinus banksiana Lamb.)

    Science.gov (United States)

    A. David; E. Humenberger

    2017-01-01

    Because jack pine (Pinus banksiana Lamb.) is serotinous, it retains multiple years of cones until environmental conditions are favorable for releasing seed. These cones, which contain seed cohorts that developed under a variety of growing seasons, can be accurately aged using bud scale scars on twigs and branches. By calculating the average daily...

  1. GLOBAL CHANGES IN THE SEA ICE COVER AND ASSOCIATED SURFACE TEMPERATURE CHANGES

    Directory of Open Access Journals (Sweden)

    J. C. Comiso

    2016-06-01

    Full Text Available The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at −3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  2. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization

    Science.gov (United States)

    Kennedy, J. J.; Rayner, N. A.; Smith, R. O.; Parker, D. E.; Saunby, M.

    2011-07-01

    Changes in instrumentation and data availability have caused time-varying biases in estimates of global and regional average sea surface temperature. The size of the biases arising from these changes are estimated and their uncertainties evaluated. The estimated biases and their associated uncertainties are largest during the period immediately following the Second World War, reflecting the rapid and incompletely documented changes in shipping and data availability at the time. Adjustments have been applied to reduce these effects in gridded data sets of sea surface temperature and the results are presented as a set of interchangeable realizations. Uncertainties of estimated trends in global and regional average sea surface temperature due to bias adjustments since the Second World War are found to be larger than uncertainties arising from the choice of analysis technique, indicating that this is an important source of uncertainty in analyses of historical sea surface temperatures. Despite this, trends over the twentieth century remain qualitatively consistent.

  3. The Remote Sensing of Surface Radiative Temperature over Barbados.

    Science.gov (United States)

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  4. An Estimation of Land Surface Temperatures from Landsat ETM+ ...

    African Journals Online (AJOL)

    Dr-Adeline

    Keywords: Urban growth, urban heat Island, land surface temperatures, ... climate from the resulting increase in LST can impact on the development of ... were not available (due to high cloud cover) in a given season, 2011 images ..... Sailor, D.J. and H. Fan, 2002: Modeling the diurnal variability of effective albedo for cities.

  5. Solitary ionizing surface waves on low-temperature plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.; Yu, M.Y.

    1993-01-01

    It is demonstrated that at the boundary of semi-infinite low-temperature plasma new types of localized ionizing surface wave structures can propagate. The solitary waves are described by an evolution equation similar to the KdV equation, but the solutions differ considerably from that of the latter

  6. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    temperature anomalies for the above regions respectively. An analysis has shown that most of the short duration anomalies (i.e., anomalies with periods less than 4 months) are driven by the surface heat fluxes. The medium duration anomalies (i.e., anomalies...

  7. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  8. Surface and temperature effects in isovector giant resonances

    International Nuclear Information System (INIS)

    Lipparini, E.; Stringari, S.

    1988-01-01

    Using the liquid droplet model (LDM) we investigate three different sum rules for the isovector dipole and monopole excitations. Analytical formulae are derived for the excitation energies of these resonances and the predictions are compared with experiments. The role of the surface and the effects of temperature are explicitly discussed. (orig.)

  9. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ...

  10. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  11. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  12. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1998-01-01

    The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...

  13. Temperature limit values for touching cold surfaces with the fingertip

    NARCIS (Netherlands)

    Geng, Q.; Holme, I.; Hartog, E.A. den; Havenith, G.; Jay, O.; Malchaires, J.; Piette, A.; Rintama, H.; Rissanen, S.

    2006-01-01

    Objectives: At the request of the European Commission and in the framework of the European Machinery Directive, research was performed in five different laboratories to develop specifications for surface temperature limit values for the short-term accidental touching of the fingertip with cold

  14. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  15. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  16. Near-surface temperature gradient in a coastal upwelling regime

    Science.gov (United States)

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  17. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  18. Modeling apple surface temperature dynamics based on weather data.

    Science.gov (United States)

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  19. Effects of temperature and surface orientation on migration behaviours of helium atoms near tungsten surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoshuang; Wu, Zhangwen; Hou, Qing, E-mail: qhou@scu.edu.cn

    2015-10-15

    Molecular dynamics simulations were performed to study the dependence of migration behaviours of single helium atoms near tungsten surfaces on the surface orientation and temperature. For W{100} and W{110} surfaces, He atoms can quickly escape out near the surface without accumulation even at a temperature of 400 K. The behaviours of helium atoms can be well-described by the theory of continuous diffusion of particles in a semi-infinite medium. For a W{111} surface, the situation is complex. Different types of trap mutations occur within the neighbouring region of the W{111} surface. The trap mutations hinder the escape of He atoms, resulting in their accumulation. The probability of a He atom escaping into vacuum from a trap mutation depends on the type of the trap mutation, and the occurrence probabilities of the different types of trap mutations are dependent on the temperature. This finding suggests that the escape rate of He atoms on the W{111} surface does not show a monotonic dependence on temperature. For instance, the escape rate at T = 1500 K is lower than the rate at T = 1100 K. Our results are useful for understanding the structural evolution and He release on tungsten surfaces and for designing models in other simulation methods beyond molecular dynamics.

  20. Numerically predicting horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1993-01-01

    A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degrees C and 23 degrees C for the low heat dissipation and high dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1 degrees C and 6 degrees C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degrees C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include a experimental uncertainity in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This works demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases

  1. Numerically predicting horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degree C and 23 degree C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1 degree C and 6 degree C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degree C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases

  2. Changes in Skin Surface Temperature during Muscular Endurance indicated Strain – An Explorative Study

    Directory of Open Access Journals (Sweden)

    Michael Fröhlich

    2014-07-01

    Full Text Available Introduction: Non-contact thermography enables the diagnosis of the distribution of skin surface temperature during athletic movement. Resistance exercise results in stress of required musculature, which is supposed to be measurable thermographically in terms of skin surface temperature change. Objective: This study aims to evaluate the application of thermography to analyze changes in skin temperature, representing specific muscle groups, during and after resistance exercise. Method: Thirteen male participants (age: 27.1 ± 4.9 years, height: 181.5 ± 5.7 cm, mass: 74.8 ± 7.4 kg completed the study. On 5 separate visits to the laboratory, participants performed one of 5 resistance exercise to target specific muscles (M. pectoralis major, M. rectus abdominis, M. trapezius, M. erector spinae, M. quadriceps femoris. The exercise protocol consisted of 3 sets of 20 repetitions, with 1 minute rest between exercise sets. The average skin surface temperature above the muscle groups used was thermographically determined using standard methods at 7 time points; pre-exercise, immediately following each exercise set, and post exercise (2, 3, and 6 minutes after the finale exercise set. The measurement areas were standardized using anatomic reference points. Results: From an inferential statistical point of view, no significant change in the average temperature caused by the applied resistance training was found for the individual muscle groups over time at the individual measurement times (all P>0.08. However, thermography showed a characteristic chronological temperature curve for the five body areas between measurement times, as well as a distinctive spatial temperature distribution over the measurement areas. Discussion: Based on the thermographic image data and the characteristic temperature curve, it is possible to identify the primarily used functional musculature after device-controlled resistance training. Therefore, thermography seems to be

  3. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    Science.gov (United States)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air

  4. Using Historical Precipitation, Temperature, and Runoff Observations to Evaluate Evaporation Formulations in Land Surface Models

    Science.gov (United States)

    Koster, Randal D.; Mahanama, P. P.

    2012-01-01

    Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures) the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated.

  5. Determination of the in-core power and the average core temperature of low power research reactors using gamma dose rate measurements

    International Nuclear Information System (INIS)

    Osei Poku, L.

    2012-01-01

    Most reactors incorporate out-of-core neutron detectors to monitor the reactor power. An accurate relationship between the powers indicated by these detectors and actual core thermal power is required. This relationship is established by calibrating the thermal power. The most common method used in calibrating the thermal power of low power reactors is neutron activation technique. To enhance the principle of multiplicity and diversity of measuring the thermal neutron flux and/or power and temperature difference and/or average core temperature of low power research reactors, an alternative and complimentary method has been developed, in addition to the current method. Thermal neutron flux/Power and temperature difference/average core temperature were correlated with measured gamma dose rate. The thermal neutron flux and power predicted using gamma dose rate measurement were in good agreement with the calibrated/indicated thermal neutron fluxes and powers. The predicted data was also good agreement with thermal neutron fluxes and powers obtained using the activation technique. At an indicated power of 30 kW, the gamma dose rate measured predicted thermal neutron flux of (1* 10 12 ± 0.00255 * 10 12 ) n/cm 2 s and (0.987* 10 12 ± 0.00243 * 10 12 ) which corresponded to powers of (30.06 ± 0.075) kW and (29.6 ± 0.073) for both normal level of the pool water and 40 cm below normal levels respectively. At an indicated power of 15 kW, the gamma dose rate measured predicted thermal neutron flux of (5.07* 10 11 ± 0.025* 10 11 ) n/cm 2 s and (5.12 * 10 11 ±0.024* 10 11 ) n/cm 2 s which corresponded to power of (15.21 ± 0.075) kW and (15.36 ± 0.073) kW for both normal levels of the pool water and 40 cm below normal levels respectively. The power predicted by this work also compared well with power obtained from a three-dimensional neutronic analysis for GHARR-1 core. The predicted power also compares well with calculated power using a correlation equation obtained from

  6. Unexpected and Unexplained Surface Temperature Variations on Mimas

    Science.gov (United States)

    Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team

    2010-12-01

    Until recently it was thought one of the most interesting things about Mimas, Saturn’s innermost classical icy moon, was its resemblance to Star Wars’ Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassini’s Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassini’s closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145° W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundary’s apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturn’s radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas’ leading hemisphere at low latitudes where they

  7. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  8. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    Science.gov (United States)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  9. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    Science.gov (United States)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  10. Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry.

    Science.gov (United States)

    Mei, Jie; Riedel, Nico; Grittner, Ulrike; Endres, Matthias; Banneke, Stefanie; Emmrich, Julius Valentin

    2018-02-23

    Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.

  11. Urban pavement surface temperature. Comparison of numerical and statistical approach

    Science.gov (United States)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  12. Temperature minima in the average thermal structure of the middle mesosphere (70 - 80 km) from analysis of 40- to 92-km SME global temperature profiles

    Science.gov (United States)

    Clancy, R. Todd; Rusch, David W.; Callan, Michael T.

    1994-01-01

    Global temperatures have been derived for the upper stratosphere and mesosphere from analysis of Solar Mesosphere Explorer (SME) limb radiance profiles. The SME temperature represent fixed local time observations at 1400 - 1500 LT, with partial zonal coverage of 3 - 5 longitudes per day over the 1982-1986 period. These new SME temperatures are compared to the COSPAR International Ionosphere Reference Atmosphere 86 (CIRA 86) climatology (Fleming et al., 1990) as well as stratospheric and mesospheric sounder (SAMS); Barnett and Corney, 1984), National Meteorological Center (NMC); (Gelman et al., 1986), and individual lidar and rocket observations. Significant areas of disagreement between the SME and CIRA 86 mesospheric temperatures are 10 K warmer SME temperatures at altitudes above 80 km. The 1981-1982 SAMS temperatures are in much closer agreement with the SME temperatures between 40 and 75 km. Although much of the SME-CIRA 86 disagreement probably stems from the poor vertical resolution of the observations comprising the CIRA 86 modelm, some portion of the differences may reflect 5- to 10-year temporal variations in mesospheric temperatures. The CIRA 86 climatology is based on 1973-1978 measurements. Relatively large (1 K/yr) 5- to 10-year trends in temperatures as functions of longitude, latitude, and altitude have been observed for both the upper stratosphere (Clancy and Rusch, 1989a) and mesosphere (Clancy and Rusch, 1989b; Hauchecorne et al., 1991). The SME temperatures also exhibit enhanced amplitudes for the semiannual oscillation (SAO) of upper mesospheric temperatures at low latitudes, which are not evident in the CIRA 86 climatology. The so-called mesospheric `temperature inversions' at wintertime midlatitudes, which have been observed by ground-based lidar (Hauschecorne et al., 1987) and rocket in situ measurements (Schmidlin, 1976), are shown to be a climatological aspect of the mesosphere, based on the SME observations.

  13. Projections of rapidly rising surface temperatures over Africa under low mitigation

    International Nuclear Information System (INIS)

    Engelbrecht, Francois; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Adegoke, Jimmy; Thatcher, Marcus; McGregor, John; Katzfey, Jack; Werner, Micha; Ichoku, Charles; Gatebe, Charles

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4–6 °C over the subtropics and 3–5 °C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of

  14. Molecular dynamics study of room temperature ionic liquids with water at mica surface

    Directory of Open Access Journals (Sweden)

    Huanhuan Zhang

    2018-04-01

    Full Text Available Water in room temperature ionic liquids (RTILs could impose significant effects on their interfacial properties at a charged surface. Although the interfaces between RTILs and mica surfaces exhibit rich microstructure, the influence of water content on such interfaces is little understood, in particular, considering the fact that RTILs are always associated with water due to their hygroscopicity. In this work, we studied how different types of RTILs and different amounts of water molecules affect the RTIL-mica interfaces, especially the water distribution at mica surfaces, using molecular dynamics (MD simulation. MD results showed that (1 there is more water and a thicker water layer adsorbed on the mica surface as the water content increases, and correspondingly the average location of K+ ions is farther from mica surface; (2 more water accumulated at the interface with the hydrophobic [Emim][TFSI] than in case of the hydrophilic [Emim][BF4] due to the respective RTIL hydrophobicity and ion size. A similar trend was also observed in the hydrogen bonds formed between water molecules. Moreover, the 2D number density map of adsorbed water revealed that the high-density areas of water seem to be related to K+ ions and silicon/aluminum atoms on mica surface. These results are of great importance to understand the effects of hydrophobicity/hydrophicility of RTIL and water on the interfacial microstructure at electrified surfaces. Keywords: Room temperature ionic liquids, Hydrophobicity/hydrophicility, Water content, Electrical double layer, Mica surface

  15. High Predictive Skill of Global Surface Temperature a Year Ahead

    Science.gov (United States)

    Folland, C. K.; Colman, A.; Kennedy, J. J.; Knight, J.; Parker, D. E.; Stott, P.; Smith, D. M.; Boucher, O.

    2011-12-01

    We discuss the high skill of real-time forecasts of global surface temperature a year ahead issued by the UK Met Office, and their scientific background. Although this is a forecasting and not a formal attribution study, we show that the main instrumental global annual surface temperature data sets since 1891 are structured consistently with a set of five physical forcing factors except during and just after the second World War. Reconstructions use a multiple application of cross validated linear regression to minimise artificial skill allowing time-varying uncertainties in the contribution of each forcing factor to global temperature to be assessed. Mean cross validated reconstructions for the data sets have total correlations in the range 0.93-0.95,interannual correlations in the range 0.72-0.75 and root mean squared errors near 0.06oC, consistent with observational uncertainties.Three transient runs of the HadCM3 coupled model for 1888-2002 demonstrate quite similar reconstruction skill from similar forcing factors defined appropriately for the model, showing that skilful use of our technique is not confined to observations. The observed reconstructions show that the Atlantic Multidecadal Oscillation (AMO) likely contributed to the re-commencement of global warming between 1976 and 2010 and to global cooling observed immediately beforehand in 1965-1976. The slowing of global warming in the last decade is likely to be largely due to a phase-delayed response to the downturn in the solar cycle since 2001-2, with no net ENSO contribution. The much reduced trend in 2001-10 is similar in size to other weak decadal temperature trends observed since global warming resumed in the 1970s. The causes of variations in decadal trends can be mostly explained by variations in the strength of the forcing factors. Eleven real-time forecasts of global mean surface temperature for the year ahead for 2000-2010, based on broadly similar methods, provide an independent test of the

  16. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  17. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    Science.gov (United States)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  18. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data

    International Nuclear Information System (INIS)

    Wan, Z.; Li, Z.L.

    1997-01-01

    The authors have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NEΔT) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4--0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10--12.5 microm IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2--3 K

  19. Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients

    Directory of Open Access Journals (Sweden)

    Sniegowski M

    2015-03-01

    Full Text Available Matthew Sniegowski, Michael Erlanger, Raul Velez-Montoya, Jeffrey L Olson Ophthalmology Department, University of Colorado School of Medicine, Rocky Mountain Lions Eye Institute, Aurora, CO, USA Purpose: To assess the change in ocular surface temperature between healthy phakic and pseudophakic patients.Methods: We included patients with no history of ocular disease other than cataract. Patients were divided into three groups: clear lens, cataract, and pseudophakic. All patients had two ocular surface digital thermal scans. An average of five surface points was used as the mean ocular surface temperature. Results were analyzed with a one-way analysis of variance and a Tukey’s least significance difference test. The patients were further divided into phakic and pseudophakic groups. Correlation coefficients between several variables were done in order to assess dependencies.Results: Fifty-six eyes (28 cataracts, 12 clear lenses, 16 pseudophakic were enrolled. The mean ocular surface temperature in the cataract group was 34.14°C±1.51°C; clear lens: 34.43°C±2.27°C; and pseudophakic: 34.97°C±1.57°C. There were no statistical differences among the study groups (P=0.3. There was a nonsignificant negative correlation trend between age and surface temperature in the phakic group. The trend inverted in the pseudophakic group but without statistical significance.Conclusion: Although cataract extraction and intraocular lens implantation seem to induce a mild increase in ocular surface temperature, the effect is not clear and not significant. Keywords: digital thermal scans, intraocular lens implantation, cataract extraction

  20. The investigation of spatiotemporal variations of land surface temperature based on land use changes using NDVI in southwest of Iran

    Science.gov (United States)

    Fathizad, Hassan; Tazeh, Mahdi; Kalantari, Saeideh; Shojaei, Saeed

    2017-10-01

    Land use changes can bring about changes in land surface temperature (LST) which is influenced by climatic conditions and physical characteristics of the land surface. In this study, spatiotemporal variations of land surface temperature have been investigated in the desert area of Dasht-e-Abbas, Ilam, based on a variety of land use changes. The investigated periods for the study include 1990, 2000 and 2010 using Landsat image data. First, in mapping land use we used the Fuzzy ARTMAP Neural Network Classification method followed by determination of the NDVI Index to estimate land surface temperature. The results show an increase in LST in areas where degradation, land use and land cover changes have occurred. In 1990, 2000 and 2010, the average land surface temperature of the Fair Rangelands was 26.72 °C, 30.06 °C and 30.95 °C, respectively. This rangeland has been reduced by about 5%. For poor rangelands, the average LSTs were 26.95, 32.83 and 34.49 Cº, respectively which had a 18% reduction. In 1990, 2000 and 2010, the average land surface temperatures of agricultural lands were 24.31 °C, 27.87 °C and 28.61 °C, respectively which has been an increasing trend. The reason can be attributed to changes in cropping patterns of the study area.

  1. Increase of body surface temperature and blood flow by theanine

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Noguchi, Kenichi; Ando, Satoshi

    2002-01-01

    Suntheanine (Taiyo Kagaku Co.: Theanine) is the trade name for L-theanine which is a unique amino acid found almost solely in tea plants, responsible for the exotictaste of green tea. We investigated the effects of relate to relaxation, improves the taste of processed foods, radiation sensitization, and increase of body surface temperature in vivo study. The results of the present study confirmed, (1) Suntheanine is incorporated into the brain and induces the emission of α -waves an induced of relaxation. (2) Body surface temperature and blood flow on skin were increased after administration of Suntheanine. (3) There was effects of radiation sensitization in whole body irradiation of X-rays after Suntheanine IP injection on C3H mice. (4) Acute toxicity, subacute toxicity and mutagen testconfirm the safety Suntheanine in this study

  2. Optimal estimation of sea surface temperature from AMSR-E

    DEFF Research Database (Denmark)

    Nielsen-Englyst, Pia; Høyer, Jacob L.; Pedersen, Leif Toudal

    2018-01-01

    setup. In addition, updating the forward model, using a multivariate regression model is shown to improve the capability of the forward model to reproduce the observations. The average sensitivity of the OE retrieval is 0.5 and shows a latitudinal dependency with smaller sensitivity for cold waters...... and larger sensitivity for warmer waters. The OE SSTs are evaluated against drifting buoy measurements during 2010. The results show an average difference of 0.02 K with a standard deviation of 0.47 K when considering the 64% matchups, where the simulated and observed brightness temperatures are most...... considering the best 62% of retrievals. The satellite versus in situ discrepancies are highest in the dynamic oceanic regions due to the large satellite footprint size and the associated sampling effects. Uncertainty estimates are available for all retrievals and have been validated to be accurate. They can...

  3. Estimation of precipitable water from surface dew point temperature

    International Nuclear Information System (INIS)

    Abdel Wahab, M.; Sharif, T.A.

    1991-09-01

    The Reitan (1963) regression equation which is of the form lnw=a+bT d has been examined and tested to estimate precipitable water content from surface dew point temperature at different locations. The study confirms that the slope of this equation (b) remains constant at the value of .0681 deg. C., while the intercept (a) changes rapidly with the latitude. The use of the variable intercept can improve the estimated result by 2%. (author). 6 refs, 4 figs, 3 tabs

  4. Patellar Skin Surface Temperature by Thermography Reflects Knee Osteoarthritis Severity

    OpenAIRE

    Anna E. Denoble; Norine Hall; Carl F. Pieper; Virginia B. Kraus

    2010-01-01

    Background: Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA). Methods: A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA) participated in this study. Infrared ...

  5. Interannual variability of north Atlantic Sea surface temperatures

    International Nuclear Information System (INIS)

    Bhatt, U.S.; Battisiti, D.S.; Alexander, M.A.

    1994-01-01

    In the midlatitude north Atlantic Ocean the pattern of sea surface temperature anomalies (ssta) is characterized by a north-south dipole. Bjerknes was the first to propose that the banded structure was associated with the interannual variability. Recently, these patterns have been studied more extensively. In this study the quantitative aspects of these patterns are examined through the use of a mixed-layer model (MLM)

  6. Impacts of land cover transitions on surface temperature in China based on satellite observations

    Science.gov (United States)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short

  7. White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

    Directory of Open Access Journals (Sweden)

    Edward M. Sion

    2012-06-01

    Full Text Available A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs detected in non-magnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, Porb. The principal uncertainty of the temperatures for the CV WDs in the Teff - Porb distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch’s career, is it possible to know CV WD masses with high precision.

  8. Global Land Surface Temperature From the Along-Track Scanning Radiometers

    Science.gov (United States)

    Ghent, D. J.; Corlett, G. K.; Göttsche, F.-M.; Remedios, J. J.

    2017-11-01

    The Leicester Along-Track Scanning Radiometer (ATSR) and Sea and Land Surface Temperature Radiometer (SLSTR) Processor for LAnd Surface Temperature (LASPLAST) provides global land surface temperature (LST) products from thermal infrared radiance data. In this paper, the state-of-the-art version of LASPLAST, as deployed in the GlobTemperature project, is described and applied to data from the Advanced Along-Track Scanning Radiometer (AATSR). The LASPLAST retrieval formulation for LST is a nadir-only, two-channel, split-window algorithm, based on biome classification, fractional vegetation, and across-track water vapor dependences. It incorporates globally robust retrieval coefficients derived using highly sampled atmosphere profiles. LASPLAST benefits from appropriate spatial resolution auxiliary information and a new probabilistic-based cloud flagging algorithm. For the first time for a satellite-derived LST product, pixel-level uncertainties characterized in terms of random, locally correlated, and systematic components are provided. The new GlobTemperature GT_ATS_2P Version 1.0 product has been validated for 1 year of AATSR data (2009) against in situ measurements acquired from "gold standard reference" stations: Gobabeb, Namibia, and Evora, Portugal; seven Surface Radiation Budget stations, and the Atmospheric Radiation Measurement station at Southern Great Plains. These data show average absolute biases for the GT_ATS_2P Version 1.0 product of 1.00 K in the daytime and 1.08 K in the nighttime. The improvements in data provenance including better accuracy, fully traceable retrieval coefficients, quantified uncertainty, and more detailed information in the new harmonized format of the GT_ATS_2P product will allow for more significant exploitation of the historical LST data record from the ATSRs and a valuable near-real-time service from the Sea and Land Surface Temperature Radiometers (SLSTRs).

  9. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperature

    Science.gov (United States)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (+/-5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  10. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperatures

    Science.gov (United States)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (plus or minus 5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  11. Worldwide surface temperature trends since the mid-19th century

    International Nuclear Information System (INIS)

    Parker, D.E.; Folland, C.K.

    1990-01-01

    Sea surface temperatures (SSTs) for the period 1856 to the present have been corrected to compensate for the use of uninsulated buckets prior to the early 1940s. Trends in the corrected SST are consistent with trends in independently corrected nighttime marine air temperatures (NMAT). Global-scale patterns of variation of annual anomalies of SST and NMAT, as revealed by the first three covariance eigenvectors, are also in close agreement. The corrected SST anomalies are also compared with those of nearby coastal and island land air temperatures. Global-scale agreement is good except in the early 20th century when the land data were relatively warm by up to 0.2 C. Proposed causes are the siting of thermometers in open-sided thatched sheds in tropical regions at that time, along with a marked tendency to warm westerly atmospheric circulation over Europe in winter. Combined fields of SST and land air temperature are presented. The relative overall coldness of the late 19th century land air temperatures appears to have arisen from inner-continental and high-latitude regions, especially in winter. Combined fields do not yield full global coverage even in the 1980s, so satellite-based SST data need to be blended carefully with the ship-based observations if monitoring of global climate is to be complete

  12. Worldwide surface temperature trends since the mid-19th century

    International Nuclear Information System (INIS)

    Parker, D.E.; Folland, C.K.

    1991-01-01

    Sea surface temperatures (SSTs) for the period 1856 to the present have been corrected to compensate for the use of uninsulated buckets prior to the early 1940s. Trends in the corrected SST are consistent with trends in independently corrected nighttime marine air temperatures (NMAT). Global-scale patterns of variation of annual anomalies of SST and NMAT, as revealed by the first three covariance eigenvectors, are also in close agreement. The corrected SST anomalies are also compared with those of nearby coastal and island land air temperatures. Global-scale agreement is good except in the early 20th century when the land data were relatively warm by up to 0.2 C. Proposed causes are the siting of thermometers in open-sided thatched sheds in tropical regions at that time, along with a marked tendency to warm westerly atmospheric circulation over Europe in winter. Combined fields of SST and land air temperature are presented. The relative overall coldness of the late 19th century land air temperatures appears to have arisen from inner-continental and high-latitude regions, especially in winter. Combined fields do not yield full global coverage even in the 1980s, so satellite-based SST data need to be blended carefully with the ship-based observations if monitoring of global climate is to be complete. 32 refs.; 16 figs

  13. User's guide for SLWDN9, a code for calculating flux-surfaced-averaging of alpha densities, currents, and heating in non-circular tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Miley, G.M.

    1980-03-01

    The code calculates flux-surfaced-averaged values of alpha density, current, and electron/ion heating profiles in realistic, non-circular tokamak plasmas. The code is written in FORTRAN and execute on the CRAY-1 machine at the Magnetic Fusion Energy Computer Center

  14. MERRA 2D IAU Diagnostic, Radiation Surface and TOA, Time Average 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXRAD or tavg1_2d_rad_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface and TOA radiation flux that is time averaged single-level...

  15. Theoretical algorithms for satellite-derived sea surface temperatures

    Science.gov (United States)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  16. Urban percent impervious surface and its relationship with land surface temperature in Yantai City, China

    International Nuclear Information System (INIS)

    Yu, Xinyang; Lu, Changhe

    2014-01-01

    This study investigated percent impervious surface area (PISA) extracted by a four-endmember normalized spectral mixture analysis (NSMA) method and evaluated the reliability of PISA as an indicator of land surface temperature (LST). Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images for Yantai city, eastern China obtained from USGS were used as the main data source. The results demonstrated that four-endmember NSMA method performed better than the typical three-endmember one, and there was a strong linear relationship between LST and PISA for the two images, which suggest percent impervious surface area provides an alternative parameter for analyzing LST quantitatively in urban areas

  17. Study on the surface sulfidization behavior of smithsonite at high temperature

    Science.gov (United States)

    Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing

    2018-04-01

    Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.

  18. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  19. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  20. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  1. Online Global Land Surface Temperature Estimation from Landsat

    Directory of Open Access Journals (Sweden)

    David Parastatidis

    2017-11-01

    Full Text Available This study explores the estimation of land surface temperature (LST for the globe from Landsat 5, 7 and 8 thermal infrared sensors, using different surface emissivity sources. A single channel algorithm is used for consistency among the estimated LST products, whereas the option of using emissivity from different sources provides flexibility for the algorithm’s implementation to any area of interest. The Google Earth Engine (GEE, an advanced earth science data and analysis platform, allows the estimation of LST products for the globe, covering the time period from 1984 to present. To evaluate the method, the estimated LST products were compared against two reference datasets: (a LST products derived from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer, as higher-level products based on the temperature-emissivity separation approach; (b Landsat LST data that have been independently produced, using different approaches. An overall RMSE (root mean square error of 1.52 °C was observed and it was confirmed that the accuracy of the LST product is dependent on the emissivity; different emissivity sources provided different LST accuracies, depending on the surface cover. The LST products, for the full Landsat 5, 7 and 8 archives, are estimated “on-the-fly” and are available on-line via a web application.

  2. Surface characterization of low-temperature grown yttrium oxide

    Science.gov (United States)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  3. Plasticity of noddy parents and offspring to sea-surface temperature anomalies.

    Directory of Open Access Journals (Sweden)

    Carol A Devney

    Full Text Available Behavioral and/or developmental plasticity is crucial for resisting the impacts of environmental stressors. We investigated the plasticity of adult foraging behavior and chick development in an offshore foraging seabird, the black noddy (Anous minutus, during two breeding seasons. The first season had anomalously high sea-surface temperatures and 'low' prey availability, while the second was a season of below average sea-surface temperatures and 'normal' food availability. During the second season, supplementary feeding of chicks was used to manipulate offspring nutritional status in order to mimic conditions of high prey availability. When sea-surface temperatures were hotter than average, provisioning rates were significantly and negatively impacted at the day-to-day scale. Adults fed chicks during this low-food season smaller meals but at the same rate as chicks in the unfed treatment the following season. Supplementary feeding of chicks during the second season also resulted in delivery of smaller meals by adults, but did not influence feeding rate. Chick begging and parental responses to cessation of food supplementation suggested smaller meals fed to artificially supplemented chicks resulted from a decrease in chick demands associated with satiation, rather than adult behavioral responses to chick condition. During periods of low prey abundance, chicks maintained structural growth while sacrificing body condition and were unable to take advantage of periods of high prey abundance by increasing growth rates. These results suggest that this species expresses limited plasticity in provisioning behavior and offspring development. Consequently, responses to future changes in sea-surface temperature and other environmental variation may be limited.

  4. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  5. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  6. Classically exact surface diffusion constants at arbitrary temperature

    International Nuclear Information System (INIS)

    Voter, A.F.; Cohen, J.M.

    1989-01-01

    An expression is presented for computing the classical diffusion constant of a point defect (e.g., an adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low- and middle-temperature regimes. The expression results from taking the time derivative of the particle mean-square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces

  7. Sea surface temperature contributes to marine crocodylomorph evolution.

    Science.gov (United States)

    Martin, Jeremy E; Amiot, Romain; Lécuyer, Christophe; Benton, Michael J

    2014-08-18

    During the Mesozoic and Cenozoic, four distinct crocodylomorph lineages colonized the marine environment. They were conspicuously absent from high latitudes, which in the Mesozoic were occupied by warm-blooded ichthyosaurs and plesiosaurs. Despite a relatively well-constrained stratigraphic distribution, the varying diversities of marine crocodylomorphs are poorly understood, because their extinctions neither coincided with any major biological crises nor with the advent of potential competitors. Here we test the potential link between their evolutionary history in terms of taxic diversity and two abiotic factors, sea level variations and sea surface temperatures (SST). Excluding Metriorhynchoidea, which may have had a peculiar ecology, significant correlations obtained between generic diversity and estimated Tethyan SST suggest that water temperature was a driver of marine crocodylomorph diversity. Being most probably ectothermic reptiles, these lineages colonized the marine realm and diversified during warm periods, then declined or became extinct during cold intervals.

  8. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    Science.gov (United States)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  9. Validation of Land Surface Temperature from Sentinel-3

    Science.gov (United States)

    Ghent, D.

    2017-12-01

    One of the main objectives of the Sentinel-3 mission is to measure sea- and land-surface temperature with high-end accuracy and reliability in support of environmental and climate monitoring in an operational context. Calibration and validation are thus key criteria for operationalization within the framework of the Sentinel-3 Mission Performance Centre (S3MPC). Land surface temperature (LST) has a long heritage of satellite observations which have facilitated our understanding of land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. These observations have been acquired from a variety of satellite instruments on platforms in both low-earth orbit and in geostationary orbit. Retrieval accuracy can be a challenge though; surface emissivities can be highly variable owing to the heterogeneity of the land, and atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. As such, a rigorous validation is critical in order to assess the quality of the data and the associated uncertainties. Validation of the level-2 SL_2_LST product, which became freely available on an operational basis from 5th July 2017 builds on an established validation protocol for satellite-based LST. This set of guidelines provides a standardized framework for structuring LST validation activities. The protocol introduces a four-pronged approach which can be summarised thus: i) in situ validation where ground-based observations are available; ii) radiance-based validation over sites that are homogeneous in emissivity; iii) intercomparison with retrievals from other satellite sensors; iv) time-series analysis to identify artefacts on an interannual time-scale. This multi-dimensional approach is a necessary requirement for assessing the performance of the LST algorithm for the Sea and Land Surface Temperature Radiometer (SLSTR) which is designed around biome

  10. Ocular Surface Temperature During Scleral Lens Wearing in Patients With Keratoconus.

    Science.gov (United States)

    Carracedo, Gonzalo; Wang, Zicheng; Serramito-Blanco, Maria; Martin-Gil, Alba; Carballo-Alvarez, Jesús; Pintor, Jesús

    2017-11-01

    To evaluate the ocular surface temperature using an infrared thermography camera before and after wearing scleral lens in patients with keratoconus and correlate these results with the tear production and stability. A pilot, experimental, short-term study has been performed. Twenty-six patients with keratoconus (36.95±8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (KC-ICRS group) and patients without ICRS (KC group). Schirmer test, tear breakup time (TBUT), and ocular surface temperature in the conjunctiva, limbus, and cornea were evaluated before and after wearing a scleral lens. The patients wore the scleral lenses from 6 to 9 hours with average of 7.59±0.73 hours. No significant changes in Schirmer test and TBUT were found for both groups. No temperature differences were found between the KC-ICRS and the KC groups for all zones evaluated. There was a slight, but statistically significant, increase in the inferior cornea, temporal limbus, and nasal conjunctival temperature for KC-ICRS group and temporal limbus temperature decreasing for the KC group after wearing scleral lens (Ptemperature was statistically higher than the central cornea for both groups before and after scleral lenses wearing (Pperipheral cornea was found. No statistically significant differences in the central corneal temperature were found between the groups after scleral lens wearing (P>0.05). Scleral contact lens seems not to modify the ocular surface temperature despite the presence of the tear film stagnation under the lens.

  11. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  12. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    Science.gov (United States)

    Roadhouse, Emily A.

    related to the winter air temperatures. The application of n-factor modeling techniques within the permafrost region, and the verification of these techniques for a range of natural surfaces, is essential to the determination of the thermal and physical response to potential climate warming in permafrost regions. The presence of temperature inversions presents a unique challenge to permafrost probability mapping in mountainous terrain. While elsewhere the existence of permafrost can be linearly related to elevation, the presence of frequent inversions challenges this assumption, affecting permafrost distribution in ways that the current modeling techniques cannot accurately predict. At sites across the Yukon, inversion-prone sites were predominantly situated in U-shaped valleys, although open slopes, mid-slope ridges and plains were also identified. Within the Wolf Creek basin and surrounding area, inversion episodes have a measurable effect on local air temperatures, occurring during the fall and winter seasons along the Mount Sima trail, and year-round in the palsa valley. Within the discontinuous permafrost zone, where average surface temperatures are often close to zero, even a relatively small change in temperature in the context of future climate change could have a widespread impact on permafrost distribution.

  13. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    Science.gov (United States)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  14. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  15. Theoretical study of cathode surfaces and high-temperature superconductors

    Science.gov (United States)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  16. Three modes of interdecadal trends in sea surface temperature and sea surface height

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M.

    2013-12-01

    It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption

  17. All-weather Land Surface Temperature Estimation from Satellite Data

    Science.gov (United States)

    Zhou, J.; Zhang, X.

    2017-12-01

    Satellite remote sensing, including the thermal infrared (TIR) and passive microwave (MW), provides the possibility to observe LST at large scales. For better modeling the land surface processes with high temporal resolutions, all-weather LST from satellite data is desirable. However, estimation of all-weather LST faces great challenges. On the one hand, TIR remote sensing is limited to clear-sky situations; this drawback reduces its usefulness under cloudy conditions considerably, especially in regions with frequent and/or permanent clouds. On the other hand, MW remote sensing suffers from much greater thermal sampling depth (TSD) and coarser spatial resolution than TIR; thus, MW LST is generally lower than TIR LST, especially at daytime. Two case studies addressing the challenges mentioned previously are presented here. The first study is for the development of a novel thermal sampling depth correction method (TSDC) to estimate the MW LST over barren land; this second study is for the development of a feasible method to merge the TIR and MW LSTs by addressing the coarse resolution of the latter one. In the first study, the core of the TSDC method is a new formulation of the passive microwave radiation balance equation, which allows linking bulk MW radiation to the soil temperature at a specific depth, i.e. the representative temperature: this temperature is then converted to LST through an adapted soil heat conduction equation. The TSDC method is applied to the 6.9 GHz channel in vertical polarization of AMSR-E. Evaluation shows that LST estimated by the TSDC method agrees well with the MODIS LST. Validation is based on in-situ LSTs measured at the Gobabeb site in western Namibia. The results demonstrate the high accuracy of the TSDC method: it yields a root-mean squared error (RMSE) of 2 K and ignorable systematic error over barren land. In the second study, the method consists of two core processes: (1) estimation of MW LST from MW brightness temperature and (2

  18. Impact of vegetation growth on urban surface temperature distribution

    International Nuclear Information System (INIS)

    Buyadi, S N A; Mohd, W M N W; Misni, A

    2014-01-01

    Earlier studies have indicated that, the temperature distribution in the urban area is significantly warmer than its surrounding suburban areas. The process of urbanization has created urban heat island (UHI). As a city expands, trees are cut down to accommodate commercial development, industrial areas, roads, and suburban growth. Trees or green areas normally play a vital role in mitigating the UHI effects especially in regulating high temperature in saturated urban areas. This study attempts to assess the effects of vegetation growth on land surface temperature (LST) distribution in urban areas. An area within the City of Shah Alam, Selangor has been selected as the study area. Land use/land cover and LST maps of two different dates are generated from Landsat 5 TM images of the year 1991 and 2009. Only five major land cover classes are considered in this study. Mono-window algorithm is used to generate the LST maps. Landsat 5 TM images are also used to generate the NDVI maps. Results from this study have shown that there are significant land use changes within the study area. Although the conversion of green areas into residential and commercial areas significantly increase the LST, matured trees will help to mitigate the effects of UHI

  19. Estimation of sampling error uncertainties in observed surface air temperature change in China

    Science.gov (United States)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2017-08-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  20. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    Directory of Open Access Journals (Sweden)

    J. Szilagyi

    2009-05-01

    Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<Ts> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (<Ts>, pair together with the wet-environment surface temperature (<Tws> and ET rate (ETw, obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. <Tws>, in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska, was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000–2007 catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops.

  1. A 100 m x 10 m Sonic to observe area averaged wind and temperature data in comparison to FTIR line integrated measurements

    International Nuclear Information System (INIS)

    Schleichardt, A; Barth, M; Raabe, A; Schaefer, K

    2008-01-01

    An acoustic tomographic system has been used to estimate area averaged wind and temperature data within an area of 97 m x 12 m considering the dependence of sound speed on meteorological conditions To obtain information about vertical structure of meteorological data, eight sound sources and receivers were placed in two different heights above the ground (0.5 m and 2.7 m). Spatially, the acoustic measurements correspond to line integrated N 2 O concentration measurements (98 m) using FTIR-spectrometers Taking stability of atmospheric layering into account, acoustic tomographic measurements serve as basis for estimating vertical fluxes of momentum and sensible heat

  2. Average-atom model for two-temperature states and ionic transport properties of aluminum in the warm dense matter regime

    Science.gov (United States)

    Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin

    2017-03-01

    The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.

  3. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  4. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  5. GHRSST Level 4 MUR North America Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical...

  6. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  7. GHRSST Level 4 AVHRR_AMSR_OI Global Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  8. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  9. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  10. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  11. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  12. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  13. GHRSST Level 4 ODYSSEA Eastern Central Pacific Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  14. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  15. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  16. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  17. GHRSST Level 4 RAMSSA Australian Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  18. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  19. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    Science.gov (United States)

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    Science.gov (United States)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  1. Landcover Change, Land Surface Temperature, Surface Albedo and Topography in the Plateau Region of North-Central Nigeria

    Directory of Open Access Journals (Sweden)

    Shakirudeen Odunuga

    2015-04-01

    Full Text Available This study assessed the change in some environmental parameters in the Plateau region of North-Central Nigeria (Barakinladi, Jos, and Kafachan environs using the nexus of landcover change, land surface temperature, surface albedo, and topography. The study employed both remote sensing and statistical techniques for the period between 1986 and 2014 to analyze the dynamics between and within these environmental variables. In Barakinladi, the built up landcover change is highest (increasing from 39.53% to 47.59% between 1986 and 2014; LST ranges from 19.09 °C to 38.59 °C in 1986 and from 22.68 °C and 41.68 °C in 2014; and the albedo ranges between 0.014 and 0.154 in 1986 and 0.017 and 0.248 in 2014. In Jos, the built-up landcover occupied 34.26% in 1986 and 36.67% in 2014; LST values range between 20.83 °C and 41.33 °C in 1986 and between 21.61 °C and 42.64 °C in 2014; and the albedo ranges between 0.003 and 0.211 in 1986 and 0.15 and 0.237 in 2014. In Kafachan area, the built up landcover occupied 32.95% in 1986 and 39.01% in 2014. Urbanization and agricultural activities, including animal grazing, were responsible for the gradual loss in vegetation and increasing average LST and albedo. The results also revealed that changing landcover and topography have a relationship with surface albedo and land surface temperature, thereby impacting significantly on ecosystem services delivered by the natural system.

  2. Wintertime sea surface temperature fronts in the Taiwan Strait

    Science.gov (United States)

    Chang, Yi; Shimada, Teruhisa; Lee, Ming-An; Lu, Hsueh-Jung; Sakaida, Futoki; Kawamura, Hiroshi

    2006-12-01

    We present wintertime variations and distributions of sea surface temperature (SST) fronts in the Taiwan Strait by applying an entropy-based edge detection method to 10-year (1996-2005) satellite SST images with grid size of 0.01°. From climatological monthly mean maps of SST gradient magnitude in winter, we identify four significant SST fronts in the Taiwan Strait. The Mainland China Coastal Front is a long frontal band along the 50-m isobath near the Chinese coast. The sharp Peng-Chang Front appears along the Peng-Hu Channel and extends northward around the Chang-Yuen Ridge. The Taiwan Bank Front evolves in early winter. As the winter progresses, the front becomes broad and moves toward the Chinese coast, connecting to the Mainland China Coastal Front. The Kuroshio Front extends northeastward from the northeastern tip of Taiwan with a semicircle-shape curving along the 100-m isobath.

  3. Sea Surface Temperature Products and Research Associated with GHRSST

    Science.gov (United States)

    Kaiser-Weiss, Andrea K.; Minnett, Peter J.; Kaplan, Alexey; Wick, Gary A.; Castro, Sandra; Llewellyn-Jones, David; Merchant, Chris; LeBorgne, Pierre; Beggs, Helen; Donlon, Craig J.

    2012-03-01

    GHRSST serves its user community through the specification of operational Sea Surface Temperature (SST) products (Level 2, Level 3 and Level 4) based on international consensus. Providers of SST data from individual satellites create and deliver GHRSST-compliant near-real time products to a global GHRSST data assembly centre and a long-term stewardship facility. The GHRSST-compliant data include error estimates and supporting data for interpretation. Groups organised within GHRSST perform research on issues relevant to applying SST for air-sea exchange, for instance the Diurnal Variability Working Group (DVWG) analyses the evolution of the skin temperature. Other GHRSST groups concentrate on improving the SST estimate (Estimation and Retrievals Working Group EARWiG) and on improving the error characterization, (Satellite SST Validation Group, ST-VAL) and on improving the methods for SST analysis (Inter-Comparison Technical Advisory Group, IC-TAG). In this presentation we cover the data products and the scientific activities associated with GHRSST which might be relevant for investigating ocean-atmosphere interactions.

  4. Ocular Surface Temperature in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Andrea Sodi

    2014-01-01

    Full Text Available Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320. The ocular surface temperature (OST of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272. OST in AMD patients was significantly lower than in controls (P>0.05. Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD.

  5. Determining Adequate Averaging Periods and Reference Coordinates for Eddy Covariance Measurements of Surface Heat and Water Vapor Fluxes over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen Ming-Hsu Li

    2012-01-01

    Full Text Available Two coordinate rotation approaches (double and planar-fit rotations and no rotation, in association with averaging periods of 15 - 480 min, were applied to compute surface heat and water vapor fluxes using the eddy covariance approach. Measurements were conducted in an experimental watershed, the Lien-Hua-Chih (LHC watershed, located in central Taiwan. For no rotation and double rotation approaches, an adequate averaging period of 15 or 30 min was suggested for better energy closure and small variations on energy closure fractions. For the planar-fit rotation approach, an adequate averaging period of 60 or 120 min was recommended, and a typical averaging period of 30 min is not superior to that of 60 or 120 min in terms of better energy closure and small variations on energy closure fractions. The Ogive function analysis revealed that the energy closure was improved with the increase of averaging time by capturing sensible heat fluxes at low-frequency ranges during certain midday hours at LHC site. Seasonal variations of daily energy closure fractions, high in dry season and low in wet season, were found to be associated with the surface dryness and strength of turbulent development. The mismatching of flux footprint areas among flux sensors was suggested as the cause of larger CF variations during the dry seasons as that indicated by the footprint analysis showing scattered source areas. During the wet season, the underestimation of turbulent fluxes by EC observations at the LHC site was attributed to weak turbulence developments as the source area identified by the footprint analysis was closer to the flux tower than those scattered in dry season.

  6. Rapid modification of urban land surface temperature during rainfall

    Science.gov (United States)

    Omidvar, H.; Bou-Zeid, E.; Song, J.; Yang, J.; Arwatz, G.; Wang, Z.; Hultmark, M.; Kaloush, K.

    2017-12-01

    We study the runoff dynamics and heat transfer over urban pavements during rainfall. A kinematic wave approach is combined with heat storage and transfer schemes to develop a model for impervious (with runoff) and pervious (without runoff) pavements. The resulting framework is a numerical prognostic model that can simulate the temperature fields in the subsurface and runoff layers to capture the rapid cooling of the surface, as well as the thermal pollution advected in the runoff. Extensive field measurements were then conducted over experimental pavements in Arizona to probe the physics and better represent the relevant processes in the model, and then to validate the model. The experimental data and the model results were in very good agreements, and their joint analysis elucidated the physics of the rapid heat transfer from the subsurface to the runoff layer. Finally, we apply the developed model to investigate how the various hydrological and thermal properties of the pavements, as well as ambient environmental conditions, modulate the surface and runoff thermal dynamics, what is the relative importance of each of them, and how we can apply the model mitigate the adverse impacts of urbanization.

  7. Numerical and experimental determination of surface temperature and moisture evolution in a field soil

    Science.gov (United States)

    Akinyemi, Olukayode D.; Mendes, Nathan

    2007-03-01

    Knowledge about the dynamics of soil moisture and heat, especially at the surface, provides important insights into the physical processes governing their interactions with the atmosphere, thereby improving the understanding of patterns of climate dynamics. In this context the paper presents the numerical and field experimental results of temperature and moisture evolution, which were measured on the surface of a sandy soil at Abeokuta, south-western Nigeria. An unconditionally stable numerical method was used, which linearizes the vapour concentration driving-potential term giving the moisture exchanged at the boundaries in terms of temperature and moisture content, and simultaneously solves the governing equations for each time step. The model avoids stability problems and limitations to low moisture contents and the usual assumption of constant thermal conductivity. Instantaneous temperature measurements were made at the surface using a thermocouple, while the gravimetric method was employed to determine the volumetric water contents at some specific hours of the experimental period. The observed experimental data compared fairly well with the predicted values, with both having correlation coefficients greater than 0.9 and consequently following a common diurnal trend. The sensitivity of the model was very high to the choice of simulation parameters, especially grid size refinement and time step. While the model underestimated the soil moisture content at 6 a.m. and 10 p.m., the measured temperatures were however overestimated. When compared to moisture content, average errors for temperature were low resulting in a minimal absolute difference in amplitude of 0.81 °C.

  8. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe

    Science.gov (United States)

    Volosciuk, Claudia; Maraun, Douglas; Semenov, Vladimir A.; Tilinina, Natalia; Gulev, Sergey K.; Latif, Mojib

    2016-08-01

    The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970-1999 and 2000-2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000-2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970-1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.

  9. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  10. NOAA Climate Data Record (CDR) of Sea Surface Temperature - WHOI, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature, near-surface atmospheric properties, and heat fluxes....

  11. SAFARI 2000 AVHRR-derived Land Surface Temperature Maps, Africa, 1995-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Land Surface Temperature (LST) is a key indicator of land surface states, and can provide information on surface-atmosphere heat and mass fluxes, vegetation water...

  12. SAFARI 2000 AVHRR-derived Land Surface Temperature Maps, Africa, 1995-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Land Surface Temperature (LST) is a key indicator of land surface states, and can provide information on surface-atmosphere heat and mass fluxes,...

  13. Spatiotemporal Evaluation of Reanalysis and In-situ Surface Air Temperature over Ethiopia

    Science.gov (United States)

    Tesfaye, T.

    2017-12-01

    Tewodros Woldemariam Tesfaye*1, C.T. Dhanya 2,and A.K. Gosain3 1Research Scholar, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 2Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 3 Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India, *e-mail: tewodros2002@gmail.com Abstract: Water resources management and modelling studies are often constrained by the scarcity of observed data, especially of the two major variables i.e., precipitation and temperature. Modellers, hence, rely on reanalysis datasets as a substitute; though its performance heavily vary depending on the data availability and regional characteristics. The present study aims at examining the ability of frequently used reanalysis datasets in capturing the spatiotemporal characteristics of maximum and minimum surface temperatures over Ethiopia and to highlight the biases, if any, in these over Ethiopian region. We considered ERA-Interim, NCEP 2, MERRA and CFSR reanalysis datasets and compared these with temperature observations from 15 synoptic stations spread over Ethiopia. In addition to the long term averages and annual cycle, a critical comparison of various extreme indices such as diurnal temperature range, warm days, warm nights, cool days, cool nights, summer days and tropical nights are also undertaken. Our results indicate that, the performance of CFSR followed by NCEP 2 is better in capturing majority of the aspects. ERA-Interim suffers a huge additive bias in the simulation of various aspects of minimum temperature in all the stations considered; while its performance is better for maximum temperature. The inferior performance of ERA-Interim is noted to be only because of the difficulty in simulating minimum temperature. Key words: ERA Interim; NCEP Reanalysis; MERRA; CFSR; Diurnal temperature range; reanalysis performance.

  14. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    Directory of Open Access Journals (Sweden)

    Huazhong Ren

    2015-03-01

    Full Text Available Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF is first extended to the thermal infrared (TIR domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  15. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    Science.gov (United States)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state

  16. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    Science.gov (United States)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  17. SPATIAL AND TEMPORAL VARIATION OF LAND SURFACE TEMPERATURE IN FUJIAN PROVINCE FROM 2001 TO 2015

    Directory of Open Access Journals (Sweden)

    Y. Li

    2018-04-01

    Full Text Available Land surface temperature (LST is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1 the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2 The annual mean temperature of LST declines slightly among 15 years in Fujian. 3 Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.

  18. Linking Satellite Derived Land Surface Temperature with Cholera: A Case Study for South Sudan

    Science.gov (United States)

    Aldaach, H. S. V.; Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    A sudden onset of cholera in South Sudan, in April 2014 in Northern Bari in Juba town resulted in more than 400 cholera cases after four weeks of initial outbreak with a case of fatality rate of CFR 5.4%. The total number of reported cholera cases for the period of April to July, 2014 were 5,141 including 114 deaths. With the limited efficacy of cholera vaccines, it is necessary to develop mechanisms to predict cholera occurrence and thereafter devise intervention strategies for mitigating impacts of the disease. Hydroclimatic processes, primarily precipitation and air temperature are related to epidemic and episodic outbreak of cholera. However, due to coarse resolution of both datasets, it is not possible to precisely locate the geographical location of disease. Here, using Land Surface Temperature (LST) from MODIS sensors, we have developed an algorithm to identify regions susceptible for cholera. Conditions for occurrence of cholera were detectable at least one month in advance in South Sudan and were statistically sensitive to hydroclimatic anomalies of land surface and air temperature, and precipitation. Our results indicate significant spatial and temporal averaging required to infer usable information from LST over South Sudan. Preliminary results that geographically location of cholera outbreak was identifiable within 1km resolution of the LST data.

  19. Spatial and Temporal Variation of Land Surface Temperature in Fujian Province from 2001 TO 2015

    Science.gov (United States)

    Li, Y.; Wang, X.; Ding, Z.

    2018-04-01

    Land surface temperature (LST) is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G) filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1) the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2) The annual mean temperature of LST declines slightly among 15 years in Fujian. 3) Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.

  20. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Alfonso Torres-Rua

    2017-06-01

    Full Text Available In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites, a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called “AggieAir”, developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon” and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm, it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m2/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m2/sr

  1. Contribution to forecast of environmental impact, in the long run, for fuel cells of low and average temperature using the Delphi methodology

    International Nuclear Information System (INIS)

    Ribeiro, Maria Alice Morato; Oliveira, Wagner dos Santos

    2007-01-01

    Assessing future energy systems is of major importance for providing information on potential environmental awareness of some life cycle stages of innovative technologies, for determining competitive advantages compared to conventional technologies and for developing scenarios of future. Today, intense activity of R and D in cells is verified in fuel cells, practiced in centers of research, university, and laboratories of great companies, what it seems to indicate the use in wide scale of these generating right-handers of energy, before long. The work has a main objective, in the long run, to make a forecast of the environmental impact of low and average temperature fuel cells, analyzing all the stages of their useful life and final disposal of the materials that constitute them, using the Delphi methodology. The results of the environmental impact evaluation of the main materials used in the stacks are presented, considering their manufacture, operation and final disposal after their useful life ends. (author)

  2. Are Sea Surface Temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific?

    Science.gov (United States)

    Van Wynsberge, Simon; Menkes, Christophe; Le Gendre, Romain; Passfield, Teuru; Andréfouët, Serge

    2017-12-01

    In remote coral reef environments, lagoon and reef in situ measurements of temperature are scarce. Sea Surface Temperature (SST) measured by satellite has been frequently used as a proxy of the lagoon temperature experienced by coral reef organisms (TL) especially during coral bleaching events. However, the link between SST and TL is poorly characterized. First, we compared the correlation between various SST series and TL from 2012 to 2016 in three atolls and one island in the Central South Pacific Ocean. Simple linear correlation between SST and TL ranged between 0.44 and 0.97 depending on lagoons, localities of sensors, and type of SST data. High-resolution-satellite-measurements of SST inside the lagoons did not outperform oceanic SST series, suggesting that SST products are not adapted for small lagoons. Second, we modelled the difference between oceanic SST and TL as a function of the drivers of lagoon water renewal and mixing, namely waves, tide, wind, and season. The multivariate models reduced significantly the bias between oceanic SST and TL. In atoll lagoons, and probably in other hydrodynamically semi-open systems, a correction taking into account these factors is necessary when SST are used to characterize organisms' thermal stress thresholds.

  3. ENHANCED MODELING OF REMOTELY SENSED ANNUAL LAND SURFACE TEMPERATURE CYCLE

    Directory of Open Access Journals (Sweden)

    Z. Zou

    2017-09-01

    Full Text Available Satellite thermal remote sensing provides access to acquire large-scale Land surface temperature (LST data, but also generates missing and abnormal values resulting from non-clear-sky conditions. Given this limitation, Annual Temperature Cycle (ATC model was employed to reconstruct the continuous daily LST data over a year. The original model ATCO used harmonic functions, but the dramatic changes of the real LST caused by the weather changes remained unclear due to the smooth sine curve. Using Aqua/MODIS LST products, NDVI and meteorological data, we proposed enhanced model ATCE based on ATCO to describe the fluctuation and compared their performances for the Yangtze River Delta region of China. The results demonstrated that, the overall root mean square errors (RMSEs of the ATCE was lower than ATCO, and the improved accuracy of daytime was better than that of night, with the errors decreased by 0.64 K and 0.36 K, respectively. The improvements of accuracies varied with different land cover types: the forest, grassland and built-up areas improved larger than water. And the spatial heterogeneity was observed for performance of ATC model: the RMSEs of built-up area, forest and grassland were around 3.0 K in the daytime, while the water attained 2.27 K; at night, the accuracies of all types significantly increased to similar RMSEs level about 2 K. By comparing the differences between LSTs simulated by two models in different seasons, it was found that the differences were smaller in the spring and autumn, while larger in the summer and winter.

  4. Surface temperature measurements on superconducting cavities in superfluid helium

    International Nuclear Information System (INIS)

    Fouaidy, T.; Junquera, T.; Caruette, A.

    1991-01-01

    Two thermometry systems have been developed: a scanning thermometer system routinely used for the 1.5 GHz monocell cavity studies and a fixed thermometer array used to investigate spatial surface resistance distribution on various SC removable endplates of a cylindrical TE011mode cavity. Thermometers used in these systems are thermally insulated from the surrounding HeII bath by an epoxy housing ('epoxy'thermometers). Accurate calibration of the fixed thermometers was conducted by using different test cells and the experimental results were compared to model calculations performed with a finite element computational code. Measured thermometer efficiency and linearity are in good agreement with numerical results. Some typical temperature maps of different Nb samples obtained with the TE011 array (40 epoxy thermometers) are discussed. On the basis of numerical modelling results, a new type of thermometer with an improved efficiency has been designed. The thermal insulation against Helium II has been drastically improved by placing the sensitive part of the thermometer in a small vacuum jacket ('vacuum' thermometers). Two main goals have been reached with the first prototypes: improved efficiency by a factor of 2.5 - 3, and a bath temperature dependence of the thermal response in good agreement with the expected Kapitza conductance behaviour. Fitting experimental results with numerical modelling data, allow us to estimate the Kapitza conductance. The obtained values are in good agreement with the previous results reported by several authors using a different measurement method. The 'vacuum' thermometers are currently used on the TE011 mode cavity with Nb and NbTiN plates and the first results are presented

  5. The approximate determination of the critical temperature of a liquid by measuring surface tension versus the temperature

    International Nuclear Information System (INIS)

    Maroto, J A; Nieves, F J de las; Quesada-Perez, M

    2004-01-01

    A classical experience in a physics student laboratory is to determine the surface tension of a liquid versus the temperature and to check the linear appearance of the obtained graph. In this work we show a simple method to estimate the critical temperature of three liquids by using experimental data of surface tension at different temperatures. By a logarithm fitting between surface tension and temperature, the critical temperature can be determined and compared with data from the literature. For two liquids (butanol and nitrobenzene) the comparison is acceptable but the differences are too high for the third liquid (water). By discussing the results it seems to be clear that the difference between the critical temperature of the liquid and the maximum temperature of the surface tension measurements is the determining factor in obtaining acceptable results. From this study it is possible to obtain more information on the liquid characteristics from surface tension measurements that are currently carried out in a student laboratory. Besides, in this paper it is shown how to select the most suitable liquids which provide both acceptable values for the critical temperature and measurements of the surface tension at moderate temperatures. The complementary use of numerical methods permits us to offer a complete experience for the students with a simple laboratory experiment which we recommend for physics students in advanced university courses

  6. Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface modifications

    Directory of Open Access Journals (Sweden)

    Trilok Singh

    2017-01-01

    Full Text Available The nature of metal oxide scaffold played a pivotal role for the growth of high quality perovskites and subsequently facilitates efficient photovoltaics devices. We demonstrate an effective way to fabricate a low-temperature TiO2 brookite scaffold layer with a uniform and pinhole-free layer for enhancing photovoltaic properties of perovskite solar cells. Various concentrations of TiCl4 were used to modify brookite TiO2 for efficient charge generation and fast charge extraction. We observed that the brookite layer with an appropriate TiCl4 treatment possesses a smooth surface with full coverage of the substrates, whereas TiCl4 treatment further improves the contact of the TiO2/perovskite interface which facilitates charge extraction and drastically influenced charge recombination. The surface treated brookite scaffolds perovskite devices showed an improved performance with an average power conversion efficiency more than 17%. The time resolved photoluminescence showed that the treated samples have obvious effect on the charge carrier dynamics. The striking observation of this study was very low appearance of hysteresis and high reproducibility in the treated samples, which opens up the possibilities for the fabrication of high efficient devices at relatively low temperatures with negligible hysteresis via facile surface modifications.

  7. Mechanisms Controlling Global Mean Sea Surface Temperature Determined From a State Estimate

    Science.gov (United States)

    Ponte, R. M.; Piecuch, C. G.

    2018-04-01

    Global mean sea surface temperature (T¯) is a variable of primary interest in studies of climate variability and change. The temporal evolution of T¯ can be influenced by surface heat fluxes (F¯) and by diffusion (D¯) and advection (A¯) processes internal to the ocean, but quantifying the contribution of these different factors from data alone is prone to substantial uncertainties. Here we derive a closed T¯ budget for the period 1993-2015 based on a global ocean state estimate, which is an exact solution of a general circulation model constrained to most extant ocean observations through advanced optimization methods. The estimated average temperature of the top (10-m thick) level in the model, taken to represent T¯, shows relatively small variability at most time scales compared to F¯, D¯, or A¯, reflecting the tendency for largely balancing effects from all the latter terms. The seasonal cycle in T¯ is mostly determined by small imbalances between F¯ and D¯, with negligible contributions from A¯. While D¯ seems to simply damp F¯ at the annual period, a different dynamical role for D¯ at semiannual period is suggested by it being larger than F¯. At periods longer than annual, A¯ contributes importantly to T¯ variability, pointing to the direct influence of the variable ocean circulation on T¯ and mean surface climate.

  8. Improving Land Surface Temperature Retrievals over Mountainous Regions

    Directory of Open Access Journals (Sweden)

    Virgílio A. Bento

    2017-01-01

    Full Text Available Algorithms for Land Surface Temperature (LST retrieval from infrared measurements are usually sensitive to the amount of water vapor present in the atmosphere. The Satellite Application Facilities on Climate Monitoring and Land Surface Analysis (CM SAF and LSA SAF are currently compiling a 25 year LST Climate data record (CDR, which uses water vapor information from ERA-Int reanalysis. However, its relatively coarse spatial resolution may lead to systematic errors in the humidity profiles with implications in LST, particularly over mountainous areas. The present study compares LST estimated with three different retrieval algorithms: a radiative transfer-based physical mono-window (PMW, a statistical mono-window (SMW, and a generalized split-windows (GSW. The algorithms were tested over the Alpine region using ERA-Int reanalysis data and relied on the finer spatial scale Consortium for Small-Scale Modelling (COSMO model data as a reference. Two methods were developed to correct ERA-Int water vapor misestimation: (1 an exponential parametrization of total precipitable water (TPW appropriate for SMW/GSW; and (2 a level reduction method to be used in PMW. When ERA-Int TPW was used, the algorithm missed the right TPW class in 87% of the cases. When the exponential parametrization was used, the missing class rate decreased to 9%, and when the level reduction method was applied, the LST corrections went up to 1.7 K over the study region. Overall, the correction for pixel orography in TPW leads to corrections in LST estimations, which are relevant to ensure that long-term LST records meet climate requirements, particularly over mountainous regions.

  9. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  10. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Roozbeh Raoufi

    2017-11-01

    Full Text Available Daily evapotranspiration (ET is modeled globally for the period 2000–2013 based on the Penman–Monteith equation with radiation and vapor pressures derived using remotely sensed Land Surface Temperature (LST from the MODerate resolution Imaging Spectroradiometer (MODIS on the Aqua and Terra satellites. The ET for a given land area is based on four surface conditions: wet/dry and vegetated/non-vegetated. For each, the ET resistance terms are based on land cover, leaf area index (LAI and literature values. The vegetated/non-vegetated fractions of the land surface are estimated using land cover, LAI, a simplified version of the Beer–Lambert law for describing light transition through vegetation and newly derived light extension coefficients for each MODIS land cover type. The wet/dry fractions of the land surface are nonlinear functions of LST derived humidity calibrated using in-situ ET measurements. Results are compared to in-situ measurements (average of the root mean squared errors and mean absolute errors for 39 sites are 0.81 mm day−1 and 0.59 mm day−1, respectively and the MODIS ET product, MOD16, (mean bias during 2001–2013 is −0.2 mm day−1. Although the mean global difference between MOD16 and ET estimates is only 0.2 mm day−1, local temperature derived vapor pressures are the likely contributor to differences, especially in energy and water limited regions. The intended application for the presented model is simulating ET based on long-term climate forecasts (e.g., using only minimum, maximum and mean daily or monthly temperatures.

  11. Quantifying Uncertainty in Satellite-Retrieved Land Surface Temperature from Cloud Detection Errors

    Directory of Open Access Journals (Sweden)

    Claire E. Bulgin

    2018-04-01

    Full Text Available Clouds remain one of the largest sources of uncertainty in remote sensing of surface temperature in the infrared, but this uncertainty has not generally been quantified. We present a new approach to do so, applied here to the Advanced Along-Track Scanning Radiometer (AATSR. We use an ensemble of cloud masks based on independent methodologies to investigate the magnitude of cloud detection uncertainties in area-average Land Surface Temperature (LST retrieval. We find that at a grid resolution of 625 km 2 (commensurate with a 0.25 ∘ grid size at the tropics, cloud detection uncertainties are positively correlated with cloud-cover fraction in the cell and are larger during the day than at night. Daytime cloud detection uncertainties range between 2.5 K for clear-sky fractions of 10–20% and 1.03 K for clear-sky fractions of 90–100%. Corresponding night-time uncertainties are 1.6 K and 0.38 K, respectively. Cloud detection uncertainty shows a weaker positive correlation with the number of biomes present within a grid cell, used as a measure of heterogeneity in the background against which the cloud detection must operate (e.g., surface temperature, emissivity and reflectance. Uncertainty due to cloud detection errors is strongly dependent on the dominant land cover classification. We find cloud detection uncertainties of a magnitude of 1.95 K over permanent snow and ice, 1.2 K over open forest, 0.9–1 K over bare soils and 0.09 K over mosaic cropland, for a standardised clear-sky fraction of 74.2%. As the uncertainties arising from cloud detection errors are of a significant magnitude for many surface types and spatially heterogeneous where land classification varies rapidly, LST data producers are encouraged to quantify cloud-related uncertainties in gridded products.

  12. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  13. Maximum surface level and temperature histories for Hanford waste tanks

    International Nuclear Information System (INIS)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  14. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  15. Current Options for Measuring the Surface Temperature of Dairy Cattle in a Stable Technology: Review

    Directory of Open Access Journals (Sweden)

    Kateřina Švejdová

    2016-05-01

    Full Text Available Regular measurement of the body surface temperature can help to assess the health status of animals. There are many technological possibilities of contactless temperature measurement of body surface. The important thing is to find the right part of the body whose temperature will point to the first possible symptoms and immediately react to the first signs of the disease. Disagreements about how to measure body surface temperature and accuracy of the method can occur when different measures are used. We review work showing possibilities of contactless surface temperature measurements using 1 thermography, 2 electronic transponders and 3 other possibilities of measuring the body surface temperature of dairy cattle. For example, when we scan the surface temperature with the thermal imager there can operate in individual animals confounding factors such as the nature or degree of muscular coat, which may significantly affect the results.

  16. Spectral analysis of 87-lead body surface signal-averaged ECGs in patients with previous anterior myocardial infarction as a marker of ventricular tachycardia.

    Science.gov (United States)

    Hosoya, Y; Kubota, I; Shibata, T; Yamaki, M; Ikeda, K; Tomoike, H

    1992-06-01

    There were few studies on the relation between the body surface distribution of high- and low-frequency components within the QRS complex and ventricular tachycardia (VT). Eighty-seven signal-averaged ECGs were obtained from 30 normal subjects (N group) and 30 patients with previous anterior myocardial infarction (MI) with VT (MI-VT[+] group, n = 10) or without VT (MI-VT[-] group, n = 20). The onset and offset of the QRS complex were determined from 87-lead root mean square values computed from the averaged (but not filtered) ECG waveforms. Fast Fourier transform analysis was performed on signal-averaged ECG. The resulting Fourier coefficients were attenuated by use of the transfer function, and then inverse transform was done with five frequency ranges (0-25, 25-40, 40-80, 80-150, and 150-250 Hz). From the QRS onset to the QRS offset, the time integration of the absolute value of reconstructed waveforms was calculated for each of the five frequency ranges. The body surface distributions of these areas were expressed as QRS area maps. The maximal values of QRS area maps were compared among the three groups. In the frequency ranges of 0-25 and 150-250 Hz, there were no significant differences in the maximal values among these three groups. Both MI groups had significantly smaller maximal values of QRS area maps in the frequency ranges of 25-40 and 40-80 Hz compared with the N group. The MI-VT(+) group had significantly smaller maximal values in the frequency ranges of 40-80 and 80-150 Hz than the MI-VT(-) group. These three groups were clearly differentiated by the maximal values of the 40-80-Hz QRS area map. It was suggested that the maximal value of the 40-80-Hz QRS area map was a new marker for VT after anterior MI.

  17. Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective

    Directory of Open Access Journals (Sweden)

    Xiangzheng Deng

    2014-04-01

    Full Text Available This study focuses on the potential impacts of large-scale land use and land cover changes (LUCC on surface temperature from a global perspective. As important types of LUCC, urbanization, deforestation, cultivated land reclamation, and grassland degradation have effects on the climate, the potential changes of the surface temperature caused by these four types of large-scale LUCC from 2010 to 2050 are downscaled, and this issue analyzed worldwide along with Representative Concentration Pathways (RCPs of the Intergovernmental Panel on Climate Change (IPCC. The first case study presents some evidence of the effects of future urbanization on surface temperature in the Northeast megalopolis of the United States of America (USA. In order to understand the potential climatological variability caused by future forest deforestation and vulnerability, we chose Brazilian Amazon region as the second case study. The third selected region in India as a typical region of cultivated land reclamation where the possible climatic impacts are explored. In the fourth case study, we simulate the surface temperature changes caused by future grassland degradation in Mongolia. Results show that the temperature in built-up area would increase obviously throughout the four land types. In addition, the effects of all four large-scale LUCC on monthly average temperature change would vary from month to month with obviously spatial heterogeneity.

  18. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P.J.; Clayson, C.A.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  19. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    Science.gov (United States)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  20. Overstory removal and residue treatments affect soil surface, air, and soil temperature: implications for seedling survival

    Science.gov (United States)

    Roger D. Hungerford; Ronald E. Babbitt

    1987-01-01

    Potentially lethal ground surface temperatures were measured at three locations in the Northern Rocky Mountains but occurred more frequently under treatments with greater overstory removal. Observed maximum and minimum temperatures of exposed surfaces are directly related to the thermal properties of the surface materials. Survival of planted seedlings was consistent...

  1. Study of sea surface temperature distribution, in Angra dos Reis Nuclear Plant region - Mission Angra 01

    International Nuclear Information System (INIS)

    Stevenson, M.R.; Steffen, C.A.; Villagra, H.M.I.

    1982-03-01

    A study of spectral and temporal variations of sea surface temperature, using data obtained from level of satellite, aircraft and surface, with the purpose of evaluate and plot the small scale variations of sea surface temperature, due to thermal discharge from a nuclear the results of the first mission called Angra 1. (maps). (C.G.C.)

  2. Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values

    Directory of Open Access Journals (Sweden)

    Gemma Simó

    2016-10-01

    Full Text Available Land Surface Temperature (LST as provided by remote sensing onboard satellites is a key parameter for a number of applications in Earth System studies, such as numerical modelling or regional estimation of surface energy and water fluxes. In the case of Moderate Resolution Imaging Spectroradiometer (MODIS onboard Terra or Aqua, pixels have resolutions near 1 km 2 , LST values being an average of the real subpixel variability of LST, which can be significant for heterogeneous terrain. Here, we use Landsat 7 LST decametre-scale fields to evaluate the temporal and spatial variability at the kilometre scale and compare the resulting average values to those provided by MODIS for the same observation time, for the very heterogeneous Campus of the University of the Balearic Islands (Mallorca, Western Mediterranean, with an area of about 1 km 2 , for a period between 2014 and 2016. Variations of LST between 10 and 20 K are often found at the sub-kilometre scale. In addition, MODIS values are compared to the ground truth for one point in the Campus, as obtained from a four-component net radiometer, and a bias of 3.2 K was found in addition to a Root Mean Square Error (RMSE of 4.2 K. An indication of a more elaborated local measurement strategy in the Campus is given, using an array of radiometers distributed in the area.

  3. Computation of the temperatures of a fluid flowing through a pipe from temperature measurements on the pipe's outer surface

    International Nuclear Information System (INIS)

    Sauer, G.

    1999-01-01

    A method for computing the temperatures of a fluid flowing through a pipe on the basis of temperatures recorded at the pipe's outer surface is presented. The heat conduction in the pipe wall is described by one-dimensional heat conduction elements. Heat transfer between fluid, pipe and surrounding is allowed for. The equation system resulting from the standard finite element discretization is reformulated to enable the computation of temperature events preceding the recorded temperature in time. It is shown that the method can be used to identify the actual fluid temperature from temperature data obtained only at the outer surface of the pipe. The temperatures in the pipe wall are computed with good accuracy even in the case of a severe thermal shock. (orig.) [de

  4. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  5. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  6. Newly devised infrared radiometer (ERI type IR ground scanner) and the surface temperature of the Mihara crater, O-shima

    Energy Technology Data Exchange (ETDEWEB)

    Shimozuru, D [Earthquake Res. Inst., Univ. of Tokyo; Kagiyama, T

    1976-10-01

    The infrared radiometer, a remote sensing tool, can be successfully used to measure the surface temperature of a volcanic or geothermal area. Many of these devices are available commercially for industrial use but their application to volcano observations is limited due to a wide field of view which prohibits detailed examination of specific points. A commercial radiometer was mounted on a balloon theodolite with an electrically driven rotating base. A telescope was attached to the radiometer to permit monitoring of the field of view. Radiometer output can be recorded either on a magnetic tape data recorder or a strip chart recorder. The device is also useful for continuous monitoring of the temperature of a vent or fumarole. The observed temperatures are dependent upon the wave length of actual spatial temperature distribution, the field of view and the scanning speed. Detailed information of both a theoretical and an experimental nature is provided. The improved radiometer was utilized to observe surface temperature in the caldera of Miharayama, Oshima in March, 1976. It was found that the vent temperature was markedly lower than had previously been recorded, as was the average surface temperature.

  7. Average Revisited in Context

    Science.gov (United States)

    Watson, Jane; Chick, Helen

    2012-01-01

    This paper analyses the responses of 247 middle school students to items requiring the concept of average in three different contexts: a city's weather reported in maximum daily temperature, the number of children in a family, and the price of houses. The mixed but overall disappointing performance on the six items in the three contexts indicates…

  8. Correlation and SVD Analysis of Anomalous Spring Precipitation in Northwest China and Sea Surface Temperature in Key Region in Recent 50 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the relationship between spring precipitation anomaly in Northwest China and sea surface temperature anomaly (SSTA) in Key region in recent 50 years. [Method] Based on monthly average precipitation in Northwest China and global monthly sea surface temperature (SST) grid data, the effects of SSTA in equatorial central and eastern Pacific on spring precipitation in Northwest China were discussed by means of correlation and SVD analysis. [Result] For spring precipitation in Nor...

  9. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    Directory of Open Access Journals (Sweden)

    Stephen R Griffiths

    Full Text Available Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance, white boxes (high reflectance, and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and

  10. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment.

    Science.gov (United States)

    de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature (T G ), air temperature (T A ), wind speed (U) and relative humidity (R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.

  11. Ocular surface temperature in patients with evaporative and aqueous-deficient dry eyes: a thermographic approach.

    Science.gov (United States)

    Matteoli, S; Favuzza, E; Mazzantini, L; Aragona, P; Cappelli, S; Corvi, A; Mencucci, R

    2017-07-26

    In recent decades infrared thermography (IRT) has facilitated accurate quantitative measurements of the ocular surface temperature (OST), applying a non-invasive procedure. The objective of this work was to develop a procedure based on IRT, which allows characterizing of the cooling of the ocular surface of patients suffering from dry eye syndrome, and distinguishing among patients suffering from aqueous deficient dry eye (ADDE) and evaporative dry eyes (EDE). All patients examined (34 females and 4 males, 23-84 years) were divided into two groups according to their Schirmer I result (⩽ 7 mm for ADDE and  >  7 mm for EDE), and the OST was recorded for 7 s at 30 Hz. For each acquisition, the temperatures of the central cornea (CC) as well as those of both temporal and nasal canthi were investigated. Findings showed that the maximum temperature variation (up to 0.75  ±  0.29 °C) was at the CC for both groups. Furthermore, patients suffering from EDE tended to have a higher initial OST than those with ADDE, explained by the greater quantity of the tear film, evenly distributed over the entire ocular surface, keeping the OST higher initially. Results also showed that EDE patients had an average cooling rate higher than those suffering from ADDE, confirming the excessive evaporation of the tear film. Ocular thermography paves the way to become an effective tool for differentiating between the two different etiologies of dry eye syndrome.

  12. Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes

    Science.gov (United States)

    Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.

    2011-12-01

    In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air

  13. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Science.gov (United States)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  14. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin, E-mail: ganzhiyin@126.com

    2017-06-15

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  15. Sensitivity of Horn of Africa Rainfall to Regional Sea Surface Temperature Forcing

    Directory of Open Access Journals (Sweden)

    Zewdu T. Segele

    2015-05-01

    Full Text Available The Abdus Salam International Center for Theoretical Physics (ICTP version 4.4 Regional Climate Model (RegCM4 is used to investigate the rainfall response to cooler/warmer sea surface temperature anomaly (SSTA forcing in the Indian and Atlantic Oceans. The effect of SSTA forcing in a specific ocean basin is identified by ensemble, averaging 10 individual simulations in which a constant or linearly zonally varying SSTA is prescribed in individual basins while specifying the 1971–2000 monthly varying climatological sea surface temperature (SST across the remaining model domain. The nonlinear rainfall response to SSTA amplitude also is investigated by separately specifying +1K, +2K, and +4K SSTA forcing in the Atlantic and Indian Oceans. The simulation results show that warm SSTs over the entire Indian Ocean produce drier conditions across the larger Blue Nile catchment, whereas warming ≥ +2K generates large positive rainfall anomalies exceeding 10 mm·day−1 over drought prone regions of Northeastern Ethiopia. However, the June–September rainy season tends to be wetter (drier when the SST warming (cooling is limited to either the Northern or Southern Indian Ocean. Wet rainy seasons generally are characterized by deepening of the monsoon trough, east of 40°E, intensification of the Mascarene high, strengthening of the Somali low level jet and the tropical easterly jet, enhanced zonal and meridional vertically integrated moisture fluxes, and steeply vertically decreasing moist static energy. The opposite conditions hold for dry monsoon seasons.

  16. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea:

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982-2012. These data indicate significant annual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6°C century-1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  17. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982–2012. These data indicate significant annual warming (from 0.24 °C decade−1 west of the Strait of Gibraltar to 0.51 °C decade−1 over the Black Sea and significant spatial variation in annual average SST (from 15 °C over the Black Sea to 21 °C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6 °C century−1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  18. Annual to Inter-Decadal Variability in Surface Air Temperature Along ...

    African Journals Online (AJOL)

    instrumental sea surface temperature (SST) and. East African rainfall ... accelerated rise in minimum temperatures. The objectives of the ... Altitude above sea level (m) Urban/Exposed. Tanga. 05.05°S ...... Environmental Report, South Florida.

  19. A quality-control procedure for surface temperature and surface layer inversion in the XBT data archive from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.; Pattanaik, J.; Ratnakaran, L.

    and surface layer temperature inversion. XBT surface temperatrues (XST) are compared with the surface temperature from simultaneous CTD observations from four cruises and the former were found to be erroneous in a number of stations. XSTs are usually corrected...

  20. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadoura, Ahmad; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; Salama, Amgad

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide.

  1. A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance.

    Science.gov (United States)

    Camacho-Rodríguez, J; González-Céspedes, A M; Cerón-García, M C; Fernández-Sevilla, J M; Acién-Fernández, F G; Molina-Grima, E

    2014-03-01

    Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day(-1)) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l(-1) day(-1) (peak 0.4 g l(-1) day(-1)) at 0.4 day(-1) in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l(-1) day(-1).

  2. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    KAUST Repository

    Kadoura, Ahmad Salim

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system\\'s potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide. © 2014 Elsevier Inc.

  3. Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface

    Science.gov (United States)

    Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.

    2017-09-01

    This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.

  4. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  5. Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Suresh, I.; Gautham, S.; PrasannaKumar, S.; Lengaigne, M.; Rao, R.R.; Neetu, S.; Hegde, A.

    Surface layer temperature inversion (SLTI), a warm layer sandwiched between surface and subsurface colder waters, has been reported to frequently occur in conjunction with barrier layers in the Bay of Bengal (BoB), with potentially commensurable...

  6. On the sensitivity of Land Surface Temperature estimates in arid irrigated lands using MODTRAN

    KAUST Repository

    Rosas, Jorge; Houborg, Rasmus; McCabe, Matthew

    2015-01-01

    Land surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of evapotranspiration (ET) and surface moisture status. However, in order to retrieve the ET with an accuracy approaching

  7. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    Science.gov (United States)

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  8. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    Science.gov (United States)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  9. High-frequency fluctuations of surface temperatures in an urban environment

    Science.gov (United States)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  10. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...

  11. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    Science.gov (United States)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  12. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T

    2004-05-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters {psi} and {delta} at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance.

  13. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    International Nuclear Information System (INIS)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T.

    2004-01-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters Ψ and Δ at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance

  14. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  15. Surface electrostatic waves in bounded high temperature superconductors

    International Nuclear Information System (INIS)

    Averkov, Yu.O.; Yakovenko, V.M.

    2008-01-01

    The dispersion relations of surface electrostatic waves propagating along the surface of semi bounded layered superconductor and in the slab of layered superconductor are theoretically investigated. An arbitrary inclination of superconductor layers to the interface of a vacuum - crystal and an arbitrary direction of propagation of surface waves in the plane of the interface are taking into account. The possibility of initiation of an absolute instability during the propagation of a non-relativistic plasma stream above the surface of the layered superconductor is shown

  16. Low Friction Surfaces for Low Temperature Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar and other extraterrestrial environments put extreme demands on moving mechanical components. Gears must continue to function and surfaces must continue to...

  17. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne

    2015-01-01

    ). It combines TR data with standard energy balance closure models for deriving a hybrid scheme that does not require parameterization of the surface (or stomatal) and aerodynamic conductances (gS and gB). STIC is formed by the simultaneous solution of four state equations and it uses TR as an additional data......E and H. The errors and uncertainties in both surface fluxes are comparable to the models that typically use land surface parameterizations for determining the unobserved components (gS and gB) of the surface energy balance models. However, the scheme is simpler, has the capabilities for generating...

  18. From Space to the Rocky Intertidal: Using NASA MODIS Sea Surface Temperature and NOAA Water Temperature to Predict Intertidal Logger Temperature

    Directory of Open Access Journals (Sweden)

    Jessica R. P. Sutton

    2017-02-01

    Full Text Available The development of satellite-derived datasets has greatly facilitated large-scale ecological studies, as in situ observations are spatially sparse and expensive undertakings. We tested the efficacy of using satellite sea surface temperature (SST collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS and local water temperature collected from NOAA buoys and onshore stations to estimate submerged intertidal mussel logger temperatures. Daily SST and local water temperatures were compared to mussel logger temperatures at five study sites located along the Oregon coastline. We found that satellite-derived SSTs and local water temperatures were similarly correlated to the submerged mussel logger temperatures. This finding suggests that satellite-derived SSTs may be used in conjunction with local water temperatures to understand the temporal and spatial variation of mussel logger temperatures. While there are limitations to using satellite-derived temperature for ecological studies, including issues with temporal and spatial resolution, our results are promising.

  19. Antarctic Temperature Extremes from MODIS Land Surface Temperatures: New Processing Methods Reveal Data Quality Puzzles

    Science.gov (United States)

    Grant, G.; Gallaher, D. W.

    2017-12-01

    New methods for processing massive remotely sensed datasets are used to evaluate Antarctic land surface temperature (LST) extremes. Data from the MODIS/Terra sensor (Collection 6) provides a twice-daily look at Antarctic LSTs over a 17 year period, at a higher spatiotemporal resolution than past studies. Using a data condensation process that creates databases of anomalous values, our processes create statistical images of Antarctic LSTs. In general, the results find few significant trends in extremes; however, they do reveal a puzzling picture of inconsistent cloud detection and possible systemic errors, perhaps due to viewing geometry. Cloud discrimination shows a distinct jump in clear-sky detections starting in 2011, and LSTs around the South Pole exhibit a circular cooling pattern, which may also be related to cloud contamination. Possible root causes are discussed. Ongoing investigations seek to determine whether the results are a natural phenomenon or, as seems likely, the results of sensor degradation or processing artefacts. If the unusual LST patterns or cloud detection discontinuities are natural, they point to new, interesting processes on the Antarctic continent. If the data artefacts are artificial, MODIS LST users should be alerted to the potential issues.

  20. Effect of design factors on surface temperature and wear in disk brakes

    Science.gov (United States)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  1. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    Science.gov (United States)

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  2. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    Science.gov (United States)

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  3. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Preparation and High-temperature Anti-adhesion Behavior of a Slippery Surface on Stainless Steel.

    Science.gov (United States)

    Zhang, Pengfei; Huawei, Chen; Liu, Guang; Zhang, Liwen; Zhang, Deyuan

    2018-03-29

    Anti-adhesion surfaces with high-temperature resistance have a wide application potential in electrosurgical instruments, engines, and pipelines. A typical anti-wetting superhydrophobic surface easily fails when exposed to a high-temperature liquid. Recently, Nepenthes-inspired slippery surfaces demonstrated a new way to solve the adhesion problem. A lubricant layer on the slippery surface can act as a barrier between the repelled materials and the surface structure. However, the slippery surfaces in previous studies rarely showed high-temperature resistance. Here, we describe a protocol for the preparation of slippery surfaces with high-temperature resistance. A photolithography-assisted method was used to fabricate pillar structures on stainless steel. By functionalizing the surface with saline, a slippery surface was prepared by adding silicone oil. The prepared slippery surface maintained the anti-wetting property for water, even when the surface was heated to 300 °C. Also, the slippery surface exhibited great anti-adhesion effects on soft tissues at high temperatures. This type of slippery surface on stainless steel has applications in medical devices, mechanical equipment, etc.

  5. Temperature effect correction for muon flux at the Earth surface: estimation of the accuracy of different methods

    International Nuclear Information System (INIS)

    Dmitrieva, A N; Astapov, I I; Kovylyaeva, A A; Pankova, D V

    2013-01-01

    Correction of the muon flux at the Earth surface for temperature effect with the help of two simple methods is considered. In the first method, it is assumed that major part of muons are generated at some effective generation level, which altitude depends on the temperature profile of the atmosphere. In the second method, dependence of muon flux on the mass-averaged atmosphere temperature is considered. The methods were tested with the data of muon hodoscope URAGAN (Moscow, Russia). Difference between data corrected with the help of differential in altitude temperature coefficients and simplified methods does not exceed 1-1.5%, so the latter ones may be used for introduction of a fast preliminary correction.

  6. Inverse estimation for temperatures of outer surface and geometry of inner surface of furnace with two layer walls

    International Nuclear Information System (INIS)

    Chen, C.-K.; Su, C.-R.

    2008-01-01

    This study provides an inverse analysis to estimate the boundary thermal behavior of a furnace with two layer walls. The unknown temperature distribution of the outer surface and the geometry of the inner surface were estimated from the temperatures of a small number of measured points within the furnace wall. The present approach rearranged the matrix forms of the governing differential equations and then combined the reversed matrix method, the linear least squares error method and the concept of virtual area to determine the unknown boundary conditions of the furnace system. The dimensionless temperature data obtained from the direct problem were used to simulate the temperature measurements. The influence of temperature measurement errors upon the precision of the estimated results was also investigated. The advantage of this approach is that the unknown condition can be directly solved by only one calculation process without initially guessed temperatures, and the iteration process of the traditional method can be avoided in the analysis of the heat transfer. Therefore, the calculation in this work is more rapid and exact than the traditional method. The result showed that the estimation error of the geometry increased with increasing distance between measured points and inner surface and in preset error, and with decreasing number of measured points. However, the geometry of the furnace inner surface could be successfully estimated by only the temperatures of a small number of measured points within and near the outer surface under reasonable preset error

  7. Surface layer temperature inversion in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Gopalakrishna, V.V.; Muraleedharan, P.M.; Reddy, G.V.; Araligidad, N.

    Hydrographic and XBT data archived in the Indian Oceanographic Data Centre (IODC) are used to understand the process of temperature inversions occurring in the Bay of Bengal. The following aspects of the inversions are addressed: i) annual...

  8. Time-Resolved Surface Temperature Measurement for Pulsed Ablative Thrusters

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2003-01-01

    .... The diagnostic draws on heritage from the experimental dynamic crack propagation community which has used photovoltaic infrared detectors to measure temperature rise in materials in the process of fracture...

  9. Improving the performance of temperature index snowmelt model of SWAT by using MODIS land surface temperature data.

    Science.gov (United States)

    Yang, Yan; Onishi, Takeo; Hiramatsu, Ken

    2014-01-01

    Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of determination (R (2)) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the temperature index model in an area with sparse air temperature observations.

  10. An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors

    Science.gov (United States)

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  11. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...... of blackbody sources are estimated with an uncertainty of 0.2-2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen. (C) 1996 Optical Society of America...... measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures...

  12. Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.

    Science.gov (United States)

    Wang, By Lili; Heng, Liping; Jiang, Lei

    2018-02-28

    Development of stimulus-responsive anisotropic slippery surfaces is important because of the high demand for such materials in the field of liquid directional-driven systems. However, current studies in the field of slippery surfaces are mainly conducted to prepare isotropic slippery surfaces. Although we have developed electric-responsive anisotropic slippery surfaces that enable smart control of the droplet motion, there remain challenges for designing temperature-responsive anisotropic slippery surfaces to control the liquid droplet motion on the surface and in the tube. In this work, temperature-responsive anisotropic slippery surfaces have been prepared by using paraffin, a thermo-responsive phase-transition material, as a lubricating fluid and directional porous polystyrene (PS) films as the substrate. The smart regulation of the droplet motion of several liquids on this surface was accomplished by tuning the substrate temperature. The uniqueness of this surface lies in the use of an anisotropic structure and temperature-responsive lubricating fluids to achieve temperature-driven smart control of the anisotropic motion of the droplets. Furthermore, this surface was used to design temperature-driven anisotropic microreactors and to manipulate liquid transfer in tubes. This work advances the understanding of the principles underlying anisotropic slippery surfaces and provides a promising material for applications in the biochip and microreactor system.

  13. Temperature increases on the external root surface during ...

    African Journals Online (AJOL)

    2015-02-25

    Feb 25, 2015 ... surface caused bone resorption and tooth ankyloses.[9] The .... thickness is important because it acts as a protective coating against thermal damage. .... heat stress proteins by human periodontal ligament cells. J Oral Pathol.

  14. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    Science.gov (United States)

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  15. The North Atlantic Oscillation and sea surface temperature affect loggerhead abundance around the Strait of Gibraltar

    Directory of Open Access Journals (Sweden)

    José C. Báez

    2011-04-01

    Full Text Available The aim of this study was to explore the possible link between variations in the North Atlantic Oscillation (NAO and sea surface temperature (SST and the abundance of loggerhead turtles around the Strait of Gibraltar, using stranding data for the Andalusian coastal area as a proxy for abundance. The annual average SST (from November to October in the Gulf of Cadiz was negatively associated with the total number of loggerhead strandings each year from November 1997 to October 2006 in the Gulf of Cadiz and the Alboran Sea. The average NAO index was positively associated with the number of strandings in the Gulf of Cadiz in the following year. Prevailing westerly winds during positive NAO phases and the subsequent delayed decrease in SST may lead to turtles from the west Atlantic accumulating in the Gulf of Cadiz and unsuccessfully attempting to return. Secondary causes, such as buoyancy, cold stunning, longline fisheries, net fisheries, debilitated turtle syndrome, and trauma may also increase the number of turtle strandings.

  16. Experimental study on the effects of surface gravity waves of different wavelengths on the phase averaged performance characteristics of marine current turbine

    Science.gov (United States)

    Luznik, L.; Lust, E.; Flack, K. A.

    2014-12-01

    There are few studies describing the interaction between marine current turbines and an overlying surface gravity wave field. In this work we present an experimental study on the effects of surface gravity waves of different wavelengths on the wave phase averaged performance characteristics of a marine current turbine model. Measurements are performed with a 1/25 scale (diameter D=0.8m) two bladed horizontal axis turbine towed in the large (116m long) towing tank at the U.S. Naval Academy equipped with a dual-flap, servo-controlled wave maker. Three regular waves with wavelengths of 15.8, 8.8 and 3.9m with wave heights adjusted such that all waveforms have the same energy input per unit width are produced by the wave maker and model turbine is towed into the waves at constant carriage speed of 1.68 m/s. This representing the case of waves travelling in the same direction as the mean current. Thrust and torque developed by the model turbine are measured using a dynamometer mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using in in-house designed shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Free surface elevation and wave parameters are measured with two optical wave height sensors, one located in the turbine rotor plane and other one diameter upstream of the rotor. All instruments are synchronized in time and data is sampled at a rate of 700 Hz. All measured quantities are conditionally sampled as a function of the measured surface elevation and transformed to wave phase space using the Hilbert Transform. Phenomena observed in earlier experiments with the same turbine such as phase lag in the torque signal and an increase in thrust due to Stokes drift are examined and presented with the present data as well as spectral analysis of the torque and thrust data.

  17. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    International Nuclear Information System (INIS)

    Verma, Shweta; Rao, B. Tirumala; Bhartiya, S.; Sathe, V.; Kukreja, L.M.

    2015-01-01

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength

  18. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    picture of the actual inversion phenomena occurring in this area. Figure 1 illustrates the procedure adopted in finding the inversion stations. If the temperature difference (Del T) obtained from (T U –T L ) is greater than 0.2°C, then the station... is more or less consistent. Figure 3-A shows the frequency distribution of temperature difference of the inversion layer (Del T). Figure 3-B shows the frequency distribution of the thickness of the inversion layers in meters (Di). Del T is distributed over...

  19. Adriatic Sea surface temperature and ocean colour variability during the MFSPP

    Directory of Open Access Journals (Sweden)

    E. Böhm

    2003-01-01

    Full Text Available Two years and six months of night-time Advanced Very High Resolution Radiometer (AVHRR sea surface temperature (SST and daytime Sea viewing Wide Field of view Sensor (SeaWiFS data collected during the MFSPP have been used to examine spatial and temporal variability of SST and chlorophyll (Chl in the Adriatic Sea. Flows along the Albanian and the Italian coasts can be distinguished year-round in the monthly averaged Chl but only in the colder months in the monthly averaged SST’s. The Chl monthly-averaged fields supply less information on circulation features away from coastal boundaries and where conditions are generally oligotrophic, except for the early spring bloom in the Southern Adriatic Gyre. To better characterise the year-to-year and seasonal variability, exploratory data analysis techniques, particularly the plotting of multiple Chl-SST histograms, are employed to make joint quantitative use of monthly-averaged fields. Modal water mass (MW, corresponding to the Chl-SST pairs in the neighbourhood of the maximum of each monthly histogram, are chosen to represent the temporal and spatial evolution of the prevalent processes and their variability in the Adriatic Sea. Over an annual cycle, the MW followed a triangular path with the most pronounced seasonal and interannual variations in both Chl-SST properties and spatial distributions of the MW in the colder part of the year. The winter of 1999 is the colder (by at least 0.5°C and most eutrophic (by 0.2 mg/m 3. The fall of the year 2000 is characterised by the lack of cooling in the month of November that was observed in the previous year. In addition to characterising the MW, the two-dimensional histogram technique allows a distinction to be made between different months in terms of the spread of SST values at a given Chl concentration. During spring and summer, the spread is minimal indicating surface homothermal conditions. In fall and winter, on the other hand, a spread of points

  20. The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ali Khazaei

    2014-07-01

    Full Text Available In this work, artificial neural network (ANN has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocarbon components. The ANN model has been developed as a function of temperature, critical properties, and acentric factor of the mixture according to conventional corresponding-state models. 80% of the data points were employed for training ANN and the remaining data were utilized for testing the generated model. The average absolute relative deviations (AARD% of the model for the training set, the testing set, and the total data points were obtained 1.69, 1.86, and 1.72 respectively. Comparing the results with Flory theory, Brok-Bird equation, and group contribution theory has proved the high prediction capability of the attained model.

  1. Determination of surface temperatures in combustion environments using thermographic phosphors; Wandtemperaturmessungen in Verbrennungsumgebungen mithilfe thermographischer Phosphore

    Energy Technology Data Exchange (ETDEWEB)

    Bruebach, J.; Kissel, T. [TU Darmstadt (Germany). FG Energie- und Kraftwerkstechnik; Dreizler, A. [TU Darmstadt (Germany). FG Reaktive Stroemungen und Messtechnik

    2009-07-01

    A phosphor thermometry system was characterised with regard to all sources of systematic errors. Exemplary, the point measurement of a surface temperature and the determination of wall-normal temperature gradients within an optically accessible combustion chamber are outlined. Furthermore, the temporal temperature characteristic at the quartz ring of an optically accessible engine is presented. (orig.)

  2. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures

    Science.gov (United States)

    Zachary A. Holden; Anna E. Klene; Robert F. Keefe; Gretchen G. Moisen

    2013-01-01

    Inexpensive temperature sensors are widely used in agricultural and forestry research. This paper describes a low-cost (~3 USD) radiation shield (radshield) designed for monitoring surface air temperatures in harsh outdoor environments. We compared the performance of the radshield paired with low-cost temperature sensors at three sites in western Montana to several...

  3. Temperature processes at two sliding surfaces subjected to dry friction

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Cibulka, Jan; Bula, Vítězslav

    2012-01-01

    Roč. 63, 5/6 (2012), s. 277-292 ISSN 0039-2472 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : dry friction * vibration damping * experimental set * increase of temperature * lost energy Subject RIV: BI - Acoustics

  4. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  5. Surface Temperature Prediction of a Bridge for Tactical Decision Aide Modelling

    Science.gov (United States)

    1988-01-01

    Roadway And Piling Surface Temperature Predictions (No Radiosity Incident on Lower Surface) Compared to Temperature Estimates...Heat gained from water = Heat lost by long wave radiosity radiation. Algebraically, with the conduction term expressed in the same manner as for...5 10 15 20 LOCAL TIME (hrs.) Figure 8. Effect of No Radiosity Incident on Lower Surface. 37 U 8a M OT U% 60-- 0- o.. 20- 0- 1 T I I 5 10 15 20 LOCAL

  6. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  7. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  8. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800

  9. Construction and Analysis of Long-Term Surface Temperature Dataset in Fujian Province

    Science.gov (United States)

    Li, W. E.; Wang, X. Q.; Su, H.

    2017-09-01

    Land surface temperature (LST) is a key parameter of land surface physical processes on global and regional scales, linking the heat fluxes and interactions between the ground and atmosphere. Based on MODIS 8-day LST products (MOD11A2) from the split-window algorithms, we constructed and obtained the monthly and annual LST dataset of Fujian Province from 2000 to 2015. Then, we analyzed the monthly and yearly time series LST data and further investigated the LST distribution and its evolution features. The average LST of Fujian Province reached the highest in July, while the lowest in January. The monthly and annual LST time series present a significantly periodic features (annual and interannual) from 2000 to 2015. The spatial distribution showed that the LST in North and West was lower than South and East in Fujian Province. With the rapid development and urbanization of the coastal area in Fujian Province, the LST in coastal urban region was significantly higher than that in mountainous rural region. The LST distributions might affected by the climate, topography and land cover types. The spatio-temporal distribution characteristics of LST could provide good references for the agricultural layout and environment monitoring in Fujian Province.

  10. CONSTRUCTION AND ANALYSIS OF LONG-TERM SURFACE TEMPERATURE DATASET IN FUJIAN PROVINCE

    Directory of Open Access Journals (Sweden)

    W. E. Li

    2017-09-01

    Full Text Available Land surface temperature (LST is a key parameter of land surface physical processes on global and regional scales, linking the heat fluxes and interactions between the ground and atmosphere. Based on MODIS 8-day LST products (MOD11A2 from the split-window algorithms, we constructed and obtained the monthly and annual LST dataset of Fujian Province from 2000 to 2015. Then, we analyzed the monthly and yearly time series LST data and further investigated the LST distribution and its evolution features. The average LST of Fujian Province reached the highest in July, while the lowest in January. The monthly and annual LST time series present a significantly periodic features (annual and interannual from 2000 to 2015. The spatial distribution showed that the LST in North and West was lower than South and East in Fujian Province. With the rapid development and urbanization of the coastal area in Fujian Province, the LST in coastal urban region was significantly higher than that in mountainous rural region. The LST distributions might affected by the climate, topography and land cover types. The spatio-temporal distribution characteristics of LST could provide good references for the agricultural layout and environment monitoring in Fujian Province.

  11. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    Science.gov (United States)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  12. Preliminary study of the relationship between surface and bulk water temperatures at the Dresden cooling pond

    International Nuclear Information System (INIS)

    Wesely, M.L.; Hicks, B.B.; Hess, G.D.

    1975-01-01

    Successful application of bulk aerodynamic formulae to determine the vertical sensible and latent heat fluxes above a cooling lake requires accurate estimates of water surface temperature. Because of the heat loss at the surface and partial insulation by the poorly-mixed outer skin of water in contact with the air-water interface, the surface temperature is usually 0.1 to 2.0 C less than the temperature at a depth greater than 1 cm. For engineering applications requiring estimates of the total heat dissipation capacity of a particular cooling lake, the bulk temperature of the entire mixed layer of subsurface water is more important than the surface temperature. Therefore, in order to simulate the thermal performance of a cooling pond, both the surface temperature and the bulk temperature should be estimated. In the case of cooling ponds, the total heat transfer through the uppermost layer is extremely large and the water beneath the surface is strongly mixed by circulation currents within the pond. The purpose of this report is to describe the magnitude of the temperature difference across the surface skin at the Dresden nuclear power plant cooling pond and to relate this difference to variables used in modeling the thermal performance of cooling ponds

  13. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    Science.gov (United States)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  14. Interannual variability of sea surface temperature and circulation in ...

    African Journals Online (AJOL)

    Local surface heat flux exchanges driven by the anomalous shortwave radiation dominated the interannual SST variability in the Tanzanian shelf region, with some contribution by the advection of heat anomalies from the North-East Madagascar Current. Farther offshore, the interannual variability of the SST was dominated ...

  15. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R; Pandya, R; Mathur, K.M.; Charyulu, R; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  16. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  17. Levitation of Liquid Microdroplets Above A Solid Surface Subcooled to the Leidenfrost Temperature

    Directory of Open Access Journals (Sweden)

    Kirichenko D. P.

    2016-01-01

    Full Text Available Evaporation of liquid microdroplets that fall on a solid surface with the temperature of below the Leidenfrost temperature is studied. It has been found out that sufficiently small liquid droplets of about 10 microns can suspend at some distance from the surface (levitate and do not reach the surface; at that, the rate of droplet evaporation is reduced by an order as compared to microdroplets, which touch the surface. It is determined that in contrast to microdroplets, which touch the surface, the specific evaporation rate of levitating droplets is constant in time.

  18. The potentially neglected culprit of DC surface flashover: electron migration under temperature gradients.

    Science.gov (United States)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2017-06-12

    This report intends to reveal the role of electron migration and its effects in triggering direct current (DC) surface flashover under temperature gradient conditions when using epoxy-based insulating composites. The surface potential and the surface flashover voltage are both measured using insulators that are bridged between two thermo-regulated electrodes. The space charge injection and migration properties under different temperature are detected. The results show that the surface potential rises significantly because of electron migration near the high voltage (HV) electrode under high temperature conditions, thus creating an "analogous ineffective region". The expansion of this "analogous ineffective region" results in most of the voltage drop occurring near the ground electrode, which serves as an important factor triggering positive streamers across the insulation surface. This work is helpful in understanding of DC surface flashover mechanism from a new perspective and also has important significance in design of a suitable DC insulator to avoid surface flashover problem.

  19. Observation on Surface Change of Fragile Glass: Temperature - Time Dependence Studied by X-Ray Reflectivity

    International Nuclear Information System (INIS)

    Kikkawa, Hiroyuki; Kitahara, Amane; Takahashi, Isao

    2004-01-01

    The structural change of a fragile glass surface close to the glass transition temperature Tg is studied by using X-ray reflectivity. Measurements were performed on surfaces of maltitol, which is a typical polyalcohol fragile glass with Tg = 320K. Upon both heating and cooling, we find the following features which are also noticed in silicate glass surfaces: (i) On heating, the surface morphology indicates a variation at temperatures below Tg; (ii) A drastic increase in surface roughness occurs at a temperature about 333K on heating, which is 13K higher than Tg; (iii) During the cooling of the sample, formation of a low-density surface layer (3nm at 293K) is observed. Prior to the crystallization, nm - μm sized domains were grown at the surface, which might not be reported for other glasses

  20. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    Science.gov (United States)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745" target="_blank">https://doi.org/10.5281/zenodo.1193745.

  1. INTER-SEASONAL DYNAMICS OF VEGETATION COVER AND SURFACE TEMPERATURE DISTRIBUTION: A CASE STUDY OF ONDO STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    H. A. Ibitolu

    2016-06-01

    Full Text Available This study employs Landsat ETM+ satellite imagery to access the inter-seasonal variations of Surface Temperature and Vegetation cover in Ondo State in 2013. Also, air temperature data for year 2013 acquired from 3 synoptic meteorological stations across the state were analyzed. The Single-channel Algorithm was used to extract the surface temperature maps from the digital number embedded within the individual pixel. To understand the spatio-temporal distribution of LST and vegetation across the various landuse types, 200 sample points were randomly chosen, so that each land-use covers 40 points. Imagery for the raining season where unavailable because of the intense cloud cover. Result showed that the lowest air temperature of 20.9°C was in January, while the highest air temperature of 34°C occurred in January and March. There was a significant shift in the vegetation greenness over Ondo State, as average NDVI tend to increase from a weak positive value (0.189 to a moderate value (0.419. The LULC map revealed that vegetation cover occupied the largest area (65% followed by Built-up (26%, Swampy land (4%, Rock outcrop (3% and water bodies (2%. The surface temperature maps revealed that January has the lowest temperature of 10°C experienced in the coastal riverine areas of Ilaje and Igbokoda, while the highest temperature of 39°C observed in September is experienced on the rocky grounds. The study also showed the existence of pockets of Urban Heat Islands (UHI that are well scattered all over the state. This finding proves the capability and reliability of Satellite remote sensing for environmental studies.

  2. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  3. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    the sea surface air temperature from satellite derived sea surface humidity in the Indian Ocean. Using the insitu data on surface met parameters collected on board O.R.V. Sagar Kanya in the Indian Ocean over a period of 15 years, the relationship between...

  4. MISST: The Multi-Sensor Improved Sea Surface Temperature Project

    Science.gov (United States)

    2009-06-01

    floods or droughts over land, with associated changes in agricul- tural crop yields. Coral bleaching due to warm ocean temperatures can result in...water circulation (Manzello et al., 2007), hard corals can expel these colorful symbionts from their tissues, resulting in the "paling" or " bleaching ...34 of corals . Bleaching hinders the ability of corals to replace erosion with new growth, and in extreme cases can contribute to mass coral mortality

  5. Preparation and Characterization of High Temperature Superconductor Film Surfaces

    Science.gov (United States)

    1993-10-27

    Lanthanum Strontium Copper Oxide (LSCO) was also tested as a normal metal overlayer because of its compatibility with the high deposition temperature for...fabricate YBCO/ISCO SEB junctions using a variety of step heights (110 nm - 330 nm) on Neodymium Gallate (NGO) substrates. NGO was chosen as a...substrate because of its excellent lattice match to YBCO and its lack of crystal twinning Twinning had been a drawback of Lanthanum Aluminate (LAO)- L

  6. Aquarius Reflector Surface Temperature Monitoring Test and Analysis

    Science.gov (United States)

    Abbott, Jamie; Lee, Siu-Chun; Becker, Ray

    2008-01-01

    The presentation addresses how to infer the front side temperatures for the Aquarius L-band reflector based upon backside measurement sites. Slides discussing the mission objectives and design details are at the same level found on typical project outreach websites and in conference papers respectively. The test discussion provides modest detail of an ordinary thermal balance test using mockup hardware. The photographs show an off-Lab vacuum chamber facility with no compromising details.

  7. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  8. Temperature effects on surface activity and application in oxidation ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The γcmc values of CTAB–SDS decrease from 63⋅67 mN/m at 10°C to 36⋅38 mN/m at 90°C, slightly lower than those of either CTAB or SDS. Correspondingly, the CMC of CTAB–SDS decreases almost by half. The increase of surface activity of CTAB–SDS can be attributed to the relatively weak electrostatic ...

  9. Surface multifragmentation investigated with a finite temperature spherical TDHF model

    International Nuclear Information System (INIS)

    Ngo, H.; Ighezou, F.Z.; Paula, L. De

    1992-01-01

    A model for multifragmentation caused by heavy ion collision is developed. The initial state is a hot and compressed spherical nucleus in thermal equilibrium. The dynamical evolution of this nucleus is studied. The nuclear density of the system is calculated with mean field approximation. It is shown that, in some cases, the surface of the nucleus breaks up before its volume. (K.A.) 8 refs.; 1 fig

  10. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  11. Radiative surface temperatures of the burned and unburned areas in a tallgrass prairie

    International Nuclear Information System (INIS)

    Asrar, G.; Harris, T.R.; Lapitan, R.L.; Cooper, D.I.

    1988-01-01

    This study was conducted in a natural tallgrass prairie area in the Flint Hills of Kansas. Our objective was to evaluate the surface radiative temperatures of burned and unburned treatments of the grassland as a means of delineating the areas covered by each treatment. Burning is used to remove the senescent vegetation resulting from the previous year's growth. Surface temperatures were obtained in situ and by an airborne scanner. Burned and unburned grass canopies had distinctly different diurnal surface radiative temperatures. Measurements of surface energy balance components revealed a difference in partitioning of the available energy between the two canopies, which resulted in the difference in their measured surface temperatures. The magnitude of this difference is dependent on the time of measurements and topographic conditions. (author)

  12. Measurement of surface temperature profiles on liquid uranium metal during electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Surface temperature distributions of liquid uranium in a water-cooled copper crucible during electron beam evaporation were measured. Evaporation surface was imaged by a lens through a band-path filter (650{+-}5 nm) and a double mirror system on a charge coupled device (CCD) camera. The video signals of the recorded image were connected to an image processor and converted to two-dimensional spectral radiance profiles. The surface temperatures were obtained from the spectral radiation intensity ratio of the evaporation surface and a freezing point of uranium and/or a reference light source using Planck`s law of radiation. The maximum temperature exceeded 3000 K and had saturation tendency with increasing electron beam input. The measured surface temperatures agreed with those estimated from deposition rates and data of saturated vapor pressure of uranium. (author)

  13. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  14. tavg1_2d_ocn_Nx: MERRA 2D IAU Ocean Surface Diagnostic, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXOCN) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXOCN or tavg1_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is time averaged...

  15. tavg1_2d_flx_Nx: MERRA 2D IAU Diagnostic, Surface Fluxes, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXFLX) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXFLX or tavg1_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  16. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    Science.gov (United States)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  17. The effect of clear sky radiation on crop surface temperature determined by thermal thermometry

    International Nuclear Information System (INIS)

    Svendsen, H.; Jensen, H.E.; Jensen, S.E.; Mogensen, V.O.

    1990-01-01

    By numerical integration of Planck's radiation function, a relationship between emitted radiation from a black body in the wavelength band 8–14 μm and the corresponding surface temperature was obtained. Using this relationship, an equation was developed relating the temperature error at different temperatures to the crop surface emissivity and clear sky radiation. It is concluded that the temperature error to be expected from neglect of clear sky radiation in the wavelength band 8–14μm in radiometric crop surface temperature determination is < 0.2 and 0.1 °C for crops with an emissivity > 0.96 and 0.98, respectively, for a leaf temperature range from 0 to 30°C

  18. LOW-TEMPERATURE SURFACE HARDENING FOR DIAMOND TOOLS

    Directory of Open Access Journals (Sweden)

    A. A. Shmatov

    2009-01-01

    Full Text Available The structure and properties of cutting diamond tools subjected to thermo-hydro-chemical treatment are examined in the paper. The process involves a chemical treatment of tools in a specially prepared aqueous suspension of oxides Ti, Mo and other ingredients and subsequent heat treatment (minimal process temperature 130 °C. Thermo-hydro-chemical method permits to increase a wear resistance of cutting diamond tools by the factor of 1.3–4.0 in comparison with traditional one.

  19. Control of surface temperature of an aluminum alloy billet by air flow during a heating process at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young [KITECH, Cheonan (Korea, Republic of); Park, Joon Hong [Dong-A University, Busan (Korea, Republic of)

    2016-06-15

    The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of the billet during thixoforging process with forced surface cooling has been performed to obtain more uniform distribution of temperature, microstructure and shape of the billet. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. Microscopic and macroscopic aspects of the billets were discussed according to location of the measuring points. By this new induction heating method, not only temperature distributions over the whole billet become uniform, but also control of temperature distribution between inside and outside part of the billet is possible as user's experimental intentions,.

  20. A 65--70 year oscillation in observed surface temperatures

    International Nuclear Information System (INIS)

    Schlesinger, M.E.; Ramankutty, N.

    1994-01-01

    There are three possible sources for the 65--70-year ''global'' oscillation: (1) random forcing of the ocean by the atmosphere, such as by white noise; (2) external oscillatory forcing of the climate system, such as by a variation in the solar irradiance; and (3) an internal oscillation of the atmosphere-ocean system. It is unlikely that putative variations in solar irradiance are the source of the oscillation because solar forcing should generate a global response, but the oscillation is not global. It is also unlikely that white-noise forcing is the source of the oscillation because such forcing should generate an oceanwide response, but the oscillation is not panoceanic. Consequently, the most probable cause of the oscillation is an internal oscillation of the atmosphere-ocean system. This conclusion is supported by a growing body of observational evidence and coupled atmosphere/ocean general circulation model simulation results. Comparison of the regional and global-mean temperature changes caused by the oscillation with those induced by GHG + ASA forcing shows that the rapid rise in global-mean temperature between about 1908 and 1946, and the subsequent reversal of this warming until about 1965 were the result of the oscillation. In the North Atlantic and North American regions, the domination of the GHG + ASA-induced warming by the oscillation has obscured and confounded detection of this warming

  1. Influences of combined therapies with traditional Chinese medicine on pulmonary function and surface average electromyogram ratio in adolescent idiopathic scoliosis patients

    Directory of Open Access Journals (Sweden)

    Jia-ping SHEN

    2016-09-01

    Full Text Available Objective  To evaluate the influences of traditional Chinese medicinal combined therapies on pulmonary function and surface average electromyogram (AEMG ratio in adolescent idiopathic scoliosis patients. Methods  One hundred and twenty outpatients with mild and moderate adolescent idiopathic scoliosis were randomly divided into a Traditional Chinese Medicine (TCM group and a brace group. TCM group patients underwent i Navigation of the spinal balance (twice a day, 40min/ time, until to skeletal maturity; ii Balance manipulation (twice a week, 25min/time, lasted 12 months; iii Small needle-knife therapy (once a week, 10 times. The brace group patients were treated with a Milwaukee brace. The Cobb angle was measured after 12 and 24 months of treatment, pulmonary function was determined after 12 months of treatment, and AEMG ratio of the surface electromyogram was measured 6, 12, 18 and 24 months after treatment, and intergroup comparison was performed. Results  The Cobb angle significantly decreased in both groups 12 months after treatment (P0.05 in the TCM group and brace group, respectively, 12 months after treatment and 62.5% and 34.7% (P<0.05, respectively, 24 months aftertreatment. Pulmonary function was significantly improved 12 months after treatment in TCM group (P<0.05 but significantly decreased in brace group (P<0.05. The AEMG ratio was significantly reduced (P<0.01 and tended to remain at 1 after stopping treatment in TCM group, showed that the muscle imbalance existed on both sides of the scoliosis, but was adverse in brace group (P<0.05, showed that the muscle imbalance aggravated. No side effect of the therapeutic method was found. Conclusions  The spinal balance therapy based on traditional Chinese medicine theory has excellent therapeutic efficacy and safety, and can significantly ameliorate the imbalance existed on both sides of the scoliosis, improve lung function index, and have better compliance. The AEMG ratio is a

  2. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    Science.gov (United States)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  3. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri

    2016-01-01

    : - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical......Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge...

  4. Negative feedback mechanism for the long-term stabilization of earth's surface temperature

    International Nuclear Information System (INIS)

    Walker, J.C.G.; Hays, P.B.; Kasting, J.F.

    1981-01-01

    We suggest that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, and surface temperature, in turn, depends on carbon dioxide partial pressure through the green effect. Although the quantitative details of this mechanism are speculative, it appears able partially to stabilize earth's surface temperature against the steady increase of solar luminosity believed to have occured since the origin of the solar system

  5. Infrared thermography--a non-invasive tool to evaluate thermal status of neonatal pigs based on surface temperature.

    Science.gov (United States)

    Kammersgaard, T S; Malmkvist, J; Pedersen, L J

    2013-12-01

    Hypothermia is a major cause of mortality in neonatal pigs. Infrared (IR) thermography is a promising non-invasive method to assess thermal status, but has not been evaluated for use on neonatal pigs from birth. The aim of this study was to evaluate the application of IR thermography as a non-invasive tool to estimate body temperature and assess the thermal status in newborn pigs by (1) estimating the relationship between surface temperature and rectal temperature (RT) in neonatal pigs; and (2) estimating the influence of air temperature (AT), birth weight and the time from birth on the relationship between surface temperature and RT. The method was evaluated on the basis of 1695 thermograms and 915 RTs on 91 neonatal pigs born in loose farrowing pens with floor heating at 34°C, and three different ATs (15°C, 20°C and 25°C). Full-body thermograms of the back and the side of the pigs and RT were acquired at 11 sampling times between birth and 48 h after birth. The maximum (IRmax), minimum, average of the full body and ear minimum IR surface temperatures were derived from the thermograms. IRmax had the highest correlation with RT (0.82) and was therefore used in the statistical analysis. The relation of RT by IRmax depended on time at: 0 h (slope: 0.20°C, Pmethod has the potential to be used without the need for manual restraint of the pigs. On the basis of the results of this study, we propose that IRmax temperature from full-body thermograms has implication as a valid tool to assess the thermal status in neonatal piglets but not as an identical substitute for RT.

  6. Non-invasive Estimation of Temperature during Physiotherapeutic Ultrasound Application Using the Average Gray-Level Content of B-Mode Images: A Metrological Approach.

    Science.gov (United States)

    Alvarenga, André V; Wilkens, Volker; Georg, Olga; Costa-Félix, Rodrigo P B

    2017-09-01

    Healing therapies that make use of ultrasound are based on raising the temperature in biological tissue. However, it is not possible to heal impaired tissue by applying a high dose of ultrasound. The temperature of the tissue is ultimately the physical quantity that has to be assessed to minimize the risk of undesired injury. Invasive temperature measurement techniques are easy to use, despite the fact that they are detrimental to human well being. Another approach to assessing a rise in tissue temperature is to derive the material's general response to temperature variations from ultrasonic parameters. In this article, a method for evaluating temperature variations is described. The method is based on the analytical study of an ultrasonic image, in which gray-level variations are correlated to the temperature variations in a tissue-mimicking material. The physical assumption is that temperature variations induce wave propagation changes modifying the backscattered ultrasound signal, which are expressed in the ultrasonographic images. For a temperature variation of about 15°C, the expanded uncertainty for a coverage probability of 0.95 was found to be 2.5°C in the heating regime and 1.9°C in the cooling regime. It is possible to use the model proposed in this article in a straightforward manner to monitor temperature variation during a physiotherapeutic ultrasound application, provided the tissue-mimicking material approach is transferred to actual biological tissue. The novelty of such approach resides in the metrology-based investigation outlined here, as well as in its ease of reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. The surface temperature effect on the dissociative sticking of N2 on Fe(111)

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing; Billing, Gert Due

    1995-01-01

    We present the first realistic calculation of the surface temperature effect on the dissociative sticking probability of molecular nitrogen on Fe(111). Extensive quantum dynamical calculations show that, depending on the impact point in the unit cell, the sticking probabilities can increase as well...... as decrease as a function of the surface temperature. The magnitude of the temperature effect on randomly chosen impact points is comparable with the experimental observation. Since only a small fraction of the impacts give a significant contribution to the sticking and the alternating temperature effect...

  8. Effect of machining on the deformability of steel in surface-active medium at lower temperatures

    International Nuclear Information System (INIS)

    Gusti, E.Ya.; Babej, Yu.I.

    1977-01-01

    The effect of some machining methods of carbon steel, chromium steel, and chromium nickel steel, and that of low temperatures on the principle characteristics of formability during impact bending in air and a surface-active environment have been studied. The temperature decrease from the ambient to -80 deg is shown to reduce steel formability as evaluated by deflection (f) and to increase the forming force. The variation of these characteristics with lowering temperature, however, is greatly affected by machining process conditions. The FRHT (Friction-Hardening Treatment) on the white layer assures minimum ductility losses, and increases steel strength at low temperatures both in air and in the surface-active environment

  9. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  10. Paleoclimatic reconstructions in western Canada from borehole temperature logs: surface air temperature forcing and groundwater flow

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J.; Grasby, S. E.; Ferguson, G.; Šafanda, Jan; Skinner, W.

    2006-01-01

    Roč. 2, č. 1 (2006), s. 1-10 ISSN 1814-9324 Institutional research plan: CEZ:AV0Z30120515 Keywords : palaeoclimatic reconstructions * Canada * borehole temperatures Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  11. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes

    Science.gov (United States)

    Björnsson, Axel

    2008-02-01

    Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10-15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.

  12. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    Science.gov (United States)

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  13. Ground-based thermal imaging of stream surface temperatures: Technique and evaluation

    Science.gov (United States)

    Bonar, Scott A.; Petre, Sally J.

    2015-01-01

    We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.

  14. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    Science.gov (United States)

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  15. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    International Nuclear Information System (INIS)

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-01-01

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  16. Surface chemistry of metals and their oxides in high temperature water

    International Nuclear Information System (INIS)

    Tomlinson, M.

    1975-01-01

    Examination of oxide and metal surfaces in water at high temperature by a broad spectrum of techniques is bringing understanding of corrosion product movement and alleviation of activity transport in CANDU-type reactor primary coolant circuits. (Author)

  17. IceBridge NSERC L1B Geolocated Meteorologic and Surface Temperature Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge National Suborbital Education & Research Center (NSERC) L1B Geolocated Meteorologic and Surface Temperature (IAMET1B) data set is a collection of...

  18. IceBridge NSERC L1B Geolocated Meteorologic and Surface Temperature Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge National Suborbital Education & Research Center (NSERC) L1B Geolocated Meteorologic and Surface Temperature (IAMET1B) data set is a collection of...

  19. 14 km Sea Surface Temperature for North America, 1986 - present (NODC Accession 0099042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This product presents local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST observations collected by Advanced...

  20. Temperature, All Surface, NOAA POES AVHRR, LAC, 0.0125 degrees, West US, Daytime

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides surface temperature products derived from NOAA's Polar Operational Environmental Satellites (POES). This data is provided at high resolution...

  1. The lowering of sea surface temperature in the east central Arabian sea associated with a cyclone

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.; Sastry, J.S.

    An analysis of thermal Structure in the East Central Arabian Sea associated with a moderate cyclone is presented. The heat storage and the heat budget components have been computed. Under the influence of the cyclone the Sea Surface Temperature (SST...

  2. Monthly version of HadISST sea surface temperature state-space components

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — State-Space Decomposition of Monthly version of HadISST sea surface temperature component (1-degree). See Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C....

  3. The effects of artificial surface temperature on mechanical properties and player kinematics during landing and acceleration

    Directory of Open Access Journals (Sweden)

    Laura Charalambous

    2016-09-01

    Conclusion: These findings highlight different demands placed on players due to the surface temperature and suggest a need for coaches, practitioners, and sports governing bodies to be aware of these differences.

  4. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  5. Extended Reconstructed Sea Surface Temperature (ERSST) Monthly Analysis, Version 3b

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 3b (v3b) of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a monthly SST analysis on a 2-degree global grid based on the International...

  6. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This high-resolution sea surface temperature (SST) analysis product was developed using an optimum interpolation (OI) technique. The SST analysis has a spatial grid...

  7. SEA SURFACE TEMPERATURE and Other Data from 19940301 to 19940331 (NCEI Accession 9400060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea Surface Temperatures (SST) data for March 1994 was provided by Kunio Sakurai of Japan Meteorological Agency, Tokyo, Japan. SST were collected from ships in El...

  8. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1977-present, Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sea Surface Temperature (SST) data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  9. Experimental determination of fuel surface temperature in the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khang, Ngo Phu; Huy, Ngo Quang; An, Tran Khac; Lam, Pham Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Measured fuel surface temperatures, obtained at various locations of the core of the Dalat Nuclear Research Reactor under normal operating conditions, are presented, and some thermal characteristics of the reactor are discussed. (author). 2 refs., 11 figs., 2 tabs.

  10. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  11. Surface temperatures and glassy state investigations in tribology

    Science.gov (United States)

    Bair, S.; Winer, W. O.

    1980-01-01

    Measurements were made of the limiting shear stress for two naphthenic oils of differing molecular weight and three blends of the lower molecular weight oil and polymers of differing molecular weight. All reached the same limiting shear stress for the same temperature and pressure; although the polymer solutions reduced the limiting shear stress by about fifteen percent. A falling body viscometer was constructed to operate to 230 C and to 0.6 GPa and another was constructed to extend the pressure range to 1.1 GPa. A concentrated contact simulator was developed which allows recording of the traction force while the slide-roll ratio is continuously varied and the rolling speed is maintained essentially constant. Measurement of lubricant minimum film thickness of elliptical EHD contacts of various aspect ratios were made by optical interferometry. The experimental data were thirty percent greater than that predicted by the Hamrock and Dowson model. Preliminary development of the application of a scanning infrared radiation system to a tribological system was completed.

  12. Temperature thresholds for surface blistering of platinum and stainless steel exposed to curium-242 alpha radiations

    International Nuclear Information System (INIS)

    McDonell, W.R.; Dillich, S.

    1981-01-01

    Implantation of helium in materials exposed to alpha-emitting radionuclides such as 242 Cm causes surface blistering at elevated temperatures. The temperature thresholds for such blistering are of practical importance to the selection of suitable container materials for radionuclides, and are of fundamental interest with regard to the mechanisms of helium blistering of materials in radiation environments. The purpose of this investigation was to establish temperature thresholds for surface blistering of platinum and stainless-steel container materials by post-irradiation heating of specimens exposed at room temperature to alpha particles from an external 242 Cm source. These thresholds were compared with (1) the analogous temperature thresholds for surface blistering of materials exposed to external beams of accelerator helium ions, and (2) thresholds for swelling and grain-boundary cracking of materials in which helium is generated internally by (n,α) reactions during reactor exposures

  13. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    Science.gov (United States)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  14. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Carmen M. [Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: cmromeroi@unal.edu.co; Jimenez, Eulogio [Facultade de Ciencias, Universidade da Coruna (Spain); Suarez, Felipe [Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia)

    2009-04-15

    The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water. In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration.

  15. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Jimenez, Eulogio; Suarez, Felipe

    2009-01-01

    The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water. In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration

  16. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    Science.gov (United States)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  17. THE EFFECT OF LAND USE CHANGE ON LAND SURFACE TEMPERATURE IN THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    S. Youneszadeh

    2015-12-01

    Full Text Available The Netherlands is a small country with a relatively large population which experienced a rapid rate of land use changes from 2000 to 2008 years due to the industrialization and population increase. Land use change is especially related to the urban expansion and open agriculture reduction due to the enhanced economic growth. This research reports an investigation into the application of remote sensing and geographical information system (GIS in combination with statistical methods to provide a quantitative information on the effect of land use change on the land surface temperature. In this study, remote sensing techniques were used to retrieve the land surface temperature (LST by using the MODIS Terra (MOD11A2 Satellite imagery product. As land use change alters the thermal environment, the land surface temperature (LST could be a proper change indicator to show the thermal changes in relation with land use changes. The Geographical information system was further applied to extract the mean yearly land surface temperature (LST for each land use type and each province in the 2003, 2006 and 2008 years, by using the zonal statistic techniques. The results show that, the inland water and offshore area has the highest night land surface temperature (LST. Furthermore, the Zued (South-Holland province has the highest night LST value in the 2003, 2006 and 2008 years. The result of this research will be helpful tool for urban planners and environmental scientists by providing the critical information about the land surface temperature.

  18. Estimation of the under-surface temperature pattern by dynamic remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, M [Univ. of Tokyo; Tao, R; Katsuma, T; Toyota, H

    1977-10-01

    There are three basic classifications of remote sensing: passive RS, which involves measurement of reflected solar radiation; active RS, which involves the use of microwaves or laser radar; and infrared scanning. These methods make possible the determination of an object's surface temperature, its effective emissivity, and its effective reflectivity. The surface temperature, in effect, contains information concerning the structure below the surface. Fundamental experiments were conducted to extract sub-surface information by means of 'dynamic remote sensing.' Aluminum objects were embedded in a container filled with sand, and the container was heated from below. First, the spatial transfer function of the medium (sand) was determined, the surface temperature pattern was filtered, and the subsurface temperature pattern was calculated, allowing the subsurface forms of the aluminum objects to be estimated. The relationship between the thermal input (bottom temperature) and the thermal output (surface temperature) was expressed in terms of electrical circuit analogs, and the heat capacity and thermal conductivity of the sample were calculated, permitting estimation of its composition. This technique will be useful for groundwater and mineral exploration and for nondestructive testing.

  19. Fundamental Experiments at Liquid Helium Temperatures (Low Temperature Studies of Anomalous Surface Shielding and Related Phenomena).

    Science.gov (United States)

    1984-09-30

    study of the copper surface indicated that the copper oxide layer was approximately 20 Angstroms thick. Hanni and Madey 3 2 have evaluated the...REFERENCES 1. John Bardeen, "Comments on Shielding by Surface States," in Near Zero: New Frontiers of Physics, to be published. 2. R. S. Hanni and...Michel, H. E. Rorschach, and G. T. Trammel, Phys. Rev. 168 (1968), 737. 31. C. Herring, Phys. Rev. 171 (1968), 1361. 32. R. S. Hanni and J.M.J. Madey

  20. Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea

    DEFF Research Database (Denmark)

    Høyer, Jacob L.; Karagali, Ioanna

    2016-01-01

    A 30-yr climate data record (CDR) of sea surface temperature (SST) has been produced with daily gap-free analysis fields for the North Sea and the Baltic Sea region from 1982 to 2012 by combining the Pathfinder AVHRR satellite data record with the Along-Track Scanning Radiometer (ATSR) Reprocessing...... for Climate (ARC) dataset and with in situ observations. A dynamical bias correction scheme adjusts the Pathfinder observations toward the ARC and in situ observations. Largest Pathfinder-ARC differences are found in the summer months, when the Pathfinder observations are up to 0.4 °C colder than the ARC...... observations on average. Validation against independent in situ observations shows a very stable performance of the data record, with a mean difference of -0.06 °C compared to moored buoys and a 0.46 °C standard deviation of the differences. The mean annual biases of the SST CDR are small for all years...

  1. Fusion of MODIS and landsat-8 surface temperature images: a new approach.

    Science.gov (United States)

    Hazaymeh, Khaled; Hassan, Quazi K

    2015-01-01

    Here, our objective was to develop a spatio-temporal image fusion model (STI-FM) for enhancing temporal resolution of Landsat-8 land surface temperature (LST) images by fusing LST images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS); and implement the developed algorithm over a heterogeneous semi-arid study area in Jordan, Middle East. The STI-FM technique consisted of two major components: (i) establishing a linear relationship between two consecutive MODIS 8-day composite LST images acquired at time 1 and time 2; and (ii) utilizing the above mentioned relationship as a function of a Landsat-8 LST image acquired at time 1 in order to predict a synthetic Landsat-8 LST image at time 2. It revealed that strong linear relationships (i.e., r2, slopes, and intercepts were in the range 0.93-0.94, 0.94-0.99; and 2.97-20.07) existed between the two consecutive MODIS LST images. We evaluated the synthetic LST images qualitatively and found high visual agreements with the actual Landsat-8 LST images. In addition, we conducted quantitative evaluations of these synthetic images; and found strong agreements with the actual Landsat-8 LST images. For example, r2, root mean square error (RMSE), and absolute average difference (AAD)-values were in the ranges 084-0.90, 0.061-0.080, and 0.003-0.004, respectively.

  2. Reconstruction of Daily Sea Surface Temperature Based on Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Zhihong Liao

    2017-11-01

    Full Text Available A radial basis function network (RBFN method is proposed to reconstruct daily Sea surface temperatures (SSTs with limited SST samples. For the purpose of evaluating the SSTs using this method, non-biased SST samples in the Pacific Ocean (10°N–30°N, 115°E–135°E are selected when the tropical storm Hagibis arrived in June 2014, and these SST samples are obtained from the Reynolds optimum interpolation (OI v2 daily 0.25° SST (OISST products according to the distribution of AVHRR L2p SST and in-situ SST data. Furthermore, an improved nearest neighbor cluster (INNC algorithm is designed to search for the optimal hidden knots for RBFNs from both the SST samples and the background fields. Then, the reconstructed SSTs from the RBFN method are compared with the results from the OI method. The statistical results show that the RBFN method has a better performance of reconstructing SST than the OI method in the study, and that the average RMSE is 0.48 °C for the RBFN method, which is quite smaller than the value of 0.69 °C for the OI method. Additionally, the RBFN methods with different basis functions and clustering algorithms are tested, and we discover that the INNC algorithm with multi-quadric function is quite suitable for the RBFN method to reconstruct SSTs when the SST samples are sparsely distributed.

  3. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    Science.gov (United States)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  4. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  5. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  6. Estimation of the Critical Temperatures of Some More Deep Eutectic Solvents from Their Surface Tensions

    Directory of Open Access Journals (Sweden)

    Yizhak Marcus

    2018-01-01

    Full Text Available The critical temperatures of two dozen deep eutectic solvents, for only some of which these have been estimated previously, were estimated from the temperature dependences of their surface tensions and densities available in the literature according to the Eötvös and the Guggenheim expressions.

  7. High-fluence hyperthermal ion irradiation of gallium nitride surfaces at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, A.; Gerlach, J.W., E-mail: juergen.gerlach@iom-leipzig.de; Lorbeer, J.; Frost, F.; Rauschenbach, B.

    2014-10-30

    Highlights: • Irradiation of gallium nitride films with hyperthermal nitrogen ions. • Surface roughening at elevated sample temperatures was observed. • No thermal decomposition of gallium nitride films during irradiation. • Asymmetric surface diffusion processes cause local roughening. - Abstract: Wurtzitic GaN films deposited on 6H-SiC(0001) substrates by ion-beam assisted molecular-beam epitaxy were irradiated with hyperthermal nitrogen ions with different fluences at different substrate temperatures. In situ observations with reflection high energy electron diffraction showed that during the irradiation process the surface structure of the GaN films changed from two dimensional to three dimensional at elevated temperatures, but not at room temperature. Atomic force microscopy revealed an enhancement of nanometric holes and canyons upon the ion irradiation at higher temperatures. The roughness of the irradiated and heated GaN films was clearly increased by the ion irradiation in accordance with x-ray reflectivity measurements. A sole thermal decomposition of the films at the chosen temperatures could be excluded. The results are discussed taking into account temperature dependent sputtering and surface uphill adatom diffusion as a function of temperature.

  8. Surface Impedance of Copper MOB Depending on the Annealing Temperature and Deformation Degree

    International Nuclear Information System (INIS)

    Kutovoj, V.A.; Nikolaenko, A.A.; Stoev, P.I.; Vinogradov, D.V.

    2006-01-01

    Results of researches of influence of annealing temperature and deformation degree on mechanical features of copper MOB are presented. It is shown that minimal surface resistance is observed in copper samples that were subject to pre-deformation and were annealed in the range of temperatures 873...923 K

  9. A Study on the Relationships among Surface Variables to Adjust the Height of Surface Temperature for Data Assimilation.

    Science.gov (United States)

    Kang, J. H.; Song, H. J.; Han, H. J.; Ha, J. H.

    2016-12-01

    The observation processing system, KPOP (KIAPS - Korea Institute of Atmospheric Prediction Systems - Package for Observation Processing) have developed to provide optimal observations to the data assimilation system for the KIAPS Integrated Model (KIM). Currently, the KPOP has capable of processing almost all of observations for the KMA (Korea Meteorological Administration) operational global data assimilation system. The height adjustment of SURFACE observations are essential for the quality control due to the difference in height between observation station and model topography. For the SURFACE observation, it is usual to adjust the height using lapse rate or hypsometric equation, which decides values mainly depending on the difference of height. We have a question of whether the height can be properly adjusted following to the linear or exponential relationship solely with regard to the difference of height, with disregard the atmospheric conditions. In this study, firstly we analyse the change of surface variables such as temperature (T2m), pressure (Psfc), humidity (RH2m and Q2m), and wind components (U and V) according to the height difference. Additionally, we look further into the relationships among surface variables . The difference of pressure shows a strong linear relationship with difference of height. But the difference of temperature according to the height shows a significant correlation with difference of relative humidity than with the height difference. A development of reliable model for the height-adjustment of surface temperature is being undertaken based on the preliminary results.

  10. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1) (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset (four day latency) and...

  11. GHRSST Level 4 RTO Terra MODIS-AMSRE Day North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  12. GHRSST Level 4 RTO Terra MODIS-AMSRE Night North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  13. GHRSST Level 4 ODYSSEA North-Western Europe Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  14. GHRSST Level 4 DMI_OI North Sea and Baltic Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  15. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  16. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MOD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  17. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  18. NOAA Climate Data Record (CDR) of Sea Surface Temperature (SST) from AVHRR Pathfinder, Version 5.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  19. GHRSST Level 4 RTO Aqua MODIS-AMSRE Night North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  20. GHRSST Level 4 RTO Aqua MODIS-AMSRE Day North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...